Discovering Common Anti-patterns
Present in Low-Code using
Multi-Layered Graph-Based Pattern
Mining

Unveiling Pitfalls Navigating the Low-Code Landscape

Wessel Oosterbroek

Discovering Common Anti-patterns
Present in Low-Code using
Multi-Layered Graph-Based Pattern
Mining

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in
COMPUTER SCIENCE
by

Wessel Oosterbroek
born in Oegstgeest, the Netherlands

]
TUDelft

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands

www . ewi . tudelft.nl

www.ewi.tudelft.nl

© 2024 Wessel Oosterbroek.

Cover picture: The author generated this image in part with DALL-E 3, OpenAl’s large-scale
image-generation model. Upon generating the draft image, the author reviewed, edited, and

revised the image to their own liking and takes ultimate responsibility for the content of this
publication.

Discovering Common Anti-patterns
Present in Low-Code using
Multi-Layered Graph-Based Pattern
Mining

Author: Wessel Oosterbroek
Studentid: 4961544

Abstract

In recent years Low-Code has seen a surge in popularity amongst companies to speed
up their workflows. Yet, scientific work on Low-Code is still in its infancy. We set out to
investigate the presence of anti-patterns within Low-Code applications. Given the typi-
cally less technically inclined nature of Low-Code developers, as well as the specific use
cases of Low-Code in general, we expect that these anti-patterns differ from traditional
programming languages. We apply a graph-based methodology to mine edit patterns
across real-world commit data supplied to us by Mendix, one of the leading platforms
in the Low-Code space. Additionally, we discuss the lack of current guidelines in the
Low-Code field. While we are able to find common edit patterns using our approach,
linking them to anti-patterns remains difficult in practice. We do establish that Low-
Code in Mendix might lack reuse-ability and that the Low-Code often revolves around a
few distinct tasks. However, there is a current lack of quality data available to properly
assess the development practices of Low-Code developers and anti-patterns, increasing
the availability of high-quality data is essential for further research in this area.

Thesis Committee:

Chair: Prof. dr. A Zaidman, Faculty EEMCS, TU Delft
Committee Member: Dr. S Chakraborty, Faculty EEMCS, TU Delft
Company Supervisor: Maurits Elzinga, Mendix
Company Supervisor: Robbert Jan Grootjans, Mendix

University Supervisor: Prof. dr. A Zaidman, Faculty EEMCS, TU Delft

Preface

As I conclude what is likely my final project at TU Delft, I would like to extend my grati-
tude to Andy Zaidman and my daily supervisors, Maurits Elzinga and Robbert Jan Groot-
jans, for their continuous support, invaluable insights, and many points of feedback, even
when I seemed at an impasse. I am also deeply thankful to the Modelling and Services team
at Mendix, from whom I received significant assistance regarding Mendix and enjoyed the

many book club sessions with.
This is likely my last project as a student, and while I encountered several challenges,

from difficulties with data processing to struggles with maintaining motivation. Despite
these hurdles, I am proud of the research I have completed.

Wessel Oosterbroek
Delft, the Netherlands
October 15, 2024

iii

Contents

Preface iii
Contents v
List of Figures vii
1 Introduction 1
2 Background 7
21 Mendix Background Lo 7
22 DataOverview e 10
3 Approach 15
3.1 Existing Approaches 15
32 GraphBased Approach. 16
4 Results 23
4.1 DataSelection 23
4.2 Edit Characteristics 25
43 Analysis 26
5 Discussion 37
51 EditPattern Analysis 37
52 Existing Guidelines L L L o 38
53 Threatsto Validity 39
6 Related Work 42
6.1 Category 1: Methods using Additional Artifacts 42
6.2 Category 2: Methods Solely Based on Change History 43
7 Conclusion 46
71 FutureWork 46
Bibliography 49
Acronyms 53

2.1
2.2
2.3

24
25

2.6

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
49

4.10
4.11

4.12

List of Figures

A Mendix Project opened in Studio Pro10. oL 8
An empty Microflow consisting of a Start and End Point. 9
An empty Microflow consisting of a Start and End Point with a User object as

input parameter and return variable. o o oo 9
Microflow that changes a user’s password to a givenone. 10
The number of edits made to Mendix projects within all revisions available for

analysis on a LogarithmicScale. 12
Snippet of a Mendix Model transformed to a tabular format. 13
A schematic overview of our implemented approach. 16
Overview of Edit log generation. 17
Example snippet of a generated edit graph containing edge type 1. 18
Example snippet of a generated edit graph with edge typesland 2. 19
Example snippet of a generated multi-layered edit graph. 20
Number of milliseconds between two sequential revisions on a Logarithmic Scale. 24
Box plot showing byte size of Mendix projects on a Logarithmic Scale. 24
A Histogram presenting an overview of Microflow Edit Counts. 26
An edit graph illustrating the edit of an association retrieve source node. 28
An example Microflow showing Parent information being retrieved associated

with a provided Child object. 29
An example Microflow showing Caretaker information being retrieved associated

with a provided Child object. 29
An edit graph illustrating the deletion of a Microflow call action node with ac-

companyingnodes. L L 30
An edit graph illustrating a call to retrieve a variable from another Microflow,

which is subsequently deleted in a later revision. 31
An edit graph illustrating a call to retrieve a variable from another Microflow and

then used in a splitcondition. 32
An edit graph illustrating the deletion of a split condition. 33
An edit graph illustrating the usage of a split condition in combination with mul-

tiple Member changenodes. o L Lo L 34
An edit graph illustrating the retrieval of a variable which is later used in a split

condition. L 35

vii

Chapter 1

Introduction

Fueled by the ever-increasing complexity of modern-day software, attention to code quality,
structure, and software testing plays a major role in today’s Software Development Cycle [15].
To guide developers in this process, significant strides have been made in supporting their
workflow, whether we consider Static Analysis Tools, advancements in Software Testing, or
the development of best practices within the field of Software Engineering.

At the basis of all this progress is research that investigates and identifies issues with
code quality, code structure, or the presence of bugs in software projects, i.e., deficiencies.
Across the mainstream programming languages and technologies, one can discern the no-
table progress made regarding available tools. From the ongoing research on automatically
generated test cases [2], to the perpetual refinement of Static Analysis Tools [8].

In recent years, there has been a surge in the adoption of so-called Low-Code Development
Platforms (LCDP) [5, 13, 32]. While existing literature generally agrees on which platforms
fall under that term [5, 13, 20, 35, 36], a precise consensus on the definition of Low-Code
remains elusive. The term is believed to have originated from a Forrester report published
in 2014, where it is defined as ”a platform that significantly reduces the amount of man-
ual coding required to develop an application” [35, 36]. Subsequent interpretations expand
upon this notion, incorporating the facilitation of domain experts’ participation in the devel-
opment stages of an application into the definition [20]. It is not uncommon to see the term
Model-Driven Engineering (MDE), closely related to Low-Code, being incorporated into the
definition as well [5, 9, 13]. At the same time, LCDPs are employed in a wide variety of use
cases, from manufacturing, production, robotics, and automation systems to application de-
velopment, which all have their different nuances [16, 23, 27].

One of the most notable impacts of LCDPs is their ability to accelerate development cycles.
By substantially reducing the amount of manual coding required, these platforms enable
rapid prototyping, iteration, and deployment of applications [5, 23, 38, 40]. This results in
a faster development pace, improving the time-to-market and enhancing the responsiveness
of software development teams.

A key concept in the field of Low-Code is the term Citizen Developer, which refers to do-
main experts with limited technical knowledge, who represent the primary user group of
LCDPs [42]. The desire to make the development process more inclusive for this group is
driven by two primary benefits:

1. Domain experts contribute valuable domain expertise, which can be lacking among
developers. In other words, LCDPs attempt to narrow the gap between business and
development teams [4, 42].

2. Citizen Developers contributing to development helps to mitigate the current scarcity
of skilled developers [4, 26].

1. INTRODUCTION

Despite its apparent value, given the growing number of businesses turning towards it
as a tool to speed up development [32, 35], Low-Code remains a domain that has seen lim-
ited interest from the scientific community. Several open questions and challenges persist,
particularly in the areas of testing, code quality, and supporting developers in building ap-
plications with LCDPs [17, 20, 38].

Khoram et al. detail the current challenges and opportunities in Low-Code testing, un-
derlining the necessity of accommodating Citizen Developers by creating a test environment
with reduced technical requirements [20]. However, the absence of a generalized testing
framework for Low-Code applications leads most LCDPs to rely on third-party tools that
do not match the needs of Citizen Developers, which are driven by their lack of technical
knowledge [20, 42]. Khoram et al. mark the need for further research in this domain to en-
hance academic knowledge of the Low-Code field, as well as to get an understanding of how
to develop tools that better support citizen developers working with LCDPs in testing their
applications [20].

We observe a similar pattern when considering code quality in LCDPs. While existing
literature acknowledges the current challenges and underscores the importance of adhering
to software engineering standards in Low-Code applications [20, 38], the lack of research on
actionable guidelines or tools for developers that focus on Low-Code is noteworthy. Espe-
cially when considering the rapid growth of the Low-Code community in recent years [5, 13,
32].

Given that LCDPs are widely recognized for their ability to accelerate application de-
ployment compared to traditional development solutions [5, 23, 24], one would expect the
emergence of comprehensive guidelines and tools to maintain code quality in such an en-
vironment. Yet, these resources remain scarce, leaving developers with limited support for
maintaining proper development standards during development.

Additionally, while Citizen Developers can be valuable contributors [4], they, like any
software developer, are prone to making mistakes. Their non-technical background may
exacerbate challenges related to maintaining code quality, testing, and adhering to other
software engineering practices [20].

One of the leading platforms in the Low-Code space, Mendix! encounters these chal-
lenges. While the platform offers a Unit Testing module?, anecdotal evidence has shown it
lacks usability and developer-friendliness, limiting development speed. This contradicts the
observation that ease of development should be one of the primary considerations, given
that we are working with a platform made for fast-paced development. Some third-party
solutions offer more robust support for testing Mendix applications, such as Menditect®, but
these are commercial proprietary tools. Moreover, although some guidelines concerning
best practices exist, a comprehensive overview of anti-patterns commonly present within
Low-Code applications is absent.

In summary, the lack of research into tools and guidelines supporting code quality for
LCDP developers manifests itself in several challenges:

1. The absence of generalised testing frameworks designed for LCDPs [17, 20].

2. Limited technical knowledge among Citizen Developers, hindering their familiarity
with software development standards [20].

3. The low time-to-market mentality of LCDPs could comprise the code quality of appli-
cations made with LCDPs.

1https: //www.mendix.com/
2https: / /marketplace.mendix.com/link/component/390
3https: / /menditect.com/

As a first step towards developing better tools with a solid basis, there needs to be an
understanding of what type of issues developers face when developing applications with
LCDPs. To the best of our knowledge, no studies currently exist that investigate this problem.

One way to identify the introduction of bugs or other issues related to code quality is
through anti-patterns. Anti-patterns are common development patterns within a software
program that have negative consequences; there are many types of such anti-patterns related
to code quality, performance, security, design principles, and bugs [3, 37]. Hence, a large
amount of research has been conducted to detect and help avoid the usage of anti-patterns
during development [7, 1].

To narrow the scope of this thesis, we will concentrate on anti-patterns that indicate either
the presence of bugs or issues with code quality. The definition of anti-patterns is usually
described more broadly, encompassing other aspects as well [3, 37]. For this purpose, in the
scope of this thesis, we define anti-patterns as follows:

Anti-pattern: A frequently occurring pattern that indicates the presence of a func-
tional bug or a structural problem with code quality.

In this thesis, we are concerned with how anti-pattern detection could be applied to cur-
rently existing Low-Code platforms, for which we are interested in the difference between
LCDPs and traditional programming languages in two important aspects:

1. Empowering Citizen Developers: LCDPs enable non-technical domain experts to ac-
tively participate in the application development process.

2. High-Level of Abstraction: These platforms often employ a model-based approach
and focus on development through a Graphical User Interface (GUI).

Khorram et al. define LCDPs as "A Low-Code Development Platform (LCDP) is a soft-
ware on the cloud whose target clients are non-programmers aimed at building applications
without having IT knowledge.”, while this definition does encompass Citizen Developers
it does not include any notion on how LCDPs exactly cater to them, nor is being hosted in
the cloud a crucial element for our purposes [20]. Gomes et al. state that “The surgency of
terms like low-code’ or 'no-code’ are usually used when referring to platforms, applications,
or products with a high-level programming abstraction, that are intended for end-user de-
velopment (sometimes also called Citizen development) through Model-Driven Engineering
(MDE) principles and that aim to serve as a tool for resolving prevailing challenges or for
meeting new requirements” [13]. While this definition seems to describe Low Code Develop-
ment platforms, it does not, however, explicitly mention them. Additionally, both definitions
do not mention a GUI or extend their definition of non-programmers to be domain experts.

We propose the following definition, drawing inspiration from [13] and [20], but adapted
to emphasize the two aforementioned points:

A Low-Code Development Platform (LCDP): A software, whose target clients are
non-technical domain experts, allowing building applications through a high level of
abstraction, typically via GUIs and model-based approaches. Its primary aim is to
address prevalent challenges or fulfill new requirements.

For the detection of anti-patterns, we will focus on the Low-Code component of LCDPs,
hence, we define Low-Code specifically as well.

1. INTRODUCTION

Low-Code: A form of code that can be presented in a GUI, usually in the form of
nodes, e.g. blocks. That allows users, with limited technical expertise, to understand,
modify, and contribute to said code.

We propose an in-depth study of the type of code quality issues through the analysis of
anti-patterns and their rate of presence within applications built with LCDPs, including func-
tional and maintainability defects or other structural problems. From this point onward, we
will refer to those defects as anti-patterns. Compared to traditional programming languages,
LCDPs are often more domain-specific in nature and have limited capabilities [34]. For this
reason, compounded by the limited technical expertise of Citizen Developers, we postulate
that anti-patterns in applications built with LCDPs may differ in nature compared to soft-
ware built with more traditional programming languages.

To provide a foundation for further studies, and on which to develop better tooling for
LCDPs, we aim to provide an in-depth analysis using real-world data of Low-Code applica-
tions built with Mendix. Mendix collects anonymized edit data of all applications it hosts to
which we have been provided access to provide insights and improve the developer experi-
ence. Therefore, we define the goal of this thesis as follows:

Thesis Goal: Leverage Mendix’s Low-Code application data to analyse the prevalence
of common (anti-)patterns, to attempt to discover anti-patterns that impact code qual-
ity and indicate bugs. Additionally, provide an overview of existing company guide-
lines for designing Low-Code applications to accommodate this analysis. With the
end goal of providing a foundation for further studies and on which to develop better
tooling for LCDPs.

Having this goal in mind, we formulate the following main research question:
I EEEEEEEEEEEEEEEEEEEEE——

Main RQ: Can we detect common anti-patterns in the historical edit data of Low-
Code Applications available through Mendix?

We address this main research question through answering the following three sub-questions:
1

RQ #1: Through a manual inspection of Mendix guidelines, what types of anti-
patterns exist and are commonly found in applications developed with the Mendix
Low-Code platform?

As a first step, we summarise and discuss the current Mendix guidelines on code quality
to give an overview of their use in practice and to provide a baseline of currently available
knowledge.

RQ #2: Using statistical analysis on the data available at Mendix, how can we identify
anti-patterns that indicate the presence of a bug or a design problem present in Low-
Code applications?

S

Next, we outline our approach for mining edit patterns from the provided data and apply
it to gain insight into the prevalent anti-patterns in Mendix applications.

RQ #3: With what frequency does each discovered anti-pattern appear within the
dataset?

We aim to determine the rate of presence of each identified anti-pattern within the dataset,
establishing a baseline understanding of their prevalence in Mendix applications, and by
extension Low-Code in general.

Consequently, given these research questions, the contribution of this thesis consists of
three parts:

Contribution #1: Based on existing methods to perform graph-based change pattern
mining, we propose a novel multi-layered approach that enables discovering patterns
over alonger time span. Itis capable of detecting patterns that span multiple revisions,
where the current state-of-the-art is unable to do so [19, 29, 30].

Contribution #2: We implement and apply our approach to the historical edit data of
13 Mendix projects. We mine frequently occurring edit patterns present in these 13
projects.

Contribution #3: We provide a thorough evaluation of the discovered patterns and
address the challenges and limitations we faced when applying our approach to the
historical edit data of 13 Mendix projects. Which informs future research directions
and tool development, ensuring better methodologies for mining patterns in similar
datasets.

The next chapters will address the research questions outlined in this introduction. Chap-
ter 2 provides the necessary background context and precise definition of the problem, while
Chapters 3, 4, and 5 will cover our approach and analyse the results. In Chapter 6 we cover
related works in the field of repository mining. Finally, a conclusion is given in Chapter 7.

Q1

Chapter 2

Background

To provide the reader with the necessary background, this chapter introduces the Mendix
Low-Code platform and the data we have been provided with. First, we outline the general
structure of Mendix applications and provide an overview of key components. Specifically,
we highlight Microflows as they are the core of Low-Code development in Mendix and the
focus of this Thesis. For more in-depth background information on how to build applica-
tions with Mendix, we refer the reader to the Mendix documentation’. Next, we provide an
overview of the limitations of the data provided by Mendix in the second part of this chapter.

2.1 Mendix Background

As we state in Chapter 1, Mendix is a Low-Code platform established in 2005 [24]. Posi-
tioned as the top Low-Code platform in the 2023 Gartner Magic Quadrant for Enterprise
Low-Code Application Platforms, Mendix is one of the major players in the Low-Code space
[12]. Mendix aims to accelerate development processes for its users while simultaneously
facilitating the participation of Citizen Developers in the development cycle of an applica-
tion [24]. Mendix achieves this goal through a predominantly GUI-based IDE, enabling the
construction of Mendix applications with minimal traditional code. Although it is possible
to integrate functionality written in Java into a Mendix application, it allows users to create
applications entirely through Low-Code.

A Mendix application is built using various components serving many different functions.
However, this introduction is mostly limited in scope to those components that are most
important to understand in the context of this thesis: The IDE itself, Pages, and Microflows,
respectively.

2.1.1 Studio Pro

Mendix applications are built in Studio Pro, an IDE purpose-built for Low-Code develop-
ment. Figure 2.1 showcases the Studio Pro IDE interface, which provides developers with
the tools necessary to build Mendix applications.

In Studio Pro, the interface’s left side displays the application’s structure under devel-
opment, presenting a hierarchical overview of all its components. This includes essential
elements such as Pages and Microflows, as well as general settings and the Domain Model,
which allows the user to define the application’s database structure.

The central portion of the IDE interface shows the currently selected component, whether
it be a Page, Microflow, or the Domain Model. This view allows developers to visualise
and interact with the selected component, making it straightforward to introduce changes as
needed.

]https: //docs.mendix.com/

2. BAckGrOUND

On the right-hand side of the interface, developers can access the properties of the cur-
rently selected component, along with a toolbox containing pre-built elements and widgets.
These pre-configured components, such as buttons with specific actions, streamline the de-
velopment process by providing ready-made solutions for common functionalities and in-
tend to reduce the need for manual work.

There is much more to Studio Pro as an IDE, the goal here, however, is to illustrate that it
is a GUI-focused development tool that focuses on providing functionality to quickly create
prototypes or full applications, such as through pre-configured elements and widgets.

m Task Tracker Home Team My Profile

Ml'l!'x Ae ru'§pace

welltdine, {FuliNamie)

Team Progress Team members

{FullName)

{TeamProgress}%

To Do + In Progress To Review Done

{Title} {Title} {Title} {Title}

Figure 2.1: A Mendix Project opened in Studio Pro 10.

2.1.2 Pages

Pages, as the name implies, serve as a user interface through which the user interacts with a
Mendix application, e.g. web pages in a browser-based application. They can be constructed
with pre-built components, like layouts, list views, and buttons, accessible in Studio Pro.
These components enable developers to customise the appearance and behaviour of the ap-
plication’s interface.

Pages can interact with Microflows, which contain the application’s logic. In the next
section, we will discuss Microflows in more depth and show how this interaction allows
developers to implement complex functionality within an application.

2.1.3 Microflows

Microflows are an important part of the Mendix platform, allowing developers to define
custom logic. While, in general, not as versatile as other programming languages they allow
Citizen Developers to express their application’s logic visually.

Within the context of a Mendix application, Microflows can triggered to run in a variety of
ways, such as being called by another Microflow, a user interacting with a page, or scheduled
events. This grants developers precise control over the execution of their logic.

To give an idea of how Microflows look in practice, it is essential to define their fundamen-
tal components. A Microflow represents a visual model of a process, designed to automate
specific logic. Each Microflow consists of several key elements, which collectively dictate its
functionality. These components are outlined as follows:

8

2.1. Mendix Background

1. A Start Point and one or several End Points.

2. Any input data to be provided to the Microflow when executing it.

3. Arrows or sequence flows, that dictate the flow within the Microflow.
4. Nodes, or blocks, that perform certain actions.

5. Specific nodes that split the application’s flow, such as loops and conditional nodes.

As the name indicates, a Start Point indicates the point where the execution of a Microflow
starts; There is always one Start Point indicated by a green dot, a Start Point always has one
outgoing flow, depicted by a black arrow, to the node that will be executed first. Similarly,
an End Point indicates the end point of a Microflow. As an example, Figure 2.2 displays an
empty Microflow, consisting of solely a Start and End Point.

»Q

Figure 2.2: An empty Microflow consisting of a Start and End Point.

The flow between the different nodes in a Microflow is dictated by Sequence Flows. A
Sequence Flow is visually represented as a black arrow starting in an origin node and end-
ing in a destination node. When we finish the execution of the origin node we follow the
outgoing Sequence Flow and continue with the execution of the destination node. Figure 2.2
shows a sequence flow originating from the Start Point going directly to the End Point of the
Microflow.

In an endpoint, it is possible to return a variable or object to the caller. Additionally,
Microflows can have one or more input parameters that can be used during execution of
the Microflow. Figure 2.3 shows the same Microflow we have seen in Figure 2.2, but it now
includes a User object that is given as input variable to the Microflow and also returned in
the End Point.

User

0.0

*O
I__Slt_l selrj

User

Figure 2.3: An empty Microflow consisting of a Start and End Point with a User object as
input parameter and return variable.

A Microflow can contain an arbitrary number of nodes, which can perform a wide range
of actions, from data retrieval to applying a transformation on the input data. Usually, a node

9

2. BAckGrOUND

has one flow going in and one going out, which points to the next node that has to be executed
after completion. However, several nodes can split the flow into more than one outgoing
flow, such as conditional nodes which are similar to if-statements, and loops. Eventually,
every flow path must be either merged into another one or end in an endpoint.

In figure 2.4, one can see an example of a Microflow. This particular Microflow is re-
sponsible for changing the password of a given user account. As input data, the Account
Password Data object is provided, which contains the password to which the user would
like to change their password. To ensure it is changed correctly, the user has been asked to
enter it twice, and thus the object contains two password inputs.

Execution of the Microflow starts in the green dot, representing the Start Point, from
which we enter a node that retrieves the user account from the application’s database. Next,
we compare the two passwords in a conditional node. If the two passwords provided as
input are not equal, we follow the flow with the "false’-tag and an error message is displayed.
Otherwise, we follow the flow with the "true’-tag, and the password is saved, followed by an
End Point.

If an additional feature was needed, such as displaying a message when the password
is saved, one could easily extend the behaviour of this Microflow by adding a new node
between the node that saves the user’s password and the End Point of the "true” branch.

The entered

passwords do
not match

AccountPasswordData
AccountPasswordData

) Retrieve) Passwords -) N O
O Account equal? (/) SR [PERSIE

Account
Account

Figure 2.4: Microflow that changes a user’s password to a given one.

If we try to place Microflows in the framework of traditional Object-Oriented Program-
ming languages, they fall somewhere in between classes and functions. They often contain
more functionality than what normally would be considered a function in a traditional lan-
guage. On the other hand, Microflows are not comparable to objects or classes and are fo-
cused on providing one functionally, characteristics that lean closer to a function than a class.

As we note earlier, these Microflows are crafted through this visual interface and allow
Citizen Developers to perform a wide range of operations, including invoking other Mi-
croflows, calling third-party services, and transforming data. Now that we have introduced
Microflows on a high level, we will dive deeper into the data Mendix provided in the next
sections.

2.2 Data Overview

As we state in our research question, see Chapter 1, we aim to find Low-Code edit patterns
present in Low-Code applications, that are indicative of anti-patterns. Hence, we are inter-
ested in how Mendix projects, hereafter also referred to as models, evolve over time.

To motivate our approach, and to help navigate this thesis, we introduce in more detail
the problem we consider in this thesis. The data we have been granted access to has several

10

2.2. Data Overview

constraints when compared to more complete datasets, such as the full commit history of a
project, which related works often use for an analysis of this kind. In this Chapter, we first
provide an overview of the type of data Mendix gathers. Next, we discuss the limitations
that this poses upon the analysis we would like to perform, specifically in comparison to
having a full commit history available. Third, we define the problem we address in this
thesis, incorporating the data limitations present.

2.2.1 Mendix’s Data Collection

Mendix gathers data on applications it hosts in its cloud as part of its data collection efforts.
This includes in-house applications built by Mendix itself and applications built by third
parties. While enterprise options to host applications on-premise exist, a majority of apps
are hosted by Mendix.

Mendix collects this data with the sole purpose of improving its products and services.
Moreover, all data collected is anonymized before storage, as such it does not contain any
personal or confidential information. Yet, to maintain customer privacy, we are not allowed
to share any models used for our analysis in their entirety. While we do describe the charac-
teristics of such models from a zoomed-out, the eventual output of this thesis consists only
of short edit patterns commonly found in Microflows. These are not traceable back to any
specific project or customer.

Apart from generic metadata such as project size, last-edit date, and Studio Pro Version,
Mendix collects information on what changes are made to an application over its lifespan.
This can be compared to having a git commit history of the application, with a few key dif-
ferences:

1. Information regarding changes made to a specific application is stored at a frequency
of once per day.

2. Commit Messages, authors, bug reports, or other artifacts are not tracked.

3. Only the main branch is considered when checking for changes, if any change is made
on another branch it will not be registered by Mendix until it is merged back into the
main branch.

4. A full backup of the main branch of a model is made if any changes to that main branch
are made on a given day.

5. Any collected data is anonymized before storage to remove any personal data in the
project.

6. The collection of data on changes made to an application is not guaranteed, i.e. data
loss can occur due to, for example, server outage.

While this approach of data collection is generally of sufficient quality to facilitate product
analysis, e.g. to track the usage of certain modules within Mendix over time, it makes tracking
changes between revisions significantly more complex, as we will clarify in the next section.

2.2.2 Data Limitations

Keeping track of changes made to models once per day by making full backups results in
several challenges. Some are more logistical in nature, such as handling the vast amounts of
data generated, while others are related to the frequency of data collection.

However, the greatest challenge comes from the lack of granularity, caused by two main
reasons: Some key data points present in regular commits are missing from the collected

11

2. BAckGrOUND

data, namely the commit message, author, and timestamp. Moreover, tracking frequency is
limited to once per day and to one branch, resulting in multiple commits made on the same
day being identical to one single commit from our point of view.

Figure 2.5: The number of edits made to Mendix projects within all revisions available for
analysis on a Logarithmic Scale.

Existing state-of-the-art approaches often use commit messages or additional informa-
tion alongside the changes made in a commit to discover edit patterns. Thus the absence
of this data limits us in the approaches that can be applied. Additionally, the low tracking
frequency and tracking only the main branch results in large edit transactions, with outliers
that contain over 100.000 edits within a single commit. Figure 2.5 shows the distribution of
revision sizes of the Mendix projects we use in our analysis. The presence of these large edit
transactions complicates the extraction of small, frequently used, edit patterns.

To summarise the problem we address in this thesis, given the limitations of the data we
have been provided, we provide the following problem definition:

Problem Definition: Detect anti-patterns through repository mining, solely through
the edits taken place between different revisions, in the absence of any external data.
Additionally, our approach should be able to handle commits of varying sizes, includ-
ing larger ones.

12

projectid

af68b827-(
af68b827-(
af68b827-(
af68b827-(
af68b827-(
af68b827-(
af68b827-(
af68b827-(
af68b827-(
af68h827-(

2.2. Data Overview

2.2.3 Data Schema

When a user edits a Mendix model in Studio Pro, it is saved to disk in a custom file format: an
MPR file. This file contains the full model, necessary libraries, and additional editor-related
data.

However, the data Mendix collects on how a model changes over time is stored differently.
Each project revision is stored in a tabular format in which each component of the model
and its properties are present. With a component, sometimes called an object, we refer to all
components in a Mendix model, from the nodes within a Microflow to the buttons on a page.
Objects can have a parent object associated with them, e.g. a Microflow is also stored as an
object, which parents all components within it.

We show an example of this format in Figure 2.6, where a part of a Mendix model is visi-
ble. The table contains multiple rows for each unique object, with the unique row identifier
being the combination of the objectid and name columns. The objectid is a unique identifier
generated for each object within a project. The name column contains the name of a prop-
erty, e.g. a sequence flow has an origin object and a destination object as properties. For each
property belonging to an object a separate row is present, thus a single object has many rows
associated with it. The value column contains the value of the specific property in question.
Additionally, there is an object type column to indicate the type of the object and a parentid
column to indicate the parent object of an object.

revisicunitid objectid parentid objecttype name value idpath typepath
5 014ae 014ae60d-6b1b-4125-8a8b-e9de0b01008e 014ae60d- Microflows$Microflow name Expense_Approve /014ae60d /Microflow:
5 014ae 014ae60d-6b1b-4f25-8a8b-e9de0b01008e 014ae60d- Microflows$Microflow flows [6abfebfb-8e24-4e2c-a315-7cec1/014ae60d /Microflow:
5 014ae 6a5febfb-8e24-4e2c-a315-7cecledbObaa 014ae60d- Microflows$SequenceFlow origin e3cdb3aa-d076-4913-98ec-2662 /014ae60d /Microflow:
5 014ae 6a5febfb-8e24-4e2c-a315-7cecledbObaa 014ae60d- Microflows$SequenceFlow caseValue 331ed851-a5b0-4740-9679-558a /014ae60d /Microflow:
5 014ae 331ed851-a5b0-4740-9679-558a4e8028fb 6a5febfb-8 Microflows$NoCase /014ae60d /Microflow:
5 014ae 6a5febfb-8e24-4e2c-a315-7cecledbObaa 014ae60d- Microflows$SequenceFlow destination e793cad4-00d1-4ece-a8c1-8bf2c/014ae60d /Microflow:
5 014ae 6a5febfb-8e24-4e2c-a315-7cecledbObaa 014ae60d- Microflows$SequenceFlow isErrorHandler FALSE /014ae60d /Microflow:
5 014ae 6a5febfb-8e24-4e2c-a315-7cecledbObaa 014ae60d- Microflows$SequenceFlow originBezierVector {"width":30,"height":0} /014ae60d /Microflow:
5 014ae 6a5febfb-8e24-4e2c-a315-7cecledbObaa 014ae60d- Microflows$SequenceFlow originConnectioninde 1 /014ae60d /Microflow:
5 014ae 6a5febfb-8e24-4e2c-a315-7cecle4bObaa 014ae60d- Microflows$SequenceFlow destinationBezierVect{"width":-30,"height":0} /014ae60d /Microflow:

Figure 2.6: Snippet of a Mendix Model transformed to a tabular format.

In principle, it is possible to restore the original Mendix project from this tabular format,
however, some properties are stored under a different name, and nested properties of an
object are sometimes transformed into separate objects with a parent-child relationship, it is

thus not a trivial task to recreate the original model.

Considering this schema and the data limitations discussed in the previous section, the

next Chapter will delve into our proposed approach.

13

ispointer
FALSE
FALSE
TRUE
FALSE
FALSE
TRUE
FALSE
FALSE
FALSE
FALSE

Chapter 3

Approach

In this chapter, we outline our approach and provide a detailed exploration of each of its com-
ponents. To contextualize and explain the rationale for our chosen methodology, we begin
by briefly reviewing several key related works that form the foundation of our approach.

3.1 Existing Approaches

As we discuss in Chapter 2.2, the nature of the available dataset poses significant challenges
in terms of the quality and frequency of data collection. In turn, this limits our ability to
apply some of the state-of-the-art techniques that are used for pattern detection in similar
datasets. Thus, we focus on approaches that do not require additional artifacts and can deal
with potentially large edit transactions.

When considering possible solutions to the problem of pattern discovery in edit transac-
tions, one might initially think of leveraging an approach based on frequent sub-set mining,
where we mine and analyse frequently occurring sub-sets of edits present in all edit trans-
actions. Negera et al. [29] implemented a similar approach, however, rather than mining
frequent sub-sets, they focus on sub-sequences from chronologically ordered edit transac-
tions, utilizing the time dimension to capture part of the semantics of the code. In an earlier
study, Negara et al. [28] argue that data provided by Version Control Systems (VCS) is of-
ten incomplete and too imprecise for effective pattern detection. Therefore, their method
relies on edit data collected directly from an Integrated Development Environment (IDE),
where every keystroke during 1,520 hours of development by 24 developers was recorded
[29], resulting in a precise and complete dataset. We do not have access to data with such
granularity, nor do we have chronologically ordered data that reflects the sequence of Low-
Code edits, preventing us from adopting this approach.

In a later study, Nguyen et al. state that applying frequent sub-set mining on Github
commits indeed comes with two major issues [30]. First and foremost, in a VCS you lose
information about the order of changes. Moreover, if we use an algorithm that does not
consider the order of changes, like frequent sub-set mining, we lose all information on the
semantic dependencies between changed code. They argue that applying such an algorithm
on VCS commits yields trivial patterns of changes that are common, yet unrelated. Removing
common edits does not help to remedy this problem, as common changes are part of true
patterns. We show in Chapter 2.2 that the data we have available is even less granular than
that available in common VCS, thus further amplifying these issues. Figure 2.5 shows the
number of edits within each of the revisions of the projects that are part of our analysis, the
upper outliers are likely due to the merging of branches, see Chapter 2.2 for a more detail
explanation of why this is the case. The high number of edits in transactions makes it difficult,
if not impossible, to use an approach based on frequent sub-set mining.

15

3. APPROACH

To address these issues different authors propose a graph-based approach applied to
a VCS’s commit data [19, 30], which they show outperforms the sub-sequence mining ap-
proach suggested by Negara et al. [30, 29]. In these approaches, they generate edit graphs
on which a frequent sub-graph mining algorithm is applied. Using graphs rather than a list
of edits allows for the capture of semantics of the underlying code, without relying on chrono-
logically ordered edit data. We propose a similar graph-based setup, specifically adapted for
Low-Code development and incorporating a multi-layered time component.

3.2 Graph Based Approach

In this section, we propose our novel edit pattern mining approach based on a multi-layered
graph setup. In contrast to the current state-of-the-art, our approach is capable of mining
patterns that span over multiple revisions. Consequently, it can provide insights into the
long-term architectural changes to applications. Additionally, our approach focuses specifi-
cally on supporting Low-Code applications.

To limit the scope of this thesis, we apply our approach only on Microflows, the Low-
Code part of Mendix applications, any edit data with regards to other components such as
pages, has been filtered out as a first step.

Generation Generation of IS:r(Equen; Pattern
Of Edit logs Edit Graphs L|\j/||g|rr?§ Analysis

Figure 3.1: A schematic overview of our implemented approach.

In Figure 3.1 we show our approach from a global perspective. The first step consists of
converting the data as supplied by Mendix to a set of edit logs for each project that contains
the changes from one revision to the next. We use these logs to create graphs that encompass
the changes made to a specific Microflow. Lastly, we mine the common sub-graphs from
this set of edit graphs and analyse these frequent edit patterns to learn about developer edit
behaviour. The next sections will go over each of these individual steps in more detail.

3.2.1 Creating Edit Logs

The initial step of our approach involves generating edit logs that capture the differences
between each pair of consecutive revisions. These logs are necessary for creating edit graphs
in the next step. To generate the edit logs, we first chronologically order the revisions of each
project by their timestamps. As illustrated on the left side of Figure 3.2, revisions 0 through
4 are presented in order from earliest to latest. The next step involves creating revision pairs
by pairing each revision with the next one in the sequence, such that revision 0 is paired with
revision 1, and revision 1 with revision 2, etc. as depicted in Figure 3.2.

To determine the differences between two revisions within a revision pair, we exploit
the structure in which Mendix models are stored. Each revision is represented as a large
table that enumerates all components and their properties within a specific Mendix project
in a row-based format, see Section 2.2.3 for more details. When comparing the tables of two
consecutive revisions, we mark rows that have been added, removed, or modified and add
them to the edit log specific to these two revisions. Given how Mendix stores its data, a
single component may be represented by multiple rows, with each row containing a single

16

3.2. Graph Based Approach

—»| Revision Pair

Figure 3.2: Overview of Edit log generation.

Filter . .
|\' Extract Edits Non-Functional |—» LWr|te IEc_iltk
Edits og to Dis

property linked to that component. For instance, a button might have separate rows for its
color, and for the x and y coordinates that define its position. The resulting edit log consists
of rows corresponding to every change made between two revisions, with each row having
a label that signals it being either a deletion, addition, or modification.

Mendix models contain a significant amount of data that is irrelevant to our analysis.
For instance, each node in a Microflow has a position property associated with it, which is
necessary for creating a visual representation when a developer wants to edit a Microflow,
however, these properties do not convey any semantic meaning about the Microflow. There-
fore, as a final step, we filter out all non-functional edits from the edit log. This ensures we
are left with an edit log that only contains those edits that impact the functionality of the
Microflow. This final step completes the process of generating the individual edit logs for
each pair of revisions.

3.2.2 Generating Edit Graphs

Now that we have edit logs for each pair of sequential revisions, the next step is to construct
an edit graph for each edit log. An edit graph consists of nodes, representing the components
within a Microflow, and undirected edges, representing the semantic connections between
the components in a Microflow. Hence, for each unique component in an edit log, we create
anode. As we note in the previous section, due to the way Mendix components are stored
internally, the number of nodes does not necessarily have to be equal to the number of rows
of the edit log.

Nodes have two labels associated with them, one of these is the edit type of the node,
a node can have one of three edit types, either its associated component was modified, re-
moved, or inserted in the edit log we are translating. Each node gets assigned a color, blue,
green, or red, depending on if it was modified, inserted, or deleted respectively. Secondly,
the node represents the component as how it functioned in the particular Microflow, and is
given the component type as a label.

Within a Microflow numerous components perform similar functions, and this poses a
challenge to mining edit patterns. For example, various components can convey information
to the user, by loading a new page or displaying a message box. This functional similarity

17

3. APPROACH

among different components complicates the process of isolating patterns within Microflow
edits because even if two developers have the same intent, one might use a page to display
new information to the user, while the other uses a message box. Through experimentation,
we found that this would cause certain groups of components to never occur in patterns
as each component would not appear with high enough frequency in our dataset. To limit
the number of unique components we, under the guidance of a Mendix expert, group cer-
tain components together based on their similarity in functionality. This comes at the cost
of having more generalized patterns, instead of showing precisely which specific grouped
component was used. But provides the benefit of more easily identifiable patterns.

After creating a node for each component, we add edges to establish their connections.
We categorize these edges into four distinct types based on the relationships they represent.

We create edges of type 0, coloured red, to represent the sequential flow within a Mi-
croflow. When two nodes are executed consecutively within a Microflow, they are connected
by a type 0 edge in the edit graph. Additionally, some components have sub-components that
we also connect through this edge type. For example, a component that retrieves an object
has a different sub-component depending on whether it retrieves the object from memory or
the application’s underlying database. Figure 3.3 contains an example where we see three
nodes, each representing a component of the underlying Microflow, connected through a
type 0 edge, meaning the components are directly connected in the Microflow as well. In
this particular case, the nodes are red, which tells us the three components were deleted
from the underlying Microflow.

jeveSource

Retri ction

Figure 3.3: Example snippet of a generated edit graph containing edge type 1.

Edges of type 1, coloured green, are based on the shared use of variables between nodes.
For instance, if two nodes transform the same variable, they will be connected by a type 1
edge. This also applies in scenarios where one node retrieves data and stores it in a variable,

18

3.2. Graph Based Approach

which is later utilized by another node.

Edges of type 2, represented in blue, provide additional details about properties associ-
ated with a node. For instance, the property named ReturnVariable is associated with each
end node and captures whether a Microflow returns a variable when the end node is reached.
For properties, that can only be set to a limited number of values, such as booleans, the value
to which the property is set is included. The labels of other property types are limited to the
property name. This edge type enables the identification of patterns where specific proper-
ties are edited or modified.

errorHandlin@iype_Rollback

ListO@@ation

exp ion

Figure 3.4: Example snippet of a generated edit graph with edge types 1 and 2.

An example snippet of a graph using Edge types 1 and 2 is shown in Figure 3.4. We
see two components of a Microflow being represented as nodes, namely the SplitCondition
node and the ListOperation node. Additionally, both of these components have one prop-
erty assigned to them, identifiable by the edge of type 2, the ErrorHandlingType property,
and the Expression property. The ErrorHandlingType contains information on how to han-
dle the list operation failing, while the expression property contains the expression of the
SplitCondition. Since the ErrorHandlingType can only be assigned a few specific values, its
assigned value, Rollback, is included in the label of the node. The edge of type 1 between the
SplitCondition and Listoperation nodes signals that both the SplitCondition and the Listop-
eration make use of the same variable in their operation.

Additionally, there is a fourth type of edge, which is unique to multilayered edit graphs.
We will discuss this edge type in the next section.

19

3. APPROACH

3.2.3 Multi-layered Edit Graph

To gain a better understanding of how Microflows evolve, which is not feasible with state-of-
the-art approaches, we propose a multi-layered graph approach that enables the identifica-
tion of patterns spanning multiple revisions.

In essence, we construct a multi-layered edit graph where each layer corresponds to an
individual edit graph. To create this multi-layered graph, we first take the set of edit graphs
belonging to a specific Microflow generated in the previous section and arrange them in
chronological order. Starting with the first edit graph in the set, we consider each node and,
if the node appears in a subsequent edit graph, we link it to its first future occurrence using
an edge of type 3, coloured yellow. This process is repeated for each subsequent edit graph
in the ordered set, resulting in a multi-layered graph where each node is connected to its
future occurrences.

For example, consider the scenario where a specific conditional node is added and subse-
quently edited twice in a row. By incorporating these multi-layered edges, we can detect and
track such patterns, which would be more challenging or impossible to identify without a
multi-layered approach. Figure 3.5 illustrates an example of a multi-layered graph, where a
MicroflowCallAction component is introduced in one revision and later removed, alongside
its two associated variables. We can identify the MicroflowCallAction being removed in a
later revision through the type 3 edge.

errorHandli pe_Rollback
~
useReturnifffiable_true
2
Microflo ction
)
Micre llAction
2
useRetum.iab‘Téﬂg
~
errorHandli pe_Rollback

Figure 3.5: Example snippet of a generated multi-layered edit graph.

This approach enables the identification of patterns that involve nodes added but later
edited or removed in subsequent revisions, thereby providing additional context to draw
conclusions on developer edit behaviour.

20

3.2. Graph Based Approach

3.2.4 Pattern Mining

After we generate the multi-layered edit graphs, the next step is to mine frequently occurring
sub-graphs, note that each multi-layered edit graph represents one Microflow. To discover
frequent sub-graphs we utilize cgSpan !, a library that is built upon the well-known gSpan
library often used for frequent sub-graph mining [41, 44]. However, cgSpan differs from
gSpan in that it only mines closed sub-graphs as opposed to any frequently occurring sub-
graphs. A sub-graph g is closed if and only if there exists no super-graph of g that appears
with equal occurrence. This is a desirable property since if we have a pattern of which a larger
super-graph g exists with at least equal occurrence, we refer to only include the super-graph
g in our set of mined patterns.

3.2.5 Pattern Analysis

cgSpan outputs all sub-graphs that satisfy configurable support and size parameters. How-
ever, after mining, these patterns still need to be manually interpreted to reveal the intent of
the developers using the pattern. To aid in this process and make manual analysis of many
patterns more feasible, we can combine patterns that are very similar by ignoring small dif-
ferences between two discovered patterns, e.g., a difference of 1-2 edges. This can happen
quite easily, for example, if one edit graph out of all edit graphs misses one edge in a pattern
that is contained in every edit graph, we will get two patterns: One with support value n, not
including the missing edge, and one with support value n-1 which does include the missing
edge. We use the Jaccard coefficient of two patterns to decide on similarity.

Additionally, we rank pattern according to the formula 3.1, where [N| is the number of
nodes, S is the support value of a pattern p, and r is the resulting rating of pattern p. This is
the same rating as used by Nguyen et al. [30], and prefers larger patterns over smaller ones
if there are patterns with equal support.

r=|N|*S8 (3.1)

This ranking helps to prioritize patterns that not only have widespread support but also
are sufficiently complex to provide valuable insights. In the case of a large number of pat-
terns, with which Nguyen et al. struggled [30], this ranking intends to find promising pat-
terns more easily.

]https: //github.com/NaazS03/cgSpan

21

Chapter 4

Results

This chapter presents the results we obtain by applying our approach set out in Chapter 3 to
the dataset supplied to us by Mendix. We begin this chapter with a description of the data
selection process and the pre-processing steps we apply. Next, we provide an analysis of the
dataset’s characteristics. Finally, we apply our approach and present an overview of the edit
patterns we mine with cgSpan. A comprehensive discussion on the patterns we identify and
the edit behaviour of Citizen Developers can be found in the next Chapter.

4.1 Data Selection

The dataset available at Mendix contains the revisions of over 10,000 projects, extracting all re-
visions for all projects proved too costly in terms of time required and budgetary constraints.
Moreover, even if the extraction of all revisions would be feasible, there would be no way to
process such vast amounts of data in the first place.

To ensure the computational feasibility of processing the data provided by Mendix and
to narrow the scope of the data extraction, we reduce the size of the dataset. Since our focus
is on analyzing the edit behavior of Citizen Developers in modifying their applications over
time, we opt to collect all available revisions from a limited number of projects.

There are several factors based on which we decide to filter out part of the projects. First,
Mendix has a team of experienced Mendix developers who develop Low-Code applications
for internal and external use. To exclude any biases and focus on our effort to support Citizen
Developers we exclude all internal Mendix projects from our dataset, to remove any possible
bias towards more experienced developers that could be present in these projects.

Secondly, since solely the main branch is tracked there may be a significant time between
revisions due to infrequent merges to the main branch. To partly remedy this limitation and
to point our focus on projects that were in active development at some point in their lifetime,
we only consider projects where the median time between revisions is less than 3 days. Figure
4.1 shows a box plot of the time between revisions, where we observe a significant number
of outliers that have a relatively high median time between two revisions, we thus exclude
those projects. The median sits at about 10° milliseconds between revisions, which converts
to roughly 11-12 days, with the minimum being about 10® milliseconds, which is equivalent
to 1 day, the minimum time between any two revisions due to the edit data being gathered
only once per day, as we explain in Section 2.2.3.

Furthermore, we exclude the five percent outliers based on app size to keep our focus on
averagely-sized Mendix projects. Figure 4.2 shows a box plot of the project sizes which again
show high variance and a significant number of outliers on the upper end.

Additionally, we excluded apps that do not contain any Microflows, or apps that have
fewer than fifty revisions overall. To exclude applications that merely contain static pages
without any Low-Code or those that have not been actively developed.

23

4. Resurrs

1012 4 ’
o

1011 J

100 5

109 a

108 4 .
T
1

Figure 4.1: Number of milliseconds between two sequential revisions on a Logarithmic Scale.

102 - ©
loE 4
10? i
lOE i
105 4
T
1

Figure 4.2: Box plot showing byte size of Mendix projects on a Logarithmic Scale.

After applying these restrictions we are left with a sub-set that is still over 5000 projects
in size. From this set of projects, we select 13 at random. For those 13 projects we collect

24

4.2. Edit Characteristics

all revisions that we have available, this provides us with a total of 3965 revisions over 13
projects to perform our analysis on. While a sub-set of more than 13 projects would have been
beneficial for the generalizability of our research, selecting more projects was not feasible due
to the resource constraints described earlier.

The 13 projects contain 28950 unique Microflows in the 3695 revisions, with the combined
Microflow count of the latest revisions of each project being 16976. Thus we have a significant
number of Microflows on which to base our analysis.

4.2 Edit Characteristics

To the best of our knowledge, no scientific research that investigates how developers use and
edit Low-Code in practice exists. This section aims to provide insight into the characteristics
of the 13 projects we analyse to partly address this knowledge gap.

To gain an insight into the evolution of Microflows during the development of a Mendix
project, we first examine the number of times a Microflow is modified throughout its lifetime.
We consider a Microflow to be modified in a revision if any edit, be it an insertion, deletion,
or modification, in at least one of the components of the Microflow takes place. This could
range from simply changing one property associated with a component in a Microflow to the
introduction or the deletion of functionality. In other words, if the Microflow is contained in
the edit log of two revisions, as generated via the steps explained in 3.2.1, we consider it to
have been modified.

Mendix tracks Microflows and their components across project revisions using unique
identifiers. These identifiers enable us to observe which Microflows were modified by the
developer between revisions. Furthermore, they allow us to distinguish when a developer
edits the properties of a component within a Microflow, as opposed to inserting or deleting
components. This distinction enables us to separate insertions and deletions from modifica-
tions, without requiring additional interpretation.

Figure 4.3 shows the distribution of the number of times each Microflow in our 13 anal-
ysed projects has been modified. At first glance, we notice that the distribution is right-
skewed towards a low number of revisions per Microflow. With the median number of revi-
sions of a Microflow throughout a project being 2, and the average sitting below 3. Note that
the introduction of a Microflow is considered to be a modification, hence a median of 2 tells
us that the median Microflow is modified just once after its creation.

It is noteworthy that Microflows are edited such few times over their lifespan. We pro-
pose three explanations for this phenomenon. Firstly, Microflows are significantly smaller
than classes in traditional object-oriented programming languages. As discussed in Section
2.1.3, one could consider them to be closer to functions in terms of both functionality and
size. Their functionality is typically focused on a single, specific task, which means that ed-
its are generally only necessary if the developer needs to modify the specific function that
the Microflow performs.

Secondly, it is important to consider the data limitations outlined in Section 2.2 when
interpreting these characteristics. Particularly the fact that only the main branch is tracked
and that changes are recorded only once per day. This means that if a developer edits a Mi-
croflow numerous times on a separate branch before merging the changes to the main branch,
we will interpret this as the Microflow having been modified once. Likewise, multiple edits
a day, even if committed to the main branch, go unnoticed. Despite these limitations, the
limited number of edits we observe in Microflows on the main branches of these projects
implies that, in general, Microflows do not undergo multiple significant changes after their
introduction to the main branch.

The third reason relates to the edit behaviour of developers, across all 3695 revisions
of the 13 projects a total of 28950 Microflows were introduced, and 11974 Microflows were

25

4. Resurrs

Number of times Microflows are edited

12000

10000

8000

60001

Microflow count

4000

20001

20 30 40
Number of edits

Figure 4.3: A Histogram presenting an overview of Microflow Edit Counts.

removed. Since Mendix tracks Microflows across revisions with a unique identifier, we can
directly interpret this result as developer behaviour; Microflows are often deleted while new
ones are introduced. This could explain why existing Microflows do not undergo frequent
changes. If developers delete existing Microflows and recreate their functionality in new
ones when significant changes are required, this will result in a lower number of edits per
Microflow. This aligns with anecdotal evidence of how developers interact with the platform.
We refer to these types of edits as hidden edits.

Notice, however, that even if we assume all 11974 removed Microflows are part of 11974
hidden edits, we would still end up with a relatively low number of edits per Microflow.

Before we provide an in-depth discussion on how the lack of edits impacts our edit pat-
terns and how this relates to Microflow re-usability in the next Chapter, we will first outlay
the results of our analysis in the next section.

4.3 Analysis

We apply our graph-based approach outlined in Chapter 3 to the revisions of the 13 projects
we analyse. This approach involves generating edit logs, that capture the differences between
revisions, creating edit graphs, and identifying sub-graphs which frequently occur across
different projects.

For each of the 3965 revisions in the 13 projects we select for further analysis, we generate
edit logs. Where each edit log represents the difference between one revision and the next.
Using these edit logs, we generate edit graphs, where each graph represents the evolution
of a Microflow, as detailed in Chapter 3. To exclude irrelevant Microflows we exclude those
that do not have any edits within their lifetime, moreover, we only consider edit logs that
contain less than 100,000 edits due to resource constraints. This results in 8229 edit graphs
gathered from the 3695 revisions, each representing one Microflow.

Following this, we employ cgSpan to extract common patterns from the set of 8229 edit
graphs. We set a minimum support value of 0.05 and a minimum pattern size of 3. The min-
imum pattern size of 3 was selected through experimentation, which indicated that patterns

26

4.3. Analysis

smaller than this threshold lacked sufficient information to be useful. This resulted in 1168
patterns, with the highest support value being 0.28 and the lowest 0.05.

In the final step, we rank these patterns using Equation 3.1. The complete set of extracted
patterns is available! [31]. In the next section, we will explore the mined patterns in greater
detail.

4.3.1 Common Edit Patterns

In this section, we analyse the mined edit patterns. As the resulting number of patterns is too
large to discuss each of them in depth individually we first group similar patterns with the
Jaccard Similarity set so that we allow a difference of about one node in the larger patterns,
about 0.90, see Section 3.2.5 for more details, and take the group’s highest ranking pattern as
its representative. This reduces the number of patterns from 1168 to 780. We then manually
analyse each representative pattern and create groups of similar patterns. For each group,
we provide a short description to introduce their purpose and show one or two example
patterns to inform the reader.

To introduce the reader we will first provide a short overview of common nodes, or com-
ponents, in Microflows. Afterward, we will examine one of the most common types of edit
patterns, small frequently occurring patterns in our dataset, with an example.

As we describe in detail in Section 2.1.3, Microflows consist of one start point, one or
multiple endpoints, and nodes in between that either perform an action or direct the flow of
the Microflow. The flow of the Microflow, i.e. the execution order of nodes, is translated to
edges of Type 0 in our edit graphs. Note that the edges in our graph are undirected due to
constraints concerning the sub-graph mining algorithm cgSpan. Additionally, some compo-
nents have sub-components that are directly related to each other, such as a Split Node with
its split condition, these are also encoded by an edge of Type 0.

Below we provide an overview of the most commonly appearing nodes and their function
within a Microflow for the reader to refer back to.

e Flow Controllers There are three types of nodes within Microflows that can control
the execution flow of the nodes within it. The most important one is the Exclusive Split
node which can be found throughout many patterns. The Exclusive Split node has one
input flow and multiple output flows, based on a condition given by the developer one
of the output flows is chosen. Flows have to either end in an endpoint or be merged
together through a merge node, which is another flow controller. The last one is similar
to the Exclusive Split node but decides based on the type of a given object.

e Retrieve Actions In Mendix Retrieve Action nodes fetch one or more objects from the
application’s underlying database. There are two types of retrieves, an Association
Retrieve retrieves objects from memory, thus also fetching not yet committed objects
or changes, while a DatabaseRetrieve only retrieves objects explicitly committed to the
database.

e Call Actions Call action nodes are a group of nodes used to invoke external entities,
such as web services, other Microflows, or custom Java code. The potential output of
these calls can be stored and later be used in the Microflow.

e Parameter Mappings Parameter Mappings work with Call Actions nodes and facilitate
the translation of parameters required as input by these external services and the out-
put they return. For example, they allow the conversion from Json returned by a web
service to a Mendix object that can be used in the Microflow. Call Action nodes and
Parameter Mappings thus often appear together in patterns.

'DOI: 10.6084/m9.figshare.27223998

27

4. Resurrs

An example of an actual small edit pattern we mined is depicted in Figure 4.4, which
shows three nodes: a Retrieve Action node and two Association Retrieve Source nodes. As ex-
plained in Chapter 3, a green node indicates a new component introduced by the developer.
In this example, the Retrieve Action and Association Retrieve Source nodes were initially
added, and the same Association Retrieve Source node was later edited, as indicated by the
type 3 edge and the blue color of the node. In Mendix, the AssociationRetrieve node fetches
one or more objects from the application’s database. Unlike a database retrieve, which only
retrieves objects explicitly committed to the database, an association retrieve also fetches un-
committed or “dirty” objects. The Retrieve Action node serves as a parent for the Association
Retrieve Source and can have other types of retrieves as its children.

Common Edit Pattern

i@ieveSource

y

Association leveSource

Retri

Figure 4.4: An edit graph illustrating the edit of an association retrieve source node.

To illustrate how this might look in practice, consider the Microflow shown in Figure
4.5. In this example, we see a Microflow used in an app for a primary school. An object
representing a child is passed to the Microflow. The Microflow retrieves the child’s parents
by association and checks if this information is available. If not, a message is displayed to the
user, in this case, a teacher.

Rather than specifically retrieving the parents of a child, we might have intended to re-
quest the current registered caretaker of a Child. To change this we could edit the Microflow

28

4.3. Analysis

Parent information
> m —
/ Not €t
cn /
- /
Ch]
falza
Fi
Retrieve 'Parents’ Parent :""
—— "'Eq', by ——P_information < -~ trus : : P
$Child/Child_Par... avaliable?

User

Figure 4.5: An example Microflow showing Parent information being retrieved associated
with a provided Child object.

Caretaker
/Vm informatien not M

et

Child /
Fa ™ m n"l.l
falze
i/
Retrieve Caretaker /
——— IE" ‘Caretaker’ by —— P information frus >
$Child/Child_Car.. avaliabl|e?
Use
Caretake

Figure 4.6: An example Microflow showing Caretaker information being retrieved associated
with a provided Child object.

to resemble the Microflow depicted in Figure 4.6, where the parents are not retrieved, but
rather the caretakers. If the Microflow were modified this way, a resulting edit pattern would
match the one shown in Figure 4.4. Specifically, the Association Retrieve Source node would
be updated to retrieve the caretakers instead of the parents.

Note that this is not necessarily the only pattern that could be matched to this edit. For
example, we also edit the condition of the Exclusive Split node and change the message dis-
played to the user. Thus a pattern where the Exclusive Split’s condition is modified along
with the message displayed to the user is also equally applicable to this edit. If it appears
often enough throughout our dataset we could even see a pattern encompassing the whole
change, i.e. the Association Retrieve, Exclusive Split, and Message nodes all being updated
in one pattern.

Another example of a short pattern similar to the one we just saw is shown in Figure 4.7, a
sub-graph with a support value of 0.18. In this pattern, we observe the deletion of five nodes:
a Microflow Call Action node with its associated properties. In Mendix, Call Action nodes
invoke external entities, such as web services, custom Java code, or such as in this case, other
Microflows.

One of the most common types of edit patterns is similar to the one shown in Figure 4.8,
where a Microflow call action node is used to call another Microflow and is consequently
deleted in a later revision. The support value of this specific edit graph is 0.11, e.g. one in ten
Microflows contains this structure. A related sub-graph is shown in Figure 4.9, which has a
support value of 0.13, where the output of the call action node is later used in a Split Con-
dition, indicated by the edge of Type 1 between the SplitCondition node and the Microflow-

29

4. Resurrs

Common Edit Pattern

micri Call

errorHandlin@ly pe_Rollback

useReturnii@iable_true

outputV leName

Figure 4.7: An edit graph illustrating the deletion of a Microflow call action node with ac-
companying nodes.

CallParameterMapping. A MicroflowParameterMapping node is part of a larger group of
parameter mappings that facilitate the translation of parameters required as input by ex-
ternal services or Microflows and the output they return, allowing them to interface with
Mendix objects within the Microflow.

Another observation is the significant number of patterns which consists of nodes that
are added, while being deleted in a later revision, possibly with minor edits in between.
Figure 4.10 shows such a sub-graph with a support value of 0.09, where the split condition,
alongside accompanying nodes, is deleted after being introduced, without any edits.

A different common edit pattern is shown in Figure 4.11, with a support value of 0.05,
where a split condition is used in combination with multiple Member Changes. Member
change nodes are nodes that change a variable in some way, depending on the type of the
variable different transformations can be applied. Thus, if interpreting the pattern literally, it
shows a variable that was changed multiple times, in combination with being used in a split
condition node. Similarly, we observe a lot of patterns where a variable is retrieved using a
Retrieve or Call node, in Figure 4.12, a sub-graph is shown where a variable is used in a split
condition after being retrieved, with a support value of 0.15.

30

4.3. Analysis

Common Edit Pattern

errorHandli pe_Rollback

Microflo IlAction

7

useReturn.@ue 3

Vv

Microflo llAction
2
errom'pe_Rollback
useRetumAe_true

Figure 4.8: An edit graph illustrating a call to retrieve a variable from another Microflow,
which is subsequently deleted in a later revision.

Other patterns are often combinations of those previously discussed or differ only slightly.
Most commonly, patterns involve parameter mappings, call actions, and split conditions. The
key takeaway is that we see few modifications to existing structures or nodes, rather patterns
contain insertions of new nodes or the deletion of existing ones. Moreover, most edit graphs
revolve around the same few components as indicated above. In the next chapter, we will
explore in greater depth what these patterns reveal about edit behavior and potential anti-
patterns in Low-Code development.

31

4. Resurrs

Common Edit Pattern

arg@hent
2

MicroflowCallP
2

par'é(

errorHand}.peRollback

T

Exclu@iieSplit

meterMapping

Micri Call

Microflo llAction

Figure 4.9: An edit graph illustrating a call to retrieve a variable from another Microflow and

then used in a split condition.

32

4.3. Analysis

Common Edit Pattern

split ition

N
errorHandin.-pe—ReH-bazA——AthSplit
ExcuT&ﬂ— o —Splitedition

errorHandli pe_Rollback

Figure 4.10: An edit graph illustrating the deletion of a split condition.

33

4. Resurrs

Common Edit Pattern

y‘ctﬁ\ction

]

Memb ange

MembgM@hange

Figure 4.11: An edit graph illustrating the usage of a split condition in combination with
multiple Member change nodes.

34

4.3. Analysis

Common Edit Pattern

retrie

exp

ource

Split

ion

yorH:mdlin.pe_Rollba ck
rl

Retri Ction

ition

Figure 4.12: An edit graph illustrating the retrieval of a variable which is later used in a split

condition.

35

Chapter 5

Discussion

This chapter provides a comprehensive discussion of the research findings. We analyse the
edit patterns identified in Chapter 4, exploring how these reflect the edit behavior of Low-
Code developers. Subsequently, we examine existing guidelines, address identified threats
to validity, and suggest potential avenues for future research.

5.1 Edit Pattern Analysis

In this section, we will present our insights on what the edit patterns combined with the
edit characteristics examined in Chapter 4, reveal about Microflow editing behavior and the
presence of potential anti-patterns.

When considering the mined edit patterns described in Chapter 4, we observe several
groups of patterns that contain similar structures. Most patterns contain Parameter Map-
pings, Call Action, or Exclusive Split nodes. Given that these are components that, on aver-
age, appear frequently in Microflows this is not a surprising observation. Interestingly, for
example, Call and Retrieve Actions appear at a much higher rate than what one would expect
to be typical in any general application. The focus of the analysed applications is clearly on
retrieving and processing data. We do not find any patterns that involve complex structures,
e.g. having nested branches, meaning that at least for our dataset these structures did not
occur frequently.

It gets more complicated when we try to extract a deeper meaning from the discovered
patterns. In the previous Chapter, we note that the average Microflow is modified less than
3 times, which translates to not being able to discover meaningful edit patterns using our
approach. Instead, we see patterns that mostly contain insertions and deletions, which match
with the edit characteristics discussed in Section 4.2, and can be interpreted as the frequent
creation and deletion of Microflows. We do see some edits, for example, the Retrieve Source
node being edited in Figure 4.4, but not to the degree of clear discernible anti-patterns.

Mendix does not have a concept such as classes and, in principle, functionality is im-
plemented via Microflows. Them being edited little directly raises questions about the re-
usability of Microflows, which would seem to be limited when considering this data. How-
ever, it is difficult to make such a definitive conclusion as this behaviour could potentially
be entirely attributed to the way developers interact with the platform, rather than it being a
true problem concerning re-usability. There is anecdotal evidence that developers often re-
make Microflows when they make non-trivial edits, rather than edit the existing ones. In our
analysis, due to the unique id of the Microflow changing, this would show up as a deletion
of an existing Microflow and the insertion of a new one. While in reality it could be consid-
ered a modification of an existing Microflow. This could be due to the nature of low-code
development, where rapid prototyping and experimentation might lead to the frequent cre-
ation of new Microflows. Additionally, the low number of edits indicates that Microflows

37

5. DiscussioN

might be less about incremental refinement and more about replacement, which could be a
characteristic of low-code development practices.

Identifying whether this is truly the case is difficult since any arbitrary property of the Mi-
croflow could have changed between revisions, combined with the large diffs we are dealing
with it is not a trivial task to track a Microflow across revision borders when the developer
recreated it and then deleted the original.

An alternative would be to give up on incorporating semantics and consider the whole
edit set within a transaction. However, related work, as discussed in Section 6.2, shows that
frequent item set mining using VCS commits is not a viable solution due to the creation of
sets that contain common, but unrelated changes [28, 29, 30]. Our transactions are even less
granular thus amplifying this issue. Setting a limit on the size of transactions, only consid-
ering those under a certain threshold, might help to alleviate the problem, albeit not solve
it. With the large sizes of our transactions, this is not a workable solution with the current
dataset.

Another approach would be to do a more precise analysis of the commits that are known
to contain (bug) fixes, or even look at other artifacts related to development. However, as we
state in Section 2.2, we do not have access to the data to perform a more fine-grained analysis
using commit messages or other artifacts.

In summary, our findings suggest that Microflows undergo minimal modifications post-
creation, raising questions about their re-usability in Low-Code environments. However,
due to the constraints of our data and the nature of Low-Code development, it remains chal-
lenging to draw definitive conclusions. Future research with more granular data may pro-
vide deeper insights into these patterns and their implications.

Research Question #2: Identifying Anti-Patterns with the available data from Mendix
remains a difficult task. While our approach does find patterns in Microflow edit be-
haviour, these do not translate to anti-patterns due to the nature of these patterns.
Since individual Microflows are not often directly edited in practice. There are some
signals that they might be recreated rather than directly edited, future research could
investigate this avenue either through improving data granularity, including addi-
tional data artifacts, or attempt to track recreated Microflows across revision borders.

Research Question #3: In terms of the frequency of pattern appearance, we can rec-
ognize certain types of edits and groups of components that appear frequently in our
mined patterns. As we are unable to locate any anti-pattern it is difficult to establish
their presence within Microflows.

5.2 Existing Guidelines

In this section, we discuss the existing guidelines for developing applications using the Mendix
platform and insights from relevant literature on Low-Code Development Platforms (LCDPs).

5.2.1 Development Guidelines

Like most development platforms, Mendix provides a comprehensive set of guidelines aimed
at ensuring the development of high-quality and maintainable applications [25]. These
guidelines cover a broad spectrum of development best practices, including naming con-
ventions, project structure organization, security protocols, maintainability strategies, user

38

5.3. Threats to Validity

interface (UI) design, and performance optimization. A significant emphasis is placed on
the readability and manageability of Microflows, particularly through naming conventions,
size limitations, and the strategic splitting of larger flows to reduce complexity. Develop-
ers are encouraged to enhance clarity by incorporating annotations and following structured
design principles.

However, while these guidelines focus on general usability and application performance,
they do not delve deeply into the internal logic of Microflows. A notable exception is the em-
phasis on Input Validation, which underscores the importance of validating and updating in-
put data during development. Additionally, Mendix provides concrete performance-related
recommendations, offering developers actionable steps to optimize application performance.
Despite these inclusions, the guidelines generally lack explicit measures for the identification
and mitigation of problematic code patterns or anti-patterns within Microflows.

Similarly, OutSystems, another prominent Low-Code platform, also offers a set of best
practices designed to guide developers towards building efficient, scalable applications. Like
Mendix, these practices emphasize structural clarity, security, and performance but do not
focus heavily on the detection or correction of anti-patterns, highlighting a broader gap in
Low-Code development platforms’ current best practices.

Beyond the platforms, broader research on Low-Code development highlights similar
challenges and the need for better tools and guidelines to support developers. Studies by
Khoram et al. [20] and Pinho et al. [34] emphasize the usability of Low-Code platforms and
the importance of providing comprehensive testing frameworks and clear coding standards
to aid Citizen Developers, who often lack formal programming education [20]. These studies
underscore the necessity for tailored guidelines that not only cover general development
practices but also offer concrete methodologies for identifying and mitigating anti-patterns.

Research Question #1: The existing guidelines provided by platforms like Mendix
and OutSystems are primarily oriented towards general best practices and opera-
tional efficiency. These guidelines promote reusable Microflows and advise against
the overuse of constants and event handlers. However, they fall short of explicitly
addressing the identification and mitigation of specific code patterns or anti-patterns.
While these general recommendations are useful, they do not offer detailed strategies
for detecting and correcting problematic patterns in Low-Code environments.
Beyond platform-specific guidelines, the literature on Low-Code Development Plat-
forms (LCDPs) highlights similar gaps. Research by Khoram et al. and Pinho et al.
points to the challenges faced by Citizen Developers, who often lack formal program-
ming education, and the need for more comprehensive tools and guidelines [20, 34].
These studies emphasize the importance of providing not only general development
practices but also concrete methodologies for identifying and mitigating anti-patterns,
suggesting that current guidelines are insufficient in this regard.

5.3 Threats to Validity

Here, we outline several potential threats to the validity of our findings and describe the
approaches used to address them.

5.3.1 Generalizability to Other Low-Code Platforms

Our study focused exclusively on the Mendix platform, which raises concerns about the ap-
plicability of the results to other Low-Code Development Platforms (LCDPs). While Mendix
is a leading platform in the Low-Code space, our findings may not be directly transferable

39

5. DiscussioN

to other LCDPs with different architectures and functionalities. However, the fundamental
principles of anti-pattern detection and the methodological approach we used are relevant
for similar platforms like Outsystems, which share the core Low-Code principle. Further
research involving multiple platforms would be beneficial to confirm the generalizability of
our results.

5.3.2 Sample Size and Data Selection Criteria

The number of projects analysed in this study was limited to 13, which may not be represen-
tative of the broader spectrum of Mendix applications. We selected a diverse set of projects
with a significant number of revisions. Nevertheless, the relatively small sample size means
that our findings may not capture the full range of anti-patterns present in the wider popu-
lation of Mendix applications. Future studies with a larger and more varied sample size are
necessary to validate the robustness of our findings across different contexts and improve
the reliability of the conclusions drawn.

5.3.3 Data Collection Constraints

The data collected by Mendix was anonymized and lacked certain details such as commit
messages, authorship information, and precise timestamps. This absence of detailed meta-
data limited the depth of our analysis, as we were unable to consider any contextual infor-
mation. We focused on structural changes and anti-patterns that could be identified through
available edit logs. Despite this limitation, our methodology was designed to extract mean-
ingful insights from the data provided. Future research could benefit from more granular
data to provide a deeper understanding of the factors driving the observed patterns.

5.3.4 Platform-Specific Bias

The specific features and functionalities of Mendix may have influenced the types of anti-
patterns detected, potentially introducing a platform-specific bias. While our results are

inherently tied to Mendix’s characteristics, the identified anti-patterns are common in Low-
Code environments and should be considered when developing general guidelines for LCDPs.
To mitigate this bias, further research involving multiple platforms would help in under-
standing whether these findings are universally applicable or specific to Mendix. This broader
approach would enhance the external validity of the study.

5.3.5 Manual Analysis

The manual analysis involved in pattern detection and categorization might introduce sub-

jective biases. To minimize subjectivity, we established clear criteria for when to consider a

pattern “common”. Moreover, all patterns we identified can be found in our dataset pack-
1

age' [31].

'DOI: 10.6084/m9.figshare.27223998

40

Chapter 6

Related Work

As we briefly discuss in Chapter 1, previous work on Low-Code is scarce. Most related work
focuses on highlighting the current challenges and roadblocks within the Low-Code space,
rather than directly addressing them [5, 17, 20, 38]. To the best of our knowledge, a study
covering anti-patterns, bugs present in Low-Code applications, or even edit behaviour of
Low-Code developers does not exist.

This is in contrast with the general field of repository mining, which has seen much in-
terest in the past and remains an important scientific field today. Specifically, plenty of work
exists on how to mine anti-patterns, code smells, or common developer edit patterns from
code repositories.

For this thesis, we will split these existing approaches into two categories. One category
uses additional artifacts besides the commit history, such as commit messages, bug reports,
logs, or a combination of these alongside the source code to learn developer edit patterns
or discover common anti-patterns [6, 21, 22, 33, 39, 45]. The second category consists of
approaches that solely consider the changes in source code between different revisions to
identify common edit patterns, ignoring any additional data [43, 29, 30, 19, 18, 11].

The second category aligns with the data we have been provided through Mendix, it does
not include any additional information besides the historical changes made to an application
over time. For example, it lacks commit messages, bug reports, and author data. As such, itis
not feasible to analyse the existence of common anti-patterns within Low-Code applications
using approaches falling in the first category with the data we have been provided.

While the second category aligns with the data we have been provided through Mendix,
the first category contains an important body of research of which we provide a brief overview
in the next section. Afterwards, we will discuss the second category of methods in more de-
tail.

6.1 Category 1: Methods using Additional Artifacts

A significant body of research within the field of repository mining focuses on identifying
anti-patterns and code smells through the usage of additional artifacts alongside the code
changes in a commit.

One of the most common artifacts being used is the commit message provided by the
developer to describe the commit. One can use the commit message to identify commits that
are, for example, likely to include bug fixes or code smells [6, 33].

Other data types can also be considered, such as bug reports that are often linked to the
specific commit in which they were fixed [21]. Similarly, one could use system logs to search
for certain events, errors, and user interactions [46].

Some studies attempt to link edit patterns to specific developers or projects, enabling
personalized feedback or insights [30].

42

6.2. Category 2: Methods Solely Based on Change History

By combining these artifacts with source code analysis, researchers have developed tech-
niques to identify commits that introduced or resolved bugs, thereby uncovering patterns
associated with software defects.

Several of these advancements have resulted in practical tools, such as Dynamine, a tool
introduced by Livshits and Zimmerman, which uses dynamic analysis and bug reports to
detect recurring bug patterns [22]. Similarly, Yang et al. presented a method for mining fix
patterns from bug-fixing commits, aiming to automate the program repair process in their
work Mining Fix Patterns for Automated Program Repair [45].

Another significant development is the application of machine learning algorithms to
learn bug-fixing patterns by analyzing commit messages alongside the corresponding source
code changes [6]. For instance, Rolim et al. proposed a machine learning approach in Learn-
ing from Bug-Fixing Changes, which learns bug-fixing patterns from commit messages and
source code modifications [39].

While these approaches offer valuable insights into bug patterns, their reliance on ad-
ditional artifacts poses a challenge for analysing Low-Code applications. The limited data
available from Mendix, as discussed in Chapter 2.2, restricts the applicability of these tech-
niques in the context of this thesis.

6.2 Category 2: Methods Solely Based on Change History

Another group of papers focuses on extracting patterns without using any additional arti-
facts besides the difference between different revisions [11, 14, 18, 19, 29, 43, 30]. One paper
proposes locating a specific kind of bug by seeing if a returned variable is tested, e.g. verified
if the variable is null or some other check, before being used in some other. If it is not tested
initially, but such a check is introduced by a developer in a later revision of the code it is
assumed a bug was present that the developer attempted to fix [43]. While interesting this
approach requires upfront knowledge of the type of patterns we want to identify, and is thus
not useful to identify new ones. Often, other approaches suffer from similar problems in that
they are limited in terms of patterns that can be detected, only focus on a specific component,
or have a high false positive rate [43].

Negara et al. [29] implemented an approach focusing on mining sub-sequences from
chronologically ordered edits, using the time dimension to capture code semantics. In an
earlier study, Negara et al. [28] point out that version control systems (VCS) often provide
incomplete or imprecise data for effective pattern detection, so they collected edit data di-
rectly from an Integrated Development Environment (IDE), tracking every keystroke across
over 1,500 hours of development, yielding a precise edit dataset. However due to the dataset
required such an approach is not suitable for our problem, as we describe in Section .

When considering graph-based approaches, such as the one we propose, that rely on
converting the edited snippet to an AST or graph. Multiple existing approaches exist, all
these identify the differences between the AST or graph before and after revision, and cluster
based on those differences [30, 11, 14, 19, 18, 10]. However, none of these use a multi-layered
approach, and none are applied to Low-Code specifically.

Nguyen et al. propose a graph-based approach applied to a VCS’s commit data, which
they show outperforms the sub-sequence mining approach suggested by Negara et al. [30,
29]. In this approach, they generate edit graphs on which a frequent sub-graph mining algo-
rithm is applied. They specifically focus on individual projects, and thus edit patterns within
the context of a single project.

Other approaches try to find patterns that are to be considered general, or not project-
specific [19]. Due to the nature of our problem, our approach also falls into this category.

Another interesting paper proposes the tool FS3-Change, another graph-based approach,
as a method for change pattern mining, which focuses on being scale-able and can handle a

43

6. ReLatep Work

large number of data points, compared to existing graph-based approaches [18].

To conclude, while still a relatively recently developed approach, graph-based methods
like FS3-Change demonstrate the potential for handling large-scale datasets [18]. They have
the benefit of not requiring additional artifacts and can handle large edit transactions. Our
method extends these graph-based approaches by applying them to Low-Code and incor-
porating a multi-layered time component. This allows us to track the evolution of patterns
across multiple revisions, offering a more comprehensive view of development trends and
anti-patterns.

44

Chapter 7

Conclusion

This thesis set out to investigate the identification of anti-patterns in Low-Code, with a spe-
cific focus on the Mendix platform. Through the application of a multi-layered graph-based
pattern mining approach, we sought to address three core research questions concerning
Mendix’s existing guidelines, the nature of anti-patterns in Mendix applications, their preva-
lence, and their potential impact on application quality.

Regarding Research Question 1, we explored Mendix’s guidelines and observed that
while the platform offers foundational best practices, these guidelines remain focused on
usability and operational efficiency. Critically, they do not delve deeply into specific code
quality concerns. This leaves a considerable gap in available strategies for addressing code
quality issues unique to Low-Code platforms. This gap underscores the need for more tar-
geted and granular guidance for developers.

For Research Question 2, while our graph-based approach successfully highlighted re-
curring patterns, the limitations of the dataset and in particular the lack of detailed revision
histories—hindered our ability to discover more complex edit patterns. Which in turn made
the extraction of anti-patterns difficult. The frequent appearance of patterns that relate to
data retrieval and conditional flows in the results suggests that is an important focus point
of Microflows. Additionally, there is anecdotal evidence that developers often remake Mi-
croflows when they make non-trivial edits, rather than edit the existing ones. The fact that
we observe few edits to the average Microflow, combined with edit patterns mainly concern-
ing creations and deletions, seems to support this hypothesis. This raises questions about
the re-usability of Microflows.

Regarding Research Question 3, we established a baseline understanding of the preva-
lence of various patterns in Mendix applications. The findings reveal that most patterns ob-
served are simple structures, such as basic conditional flows and retrieval actions, and that
more complex patterns are rare. The frequent recreation of Microflows instead of modifica-
tion raises concerns about reusability and development practices within the Mendix ecosys-
tem.

In conclusion, this research highlights important aspects of anti-patterns in Low-Code
environments. Although our approach provided some initial insights into the existence
and prevalence of these patterns, the limitations of the available dataset call for more re-
fined datasets to support comprehensive anti-pattern detection. Further research, particu-
larly leveraging more granular data, is needed to deepen our understanding of how these
patterns affect application quality.

7.1 Future Work

In terms of future work, there remain numerous angles yet to be investigated regarding Low-
Code Development Platforms (LCDPs). If one considers patterns and anti-patterns specif-

46

7.1. Future Work

ically, the single largest leap that could be taken pertains to the quality and granularity of
the available data, which would allow for a much more refined analysis of a broader range
of applications. Unfortunately, the lack of an open-source Low-Code community hinders
progress in this area. However, despite these challenges, several research opportunities are
present that could be pursued to deepen the understanding of Low-Code environments.

In addition to the technical aspects of Low-Code platforms, there is a need to explore the
sociotechnical dimensions of these environments, particularly how different user groups, in-
cluding Citizen Developers and professional developers, interact with these platforms. Fu-
ture studies could focus on the strategies employed by these users while working with Low-
Code platforms, investigating how these processes differ between Citizen Developers and
traditional developers. Such studies could provide insights into the unique needs and chal-
lenges faced by each group, informing the design of more user-centric Low-Code platforms
that cater to a broader range of users.

Furthermore, given the increasing adoption of Low-Code platforms in various industries,
there is a pressing need to investigate the impact of Low-Code development on software
engineering practices and organizational processes. Studies could examine how Low-Code
development influences the roles and responsibilities of software engineers, the dynamics of
development teams, and the overall software development life cycle.

47

[12]

Bibliography

Mehenaz Afrin et al. “A Hybrid Approach to Investigate Anti-pattern from Source
Code”. In: 2022 25th International Conference on Computer and Information Technology
(ICCIT). IEEE. 2022, pp. 888-892.

Carolin Brandt and Andy Zaidman. “Developer-centric test amplification: The inter-
play between automatic generation human exploration”. In: Empirical Software Engi-
neering 27.4 (2022), p. 96.

William H Brown et al. AntiPatterns: refactoring software, architectures, and projects in
crisis. John Wiley & Sons, Inc., 1998.

Rina Diane Caballar. “Programming without code: The rise of no-code software de-
velopment”. In: IEEE Spectr. Tech Talks. 2020.

Jordi Cabot. “Positioning of the low-code movement within the field of model-driven
engineering”. In: Proceedings of the 23rd ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems: Companion Proceedings. 2020, pp. 1-3.

Eduardo C Campos and Marcelo de A Maia. “Discovering common bug-fix patterns:
A large-scale observational study”. In: Journal of Software: Evolution and Process 31.7
(2019), €2173.

Kamal A El-Dahshan, Eman K Elsayed, and Naglaa E Ghannam. “Comparative Study
for Detecting Mobile Application’s Anti-Patterns”. In: Proceedings of the 8th International
Conference on Software and Information Engineering. 2019, pp. 1-8.

Aurelien Delaitre et al. “Evaluating Bug Finders — Testand Measurement of Static Code
Analyzers”.In: 2015 IEEE /| ACM 1st International Workshop on Complex Faults and Failures
in Large Software Systems (COUFLESS). 2015, pp. 14-20. por: 16.1109/COUFLESS . 2015.
10.

Davide Di Ruscio et al. “Low-code development and model-driven engineering: Two
sides of the same coin?” In: Software and Systems Modeling 21.2 (2022), pp. 437-446.

Malinda Dilhara et al. “Discovering repetitive code changes in python ml systems”.
In: Proceedings of the 44th International Conference on Software Engineering. 2022, pp. 736—
748.

Sedick David Baker Effendi et al. “A language-agnostic framework for mining static
analysis rules from code changes”. In: 2023 IEEE /| ACM 45th International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE. 2023, pp. 327-
339.

Gartner. Magic Quadrant for Enterprise Low-Code Application Platforms. G0078582. 2023.

49

https://doi.org/10.1109/COUFLESS.2015.10
https://doi.org/10.1109/COUFLESS.2015.10

BiBLIOGRAPHY

[13]

[14]

[18]

[19]

50

Pedro M Gomes and Miguel A Brito. “Low-code development platforms: a descriptive
study”. In: 2022 17th Iberian Conference on Information Systems and Technologies (CISTI).
IEEE. 2022, pp. 1-4.

Yoshiki Higo, Junnosuke Matsumoto, and Shinji Kusumoto. “Tree-based mining of
fine-grained code changes to detect unknown change patterns”. In: 2021 28th Asia-
Pacific Software Engineering Conference (APSEC). IEEE. 2021, pp. 61-71.

Nirali Honest. “Role of testing in software development life cycle”. In: International
Journal of Computer Sciences and Engineering 7.5 (2019), pp. 886-889.

Arsene Indamutsa, Davide Di Ruscio, and Alfonso Pierantonio. “A low-code develop-
ment environment to orchestrate model management services”. In: IFIP International
Conference on Advances in Production Management Systems. Springer. 2021, pp. 342-350.

Alexandre Jacinto, Miguel Lourengo, and Carla Ferreira. “Test mocks for low-code ap-
plications built with OutSystems”. In: Proceedings of the 23rd ACM/IEEE international
conference on model driven engineering languages and systems: companion proceedings. 2020,

pp- 1-5.
Mario Janke and Patrick Médder. “FS 3 change: A Scalable Method for Change Pattern
Mining”. In: IEEE Transactions on Software Engineering (2023).

Mario Janke and Patrick Mader. “Graph based mining of code change patterns from
version control commits”. In: IEEE Transactions on Software Engineering 48.3 (2020),
pp- 848-863.

Faezeh Khorram, Jean-Marie Mottu, and Gerson Sunyé. “Challenges & opportunities
in low-code testing”. In: Proceedings of the 23rd ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems: Companion Proceedings. 2020, pp. 1-10.

Chen Liu et al. “R2Fix: Automatically generating bug fixes from bug reports”. In: 2013
IEEE Sixth international conference on software testing, verification and validation. IEEE.
2013, pp. 282-291.

Benjamin Livshits and Thomas Zimmermann. “Dynamine: finding common error pat-
terns by mining software revision histories”. In: ACM SIGSOFT Software Engineering
Notes 30.5 (2005), pp. 296-305.

Yajing Luo et al. “Characteristics and challenges of low-code development: the practi-
tioners’ perspective”. In: Proceedings of the 15th ACM/IEEE international symposium on
empirical software engineering and measurement (ESEM). 2021, pp. 1-11.

Mendix. https://www.mendix.com/company/. 2024. (Visited on 2024).
Mendix. Mendix Guidelines.
Mendix. Mendix. The State of Low-Code 2021: a Look Back, the Light Ahead. 201.

Judith Michael and Andreas Wortmann. “Towards development platforms for digital
twins: A model-driven low-code approach”. In: Advances in Production Management
Systems. Artificial Intelligence for Sustainable and Resilient Production Systems: IFIP WG
5.7 International Conference, APMS 2021, Nantes, France, September 5-9, 2021, Proceedings,
Part I. Springer. 2021, pp. 333-341.

Stas Negara et al. “Is it dangerous to use version control histories to study source code
evolution?” In: ECOOP 2012-Object-Oriented Programming: 26th European Conference,
Beijing, China, June 11-16, 2012. Proceedings 26. Springer. 2012, pp. 79-103.

Stas Negara et al. “Mining fine-grained code changes to detect unknown change pat-
terns”. In: Proceedings of the 36th International Conference on Software Engineering. 2014,
pp- 803-813.

https://www.mendix.com/company/

Bibliography

[43]

[44]

[45]

[46]

Hoan Anh Nguyen et al. “Graph-based mining of in-the-wild, fine-grained, semantic
code change patterns”. In: 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE. 2019, pp. 819-830.

Wessel Oosterbroek. Discovering Common Anti-patternsPresent in Low-Code usingMulti-
Layered Graph-Based PatternMining Dataset. 2024. por: 10.6084/m9 . figshare.27223998.
URL: https://dx.doi.org/10.6084/m9.figshare.27223998.

OutSystems. https: //www.outsystems.com/1/state-app-development-trends. 2019.
(Visited on 2019-2020).

Kai Pan, Sunghun Kim, and E James Whitehead. “Toward an understanding of bug fix
patterns”. In: Empirical Software Engineering 14 (2009), pp. 286-315.

Daniel Pinho, Ademar Aguiar, and Vasco Amaral. “What about the usability in low-
code platforms? A systematic literature review”. In: Journal of Computer Languages 74
(2023), p. 101185.

Niculin Prinz, Christopher Rentrop, and Melanie Huber. “Low-Code Development
Platforms-A Literature Review.” In: AMCIS. 2021.

Clay Richardson et al. “New development platforms emerge for customer-facing ap-
plications”. In: Forrester: Cambridge, MA, USA 15 (2014).

Arthur | Riel. Object-oriented design heuristics. Addison-Wesley Longman Publishing
Co., Inc., 1996.

Karlis Rokis and Marite Kirikova. “Challenges of low-code/no-code software develop-
ment: A literature review”. In: International Conference on Business Informatics Research.
Springer. 2022, pp. 3-17.

Reudismam Rolim et al. “Learning quick fixes from code repositories”. In: arXiv preprint
arXiv:1803.03806 (2018).

Raquel Sanchis et al. “Low-code as enabler of digital transformation in manufacturing
industry”. In: Applied Sciences 10.1 (2019), p. 12.

Zevin Shaul and Sheikh Naaz. cgSpan: Closed Graph-Based Substructure Pattern Mining.
2021. arXiv: 2112.09573 [cs.AI].

Massimo Tisi et al. “Lowcomote: Training the next generation of experts in scalable
low-code engineering platforms”. In: STAF 2019 Co-Located Events Joint Proceedings: 1st
Junior Researcher Community Event, 2nd International Workshop on Model-Driven Engineer-
ing for Design-Runtime Interaction in Complex Systems, and 1st Research Project Showcase
Workshop co-located with Software Technologies: Applications and Foundations (STAF 2019).
2019.

Chadd C Williams and Jeffrey K Hollingsworth. “Automatic mining of source code
repositories to improve bug finding techniques”. In: IEEE Transactions on Software En-
gineering 31.6 (2005), pp. 466—480.

Xifeng Yan and Jiawei Han. “gspan: Graph-based substructure pattern mining”. In:
2002 IEEE International Conference on Data Mining, 2002. Proceedings. IEEE. 2002, pp. 721~
724.

Yilin Yang et al. “Mining Python fix patterns via analyzing fine-grained source code
changes”. In: Empirical Software Engineering 27.2 (2022), p. 48.

Tianzhu Zhang et al. “System Log Parsing: A Survey”. In: IEEE Transactions on Knowl-
edge and Data Engineering 35.8 (2023), pp. 8596-8614. por: 16.1109/TKDE.2022.3222417.

51

https://doi.org/10.6084/m9.figshare.27223998
https://dx.doi.org/10.6084/m9.figshare.27223998
https://www.outsystems.com/1/state-app-development-trends
https://arxiv.org/abs/2112.09573
https://doi.org/10.1109/TKDE.2022.3222417

IDE Integrated Development Environment
LCDP Low-Code Development Platform
MDE Model-Driven Engineering

GUI Graphical User Interface

FSM Frequent Subgraph Mining

AST Abstract Syntax Tree

UI User Interface

VCS Version Control System

53

Acronyms

	Preface
	Contents
	List of Figures
	Introduction
	Background
	Mendix Background
	Data Overview

	 Approach
	Existing Approaches
	Graph Based Approach

	 Results
	Data Selection
	Edit Characteristics
	Analysis

	Discussion
	Edit Pattern Analysis
	Existing Guidelines
	Threats to Validity

	Related Work
	Category 1: Methods using Additional Artifacts
	Category 2: Methods Solely Based on Change History

	Conclusion
	Future Work

	Bibliography
	Acronyms

