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1 Introduction

1.1 The uncertainty in investments

People invest in projects to make a profit. If the cost of investment is larger than the rev-
enue, a rational person would not invest. Though these two statements may seem trivial,
the reality is that it is often difficult to know what the expected costs and payoffs are. Like
with any prediction in the future, there is always a level of uncertainty. The amount of
available literature which qualitively deals with risk, greatly outnumbers the available lit-
erature on quantitative risk. Through mathematic modelling, we can attempt to quantify
this uncertainty and bring it to a minimum. In addition, this allows us to find an optimal
investment strategy (Should we invest now? And if so, how much? Or should we invest
later or drop the project altogether?). The relevance and importance of such a strategy is
obvious to anyone considering investing into a project whether it is in researching a new
medicine, planning construction for a new library or producing a new electronics device.
Though each mentioned example deals with different types of project-specic problems, it
will become apparent that the model we find has a wide range of application.

This paper is divided into three parts. First there is a finance part which gives some
background information and applies stochastic calculus to derive the main equation for
investment opportunities. In the second part, the equation is solved numerically, and the
role of the various parameters are discussed. This is then applied to a fictional company
considering a large investment project.

For now we will consider the payoff, or profit, as a function max [0, V −K] where V is the
given value of the completed project and K its expected cost. Pindyck considers investing
into a project as a put option in [1]. You are paying an undetermined amount of money
(K) to own (or sell) an asset of value V . Similarly, the cost of the put option K is what
determines whether you will partake in the opportunity. The motivation behind this is
that much of the theory in call and put options can be applied to this situation.

1.2 Diversification

Before explaining the characteristics of the uncertainties, it is important to understand
the concept of diversification. In general, diversification is a strategy for your portfolio to
reduce risk as much as possible. This can be achieved by having a wide range of (financial)
products, possibly correlated to one another. For instance, having stocks in two leading
companies in the car industry would potentially reduce risk because if one company is
not performing so well, it is likely the other is doing better and so your portfolio evens
out. On the other hand, one could argue that if there is a recession, both car firms will
be performing poorly, leading to a far greater loss. This shows that the right choice of
products is essential to create a risk free portfolio.

1.3 Two types of uncertainty

In the first step to quantifying uncertainty, two types will be distinguished: technical
uncertainty and input cost uncertainty. The first is related to the physical difficulty of
completing a project. This is the ’internal’ uncertainty of a project. There is always risk
in price changes due to the specific nature of the project. For example, when building a
house one might have to deal with a volatile cement market. However, this is risk can be
minimized through diversification. To truly eliminate the uncertainty would be to simply
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undertake or invest in the project. Contrary to technical uncertainty, the input cost un-
certainty is the uncertainty due to possible changes in the environment of the project or
overall market. It is the ’external’ uncertainty. Using the house example again, if there is
likely to be a recession soon, this would have an effect on the purchase of all the required
matierals. Hence, this risk is undiversifiable.

To further characterise the difference between the two uncertainties, we can look at how
they affect an investment strategy. Consider a project with technical uncertainty. In-
vesting in the project will reveal more information about cost while not investing has 0
value because you are no closer to completion and no follow-up information is obtained.
Hence technical uncertainty makes investing attractive in the sense that, next to being
one step closer to completion, you gain (the value of) the information on further costs.
Now consider a project with input cost uncertainty. Because costs could always change,
it is more economic to wait for new information than immediately spending money. So if
a project has a large input cost uncertainty it is less attractive to invest.

2 The basic model

2.1 No uncertainty

The remaining cost of completion is defined as a random variable K̃ with E[K̃] = K.
Only when the project is completed, does the investor gain an asset of known value V .
If the project is dropped all costs are sunk, which means there is no way to get back the
invested money. The maximum rate of investment is constant k. As a preliminary step we
first consider a model that has no uncertainty over the total cost. In that case the time
to complete is given by T = K

k . The payoff, F (K) is given by

F (K) = max

[
V e−r

K
k −

∫ K

0
ke−rtdt , 0

]
This can be roughly translated to being equal to the difference between V after being
adjusted due to interest rate r (assumed constant) and the total invesetment made with
rate k and time T (hence the integral sign). Clearly, one should invest as long as F (K) > 0.
Elementary operations lead to the following demand for K in order for the payoff to be
positive:

K <
k

r
log(1 +

rV

k
)

2.2 Introducing uncertainty

Now uncertainty is introduced by letting the change in K follow a controlled diffusion
process. Consider that the value of K(t), is given by:

dK = −Idt+ g(I,K)dz

where I(t) is the rate of investment, dz is the increment of a Wiener process (possibly
correlated to the economy) for which z ∼ N(0, σ2). The equation states that although
the expected remaining cost to completion declines with investment, it also fluctuates
stochastically. Analogous to the no uncertainty model, the value of the investment oppor-
tunity becomes:

F (K) = maxE

[
V e−µT̃ −

∫ T̃

0
I(t)e−µtdt , 0

]
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where I(t) is the rate which maximizes F (which will be discussed later) and T̃ is the
stochastic time of completion. E[..] is the expectation operator and µ is a risk adjusted
discount rate. To specify the function g(I,K) attention must be paid to the following
properties:

1. For the partial derivatives gI ≥ 0 and gII ≤ 0. To explain this, consider the effect
of investing in a project with uncertainty in cost. By investing, we will now know
better what the (new) expected cost of completion is. Hence investing has an effect
on the stochastic movement of K, next to the decrease in cost represented by −Idt.
Further, gK ≥ 0. This is the observation that an increase in the remaining cost also
increases the magnitude of Brownian motion.

2. As far as technical uncertainty is concerned, when there is no investment, there is
no change in the remaining cost.

3. However, for input cost uncertainty there will be a stochastic change, regardless of
investment. Hence g(0,K) is a function of only K.

4. FK < 0: An increase in the expected cost will reduce the payoff.

5. dK is bounded for all finite K and approaches 0 as K → 0. Once a project is
completed, the remaining cost stays at 0.

All these conditions can be satisfied if we let g(I,K) = cK I
Kα with 0 ≤ α ≤ 0.5 and

c < 0. This is suggested by Pindyck in [1] and limiting to α = 0 and 1
2 is mainly a choice

of practicality. Having already described the nature of g(I,K), it makes sense that α = 1
2

responds to technical uncertainty and α = 0 to input cost uncertainty. Altogether we
have:

dK = −Idt+ β(IK)
1
2dz + γKdw

where β and γ are the ’measure’ of their respective uncertainty. The change in expected
remaining cost is equal to a stochastic change due to technical uncertainty and input cost
uncertainty minus the investment rate. An important point for the following subsection is
that dz and dw are uncorrelated Wiener processes and that the risk of dz is diversifiable
(uncorrelated to the economy to the economy and stock market). In contrast, dw is related
to the economy (input cost) and therefore not diversifiable.

2.3 Finding a differential equation

The problem with F (K) is that the risk adjusted discount rate µ cannot be the risk free
rate of interest. This is because dw is correlated to the market (non diversifiable). It
would therefore be wise to eliminate dw from the equation. First, we allow x to be the
price of an asset or portfolio perfectly correlated to w such that:

dx = αxxdt+ σxxdw (1)

According to the capital asset pricing model (CAPM), explained very and concisely in [4]
the risk adjusted expected return on x is

rx = r + θρxmσx

where θ is the overall market price of risk (assumed to be around 0.4) and ρxm is the
instantaneous correlation of x with the market portfolio. Just to clarify, the subscript of
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x is merely notational and not indicating a partial derivative. Now consider we have a
portfolio with the investment opportunity (worth F (K)). We then short sell n units of
the asset for price x. The portfolio is then worth Φ = F (K)− nx. We can also say that a
marginal change in the portfolio value is equal to the marginal change in F and x:

dΦ = dF − ndx

However, holding this portfolio obliges us to invest at rate I(t). Also, because we are
selling short, the portfolio brings an extra cost of n(rx − αx)x. Letting rx − αx = δ, We
can formulate the return of the portfolio over an interval dt as:

dΦ = dF − ndx− nδxdt− I(t)dt (2)

Applying Ito’s Lemma, explained in [2], we are able to rewrite dF as:

dF = −IFkdt+ β(IK)
1
2FKdz + γKFKdw +

1

2
β2IKFKKdt+

1

2
γ2K2FKKdt (3)

Substituting (1) and (3) into (2) and setting n = γKFK
σxx

we then obtain:

dΦ = −IFkdt+ β(IK)
1
2FKdz + γKFKdw +

1

2
β2IKFKKdt+

1

2
γ2K2FKKdt

−γKFK
αx
σx
dt− γKFKdw − γKFK

δ

σx
− Idt

Notice now that dw is removed from the equation. Now there is only diversifiable risk and
that means the expected return on the portfolio will be the risk free rate r. Rewriting
dΦ = r(F − nx)dt we now have:

r(F − nx)dt = −IFKdt+ β(IK)
1
2FKdz +

1

2
β2IKFKKdt+

1

2
γ2K2FKKdt

−γKFK(
αx + δ

σx
)dt− Idt

r(F − γKFK
σx

) = −IFK + β(IK)
1
2FK

dz

dt
+

1

2
β2IKFKK +

1

2
γ2K2FKK

−γKFK(
rx
σx

)− I

rF = −IFK + β(IK)
1
2FK

dz

dt
+

1

2
β2IKFKK +

1

2
γ2K2FKK

−γKFK(
rx − r
σx

)− I

rF = −IFK +
1

2
β2IKFKK +

1

2
γ2K2FKK − γKFK(

rx − r
σx

)− I

rF = −IFK +
1

2
β2IKFKK +

1

2
γ2K2FKK − γKFKθρxm − I (4)

Equation (4) will be examined in the folllowing section. Given that θ is an economic
constant, that means only ρxm, the correlation between fluctuations in cost of the project
and the stock market, needs to be predetermined. For now we will let λ = θρxm Having
done so, there is the freedom to experiment with the values of γ and β.
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2.4 An optimal investment stategy

Given eqation (4), note that the order of I is 1 (i.e. linear). Rewriting the equation as:

F = I (−FK +
1

2
β2KFKK − 1)︸ ︷︷ ︸
(∗)

1

r
+

1

2r
γ2K2FKK −

γλ

r
KFK

it becomes clear that in order to maximize F , then I should be as large as possible (which
is k) only if (∗) is positive. If (∗) is nonpositive the investment should be 0. In other
words, the rate of investment should always be the maximum possible; investing at half
the maximum rate would not lead to a maximized F .

3 Model Characteristics

In order to clearly demonstrate the differences in technical and input cost uncertainty, we
will first consider them separately and afterwards combine them. First we define K∗ as
the critical value. Given the optimal investment rule, it is the value for which:

−FK(K∗) +
1

2
β2K∗FKK(K∗)− 1 = 0 (5)

If K exceeds this, then the payoff will be 0. This also means that the investment rate I
is simply k as long as K < K∗. If this is not the case, the investment rate is 0. The main
matter is now to find such a K∗. There are two more boundary conditions:

F (0) = V (6)

lim
K→∞

F (K) = 0 (7)

Condition (6) is from the definition that a completed project is worth V . Condition (7)
means that when the expected cost of completion becomes extremely large, it becomes
unlikely that the payoff would ever become positive.

Each subsection consists of a numerical solution and how it was achieved. In addition,
some conclusions are drawn relating to the behaviour of the parameters.

3.1 Technical uncertainty

If we only consider technical uncertainty, we let γ = 0 in equation (4) leaving us with:

rF =
1

2
β2IKFKK − IFK − I

subject to the previously stated conditions (5), (6) and (7). Remembering that I = 0 for
K > K∗, this makes it impossible to determine an analytical solution.

3.1.1 Numerical solution approach

In order to solve this numerically we will treat the problem as an linear complementarity
problem, explained in [3]. The motivation for this is that we do not yet know the value
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of K∗ but are still required to apply its boundary condition. Once formulated as a non-
linear system, it is possible to apply the projected Gauss-Seidel method. There are two
situations:

If K < K∗:
1

2
β2kKFKK − kFK − k − rF = 0

If K ≥ K∗: F = 0

In this case, the equation F = 0 act as the ’obstacle function’. A formulation that combines
the two situations is to find a function F (K) such that:(

1

2
β2kKFKK − kFK − k − rF

)
(F ) = 0

−
(

1

2
β2kKFKK − kFK − k − rF

)
≥ 0

F ≥ 0 , F (0) = V , F (S) = 0

where S is suffciently far away from K∗. The inequality is based on the fact that if k was
0, then F ≥ 0 would still need to hold. It is more an educated guess than a sound proof.
Notice now that K∗ is not explicitly mentioned. To discretize the problem, the following
notation will be used:

xi = ih , i = 0..N

wi = F (xi)

This leads to the following discretization for the equality i = 1 . . . N − 1:[
1

2
β2kxi

wi−1 − 2wi + wi+1

h2
− kwi − wi−1

h
− k − rwi

]
[wi] = 0[

β2ki

2h
(wi−1 − 2wi + wi+1)−

k

h
(wi − wi−1)− k − rwi

]
[wi] = 0[

wi−1

(
β2ki

2h
+
k

h

)
+ wi

(
−β

2ki

h
− k

h
− r
)

+ wi+1

(
β2ki

2h

)
− k
]

[wi] = 0[
wi−1

(
−β

2ki

2h
− k

h

)
+ wi

(
β2ki

h
+
k

h
+ r

)
+ wi+1

(
−β

2ki

2h

)
+ k

]
[wi] = 0

The discretization for the inequality is:

−
[

1

2
β2kxi

wi−1 − 2wi + wi+1

h2
− kwi − wi−1

h
− k − rwi

]
≥ 0[

wi−1

(
−β

2ki

2h
− k

h

)
+ wi

(
β2ki

h
+
k

h
+ r

)
+ wi+1

(
−β

2ki

2h

)
+ k

]
≥ 0

The reason for this choice of discretization is that backward differentiation will be stable.
Also, notice that A is now strictly positive in the diagonal, and negative in the adjacent
diagonals. Combined with the boundary values, the discretization leads to finding vector
w ≥ 0 such that:

wT (Aw − b) = 0

Aw − b ≥ 0
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where:

Aij =


−β2ki

2h −
k
h if i− 1 = j

β2ki
h + k

h + r if i = j

−β2ki
2h if i+ 1 = j

w =


w1

w2
...

wN−1



b =


−k + V (β

2k+2k
2h )

−k
...
−k


Applying the transformation x = w and y = Aw − b the problem can be formulated as
finding x, y such that:

xT y = 0

Ax− y = b̂ = b

x ≥ 0

y ≥ 0

This is identical to the Cryer problem from [3] and can be solved using a ’pointwise’
iteration process. The idea is to take an initial guess x(0) and pointwise calculate a
correction vector x(t) − x(t−1). The algorithm looks as follows:

Outer Loop t = 1, 2..

Inner Loop i = 1, 2..N − 1

r
(t)
i = −b̂i −

i−1∑
j=1

aijx
(t)
j − aiix

(t−1)
i −

N−1∑
j=i+1

x
(t−1)
j

x
(t)
i = max

{
x
(t−1)
i +

r
(k)
i

aii
, 0

}

The advantage to this approach is that the amount of iterations can be chosen, and gives
much ’smoother’ functions, as opposed to calculating Aw − b = 0 explicitly. Choosing
w = A−1b as an initial guess may seem odd because calculating inverses is always a heavy
job for MATLAB. However, in practice it meant that less iterations are needed to be done
(so t stays relatively low) because the initial guess was already quite close to the final
solution. This saved time in the long run.

3.1.2 Variation in parameters: β, V, k and r

Having determined an algorithm, this allows us to explore the effects of varying the para-
meters: β, V, k and r. The most relevant one is β; what is the effect of a large degree of
technical uncertainty on the payoff of a project?
As seen in Figure 1, a larger degree of technical uncertainty raises the payoff at any given
K and also increases K∗. Note that K∗ is the K intercept of each line. The idea that ’more
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uncertainty’ will actually increase your profit may seem counterintuitive, but this can be
explained by the fact that this equation is based on a risk free portfolio. While investing,
there is the possibility that K may drop (because K acts stochastically) and thus may be
more profitable than an opportunity with no uncertainty, where there is no chance that
K may drop. Note that the effects of β only become apparant once F approaches the
K-axis. When K is small, the differences in β are negligible.
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(a) Value of F (K) as a function of K

(b) Value of F (K) as a function of K, zoomed in

Figure 1: Various values of β. Each value of β is given by a different colour in the legend.
Other parameters are V = 5, k = 1, r = 0.05. Note that K∗ is given by the K-intercept
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Variation in the second parameter V , results in the line shifting horizontally, as seen in
Figure 2. These shifts are roughly equidistant for every increment in V . Increasing V
results in a translation to the right. This can be tied to the natural observation that given
a larger value of a completed project, you would be willing to take on larger costs (so K∗

increases).

Figure 2: Value of F (K) as a function of K for various values of V . Each separate V is
given by a different colour in the legend. Other parameters are β = 0.4, k = 1, r = 0.05.
Note that K∗ is given by the K-intercept

The third parameter k shows slightly different behaviour than V , as seen in Figure 3. The
reason for this is that V acts as a boundary condition whereas k is a part of the equation
that needs to be solved. Choosing several values for k we see that the payoff and K∗ will
be larger, as k increases. However, notice that an increment for larger k’s has a smaller
effect compared to an increment for a small k. I.e. there is a larger spacing between
k = 0.6, 0.8 than k = 1.6, 1.4
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(a) Value of F (K) as a function of K

(b) Value of F (K) as a function of K, zoomed in

Figure 3: Various values of k. Each value of k is given by a different colour in the legend.
Other parameters are β = 0.4, V = 5, r = 0.05. Note that K∗ is given by the K-intercept

The final parameter, r shows that a lower rate of interest increases the payoff and K∗

(Figure 4). A higher rate of interest means that profits are worth less because it has to
compete with getting a higher revenue from saving the money. It also confirms the classis
economic concept that a lower interest rate will encourage investment (here confirmed by
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the payoff and K∗).

(a) Value of F (K) as a function of K

(b) Value of F (K) as a function of K, zoomed in

Figure 4: Various values of r. Each value of r is given by a different colour in the legend.
Other parameters are β = 0.4, V = 5, k = 1. Note that K∗ is given by the K-intercept
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3.2 Input cost uncertainty

For input cost uncertainty we now consider β = 0 and are interested in the following:

rF = −IFK +
1

2
γ2K2FKK − γλKFK − I

3.2.1 Numerical solution approach

There are two situations concerning K∗:

If K < K∗: − rF − kFK +
1

2
γ2K2FKK − γλKFK − k = 0

If K ≥ K∗: − rF +
1

2
γ2K2FKK − γλKFK = 0

For technical uncertainty we knew the lower bound function. The problem is now that
the lower bound function is unknown. All we have is a differential equation. Trying to
solve the equation analytically leads to the following. This function L(K) which act as
the lower bound of F (K), must satisfy the second situation, which was:

−rL− γλKLK +
1

2
γ2K2LKK = 0

Letting L(K) = pKq where q is the solution of −r − γλd+ γ2

2 d(d− 1), therefore:

q =
γλ+ γ2

2 ±
√(

γλ+ γ2

2

)2
+ 4r γ

2

2

γ2

=
λ

γ
+

1

2
± 1

γ

√√√√(γλ+ γ2

2

)2
+ 4r γ

2

2

γ2

=
λ

γ
+

1

2
± 1

γ

√
γ2
(
λ+ γ

2

)2
γ2

+ 2r

=
λ

γ
+

1

2
± 1

γ

√(
λ+

γ

2

)2
+ 2r

If there is a positive solution for d, it can be ignored. This is because if that were the lower
bound, then F (K) would increase as K does, and condition (7) would be violated. The
problem we now face is that c1 cannot be solved. Boundary condition (6) does not apply
(for surely K∗ > 0) and (7) does not provide any extra information. Boundary condition
(5) is of no use; finding K∗ using our equation was the goal in the first place, not using
K∗ to solve the equation. Despite not explicitly knowing the obstacle function we can still
continue in a similar fashion, although it does get more complicated. We are looking for
a function F (K) ≥ 0 such that:

(−rF − kFK +
1

2
γ2K2FKK − γλKFK − k)·

(−rF +
1

2
γ2K2FKK − γλKFK) = 0

−(−rF − kFK +
1

2
γ2K2FKK − γλKFK − k) ≥ 0

−(−rF +
1

2
γ2K2FKK − γλKFK) ≥ 0

F (0) = V , F (S) = 0
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Again, the inequalities are mainly making an educated guess. Discretization of the equality,
for i = 1 . . . N looks as follows:

(−rwi − k
wi − wi−1

h
+

(
γ2(xi)

2

2

)
wi−1 − 2wi + wi+1

h2
− γλxi

wi − wi−1
h

− k)·

(−rwi +
γ2(xi)

2

2

wi−1 − 2wi + wi+1

h2
− γλxi

wi − wi−1
h

) = 0[
wi−1

(
k

h
+
γ2i2

2
+ γλi

)
+ wi

(
−r − k

h
− γ2i2 − γλi

)
+ wi+1

(
γ2i2

2

)
− k
]
·[

wi−1

(
γ2i2

2
+ γλi

)
+ wi

(
−r − γ2i2 − γλi

)
+ wi+1

(
γ2i2

2

)]
= 0[

wi−1

(
−k
h
− γ2i2

2
− γλi

)
+ wi

(
r +

k

h
+ γ2i2 + γλi

)
+ wi+1

(
−γ

2i2

2

)
+ k

]
·[

wi−1

(
−γ

2i2

2
− γλi

)
+ wi

(
r + γ2i2 + γλi

)
+ wi+1

(
−γ

2i2

2

)]
= 0

The first inequality is discretized as follows:

−(−rwi − k
wi − wi−1

h
+

(
γ2(xi)

2

2

)
wi−1 − 2wi + wi+1

h2
− γλxi

wi − wi−1
h

− k) ≥ 0[
wi−1

(
−k
h
− γ2i2

2
− γλi

)
+ wi

(
r +

k

h
+ γ2i2 + γλi

)
+ wi+1

(
−γ

2i2

2

)
+ k

]
≥ 0

The second inequality is discretized as follows:

(−rwi +
γ2(xi)

2

2

wi−1 − 2wi + wi+1

h2
− γλxi

wi − wi−1
h

) ≥ 0[
wi−1

(
−γ

2i2

2
− γλi

)
+ wi

(
r + γ2i2 + γλi

)
+ wi+1

(
−γ

2i2

2

)]
≥ 0

Using the boundary conditions, this can all be summarized as follows:

(Aw − b)T (Cw − d) = 0

Aw − b ≥ 0

Cw − d ≥ 0
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where:

Aij =


− k
h −

γ2i2

2 − γλi if i− 1 = j

r + k
h + γ2i2 + γλi if i = j

−γ2i2

2 if i+ 1 = j

b =


−k − V (− k

h −
γ2

2 − γλ)
−k
...
−k


Cij =


−γ2i2

2 − γλi if i− 1 = j
r + γ2i2 + γλi if i = j

−γ2i2

2 if i+ 1 = j

d =


−V (−γ2

2 − γλ)
0
...
0



w =


w1

w2
...

wN−1


If we apply the transformation:

x = Cw − d
y = Aw − b
G = AC−1

we can now use the previous algorithm to solve:

xT y = 0

Gx− y = b̂ = −Gd+ b

x ≥ 0

y ≥ 0

Once x is calculated, we convert it back to w with the reverse transformation (so C−1

will have to be computed). To find K∗ an iteration along F can be taken to find the first
point for which:

−Fk − 1 = 0

−wi − wi−1
h

= 1

The critical costs for the respective F is marked with a * on the K-axis.

3.2.2 Variation in parameters: γ and λ

First the influence of γ on the shape of F will be demonstrated. As opposed to β, it is
clear that a larger γ reduces the critical cost K∗ in Figure 5. Unlike the nature of β, if
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the remaining costs are larger than K∗, that does not necessarily mean the payoff will be
0. The interval from K∗ to the K for which F (K) becomes 0 is where investment should
be stopped, but the project not aborted. Qualitavely speaking, there is the possibility
that the remaining cost will decrease by itself and so the project should not be too hastily
aborted.
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(a) Value of F (K) as a function of K

(b) Value of F (K) as a function of K, zoomed in

Figure 5: Various values of γ. Each value of γ is given by a different colour in the legend.
Other parameters are λ = 0, V = 5, k = 1, r = 0.05. The critical cost K∗ is marked on the
K-axis

Notice that increasing λ has a similar effect as γ in Figure 6. However, the spread of the
F ’s is now much more even.
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(a) Value of F (K) as a function of K

(b) Value of F (K) as a function of K, zoomed in

Figure 6: Various values of λ. Each value of λ is given by a different colour in the legend.
Other parameters are γ = 0.2, V = 5, k = 1, r = 0.05. The critical cost K∗ is marked on
the K-axis

3.3 Combining the two uncertainties

Having discussed the two uncertainties separately, we now return to equation (4), which
combines both types of uncertainty:

−rF − IFK +
1

2
β2IKFKK +

1

2
γ2K2FKK − γλKFK − I = 0
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There are two situations concerning K∗:

If K < K∗: − rF − kFK +
1

2
β2kKFKK +

1

2
γ2K2FKK − γλKFK − k = 0

If K ≥ K∗: − rF +
1

2
γ2K2FKK − γλKFK = 0

Again, we would like an explicit obstacle function. However, this is impossible to find,
so we will use the second equation as the obstacle function. Hence we are looking for a
F ≥ 0 such that

(−rF − kFK +
1

2
β2kKFKK +

1

2
γ2K2FKK − γλKFK − k)·

(−rF +
1

2
γ2K2FKK − γλKFK) = 0

−(−rF − kFK +
1

2
β2kKFKK +

1

2
γ2K2FKK − γλKFK − k) ≥ 0

−(−rF +
1

2
γ2K2FKK − γλKFK) ≥ 0

F (0) = V , F (S) = 0

Discretization of the equality, for i = 1 . . . N looks as follows:

(−rwi − k
wi − wi−1

h
+

(
β2kxi + γ2(xi)

2

2

)
wi−1 − 2wi + wi+1

h2
− γλxi

wi − wi−1
h

− k)

×(−rwi +
γ2(xi)

2

2

wi−1 − 2wi + wi+1

h2
− γλxi

wi − wi−1
h

) = 0[
wi−1

(
k

h
+
β2ki

2h
+
γ2i2

2
+ γλi

)
+wi

(
−r − k

h
− β2ki

h
− γ2i2 − γλi

)
+ wi+1

(
β2ki

2h
+
γ2i2

2

)
− k
]

·
[
wi−1

(
γ2i2

2
+ γλi

)
+ wi

(
−r − γ2i2 − γλi

)
+ wi+1

(
γ2i2

2

)]
= 0[

wi−1

(
−k
h
− β2ki

2h
− γ2i2

2
− γλi

)
+ wi

(
r +

k

h
+
β2ki

h
+ γ2i2 + γλi

)
+wi+1

(
−β

2ki

2h
− γ2i2

2

)
+ k
]

×
[
wi−1

(
−γ

2i2

2
− γλi

)
+ wi

(
r + γ2i2 + γλi

)
+ wi+1

(
−γ

2i2

2

)]
= 0

The first inequality is discretized as follows:

−(−rwi − k
wi − wi−1

h
+

(
β2kxi + γ2(xi)

2

2

)
wi−1 − 2wi + wi+1

h2

−γλxi
wi − wi−1

h
− k) ≥ 0[

wi−1

(
−k
h
− β2ki

2h
− γ2i2

2
− γλi

)
+ wi

(
r +

k

h
+
β2ki

h
+ γ2i2 + γλi

)
+wi+1

(
−β

2ki

2h
− γ2i2

2

)
+ k
]
≥ 0
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The second inequality is discretized as follows:

(−rwi +
γ2(xi)

2

2

wi−1 − 2wi + wi+1

h2
− γλxi

wi − wi−1
h

) ≥ 0[
wi−1

(
−γ

2i2

2
− γλi

)
+ wi

(
r + γ2i2 + γλi

)
+ wi+1

(
−γ

2i2

2

)]
≥ 0

Using the boundary conditions, this can all be summarized as follows:

(Aw − b)T (Cw − d) = 0

Aw − b ≥ 0

Cw − d ≥ 0

where:

Aij =


− k
h −

β2ki
2h −

γ2i2

2 − γλi if i− 1 = j

r + k
h + β2ki

h + γ2i2 + γλi if i = j

−β2ki
2h −

γ2i2

2 if i+ 1 = j

b =


−k − V (− k

h −
β2k
2h −

γ2

2 − γλ)
−k
...
−k


Cij =


−γ2i2

2 − γλi if i− 1 = j
r + γ2i2 + γλi if i = j

−γ2i2

2 if i+ 1 = j

d =


−V (−γ2

2 − γλ)
0
...
0



w =


w1

w2
...

wN−1


Applying the transformation:

x = Cw − d
y = Aw − b
G = AC−1

we can use the previous algorithm to solve:

xT y = 0

Gx− y = b̂ = −Gd+ b

x ≥ 0

y ≥ 0
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To find K∗ we iterate along w and finding the first point for which:

−Fk +
β2

2
KFKK − 1 = 0

−wi − wi−1
h

+
β2

2
xi
wi−1 − 2wi + wi+1

h2
= 1

−wi − wi−1
h

+
β2i

2

wi−1 − 2wi + wi+1

h
= 1

To demonstrate the interaction of β and γ a table is created showing the value of K∗ for
various β and γ: The table confirms that as γ rises, the critical cost K∗ falls significantly.

γ
0 0.1 0.2 0.3 0.4

0 4.47 4.38 4.05 3.35 2.73
0.1 4.47 4.38 4.04 3.34 2.73

β 0.2 4.48 4.39 4.01 3.32 2.71
0.3 4.49 4.39 3.96 3.28 2.70
0.4 4.51 4.39 3.89 3.24 2.68

Table 1: Value of K∗ for various β and γ. Other parameters are V = 5, k = 1, r =
0.05, λ = 0

These changes are much smaller in comparison to β. In this particular case, an increase
in β results in larger K∗ (which was the case in section 3.1.2) in the first two columns.
However, for γ = 0.2, 0.3, 0.4 it is the opposite - an increase in β reduces K∗. This
unexpected behaviour is discussed in the next section.

3.4 Notes and Recommendations

Seydel proves that the method used for technical uncertainty is correct and it is interesting
to see how much of an improvement the algorithm (’Iteration’ in Figure 7) is compared
to the less elegant solution of solving Aw = b (’Inverse’ in Figure 7) and then taking 0 as
the minimum value of each point of w. For the most part the values are the same for both
methods. However, once F reaches the K axis (or more specifically, when K approaches
K∗) the iteration method is much smoother and shows F (K) is larger than the ’Inverse’
method. This shows that while the ’Inverse’ method is a reasonable approximation of F ,
it does not offer a truly correct solution.

For the methods involving input cost uncertainty, it is not proven that the method will
work. It is an extension of the method described by Seydel, though not mentioned by
him. It is expected that F would not go below 0. After all, we previously found a function
pKq with q < 0 that was the lower bound of F . However, F did go below 0 often when
working with larger γ. As no better option has presented itself, we take the solution and
apply max[w, 0].

In terms of computation, the algorithm was quite heavy. Using a vector w with more
than 800 points started to slow MATLAB down, especially when also needing to do more
than 200 iterations. Also, calculating the inverse of matrices A and C took more time.
This also posed a challenge on boundary condition (7). If the furthest K was not signi-
ficantly far away from K∗ the line of F could become distorted. There is no conclusive
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(a) Function F (K) solved using the iteration method and inverse method

(b) Value of F (K) as function a function of K, zoomed in

Figure 7: Solution of F (K) using the iteration and inverse method. Other parameters are
β = 0.4, V = 5, k = 1, r = 0.05

way to test if the range of K is far away enough, so it is a method of trial and error.
The choice for h did not seem to cause the system to be unstable (the usual choice was
h = 0.01). The above table does not fully agree with the findings. When β increases, then
so does K∗. This is not the case for the third, fourth and fifth column. The nature of this
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numerical error is hard to tell. This could possibly remedied with a smaller h. Another
option is to run the iterations longer. Both these solutions will require more computing
power. Also, because calculating the inverse of matrices was inevitable I also used that
in the initial guesses, which did cut the amount of iterations needed to be done. After
around 100 iterations, the vector seemed to converge to its final solution. Seydel does
explain a method to use y as a means of seeing if the vector has converged but this would
also be at the cost of more computer processing power.

4 Application of the model

So far this model has been derived from an fairly academic point of view. The question is
how applicable this model is to real life cases. In order to demonstrate this, we first look
at the process of how cost estimates are made. The next subsection describes how to link
β and γ to physical data, and concludes with an example of the model on terminals.

4.1 Cost estimates, uncertainty and risk

In the light of this paper, we will say uncertainty is the inability to precisely state the
outcome of an event. Large uncertainty means the scope of possibilities that are not
excluded is large. The risk of an outcome X is the expected gain or loss as a consequence
of X, so:

Risk = P (X) · Consequence(X)

where the consequence is an assigned value to the outcome X. This is one way risk can
be quantified. Risk involves uncertainty but uncertainty does not necessarily involve risk.
One example that clarifies this is the following.
Suppose I say that Andy Schleck will win the Tour de France in 2012. There is no way to
be sure what I say is true. In this case, there is uncertainty, but no risk because whether
the prediction turns out to be true or not, the outcome does not matter to me. Mathemat-
ically, all the possible outcomes are of consequence 0. However, suppose I decide to place
a bet on my prediction. Now there would be risk, because there is a negative outcome
(my prediction was wrong and I lose my bet) and a positive outcome (I win the bet).

Considering the above explanation of uncertainty and risk one can reach a cost estim-
ate as follows. First one must identify all the elements required to complete the project.
The next step is to make an estimation of the elements’ price. After that, one can start
considering all the possible events, and their respective probability and consequence. How
one finds a cost estimate is not the focus of this study but it would be careless to not be
aware of the possibilities. For the model we are dealing with, the cost estimate is most
useful if it is given in a (normally) distributed probability function.

4.2 Determining β and γ

So far β and γ have been arbitrary values, without any physical meaning to them. Pindyck
shows that relationship between the variance of K̃ and β is given by:

Var(K̃) =

(
β2

2− β2

)
The explanation behind this is yet beyond my knowledge level. Further, γ can be inter-
preted as the standard deviation of percentage changes per period (for example, a year

27



or month) in K. For this, an educated guess need to be made on what sort of interval is
reasonable.

4.3 Container terminals - a worked example

Let us consider a fictional container terminal operating firm deciding on the following in-
vestment opportunity. Company CFC currently has several container terminals in Europe
and North America. Realising the enormous potential of the growing economies in Asia,
CFC would like to construct a terminal in Shanghai. A combination of engineers, business
developers and managers give the following data:

• The completed terminal will have a value of �340 million

• Initially, the expected cost of completion will be �270 million. The construction
period is expected to be 3 years so the maximum level of investment is set at �90
million per year.

• At any given point, engineers can give a probability density function of the remaining
costs. The mean of the remaining cost will have a standard deviation of around 15%
to 25%.

• Market researchers in Shangai believe that the project is of political and strategic
importance to the city, so that the project is unlikely to be hindered by government
regulation. Also, there is no evidence that suggests price fluctuations in cost are
correlated to the stock market.

• Over the last few years where similar projects have taken place, standard deviations
of percentage changes per year in K have been between 0.05 and 0.20

• The risk free rate of interest is 5%

CFC would like to know what their investment strategy should be, and if given the op-
portunity to modify an aspect of the project, which should it be? Normalising to �100
million, we then have the following parameters:

• V = 3.4

• k = 0.9

• β will be between 0.209 and 0.343

• ρxm is 0, hence λ = θρxm will be 0.

• γ will be between 0.05 and 0.20.

• r = 0.05

Solving F (K) for these parameters gives the following values for K∗:
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γ
0.05 0.07 0.09 0.11 0.13 0.15

0.20 3.11 3.10 3.08 3.06 3.04 3.01
0.23 3.11 3.10 3.09 3.06 3.04 3.01
0.26 3.12 3.10 3.09 3.07 3.04 3.01

β 0.29 3.12 3.11 3.09 3.07 3.04 3.01
0.32 3.12 3.11 3.09 3.07 3.04 3.01
0.35 3.12 3.11 3.09 3.07 3.04 3.01

Table 2: Values of K∗ in �100 million for various β and γ. Other parameters are V =
3.4, k = 0.9, λ = 0, r = 0.05

Although it may seem a risky investment due to the cost being so close to the value of
the completed project, CFC should start investing under all the ranges of β and γ be-
cause �270 million is less than all the K∗ seen in Table 2. The investment strategy is to
invest at the maximum rate unless the expected cost is greater than the given critical cost.

One of the engineer suggests that, given this information on K∗, the company should only
use K∗ = 3.01. If costs ever go above this, the project will be aborted. This strategy, the
engineer argues, would be much simpler for CFC to use and assumes the ’worst case,’ in
which there is maximum uncertainty. In reality, this is a poor strategy. If there is actually
less input cost uncertainty (I.E. γ = 0.07), the project would be falsely aborted if the
remaining costs were �307 million. Also, one should also ask how confident the interval
of β and γ are. Could it be that there is actually a higher level of uncertainty? A similar
argument holds if someone suggests chosing a high as possible K∗.

Notice that the range of β does not have much effect on the critical cost. However,
changes in γ influence the critical cost more. Varying with the parameters lead to some
interesting observations:

• Increasing or decreasing the value V within 10% has a roughly equivalent effect on
the critical cost. In practical terms, it is unlikely that V would change throughout
the course of the project (and it is also an assumption of the model). However,
Pindyck does offer an extension to the model where the completion cost is also
subject to uncertainty.

• Only drastic increases in k have a noticable effect on the critical cost. Doubling k
usually leads to K∗ increasing about �10 to �20 million. This shows that a larger
k is always better, even though the added benefit is marginal.

• The change of the risk free rate of interest is not in the hands of CFC, but it does
slightly affect the critical cost (around �4 million decrease per increment of 0.01 in
r.

4.4 Summary

Translated to business terms, CFC could receive the following recommendations:

1. Decreasing γ should be made a priority, as this will surely increase K∗ significantly.
The critical cost is dangerously close to the initial cost for γ = 0.15
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2. If possible, raising the value of the completed project would increase the critical cost
reasonably.

3. While increasing β is an option, the benefit is relatively small.

This section dealt with a fictional example of an investment opportunity (albeit simplified).
In this particular case, the company should start investing. In practice, reaching the stage
where there are accurate estimates on the distribution of K is a long step, and trying
to modify β and γ requires great expertise to properly address. Still, dealing with both
uncertainties separately has proven to offer valuable insight - it shows that uncertainty is
not necessarily a bad thing, but does need to be analyzed correctly.

5 Conclusion

In this study we have considered an investment opportunity, whose nature was mainly
specified by the uncertainty in its remaining cost of completion. An optimal investment
strategy has been derived and consequently used to numerically calculate the final payoff
function of the investment opportunity. Using this model, several factors of the oppor-
tunity have been explored, and what their effect is on the payoff and investment strategy.
Further, the model has been demonstrated on a fictional business opportunity. One ad-
vantage is that the model can offer clear and concrete advice on the investment strategy
for an investor. Although it is not the case in this paper’s example, the model could also
demonstrate why aborting a project is sometimes better than completing it.

In this paper, the numerical solutions for input cost uncertainty may not be flawless, but
the obstacle problem methodology has shown to be a shining example of clever numerical
methods. Investing more time in the numerical aspect would definitely be interesting from
an academic perspective. However, it is my belief that the model becomes more valuable
once certain assumption could be let go, such as letting V be uncertain (see [1]), or in-
corporate the effect of shocks in the market (see [4])or that there is a price that must be
paid when not investing or quitting the project. A final extension could be to let β and γ
be functions of K - that the uncertainty changes during the course of project.
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A MATLAB code - Technical uncertainty

This function returns a vector with F and K, taking N steps of size h. The amount of
iterations is itsteps.

function y=f(B,V,k,r,h,N,itsteps)

clc

%Construct A

left=zeros(1,N-2);

right=zeros(1,N-2);

centre=zeros(1,N-1);

for i=1:N-2

left(i)=-(B^2*k*(i+1))/(2*h)-k/h;

right(i)=-(B^2*k*(i))/(2*h);

centre(i)=(B^2*k*(i))/(h)+ k/h + r;

end

centre(N-1)=(B^2*k*(N-1))/(h)+ k/h + r;

A=zeros(N-1,N-1);

A=diag(left,-1) + diag(right,+1) + diag(centre,0);

%Construct b

b=zeros(N-1,1)-k;

b(1)=-k+ V*((B^2*k)/(2*h)+k/h);

%Initial guess x

x=(A^(-1))*b;

x=max(0,x);

% Set R

R=zeros(N-1,2);

for t=2:itsteps

for i=1:N-1

sum1=0;

sum2=0;

for j=1:i-1

sum1=sum1+ A(i,j)*x(j,t);

end

for s=i+1:N-1

sum2=sum2+ A(i,s)*x(s,t-1);

end

R(i,t)=b(i)-sum1 -A(i,i)*x(i,t-1) -sum2;

x(i,t)=max(0,x(i,t-1)+ 1* R(i,t)/A(i,i));

end

end
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this=x(:,itsteps);

F=[V;this];

K=(0:h:(N-1)*h)’;

y=[K,F];

B MATLAB code - Input cost uncertainty

This function returns a vector with F and K, taking N steps of size h. The amount of
iterations is itsteps.

function e=funct(y,lambda,V,k,r,h,N,itsteps)

clc

%Construct A

left=zeros(N-2,1);

right=zeros(N-2,1);

centre=zeros(N-1,1);

for i=1:N-2

left(i)=-k/h-(y^2*(i+1)^2)/2-y*lambda*(i+1);

right(i)=-(y^2*i^2)/2;

centre(i)=r+k/h +(y^2*i^2)+y*lambda*i;

end

centre(N-1)=r+k/h +(y^2*(N-1)^2)+y*lambda*(N-1);

A=zeros(N-1,N-1);

A=diag(left,-1) + diag(right,+1) + diag(centre,0);

%Construct b

b=zeros(N-1,1)-k;

b(1)=-k+V*(k/h+(y^2)/2 + y*lambda);

%Construct C

left=zeros(N-2,1)+k/h;

centre=zeros(N-1,1)-k/h;

C=zeros(N-1,N-1);

C=diag(left,-1) + diag(centre,0);

Cinv=C^(-1);

%Construct d

d=zeros(N-1,1);

d(1)=-V*k/h;

%Construct G

G=A*C^(-1);

%Construct bhat

bhat=-G*d+b;

32



%Initial guess x

x=C*(A^(-1)*b)-d;

x=max(0,x);

% Set R

R=zeros(N-1,2);

for t=2:itsteps

for i=1:N-1

sum1=0;

sum2=0;

for j=1:i-1

sum1=sum1+ G(i,j)*x(j,t);

end

for s=i+1:N-1

sum2=sum2+ G(i,s)*x(s,t-1);

end

R(i,t)=bhat(i)-sum1 -G(i,i)*x(i,t-1) -sum2;

x(i,t)=max(0,x(i,t-1)+ 1* R(i,t)/G(i,i));

end

end

w=Cinv*(x(:,itsteps)+d);

wafg(1,1)=w(1)-V;

for i=2:N-1

wafg(i,1)=w(i)-w(i-1);

end

wafg=wafg/h;

position=find(wafg>=-1,1);

Kstar=h*position

F=[V;w];

F=max(0,F);

K=0:h:(N-1)*h;

e=[v1,this];

C MATLAB code - Both uncertainties

This function returns a vector with F and K and also K∗ along with F (K∗), taking N
steps of size h. The amount of iterations is itsteps.

function e=functi(B,y,lambda,V,k,r,h,N,itsteps)

clc
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%Construct A

left=zeros(N-2,1);

right=zeros(N-2,1);

centre=zeros(N-1,1);

for i=1:N-2

left(i)=-k/h-(B^2*k*(i+1))/(2*h)-(y^2*(i+1)^2)/2-y*lambda*(i+1);

right(i)=-(B^2*k*(i))/(2*h)-(y^2*i^2)/2;

centre(i)=r+k/h + (B^2*k*(i))/(h)+(y^2*i^2)+y*lambda*i;

end

centre(N-1)=r+k/h + (B^2*k*(N-1))/(h)+(y^2*i^2)+y*lambda*(N-1);

A=zeros(N-1,N-1);

A=diag(left,-1) + diag(right,+1) + diag(centre,0);

%Construct b

b=zeros(N-1,1)-k;

b(1)=-k+V*(k/h+(k*B^2)/(2*h)+(y^2)/2 + y*lambda);

%Construct C

left=zeros(N-2,1);

right=zeros(N-2,1);

centre=zeros(N-1,1);

for i=1:N-2

left(i)=-(y^2*(i+1)^2)/2-y*lambda*(i+1);

right(i)=-(y^2*i^2)/2;

centre(i)=r+(y^2*i^2)+y*lambda*i;

end

centre(N-1)=r+(y^2*(N-1)^2)+y*lambda*(N-1);

C=zeros(N-1,N-1);

C=diag(left,-1) + diag(right,+1) + diag(centre,0);

%Construct d

d=zeros(N-1,1);

d(1)=V*((y^2)/2+y*lambda);

%Construct G

G=A*(C^(-1));

%Construct bhat

bhat=-G*d+b;

%Initial guess x

x=(C*(A^(-1))*b)-d;

x=max(0,x);
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% Set R

R=zeros(N-1,2);

for t=2:itsteps

for i=1:N-1

sum1=0;

sum2=0;

for j=1:i-1

sum1=sum1+ G(i,j)*x(j,t);

end

for s=i+1:N-1

sum2=sum2+ G(i,s)*x(s,t-1);

end

R(i,t)=bhat(i)-sum1 -G(i,i)*x(i,t-1) -sum2;

x(i,t)=max(0,x(i,t-1)+ 1* R(i,t)/G(i,i));

end

end

w=A^(-1)*b;

%Find Kstar

wafg=zeros(1,N-1);

wafg(1)=-(w(1)-V)/h + (B^2)/2*(V-2*w(1)+w(2))/(h)-1;

for i=2:N-2

wafg(i)=-(w(i)-w(i-1))/h + (B^2)/2*i*(w(i-1)-2*w(i)+w(i+1))/(h)-1;

end

wafg(N-1)=-(w(N-1)-w(N-2))/h + (B^2)/2*(N-1)*(w(N-2)-2*w(N-1))/(h)-1;

Kpos=find(wafg<=0,1);

Kstar=Kpos*h;

KValue=max(0,w(Kpos));

F=[V;w];

F=max(0,F);

K=(0:h:(N-1)*h)’;

e=[K,F];

e(1,3)=Kstar;

e(2,3)=KValue;
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