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Abstract

The pipe lay company Allseas is developing a new vessel, the Pieter Schelte. This vessel will be ca-
pable of not only laying gas and oil pipelines on the seabed, but also (de)commissioning oil platforms
and the jackets that support them. Over 600 offshore installations have been constructed in the North
Sea. Half of these installations are scheduled to be decommissioned before 2021. Up to 200 of these
installations have been analyzed for removal. The jackets weigh up to 25000 ton.
Previous dynamic analysis has shown that tensile loads in the hoisting wire ropes for jacket decommis-
sioning alternate between taut and slack. They also in- and decrease significantly faster than what is
considered good working conditions. These characteristics are preferably avoided. However, avoiding
these is a difficult and expensive task.
Possible effects on the steel wire ropes have been investigated that are subjected to these tensile load
characteristics. It has been chosen to investigate the internal frictional energy generation due to inter-
wire friction within the steel wire ropes. The resulting frictional energy generation has been applied on
a cross-section of a steel wire to determine the temperature change. When temperature changes of
the steel wires are too large, material structure changes can occur and consequently weaken the steel
wires.
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1 Introduction

Allseas engineering is developing a new vessel the Pieter Schelte (PS). It will be able to (de)commission

oil platforms and lay pipes.

In this thesis the focus is on the lifting process of a jacket, see figure 1.

During this operation the tensile forces in- and decrease siginificantly fast. It needs to be investigated.

What can the results be and do actions need to be taken to avoid these loading characteristics.

Initially four possible effects heva been investigated:

• Stress-Doubling

• Birdcaging

• Hockling

• Frictional Energy Generation

The latter has been investigated further. However, birdcaging and hockling might also occur. For the

investigation the Orthotropic Sheet Theory (OST) by M.Raoof has been applied. This is a very elab-

orate theory describing various aspects of wire rope behavior. Nevertheless, it has not been applied

much. Only few papers mention it. No papers have been encountered where the theory has actually

been applied.

After getting into the theory, it looks very convincing to describe wire rope behavior very well. Aspects

like inter-wire slippage have also been investigated with elaborate FEM models. The OST, however

cumbersome to implement, once running can yield tha same results alot faster.

While trying to understand the OST, it also gives great insight into wire rope behavior. Many interme-

diate interesting results can be investigated.
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(a) step 1 (b) step 2

(c) step 3 (d) step 4

(e) step 5 (f) step 6

Figure 1: Sequence of jacket lift.
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2 Problem definition

2.1 Finding a Challenge

At first glance it might seem that lifting a jacket out of the water with the Pieter Schelte (PS) should

not be too complex. Just attach a few wire ropes to the jacket and turn on the winches until the jacket

is hoisted to the desired height. As can be seen in Figure 1, at the desired height the jacket will then

be aligned and in touch with the Tilting Lifting Beams (TLB). These TLB’s then tip to the horizontal

position, the jacket is skidded on board and the jacket is ready to be transported back home.

Unfortunately this operation is more complicated then described above. The sequence depicted in

figure 1 shows a situation full of assumptions. There are no waves, it is only 2D, the vessel appears

to be perfectly still and there are many more. Certain influences, if not all, are obviously left out, or, in

other words, their effects are assumed to be negligible. Off course, Figure 1 is just an impression of

the concept.

The question now becomes what are these influences and how to deal with them? Do they need a

solution or is investigation of an influence already enough. The result can be that indeed the influence

in question can be neglected. The research to determine the points of attention on the lifting phase of

the jacket has been done by Florian J.M. Wasser(FJMW)[43]. He defined his objective as:

Determination of key influences on the dynamic behaviour of substructure and lift system during the

initial lifting phase.

The effects that were analyzed are:

• The effect of changing the jacket size.

• The effect of changing the characteristics off the jacket drag.

• The effect of hoist wire rope stiffness and configuration.

• The effect of wave loading on the jacket.

• The effect of current loading on the jacket.

• The effect of horizontal and vertical seabed forces.

• The effect of horizontal and vertical foundation forces.

Four different dynamic models have been developed:

1. Hessels & van Rooij (H&vR)

2. Korndörffer Contracting International (KCI)

3. Model 1(FJMW)

4. Model 2(FJMW)

All these models have extensively been described in [43]. It should also be noted that model 1 is found

in [43] to be inappropriate to get a good understanding of the dynamic effects.
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This thesis will zoom in on one or more of the dynamic aspects discussed in [43]. A choice of con-

clusions and assumptions of the models above will be considered. These are shown in the next two

paragraphs. Of these conclusions and assumptions a choice has been made for further investigation.

Conclusions found in [43]

Of the many conclusions mentioned in [43], three have been chosen to be of interest and are repeated

here:

1. "The occurrence of hoist wire rope slack is concluded for all simulations where regular waves are

applied on the vessel. Peak forces during two occurrences of slack do not lead to forces higher

than the maximum hoist wire rope capacity. Also in still water simulations slack wire ropes are

detected, however with smaller corresponding peak forces."

2. "The occurrence of jacket support point re-bouncing is concluded for all simulations where reg-

ular waves are applied on the vessel. Applied peak forces by the support points during re-

bouncing can be higher than when the jacket is at rest. Also in still water simulations re-bounces

are detected, however with smaller corresponding peak forces."

3. "The maximum hoist velocity of the Jacket Lift System is too low to avoid the occurrence of slack

wire ropes or re-bouncing. Hoisting speeds up to 10 times higher are required to compensate

for the heave motion of the TLB tips when waves are applied on the vessel."

The jacket will bounce off the bottom due to the heaving motion of the vessel. This will cause the

wire ropes to alternate between taut and slack. And even though this slacking of the wire ropes will

not result in wire rope forces exceeding the Minimum Breaking Load(MBL), this does not assure there

are no negative effect on the wire ropes. Tensile loading of wire ropes characteristic of the loading

has been known to make wire ropes fail prematurely. An example of the characteristics of this type of

loading is shown by an Adams model developed by E. Belderbos [4]. A result is shown in figure 2.

Figure 2: Example of axial loading taken from ADAMS model.

It is clear from the third conclusion that the taut - slack situation is unavoidable unless the hoisting

speed is increased. Due to the scale, simply buying a faster winch is not an easy straightforward
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solution. The hoisting velocity is 0.05 m/s, and this will need to be increased up to a velocity at least

ten times higher according to [43]. One can imagine the extra space and power as well as the extra

costs needed to realize this upgrade.

Another way to counter effect these taut - slack situations combined with bouncing of the jacket on the

seabed, is to install a heave compensating system, i.e. with powerful winches or a hydraulic system

with gas cylinders, to keep the wire ropes under tension. This solution, too, will add significant cost

to the jacket (de)commissioning system, it is important to know whether the taut - slack situation is

actually a problem or not. Preferably, the need for the two above mentioned solutions should be

avoided.

Even if the expected shock loads do have a damaging effect on the wire ropes, it can still be more

economical to accept a lower lifespan of the wire ropes than to design and produce a system to avoid

these loads. What will be very important with this choice is to get enough insight in the damaging

process to make proper decisions concerning the lifespan of the wire ropes. One can imagine the

potential devastating effects on men and/or machine were the wire ropes to break during service.

Assumptions made in [43]

Each model is based on assumptions. One has to be careful that they are valid and that they do not

hide any non-negligible effects. Mostly, assumptions are made as it is known that certain influences

or aspects of a system are negligible. One often applied example is the assumption of linearity around

an equilibrium configuration of a system. Also for a first insight into a question it is not necessary to go

into much detail.

In Table 1, assumptions of interest are listed as they are an example of convenience.

It is common to model wire ropes as built up of linear springs with no self-weight. In most applications

this is a good approximation.

To model the dynamics of the lifting phase it is computationally convenient to assume the jacket to

be rigid. This means that the Eigen modes, other than the rigid body modes, of the jacket are not

taken into account. These modes will be excited each time the jacket bounces of the sea bottom as

the impacts occurring during the bouncing can be nearly the same as applying a Dirac delta function

to the structure. Theoretically it can be shown that this function excites all Eigen modes of the jacket.

When the jacket starts to vibrate as a reaction to this bouncing, excited vibrations can be transferred

to the hoisting wire ropes. What can the effects be? Will an Eigen mode of the wire rope be excited?

If yes, what’s next, what are the effects on the sheaves? How great will amplitudes of the vibrations in

the wire rope be?

To get more insight into the excitation of the above mentioned modes of the jacket, it will be necessary

to know more about the dynamic properties of the soil.

The assumption made for the Dynamic Positioning (DP) in the models is very interesting. It is either

absent or, as in de KCI model, modelled as linear springs under pre-stress. Both are far from being

realistic. The weight of the Jacket is large enough to have an effect on the dynamics of the vessel

after lift off and will thus influence the behaviour of the DP. The models without DP will result in larger

movements of the vessel and therefore have a different dynamic response of the jacket. The pre-

stressed linear springs in the KCI model represent some sort of position control, at least it’s bounded,

though the way it is positioned does not have much reference with reality at best. Modelling the DP

with pre-stressed linear springs is equivalent to modelling the DP as a proportional-only control system.
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No DPDP modeled with pre-
stressed mooring linesNo DPVessel4

More details addedNo friction and suction3

Modeled as rigid body2

Modeled as linear spring wihout damping and no selfweightHoisting 
wire ropes1

Model 2KCIH&vR

Table 1: Assumptions of interest made for the models investigated in [43]

This type of control is not sufficient to control the position of a vessel to within i.e. 50cm of the desired

position. The question here is what is the control algorithm of the DP of the vessel? Is the influence

of the jacket weight taken into account by the DP system? Knowing this, one can get more insight

into the dynamic behaviour of the vessel with jacket. The DP can then be implemented in the model

to obtain more realistic results, especially with respect to retaining the desired position of the Pieter

Schelte. Off course, as the DP contains a lot of blood sweat and tears, the deliverer Kongsberg will not

just give it away. Though the current situation, unlike most vessels where the dynamics of the vessel

don’t change as dramatically, can be very interesting for them too. It might give new challenges and

an opportunity to gain experiences that might increase their market value even more.

2.2 Lifting a challenge

From the above conclusions and assumptions three subjects are seen to be of interest for further

investigation. They are shortly described here.

Taut and slack wire ropes It is evident that with the current design, the hoisting wire ropes will

alternate between taut and slack. Not much is known about what happens exactly inside the wire

rope, nor is it exactly clear what the wire rope forces will be if the wire rope is not assumed to be

quasi-static.

Though what can be seen at this point, is that there are relative big accelerations which can lead

to non-well known effects, i.e. the possibility of elastic waves is investigated in i.e. [21]. The main

question is if any of these effects are dangerous or not. Is it absolutely necessary to avoid the taut-

slack alternating situation?

DP The actual Kongsberg DP has not been taken into account. Only the KCI model incorpo-

rates some form of passive DP (pre-stressed linear springs). The behaviour of the vessel under

influence of waves, wind and DP are essential for analysing not just the lifting process, but every

(de)commissioning task. How well can the DP be expected to perform? If necessary, what can be

done to increase the performance of the DP?
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Jacket and soil mechanics The seabed has now been modelled as horizontal and vertical linear

springs. What are the modes of the jacket that can be excited when bouncing on the seafloor? Can

these resulting vibrations be transferred through the jacket onto the wire ropes? Can this lead to

unwanted vibrations that might have a negative effect on the hoisting blocks, i.e. the sheaves?

2.3 Objectives

The DP challenge and the challenge with respect to the jacket and soil mechanics are already being

addressed within Allseas. The challenge with respect to the taut-slack wire ropes, however, has not

gotten enough attention yet. Though some work has been done, i.e. [4], the subject has not been clar-

ified enough for Allseas to take a decision with respect to usage of the wire ropes for decommisioning

a jacket. It is therefore chosen to investigate the taut-slack wire ropes and the associated fast in- and

decreasing tensile loads. Within this subject it is necessary to learn which (negative) effects can be

expected, thus:

What are the possible effects of the expected loading during jacket lifting on the wire ropes and which

of these effects, or combination thereof, is expected to have the greatest influence on the lifespan of

the wire rope?

After reading extensively the literature on wire ropes, it has become clear that it is necessary to limit

the objective of this research further. There are many aspects of wire ropes to be researched and

several possible effects to be investigated. The relevant ones are:

• Elastic linear and torsional waves causing:

– Stress doubling; elastic waves reflect at the end termination and thus interfere with each

other causing stress doubling, figure 3a.

– Birdcaging; A combination of axial strain, negative or positive, torsional energy and elastic

waves can cause wire/strand seperation that can be permanent, figure 3b.

• Hockling; Slack wire ropes can form loops, consequently the wire rope can hockle when de-

slacking, figure 3c.

• Frictional heat generation; Excessive frictional energy due to axial loading can cause a tem-

perature rise consequently changing the material structure from pearlite to martensite possibly

initiating crack formation, figure 3d.

It has been found here that the expected axial loading on the wire ropes can have elastic waves as a

result. But these are not significant enough to cause either stress doubling and/or birdcaging.

From the ADAMS model developed in [4] it can be concluded that slack occurs. Within Allseas stability

criteria with regards to hockling have been investigated and shown to be valid for multi-rope systems.

These criteria need to be applied on hoisting wire ropes, but it is clearly not an underinvestigated ef-

fect.

Friction between the wires of a rope, however, is underinvestigated. It appears to play a significant

role in most if not all the effects investigated. There is not much literature to be found on the subject,

fortunately there are a few persons that have been dedicated to this subject. Especially the Orthotropic

Sheet Theory (OST) developed by M. Raoof looks very encouraging. It has, more or less, been verified

with experimental results.
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(a) Stress doubling (b) Birdcaging

(c) Hockling (d) Heat Generation

Figure 3: Potential effects due to expected loading during jacket decommisioning by the PS.

Related to friction is heat generation within a wire rope. Although steel is known to dissipate energy

rather quickly, a few clues have been found to pursue this effect. One paper [36], for example, de-

scribes the possibility of an invesitigated wire rope that might have failed due to the consequences of

excessive frictional heat generation.

The objectives of this thesis are:

Implement the Orthotropic Sheet Theory (OST) by M. Raoof for wire ropes by homog-

enization and multi-scale FE2 techniques in a dynamical model of the wire rope to

investigated internal frictional energy generation.

Investigation of the temperature inside the wires of a wire rope due to the resulting

energy generation.

2.4 Report Structure

In this report the mathematics are mainly kept out of the main part. The reader that is interested in the

details is referred to the appendices. The structure is as follows:
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Chapter 1: An introduction to the company Allseas and the project, development of the

Pieter Schelte (PS), which has motivated this research.

Chapter 2: The route to finding a final challenge for this thesis is described.

Chapter 3: A brief history of wire ropes is given and the reader is introduced to the basic

structures of wire ropes.

Chapter 4: Several mechanism and their theories that can lead to failure are investi-

gated. In the conclusion internal heat generation that is expected in the case

of the hoisting procedure of the PS is chosen and the chosen theory is the

The Orthotropic Sheet Theory.

Chapter 5: The chosen theory , Orthotropic Sheet Theory, is explained, adapted and

implemented.

Chapter 6: The modelling of the internal heat generation is explained and the results

are shown. The chapter starts with dynamic modelling followed by a heat

conduction model.

Chapter 7: The most important results are shown and discussed.

Chapter 8: The main conclusions and recommendations are given.

Figure 4: Chosen wire ropes for investigation.
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3 Wire Ropes in General

Before the behavior of wire ropes can be investigated, one has to know about the structure. First, a very

brief history will be given of the development of wire ropes, section 3.1. Second, a short description of

the wire ropes is presented to get acquainted with the terminology and structure.

Figure 5: Clarification of wire rope construction and associated terminology [44].

3.1 Brief History

The person that is accredited to inventing the first applied steel wire rope is a German mining engineer

Wilhelm Albert. While working for the Mining and Forestry office in Clausthal, in 1829 he observed

that iron mine-hoist chains can fail from repeated relative small loadings. His study and report is the

first recorded account of metal fatigue.

He then took on the challenge of developing a steel wire rope to replace the iron chains. Reportedly,

he is not the first to theorise about its use, though he is the first to make successful use of them. The

first time he applied them in the mines in the Harz Mountains, Clausthal, Germany, it was 1834. They

are seen as the forerunner of the modern day wire rope.

3.2 Construction

A wire rope is constructed of wires. First, wires are combined to form a strand, and second, the strands

can be combined to form a final wire rope. An overview can be seen in figure 5. Note that a strand

can also be an end product. Thus the term wire rope can refer to a SSR and a MSR. In table 2 the

terminology is clarified. Note that the pictures within this table are not scaled relative to each other.

3.2.1 Single-Strand-Ropes (SSR)

A SSR starts with a straight wire. This wire is the core of a strand which is built up of wires that are laid

helically around the core wire, see figure 6. How many wires per layer and how many layers of wires

are applied, depends on the purpose of the strand. The most common is a seven wire strand shown in
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Single Stranded Rope (SSR)

Multi Stranded Rope (MSR)

Wire Rope (WR) and

Table 2: Rope construction terminology. Pictures are not scaled with respect to each other.

figure 6a, often referred to as ’ordinary’ strand. There are many more varieties possible; The ordinary

and three other main strand constructions are shown figure 6.

The Filler strand is characterized by the gaps between the outer layer and inner layer being filled with

smaller diameter wires. The Seale strand consists of one layer of smaller diameter wires laid around

the core wire, followed by a larger diameter outer layer. The diameters in Warrington strand alternate

in the outer layer that are laid around an ordinary strand.

(a) Ordinary strand (b) Filler strand (c) Seale strand (d) Warrington strand

Figure 6: Types of Single-Strand Ropes.

3.2.2 Multi-Stranded-Ropes (MSR)

A MSR on its turn is constructed with the above mentioned strands which are helically laid around a

core to form the wire rope, see figure 5. There are basically three types of wire rope core, see figure 7.

The fibre-core rope may have i.e. hemp, plastic, or sisal as core material and offers the advantage of

flexibility. For more strength, a strand-core rope can be used. Here all strands here are touching each

other including the centre strand and some flexibility is lost. Another is the IWRC(Independent Wire

Rope Core), where the core is a strand-core rope. The difference with the strand-core rope is that the
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strand-core rope is not touching the outer strands and thus has more flexibility.

(a) Fibre core rope (b) Strand core rope (c) IWRC rope

Figure 7: Types of Multi-Stranded Ropes.

The chosen wire rope by Allseas for the application of (de)commissioning of jackets is shown in Figure

8. Looking at the cross-section it can be clearly seen that it is an IWRC. The core wire rope is built

up of Warrington strands. The outer layer of strands is an unconventional design. The centre wire of

these strands taken with the first three layers can be seen as a Warrington strand with an extra layer.

This Warrington strand has an outer wire layer of non-circular wires. They will be flattened though

without the sharp corners as depicted in figure 8a.

(a) Schematical cross-section of chosen wire rope

DB2K

(b) 3D impression of chosen wire rope DB2K

Figure 8: The DB2K wire rope
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4 Selecting a Cause of Wire Rope Failure

There are many causes that can lead to the failure of a wire rope. Two obvious mechanisms are

fatigue and plain overloading. Most of the times, however, there will be different mechanisms at play

simultaneously. A cause of damage might be friction. The damage is the formation of a very thin layer

of martensite which on its turn initiates a crack and thus accelerates fatigue.

An illustrative summary is given in [3], which is a wire rope inspection document provided by ALP

industries, a wire rope producer. The examples range from corrosion to abrasion to crushing and

more. Many of them are not relevant for the scope of this thesis, though two examples are shown in

figure 9.

In figure 9a the wire rope has been damaged because it has been running over an undersized sheave.

The damage caused has as a result prematurely initiated fatigue failure. In figure 9b corrosion has

weakend the wires and as a result have broken prematurely, probably under a load that the wire rope

was able to withstand otherwise.

(a) Fatigue failure initiated because the wire rope that ran

over an undersized sheave.

(b) Wire breakages as a result of rust.

Figure 9: Examples of failing wire ropes.

In this chapter a choice of potential causes of wire rope failure are presented. For each mechanism one

or more available theories will be briefly discussed. First in section 4.1 elastic waves are investigated

which can have stress doubling and/or birdcaging as a result. Second, in section 4.2, hockling can

occur resulting from slack wire ropes caused by jacket rebouncing on the seabed. Third, in section

4.3, the internal heat generation due to inter-wire friction is investigated. Finally in the Conclusions of

this chapter, section 4.4, the following questions will be answered:

• Which mechanism, damage or failure, might cause premature failure in wire ropes caused by

slack combined with tensile loads with shockload (like) characteristics that occur during the jacket

decommissioning by the Pieter Schelte?

• What method is suitable to investigate the chosen mechanism

4.1 Elastic waves

It can be seen that the tension in the wire rope in- and decreases very ’suddenly’ several times during

the jacket decommisioning procedure. In section 2.1 an example of the tension in a hoisting cable is
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shown in figure 2. Another example is shown here in figure 10a. Figure 10b zooms in on one of these

’sudden’ in- and decreasing tensile loads. From the figure it is seen that the tensile load decreases

from around 500kN to 0kN (slack) within 0.05s and then increases from slack to around 350kN in

approximately 0.4s. Compare these values to the period of a typical wave, 8 − 16s, which in general

is considered ’good working conditions’ and it is clear that this de- and increase of tensile load is

substantially fast. Wire rope producers recommend to avoid these characteristics. Throughout the

jacket decommissioning, the decreases are on average ten times faster than the increases as seen in

figure 10b.
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(a) An example of the expected tensile loads in the hoisting wire ropes during jacket decommissioning.
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(b) Zooming in on an example of a ’sudden’ decrease followed by a ’sudden increase in tensile load in the hoisting wire ropes

during jacket decommissionning by the PS.

Figure 10: An example of tensile loading on one wire rope during jacket decommisioning.

A known possible consequence of this type of loading characteristic are elastic waves. Elastic waves

can be reflected at the end termination of the wire rope and interfere with each other causing stress

doubling, section 4.1.1. They can also result in birdcaging when combined with built up torsional en-

ergy in the wire rope, section 4.1.2.
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4.1.1 Stress Doubling

The wire rope to be used, figure 8, has a Minimum Braking Load (MBL) of 4329kN . In [4] it is reasoned

that the maximum allowed tensile force in the hoisting wire rope for jacket decommissiong is 937kN .

The reasoning is based on three safety considerations:

1. Difference in tensile force because the wire rope runs over several sheaves; a safety factor 1.09

is chosen.

2. Tensile force in wire rope to stay below 75% of the MBL with regards to elastic proportional limit

of the wire rope.

3. Weight of hoisting equipment is not included in the ADAMS model of [4]; a safety factor of 1.06

is chosen.

According to the ADAMS model in [4], tensile force peaks of around 600kN can be expected, see

figure 10a. Thus if elastic waves cause stress doubling, the maximum allowed tensile force can be

exceeded. For this to occur, two important influences on the severity of the elastic wave interference

are:

• The energy conservation of the reflection of the elastic waves at the end termination.

• The resistance to elastic wave propagation in the wire rope, e.g., material damping and internal

(inter-wire) friction.

In [21] a theoretical model is compared with experimental results also performed by the authors. To

produce the impact load with resulting elastic waves, a weight is dropped onto the bottom end ter-

mination of the wire rope. This means that the tensile load in the experiment reaches its maximum

significantly faster than the hoisting wire ropes considered for this thesis. Though not mentioned in

[21], it can be expected that the time between zero and maximum tension will be a few orders smaller

than the 0.04s observed from the ADAMS model in [4].

In the experimental set up from [21], a wire rope is equipped with two load-cells that are placed 3m

max

max0.6

(a) A plot of stress measurements performed in [21] where the
distance between the upper and lower load cell is 3m. The atten-
uation of the elastic waves over this length is significant, loosing
approximately 40% of its energy.
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(b) Sketch of elastic waves oc-
curing in different parts or the
wire rope simultaneously.

Figure 11: Elastic wave attenuation (left) and simultaneous occurence of elastic waves (right) in a wire
rope.
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apart from each other. This makes it possible to measure the propagation velocity as well as the atten-

uation of the elastic wave. The attenuation appears to be significant, see figure 11a, over a length of

3m the amplitude has decreased approximately 40%. The hoisting wire ropes are installed in a rigging

block with 34 wire rope falls. From the upper rigging block the wire rope is led through the hollow TLB

tips. The true end termination of the wire rope is the winch that is placed in the aft of the PS. Before

elastic waves reach this end termination, they thus need to travel over several sheaves, followed by

the length of the TLB tips and last through the wound-up part of the wire rope on the winch. Consid-

ering the length of the TLB tips, 155m, and the distance between the top and bottom rigging blocks,

approximately 80 − 90m, the question is rather if the elastic waves will make it that far? Rather than

whether how much of the elastic wave energy will be reflected.

Because the wire rope runs over several sheaves, elastic waves can be generated simultaneously in

several places in the wire rope, see figure 11b. Even in this case the distance for the elastic waves to

travel is significant, approximately 80m.

Comparing the expected travel distances in the hoisting wire ropes with the distance travelled in the

experimental set up in [21], it is clear that stress doubling is not likely to appear at all.

4.1.2 Birdcaging

Impact loads result in tensile and torsional waves through the wire rope. When the loads are compres-

sive (slack wire rope) or there is a ’sudden’ drop in tension, helical wires and/or strands can separate

from the inner layer(s). When this separation is permanent this phenomenon is called birdcaging, in

the literature also referred to as core protrusion. See for an example figure 12.

Figure 12: Example of birdcaging a.k.a core portrusion.

If and how much separation occurs depends on the axial strain ε, the rotational strain β and the

velocity of the impacted end of the wire rope. In [7] a theory has been derived to determine when

wire/strand separation occurs for SSR’s and MSR’s. The procedure is described briefly without going

into mathematical detail.

The first step in this theory is to determine when the line contact forces are zero. These are the

normal forces that act between adjacent wires/strands within a layer. When these forces are zero,

the wires/strands are just touching. In the sign notation of the theory in [7], negative forces mean the
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wires/strands are pressed against each other and positive forces mean they are moving away from

each other and are thus separating. The following relation can be derived:

Fline = c1β − c2ε (1)

The line contact force Fline thus depends on the axial strain ε and the rotational strain β. This line is

drawn in figure 13. The constants c1 and c2 depend on the construction of the wire rope, e.g. lay-angle

of the wires etc.

0lineF 

Figure 13: Picture of birdcaging and graph showing the border between separation and non-separation
of outside wires/strands taken from [8].

The second step is to derive the linear differential equations of motion, f1(x, t) and f2(x, t), describing

the tensile and torsional motion for each point in the wire rope in the time domain. The excitations are

the linear and angular displacements due to the variation of the tensile force F and torsion M (twisting

moment). The origin of the reference frame for f1(x, t) and f2(x, t) is at the top of the wire rope that

is hanging down. The linear boundary conditions, where u(x, t) is the linear displacement function,

describe tensile load excitation at the bottom and the suspension at the top:

u (0, t) = 0 ,and u (L, t) = uext (t) (2)

The angular boundary conditions, where φ(x, t) is the angular displacement function, describe non-

rotating ends:

φ (0, t) = 0 ,and φ (L, t) = 0 (3)

the third step is to apply the Laplace transformation on f1(x, t) and f2(x, t) in combination with the

above boundary conditions and a choosen impact displacement function uext (t), e.g. a step impuls.

This will yield the local strains ε and β anywhere in the wire rope in the time-domain subjected to a

sudden decrease in tension.

Now that the local strains are known together with the line showing where separation depending on the
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strains begins, it is possible to determine whether birdcaging can occur, see figure 13. It can be seen

that even with a positive strain, wire/strand separation can occur. It must be stressed that separation

does not by definition lead to birdcaging.

The interested reader is refered to [7] for the mathematical details of the theory. An important note is

that this theory is applicable to small axial strains only, of the order up to around 5e−3 and that it is

assumed that the helical wires/strands retain their shape. The allowable tensile stress in [4] yields a

allowed maximum strain of 3.5e−3 and is thus within the limits of this theory.

A dynamic model has been developed to investigate the velocity of the impacted end of the wire rope,

see appendix D.1. The model consists eight mass-spring-damper elements. The velocities resulting

from the tensile loads shown in figure 10a are plotted in figure 14. The impacted bottom end of the

wire rope is represented by the blue line. The maximum velocity is seen to be around 5m/s. In [7], an

example impact velocity is mentioned of around 7m/s. Even though a different wire rope is considered

in [7], it implies that the expected velocity is in the order where Birdcaging might occur.
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Figure 14: Velocities of wire rope elements subjected to a tensile load as shown in figure 10a.

4.2 Hockling

A hockle is a loop that forms in a wire rope. The hockling of a wire rope can only occur when it becomes

sufficiently slack. What is ’sufficiently’ depends on the torsional energy at the moment the wire rope

becomes slack and on the bending and torsional stiffness of the wire rope. A sequence of the hockling

process is shown in figure 15 taken from [16]. After the forming of a hockle, subsequently snarling can

occur, see the right most picture of figure 15. It is the helical twisting of the wire rope starting at the

contact point of the hockle where the wire rope crosses. The hockling itself is not damaging for the

wire rope, though, when the tension in the wire rope increases and de-slackens and the hockle does

not unwind, kinking will occur. This will seriously damage the wire rope making it useless for further

safe use. Torsional energy can be built up in the wire rope basically in two ways:

1. When a payload hoisted or lowered by a wire rope who’s ends are not permitted to rotate. The

(uncontrolled) rotating of the payload will then cause twisting in the hoisting rope and will thus

build up torsional energy.
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2. Due to the (double) helical structure of wire ropes, torque increases in the wire rope even when

it is loaded under pure tension resulting in torsional energy being stored in the wire rope.

Most theoretical research with respect to hockling has been aimed at developing stability criteria, e.g.

[38], [35] and [9]. The results in these papers offer methods to determine criteria on which to base

decisions with regards to safe use of wire ropes. In [15] a dynamic model in the time domain of hock-

ling has been developed. For the jacket decommissioning by the PS, however, applicable proven and

stability criteria are needed.

Figure 15: Sequence of loop forming of a rod, due to sufficent initial twist combined with sufficient
slack, followed by snarling, taken from [16].

Within Allseas, too, research has been done, see [12], into hockling. The research was aimed at

single- and multiple-rope systems and consisted of choosing stability criteria from available literature

and performing experiments for verification. The research was motivated by the multi-rope ’Aban-

don&Recovery’ system designed for the Solitaire, an Allseas pieplay vessel. Due to the systems’

design it restricts untwisting unlike the single-rope system.

Stability criteria for hockling under two conditions have been investigated, non-zero tension and zero

tension. Only the latter is considered here because this condition has been confirmed to occur (alter-

nating taut-slack wire ropes) in [4] and [43].

Slack is defined as the difference between the initial unloaded cable length L and the length of the ca-

ble projected onto a line parallel to the direction of the load. The critical slack B is the amount of slack

when hockling is expected to occur. Results from the tests done in [12] on the double-rope system

have been compared to one of the available theoretical stability criteria developed for the zero-tension

condition. This criterium relates relative critical slack B
L to amount of twists:

B

L
=

1

2nN
(4)

where N is the ratio between torsion and bending stiffness and n is the number of twists. The results

of the tests with the double-rope system from [12] are shown in figure 16.
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Figure 16: [12]:"Critical relative slack B
L for double-rope sets: 6-mm diameter hanging cables and

16 mm diameter cable on the ground. Solid lines give the theoretical prediction following equation 4.
Marks correspond to test results."

What can be seen for all the tests is that hockling appeared with a larger number of twists than

predicted by the theory. One of the important practical conclusions that is related to the jacket lifting

procedure is:

"...the criteria for one rope can be applied to multiple-rope systems."

The results of the ADAMS model developed by [4] in the time domain can be used to determine the

amount of slack and thus the critical amount of twists throughout the lifting procedure. A theoretical

allowable maximum amount of twist can then be determined.

4.3 Internal Heat Generation

When a wire rope is subjected to an tensile, torsional or bending load, the wires will slide with respect

to each other as a result of the deformation of the wire rope and their (double) helical construction.

This will cause friction in the wire rope. A well known application of frictional energy is the process of

making a fire in the woods with sticks, see e.g. [45]. It is thus clear that friction can lead to very high

temperatures. But can high temperatures be achieved due to inter-wire friction in a wire rope?

Steel is known to conduct energy very fast. Most often the wires are made of non-alloy carbon steel.

The thermal conductivity k of this steel is around 50W/mK, compare this with wood, around 0.2

W/mK which can be held in your hand while the other end is burning. Therefore the frictional energy

at the inter-wire contacts is expected to dissipate throughout the cross-section of the wire before having

a significant effect on the material.

What is not known is how much friction energy can actually be expected inside a wire rope subjected

to a loading as shown in figure 2, section 2.1. A few documents have been encountered that contain

some clues that inter-wire friction can be significant, [36] and [2], or what the effects of a temperature

rise can be [41] on wire ropes. They are described next.
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4.3.1 Clues for excessive internal friction

Premature failure of a hosting wire rope in a mine An analysis has been done on a hoisting wire

rope that has been used at a mine in India. The wire rope failed prematurely and was handed over

to the authors of [36] for investigation. The wire rope is a 25 mm diameter stranded wire rope. The

operation and failure history given to the authors was almost nil. They applied the following tools in

their research:

• Physical examination

• Mechanical test results

• Micro-examination of wires

Some interesting observations have been made. The physical examination clearly showed consider-

able plastic wear, though it was not believed that the ultimate failure was due to fatigue. This remark

was motivated by the observation that the broken wires are of the ’cup and cone’ type, see figure 17.

The authors of [36] do not state whether the ’cup cone’ type was found on every wire or not. This

seems important information to discard the possibility of a premature break initiated due to fatigue,

whether accelerated due to another mechanism or not. As stated in [41], a ductile wire diameter re-

duction of this type is generally associated with a tensile overload failure.

Figure 17: An example of a ’cup and cone’ failure type.

It is also stressed that it does not mean that the cause of failure is due to an overload. The wire rope

might have been weakened by another mechanism. Eventually the wire rope breaks and thus shows

this type of break in the wires that have not been weakened. The tensile strength of the whole wire

rope may have decreased due to, e.g. crushing in a sheave.

They were motivated by the micro examination of the failed examples. They noted that there were signs

of plastic deformation normally observed with tensile failure. However, in their mechanical examination

they found that strength loss due to deterioration was not appreciable and did not endanger safe

operation.

The possible answer might be in the structure of the material. Originally, the material used had a

pearlite structure, see figure 18a. It was observed that the structure had become martensite, see

figure 18b at the surface of the worn out wires. This is possible when the material is rapidly cooled

from an, minimum, elevated temperature. This process is called quenching and is used to obtain a

certain material properties. The minimal elevated temperature is 727◦C. These observations suggest

that excessive frictional heat has occurred while the rope was in service. Pearlite is hard and tough

where martensite is hard and brittle. When a small layer forms on the surfeace of the pearlite structure,

martensite is susceptible to cracking and thus initiating/accelerating fatigue.

Even though they’ve made these observations they do not claim any single reason for the wire rope in
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question to have failed. Nevertheless, it does motivate into looking into the heat generation caused by

inter-wire friction.

(a) Pearlite structure. (b) Martensite structure. (c) Pearlite structure with martensite

layer at the surface.

Figure 18: A pearlite structure is desired (left), it is hard and tough. The stripes are plates of Ferrite
and Cementite. The martensite structure (right) has a needle like appearence and is hard and brittle.
A layer of martensite that as formed at the surface of a wire and has resulted in crackforming.

CASAR forensics on heat in wire ropes Another hint to look into this direction is mentioned in [41].

These authors, too, mention that when the temperature within the rope exceeds a certain level, the

material structure can change and thus also change its tensile strength. The temperature level they

mention is even lower, 300◦C, than the temperature mentioned in [36]. The cold drawn wires can then

recrystallize loosing two thirds of their tensile strength.

They do not relate the material structure change to friction. What they do show is that a very small

local layer of martensite can initiate fatigue cracks. The wire rope can then fail prematurely and

potentially unexpectedly in case the significant fatigue cracks are not detected (expected) during wire

rope services.

Excessive friction in a heave compensation application At a workshop about heave compensa-

tion, a presentation by Acergy [2] has been given about heat production in a wire rope while in service

as part of a heave compensating system. It was about cyclic bending of a wire rope over sheaves

which for many years has been known to have internal broken wires. Sometimes this has led to catas-

trophic failures.

To gain understanding in the failure process, they’ve built a test rig to carry out initial research on a

large 109mm diameter wire rope. A clear conclusion they’ve drawn from these tests is:"It was clearly

identified that the inherent rise in temperature increased the bending fatigue effect leading to rapid

failure.". The conditions during the test were two meter waves and:"...represented good working con-

ditions.". A series of tests was conducted with varying loads; 125, 175 and 225 ton. Each test had a

duration of an hour. The maximum temperature measured was 120◦C.

An important conclusion related to wire rope lubricant, is that they’ve found that it is best not to let

the temperature rise above 50◦C. From this point the temperature level has been found to increase

rapidly.

Even though bending cycles are known to generate more friction than tensile cycles, this presenta-

tion is a hint that the same effect might be significant in the case of the jacket decommisioning. The
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taut-slack situation with the rapid tension in- and decreases is far from being an equivalent of ’good

working conditions’.

4.3.2 On inter-wire friction

It is known that there is inter-wire friction within a wire rope subjected to tensile, torsion and/or bending

loads. Friction is the phenomenon of two materials being pressed against each other. When the two

materials start to slide with respect to each other, the normal force and friction coefficient µ result in a

friction force directed opposite to the sliding direction, see figure 19a. There are two types of inter-wire

friction at play within a wire rope:

1. Line contact between adjacent wires within a wire layer, figure 19a

2. Trellis contact between two wires crossing from different wire layer, figure 19b

A trellis contact has a normal force acting on an ellips shaped contact area with semi-major axis a

and semi minor axis b, where the line contact is a surface load on the contact area with width b along

the length of adjacent wires. The trellis contact has been found to be an important mechanism for

fatigue [30] and line contact sliding has a significant greater effect on specific energy dissipation than

the trellis contacts do, [26].

(a) Schematical representation of line contact friction. (b) Schematical representation of trellis contact with the

ellips shaped contact area with its defining axes on the

right.

Figure 19: Schematical representation of line contact (right) and trellis contact (left).

So to determine the internal wire rope friction, methods need to be found and/or developed to determine

for each time step; the normal line contact force FN , the relative slip ∆l between two adjacent wires

within a wire layer and the line/trellis contact surface.

Summarized, what is needed is a theory that can evaluate the following for each timestep:

• Line and trellis contact forces.

• Sliding distance for the line and trellis contacts.

• Contact surface of the line and trellis contacts.
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4.3.3 Models on wire ropes for internal heat generation

Theoretical models Above, it is summarized what needs to be determined to model internal fric-

tional energy generation in a wire rope under tensile load. It is noted that preference goes out to a

theory that has some verifications with experiments because experiments are not only expensive, they

are also very time consuming.

Only a few notable theories have been developed on the subject of wire ropes. One is developed by

GA Costello. He has also written a book on the subject, Theory of Wire Rope [7], referred to earlier in

section 4.1.2. The theory is based on first describing the equations of equilibrium of a thin wire shaped

as a helical spring. This provides the base for a collection of helical springs (thus strand) to describe

the deformations of a strand under axial and bending loads. This base is then used to describe the

static response of a strand, e.g. under pure bending but also stresses are determined of a strand

passing over a sheave. An important assumption made is:

The friction between the individual wires is neglected and are thus assumed to move collectively when

the wire rope is subjected to a tensile strain.

Figure 20: The force equilibrium of a thin helical wire which forms the base of Costello’s [7] wire rope
theory and also for the theories developed by M. Raoof.

But is this valid for the case of the lifting phase considered in this thesis? Furthermore the loads de-

scribed in the book are static.

The above assumption in Costello’s theory is addressed in [26]. Herein it is stated that only when the

tensile load perturbations are relatively small compared to the mean tensile load, up to approximately
Load Perturbation

Mean Load = 0.02, the inter-wire friction is negligible. The author of [26], M Raoof, has developed

The Orthotropic Sheet Theory (OST). This theory goes into more detail with respect to inter-wire fric-

tion. It is based on the equilibrium equations developed by Costello, see figure 20, but deviates in

describing the deformation of a strand under tensile, torsion and/or bending loads.

When larger load perturbations are applied to the wire rope it is found that inter-wire friction does play

a significant role with regards to fatigue and wire rope dynamics. The latter can have a significant
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influence on the behavior of the total system that the wire rope is part of. It is clear that for the case of

the expected loading characteristics for the hoisting wire ropes of the PS, the load perturbations can

be considered large. An example of the specific energy dissipation due to inter-wire friction for steady

state cyclic loading is shown in figure 21.

Figure 21: Examples of specific heat dissipation derived theoretically with the OST developed by M.
Raoof taken from [24].

Examining figure 21 shows that the theory is far from predicting the specific energy dissipation near to

the exact. One obvious reason for this is that the friction factor µ of steel on steel is assumed to be

constant, where in reality µ will differ along the length of the wire rope. However, it does predict the

scale and trend of the energy dissipation and thus is a proxy for confidence with regards to predicting

line contact forces, contact areas and inter-wire slippages. A note to be made, stated by the author

himself, is that the theory is especially suited for multi layered strands. And, like Costello’s theory for

birdcaging in section 4.1.2, the theory is applicable for strains up to 5e−3. It is repeated here that

according to the allowable stress in [4], the maximum allowable strain is 3.5e−3 and thus complies with

the strain limit of the OST.

Summarizing, GA Costello’s work, e.g. [7] and [8], does not take inter-wire slippage into account.

Though it has provided a base for M Raoof to develop his Orthtropic Sheet Theory. The OST does

take inter-wire slippage, and many more details, into account and is thus suited for the investigation of

frictional energy generation within a wire rope.

FEM models .

Due to development of computing power (Moore’s law :"Computing power doubles every two years."),

calculation time by FEM packages has been reducing dramatically. This development motivates the

use of a FEM approach. This approach is described in e.g. [37], [19], [20] and [18].

As it turns out, even though computing power has increased, solving a FEM can still take significant

time. In [37] the simulation time is mentioned of two wire rope models, 21hours and 70hours. The first

model consists 11240 elements with 256623 nodes and the second model consists 152347 elements
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with 342947 nodes. In figure 22a it can be seen that the element resolution within a wire is still quite

coarse. The element resolution applied will not suffice to investigate contact deformations and the as-

sociated contact stresses and inter-wire slippage in detail. Though it is mentioned in [37] that inter-wire

contact and friction has been taken into account, no further details about the exact implementation are

shown.

The various FEM models, however, are reported to have a fairly good agreement with experiments

with respect to wire rope stiffness. Bear in mind though that there are several closed form solutions,

e.g. [7], [23], [14] etc., that yield the same results.

An example with a higher and better chosen element resolution is shown in [19]. It focuses on contact

stresses and inter-wire slippages under tensile and torsion loads. Their approach becomes clear by

looking at figure 22b. The element resolution increases near the point of interest, the inter-wire con-

tact. Their results have good agreement with Costello’s theory mentioned earlier with respect to tensile

and torsional stiffness. Interesting in this example are the contact stresses. It seems that good use is

made of the advantages of FEM techniques because insight is gained on the more detailed inter-wire

interactions.

(a) Crossection of a FEM taken from [37]. (b) Finite element mesh from [19].

Figure 22: Examples of FEM approaches.

Another, novel, approach is demonstrated in [22]. Instead of applying existing FEM techniques, the

authors have developed a p-version finite element software. It takes into account friction, contact de-

formation and inter-wire slippage amongst others. The contact forces are the line contact forces of the

first (most inner) layer of wires on to the core wire and the contact forces of crossing wires from the

second layer onto the first layer. The inter-wire contact forces within one layer are not considered. This

approach does significantly reduce computing time. It is not mentioned by how much.

Summarizing, FEM approaches still demand a lot of computing time, especially when details like fric-

tion, contact forces and inter-wire slippages are taken into account. They have been shown, however,

to have generally good agreement with regards to wire rope stiffness.

4.4 Conclusions

As shown in section 4.1, although the increase and decrease of the loading can be relatively fast, the

loading does not have any significant elastic waves as a result. Moreover, the distance travelled before

interfering is too large,� 1m. Thus stress doubling will not be a potential problem.
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Figure 14 in section 4.1.2 shows velocities that are in the same order as a numerical example in [7].

Birdcaging might thus occur. Further investigation is needed with the theory developed in [7].

Due to the expected amount of slack, hockling might be expected to happen during the jacket decom-

missioning. However, criteria on which to base decisions with respect to wire rope choice and hoisting

procedure are shown to be available within Allseas, [12].

The loading will have more inter-wire friction as result compared to a ’normal’ loading that has a steady

state form. Some clues, in e.g. [41] and [36], have been found pointing to friction and the effects of a

rise in temperature, > 300◦C, within the wire ropes. The frictional energy can have material structure

changes as a result, pearlite to martensite, that might decrease the life of a wire rope or even cause

sudden failure of the wire rope during the jacket decommissioning.

Summarizing, stress doubling is not expected to occur and available techniques are at hand to de-

termine the potential occurence of bothg birdcaging and hockling. The subject that needs more inves-

tigation is frictional energy generation and the resulting temperature rise, thus:

• More insight is needed into frictional energy generation within wire ropes with respect to heat

dissipation and resulting potentially significant temperature changes of the wire rope material.

The FEM approach appears to still take up too much computing time, e.g. 21hours in [37]. The

theoretical model of Costello neglects friction, where the Orthotropic Sheet Theory (OST) accomodates

for more details. Not only does this theory yield the needed information, it also provides more insight

into and understanding of wire rope behavior.

• It is chosen to apply the Orthotropic Sheet Theory (OST) to determine the frictional energy

generated in a wire rope subjected to cyclic and non-cyclic axial loading.
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5 Implementing the Orthotropic Sheet Theory (OST)

The OST is chosen as described in section 4. First, the basics of this theory are explained in section

5.1. Second, being then introduced to basics of the OST, it is explained in section 5.2 how the specific

energy dissipation ψ = ∆U
U and the Young’s modulus E can be determined for a SSR and MSR. Third,

in section 5.3 the results are shown of the implementation of the OST for SSR’s and MSR’s. Fourth,

the conclusions are presented in sectin 5.4.

For the implementation of the OST a program is written. It is named the Thesis Program (TP).

In this chapter and in appendix B the assumptions that underly this theory are explained. A summary

of these assumption is presented here.

List of assumptions from section 5

• During deformation, twisting and bending of individual wires is negligible and thus wires carry

only pure tension.

• Plane sections remain plane and thus the theory is applicable only remote from clamps.

• Centre line of wire forms a helix both before and after deformation.

• When considering a large number of wires in a layer, > 6, and small lay-angles, < 40, the

cross-section of a cylinder under an angle can be reasonably approached as an ellips.

• The influence of the transverse contraction is assumed neglible for the derivation of the wire

slippage β in the presence of a rigid core.

• The helical strands are approached as being straight.

• Strand tensile load is uniform over the whole strand cross-section because the lay-angles in

different layers are very similar.

List of assumptions from appendix B

• Centre line of wire forms a helix both before and after deformation.

• In the unloaded situation the wires within the layer are just touching each other.

• The cross-section of the thin wires is an ellipse.

• The influence of the transverse contraction is assumed neglible for the derivation of the wire

slippage β in the presence of a rigid core.

• A single layer on a rigid core is considered.

• Wires carry only pure tension.

Assumptions from [23], pagenumbers refer to paper-pages:

• Pure axial loading.

• Centre line of wire forms a helix both before and after deformation. P79

• All the wires are the same length and the plane sections remain plane which is at least reason-

able for sections remote from the ends of the strand/rope. P79
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• In normal rope construction, the lay-angles in different layers are very similar and the assumption

of a uniform Faxial over the whole cross-section is a reasonable one. P82

• Changes in lay-angle α and radius r are very small. P82

• FN and FR are of the same order of magnitude. P82

• The shear strain S′6 is zero. P88

Important remark in [23]:

• "However, in a more realistic random loading situation it is reasonable to expect rather higher

values for energy dissipation.", P91

5.1 Basics of the OST

In this section the basics of the Orthotropic Sheet Theory are explained. It has been developed for

a multilayered strand. Here it will not be shown what the exact derivations are of the mathematical

relations describing tensile defeormation of a strand. Only the assumptions and reasonings that the

derivations are based on will be presented. The mathematics can be found in appendix B. The notation

for the strain tensor compliances differ from conventional notation. On the left of the following equation

is th enotation as used in the papers of M. Raoof where on the right the conventional notation is shown:S1

S2

S6

 =

S11 S12 0

S12 S22 0

0 0 S66


T1

T2

T6

 ≡
 εxεy
γxy

 =

ε11 ε12 0

ε21 ε22 0

0 0 ε33


σxσy
τxy

 (5)

5.1.1 Orthotropic Tensor

A tensor describes linear relationships between vectors and scalars. Here the tensor is a strain ten-

sor. It represents the relation between the forces per unit surface, and the coordinates of the normal

directions of the surfaces for which those forces are considered. The resulting strains are a measure

of deformation where a distinguishment is made between normal strains and shear strains. Normal

strains are coupled with a change in volume where shear strains are not. The latter are coupled with a

change in angle between two initially normal planes.

Strand Wire Layer Cylindrical Shell

Cross-Sections

Figure 23: The basic approach of the OST is to first analyse each wire layer separately. Each wire
layer is approached as a cylindrical shell.
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Two strain tensors are defined for the OST. First, a strain tensor is defined that describes the defor-

mations of a wire layer. Each wire layer is approached as a cylindrical shell, see figure 23, and is

then analyzed. Once all wire layers have been analyzed, the strand properties can be deterined. The

wire layer is allowed to experience tensile (S1) and diametral (hoop) strain (S2). Hoop strain is in the

circumferential diretion. The wire layer has a lay angle α with respect to the axial axis of the strand,

whereof the wire layer is part of. When the strands experience tensile strain, the wire layer will, too,

experience tensile strain. But because the wire layer has an angle α with respect to the strand ten-

sile strain, shearn strain (S6) will also occur. The shear strain will translate into slippage between the

adjacent wires within this wire layer. In figure 24 the strains and the inter-wire slippage is depicted.

L 1

L 2

1 2

1 2L L Inter-wire slippage 

2Hoop (Diametral) Strain S1Axial Strain S 6Shear Strain S

Figure 24: Illustrations of the strains in a cylindrical shell as defined for the OST.

When a material is said to be isotropic, its material property tensor (Hooke’s tensor) relating stress to

strain is invariant under coordinate transformation. In other words, the material behaves the same in

all directions. From figure 24 it can be seen that a wire layer behaves different in each direction and is

thus anisotropic.

An orthotropic tensor (OT) is a special case of anisotropy. It has at least two orthogonal planes of

symmetry, see figure 25.

Figure 25: Symmetry planes of the of the orthtropic tensor of a wire layer.

The orthotropic tensor to be used within a wire layer, OTwl, is two-dimensional and contains the
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compliances based on a cylindric shell. The determination of the compliances is based on the inter-

wire interactions within this shell. The third dimension, in the strand radial direction, is assumed to be

negligible and the wire is approached as experiencing plane strain. There are thus two othogonal and

one shear strain.

The subscript 1 refers to the axis in the axial direction of the wire. The radial strain, subscript 2, is

chosen to be in the direction of the strand circumferential direction, or from wire center to wire center.

As will be shown in 5.1.3, this is to accommodate for the diametral defelection δn due to the wires

being pressed against each other as a result of strand strain S′1.

The subscript 6 refers to the shear strain. The shear strain occurs because the lay-angle α changes.

A line orthogonal between the wire centers before deformation is not orthogonal after deformation and

thus the wire center lines have sheared with respect to each other. The tangential shear strain is thus

related to the inter-wire slippage of two adjacent wires.

(a) Side view of strand with the principal axes of wire

strains, S1 and S2, and of strand strains S′
1 and S′

2.

(b) Cross-section of strand with therein drawn the wire ax-

ial and radial strains, S1 and S2 respectively, and the line

and trellis contact forces, PRC/MS and PTR respectively.

Figure 26: Side view (left) and cross-section (right) of a strand.

As each wire layer is evaluated, the strand radial direction is not taken into account in the tensor cal-

culations within a wire layer. It is taken into account, however, when deriving kinematical relationships

of the strand strains (axial S′1, radial S′2 and torsional S′6), see figure 26a.

In the strand strain tensor, subscript 1 refers to the axial direction of the strand and subscript 2 refers

to the radial direction. The subscript 6 refers to rotation around the strand axis,S′1S′2
S′6

 =

S′11 S′12 S′16

S′12 S′22 S′26

S′16 S′26 S′66


T ′1T ′2
T ′6

 (6)
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and, where x and y are the axial and radial strand direction respectively:

S′1 = εxstrand
,and S′2 = εystrand

(7)

Kinematical relations can be derived between the strand and wire-layer strains of a strand subjected

to an axial strain S′1. These relations are explained in section 5.1.2. The orthotropic compliances S′ij
are explained in section 5.1.4.

5.1.2 Kinematics in Wire-Layer Continuum subjected to a tensile Strand Strain

The change in geometry of a strand due to deformation can be described with a collection of eight

equations. These are kinematical relations derived when the strand is subjected to an axial strain S′1.

All eight unknowns herein are dependending, whether directly or indirectly, on the strand strain and

the construction details of the wire layer being investigated. Here it will be described what these kine-

matical relations are based on. For the actual mathematics and derivations it is referred to appendix

B.2

When a strand is stretched, the lay-angle α of the wires will decrease. This change of lay-angle is

accompanied with bending and twisting of the individual wires. However the following main assump-

tions in deriving this theory are [23]:,

During deformation, twisting and bending of individual wires is negligible and thus wires

carry only pure tension.

and:

Plane sections remain plane and thus the theory is applicable only remote from clamps.

During construction of the strand, it can be expected that the wires will deviate slightly from the helical

geometry. Under axial stretch in the strand it is plausible to expect the wires to deviate even more

from the ideal helix. This deviation is expected to be negligible, however, and therefore the following

assumption is made:

Centre line of wire forms a helix both before and after deformation.

Two radial strand strains, S′2C and S′2R, are introduced. The strand strain S′1 results in a change in α

accompanied with a change in helix radius r. This change in helix radius determines the radial strains

S′2C/2R before and after deformation:

S′2C/2R =
r′ − r
r

(8)

The difference between these radial strains is the reasoning behind the change in helix radius r.

A relation between the strand tensile ,S′1 , and radial, S′2C , strain can be derived with the parametric
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description of a helix:

x = r cosφ (9a)

y = r sinφ (9b)

z = r (cotα)φ (9c)

The situation of pure tensile strain is considered, thus:

The ends of the wire rope are not permitted to rotate, thus ∆φ
L = 0

The radial strain S′2C includes the effects of the rigid body movements of the wires due to a change

of α and contact patch deformation. The subscript C refers to a rigid core being present. The contact

patches are the contact areas of wires being pressed against the next inner layer (Trellis Contact), see

figure 19b in section 4.3.2. The contact patches can be included by making the assumption:

For each wire layer a rigid core is present to derive S′2C .

The above mentioned rigid body movements of the wires do not contribute to line contact forces. The

radial strain associated with these rigid body movements is denoted S′2R. In determining the radial

strain S′2R the following assumption is made:

When considering a large number of wires in a layer, > 6, and small lay-angles, < 40circ,

the cross-section of a cylinder under an angle can be reasonably approached as an ellips.

In figure 27 it is visualized that the helix radius r shortens when the lay-angle α becomes smaller. This

radial strain is not directly related to the strand strain S′1, only indirectly as the lay-angle changes due

to the strand strain.

Figure 27: Change in helix radius due to change in lay-angle α where the wires are treated as rigid
bodies.

The strain S′2R as a result of rigid body movements does not contribute to line-contact forces and
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Strand

Helical Wire

Figure 28: Illustration of dS1 as a result of strand tensile strain S′1 when S1 is kept zero and only the
resulting lay-angle α′ after deformation is taken into account.

deformations and thus needs to be subtracted from S′2C to yield the net radial strain:

S′2 = S′2C − S′2R (10)

A change in lay-angle α, with the associated strand tensile strain S′1 set to zero, results in a change

in axial wire strain dS1, see figure 28. In deriving wire slippage, ∆l, dS1 must be subtracted from the

total wire strain S1 and thus does not contribute to inter-wire slippage.

Figure 29: A sketch clarifying the determination of wire slippage between two adjacent helical wires.

Through lay-angle α, two relations can be derived between; strand and wire tensile strain S′1 andS1,

and between the helix radius r′ and the radial strain S2R.

The latter relation can be substituted into a geometric relation, [6], that has been derived between the
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tensile wire strain S1 and radial strand strain S2. This is achieved by using the circumference of the

cirkel with helix radius r. Setting the strand strain S′1 to zero will yield a relation whereof the wire tensile

strain represents the strain that would occur due to the rigid body movements of the wires. When the

lay-angle α changes without strand strain S′1, the wires thus have to axially contract. This strain is

denoted as dS1 which will be subtracted from the total axial wire strain because it will not contribute to

inter-wire slippage because all adjacent wires experience this same change.

With the relative wire movements known the inter-wire slip β can be derived. In figure 29 it is shown

that there is only a diametral shear strain because the change in diameter is neglected and thus:

The influence of the transverse contraction is assumed neglible for the derivation of the

wire slippage β in the presence of a rigid core.

In determining the tensorial shear strain S6T the change in diameter is taken into account. The de-

scribed relations derived between the strand construction details and an axal strain S′1 yields eight

equations wherein there are eight unknowns. A solution can thus be found for these unknowns by

simultaneously solving the set of equations. For more details about the derivation of each of the eight

kinematical relationships it is referred to appendix B.2.

Because the equations are very non-linear, the Newton-Raphson method needs to be applied. How

this method works and has been implemented is described in appendix E. The result yields:

S1 S2 S′1 S′2 S′2R S′2C S′6T α′

5.1.3 Radial Load Transfer in Multi-Layered Strands

The inter-wire forces need to be determined first where each wire layer is treated as lying on a rigid core

and there are no forces from outer layers. In every layer the line contact force PRC can be calculated

when the strand is subjected to an axial strain S′1. The subscripts RC refer to the rigid core. The

contact theory developed by Hertz is applied here. The formulas for two parallel cylinders are taken

from a compilation [42] of this theory. These formulas show how diametral deflection δn, line contact

width b and line contact force PRC relate to each other with the material properties Poisson’s ratio ν,

Young’s modulus Esteel and the wire diameters D1 and D2, see figure 31.

Figure 30: Forces, PRC/MS and XRC/MS , acting on the wire center (left) and the resultant force XRi

(right) when the multilayered strand is considered.

The wires are indented at the contact surface and thus there is a change in distance between the

adjacent wire centers, diametral deflection δn. The diametral deflection δn can also be derived with
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n

RCP RCP

b

D1

D2

Figure 31: Cross-section of two wires in line-contact showing the diametral deflection δn as a result of
the line-contact force PRC .

the diameters D1 and D2, and the wire layer diametral strain S2. The latter is a result of the solving of

the eight kinematic relations as described in 5.1.2:

δn = S2D (11)

The width of the indention is 2b, [23], where it is noted that b is the full width of the indention in [42].

Combining the Hertzian contact relations with equation 11 and writing for δn, the following equation

results where PRC is the only unknown:

C1 =
4
(
1− ν2

)
π

(12a)

C2 = C1

(
1
3 + ln

(
1

0.8
√

2 (1− ν2)

))
(12b)

1. δn =
PRC
Esteel

C2 + C1 ln

√Esteel (D1 +D2)

PRC

 (12c)

Because of the helical form of the wires, when the strand is subjected to a tensile strain the wires

straighten. When only one wire is considered this is possible but when a collection of wires is consid-

ered (strand) they restrict each others movement. This results in a force directed to the strand center,

see figure 30, and is shown in [7] to be:

XRC =
EAS1 sin2 α

r
(13)

In [23] it is reasoned that each wire layer i has a PRC

XRC
ratio for different mean tensile stresses T . The

assumption here is:

Strand tensile load is uniform over the whole strand cross-section because the lay-angles

in different layers are very similar.

With the PRC and XRC data known, their ratios within each wire layer i can be used to determine the

line contact force, PMS , and radial force, XMS . The subscripts MS refer to the multi-layered strand.
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The forces of all layers are taken into account in deriving these. In figure 30 the force equilibrium

is shown. The resultant force XRi is the force acting upon the next (inner) layer i + 1. With XRi

calculated, one can move into the next layer to determine to determine XMSi+1
and then use the PRC

XRC

ratio to determine PMS .

5.1.4 Orthotropic Compliances

OT of wire layer The compliances S11 and S12 are according to Hooke’s law. However, the net area

An,i is the actual area of the cross-section of a wire layer normal to the direction S1 where the gross

area Ag,i is the area of a cylindrical shell in that same direction. The gross area is approximated by

summing the areas of squares with sides equal to the wire diameter. Both these compliances are thus

multiplied by a factor Ag,i

An,i
= 4

π .

The compliance in the diametral direction, S22, captures the change in deformation, δn, of two cylinders

in line contact under a normal force Pline with diameter D1 and D2. Thus S22 is the resulting diametral

strain. The compliance S22 can be derived by taking the derivative with respect to 2P
D1+D2

. So how

much change wire center distance (D1 +D2), and thus indention, results from a change in line contact

force Pline. This is then normalized over the wire centre distance to yield the diametral compliance:

S22 =
2

D1 +D2

dδn

d
(

2P
D1+D2

) (14)

The compliance S66 is related to the inter-wire slippage. For details about the elaborate derivation it is

refered to appendix B.

Recall now from section 5.1.2 that solving the kinematical relations yields amongst others the tensile

and diametral wire strain S1 and S2 respectively. Thus with these strains and all compliances now

known, the tensile and diametral wire stresses can be calculated, T1 and T2 respectively.

5.1.5 Effective Young’s Modulus of a strand

. The compliances of the OT of the wire layer can be transformed to the strand reference frame. This

is done with Hearmon’s notation [17]. The equations describing this transformation can be found in

appendix B.6.

To derive the effective Young’s modulus of a strand Eeff , the strand rotations around its axis S′6 are

set to zero in equation 6. In the previous sectin 5.1.4 the wire tensile and diametral stresses T1 and

T2 are derived. In [23] it is postulated that, where T ′1 and T ′2 are the strand tensile and hoop stresses:

T ′2
T ′1

=
T2

T1
= K (15)

The OT of the strand, equation 6, can then be solved to yield the relation for strand tensile strain and

stress S′1 and T ′1 respectively:

T ′1
S′1

=

(
S′11 +KS′12 −

S′16

S′66

(S′16 +KS′26)

)−1

(16)
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For each wire layer Eeff can then be derived. These are summed over all layers. Hereby the gross

area Agrossi of each wire layer i is used and the number of wires ni in each layer. For mathematical

details it is referred to appendix B.6.

The shear compliance S66 explained in section 5.1.4 depends on the wire slippage. It is infinite when

∆l > ∆lmax
. Investigation leads to a value of 1 being relatively infinite. When S66 is infinte, Eeff

remains fairly constant up to an allowable tensile strain of S′1 = 5e−3.

5.2 Implementation of the OST

The specific energy dissipation resulting from inter-wire friction for a strand can be determined for

different load perturbations around a mean load by using the parts later described in this section.

5.2.1 Implementation for SSR’s

The construction details of the strand and the material properties of steel are used to determine the

Young’s modulus of the strand, Estrand considering no inter-wire slip. Note that this will not be always

necessary as rope producers might have determined this strand property. Also, it only has to be deter-

mined once for a range of axial strand strains and the information can be stored as a function of mean

load.

Recall from section 5.1.5 that Estrand can be determine for the no- and full-slip case. The wire rope is

stretched from the unloaded condition. When applying a mean load the wires will experience full-slip.

The initial stretch is thus determined with the full-slip Estrand.

Furthermore, after an initial stretch, Estrand remains fairly constant. It is therefore expected that eval-

uating Estrand by taking its average after the initial stretch will be of sufficient accuracy to determine

the mean strain.

The mean strain can then be used to determine the constant values to be used for tensile cyclic loading

around a mean load. The initial values are the line contact force, PMS , within each layer the normal

compliance between the wires S22, the stress tensile and diametral stress ratio of a wire, and the max-

imum wire slippage, ∆lmax. These are the values that are used to evaluate the energy dissipation of

one load perturbation cycle.

max 22, , ,MSl S P K

strand

1 2, , ,n D D

strandE

Load perturbations 
around mean load

strand

Young’s modulus around 
mean load

Estrand

Constants around mean 
load

strand

• Mean axial load.

Determine εstrand

•Energy dissipation/cycle, ψstrand.

•Axial wire strain, S1.

1 2

n
D D



strand

wire wireE 
,

j jstrand strandE 

Figure 32: Flow chart for the energy dissipation ψ of a SSR.

The final step will yield the specific damping, ψstrand, of the whole strand but also of each wire layer,
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ψlayer, as a function of specific load perturbation. The energy dissipation is equal to the surface within

the hysteresis loop, see figure 37. It is determined by methods developed in [10]. Therein a relation

is derived between the aformentioned initial values and the friction factor µ, the strand tension T ′1 and

the Poisson ratio. The indention ( through Poisson’s ratio) of the wires and the normal line contact

and radial forces that are present are thus taken into account. The wire slippage ∆lmax
indicates the

transition from stick-slip to full-slip.

5.2.2 Implementation for MSR’s

The OST needs to be developed for a MSR. Two approaches have been investigated:

1. Follow the theory analytically for double helices.

2. Treat the helical strands as wires and apply the existing OST theory. As the wire is actually a

helical strand, apply existing theory again as if it is considering a straight strand, hereby ignoring

the effect of the wires being actually double helices.

Once the OST theory has been understood and implemented for inter-wire friction in a single straight

strand, it can be applied again the same way for determining the friction according to the first method.

The axial stiffness is given by the wire rope producer for the entire wire rope, and not for the individual

strands. Note that this is an essential property in determining the line contact forces. It will thus also

be necessary to apply the OST to determine the stiffness of the individual strands.

1layer in  1S

2layer in  1S

1 strand of 1S 

2 strand of 1S 

Cable strain Wire strain

Each wire represents a strand

Strain in wire rope1S  1S

Figure 33: Schematical representation of approach 2 for applying the OST to MSR’s.
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The first approach is the same analytical route as is performed in [23] for SSR’s. The parametric

equations describing the double helix of a wire in a strand need to be derived. For the notation, it is

referred to section A. To understand the following it is not needed to grasp the next equation 17. The

z-coördinate as a function of the polar angle φ11 is taken from equation 32 and given by:

z0 = r11

(
(cotα10) (cotα11)φ11√

1 + cotα10
− sinα10 sinφ11

)
(17)

A first step in deriving the theory is to determine the change in lay-angle α11 due to the strain of the

helical strand as a result of the applied load where the strand length L′strand after deformation is given

by:

L′strand = Lstrand (1 + εstrand) (18)

As pure tension is considered the change in polar angle is zero thus δφ
∆ . Applying this to a double helix

appears to be impossible analytically as this means that one needs to write equation 17 for the polar

angle φ11.

rope

,
j jstrand strandE 

E MSR strands Determine εrope

Load perturbations around 
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stranded rope

Initial conditions around 
mean load:
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Poissons ratio of helical 
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j
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Figure 34: Flow chart for determining the energy dissipation ψMSR =
∆Ucycle

Ucycle
of a MSR depending on

Load Perturbation
Mean Load .

The second approach is basically performing the OST twice. An important assumption for this ap-

proach is:
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The helical strands are approached as being straight.

Approach 2 is possible. At small helical strand strains, in the order of 5e-3, the effects of the bending of

the helical strand will be expected to be negligible. Though this has not been investigated quantitatively,

qualitatively it is fairly safe to state that the elongation of the strand approximates an infinitesimal part

of the whole strand. At this scale the bending of the helical strand on the double helical wires is almost

non-existent. This approach is chosen to be applied.

The procedure, in accordance with approach 2, to determine the specific energy dissipation for a

multi-strand rope is shown in figure 34.

5.2.3 OST procedures

A blue block in the flowcharts of figures 32 and 33 hide another flowchart. These blocks show the

details of the implemetation of the OST. Next each block will be described and a flowchart shown for

clarification. It is stressed here that the flowcharts shown are not designed on efficiency but more on

clarifying the procedures to determine the various strand properties.

The no-slip Young’s Modulus of a wire rope depends on the strand tensile

strain S′1, and thus the tensile load. The kinematic relations are solved for a chosen S′1. The diametral

strain S2i
of the wire layer is then used to determine the line contact force PRCi

. The determination

has not yet taken the multilayered constructionof a strand into account. This is done by taking the

resultant strand radial load XRi
into account. The resulting line contact force PMS can then be used

to determine the diametral compliance of the strain tensor in the wire layer i. The compliance S66

depends on the wire slippage ∆l. Two situations are evealuated, the no-slip and full-slip. When the

sliding of wires is in the full-slip regime, S66 is infinite. It has been found that taking a value 1 is

relatively infinite. For the no slip regime ∆l = 0.

Recall from section 5.1.4 that the other compliances S11 and S12 remain constant for each strand

tensile strain S′1 and solely depend on the wire material properties ν and Esteel.

Now that the compliances of the wire layer strain tensor are known, the effective Young’s Modulus

Eeffi can be evaluated for layer i.

When al wire layers have been analysed for Eeffi , the results can be summed over all layers yielding

Estrand.

Above the effective no- and full-slip Young’s Modulus has been evaluated for a

chosen strain S′1. The results can be applied to determine the tensile strain of a strand subjected to

given mean tensile load.

Before evaluating the specific damping around a mean load of a strand subjected to a cyclic tensile

loading, initial values need to be determined for each wire layer i; S22i
, PMS , ∆lmax

and Ki. These

initial values are found to remain fairly constant for perturbations around a mean load. In figure 36 it

is shown that also the wire strain S1i is an output. The wire strain S1i is utilized for MSR’s where first
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Figure 35: Flow chart for determining the effective Young’s Modulus Eeff of a SSR depending on
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helical strands are treated as wires.

The procedure to determine the initial values is very similarl to the determinination of Estrand. The

difference lies in the end of the procedure. Instead of evaluating all OST compliances, only the compli-

ance in the diametral direction of the OST, S22, will be evaluated. The final desired initial value, ∆lmax,

can therewith be determined.

OST compliance
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Figure 36: Flow chart for determining values of a strand kept constant around a mean load.
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The strand kinematics are again solved for each chosen strand perturbation.

The resulting tensorial shear strain S6T is used to determine the inter-wire slippage ∆l. The previously

determined initial values S22i , PMSi , ∆lmaxi
and Ki are used to determine Eeffi and the specific

damping ψi.

When all layers have been analysed, the results for each wire layer i are summed to finally yield

ψstrand and Estrand for each load perturbation around a mean load.

Figure 37: Hysteresis cycle of friction with stick-slip regime.
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5.2.4 Implementation for Dynamic Model for SSR’s and MSR’s

The OST has been developed for cyclic tensile loads. The tensile loads on the hoisting wire ropes of

the PS, however, are non-cyclic, see figure 10a. It is thus difficult to reason a mean tensile load. The

mean load is needed to implement the stick-slip behavior as is shown in section 5.2.1. Take e.g. the

de- and increase shown in figure 10b. What can be seen as the mean load? Is it the mean of the

previous oscillation? Is it the peak force considered divided by two? And for the increase, is it the

slack situation, etc.? Basically, how can a mean load be reasoned on physics? And if the mean load

is reasoned for different parts of the tensile loading, how can the reasoning be implemented?

It is decided that the stick-slip behavior is neglected for the non-cyclic dynamic implementation of the

OST. Higher friction forces and thus energy dissipation will then result. The results are then upper

limits of expected frictional energy. recall that for the cyclic implementation, the line contact forces

PMS are kept constant. In the dydnamic model PMS will be allowed to change for each time-step.

This too, will result in higher frictional energy compared to the cyclic-implementation.

In figure 39 the flowchart is shown of the procedure for each time step. Whether the dynamic model

is cyclic or non cyclic, the strand kinematics are solved followed by calculating the wire slippage ∆l.

When the tensile load is cyclic, the friction forces in each layer are calculated based on the initial

conditions that are kept constant; PMSi , S22i , bi and ∆lmaxi
for each wire layer i. The friction forces

Ffrici for each layer are then calculated according to the hysteretic behavior of the inter-wire slip.

When the tensile load is non-cyclic, ∆lmax
is not taken into account and is thus continuously in full-slip.

The linecontact forces PMSi
and associated contact width bi are evaluated at each time step for each

wire layer i.

Strand Kinematics

i = 1

i ≤ nlayers

i = i + 1

True

False
STOP

n i i 1,S  i

Wire Slippages

,l i
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•Inter-wire friction, Ffric.
•Line contact width, b.
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Figure 39: Flowchart of the implementation of the OST in a dynamic model where the hysteretic
behavior is taken into account for a cyclic loading but not for non-cylcic loading. For the non-cyclic
loading the slippage is continuously in the full-slip regime.
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5.3 Results

In this section the results are shown for SSR’s and MSR’s. These result have been compared to

examples provided in two papers of M.Raoof, [23], [27], [29] and [25]. In the papers also numerical

examples are provided of intermediate answers. For example a value of the tensorial shear strain S6T

is provided in [25] for a given S′1 of the 39mm strand.

The comparison of results with these papers and also with a FEM model developed by [19] is de-

scribed in appendix B.7. The main conclusion is:

The implementation of the OST is performed satisfactory to determine the order of magnitude of tem-

perature change within a wire rope subjected to tensile forces determined in [4].

The two main results of the OST are the effective Young’s Modulus Eeff and the specific damp-

ing ψ, both as a function of specific tensile load (or strain) perturbation. The construction details of the

SSR and MSR are shown in table 3 and 4 respectively.

Layer 1 2 3 4 5 6

Number of Wires 30 24 18 12 7 1

Lay Angle (◦, +RH, -LH) 17.74 -16.45 -15.93 14.9 15.42 0

Wire Diameter (mm) 3.53 3.53 3.53 3.53 3.53 5.05

Mass (kg/m) 9.5

Table 3: Construction details of a 39mm SSR taken from [26].

Layer 1 2 3 4

Wire Rope

Number of Strands 6 6 1

Lay Angle (◦, +RH, -LH) 17.92 18.19 0

Strand Diameter (mm) 12.78 5.13 5.62

Mass (kg/m) 9.5

Strand Layer 1

Number of Wires 16 16 8 1

Lay Angle (◦, +RH, -LH) -18.29 -18.29 -18.29 0

Wire Diameter (mm) 2.000 1.484 1.88 3.15

Strand Layer 2

Number of Wires 6 1 18

Lay Angle (◦, +RH, -LH) 14.88 0

Wire Diameter (mm) 1.68 2.000

Core Strand

Number of Wires 6 1

Lay Angle (◦, +RH, -LH) 14.88 0 3

Wire Diameter (mm) 1.84 2.000

Table 4: Construction details of a 40mm MSR taken from [29].

5.3.1 Results for 39mm SSR

The results are shown for a 39mm strand whereof the construction details are provided in [23].
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Figure 40: No-slip and full-slip effective Youngs’ Modulus for the 39mm strand.
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Figure 41: Specific damping ψstrand = ∆U
U for the 39mm strand. The mean load is 0.415MN
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5.3.2 Results for 40mm MSR

The TP to implement the OST has been adapted for MSR’s, as explained above in section 5.2.2. An

important note is that the forces from one strand layer to another strand layer have, yet, not been taken

into account. It is thus as if the strands are just touching eachother, whether under tension or not.

Results can now be produced for the MSR’s treated as a strand, where the laid strands are treated as

wires.

In [29], a similar approach as described in section 5.2.2 has been applied in determining the full-slip

and no-slip Youngs Modulus of a MSR.
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(a) No-slip and full-slip Young’s Modulus of 40mm MSR.
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Figure 42: The no-slip and full slip Young’s Moduli of 40mm MSR and its strands.
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Figure 43: Specific damping ψstrand = ∆U
U for the 40mm IWRC. The mean load is 0.204MN.

5.4 Conclusions

In this chapter the OST has been understood and adapted twice, for MSR’s and for the dynamic model

(both for MSR’s and SSR’s). The following can be concluded:

• OST succesfully implemented for SSR’s.

• OST succesfully adapted and implemented for MSR’s.

• OST adapted for implementation in cyclic and non-cyclic dynamic model.
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6 Frictional Energy Generation and resulting Temperature Changes

First, a dynamic multiscale FE2 model is presented to determine the frictional energy generation in

a wire rope subjected to a tensile loading. The tensile loadings applied have cyclic and non-cyclic

characteristics. Second, the frictional energy determined by the multiscale FE2 model is applied in a

heat conduction model in 6.2 to determine the temperature change in the time domain in the cross-

section of a wire.

6.1 Frictional Energy Generation

6.1.1 Multiscale FE2 Modeling

The amount of strain difference between the time steps influences the friction forces within the wire

rope. To incoorporate this effect into the dynamic model of the wire rope, friction needs to be evaluated

for every time step. First, at each time step the strain is evaluated for each wire rope element (Macro

Scale). Second, the resulting friction forces need to be determined for every wire rope element (Micro

Scale). The model is thus evaluated at two different scales, hence the name multiscale FE2. Third,

the results yielded by the micro scale model is fed back into the macro scale model. See figure 44 for

an illustration of the method.

Figure 44: Schematical representation of multi-scale FE2 modeling of a wire rope.

Friction forces between the wires counteract the strain direction of the wire rope. But the amount of

strain difference (inter-wire slippage) also determines the friction forces. The non-linear variant of the

numerical integration method Newmark Method, consists a convergence loop to deal with this. For ev-

ery strain difference between two time steps, resulting friction forces can be evaluated. These friction

forces are tehn substituded back into the dynamic equations and a residual force can be calculated.

In case of an exact answer the residual will be zero. The convergence loop can be stopped when the
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residual small enough. For each convergence the residual is compared to the a fraction of the total

forces in the system.

The evaluation of the friction forces is computationally demanding compared to the time integration

of the dynamic equations of the wire rope. A significant amount of time can be saved when these

friction forces only have to be evaluated once. This is possible when the effect of the friction forces

have a small influence on the dynamic response. In appendix D.2, a comparison is made between

incoorporating the evaluation of the friction forces in- and outside the convergence loop. It has been

found that the influence on the dynamic response is negligible, thus:

Evaluation of friction forces is kept outside the convergence loop of the numerical integra-

tion.

The friction forces do have an effect on the dynamic response of the wire rope. If there is no friction,

more internal wire rope vibrations will result compared to the same model with friction. These vibrations

on their turn influence the frictional energy generation. It is also noted that the dynamic response of

the overal system consisting the Jacket, Pieter Schelte etc, is negligible.

6.1.2 Wire Ropes used for Modeling

The construction details of the wire rope to be used (DB2K by Bridon) for the jacket (de)commisionning

by the PS, see figure 8 in section 3.2.2, have not been made available. Several examples of wire ropes

and their construction details, however, are presented in the papers by M Raoof. One advantage

of using these examples for the following models is that intermediate results can be compared to

examples from the papers by M. Raoof. One disadvantage is that it is not exactly clear what the exact

influences are ... scaling etc. Two examples are applied, first a 39mm SSR and second a 40mm

MSR. The construction details are presented in table 3 and 4.

It is desired that the resulting tensile strain in the wire ropes used for modeling results in the same

tensile strain were the actual (DB2K) wire rope to be used. The Youngs Modulus times the area of the

cross-section of the DB2K is available, EADB2K = 263MN . Note that the full-slip Eeff of the wire

ropes is considered here. The following relation can be thus made with Hooke’s law σ = εE:

σexample
Eexample

=
σDB2K

EDB2K
(19)

An equivalent tensile force can now be derived:

Fexample = FDB2K
EexampleAexample
EDB2KADB2K

= FDB2K · C
(20)

The tensile loads calculated by the model of [4] thus have to be multiplied by the factor C. The Youngs

Modulus EDB2K is provided as a constant. In figures 40 and 42 it is observed that it is not a constant.

It is also observed that beyond a tensile strain of 1e−3 it does not change significantly. Even though

the change in Youngs Modulus as a function of tensile strain is taken into account in the model, the

coëfficients C in equation 20 is evaluated once with the average Eeff of the wire rope examples from

the papers by M. Raoof.
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For the two different example wire ropes this yields;

C39mm = 0.571

C40mm = 0.437
(21)

6.1.3 Cyclic Load

The Multiscale FE2 technique is applied als for a cyclic load. The resulting energy dissipation per

cycle is used to determine the specific damping ψ = ∆U
U . The hysteresis loop differs in shape from

the hysteresis loop described in [23]. The stick-slip phase is for the dynamic model linear, where it is

non-linear as applied in [23]. The difference in energy dissipation, however, will be within a few %. It

can thus be compared to the specific damping ψ as determined by the OST, section 5.2.1. It is the

OST that has been verified with experiments, and therefore it is the energy dissipation yielded by the

dynamic model that can be verified with results for the OST.
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Figure 45: Cyclic axial load around a mean load applied
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Figure 46: Hysteresis loop for the cyclic axial load shown in 45 around a mean load of 0.42MN
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Figure 47: Heatflux (kW) in a wire layer of the bottom wire rope element resulting from the cyclic axial
load shown in 45 around a mean load of 0.42MN
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6.1.4 Non-Cyclic Load
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Figure 48: Random like axial loading occuring during Jacket decommisioning by the PS modeled in
ADAMS by [4].
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Figure 49: Energy flux on line contact area due to axial loading shown in figure 48.
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6.2 Temperature Change

In the FEM package Ansys the temperature change has been modeled. Because of symmetry a cross-

sectin of a wire has been modeled with the surrounding lubricant (SAE-90). It is stressed here that the

model merely gives an impression.

The elements Plane55 are used. The contact width b is not exepected to influence the dissipation

throughout the material significantly. It is thus chosen to take an average width.

The heat flux is applied on the surface as a constant. The constant value is taken from the highest

heat flux calculated by the TP for both the 39mm SSR and the 40mm MSR.

Figure 50: Temperature change after 0.5s of the highest magnitude of heat flux, 11kW/m2 resulting
from non-cyclic dynamic model for the 39mm SSR.

For constant heat flux of large magnitudes as seen in figure 49, only a few tenths of degrees at the

wire surface are expected.

6.3 Conclusions

The heat flux generated in a wire rope subjected to a cyclic load and to a non-cyclic load as yielded by

[4]:

• Significant more, several orders, frictional energy generated under random like load compared

to a cyclic load of same magnitude.

• No significant temperature rise, order of thenths of degrees, to be expected as a consequence

from a non-cyclic loading.
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7 Conclusions and Recommendations

7.1 Conclusions

First, for the chapters 4 to 6, the questions and conclusions are repeated here. Finally, the main

conclusions that are draw from these collective findings.

Chapter 4

• What might cause premature failure of a wire rope resulting from slack combined with tensile

loads with shockload (like) characteristics that occur during the jacket decommissioning by the

Pieter Schelte?

Four causes of possible premature failure have been preliminarily investigated:

1. Stress Doubling.

2. Birdcaging.

3. Hockling.

4. Frictional Energy Generation.

It has been found here that stress doubling is very unlikely to occure. Birdcaging and hockling, how-

ever, might occur. Techniques to determine whether they occur are available within Allseas. There

are no techniques readily available to investigate frictional energy generation. It is therefore chosen to

focus thereon, thus:

• More insight is needed into frictional energy generation within wire ropes with respect to heat

dissipation and resulting potentially significant temperature changes of the wire rope material.

• What is a suitable method to investigate the chosen cause of failure?

Closed form theories and FEM approaches have been investigated. The FEM approaches have been

found to take too much computing time, e.g. 21hours, without yielding the desired information. Only

one theory, the Orthotropic Sheet Theory, has been found to yield the desired information, thus:

• It is chosen to apply the Orthotropic Sheet Theory (OST) to determine the frictional energy

generated in a wire rope subjected to cyclic and non-cyclic tensile loading.

Chapter 5 The Orthotropic Sheet Theory (OST) is explained here. A program has been written (TP)

and the results have been compared to examples from papers by M. Raoof. There is no full compli-

ance between these examples and the TP. In appendix B.7 it is shown what the resulting differences

are. It is also reasoned that the results can still be used to gain insight on internal frictional energy.

The OST has been mainly developed for SSR’s. The wire rope used for the jacket decommisioning

by the PS, however, are MSR’s. An analytical approach has been investigated though found to be im-

possible. Another approach is to first model a MSR as a SSR where the helical strands are treated as

wires. The strains can be determined and subsequently the inter behavior of each helical strand can

be analysed. It must then be assumed that the helical strands can be approached as being straight.
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• Despite non full compliance with examples in papers, there is confidence in using the line contact

forces for investigating internal friction.

• OST implemented for MSR’s.

The intermediate result yielding the line contact forces and inter-wire slippage is used to develop an

implementation for a dynamic model. The stick-slip behavior is neglected here because the slippages

for the non-cyclic tensile loading expected for the jacket decommissionning are difficult to average and

have significant more slippage than a cyclic loading. Also, because neglecting the stick-slip behavior

results in higher friction forces, frictional energy will be higher. If the frictional energy dooes not endan-

ger the lifespan of the wire rope, it will do so less when the stick-slip behavior is taken into account.

• OST adapted for implementation in cyclic and randon like dynamic model.

Chapter 6 First, a dynamic model has been developed. The OST is adapted for dynamic implemen-

tation as described in section 5.2.4.

Results have been compared between cyclic and non-cyclic loading. The resulting frictional energy is

significant higher than for a cyclic loading. Not only because the stick-slip behavior is neglected, but

especially because the tensile load spikes are much higher.

Second, the resulting frictional energy has used to investigate the temperature change within the wire.

The temperature changes range from a few tenths degress to several degrees, e.g. 9.

• Effect of friction forces negligable compared to effects of axial load. Thus friction forces can be

calculated outside the convergence loop of the Newmark Integrator.

• Significant more frictional energy generated under random like load compared to a cyclic load of

same magnitude.

• No significant temperature rise to be expected as a consequence from a random like loading.

Main Conclusions

The research question has been aimed at answering whether the tensile loading characteristics can

result in a significant temperature. It has been found that a lower limit of 50◦ C can lead to degradation

of the lubricant and is advised to be avoided. According to the modeling this temperature will not be

reached.

7.2 Recommendations

• Install wire breakage detectors, if only to learn more with respect to fatigue.

• Address the effect of random like loading on fatigue life (trellis contacts).

• Address the differences in results between the results found in the various papers and the results

of the TP.
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• Investigate hockling and birdcaging.

• Finish dynamic model for MSR’s.

• Develop model for frictional energy generation within a wire rope subjected to repeated bending,

e.g. for a heave compensating system.

• Perform curve fitting once a wire rope has been analyzed to create for e.g. the Young’s Modulus

as function of tensile strain. This will reduce the computing time significantly.
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APPENDICES
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A Wire Rope Geometry

In this appendix the geometric description of a core wire (single helix) and of a non-core wire (double

helix) in a helical strand in a MSR , will be shown. The subscripts i and j in this section refer to the

strand layer and wire layer respectively, where 0 is the core strand and 1 the first layer of strands

around the rope core and so forth. The same convention applies to the wire layer. Taking thus i.e. r12,

this will refer to the radius of the second layer of wires around the core wire in a strand. That strand

itself is part of the first layer of strands around the core of the wire rope, see figure 51.

r12

Figure 51: Cross-section of a MSR wherein the use of the subscripts in this section are clarified.

A.1 Core Wire of a Helical Strand (Single Helix)

The core wire of a helical strand is a single helix. In figure 52 a part of the helix is shown. The helix

properties are the lay-angle αij and the helix radius rij . The single helical coördinates are described

with the the polar angle φij in the {x, y, z}j frame. This angle rotates around the longitudinal axis of

the helix which is here chosen to be the z0 − axis and coïncides with the center line of the wire rope.

Note again the use of the subscripts. In this case it is thus the core wire of a helical strand in the first

strand layer. Thus this helix is described with φ10 in the {x, y, z}0 frame. Its z0 − axis is aligned with

the longitudinal center axis of the wire rope. The orientations of the x− and y − axis are free, as long

as they are orthogonal to the z−axis so the axes form an orthogonal reference frame. The parametric

function is:

H10(φ10)


x0 = r10 cosφ10

y0 = r10 sinφ10

z0 = r10 (cotα10)φ10

(22)
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Figure 52: Geometry of the core wire of a helical strand in the first layer.

A.2 Wires in a Helical Strand (Double Helix)

The double helix is a helix with respect to a center line that itself is a helix, hence double helix. To

describe a double helix, a second reference frame is used, here denoted as the {x, y, z}1 frame. As

an illustrative example, the first wire layer in the first strand layer is considered here. The subscripts

are thus i = 1 and j = 0 for the single helix (core wire of strand), and i = 1 and j = 1 for the double

helix (helical wire inside the strand). The aim in this section is to derive a parametric description of the

double helix as a function of one variable, namely φ10 in this example, in the {x, y, z}0 frame.

The double helix is first described as a single helix in the {x, y, z}1 frame. The origin of this frame is lo-

cated at the (single) helical coördinates described by the polar angle φ10 from the previous paragraph,

equation 22. One can say that at first the axes of both frames are coïncidental. Then the {x, y, z}1
frame is translated to the single helix coördinates described by H10(φ10), equation 22. These coördi-

nates form a vector d10 which is the linear translation with respect to the origin of the {x, y, z}0 frame.

As will be shown later in this section, subsequently the coördinates of H11(φ11), equation 24, need to

be rotated twice, first with an angle φ10 and second with an angle α10. This transformation is perfomed

with a final rotation matrix Rφ10α10 = Rφ10Rα10 .

So H11(φ11) is described in the {x, y, z}1 frame as a single helix and this frame follows the tangent

of the single helix H10(φ10). These coördinates are then transformed to the {x, y, z}0 frame in such a

way that they form a double helix, denoted as h11(φ10), with respect to the {x, y, z}0 frame. In vector

notation the double helix h11 can be described as, see figure 53:

h11 = d10 + Rφ10α10H11 (23)
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Figure 53: Geometry of the centre wire of a helical strand in the first layer.

The helical wire within the helical strand, and thus within the {x, y, z}1 frame, is described with the

parametric function:

H11(φ11)


x1 = r11 cosφ11

y1 = r11 sinφ11

z1 = r11 (cotα11)φ11

(24)

The z1 − axis of the {x, y, z}1 frame is tangent to the single helix. This tangent is determined by the

polar angle φ10 describing the single helical core wire and its lay-angle α10.

Now let’s say that at first both reference frames are fully coïncidental. The coördinates of the double

helix thus first need to be translated to the single helix with the vector d10. The next step is to make

the z1 − axis tangent with the single helix H10(φ10). This is accomplished with a rotation first around

its z1−axis with polar angle φ10 and second around the x−axis with angle α10. Note that for the first

rotation it is necessary that H10 (φ10 = 0) = [r; 0; 0]. These rotations can be performed with rotation

matrices. They are for the polar angle φ10;

Rφ10
=

cosφ10 − sinφ10 0

sinφ10 cosφ10 0

0 0 1

 (25)

and for the lay-angle α10:

Rα =

1 0 0

0 cosα10 sinα10

0 − sinα10 cosα10

 (26)

Note that the order cannot be chosen freely. A different order will result in a different transformation

of coördinates, in other words; the multiplication of rotation matrices is not commutative. The final
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rotation matrix is:

Rφ10α10
=

cosφ10 − sinφ10 cosα10 sinφ10 sinα10

sinφ10 cosφ10 cosα10 cosφ10 sinα10

0 − sinα10 cosα10

 (27)

The length of the helical strand can be written as a function of φ10. The length of this helix is determined

with an intgral that sums infinitesimal lengths determined with the Pythagoras theorem. In this case

the length of the single helix, L10 is thus:

L10 =

∫ φ10

0

√(
dx
dφ10

)2

+
(

dy
dφ10

)2

+
(

dz
dφ10

)2

dφ10

=

∫ φ10

0

r10

√(
1 + cot2 α10

)
dφ10

= r10

√(
1 + cot2 α10

)
φ10

(28)

This length of the single helix at φ10 is equal to the z-coördinate of the helix in the {x, y, z}1 frame,

equation 24. A relation can thus be made between the polar angles φ10 and φ11 through the length

L10 of equation 28;

L10 = r10

√
1 + cot2 α10φ10

= r11 (cotα11)φ11 = z1

(29)

and thus:

φ11 =
r10

√
1 + cot2 α10φ10

r11 (cotα11)
(30)

It is now possible to describe the geometry of the double helical wire in the helical strand as a function

of the polar angle φ10 with respect to the reference {x, y, z}0:

h11(φ10) =

 r10 cosφ10

r10 sinφ10

r10 (cotα10)φ10

+

cosφ10 − sinφ10 cosα10 sinφ10 sinα10

sinφ10 cosφ10 cosα10 cosφ10 sinα10

0 − sinα10 cosα10


 r11 cosφ11

r11 sinφ11

r11 (cotα11)φ11


(31)

On the right side of equation 31 the first term describes the location of the {x, y, z}1 frame, the second

term describes the rotation of the coördinates written in the {x, y, z}1 frame. The final description of

the double helix coördinates in the {x, y, z}0 frame is then:

h11(φ10) =

r10 cosφ10 + r11 cosφ10 cosφ11 + r11 sinφ10 cosα10 sinφ11

r10 sinφ10 − r11 sinφ10 cosφ11 + r11 cosφ10 sinα10 sinφ11

r10 (cotα10)φ10 − r11 sinα10 sinφ11

 (32)

To check this derivation a small program has been written. The resulting plots can be found in figure

54. Only one double helical wire is plotted per strand.
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(a) Plot of one helical strand with one double helical wire.
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(b) Plot of six helical strands each with one double helical wire.

Figure 54: Plot of a helical wire (red) around the core wire (black) of a helical strand.
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B Orthotropic Sheet Theory

In section 5 flowcharts are shown for:

• determining the Young’s modulus of a strand around a mean tensile load.

• determining the constants ∆lmax, S22 and PMS around a mean tensile load.

• determining specific damping ψ = ∆U
U for different perturbations around a mean tensile load.

In this appendix more light will be shed on the grey blocks in these flowcharts. Each of these grey

blocks hides one or more equations and reasoning. The explanation is based on the work of M. Raoof.

The first published paper is of on his phd work, [23]. Thereafter he has published several more papers

that are built on [23], amongst others these are [24], [25], [26], [27], [32] and [33].

The work of M. Raoof is for some parts based on the work of Costello, [7] and [8], and Chi [6].

These two authors, however, have defined the lay-angle differently. For the reader that is interested

in verifying the derivations for helical deformations based on the aformentioned work, a deconfusing

drawing is presented here, figure 55.

Figure 55: Lay angel α as defined by the different authors.

B.1 Symbols and Notation

Notation deviates from conventional notation. A table is presented here containing the symbols and

notations as used in Raoofs work and as used other texts. Also presented are symbols that are

exclusively used for the OST. In the wire layer the x− axis is coïnciding with the wire centerline.

Pieter Schelte 81 Wire rope



Orthotropic Tensor in Wire LayerS1

S2

S6

 =

S11 S12 0

S12 S22 0

0 0 S66


T1

T2

T6

 ≡

 εxεy
γxy

 =

ε11 ε12 0

ε21 ε22 0

0 0 ε33


σxσy
τxy

 Material Strain

Tensor

S6T : Tensor shear strain within wire layer.

S′2C :

Radial strain of layer with the rigid core present and

includes rigid body movement of the wires and the

contact patch deformations.

S′2R :

Strand radial strain due to changes of lay-angle

where the wires are treated as rigid bodies and the

rigid core is absent.

Here the z − axis is coïnciding with the strand centerline.

B.2 Strand Kinematics

The kinematics of a system describe the motions and deformations of the bod-

ies without considering the forces acting on it. In other words applying to a wire rope:

How do the movements and deformations of wires and strands in a wire rope relate to each other

when the wire rope is subjected to a tensile strain T ′1.

The basic shape of the strand design is the helix. The helix properties, i.e. lay-angle α and helix

radius r, can alter the strand properties. In e.g. [32] the inlfuence of the lay-angle on the strand stiff-

ness, torsional and tensile, is investigated. In an actual strand, the wires might deviate from the perfect

helical shape. Though this deviation is assumed to have negligible effects on the strand properties.

Therefore, the shape of the wires in a strand is assumed to be a perfect helix. Moreover, it is assumed

that:

Center line of wire forms a helix both before and after deformation.

And so the kinematic analysis of a strand starts with the parametric representation of this helix. The

helix is described by the polar angle φ. So if φ = 360, a wire has wound one revolution around the

longitudinal axis of a strand. In appendix A, the parametric equations of a single helix are explained

in more detail. They are reproduced here without the subscripts. The z-coordinate is coïncidental with

the strand axis, see figure 52:

x = r cosφ (33a)

y = r sinφ (33b)

z = r (cotα)φ (33c)

There are three radial strains defined for the kinematic relations. First, the net radial strand strain S′2 to
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be used for the orthotropic sheet is the strain that occurs including trellis contact patch deformations.

It is the difference between the two other radial strains to be defined S′2C and S′2R. The latter does not

represent wire deformations and must therefore be subtracted from the former yielding:

1. S′2 = S′2C − S′2R (34)

Second, for the radial strand strain S′2C of a wire layer, the wires are subject to a tensile strain S1 and

the effect thereof is taken into account. The subscript C refers to the rigid core being removed. To

determine S′2C , first a relation needs to be derived between the helix properties r and α and the strand

strain S′1.

The deformed and undeformed strand lenghts L′ and L can be described with equation 33c, where

z is equal to the strand length. Consider now that for a strand subjected to a pure tensile strain, the

ends are not permitted to rotate and thus,

φ′ − φ
L

= 0 (35)

and applying equation 35 for the deformed and undeformed strand lengths L′ and L described by

equation 33c yields:

tanα

r
− L′

L

tanα′

r′
= 0

tanα′

tanα
=

L

L′
r′

r

(36)

The strand tensile strain can be written as L
L′ = 1

1+S′1
, and substituting into equation 36 yields the

desired relation:
tanα′

tanα
=

r′

r (1 + S′1)
(37)

By now substituting the radial strain relation r′ = r (1 + S′2C) into equation 37, a relation can be made

between the radial strain S′2C and the strand strain and lay-angles before and after deformation:

2. S′2C = (1 + S′1)
tanα′

tanα
− 1 (38)

Third, a strand radial strain, S′2R, due to change in lay-angle resulting from the axial strand deformation

can be derived. The subscript R refers to the wires being treated as rigid bodies and experience thus,

unlike for S′2C , no strain. Its relation is analogous to S′2C , thus r′ = r (1 + S′2R).

The helix radii r and r′ are now a function of the wire radius R and the lay-angle α and α′ before

and after deformation respectively. The helix radii can be determined exactly when the following ideal

situation is assumed:

In the unloaded situation the wires within the layer are just touching each other.

Furthermore, it is also assumed that:

The cross-section of the thin wires is an ellipse.

It is then possible to derive an exact relation for the helix radius r geometrically, figure 56. They
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have been derived in [7] by G.A. Costello and are reproduced here:

r

R
=

√
1 +

tan2
(
π
2 −

π
n

)
cos2 α

(39)

Note that α in [7] is defined differently, namely with respect to the radial strand axis instead of the axial

strand axis, figure 55, and is therefore described with a sine term instead of a cosine term.

By looking now at equation 39, one can see that under a positive strain of a strand, where α′ < α, the

helix radius becomes smaller after deformation, r′ < r.

Figure 56: Cross-section of helical wire normal to strand axis.

By using equations 39 and strain expression S2R = r′−r
r , a relation can be derived between the lay-

angles α and α′ and the helix radii r and r′ before and after deformation. Note that this strain is a

result of change in lay-angle that occurs as a result of axial strand deformation S′1, but not due to

deformation of the wires themselves. The wires are treated as rigid bodies. Furthermore, the wires

are just touching before and after the change in lay-angle dα. Consequently, S2R does not contribute

to inter-wire forces and deformations. The relation for S2R is:

3. S′2R =

√√√√√cos2 α
(

cos2 α′ + tan2
(
π
2 −

π
ni

))
cos2 α′

(
cos2 α+ tan2

(
π
2 −

π
ni

)) − 1 (40)

For strands with non-rotating ends, the tensile wire strain S1 is derived by Chi [6], as mentioned in

[23]. It is an exact geometric derivation between the engineering strains in the helical and core wires.

It must be noted that, as earlier mentioned for the theories in [7], the lay angle α is defined with respect

to the radial strand axis as opposed to the strand axial axis, figure 55. The expression of the radial

strain for the helix radius deformation, r
′

r = 1 + S′2R, is substituted therein. Note again that the ends

are not permitted to rotate, thus φ = 0:

S1 = cosα

√
(1 + S′1)

2
+
(
r′

r tanα− r′ r
′φ
L

)
− 1 [6]

= cosα

√
(1 + S′1)

2
+ (1 + S′2R) tan2 α− 1

(41)
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(a) Chi (b) Change in wire strain dS1 when only the change in
lay-angel dα is taken into account and thus the strand
strain S′

1 is kept zero.

Figure 57: eeeh

Due to the change in lay-angle there is a slight change in tensile wire strain S1. Subsequently this

change dS1 can be found by setting the strand strain S′1 to zero where now the (negative) tensile wire

strain as a consequence of strand tensile strain is taken out of the relation and thus:

4. cosα
√

1 + (1 + S′2R) tan2 α+ 1− dS1 = 0 (42)

The next relation involves the tensorial shear strain S6T which is directly related to the inter-wire slip-

page ∆l. This slippage is crucial in determining the inter-wire friction. A sketch has been reproduced

here from [23] for clarification in deriving this important relation. In figure 58 the diameter D before

and after deformation remains the same, though there is actually transverse contraction resulting from

tensile wire strain. The following assumption is thus made for deriving the expression for inter-wire

slip, β, in presence of a rigid core.

The influence of the transverse contraction is assumed neglible for the derivation of the

wire slippage β in the presence of a rigid core.

Thus,

β = D (tanα (1 + S1 − dS1)− tanα′) (43)

In figure 58 it can be seen that the engineering shear strain γ is accounted fully by the change in

α in accordance with the above assumption and thus resulting only in a diametral shear strain. The

influence of the deformed wire diameter D′, however, is taken into account for the diametral shear

strain. The engineering shear strain, considering angles << 1◦, is:

tan γ =
β

D′
=

sin γ

cos γ
≈ γ

1

γ =
β

D′

(44)

Now the tensorial shear strain is S6T = 1
2γ and the diametral wire strain within a wire layer is S2 =
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Figure 58: Sketch clarifying the derivation for the wire slippage between two adjacent helical wires.

D′−D
D . Applying these expressions to equations 43 and 44 yields the following relation for S6T :

5. S6T =
tanα (1 + S1 − dS1)− tanα′

2 (1 + S2)
(45)

A straightforward derivation of a relation between S′1 and S1 and α and α′ before and after deformation

can be made from Figure 59a, yielding:

6.
1 + S′1
cosα′

=
1 + S1

cosα
(46)

In figure 59 the coordinate transformation is shown for strains. The following relations can be derived

therewith;

7. − S′1 − S′2
2

cos 2α′ +
S′1 + S′2

2
− S2 = 0 (47)

and,

8. S6T −
S′1 − S′2

2
sin 2α′ = 0 (48)
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(a) Geometric representation of relation between

strand and wire tensile strain and lay-angle α be-

fore and after deformation.

1S

2S

1S 

2S 

6S 

6S 

 

(b) Transformation of strains from strand to wire

layer reference frame for the deformed situation. In-

terest here is expressing the diametral strain S2 in

terms of strand strains.

Figure 59: Strain relations between strand and wire layer.

There are now an equal number of equations and unknowns, equations 34, 38, 40, 42, 45, 46, 47

and 48. It is now possible to find a solution for S1, S2, S6T , S
′
2, S
′
2C , S

′
2R, α

′, dS1. The aformentioned

equations are, however, strongly non-linear and thus cannot be solved with a Gauss elimination as

with a linear set of equations. A well known method to find a solution for these type of problems is the

Newton-Raphson method, see section E.1.

B.3 Internal Forces of a Strand

In this section, the determination of the forces that are at play within a strand are explained. First, the

line-contact force PRCi is determined for each wire-layer i. For PRCi (RC is Rigid Core) the outer-layer

forces are not considered. Next, all forces at play are considered to determine the actual line-contact

force PMSi
(MS is Multi-layerd Strand) for this statically indeterminate problem. The latter will be used

in conjunction with µ to determine the frictional force Ffrici = µPMSi
between two adjacent wires in

wire layer i.

In section B.2, kinematic relations have been derived for a strand subjected

to a pure tensile strain S′1. Solving these relations yields the diametral strain S2 amongst others. To

accomodate for S2 , the wires will deform. This deformation is directly related to the line-contact force

between the two adjacent wires, thus:

What is the line-contact force PRCi in wire layer i between two adjacent wires subjected to a diametral

strain S2i
that results from a strand tensile strain S′1.

The line-contact force PRC is calculated within each wire layer. The subscripts RC refer to situa-

tion where each layer is investigated as if it is resting on a rigid core. The assumption for PRCi
is:
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Each layer is approached as resting on a rigid core and outer layers are absent.

With S2 the diametral deflection δn can be determined. The diametral deflection is the change in

distance between the centerlines of two wires in line-contact, figure 60. Even though this deflection is

not linear it can be approximated as such because δn � D1 < D2. Here D = 1
2 (D1 +D2):

δn = (D′ −D) = S2D (49)

Another way to determine the diametral deflection δn is to apply Hertz contact theory. This theory has

been developed by Heinrich Hertz. It encompasses localized stresses that develop as two curved sur-

faces come in contact and deform slightly under the imposed loads. The deformation of the surfaces

depends on the geometry of the object, normal contact forces between the bodies (e.g PRC ) and the

material properties Poisson’s ratio ν and Young’s modulus E. Formula’s resulting from this theory

have been collected by Roark and Young and have been reissued in [42].

Two formulas consider two cylinders in line-contact pressed together. In [23] the cylinders have equal

n

RCP RCP

b

D1

D2

Figure 60: Cross-section of two wires in line-contact showing the diametral deflection δn as a result of
the line-contact force PRC .

diameters. The wire rope to be used for the JLS, however, contains wire layers consisting two unequal

wire diameters alternately. The steps taken by M. Raoof in [23] thus have to be followed to derive a

relation for PRC for unequal wire diameters based on the contact formula’s in [42]. An important note is

that b refers to half the line-contact width in [23] and to the full line-contact width in [42]. The derivation

of half the contact width is used for b as in [23].

First, the formula relating the line-contact width b to the line-contact force PRC and the wire (material)

properties is:

b = 0.8

√
D1D2

D1 +D2

2PRC (1− ν2)

Esteel
(50)

Second, the diametral deflection δn is given to be:

δn =
2PRC

(
1− ν2

)
πEsteel

(
2

3
+ 2 ln

√
D1D2

b

)
(51)
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By substitution of equation 50 into equation 51, a very non-linear relation results. The only unknown

here is PRC . Recall that δn can be determined with equation 49:

C1 =
4
(
1− ν2

)
π

(52a)

C2 = C1

(
1
3 + ln

(
1

0.8
√

2 (1− ν2)

))
(52b)

1. δn =
PRC
Esteel

C2 + C1 ln

√Esteel (D1 +D2)

PRC

 (52c)

To solve this relation, a second Newton-Raphson iteration is performed to obtain the unknown PRC .

With the normal loads between the wires now known, in each layer of the strand, load transfer from

one layer to the next (moving inward layer by layer) can be taken into account. This is described next.

For each wire layer i it is possible to determine the normal line contact force,

PRCi , between the wires. The above derived PRCi is determined with the assumption that a rigid core

is present and that there are no other forces acting upon the layer. The subscripts RC refer to the rigid

core being present.

Resulting forces in one layer acting upon the next one thus still need to be taken into account and are

denoted as PMS and XMS . The subscripts MS refer to the multilayered strand where the force equi-

librium takes all layers into account. The force equilibrium describing the whole strand is a statically

undetermined problem.

What is the line-contact force PMSi
for two adjacent wires within wire layer i when all layers are

taken into account for the statically indeterminate problem.

When moving from the outside layer i = 1 into the next one, i = 2, there is a radial force acting on

layer i = 2. This radial force can be determined with [7]. It results from the helical trying to straighten

due to the strand tensile strain S′2, as they restrict each others movement froces result from one layer

onto another (moving outward inward) in the strand radial direction:

1. XRC =
EAS1 sin2 α

r
(53)

Here r is the helix radius. This relation has been derived geometrically with the assumption that:

Wires carry only pure tension.

It is stated in [23] that not only does each wire layer i have a certain PRCi
/XRCi

ratio, the ratio

also changes for different strand tensile strains S′1. It is therefore necessary to calculate the PRCi

and XRCi forces for each tensile strain perturbation for each layer and use their ratio to determine the

multi-strand line contact force PMS . The resulting radial force XRi can finally be determined and the

next layer can be evaluated. Note that PMSi
in each layer is important for the dynamic model including

friction.

Pieter Schelte 89 Wire rope



Figure 61: Forces, PRC/MSi
and XRC/MSi

, acting on the wire center (left) and the resultant force XRi

(right).

First, the acting forces due to tensile tension are evaluated in the outside layer of the strand. In this

layer PRC1 = PMS1 and XRC1 = XMS1 and one then continues to move further inside each time

evaluating the forces in layer j = i+1. The radial force XRi
of the previous layer is added to the radial

force XRCj
of the next layer according to:

2. XMSj
= XRCj

+XRi

ni cosαj
nj cosαi

(54)

The line contact force PMSj
can now be determined with the force ratio’s within layer j:

3. PMSj
=
PRCjXMSj

XRCj

(55)

By looking at figure 61 it can be easily seen that there is a resultant radial force XRi in layer i acting

onto the next layer j according to:

4. XRj
= XMSj

− 2PMSj
cosβ (56)

With the resultant radial force XRj , the next wire-layer j + 1 can be analyzed. Starting with equation

53 to then take again the radial force into account of the previous wire layer j, yielding XMSj+1 and so

on.

With PMSi
known for every wire layer i, the friction force Ffrici can be determined with the friction

factor µ:

Ffrici = µPMSi
(57)

B.4 OST Compliances

The strain tensor relation within a wire-layer has the form:S1

S2

S6


i

=

S11 S12 0

S12 S22 0

0 0 S66


i

T1

T2

T6


i

(58)
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The compliances need to be known, thus:

What are the compliances Smn of the orthotropic strain tensor for each wire layer i.

The OT is determined for a cylindrical shell. The gross area Agross,i for each shell i is approximated

by approaching each wire as a square with sides equal to the diameter D1 or D2 of the wire. In order

to conserve the effective longitudinal stiffness of a wire layer, kwl, the area ratio needs to be taken

into account by determining a Young’s Modulus Egross compliant with this stiffness. The stiffness per

unit length of a wire-layer i in the direction of orthotropy is kwl = EsteelAnet,i. Thus to conserve this

stiffness, the relation between gross and net it can be written that:

Egross
Esteel

=
Anet,i
Agross,i

=
π

4
(59)

According to Hooke’s law, tensor compliances S11 and S12 = S21, in the direction of the wire axis and

the coupling compliance of approaching wire centers and the wire axis respectively, in the OT are now;

1. S11 =
1

Egross
=

4

πEsteel
, (60)

and,

2. S12 = − ν

Egross
=

4ν

πEsteel
(61)

To determine the compliance in diametral direction, S22, the Hertz contact theory is applied as in

section B.3 where it is applied for the line-contact force PRC . The resulting equation 51 is to be used

here. This equation determines δn. The associated line-contact force here is PMS . As explained in

appendix B.3, PMS is the line-contact force where the forces from outer layer are taken into account.

A change in diametral deflection δn is realized by a change in line-contact force PMS . The magnitude

of the change in deflection δn depends also on the deflection that has already occured. The diametral

deflection δn thus also depends on the wire center distances. The compliance S22 can be derived as

follows, where C1 and C2 are shown in equation 52a and 52b respectively:

3. S22 =
2

D1 +D2

dδn

d( 2PMS

D1+D2
)

=
1

Esteel

C1 − 1
2C2 + C2 ln

√
Esteel (D1 +D2)

PMS

 (62)

The tangential compliance S66 relates the shear stress T6 to the shear strain S6.

In [23] it is explained in more detail that in [5] the case is considered of a force T acting in a plane.

This force T is parallel to the principal axis of an elliptic contact and is monotonically increasing. In

the case of inter-wire slippage it is the friction force Ffric acting in the direction of the inter-wire line

contact.

When inter-wire slip occurs under a normal line contact force PMS , the tangential force assumed as

Ffric = µPMS is reasonable. The coefficient µ is the friction factor.

The author further explains that [10] evaluated constant displacement. One of the results is the follow-

ing equation for cylinders sliding tangentially. In this relation, G is the shear strain, a is the length of
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the contact area:

∆l =
3µPMS (2− ν)

16Ga

1−
(

1− T

µPMS

) 2
3

 ξ (63)

The term represented by ξ depends on the geometry of the two bodies in contact. This term is derived

later in this section. Now the tensorial shear strain compliance S66 is given as:

S66 =
d(2∆l)

dT
=

2− ν
4Ga

(
1− T

µPMS

)− 1
3
ξ (64)

When full slip occurs, the wires are considered to slide with respect to each other as rigid bodies. The

tangential force, or inthis case friction force is then Ffrici = µPMSi
. Applying this to equation 63,

yields the maximum wire slippage ∆lmax . Beyond this point the friction force remains equal to µPMSi :

∆lmax
=

3µPMS (2− ν)

16Ga
ξ (65)

By now substituting equation 65 into equation 63, a relation is made between the inter-wire slippage

∆l and the line-contact force PMS :

∆l = ∆lmax

1−
(

1− T

µPMS

) 2
3

 (66)

For plane strain and no slip T = 0:

S66 =
S22

1− ν
(67)

When no slip T = 0 in equation 64 combining with equation 67 yields:

ξ =
4GaS22

(2− ν) (1− ν)
(68)

Substituting equations 68 and 66 into equation 64

4. S66 =
S22

1− ν

(
1− ∆l

2∆lmax

)
(69)

B.5 Strand hysteresis under cyclic loading

In appendix B.4 the shear compliance S66 of the strain tensor of the wire-layer is derived. One outcome

of the steps in deriving these, equation 66, can be rewritten to describe the hysteresis loop.

T =

1−
(

1− ∆l

∆lmax

) 3
2

µPMS (70)

The surface area enclosed by this loop is the energy dissipated in the stick-slip region, blue loop in

figure 62. When ∆l > ∆lmax
, the sliding wires are in th gross-slip region and the tangential force T is

at its maximum, see horizontal part in figure 62.

The energy dissipated in the full-slip region is the surface area enclosed by the green loop minus the
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energy dissipated in the stick-slip region.
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Figure 62: Hysteresis loop as applied in the OST.

The wire slippage used for the dynamic model are the relative movements be-

tween adjacent wires within the same layer:

What is the relative (maximum) wire slippage within a wire layer of a strand subjected to a tensile

strain S′1.

Combining equations 65 and 68 from appendix B.4 yields a relation to determine the maximum wire

slippage ∆lmax
. This slippage refers to the point when the frictional force Ffric reaches its maximum.

It is determined with respect to the mean tensil load when the load is cyclic:

1. ∆lmax =
3µPMSS22

4 (1− ν)
(71)

Recall that in appendix B.2 it is explained that the tensorial shear strain S6T = 1
2γ. It is also shown

that the wire slippage β = D′γ. Combining these relations yields:

β = 2D′S6T (72)

Now the wire slippage ∆l to be used is aproximated with the undeformed wire diameter:

2. ∆l = 2DS6T (73)
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Each load perturbation around a mean load has an associated specific energy

dissipation ψ.

How much energy ∆U is dissipated in a strand subjected to a tensile load perturbation around a

mean load for one cycle and what is the resulting specific energy dissipation ψ.

The cyclic tensile load with amplitude Load Range
2 does work on the wire rope, unit Nm = J . This

work is the energy input to deform a wire rope element of lenght Lmean to Lmean + dL . It is thus the

applied load times the displacement. Here Lmean is the length of the wire rope subjected to the mean

load and dL is the change in length due to the load perturbation. For a wire rope with stiffness kwr
this means integrating the applied load, Load Range

2 , over the displacement x = [0, dL], thus.

Ucycle =

∫ dL

0

kwrdx

= 1
2kwrdL

2

(74)

The input in the OST to determine the specific damping is the wire rope tensile strain S′1. The tensile

strain associated with the mean load is S′1mean
where dS′1 is associated with the load perturbation.

The stiffness and Youngs modulus of the wire rope per unit length are,

kwr = EwrAwr (75)

Ewr =
Load Range

2AwrdS′1
(76)

First note that dL = dS′1LBy now substituting equation 76 into 75 and substituting the result into

equation 74, the total elastic energy for one cycle around a mean tensile load per unit length (L = 1)

is:

1. U = 1
2

(
Load Range

2

)
dS′1 (77)

For each inter-wire slippage within a layer, the energy dissipation ∆E can be determined by taking the

surface area enclosed by the hysteresis loop, see figure 37. This energy dissipation has been derived

in [10], as stated in [23]. The energy dissipation in the stick-slip region for two parallel cylinders can

be derived with ξ of equation 68. The energy dissipation in the gross-slip region is the surface of a

parallelogram equaling the surface of a square with sides 2µPMS and 2(∆l −∆lmax
):

2. ∆Ei =


18µ2P 2

MSi
S22

5(1−ν)

[
1−

(
1− T ′

µPMSi

) 5
3 − 5

6
T ′

µPMSi

(
1 +

(
1− T ′

µPMSi

) 2
3

)]
if ∆li < ∆lmaxi

3
5

µ2P 2
MSi

1−ν S22 + 4µPMSi
(∆li −∆lmaxi) if ∆li ≥ ∆lmaxi

,

(78)

The total energy U is determined in the direction of the strand axis. The wire-layer is under a lay-angle

α. Therefore the dissipated energy ∆E is a component of the resolved dissipated energy ∆U in strand
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axis direction. Taking this into account and summing over all wire layer yields:

3. ∆U =

N∑
i=1

ni∆Ei
cosαi

(79)

The specific energy dissipation per unit length for a strand is thus:

4. ψ =
∆U

U
(80)

B.6 Strand’s Young’s Modulus

A strand is constructed of helical wires. When a strand is under tension, due to

the helical wires, the strand wil also twist, Γ. Recall from appendix A.2 the length of a helix given in

equation 28. The change in lay-angle α is negligible thus α′ ≈ α. Equation 28 can be rewritten for the

polar angle φ for the deformed and undeformed situation. The change in polar angle dφ due to tensile

strain is then:

dφ =
dL

dr
√

1 + cot2 α
(81)

From equation 81 it can be seen that twist will clearly result from tensile strain, or, when the ends are

not permitted to rotate, torsional energy will built up. There is thus a coupling between twist and tensile

strain. The constitutive equations for a wire rope are postulated, in e.g [7], [26] and [40]. Herein, T

and M are the tensile stress and twisting moment respecively and ε and Γ are the tensile strain and

twist per unit lenght respectively:

T

Esteel
= d1εwr + d2Γwr (82a)

M

Esteel
= d3εwr + d4Γwr (82b)

The constitutive constants describing the twist-tensile strain coupling should be equal due to symmetry,

d2 = d3. Though due to assumption in the OST, and other theories, a discrepancy arises. It results

from the various assumptions whereon the theories are based.

For the case investigated in this thesis, only tensile tension and no twist and is considered. There is

here no interest in the torsional energy built up nor is there twist allowed. Equation 82b thus reduces

to:

T

Esteel
= d1εwr (83)

According to Hearmon’s notation [17], the strain tensor with respect to wire rope axes is:S′1S′2
S′6


i

=

S′11 S′12 S′16

S′12 S′22 S′26

S′16 S′26 S′66


i

T ′1T ′2
T ′6


i

(84)
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The compliances of the strain tensor with respect to a wire layer have been determined in appendix

B.4. For each wire layer these compliances can be transformed to the wire rope reference frame. This

can be accomplished with [17]:

S′11 = m4S11 + 2m2n2S12 + n4S22 +m2n2S66

S′12 = m2n2S11 + (m4 + n4)S12 +m2n2S22 −m2n2S66

S′16 = −2m3nS11 + 2mn(m2 − n2)S12 + 2mn3S22 +mn(m2 − n2)S66

1. S′22 = n4S11 + 2m2n2S12 +m4S22 +m2n2S66 (85)

S′26 = −2mn3S11 − 2mn(m2 − n2)S12 + 2m3nS22 −mn(m2 − n2)S66

S′66 = 4m2n2S11 − 8m2n2S12 + 4m2n2S22 + (m2 − n2)2S66

where m = cosα and n = sinα

Recall that the ends are not permitted to rotate and thus the wire rope shear strain S′6 = 0. Equation

84 can then be solved for the tensile stress-strain relation T ′1
S′1

for each wire layer i:

2. k11,i =
T ′1
S′1

=

(
S′11 +K1S

′
12 −

S′16

S′66

(S′16 +K1S
′
26)

)−1

(86)

The stress-strain relation k11 (N/mm2) is developed for two adjacent wires. A wire layer i consisting

of ni wires contains an equal number of sets of adjacent wires. Thus, k11,i needs to be multiplied

with ni. Next, it needs to be summed over the wire layers i = 1, . . . , N . For the OT, the area Agross
is used. This explains the factor 4

π as shown in appendix B.4. Herein d1 represents the constitutive

constant (mm2) for the axial direction of the strand, thus:

3. d1 =
4

πEsteel

N∑
i=1

Anet,ik11,i +Acore (87)

By looking at equation 83 it can be seen that for the pure tensile tension case, the effective Young’s

modulus can be determined finally as follows:

4. Eeff =
Esteeld1

Agross
(88)

In appendix B.4 it is observed that the shear compliance of the wire layer S66 depends on the amount

of wire slippage ∆l. When ∆l > ∆lmax , the adjacent wires experience full-slip and the friction force

will be at its maximum, Ffric,imax
= µPMSi

. It has been found that a value 1 is relatively infinite. Thus

by setting S66 = S22

1−ν (no-slip) and S66 = 1 (full-slip), both associated effective Young’s Moduli can be

calculated for different tensile load/strain perturbations.

B.7 Validation of implemetation with Numerical Examples

A solid amount of papers have been written by M. Raoof on the subject of OST for wire ropes. The

papers contain examples with respect to axial stiffness and specific damping amongst ohters. These

examples are accompanied with numerical examples that are gratefully used in investigating the cor-
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rectness of the implementation of the OST. Though also different strands have been used for producing

numerical results in the various papers, the most often analysed strand is a 39mm multilayered strand.

The details of this strand are provided in table 3 in section 5.3.

B.7.1 Validation

Kinematic Relations A first example is provided in the paragraph Results of [25]. A given strand

tensile strain is S′1 = 0.003. In this paper a relation is made by parameterisation resulting in a function
S1

S′1
(α).

A second example is provided in [27]. Here too, parameterisation has been performed in order to

create shortcuts for calculating various strand properties. A given strand strain in this example is

S′1 = 0.002891. In this paper more numerical results are provided. For the first layer they are; S1, α′1
and S6T , and for the second layer they are; S1, α′1
The percentage errors (%) of the results yielded by the Newton-Raphson I iteration developed for this

thesis is compared with the numerical examples that are shown in table 5

Percent Error (%)

S1 α′1 S6T

Reference [25] 0.250 NA NA

Reference [27], layer 1 0.233 0.00736 0.0157

Reference [27], layer 2 0.00719 0.00736 NA

Table 5: Relative errors of implementation of Newton-Raphson for solving for line contact forces.

The magnitude of the percentage errors determined for the available numerical examples show that

the Newton-Raphson solving the kinematical relations from appendix B.2 iteration has been performed

succesfully.

Line Contact Forces PRC A numerical example is provided in the earlier mentioned paragraph

Results of [25]. The result of the line contact force is given to be PRC = 34.39(N/mm). The Newton-

Raphson iteration developed for this thesis yields PRC = 33.34(N/mm) which translates into a per-

centage error of 3.053%.

In the paper [23], graphs are produced of intermediate results. These results are based on the 39mm

strand with the construction data shown in table 3. Amongst others, plots of the PRC data against the

XRC data for each wire layer i are provided. The data produced by the TP and of the reference [23]

are shown in figure 63. The graphs in figure 63 compare very well. Moreover, the comparison of these

graphs also indicates proper calculation of the radial force XRC .

It can be concluded that the Newton-Raphson II iteration, as well as the calculation of XRC data, has

been performed succesfully.

Line Contact Forces PMS This is the line-contact force determined for each wire layer i with the

effects of all layers taken into account. It is these forces that are used to determine the friction forces

in the dynamical model, Ffric = µPMS . The amount of friction with the associated contact surface
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(a) Result produced by the TP. (b) Result produced by M. Raoof in [23]

Figure 63: PRC data vs XRC data for a 39mm strand. The construction data can be found in table 3
taken from [23] and [26].

directly determines the amount of frictional energy.

In figure 64 the results of the TP are compared with data provided in [23]. For the outer layer PMS =

PRC as there are no external forces acting upon this layer. The lines for layer one are thus expected

to match and this is indeed the case. The the data don’t match, one layer more or less than another,

for all layers moving inward.

It can be seen in figure 64 that at PMS = 50N/mm the second, third and fourth layer match fairly well.

Layer five however is the worst match. Comparing the data at PMS = 100N/mm, it can be seen that

the match, except layer one, deteriorates even more. The PMS data calculated by the TP is smaller

than the data produced in [23]. It has not been found where the mismatch originates from. There is

confidence that the radial load transfer from layer to layer, appendix B.3, has been properly understood

and implemented.

The PMS data will be used for calculating the frictional energy. The results from the heat conduction,

section 6.2, show that the temperature change is very small, in the order of tenths of degrees. The

relation between PMS and surface temperature is fairly linear. Eventhough the match is not optimal

with the shown example from [23], it is good enough to determine the scale of the frictional energy

generation and the resulting temperature change on the surface of the wire.

Specific damping in layers and for the whole strand .

The specific damping ψ per wirel layer appears to be smaller than the example from [24]. The char-

acteristics however are fairly similar. The position of the maximum ψ for each wire layer appear to be
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(a) Produced by the TP. (b) Produced by M.Raoof in [23].

Figure 64: Plot of tensile strand strain S1 vs line contact force PMS produced by the TP (left) and
produced by M. Raoof in [23] (right)

at similar load perturbations as in the example from [24]. Though this is hard to verify exactly with the

plots provided.
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(a) Frictional energy dissipation for each wire layer. Layer

1 is the outside layer.

(b) Frictional energy dissipation for the whole strand.

Figure 65: Frictional energy dissipation in a strand subjected to a mean tensile strand load of 0.42MN
as a function of load perturbation.

M Raoof has compared his theoretical results with experiments [24] (black spots). The results are

shown in figure 66. Also shown in the figure is the result of the TP (blue line). The position of the peak
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is provided for the specific of the whole strand. The peak from [24] is located at Load Range
Mean Load = 0.127

where the peak determined by the TP is located at Load Range
Mean Load = 0.122.

The experimental results are very scattered. So even though there is no full compliance with the

example of [24], it is good enough to determine the order of magnitude of the inter-wire frictional

forces.

Figure 66: Results for the 39mm SSR by the TP and from [24].

Effective Young’s Modulus of strand In section 5.3.1 results are shown for the effective Youngs’

Modulus for the 39mm strand of table 3 for strains up to 5e−3, figure 40. In [27] it is mentioned that

for a tensile strain of 0.002891, the associated effective Youngs’ Modulus is 149.4kN/mm2. The TP

yields for the same strain an effective Youngs’ Modulus of 157.5kN/mm2. The difference is thus 5.4%.

Also, Eeff has been determined in section 5.3.2 for a 40mm MSR. This example is taken from [29].

Therein, it is shown in a graph that the no-slip Eeff value for a mean load of 250kN is 124.0kN/mm2

and the full-slip value is 107.4kN/mm2. The no-slip value is associated with a tensile strain of S′1 =

2.055e−3 in the TP. Applying this strain to calculate the tensile load yields F = 272kN . This is 8.7%

higher than 250kN . The associated full-slip value is 107.8kN/mm2, this is 0.37% higher than the

example from [27]. The main error is thus the mean load.

Inter-wire contact stress within a wire layer An FEM model to determine, amongst others, inter-

wire contact stresses is shown in [19]. It considers an ’ordinary strand’ (one core wire and one wire-

layer with six wires). All construction details are provided and a comparison can be made between the

results of the FEM method applied in [19] and the OST.

In [19] the contact stress of the strand considered subjected to an axial strain of 0.0003 is given to be

0.98GPa. The TP yields for the same strain and strand 1.06GPa. The result yielded by the TP is 8%

higher. It has not been investigated what the exact causes are of this difference. Nevertheless, it can

be said that the results are very similar and are considered good.
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B.7.2 Conclusions

There are still differences between the results produced by the TP and the examples of various results

provided in the papers of M.Raoof. When the scale of the differences is compared to the differences

between theory and experiments, it can be said that the results produced are of the right magnitude.

The main research question is whether temperatures can rise significantly to endanger the life of the

wire rope. It is important to know whether the temperatur change is in the order tens of degrees. It is

not important to get an accurate value.

The implementation of the OST is performed satisfyingly to determine the order of temperature change

within the wire rope subjected to the tensile forces determined in [4].
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C Friction

This appendix elaborates on friction. There are many types of friction models. The choice depends

on what is investigated from a model. Take for example a mechanism which inevitably consist of parts

that slide on each other thus causing friction forces. These friction forces can influence the dynamic

behavior of the mechanism significantly. It is possible that a mechanism modelled without friction

shows a stable behavior, though when friction is taken into account it can become unstable.

In this thesis what is asked from the friction model is to show the magnitude of the energies involved

with inter-wire friction in a wire rope. As the friction forces are small compared to other influences (i.e.

weight of the jacket), they are not expected to influence the dynamics of the wire rope.

A simple friction model is thus chosen. It is based on the well know Coulomb’s dry friction model,

appendix C.1. This simple model will be applied in the random like dynamic multiscale model described

in section 6.1. For the homogenized model, steady state perturbation around a mean load as described

in section 6.1.3, Masing’s rule is applied, appendix C.2, too take stick slip behavior into account with

the transition to full-slip.

C.1 Coulomb’s dry friction Law

This law encapsulates a complexity of interactions in one constant friction factor µ. It is postulated that

µ linearly relates the normal force FN acting between two surfaces to a resistive (frictional) force Ffric
acting opposite in the direction of relative movement, figure 67.

Figure 67: Schematical representation of Coulomb’s law.

A distinguishment is made between two types of friction factors, static and kinetic. Static friction is the

force that resists any relative motion between two bodies. When the point is reached that the static

force is no longer sufficient to resist relative motion, the kinetic friction comes into play which is the

resistive force of two bodies with relative motion. This distinguishing is made beause it has been found

that i.e it may take less force to retain a motion with sliding surfaces than it takes to create motion in

the first place.

Note that in the following mathematical expression of Coulomb’s law the external force P has no

resulting motion as it is smaller than:

Ffric =

µFN · sgn(v) |P | ≥ µFN
−P |P | < µFN

(89)
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C.2 Masing’s Rule

Here the hysteresis loop is shown as applied in the TP.

Ffric,tn =

µFN · sgn(v), |∆l,tn | ≥ ∆lmax

µFN

∆lmax
· (∆l,tn − z) · sgn(v), |∆l,tn | < ∆lmax

where, z = ∆l,tn−1
−

Ffric,tn−1

µFN ·∆lmax

(90)
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Figure 68: Graphical representation of function accomodating for stick-slip behavior.
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D Dynamic Modeling

Two FE models of the wire rope have been developed for this thesis. First a linear model has been

developed. It considers the homogenized approach and is described in appendix D.1. Second a

non-linear model has been developed. It considers the multiscale FE2 approach and is described in

appendix D.2.

In figures 69 and 72 it can be seen that the wire rope is modeled as being attached at the top and

having a free end at the bottom. At the top end, in the actual situation the wire rope is running over

several sheaves. At the free-end, the loads are applied that have been calculated by the ADAMS

model developed by [4]. There is thus no interaction with the sheaves nor bending of the wire ropes

taken into account. Also there is no feedback of the dynamic response of the wire rope back into the

jacket and thus the rest of the system considered. Furthermore the load applied on the wire ropes are

actually under an angle, though for this thesis only the resultant loads in the axial direction of the wire

rope have been considered. A possible effect that has consequently been left out is that of whipping.

Summarizing, the following assumptions have thus been made for both models:

• The influence of the axial dynamic response of the wire rope on the rest of the system is negligi-

ble.

• The effects of wire ropes running over sheaves have a negligible effect on the axial dynamic

response of the wire rope.

• The off-axis external forces have negligible effect on the axial dynamic response of the wire rope

and thus whipping remains uninvestigated.

For both wire rope models the Newmark Method has been implemented to perform the time integration.

This method is described in more detail in [34]. For the homogenized model in appendix D.1, the linear

variant has been applied. For the multiscale FE2 model in appendix D.2, the non-linear variant has

been applied.

D.1 Homogenized Model

The homogenized model considers the situation where there is a cyclic axial load perturbation around

a mean mean load acting on the wire rope. It has been shown in section 5 (and appendix B) that

around this mean load, a constant specific damping ψ and wire rope Young’s modulus Eeff can be

determined. When the applied load is a steady state cyclic perturbation around the mean axial load,

the specific damping ψ can be transformed to an equivalent viscous damping ceq.

D.1.1 Mathematical model

Each element consists of a point mass, a dashpot (viscous damping) and a linear spring, see figure

69. The differential equations describing the dynamics of this system can be represented in vector

notation as:

Mẍ + Cẋ + Kx = Fext (91)
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F(t)

k1 k2 kn-1 knk3

Fg,1 Fg,2 Fg,n-1
m1 m2 mn-1 mnFg,n

TOP BOTTOM

1x 2x n 1x nx

c1 c2 cn-1 cnc3

Figure 69: FEM of wire rope with viscous damping between the wire rope elemtens

D.1.2 Solving Dynamic Model

Linear Newmark Intergration β method The Linear Newmark Integration method is described in

more detail in [34]. It is predictive-corective numeric integration scheme developed for linear differential

equations of the form:

Mẍ + Cẋ + Kx = Fext (t) (92)

The approach is that a Taylor series expansion is made of the displacements and velocities of a

time dependent function f(tn). The resulting expansion allows for calculation of the velocity and

displacement states at time tn+1 = tn + h, where h is the timestep. The calculation involves integral

terms of the acceleration. These accelerations are approximated with numerical quadrature. It is here

that the coëfficients γ and β are introduced, see [34]. They are introduced in such a way that when

γ = 0 and β = 0, the numerical time integration scheme reduces to the purely explicit form.

The constant average acceleration method, γ = 1
2 and β = 1

4 , is chosen for this thesis. It is associated

with zero amplitude error and a periodicity error of ω2

h2 where ω is the first Eigen Frequency of the

system. The zero amplitude error is important as the amplitude of the response is directly linked to the

inter-wire slippage. Furthermore, this method is unconditionally stable, meaning the choice in timestep

size is free. It is stressed, however, that to incorporate the contribution of the highest frequency

oscillator, the timestep is generally taken as h ≤ T
4 [34], where T is the period of the expected free

oscillation.

The numerical scheme is depicted in figure 70

Implementation The wire rope properties, stiffness k and damping c, are kept constant in this model.

The stiffness k of each element is determined with the wire ropes’ Young’s modulus Eeff , the cross-

section Awire rope and the element length Lel. The stiffness of the wire rope actually varies per unit

length. It is thus discretized in the model by dividing the wire rope into a number of elements where

the Youngs’ modulus is replaced by an equivalent stiffness associated with the length of the element:

k =
EeffAwire rope

Lel
(93)

A consequence of discretizing is that the Eigen Frequencies of the wire rope become more accurate as

the number of elements increases. For further modeling it is crucial to choose a minimum amount of
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initialize model
M, C, K, S
x0, ẋ0, g0

Calculation of ẍ0

ẍ0 =
M−1 (Fext0 −Cẋ0 −Kx0)

Time Increment
tn+1 = tn + h

Prediction
ẋ∗n+1 = ẋn + (1− γ)hẍn
x∗n+1 = ẍn+hẋn+(0.5− β)h2ẍn

Calculation of ẍ0

S = M + hγC + h2βK
Sẍn+1 = Gn −Cẋ∗n+1 −Kx∗n+1

Correction
ẋn+1 = ẋ∗n+1 + hγẍ∗n+1

ẋn+1 = ẋn+1 + γ
βh∆x

Figure 70: Scheme for Linear Newmark Intergration β method

elements due to the influence on computation time. A small algorithm has been written that calculates

the Eigen Frequencies for i = 1, 2, . . . etc. elements. The relative difference between the first Eigen

Frequencies of the wire rope built up of i and i − 1 elements is used as a measure for approximation

error. The iteration stops when error = abs(ω(i)−ω(i−1))
ω(i) < 1e−2(Hz). The result is that according to

this criterium the amount of elements to be used is 8, where the first Eigen Frequency is 8.2Hz, figure

71.
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Figure 71: First Eigen Frequency for corresponding amount of elements.

The specific damping ψ is determined around a mean load with the OST as shown in section 5 and
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appendix B. The specific damping can be replaced by an equivalent viscous damping ceq that is valid at

a single frequency load perturbation. The energy dissipation ∆U for viscous damping and for frictional

damping can be compared. The comparison results in an equivalent c being the only unknown, where

ω is the frequency of the sinusoïdal load perturbation:

c =
kψ

ω
(94)

All values are now known and the differential equations 91 can be solved with the Linear Newmark

Integration β method in the time domain.

D.2 Multiscale FE2 Model

D.2.1 Mathematical model

The difference with the homogenized model is that the viscous damping is replaced by the inter-wire

friction forces. The mathematic model is thus now written as:

Mẍ + Ffrictionsgn (ẋ) + Kx = Fext (95)

F(t)

k1 k2 kn-1 knk3

Fg,1 Fg,2 Fg,n-1
m1 m2 mn-1 mn

Ffric,2sgn(             )12x x 

Ffric,1sgn(    )1x

Fg,n

TOP BOTTOM

1x 2x n 1x nx

Ffric,3sgn(             )3 2x x 

Ffric,4sgn(                  )1 2n n x x 

Ffric,4sgn(                  )1n nx x 

Figure 72: FEM of wire rope with frictional damping between the wire rope elemtens

D.2.2 Solving Dynamic Model

Non-Linear Newmark Intergration β method The non-linear variant procedure is shown in figure

73. For detailed explanation it is referred to [34].
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initialize model

M, f , S

x0, ẋ0, g0

Calculation of ẍ0

ẍ0 = M−1 (g0 − f (ẋ0,x0))

Time Increment

tn+1 = tn + h

Prediction

ẋn+1 = ẋn + (1− γ)hẍn

xn+1 = ẍn+hẋn+(0.5− β)h2ẍn

ẍn+1 = 0

Residual vector evaluation

rn+1 = (Mẍn+1 + fn+1 − gn+1)

Convergence?

‖rn+1‖ < ε‖rn+1‖

Calculation of the correction

S (xn+1∆x) = −rn+1

Correction

xn+1 = xn+1 + ∆x

ẋn+1 = ẋn+1 + γ
βh∆x

ẍn+1 = ẍn+1 + 1
βh2 ∆x

Figure 73: Scheme for Non-Linear Newmark Intergration β method.

Implementation In this thesis a multiscale FE2 approach is used. One can define multiscale FE2 as

follows:

The modeling where the interaction between the macro- and micro model is made.

The inter-wire friction depends on the inter-wire slippage ∆l. The ∆l depends on the axial strain that

on its turn is determined with the element positions x. The inter-wire friction forces are thus a function

of element displacement. Thus the OST yielding the microscopic behavior must be incorporated into

the convergence loop, figure 74.
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The resulting heat flux is not incorporated into the convergence loop. The results might indicate a

significant change in temperature which will have an effect on the friction factor µ. Because µ will on

its turn have a direct effect on the friction forces, the change in µ will then have to be taken into account

in the time integration. This will result in a multiscale FE3 model. It is shown in section 6.2, however,

that this is not the case.

Moreover, it is shown in section 6.1 that the inter-wire friction forces have negligible effect on the

dynamic response of the wire rope. The OST can thus be taken out of the convergence loop as shown

in figure 75. It is thus chosen to not apply a multiscale FE2 approach where there is feedback from

the microscale to the macroscale. This will save a significant amount of computing time. The results

of the macroscale model are used for the microscale model to determine the heat flux.

Initialize

OST Friction

Calculation of ẍ0

Time Increment

Prediction

Residual vector evaluation

Convergence?

Calculation of the correction

Correction

OST Friction Heat Flux

Figure 74: Scheme for Non-Linear Newmark Intergration β method where the OST yielding the micro-
scopic behavior is implemented in the convergence routine.
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Initialize

OST Friction

Calculation of ẍ0

Time Increment

Prediction

Residual vector evaluation

Convergence? OST Friction

Calculation of the correction

Correction Heat Flux

Figure 75: Scheme for Non-Linear Newmark Intergration β method where the OST yielding the micro-
scopic behavior is kept outside the routine. It thus only yields the microscopic behavior as a conse-
quence of the dynamic response but it does not influence the dynamice response.
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E Solving a set of non-linear funcions

The subject of solving a set of non-linear functions is a very broad one. There are numerous methods

and variations of methods and so forth. In this appendix only the chosen combination of methods will

be described.

For the problems encountered in the OST, section B.2, the Newton-Raphson method is chosen for solv-

ing the root(s) problem of the (set of) non-linear function(s) in combination with the Central Difference

method, a numerical differentation method. Differentiation is a necessary step of the Newton-Raphson

method.

E.1 Newton-Raphson

This numerical method for finding the root(s) of a (set of) non-linear function(s) has first been devel-

oped by Isaac Newton and later been simplified by Joseph Raphson.

Figure 76: Graphical representation of Newton-Raphson method.

To visualize the method it is easiest to look at a function f (x) with one unknown as shown in figure 76.

One starts with a guestimate, x1, and evaluates the function for this point yielding y1. The reasoning

of this guestimate depends on the function and thus cannot be generalized. At the point (x1, y1) the

slope needs to be determined so subsequently the line going through this point can be determined

with slope a and offset b at x = 0:

f1 (x) = ax+ b (96)

It is clear that finding the root of this line is very straightforward. The root of this line will be the next

point x2 where the function will be evaluated again and further the above described procedure will be

performed. Doing this iteration i = 1,...,n-times, the root of the non-linear function can be approximated,

see figure 76. Generalized, the method for a function of one variable can be written as:

xi+1 = xi −
f (xi)

f ′ (xi)
(97)
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Expanding the method to a set of functions yields:

δi = − [Ji]
−1
fi, xi+1 = xi + δi, i = 0, 1, . . . , n (98)

Where Ji is the Jacobian of the set of functions evaluated at the ith found root.

Conditions need to be chosen to limit the number of iterations. Two conditions must be applied.

First, at each iteration the function can be evaluated to check whether the answer is ’close enough’

to zero. The last root will then be taken as the final solution. The words ’close enough’ depend on

the desired accuracy and computation time. A higher accuracy will result in longer computation time.

One way to check for accuracy is to use the scale of the unknown(s) and a chosen tolerance that will

evaluate what this accuracy actually is. In case of a function with only one variable the absolute value

of the evaluation at the last found root xi can be taken as a measure of accuracy. This value can

be compared with a tolerance of a number representative of the scale inherent to the function. If the

function depends on i.e. a force variable in the scale of kN’s, then a fraction of a force representative

of this scale can be taken as a condition. Expanding this to a set of functions, instead of one value the

length of the vector containing the evaluations of each function at the last found root is used. Another

way is to check for the difference between the i−1th root(s) and the ith root(s). This value is multiplied

with a chosen tolerance setting the threshold for the iteration to stop when the change in roots is below

this treshold.

Second, a maximum number of iterations needs to be chosen to safeguard against non-convergence.

This can happen when a ’wrong’ first guestimate is determined, see figure 76. It is clear that a root will

most probable not be found or at least not within an acceptable number of iterations.

E.2 Central Difference method

The derivative of a function (or Jacobian for a set of functions) can be derived analytically or evaluated

numerically. In case it is not possible or too cumbersome to determine the derive of the function ana-

lytically, there is a variety of numerical methods to approximate the slope at any point of the function.

One of these methods is the central difference method which is easily implemented and very intuitive.

Figure 77: Graphical representation of Central-Difference method.
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Let’s again first look at a function of one variable. In words the central difference method evaluates

the function ’just’ before and after a point on the x-axis. The word ’just’ refers to dx whose value can

be reasoned depending on the characteristics of the function. The slope can then be calculated with

these results as the difference in y-value and x-value is now known around this point, figure 77:

f ′ (x) =
f (x+ dx)− f (x+ dx)

2dx
(99)

Expanding the method to a set of functions yields;

f ′ (x1, . . . , xn) =


f1(x1+dx1,x2,...,xn)−f1(x1−dx1,...,xn−1,xn)

2dx1
. . . f1(x1,...,xn−1,xn+dxn)−f1(x1,...,xn−1,xn−dxn)

2dxn

...
. . .

...
fn(x1+dx1,x2,...,xn)−fn(x1−dx1,x2,...,xn)

2dx1
. . . fn(x1,...,xn−1,xn+dxn)−fn(x1,...,xn−1,xn−dxn)

2dxn


(100)

E.3 Implementation in the OST

The solving of non-linear function(s) is done twice when implementing the OST. The first is the set

of functions describing the kinematical relationships when a strand has a given strain S1′, Newton

Raphson I. The second is to solve the function for the line contact force PRC , Newton Raphson II.

The following two paragraphs describe shortly the guestimate for each of the Newton-Raphson method

implementations and what the choices are with respect to accuracy and the size of the difference step

for the Central-Difference method. Also results are compared with available numerical examples.

Newton Raphson I Investigating the set of functions describing the kinematical relationships, it is

found that actually only one guestimate is needed, that of the helical wire axial strain S1. This wire

strain is always slightly less than the strand axial strain S′1, approximately 5 - 15% less. Trial and

error has shown that guestimating the wire axial strain at 0.9S′1 is fairly good. With S1 evaluated, the

remaining unknowns can be evaluated by choosing the right, noting there are several, sequence of the

kinematical functions:

1. S1 = 0.9S′1

2. α′ = arccos

(
cosα(1+S′1)

S1+1

)
3. S′2R =

√
cos2 α(cos2 α′+tan2 A)
cos2 α′(cos2 α+tan2 A) − 1

4. S′2C =
(1+S′1) tanα′

tanα − 1

5. S′2 = S′2C − S′2R
6. dS1 = cosα

√
1 + (1 + S′2R)2 tan2 α− 1

7. S6T =
(S′1−S

′
2) sin 2α′

2

8. S2 = − (S′1−S
′
2) cos 2α′

2 +
S′1+S′2

2

Experience has learned that the first guestimate is very reasonable and thus to is also suited to be

used as a reference value for accuracy and to determine a stepsize.

The length of the guestimate is thus taken as a reference value to check for accuracy. The tolerance

is found to stop improving the accuracy significantly if tolerance < 1e−6.
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The step size for the Central-Difference method must be different for each unknown because they

differ in order of magnitude. A fraction of the size of the first guestimate is chosen. The stepsize is

found to reduce the number of iterations when chosen 1
100

th
of the guestimate. Making the stepsize

larger does not seem to reduce the number of iterations any further.

A numerical example can be taken from [25]. The given resulting axial wire strain, S1 = 0.00261,

compares well to the result, S1 = 0.002604, yielded by the TP. Furhtermore, the length of the resid-

ual, deviation from zero of the nullified equations, for this example is 1.471e−11 which is significantly

less than the length of the final solution, 0.003202. The lay angle is excluded as its order of magni-

tude is an order 100 - 1000 times larger than the other unknowns. For the lay angel the residual is

−196.8e−14rad which on its turn, too, is significantly less than the final solution for the lay angle of

0.3129rad. This gives confidence in the correct implementation of Newton Raphson I.

Newton Raphson II As only the root of one function of one variable needs to be found, only one

value needs to be guestimated here.

It is chosen to make a guestimate of line contact width b that depends on the wire diameter. With

this guestimate, the guestimate of the line contact force PRC can then be calculated. After some trial

and error combined with the knowledge that the contact width is a fraction of the wire diameter, it is

found that if b = Dwire

100 only a few iterations are needed. From a numerical example given in [25], it is

calculated that for this example guestimate
final answer = 0.962 and thus is close to the ’true’ (final approximated)

answer. Therefor it is not felt necessary to find a better guestimate, thus:

1. b = Dwire

100

2. PRC = − δn

4(1−ν2)
(

1
3 +ln

Dwire
b

)
The guestimate of PRC is used as a reference for the accuracy. As described above this turns out

to be a very good guestimate and thus gives confidence for being a good reference for accuracy. A

tolerance of 1e− 18 is found by trial and error to improve accuracy.

The step size is a fraction of the first guestimate and, again by trail and error, is found to improve the

number of iterations, roughly 3 - 6, when the step size is chosen to be 1
100

th
of PRC . A larger step size

does not improve the number of iterations.

The same numerical example as before from [25] is used. The results compare less well unlike for the

Newton Raphson I; PRC = 34.39kN/m in [25] where PRC = 33.34kN/m. Though when implemented

in the OST, the results for the PRC vs the XRC data, as is shown in appendix B.3, taken from [23] do

compare very well with the results from the TP. Furthermore the residual for the numerical example is

−0.406e−15 which compares small even to δn = 0.106e−5m.

Thus there is reason for confidence that the Newton-Raphson algorihm to determine the line contact

forces PRC , too, has been implemented correctly.
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