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Abstract
Maintaining the maximum stiffness of components with as little material as possible is an overarching objective in compu-
tational design and engineering. It is well-established that in stiffness-optimal designs, material is aligned with orthogonal
principal stress directions. In the limit of material volume, this alignment forms micro-structures resembling quads or hexahe-
dra. Achieving a globally consistent layout of such orthogonal micro-structures presents a significant challenge, particularly in
three-dimensional settings. In this paper, we propose a novel geometric algorithm for compiling stress-aligned hexahedral lattice
structures. Our method involves deforming an input mesh under load to align the resulting stress field along an orthogonal basis.
The deformed object is filled with a hexahedral grid, and the deformation is reverted to recover the original shape. The resulting
stress-aligned mesh is used as basis for a final hollowing procedure, generating a volume-reduced stiff infill composed of hexa-
hedral micro-structures. We perform quantitative comparisons with structural optimization and hexahedral meshing approaches
and demonstrate the superior mechanical performance of our designs with finite element simulation experiments.

Keywords: modelling, mesh generation, computational geometry, geometric modelling

CCS Concepts: • Computing methodologies→ Shape analysis; Volumetric models; Mesh geometry models

1. Introduction

Lightweight design plays a key role in a sustainable future and is a
critical task in a variety of industries, including aerospace, automo-
tive and architecture. Lightweight designs, which also maximize
mechanical performance, are often approached with topology opti-
mization. Topology optimization is an established structural design
method for optimizing the distribution of a given material budget
within a specified domain under a given set of mechanical boundary
conditions. It discretizes the design domain with a voxel grid and
iteratively performs gradient-based material deposition to optimize
for the stiffest layout. Especially in 2D scenarios, this process has
been extensively studied [BS13]. The iterative optimization process
involves intensive computation, especially for 3D structures as
shown in Figure 2(a), thus demanding for dedicated GPU solvers
[WDW16] or high-performance computing clusters [AAL15].

Lattice infills, also referred to as multi-scale approaches
[WSG21], have shown a computationally less expensive alternative
for creating high-resolution designs in 3D. It is well-established
that in stiffness-optimal designs, material is aligned with orthog-
onal principal stress directions [Ped89]. In the limit of material

volume, this alignment forms micro-structures resembling quads
or hexahedra.

Furthermore, as shown in recent work [SOG*22, JOB*24]
and confirmed by our experiments (Table 1), wall-structures can
significantly enhance the mechanical performance of 3D micro-
structure designs. Achieving such wall-structures with a geometric
approach necessitates a mesh comprising finite cells with regular
vertices, making a pure hexahedral mesh a practical choice. While
alternatives like tetrahedral or prismatic elements could be consid-
ered, the orthogonal nature of the principal stress directions in 3D
favours the use of hexahedra, which also have orthogonal edges.
This structure allows for easier alignment with the stress field and
simplifies the embedding of subdivision micro-structures in each
cell. Additionally, using non-hexahedral cells would complicate
the subdivision process, as micro-structure geometries must be
defined for each cell type, where general polyhedra introduce
challenges due to irregular vertex valences. Although relaxing
the constraint on pure hexahedral meshes is possible, it would
increase the complexity of the overall procedure without offering
clear benefits.
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Figure 1: Stages of our pipeline: The input tetrahedral mesh (a) and applied loading conditions yield the stress tensor field (b). Our defor-
mation aligns the tensor field to an orthogonal basis (c) on which the hexahedral lattice (d) is constructed. With the inverse deformation, we
extract a stress aligned hexahedral mesh (e). This hexahedral lattice is materialized with beam (f) and wall (g) micro-structures, reducing the
overall amount of material consumed by the object while maintaining an optimized mechanical performance under load.

Figure 2: A topology optimization result (a) compared to geometric
structural optimization methods, guided by the induced stress field.
All designs use only a fraction of the fully solid object’s volume.

For given boundary shape and conditions, the challenge is to com-
pile a globally consistent hex-lattice that follows the spatially vary-
ing stress directions. This is difficult due to the existence of degen-
erate points at which principal stress directions exchange their type
and stress trajectories of the same type can cross. The stress field can
be smoothed to filter out such regions [AJL*19], producing struc-
tures with a high degree of regularity yet significantly lower me-
chanical performance than topology optimization (see Figure 2b).
Frame-aligned hex-dominant meshing [GPW*17] with the princi-
pal stress directions as guiding frame [WWG21] faces the same
challenge. It cannot produce meaningful structures without signif-
icant distortions of the stress field (see Figure 2c) and, in general,
the resulting structures are graphs which do not obey the compo-
sition rules of meshes. While in 2D, the trajectory-based approach
[WWW22, WWW23] naturally forms a quad-dominant lattice, this
does not translate to 3D such that intersecting stress trajectories
would form a hex-lattice. In 3D space, there is no guarantee that
such a stress line intersects even one other trajectory while tran-
scending the object.

Therefore, we propose a technique that generates a 3D stress
field-guided hex-lattice. As quads are the preferred 2D element
shape for single load conditions (meaning multiple loads but act-
ing at the same time), our structural design analogously com-
prises solely hexahedral elements with mutually orthogonal edges
and faces that aim to align with the 3D stress tensor field
(Figures 1f and 1g).

Our method builds upon the core concept of transforming an in-
put tetrahedral mesh such that its inherent stress field aligns with
an orthogonal basis. Therefore, we borrow concepts from cubifica-
tion and object stylization methods [LJ19, LJ21, LZS*21, ZGL*23].
Our approach extends the deformation concept from triangulated
manifold surfaces to tetrahedral meshes, aligning orthogonal stress
tensors instead of surface normals. In the deformed state the result-
ing shape is discretized with a regular hexahedral grid. The inverse
transformation retrieves a stress-aligned hexahedral mesh such that
at each vertex, its edges are aligned with the orthogonal stress field.
Eventually, hollow micro-structures replace the hexahedral cells, re-
ducing the overall amount of material consumed by the object, while
maintaining as much stiffness as possible. We evaluate our results by
quantitative comparisons with related works, and can demonstrate
superior mechanical performance of our designs with finite element
simulation experiments.

2. Related Work

Despite some concepts in hexahedral meshing being related to ours,
the primary goals we pursue are significantly different. Our focus
on optimizing structural stiffness may sometimes compromise ele-
ment quality and input fidelity in favour of achieving optimal stress
field alignment within the object’s interior. Consequently, our re-
lated work section does not aim to recapitulate the already thor-
oughly explored field of hexahedral meshing [PCS*22]. Instead, in
the following, we collect and summarize work that has inspired or
is closely related to our pursued goals.

© 2024 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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Field alignment. A core principle in our approach is aligning the
hexahedral mesh to a frame field. This is a complex and challeng-
ing problem because some field singularities cannot be resolved us-
ing hexahedra. In the concept proposed by Nieser et al. [NRP11], a
coarse meta mesh is manually constructed, with singularities placed
at favourable positions to ensure that the extracted field is suitable
for generating a pure hexahedral mesh. However, the authors ac-
knowledge that poorly placed singularities can lead to drastic de-
formations of the mesh. Since minimizing deformation is crucial
for maintaining accurate stress field alignment in our approach, we
opted for a method approaching singularities with implicit smooth-
ing in the field deformation step. Similarly, the approach of Gao
et al. [GJTP17] heavily smooths the generated frame field, resulting
in a hex-dominant mesh that may include arbitrarily large polyhe-
dra. At-most-hexa meshes [BTL22] also align to a frame field based
on the input hull but by default may include elements topologically
smaller than hexahedra, such as prisms or tetrahedra. Our proposed
method constructs a pure hexahedral mesh aligned with a stress ten-
sor field. Singularities in this stress field are not based on the object’s
shape but arise from the forces acting within the preceded simula-
tion. Instead of smoothing, the deformation optimizes for the best
compromises between extensive alignment of the hex-lattice to the
stress field and accuracy in low-rank singularities.

Cubicmaps. Constructing constrained shape deformations in form
of PolyCube mappings [THCM04] is a core concept used in many
hexahedral meshing frameworks. However, pre-computing Poly-
Cube topology continues to pose a notable challenge. Progress in
this area has been driven by advancements in labelling methods
[GSZ11], exemplified by the utilization of graph cut segmentation
techniques [LVS*13] and their advancements [DPM*22].

Recent trends in the field also adopt a similar cubical deforma-
tion and its inversion, as used in our work. Nevertheless, the intri-
cate aspect of the PolyCube decomposition typically entails man-
ual intervention, involving numerous smoothing steps and user-
driven refinements [LZS*21] to reconstruct certain details. More-
over, this process lacks orientation invariance and results depend
on the object’s initial orientation. Similarly, approaches such as
HexBox [ZGL*23] rely on surface projection techniques applied
to a cubified representation of the mesh, also necessitating manual
construction of the HexBox through user input.

In this context, the principle of cubification holds significant im-
portance and is often tweaked and tailored for specific application
requirements. In our approach, we utilize the cubic stylization prin-
ciple [LJ19, LJ21], employing an as-rigid-as-possible (ARAP) de-
formation [IMH05, FSA23] with specific extensions to the initial
core structure. Notably, we utilize only spokes within the rims-and-
spokes configuration, as recently discussed in revised ARAP ap-
proaches [FSA23] and extend the alignment to full orthogonal ma-
trices rather than only surface normals.

Multi-scale structures. Basic topology optimization approaches
tend to produce strong single-truss-based structures carrying the
majority of the load with thinner structures supporting the hull.
However, compared to that, the micro-structure approach or porous
materials have the advantage to be much more resilient to sin-
gle defects [WAWS18]. Therefore, many recent approaches focus

on lattice infill, i.e. multi-scale, structures as the prevalent tech-
nique for converting the optimized density field into a binary ma-
terial layout [WSG21]. There are also concepts that contrast the
classical goal of improving stiffness, by utilizing micro-structured
meta materials designed to enhance flexibility [SBR*15] and de-
formation [TTZ*20] in manufactured parts. The approach by Wang
et al. [WWW22] for 2D designs proposes porous layouts based on
mesh-like structures. However, in 3D domains, these structures do
not necessarily conform to conventional meshes. Instead, they form
graphs with irregular topology [WWG21], yet suitable to be pro-
duced with contemporary manufacturing technologies. Theoretical
findings, on the other hand, advocate for the incorporation of wall-
like structures in 3D designs in addition to solidified beams. To
achieve such structures, a conforming hexahedral mesh is required.

3. Background

Compliance, i.e. the reciprocal of stiffness, is a well-established
measure in structural design to express how much a structure de-
forms under a given load. Thus, minimizing compliance results in a
structure with increased stiffness. Compliance is expressed as

c = 1

2
UTKU (1)

where K is the structural stiffness matrix. The external loads are
expressed in the force vector F , and the displacement vector U is
determined by solving the equilibrium

KU = F. (2)

In classical topology optimization, the compliance is minimized un-
der a constraint on the amount of consumed material (volume). As
compliance is not scale-invariant, the performance of the optimized
design is always expressed as c

c0
in relation to the compliance c0

of the fully solid object. Furthermore, the volume of the optimized
structure aims to be a fraction of the initial object and is thus given
as α = v

v0
, where v0 is the volume of the solid object.

3.1. Stress field

We assume a given tetrahedral mesh (with vertices V and tetrahe-
dra T ) and specify loading conditions as sets of vertices that re-
main fixed in certain regions and others where forces are applied.
In this work, we assume a single-load scenario, which may feature
multiple forces but acting at the same time. Standard finite element
methods yield deformation vectors at each vertex, which are interpo-
lated across elements to compute theCauchy stress tensors [GM20].
These stress tensors are then projected back to each vertex vi ∈ V .
Orthogonal principal stress tensors �i follow as their eigenbases,
respectively. The eigenvalues of the Cauchy stress tensors further
yield information on the magnitude of stress in certain regions of
the object and serve as basis to derive the scalar von Mises stress
norm σv. Our use of the von Mises stress is two-fold: We use it as an
indicator of the edge thickness of the hexahedral design (Figure 8),
and to prioritize the alignment of the design in regions with impor-
tant mechanical properties (λi in Equation 4).

Aligned structures. The theoretical concept introduced by
Michell in 1904 [Mic04], commonly summarized as Michell

© 2024 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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Truss, serves as a cornerstone for designing stiffness-optimized
lightweight structures. Michell demonstrated that an optimally
stiff design under load experiences no shearing stress, leaving
only tension and compression stresses. This motivates the widely
established concept of micro-structures aligning with the principal
stress directions, where shear stress is zero. The rationale behind
this is that most materials perform significantly better under tensile
and compressive stresses than under shear stresses.

4. Method

The core concept underlying many hexahedral meshing procedures
is the computation of a robust mapping between a given frame field
and a hexahedral domain subdivision. In classical hexahedral mesh-
ing, the goal is to achieve a final hexahedral layout which aligns with
the domain boundaries and comprises elements satisfying shape and
size constraints. The frame field needs to be selected with care, since
it may contain local constellations which simply cannot be resolved
with hexahedra. Our approach deviates from classical hexahedral
meshing and strives for the best mapping under a global alignment
objective, with the frame field being the principal stress directions in
a 3D tensor field. Our proposed solution to achieve such a mapping
covers the following principle steps:

• Firstly, a deformation aligns the stress field to an orthogonal basis
by transforming an input tetrahedral mesh (Section 4.1).

• In the deformed state, hex-lattice structures are introduced and
deformed back, using the inverse transformation (Section 4.2).

• Finally, elements in the stress-aligned hexahedral mesh are re-
placed by hollow micro-structures with adjustable fill rate to
achieve a selected volume budget (Section 4.3).

4.1. Constrained field deformation

We introduce an optimization approach that computes a deforma-
tion of a tetrahedral mesh, such that the individual per vertex stress
tensors �i align to a common orthogonal basis. We consider the
set V of all vertices vi of the input mesh (̃vi ∈ Ṽ in the deformed
state, respectively) and N (i) are sets of locally adjacent neighbours.
Notably, in these local neighbourhoods, we actually only consider
directions to direct neighbours of vertex vi (spokes only instead of
the full spokes-and-rims structure), providing a more flexible ba-
sis for the deformation optimization. The system stiffness matrix
W ∈ R

|V |×|V | comprises standard 3D-cotan weights wi j [Cra19], en-
coding the relation of vertices i and j connected with edge ei j, de-
rived from the tetrahedral mesh. Further denote Ri ∈ R

3×3 individ-
ual rotation matrices per vertex. Local neighbourhood geometry is
denoted with di j = v j − vi at rest and d̃i j = ṽ j − ṽi in the deformed
state, respectively. υi encodes the Voronoi cell volume of vertex vi,
and λi allows to weight the importance of individual vertices. The
energy to be minimized is then expressed as

minimize
Ṽ , {Ri}

∑
vi∈V

∑
v j∈N (i)

wi j

2

∥∥Ridi j − d̃i j
∥∥2

F
+ λiυi|||Ri�i|||1. (3)

Similar to the Cubic Stylization approach by Liu et al. [LJ19], the
first part of the objective function acts as an ARAP constraint. The
use of the L1 norm (with |||X|||1 =

∑∥∥xi∥∥1
) in the second term en-

courages axis alignment because the L1 norm sums the absolute val-

Figure 3: The stress field (+) on the left is formed for the given
loading conditions (| ←). In the centre, the object is deformed,
aligning the stress field to an orthogonal basis. In this state, the
hex-lattice (�) is inserted and transformed back (right).

ues of the components of a vector across all dimensions. Minimizing
this sum pushes the vector to align with one of the basis axes. For
a unit vector, the L1 norm reaches its minimum value of 1 when the
vector is aligned with one of these axes, since only one component
will be non-zero in this case.

Thus, the per-vertex optimization step can be formally
expressed as

R′i = arg min
Ri∈R3×3

1

2

∥∥RiDi − D̃i

∥∥2

Wi
+ λiυi|||Ri�i|||1 (4)

where Di and D̃i (∈ R
|N (i)|×3) stack all local spokes-edge vectors

(not normalized) row-wise at rest and deformed state, respectively.
The |N (i)| × |N (i)| sized matrix Wi with 3D cotan-weights is em-
ployed in Equation (4) with ||X||2Y = Tr(XYXT ).

Optimization is performed with theAlternating DirectionMethod
of Multipliers (ADMM) [BPC*11], where we use the common ini-
tialization parameters [LJ19]. A decisive difference in our applica-
tion lies in the orthogonal Procrustes [GD04] formulation: Instead
of considering only the normals of surface vertices, we expand the
formulation with the principal stress tensors �i of the tetrahedral
mesh vertices as formulated in Equation (5).

Rk+1
i = arg max

Ri∈R3×3
Tr(RiMi), with

Mi =
[
DT
i �T

i

] [Wi

Pk

] [
D̃i

Rk
i�i − Uk

i

] (5)

Further, we have Pi,Ui ∈ R
3×3, where Pi is a diagonal matrix

comprising three penalty values ρk
x , ρ

k
y , ρ

k
z andUk

i stacks scaled dual
vectors to the aligned stress tensor. In each ADMM iteration, the op-
timal local rotation matrices are iteratively updated from the singu-
lar value decomposition Mi = Ui�iVT

i as Rk+1
i = ViUT

i (with signs
flipped such that det(Rk+1

i ) > 0). This local iteration determines the
best alignment for each stress tensor �i independently, thus facili-
tating parallelized execution. A reduction to two dimensions, as ex-
emplified in Figure 3, follows analogously.

In the global step, a single linear system is solved [SA07] for
the deformation with the best local alignments. Unless explicitly
specified, the vertices are not bound to any constraints beyond the
neighbourhood geometry encoded in the global cotan-matrix W.

© 2024 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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Figure 4: 2D example of Equation (6) with the mapping of ũi, en-
closed in the deformed element with vertices ṽ0, ṽ1, ṽ2 ∈ Ṽt , back to
the original shape with vertices v0, v1, v2 ∈ Vt resulting in ui.

4.2. Introducing hexahedral structures

Within the deformed structure, we generate a hex-lattice that is ori-
ented on the same basis as the aligned stress tensors. The hex-lattice
with vertices ũi is constructed within the deformed shape of the
tetrahedral mesh. A hexahedral cell is included, only if all of its eight
vertices lie within a tetrahedron t ∈ T of the input mesh (however,
not necessarily all in the same tetrahedron). This guarantees that all
hexahedra are entirely included in the inputs outer hull. Transform-
ing this hex-lattice back to the undeformed object’s pose is realized
by applying the mapping

ui = bt (ũi)
[
Vt − Ṽt

]
. (6)

Vt and Ṽt ∈ R
4×3 denote the four vertices at rest and deformed

state of the tetrahedron t, which includes the created vertex ũi of
the hexahedral mesh. The corresponding barycentric coordinates of
ũi in t are denoted by bt (ũi). These are analogously used to inter-
polate other field related quantities at the hexahedral vertices, such
as the stress tensors σi from the tetrahedral vertices. Insertion of
the hex-lattice and its back-deformation are included on the right in
Figure 3 and shown in detail in Figure 4.

Hull layer strategy. The grid structure employed within the de-
formed object does not yet yield a conforming mapping to the ob-
ject’s outer faces. By design, the grid does align with object bound-
ary features per default but only follows the induced stress field.
Nevertheless, improved input fidelity can be approached with the
two strategies presented in Figure 5. The progressive grid approach
also features elements partly inside the input object, thus overlap-
ping the boundary. A simple normal-projection of the grid hull does

not introduce new elements and preserves alignment well. However,
as pointed out in Figure 5 (circled), this may cause inverted elements
when vertices are projected into a concavity. Our conservative grid
strategy incorporates only elements fully enclosed in the input hull.
The resulting gap between the introduced structure and the object
hull is filled with a padding layer (Figures 6c and 6d). Outer open
quads of the hexahedral structure are projected along their normal
directions onto the tetrahedral mesh’s triangular hull. This spans up
a padding layer between the inner hex-structure and the projected
quads, again consisting solely of hex elements. When vertices of the
aligned grid are projected onto the hull, the distance they travel is
smaller than the spacing in the grid itself. Because the field is consid-
ered smooth and does not change significantly over such small prox-
imities, in general, the resulting structures on the hull are also well
aligned to the field. However, this excludes edges directly connect-
ing the projected hull with the inner structure as these edges align
with the projection directions, i.e. the normal directions. Further, in
certain constellations, the projection may lead to self-intersecting
projected quads. Thus, we employ a smoothing step on the new layer
of hexahedra (Figures 6d and 6e), untangling degenerate hull-quads.
Whereas feature alignment and accurate hull approximation are cru-
cial for classic hexahedral meshing approaches, this step is more of
a cosmetic feature for our approach where the internal field align-
ment matters most. Therefore, the padding could either be omitted
or replaced by a more advanced solution as the scaffolding and de-
formation technique by Gao et al. [GSP19] or post-processed with
dedicated hex-optimization techniques [LSVT15].

If the chosen resolution of the hex-lattice discretization is insuf-
ficient to capture certain details of the input geometry, two kinds
of artifacts may arise: Fine details, thinner than a hexahedron, can-
not be reconstructed and result in missing geometry. In other rare
cases, the padding layer spanned up by the projection yields a non-
untangleable mesh. This occurs if the quads of the open hull do not
form a manifold mesh. This can be prevented by either increasing
the resolution or performing a smoothing operation on an interme-
diate voxel representation. As shown in Figure 6(c), a structure is
represented with a 3D voxel mask, indicating if a hex-cell is used or
not. The mask is filtered using 3× 3× 3 sized binary kernels, such
that only cell configurations remain where adjacent hex-cells have
to share a quad-face. In a configuration where cells only share an
edge or single vertex, the hex-cell with the least number of direct
neighbouring cells is removed. This usually affects no more than
0.1% of hex-cells from the most outer layer.

Figure 5: Progressive grids and their projection better preserve individual element alignments in the hull layer but can cause inverted vertices
if projected into a concavity (circled). Affected elements cannot be untangled by smoothing. Our conservative strategy with padding offers
better results by default as only a single edge (2D) or a quad (3D) per element is projected and can be further improved by smoothing.

© 2024 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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6 of 15 D. R. Bukenberger et al. / Stress-Aligned Hexahedral Lattice Structures

Figure 6: The stress field in (a) emerges from loading conditions keeping the left face of the cube fixed and applying a tangential downwards
force on the right. In (b), the tetrahedral mesh is deformed and aligns the stress field to the common basis, visualized by the inserted cubical
frame. Further, the hex-lattice is inserted (c), the hull padded (d), smoothed (e) and transformed back to the original shape (f).

Figure 7: To reduce volume, hexahedra (left) are replaced by hol-
lowed edge-inward-extruded micro-structures (centre, right). A vol-
ume fraction α is met by adjusting the extrusion parameter τ .

4.3. Micro-structures

To reduce the volume of a structure, i.e. the weight of a computed
layout, the individual mesh cells are replaced by hollowed micro-
structures. Therefore, as illustrated in Figure 7, the edges of each
cell are extruded inwards. The micro-hexahedra spanned by the ex-
trusion consume only a fraction of the volume of the original ele-
ments. The exact fraction is controlled via the parameter τ . Since
all newly created vertices of a micro-structure are interpolations of
their original edge, face or cell vertices, a conforming structure can
be generated, e.g. two adjacent micro-structures share the same four
interpolated vertices from the quad that separated their original hex-
cells. For detailed interpolation matrices, see Appendix A. The re-
duction in volume is relative to each cell, with a global parameter τ

analogously translating to the volume of the full structure.

The analogue to the common de-homogenization in 2D is to ex-
trude only the edges of each element, forming solid beams as vi-
sualized in the centre of Figure 7. With 3D objects, however, the
design is not limited to beams alone but may also feature wall-like
structures by extruding the faces of each cell as well. Therefore,
the beam-structure is simply augmented with six more hexahedra
as shown on the right of Figure 7, creating a hollow cube.

Equation (7) defines the extrusion parameter τ as a function of
the desired volume fraction α = v

v0
, where v is the volume of the

micro-structures, and v0 is the volume of the solid object. We pro-
vide separate equations for beam-only (b) and walled (w) micro-
structures, denoted by the respective subscripts. While parameter
τ directly controls the thickness of beams and walls in the micro-
structures, the volume fraction α is the more intuitive design pa-
rameter. Converting from τ to α is straightforward, as detailed in

Appendix B, but going the other way (expressing τ in terms of
a given α) is more challenging. Specifically, for the beam micro-
structure, the relationship between τb and α results in a casus irre-
ducibilis, meaning there is no real-valued inverse function for ar-
bitrary α. As a result, the expression for τb is an approximation,
though it is exact when α = 1

2 . More details on this can be found in
Appendix B.

τb(α) = cos−1(1− 2α)

2π
τw (α) = 1− 3

√
1− α

2
(7)

The insertion of micro-structures requires a conforming mesh with
finite cells and, in particular, vertices with an in-cell valence of
3, e.g. hexahedra, triangular prisms and tetrahedra. General hex-
dominant meshes, e.g. by Gao et al. [GJTP17], may feature arbitrary
polyhedra with vertices of higher valence, thus are not suitable in
general. At-most-hexa meshes [BTL22] solely consist of elements
which are topologically smaller than hexahedra but are also encoded
as such. Therefore, we can generate micro-structures for at-most-
hexa meshes, but the featured collapsed edges cause the system ma-
trix to become impractical for simulation. In general, however, any
pure tetrahedral or hexahedral structure, featuring edges of predom-
inantly similar lengths, is suitable for this micro-structure concept.

Targeted thickness. To approach bone-like porous structures
[WAWS18], the global volume constraint is replaced by a local
volume constraint to avoid accumulation of material. In topology
optimization, this enforces that material is first distributed along
the mechanically relevant stress directions, resulting in beam- and
wall-like structures in 2D and 3D, respectively. In our context,
we propose τ � as extrusion parameter, determined individually
for each vertex of the aligned hex-lattice structure. As link to
the global stress field, we found the scalar von Mises stress σv a
suitable heuristic. The stress tensors at the hexahedral vertices are
interpolated according to Equation (6). Thus, a recomputation of
the stress simulation on the new structure is not required. Further is
the von Mises stress normalized by the global maximum value σ̂v

and squared to emphasize high-stress regions. However, individual
extrusion parameters at each vertex yield non-uniform cell volume
fractions, thus a global volume fraction α is no longer given.

τ � =
((

σv

σ̂v

)2

· (1− |p|)+max(p, 0)

)
· (τ� − τ⊥)+ τ⊥ (8)

As a countermeasure, Equation (8) formulates vertex-individual
parameters τ � based on a global parameter p ∈ [−1, 1]. To meet
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D. R. Bukenberger et al. / Stress-Aligned Hexahedral Lattice Structures 7 of 15

Figure 8: 2D micro-structures with uniform τ on the left, τ � on
the right and α = 1

2 for both. The σv stress field (middle, scaled for
visualization) results from the same forces as shown in Figure 3.

a specified global α, all τ � are p-tuned using standard numerical
optimization. Further is τ � limited by the natural maximum τ� = 1

2
for a fully solid cell. Our chosen non-zero lower boundary τ⊥ corre-
sponds to a minimum of α = 5% for an individual cell [WWW23].
Figure 8 illustrates a 2D example of the quad-mesh, extracted in
Figure 3, with uniform τb cells on the left and individually extruded
τ �
b cells on the right. The effect of targeted thickness results in

improved mechanical performance, expressed as the relative com-
pliance c

c0
, which further decreases with τ �. For reference, the same

evaluation on the initial unoptimized triangle mesh input gives
c
c0
= 3.316 for τb and c

c0
= 1.646 for τ �

b , respectively. Equation (8)
also offers a degree of freedom for using σv: In this example, the
normalization was replaced by an inverse cumulative distribution
function, yielding an equalized thickness distribution.

4.4. Extensions

In the following, we discuss modifications of the proposed method
that allow for improving and fine-tuning the results.

Optimal alignment. Many hexahedral meshing approaches that
rely on a polycube decomposition assume a suitable orientation of
the input [LZS*21, ZGL*23]. With our method, the primary ob-
jective is the alignment of the hex-lattice to the stress field in the
object’s interior rather than surface features. Therefore, we can de-
termine an optimal orientation automatically as the eigenbasis of a
weighted average of all stress tensors σi. This option was used by de-
fault in all included results. Optionally, a specific orientation could
be defined manually. Notably, if the optimal orientation is not given
or automatically determined, the first few global optimization steps
rotate the object to align with a suitable orientation.

Considering surface normals. Especially in regions of contact,
i.e. input mesh vertices where the simulated forces are applied or
which are kept fix, results can be improved if the hex-lattice also
aligns to the outer hull. Let vertices v j ∈ V	 be the set of fixed or
moved vertices. Then, the stress tensor � j is rotated (by minimal
Euler rotation) such that its most normal-aligned axis actually be-
comes parallel to the surface normal nj. Further, we can enforce
stronger alignment in these points by selectively increasing the λ j.
This has a similar effect as cubification, i.e. regions of contact are
flattened uniformly and become orthogonal to one of the coordinate
axes. Thus, when introducing the hex-lattice (Section 4.2), the hexa-
hedra closest to the hull tend to form a single-level layer rather than

staircases approximating a rounded hull surface. However, this ad-
ditional alignment only makes sense if the forces act orthogonally
on the surface, but not in a tangential configuration, e.g. as on the
cube example in Figure 6.

Adjusting axis alignment. The λi parameter in the energy min-
imization Equation (3) allows one to weight the local alignment
against the global ARAP-deformation, where higher values enforce
stronger alignment. We have experimented with individual weights
per vertex, i.e. scaled by the largest eigenvector from the local stress
tensor computation. This allows for prioritizing regions with higher
stress to have better alignment on the cost of regions with less stress,
i.e. where sub-optimal alignment is less crucial. Furthermore, we
have made a similar observations as Li et al. [LZS*21], which is
that ramping up the cubeness over multiple iterations leads to over-
all better results.

5. Discussion and Evaluation

We evaluate the mechanical performance and stress-alignment of
the structures generated with our approach in comparison to sim-
ilar results of structural design and comparable hexahedral mesh-
ing methods. Shown comparisons are based on results available on
HexaLab [BTP*19] and were selected as representative subsets of
objects generated with alternative methods. The included numbers
and plots are the results of FEM simulations using standard param-
eters (Young’s modulus of 1000 and Poisson ratio of 0.3). Since
the inputs are tetrahedral meshes and both our hex-lattice and the
micro-structure results are pure hexahedral meshes, any common
FEM library can be utilized for numerical stress simulation. The
same forces are applied to the fully solid object and the different op-
timized lattice designs using micro-structures, to measure and com-
pare the mechanical performance under load but with significantly
reduced amounts of material.

5.1. Mechanical performance

Table 1 presents an evaluation of the compliance computed for dif-
ferent objects and hexahedral structures generated with different
methods. This allows for comparing the performance of beam- and
wall-structures introduced in Section 4.3, both with volume frac-
tions of α = 1

2 . All listed numbers are given as c
c0

, where c0 is the
compliance of the fully solid object, i.e. the lower the better. We
tried to level the resolution of the compared structures as good as
possible. An example is illustrated in Figure 9.

For each object in Table 1, the first row includes the TetWild
[HSW*20] mesh that served as basis for our approach and also
acts as a baseline in this comparison. Unsurprisingly the tetrahedral
mesh performance is usually the weakest, as its internal structure
is quite disturbed and not aligned to any meaningful direction. To
highlight the effectiveness of wall micro-structures, the compari-
son also features other pure hexahedral meshes generated with an
automatic block decomposition algorithm [LPP*20], state-of-the-
art polycube mappings [DPM*22] and semi-manual approaches re-
quiring user-designed volumetric functions [GMD*15], skeletons
for tubular shapes [LAPS17] or specified blocks [ZGL*23] to guide

© 2024 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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8 of 15 D. R. Bukenberger et al. / Stress-Aligned Hexahedral Lattice Structures

Figure 9: Results correspond to the numbers listed in Table 1 of the femur and meshes created by different methods. Each version is shown
with beam (left) and wall (right) micro-structures in a cut-open view. Colouring visualizes the induced deformation under the given loading
condition. The femur is fixed at the bottom and a force vector is applied at the top. Our results marked with a � employ the non-uniform τ �

extrusion to generate individually scaled micro-structures per cell. The locally varying thickness of extruded beams andwalls in the τ � version
is noticeable in the lower parts of the femur.

the decomposition. These methods produce feature aligned meshes
with high input fidelity and hexahedra of objectively high quality.
We apply our micro-structure concept on these hexahedral meshes
and directly use the results (also hexahedra) in the simulation. As
our mesh is tailored to a specific loading scenario, for a reasonable
comparison, we choose applied forces to be at least in favour of the
competing structures or generate them using identical frame fields.
As the results demonstrate, in all scenarios, our approach generates
meshes that surpass the meshes generated with alternative meth-
ods in terms of mechanical performance. The observation that bet-
ter alignment leads to stiffer structures is consistent with findings
from classical topology optimization. Further, the measured num-
bers confirm that wall-like structures generally outperform beam-
only structures, while consuming the same volume fraction. Table 1
also features our results with non-uniform extrusion rates τ �, in-
dicated with a �. This reduces the resulting compliance factor sig-
nificantly, often by a factor of around two, and in some cases even
lower. As shown in Figure 10 with the fertility and kittenmodel, also
complex object topology is no limitation with our method. The only
requirement for achieving a complete structural design that repro-
duces thin features is a sufficiently high resolution of the hex-lattice.
Lower resolutions may result in defects, such as missing geome-
try. This issue can be partially mitigated by using the progressive
grid method, as shown in Figure 5, with an additional padding layer.

However, this approach may generate some inverted elements due
to the projection, necessitating more untangling operations. The kit-
ten object is an example where this technique was used to include
the tail despite the coarse resolution.

In Table 2, we compare the mechanical performance of infill
structures generated with the structural optimization methods by
Arora et al. [AJL*19] and Wu et al. [WWG21]. Notably both gen-
erate field-aligned edge-only designs, not supporting our micro-
structure concept. To enable a fair comparison, we apply Arora
et al.’s technique, solidifying the edge-graphs by extruding cylin-
ders along the edges and computing a robust Boolean manifold sur-
face for the extraction of a tetrahedral mesh (see Figure 2). The ra-
dius of the cylinders is chosen to meet the desired volume fraction
α = 1

2 . We apply the same technique to solidify our lattice struc-
tures for comparison in Table 2. This approach mitigates the bias in-
troduced by using differently tessellated FEM structures [BPM*95,
SHD*18, SHG*22], i.e. tetrahedralized trusses versus our hexahe-
dral micro-structure beams. The compliance values also correlate
with the observations in Figure 11, showing that Wu et al.’s lattices
are generally well-aligned but feature arbitrary interconnecting di-
agonal edges. These consume material from the limited global bud-
get, but do not significantly contribute to the overall stiffness and
weaken the more structurally relevant edges.
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D. R. Bukenberger et al. / Stress-Aligned Hexahedral Lattice Structures 9 of 15

Table 1: We evaluate the mechanical performance of different hexahedral
meshes under identical loading conditions with a volume fraction of α = 1

2
using beam and wall micro-structures. Numbers on the right give the com-
pliance increase c

c0
with reduced volume compared to the fully solid object,

i.e. the lower the better.

Method beam wall

Cube Hu et al. [HSW*20] 3.070992 2.880481
Axis Aligned Hexahedra 3.486986 2.751497

Ours 2.998545 2.531853
Ours� 2.584732 2.185485

Femur Hu et al. [HSW*20] 3.082209 2.921756
Gao et al. [GMD*15] 2.933029 2.478329

Livesu et al. [LAPS17] 2.927899 2.446718
Ours 2.747245 2.435161
Ours� 1.995508 1.624553

Fertility Hu et al. [HSW*20] 3.302256 3.105790
Gao et al. [GMD*15] 3.052227 2.491892

Livesu et al. [LAPS17] 3.197407 2.607759
Ours 2.920798 2.458964
Ours� 2.522228 2.043973

Kitten Hu et al. [HSW*20] 3.241617 3.050779
Gao et al. [GMD*15] 3.313399 2.662459
Livesu et al. [LPP*20] 3.074764 2.581898

Ours 2.977281 2.497409
Ours� 2.246125 1.804384

Spot Hu et al. [HSW*20] 3.223385 3.032241
Zoccheddu et al. [ZGL*23] 3.054186 2.484063

Ours 2.846452 2.426191
Ours� 2.487546 2.011845

Venus Hu et al. [HSW*20] 3.327974 2.995528
Gao et al. [GSP19] 2.942068 2.488273

Dumery et al. [DPM*22] 2.912585 2.463419
Ours 2.766663 2.363639
Ours� 2.345045 1.895938

5.2. Field alignment

The concepts introduced by Arora et al. [AJL*19] and Wu et al.
[WWG21] represent approaches for generating stress-aligned lat-
tice structures, tailored towards sustainable manufacturing designs.
Both approaches generate graph structures comprised of vertices
that are connected via stress tensor aligned edges. While this results
in closed triangular and quadrangular cells in 2D, the corresponding
3D structure does not generally comprise finite cells or faces. In
Figure 11, we also compare our results and their aligned lattices
in terms of adherence to the initial tensor field. Therefore, we
interpret the input tetrahedral mesh and our hexahedral mesh also
as edge graphs and compare their individual alignment to local field
orientations. We measure the angle of an edge to the closest axis
of its local principal stress tensor, and average at each vertex the
measures for all its connected edges. In the tetrahedral mesh, edges
do not follow a particular direction. This also reflects in the overall
highest deviations in Figure 11. The average over all vertices in a
structure is inset in the histograms, respectively. Averages of around
20◦ deviation in results of the aligned methods are unexpectedly
high but can be explained as follows: The results by Arora et al.

Figure 10: Objects listed in Table 1 as a (solid) hexahedral mesh on
the left, corresponding beam and wall micro-structure designs with
α = 1

2 in the centre and on the right, respectively. Colour encodes
deformation under load, normalized for visualization.

adhere more strictly to the initial grid, resulting in less alignment
with the tensor field. In the conforming edge structure of Wu et al.,
many edges adhere to the local stress directions, but vertices are
also connected by additional non-aligned diagonals, contributing
to larger deviations on average. In our results, the highest per-
vertex deviations are found at hull vertices. Since the hull padding

© 2024 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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10 of 15 D. R. Bukenberger et al. / Stress-Aligned Hexahedral Lattice Structures

Table 2: Comparing relative compliance c
c0
of field-aligned lattices using

solidified trusses as shown in Figure 2 with α = 1
2 . The same parameters

and boundary conditions as in Table 1 apply.

Method truss

Cube Arora et al. [AJL*19] 3.758369
Wu et al. [WWG21] 3.405656

Ours 3.298168

Femur Arora et al. [AJL*19] 2.512450
Wu et al. [WWG21] 3.188068

Ours 2.509744

Fertility Arora et al. [AJL*19] 2.716619
Wu et al. [WWG21] 2.637801

Ours 2.383448

Kitten Arora et al. [AJL*19] 2.627741
Wu et al. [WWG21] 2.692648

Ours 2.521266

Spot Arora et al. [AJL*19] 3.872281
Wu et al. [WWG21] 3.267195

Ours 2.668108

Venus Arora et al. [AJL*19] 2.431033
Wu et al. [WWG21] 3.546859

Ours 2.389367

layer results from projections of inner vertices, local orientations
are generally well preserved. However, if the projection creates
inverted elements that require untangling, the smoothing process
may move vertices and locally disturb the alignment. Therefore,
when considering only inner vertices in our structures, the deviation
averages are 18.0◦ for the femur and 16.2◦ for the venus. However,
intersections of the histogram curves indicate that overall about
80% of our vertices have better aligned edges compared to the
conforming lattices of Wu et al. This slight advantage of our
hex-lattice is also reflected in the global averages over all vertices.

Singularities. Figure 12 illustrates loading conditions on a rectan-
gular bar that provoke a singularity in the stress field. The method
by Gao et al. [GJTP17] applies local smoothing to the frame field
and extracts a quad- or hex-dominant mesh. This relaxed con-
straint on the mesh topology allows for more flexibility and bet-
ter alignment of individual element edges to the field. However,
this introduces many irregular vertices and cells of arbitrary de-
gree. Arora et al. [AJL*19] employ global smoothing on the frame
field before extracting the edge-graph. This approach tends to push
problematic regions towards the object’s boundary, which may re-
sult in artifacts and locally increased resolution in the extracted
graph. Our proposed field deformation has a similar effect on the
stress field as global smoothing, as singularities are approached by
bending the field around them. Nevertheless, our extracted mesh
has better alignment close to the boundary (e.g. upper and lower
right corners of the bar), has no degenerate faces, guarantees in-
ner vertices to be regular and generally consists of more evenly
sized cells.

Varying loading conditions. In contrast to common hexahedral
meshing options which optimize the hexahedral structure for best
feature alignment and highest input fidelity, our method is tailored
for the characteristics of a specific stress field. With different load
scenarios, the stress field obtained from simulating on the tetra-
hedral mesh will be different. Figure 13 illustrates cut-open ex-
amples a buddha statue with varying fixed regions or forces ap-
plied. All three examples were generated with identical parame-
ters, only varying the mesh resolution slightly to yield approx-
imately the same number of hexahedral elements. Another sig-
nificant difference to common hexahedral meshing methods be-
comes apparent in Figure 14: The jet engine bracket [WBM21] is
faced with a static torsional force acting bidirectional on its han-
dles. As the lattice follows the emerging stress field, resulting in-
ternal structures are wavy and curved. Untangling may introduce
smoothing artifacts and limited resolution can lead to beveling of
sharp features.

Figure 11: Comparing lattice alignments: The histograms on the left plot the angular deviation of vertex edges to the local stress tensor, the
average deviation over all edges is listed in the inset. Corresponding lattice structures are shown on the right as full and cut-open versions,
respectively. The colour-coded structures visualize the averaged edge deviation for individual vertices.
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D. R. Bukenberger et al. / Stress-Aligned Hexahedral Lattice Structures 11 of 15

Figure 12: A rectangular bar is attached on the left with two forces applied on a single vertex each. As highlighted, the resulting stress field
features a singularity where and denote the primary and secondary principle stress directions (in close proximity), respectively.

Figure 13: Cut-open visualizations of a buddha statue reveal hex-
ahedral mesh variations under different loading scenarios. Orange
boxes mark fixed regions, and arrows indicate the applied forces.

Figure 14: Static torsional forces are applied on a jet engine
bracket [WBM21], shown on the left. The inside view on the right
reveals the wavy structures that emerge in the resulting hex-lattice.

5.3. Element quality

The minimum scaled Jacobian (MSJ) is a measure of skewedness
that is often used to express the quality of a hexahedral mesh and
its suitability for robust computation. Although our hex-lattices are
not primarily designed for this purpose, we can evaluate the MSJ to
highlight the quality of our mesh and the individual cells. Addition-
ally, to ensure applicability of our micro-structures, there should be
no inverted elements (MSJ < 0). Plots in Figure 16 show the MSJ
of our extracted hex-lattice and the resulting micro-structures. The
inverse deformation applied on the inserted perfect hex-lattice only
marginally decreases the quality of individual elements. Only the
hull padding (Section 4.2) introduces elements of lower quality due
to the projection. The targeted untangling of degenerate elements
only assures to fix inverted elements but stops once it is accom-
plished. As shown in Figure 15, the SJ distribution in our meshes
is dominated by the highest quality elements in the object’s core

and features only a few poor elements in the most-outer layer. As
the structure is a pure hexahedral mesh, common optimization tech-
niques [LSVT15] trivially apply. More smoothing or optimization
could eventually elevate the element quality but would ultimately
also introduce more deviation from the initial stress field.

By construction, each hex-cell corner is also part of one of its
micro-hexahedra. Thus, the MSJ of the overall structure does not
change by replacing cells with micro-structures. However, intro-
duced micro-vertices are determined as interpolations of the orig-
inal cell vertices. This comes as a smoothing effect, noticeable in
the histograms (Figure 16) as the MSJ distribution shifts upwards.
This indicates more micro-hexahedra of higher quality in relation
to the overall amount. The histograms also show the effect of non-
uniform τ � on the micro-hexahedra: Even in a perfectly rectangular
hexahedron, varying τ � values on each vertex will create slightly
skewed and differently scaled micro-hexahedra. This can be seen
in the diagrams with the rightmost bars (accounting for the highest
quality elements) of τ � falling slightly behind the τ bars.

5.4. Performance and implementation

As described in Section 4.1, the stress field deformation is com-
puted with a standard energy optimization approach using a lo-
cal and global step per iteration. In all experiments, the λ param-
eter was linearly scaled from 0 to 2 over the first 100 iterations,
whereas the full optimization usually converges within 200 itera-
tions. The computation- and memory-complexity of the procedure
scales roughly linearly with the size of the input. Local steps are
performed per vertex, while the global step involves highly sparse
matrices. The time per iteration also decreases during the optimiza-
tion, as with increasing alignment, fewer local ADMM iterations
are required. For 10k tetrahedra, our single-core Python implemen-
tation performs around 10 iterations per second, whereas for larger
inputs with 800k tetrahedra, one iteration (local+ global step) may
take up to 3 s. Extracting the aligned hex-lattice, padding the hull
layer and introducing the micro-structures usually takes only a few
seconds. However, once the most time-consuming deformation is
computed, it can be reused to extract multiple hex-lattice struc-
tures, e.g. with different resolutions, wall or beam configurations
and adapted τ � values. An implementation of our method is avail-
able at https://github.com/dbukenberger/HexahedralLattice.

5.5. Future improvements

While our method demonstrates improved alignment with the
stress field compared to certain alternatives, there are still cases
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Figure 15: Hexahedral mesh quality. The scaled Jacobian measure (per vertex) from 0 (poor) to 1 (optimal) is colour-coded. Due to the hull
projection and untangling, elements of the most-outer layer are usually more deformed, i.e. have lower quality.

Figure 16: Histograms (0.1 bin width) plot the element quality,
measured as minimum scaled Jacobian (log-scale, ranging from 0
(poor) to 1 (optimal)). The three bars include the extracted hex-
lattice , our wall micro-structures using a uniform τ and τ � .

where deviations from the field can be significant. Especially field
singularities, which are not explicitly accounted for in the mesh
structure, may introduce local distortions, as seen in Figure 12.
Addressing these issues in future work could further enhance the
performance and robustness of our approach.

The optimization to find the optimal deformation for aligning the
stress field is constrained by a cotan-based ARAP energy. While
this rigidity facilitates natural isometric deformations with consis-
tent object proportions, the contrary could be a promising approach
as well, i.e. with conformal deformations [BDS*12] (in this con-
text meaning angle-preservation), altered proportions would lead to
a varying resolution in the extracted lattice.

Our micro-structure concept is based on the single parameter
τ to reduce the volume within each cell equally, thus uniformly
for the whole object. This setting is easy to control, does not re-
quire any further optimization and is already sufficient to demon-
strate the promising mechanical performance of the computed struc-

tural designs. However, our proposed non-uniformly scaled micro-
structures using τ � allow for more stiffness in stress-critical regions
of the object at the expense of weaker non-critical regions. While
this simple heuristic already improves the overall mechanical per-
formance drastically, it is based on the von Mises stress of the fully
solid structure. Updating τ � in an iterative feedback loop with a
compliance optimization objective could improve the performance
further, but at the intensive computational costs of re-evaluating K
andU in each iteration. Thus, investigating more advanced methods
for balancing the volume distribution within the object for a given
α could be a rewarding direction for further research.

While our micro-structures, by design, recreate the initial shape
and orientation of the cells, relaxing this relation introduces another
degree of freedom. Anisotropically scaled micro-structure geometry
or individual alignment to their local stress tensors could further
improve the object’s stiffness.

In addition to stress-aligned hexahedral meshing, which we focus
on in this paper, the optimization of spatially varying and direction-
dependent thickness or porosity is a separate and important task
in structural optimization. We leave the integration of our meshing
method into such a design optimization routine as future work.

6. Conclusion

We introduce a novel method for constructing stress field-aligned
lattice structures, yielding pure hexahedral meshes wherein the in-
ternal edge structures consider the major stress directions under
given loading conditions. Our approach optimizes a deformation
of the input object and its associated stress field to align with an
orthogonal basis. The deformed object is filled with hexahedra and
eventually transformed back to yield stress-aligned hex-lattices. The
conforming nature of our result mesh with finite cells enables vol-
ume (=material) reduction via cell-inward edge-extrusion facilitat-
ing wall structures. Utilization of such micro-structures is a capa-
bility lacking in competing 3D approaches generating edge graphs.
Our method achieves comparable alignment and mechanical perfor-
mance as state-of-the-art 3D methods in beam-structure design. The
loading conditions in our simulations were deliberately set in favour
of the competing mesh structures, creating stress fields roughly fol-
lowing their inherent layout. Nevertheless, our approach surpasses
common meshing methods by producing explicitly tailored stress-
aligned structures. Scenarios where our method really shines are
configurations like the cube (Figure 6f) or the jet engine bracket
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(Figure 14), where common hexahedral meshing methods would
produce completely different structures, i.e. perfectly axis- or fea-
ture edge aligned hex-cells. Through mechanical performance com-
parisons with state-of-the-art hexahedral meshing approaches, we
have demonstrated the superiority of produced wall-like structures,
affirming improved mechanical properties of the stress-aligned hex-
ahedral infills. Employing the stress-aligned material distribution
with non-uniform extrusion along the edges and faces of micro-
structures further advances the mechanical performance of the in-
fills. This sets new standards in mesh-based structural design and
aims to inspire future work in the design and manufacturing of
lightweight 3D objects.
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Appendix A: Micro-Structure Design

The edge vertices for the micro-structure are linearly interpolated
for every edge as

[
v′0, v

′
1

]T = Te [v0, v1]T using the weight matrix

Te =
[
a b
b a

]
with

a
b
=
=

1− τ,

τ.
(A.1)

The four vertices of each face are computed as
[
v′0, v

′
1, v
′
2, v
′
3

]T =
T f [v0, v1, v2, v3]

T , using bilinear weights with the matrix

T f =

⎡⎢⎢⎣
a b c b
b a b c
c b a b
b c b a

⎤⎥⎥⎦ with
a
b
c

=
=
=

τ 2 − 2τ + 1,

τ − τ 2,

τ 2.

(A.2)

Inner micro-structure vertices within the cell compute as[
v′0, v

′
1, v
′
2, v
′
3, v
′
4, v
′
5, v
′
6, v
′
7

]T = Tc [v0, v1, v2, v3, v4, v5, v6, v7]T ,
using trilinear weights in form of the matrix

Tc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b b b c c c d
b a c c b b d c
b c a c b d b c
b c c a d b b c
c b b d a c c b
c b d b c a c b
c d b b c c a b
d c c c b b b a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with

a
b
c
d

=
=
=
=

−(τ − 1)3,

(τ − 1)2τ,

τ 2 − τ 3,

τ 3.

(A.3)

The weighting matrix Tc thereby corresponds
to the vertices of a hexahedron ordered as
shown on the right. τ s can be determined
individually per vertex or averaged per edge,
face or cell element, respectively.

Appendix B: Cell Volume Fraction

The volume fraction α for a hexahedral cell with a given pa-
rameter τ is formulated in Equation (B.1) as a polynomial for the
beam-case. This follows the micro-structure elements introduced in
Figure 7 with small cubes at the eight corners of the initial cell and
elongated beams at the 12 edges, respectively.

αb
H (τ ) = 8τ 3 + 12(1− 2τ )τ 2

= 12τ 2 − 16τ 3
(B.1)

As formulated in Equation (B.2), the consumed volume of the
walled micro-structure further includes six extruded faces.

αw
H (τ ) = 8τ 3 + 12(1− 2τ )τ 2 + 6(1− 2τ )2τ

= (2τ − 1)3 + 1
(B.2)

Whereas the wall function αw
H (τ ) is a 1-to-1 mapping and has an

inverse, the beam function αb
H (τ ) has no real-valued inverse.

α̂b
H (τ ) = 1− cos(2πτ )

2
(B.3)

However, for the domain [0, 1
2 ] and range [0, 1], the polynomial

αb
H can be approximated with the simple term formulated in Equa-

tion (B.3). This trigonometric approximation has a maximum error
of ∼ 1% but is exact in α = 0, 1

2 and 1. Its trivial inverse exists and
is formulated in Equation (7).
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