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Abstract

Modern robotic systems are increasingly expected to interact with unstructured and unpre-
dictable environments. This has reiterated the importance of sophisticated reasoning and
adaptive motor skill learning. Although low-level methodologies for sensorimotor control
have been relatively well studied, constrained motion for robotic manipulators in general
environments still remains a challenge.

In addition to viable kinematic trajectories, successful interaction requires a system to adjust
the magnitude and direction of the force applied on an object or human being. One force
control architecture that is stable under a wide range of conditions is impedance control.
However the defining inertial, damping and stiffness parameters are highly task dependent
and often difficult to deduce a priori. To this end, one promising strategy is through rein-
forcement learning. Several frameworks have already emerged that are capable of learning
compliant behaviour in this fashion. However the complex and sometimes discontinuous na-
ture of physical interaction in robotics provides additional challenges in designing algorithms
capable of learning complex behaviours with minimal interaction time.

This thesis details an extension to the PILCO algorithm for learning variable impedance
control. The proposed method attempts to construct a Gaussian Process model of the robot-
environment system through interaction. This approach permits long-term inference and
planning in a fully Bayesian manner, reducing the required interaction time for convergence
and allow for efficient analytical gradient-based policy updates. Two skill learning problems
are investigated both in simulation and experiment on a 7-DOF ‘KUKA LBR iiwa 7 R800’
robot. The first scenario entails learning state-conditioned variable stiffness parameters along
predefined motion plans. In the second framework, the agent learns both stiffness parameters
and kinematic trajectories simultaneously to complete a constrained motion task.
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Chapter 1

Introduction

For humans and animals, effectively engaging the world around us depends almost entirely on
physical contact with it. This interaction is often so effortlessly accommodated by our brains
and central nervous system, that it is easy to forget how difficult it has been to capture these
behaviours in computer algorithms. The conclusion by Pinker [7] in 1994 was that the main
lesson of thirty-five years of Artificial Intelligence (AI) research is that the hard problems are
easy and the easy problems are hard. This is in line with the observation made in 1988 by
roboticist Hans Moravec:

“The discovery by artificial intelligence and robotics researchers is that, contrary to
traditional assumptions, high-level reasoning requires very little computation, but low-level

sensorimotor skills require enormous computational resources.” [8]

Whether we are writing, walking, opening a door or shaking someone’s hand, our body’s
own dynamics are constantly coupling and interacting to different environments. Redundant
degrees of freedom together with the co-activation of muscles allow for regulating a range of
stiffness, damping and inertial properties throughout the body [9], [10], [11]. Tactile and visual
feedback together with learned feed-forward signals based on internal models suggest how to
vary these parameters for different scenarios. It is this time-varying regulation of impedance
[12] that allow us to effortlessly manage the variety of contact tasks we do. Designing safe
and effective interaction controllers requires defining these highly task-dependent parameters.
This thesis develops a framework for learning a variable impedance control task. The proposed
method is an extension of the Probabilistic Inference for Learning COntrol (PILCO) algorithm
[13]. Gaussian Processes [14] are used to learn a model of the coupled robot-environment
system through interaction with the real world. These probabilistic models have been shown
to increase data-efficiency and minimize the required interaction time on typical benchmark
problems [6]. A characteristic that is highly desirable in the context of physical interaction,
where contact with an unknown environment poses the risk of wear and possible damage to
both the surroundings and the robot itself [15].
The specific task chosen for the robotic system in this thesis is a variant of the Peg-in-
Hole (PiH) problem [16] [17]. It entails the (planar) insertion of a peg into an opening
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of a secondary stationary part, with the added difficulty of an additional resistance during
the final stage of insertion. Of all manufacturing procedures currently automated in an
industrial setting, an estimated one third are some form of PiH assembly. For this thesis the
task is merely a place-holder for benchmarking the underlying algorithm, however the actual
procedure is very relevant to industrial automation.

From 2016 to 2018, industrial robot installations are estimated to increase by at least by
15% Compound Annual Growth Rate (CAGR) per year, reaching a total global sales of
about 400.000 units in 2018. According to the International Federation of Robotics (IFR),
it is estimated that between 2015 and 2018 about 1.3 million new industrial robots will be
installed in factories around the world in addition to an estimated 152.400 service robots, not
including personal care and entertainment robots [18]. Robotics is now the world’s fastest
growing industry, with global spending on robotics and related services to grow at a CAGR of
17% from more than $71 billion in 2015 to $135.4 billion in 2019, according to International
Data Corporation (IDC).
Projections aside, let us only consider industrial robots currently in operation, roughly 1.6
million [18]. This translates to more than five hundred thousand robots executing some
variant of PiH insertion at this very instance. Besides the earlier stated reasons for intelligent
force control for physical Human-Robot-Interaction (pHRI), easy to implement compliance
control strategies can yield great benefits for industrial automation in terms of cost reduction,
increased flexibility and a safe human-robot workspace environment.

1-1 State-of-the-Art & Related Work

Hurdles in hardware development aside, the absence of predictability makes the safe and
effective operation of the next generation robots one of the greatest challenges in shifting
the paradigm from rigorously defined factory floors into our lives and dwellings. Hence the
capacity for systems to adaptively modify their behaviour is critical if we wish to master the
uncertain, non-linear and discontinuous nature of general environments. Learning from past
experience is one of the cornerstones of intelligent behaviour that allows for this sophistication
and it has further aligned the interests of the machine learning, robotics and adaptive control
communities. Reinforcement Learning (RL) has been a popular learning strategy for multiple
decades. Inspired by the way biological organisms acquire new skills, it allows an agent to
discard fruitless strategies while pursuing those that yield progress through an iterative trial-
and-error procedure of representation refinement and policy improvement. A brief and loosely
chronological overview of related work in biological physiology research, robotic motor skill
learning and the use of internal models is presented next.

1-1-1 Biological Sensorimotor Skill Learning

Considerable research has been done in physiology, biology and neuroscience on how humans
learn new sensorimotor skills. Studies of limb movements have provided insights into the
computations, mechanisms, and taxonomy of human sensorimotor learning. Motor tasks dif-
fer with respect to how they weight different learning processes. Which include adaptation,
internal-model formation that reduces sensory-prediction errors and reinforced learning [19].
In skill learning tasks such as PiH, which for the most part do not involve a perturbation,
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1-1 State-of-the-Art & Related Work 3

it seems improved performance is manifested as reduced motor variability and probably de-
pends less on adaptation and more on success-based exploration [20]. Explicit awareness and
declarative memory also contribute, with varying degrees, to motor learning. The modularity
of motor learning processes maps, at least to some extent, onto distinct brain structures as
well as signal generators in the Central Nervous System (CNS) [20].
Kording experimentally verified in [21] that the CNS employs probabilistic Bayesian models
on multiple levels during sensorimotor learning. For example in sensor fusion, internal model
formation and strategy building. A finding that is echoed by Wolpert in [19], noting the way
humans use Kalman-like inference for making sense of sensory information.
In general, optimizing motor performance is achieved through three classes of control: (1)
feed-forward control, which is critical given the feedback delays in the human sensorimotor
system1; (2) reactive control, which involves the use of sensory inputs to update ongoing
motor commands; and bio-mechanical control, which involves modulating the compliance of
the limb [19]. This thesis focusses on developing computational strategies for determining
reactive time-varying compliance.
Intelligent, context-specific compliance responses are consistent with the theoretical frame-
work of optimal feedback control, which suggests that the CNS sets up feedback controllers2

that continuously convert sensory inputs into motor outputs [19] and that these are optimally
tuned to the goals of the task by trading off energy consumption with accuracy constraints
(see Chapter 4-2).
In 1988 Kawato suggested in [22] that to learn a new voluntary movement skill, the nervous
system has to overcome three problems; determining a desired trajectory in the visual coor-
dinates (see Chapter 4-1); transformation of the trajectory from visual coordinates to body
coordinates (see Chapter 2-1) and finally the generation of low-level motor commands (see
Chapter 2-2). These distinct phases are very familiar to the robotics and control communities.

1-1-2 Learning Robotic Motor Control

In 1992 Gullapalli used an associative search network to learn reactive admittance control for
a PiH task [23] for the first time. What was especially novel to this was the incorporation of
uncertainty and noise. The neural network controllers determined velocity commands to the
end-effector based on position and force inputs.
For robotic applications the focus has shifted towards a family of algorithms known as di-
rect policy search [24] [25]. These methods directly search for a solution in (some subset of)
the policy space. This requires the formulation of gradients3 based on noisy observations.
Throughout the last decades much research has been done on formulating viable techniques
for gradient estimation. This culminated in the formulation of the REINFORCE method4

[26] , The Policy Gradient Theorem [27] and finally the & Natural Gradient [28] [29]. This
natural gradient formulation was employed by Byungchan in an actor-critic framework to
learn impedance tasks such as opening a door, catching a ball and moving through an un-
known force field [30].

1In the order of the time-delay to the international space station
2Sometimes referred to as motor schema or generalized motor programs
3gradient-free methods such as simulated annealing, evolutionary computation and reward-weighed regres-

sion aside.
4In optimization literature often referred to as the likelihood-ratio trick.
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These methods were all action-perturbing algorithms, relying on random variations per time
step for exploration of the search space. The disadvantage of this is that subsequent random-
ness tends to cancel itself out or may be too fast to fall within the bandwidth of the system.
Also on robots it might not be safe to supply fast changing random actions as low-level motor
commands and it can cause large variance in parameter updates, an effect which grows with
the number of time steps [31]. The most important drawback however is in the number of tri-
als needed for accurate gradient estimates, a minimum of (nψ + 1), the number of parameters
in the policy representation.

An alternative parameter-perturbing approach was summarized by Sehnke and Ruckstiess
in [32] and [33]. Peters applied an approach of this family called reward-weighted regression
to learning operational space control in 2007 [34]. The resulting algorithm was found to be
efficient, smooth and scalable.
The Policy learning by Weighting Exploration with the Returns (PoWER) algorithm proposed
by Kober in [31] computes an input by averaging the perturbation vector and weighing them
with a measure for the reward-to-go. It turns out that this approach follows the natural
gradient without explicitly computing it.

Efforts by, among others, Theodorou have successfully connected the framework of stochastic
optimal control with path integrals to derive a novel approach to RL with parameterized poli-
cies in [35] called Policy Improvements with Path Integrals (PI2). Much like PoWER, it uses
reward-weighted averaging for the policy updates. They showed that policy improvement can
be transformed into an approximation problem of a path integral which has no open tunable
algorithmic parameters other than the exploration noise. The key insight is the transformation
of the stochastic optimal control problem into probabilistic estimation problem, which can
then be solved using sampling techniques. The stochastic Hamilton-Jacobi-Bellman (HJB)
equations allows formulating a 2nd-order partial differential equations (pde) of the time deriva-
tive of the value function. This pde can be linearized under mild assumptions and solved in
its its logarithmic form.
In contrast to policy gradient methods, in PI2 there is no need to explicitly calculate a gra-
dient, which can be sensitive to noise and large derivatives in the value function5. Which
makes this computation robust to non-smooth dynamics and cost functions.
PI2 has been used for learning variable (joint-space) impedance control in [1]. In this work,
Dynamic Movement Primitives (DMPs) - proposed by Ijspeert [36] in 2006 - are used to rep-
resent movement and impedance trajectories in a single dynamical system, depicted schemat-
ically in Figure 1-1. DMPs are a compact way of describing dynamics that have guaranteed
stable properties to a predefined attractor state.
The PI2 algorithm has also been applied to learning reactive force control in stochastic en-
vironments by Stulp in [37]. From human arm studies it is observed that predictable pertur-
bations are countered by feed-forward control whereas stochastic perturbations are reacted
to by increased arm stiffness. Finally it was shown to be effective in learning more finely
compliant manipulation such as opening a door and picking up a pen from a table in [38].

A recent use of DMPs in the context of Cartesian impedance learning is presented in [39].
the proposed algorithm takes a Cartesian reference trajectory and Force/Torque-profile as
input and adapts the movement on-line so that the resulting forces and torques match some

5Instead the gradient of the exponentiated value function is implicitly calculated by a weighted average of
the exploration parameter weighted by the exponentiated cost of every sampled trajectory.
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Figure 1-1: High level overview of learning both motion plans and variable stiffness gains with the PI2

learning algorithm [1].

reference profiles supplied earlier by expert demonstrations. This strategy allows a robot to
transfer these taught skills for a certain part-mating procedure to new configurations over the
course of several iterations by iteratively adapting the learned trajectory to improve the task
performance using force feedback

Figure 1-2 categorizes the different policy search architectures. The transition over the last
decades has been from value function based methods to direct policy search based on various
types of estimated gradients. Then going from Natural Actor-Critic (NAC) to PoWER repre-
sented a transition from action perturbation to parameter perturbation and from estimating
the gradient to reward-weighted averaging. Stulp in [2] observes this trend continuing into
more Black-Box Optimization (BBO).

Figure 1-2: Classification and trends within direct policy search RL (arrows indicate time) [2].

1-1-3 Model-Based Learning

The progression of RL given above have all served to provide better policy improvements based
directly on obtained experience. One strategy for further minimizing the required interaction
time is through model-based policy updates. Model-learning RL utilizes recorded data to
construct an internal model that can be exhausted for policy updates, thereby more efficiently
exploiting data. This has been demonstrated to increase data-efficiency and robustness [40].
From Chapter 1-1-1, the concept of internal model-formation was found to be critical in
human skill learning and minimizing interaction time. This work is an attempt to capture
some of those benefits.
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6 Introduction

An early example of increasing data-efficiency and robustness through model-based planning
for robotic learning can be found in the work by Aboaf in 1989 [41]. A comprehensive
discussion on the modern use of models in RL is presented in [42]. A much cited design of
model-based learning appears in the classic work by Sutton [4] as the Dyna-architecture (see
Chapter 3-1-1).

However the resulting model-conditioned policies may not be a sufficient approximation to
the real dynamics. This problem of model-bias is a major challenge and when not addressed
can result in divergent - and in the case of pHRI - possibly dangerous control policies. To
overcome this problems of inaccurate models, Abbeel in [43] adds a heuristic bias term along
the recorded trajectory to update the model after gathering real experience. In this approach,
real-life trials are used to evaluate, while gradient estimations of the policy with respect to
its parameters are used for improvements. This only requires a single trial to improve the
policy6, whereas model-free methods typically require this to be in the order of the number
of policy parameters [43].
Another way to diminish the effects of model-bias is through uncertainty quantification. Tra-
ditionally models have often been deterministic, an approach which rejects much of the noise
and uncertainty in recorded data. The endeavour of effectively dealing with uncertainty has
caught the shared interest of the machine learning, robotics and control communities. In order
to minimize the required interaction time and mimic the way in which human use Bayesian
inference, this work will follow such approach to model-based RL. A useful non-parametric
framework for Bayesian modelling are Gaussian Processes.. An excellent introduction to the
use of Gaussian Process (GP) models in machine learning was written by Rasmussen in 2006
[44]. Recently, Rasmussen & Deisenroth proposed a rigorous way of making long-term pre-
dictions for dynamical systems with GPs while propagating all the uncertainties [5]. This
approach culminated in the PILCO algorithm. Its effectiveness was shown in several low-
Degrees of Freedom (DOF) benchmark problems as well as 5-DOF unicycle balancing [6]. Its
philosophy is similar to [43], iteratively making batched policy improvements grounded in
real-life experience with the addition of rigorous uncertainty accounting and analytical policy
gradients.

1-2 Current Research Objectives & Thesis Outline

However the speed of convergence and the limited dimensionality of the policies still remains
an issue. This thesis attempts to fuse some of the discoveries made with respect to biological
and robotic skill-learning mentioned in Chapter 1-1-1 and 1-1-2. For this we develop an
extension to the analytical gradient-based learning strategy developed in [5] known as PILCO.
The structure of the proposed model-based strategy allows formulating analytical expressions
for gradient-descent policy updates in a fully Bayesian manner, instead of through estimation
of deterministic gradients. Quantified uncertainty during learning can exploit parts of the
state-space where the assumption of continuous dynamics is valid, while upholding a measure
of parts of the state-action space where such a postulation breaks down. It is hypothesized
that this decreases interaction time with respect to model-free methods while still allowing
for high-level policies that can be generalized to different scenarios. Specifically this thesis
details the development of two algorithms; Variable Impedance Learning (VIL) and Variable

6As long as the estimated direction is within 90 degrees of the true gradient.
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1-2 Current Research Objectives & Thesis Outline 7

Impedance Learning with Trajectory Adaptation (VILTA). Methods for learning stiffness
parameters and kinematic trajectories for executing constrained motion tasks in Cartesian
space. The architecture proposed in this thesis could also be employed to learn impedance
control in joint-space, but this is not presented here. The general research objectives are given
below, followed by an outline on the structure of this document.

(1) Formulate a sample-efficient learning framework for robotic impedance control. The
general objective of this thesis is to design an algorithm capable of learning variable impedance
control with minimal interaction time on the system.

(a) Learn to perform a constrained motion task in an optimal manner through variable
stiffness gains. The primary practical goal of this thesis is to apply the aforementioned
algorithm to learn a variable impedance control task on a simulated 3-DOF planar robot and
on a 7-DOF KUKA LBR 7 iiwa manipulator.

(b) Learn to perform a constrained motion task by modulating stiffness gains and on-line
references adaptation. The secondary practical goal of this thesis is to apply the aforemen-
tioned algorithm to learn variable impedance gains simultaneously with an optimal trajectory
for a constrained motion task.

(c) Investigate the impact of local discontinuities on model-based learning. One impor-
tant aspect of this research lies in investigating how discontinuities during contact transitions
affect the validity of constructed models and how uncertainty quantification can be employed
to mitigate these phenomena and minimize the effects of model bias.

Figure 1-3: Roadmap of this document. Solid arrows indicate recommended reading order. Dashed arrows
indicate alternative order for quick impression.

Figure 1-3 gives a schematic overview of this document along with a recommended reading
order. First an introduction to the implementation of impedance control for robotic manip-
ulators is given in Chapter 2. Some mathematical notation is introduced, followed by a brief
introduction to the relevant practical implementation of low-level spatial impedance control.
Chapter 3 summarizes in detail the steps that comprise the PILCO algorithm. This includes
concepts for learning non-parametric GP models, making long-term predictions and gradient-
based policy optimization. Novel concepts, additions and extensions of this thesis specific to
model-based Variable Impedance Control (VIC) are presented in Chapter 4. Experimental
results are reported in Chapter 5. Two scenarios are investigated in both simulation and real-
world experiments; VIL along predefined motion plans; and VILTA for learning a PiH-like
task. Concluding remarks and an articulation of future directions is given in Chapter 6.
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8 Introduction

A Note on Notation

This report follows standard metric and SI units and the comma is used as decimal sign. In
general, scalar values are denoted by light, small case, symbols (x). Functions are indicated
in the same manner. Vectors are indicated with bold, small case symbols (x). Matrices are
denoted with light, capital case letters (X). Scalar values indicating a constant such as the
total number of iterations or time steps are also indicated with light, roman, capital case
letters (T ).
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Chapter 2

Interaction Control

In general there exists two distinct modes of operation for any mechanical linkage; free motion
and constrained motion. Many of the manufacturing processes that were the initial driving
force of automation algorithms can be described as free motion tasks. Applications include
pick-and-place tasks, spray painting, welding and laser cutting. Traditional control system
design thus had a strong focus on these types of tasks. Positional feedback gains are applied
to the actuators in order to control the robot into a desired configuration. A compensating
dynamical model of the system can be embedded in the control law for higher speed and
accuracy.
Contact tasks are motions in which one or more directions in the workspace are constrained
due to external objects. When a manipulator makes contact, a transition discontinuity arises
from the interaction forces between the robot and its environment. When using high-gain
positional feedback schemes, these external forces can result in destructive and sometimes
dangerous behaviour, especially in the case of high inertia systems. To adequately control a
manipulator during constrained motion, safe and effective means for dealing with the resulting
forces is required. These methodologies are often termed compliance-, interaction-, or force
control methods. Compliance can be considered as a measure of the ability of a manipulator
to react to interaction forces [45]. Broadly all these schemes can be categorized into two
categories: direct and indirect force1 control.
An extensive survey on the general topic of interaction control can be found in [46]. Earlier
research includes experimental comparisons of a variety of strategies [47] and the relation to
safe physical Human-Robot-Interaction (pHRI) [48]. The paper detailing the state-of-the-
art in robotic force control after the first wave of research in the 1980’s was by Whitney
in [49], which has since been cited many times as a benchmark when referring to different
methodologies. For a bird’s eye view of force control strategies and an interesting analysis of
their mutual relationships, the reader is referred to [50].
This research focuses on the implementation of an impedance control scheme with learned
state-dependent gains and trajectories in Cartesian space. This chapter will outline the the-
ory and implementation of simple and general Cartesian impedance control as applied to

1For readability, when referring to forces, the reader is expected to read forces/torques.
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10 Interaction Control

an n-Degrees of Freedom (DOF) robotic manipulator. The reasons for choosing this control
methodology are outlined in Chapter 2-2. In order to establish clear and consistent notation,
some underlying mathematics regarding the kinematic and dynamic formalism of robotic ma-
nipulators is presented in Chapter 2-1. As will be detailed, several types of implementation for
Impedance Control (IC) exist, each with their respective strengths and weaknesses. The pro-
posed learning algorithm is able to work with all architectures for learning optimal behaviour
in each respective setting. To appreciate the consequences of this, the control theory for both
types of IC are outlined in Chapter 2-2-1 and 2-2-2. Finally a description of force-guided
Peg-in-Hole (PiH) tasks is given in Chapter 2-3.

2-1 Mathematical Background of Serial Manipulator Kinematics

We start by establishing some basic concepts related to kinematics and the spatial sets we
use to express them. For a more in depth description regarding any of these topics the reader
is referred to [3]. A discussion of orientation representation is presented in Appendix B.
We will consider robotic manipulators consisting of a serial (open) kinematic chain of n + 1
links connected by n joints. We let q be the (n×1) vector representing the state of the system
in joint space2. We set pe =

[
x y z

]
∈ R3 as the position and He ∈ R3×3 the rotation

matrix of the Tool Center Point (TCP)3 with respect to the base frame (see Figure 2-1).

Figure 2-1: Schematic drawing of a serial chain manipulator with notations [3].

The kinematic model describes the mapping between the joint space and workspace variables
of the manipulator. This mapping is completely defined by a homogeneous transformation
matrix, belonging to the special Euclidean group SE(3) and where Re(q) is part of the special
orthonormal group SO(3):

He =
[
He(q) pe(q)

0 1

]
(2-1)

The differential kinematics of the manipulator gives the relations between joint velocities q̇
and end-effector velocities

ve =
[
ṗTe
ωTe

]T
=
[
Jp
Jo

]T
= Jg(q)q̇ (2-2)

2Also called configuration space
3The point on the end-effector around which the orientation of the manipulator wrist is being defined.
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2-1 Mathematical Background of Serial Manipulator Kinematics 11

This differential mapping is known as the geometric Jacobian. This description of the end-
effector orientation by Re is redundant due to six orthonormality constraints acting on the
rotation matrix. The minimal orientation4 of the end-effector can be described by a (3 × 1)
vector φe, which can be extracted from the rotation matrix in terms of three Euler Angles
[51]: φ = [α β γ]T :

Re(φ) = Ri(α)Rj(β)Rk(γ) (2-3)

where Ri(α), Ri(β), Ri(γ) are the matrices of the elementary rotations about three indepen-
dent coordinate axes of successive frames.

When expressing the state of the end-effector in this minimal form it is said to be in Opera-
tional Space Formulation, as introduced by Khatib in [52]:

xe =
[
pe(q)
φe(q)

]
= fk(q) ẋe =

 ∂pe∂q
∂φe
∂q

 q̇ =
[
Jp
Jφ

]
q̇ = Ja(q)q̇ (2-4)

As a result, the Jacobian can be computed analytically by differentiation. This analytical
Jacobian is in general different from the geometric one, since the end-effector angular velocity
ωe with respect to the base frame is not in general given by φ̇e.
This relation between the end-effector angular velocity ωe and the derivative of Euler Angles
φ̇e for a given orientation angles is denoted by the transformation matrix T (φe) ∈ R3×3.
Which allows us to relate the two versions of a Jacobian:

Jg = TJ(φe)Ja =
[
I3 03
03 T (φe)

]
Ja (2-5)

These transformation matrices already hint at the presence of singularities when using Euler
angles, which arise when T (φe) loses rank. In these singular configurations, it is not possible
to describe an arbitrary angular velocity with a set of Euler angles time derivatives and the
extraction of the Euler angles corresponding to a given rotation matrix is not unique. For
this thesis, an alternative Euler angle representation (see Appendix B) is implemented that
partially mitigates these representational singularity problems.

Besides these mathematical anomalies, the physical orientation of a manipulator can yield so
called kinematic singularities. These occur either at the boundary of the workspace, when
the arm is fully stretched, or inside the workspace by the alignment two or more axes5.
As opposed to the former type, the latter case requires careful consideration, since they
can appear anywhere in the workspace for certain operational space trajectories. Kinematic
singularities can yield an infinite solution to the inverse kinematic problem, impose restrictions
on the mobility of te structure and yield extreme joint velocities for small velocities in the
operational space as the Jacobian approaches a numerical singularity6. Inverse kinematics
has been described by Paul as one of the hardest problems in control [53].

4The term ‘orientation’ is used when referring to rotational states, while the term ‘pose’ is reserved for the
complete position and rotational state of the end-effector.

5The former type are known as boundary singularities, while the latter are referred to as internal singular-
ities.

6Manipulators with a spherical wrist allow decoupling the internal singularities into arm- and wrist singu-
larities, simplifying singularity formalism.
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12 Interaction Control

2-2 Impedance Control

As the name suggests, indirect force control is achieved by establishing an implicit relation
between motion and force. The framework that elegantly describes this relation was intro-
duced by Neville Hogan in [12], who termed it IC. Instead of trying to model the interaction
as a disturbance - which violates the typical state-independence assumption - or trying to
model it as an uncertainty - one that will likely alter the system’s order and be in the same
frequency range as control - it aims to achieve a dynamical relationship between end-effector
motion and contact forces.

“The dynamic interactions are not a source of disturbances to be rejected, but an integral
part of the task. This is the idea behind impedance control. It is assumed that the robot’s

task must fundamentally be described, not in terms of motions, nor in terms of forces, but in
terms of the relations between them.” - Hogan [12]

To this end the system is modeled as an equivalent physical network with ports, capable of
exchanging energy through force and motion.
Generalized from concepts of electrical circuit theory; Impedance takes an input velocity to
impose a force: Z(s) = f(s)/sx and its causal dual Admittance: Y (s) = sx/f(s), are port
operators that establish a relation between force (effort) and velocity (flow)7. IC then tries
to control the system behaviour at its interaction ports, characterized by the power exchange
P = eTf . Any part of a system can be characterized as an interaction port, as long as its
exchange variables have an inner product equalling power. Figure 2-2 shows several instances
of a TCP acting as an interaction port for stiffness regulation in impedance control.

Figure 2-2: Depiction of closed-loop stiffness behaviours. ∆x indicates the deviation from a virtual
trajectory. The force exerted is the response proportional to the desired stiffness here called C.

Physical objects have two main characteristics associated to them: Inertial and kinematic
surface constraints. If the object is stiff and/or heavy this means it is best modeled as an
admittance, since we can not impose a motion on a kinematic constraint or large mass. Causal
duality would then have the manipulator act as a pure impedance. If the object is compliant,
the causality is inverted. However most robots consist of links of relatively large mass driven

7In mechanics often position is used as output variable instead of velocity. This is due to some inherent
peculiarities of mechanical systems being heavily dependent on configuration.

Victor van Spaandonk Master of Science Thesis



2-2 Impedance Control 13

by highly geared actuators to amplify motor torque. The total inertia apparent at the end
effector is increased by the reflected inertia of the motor, which for high gear ratios can
dwarf the mass of the links. These inertial properties are difficult to overcome and tend to
dominate the system’s response. Thus even though stiff environments are naturally modeled
as an admittance, it is difficult to make a robot behave as a pure impedance, and it is usually
more feasible to make it behave as primarily a mass (or admittance).
In other words, impedance behaviour is usually ideal, but admittance behaviour is often more
easily implemented in real hardware, which itself prefers admittance causality because of its
inertial nature. The choice of particular controller structure for an application must be based
on the anticipated structure of the surroundings and robot, as well as the way that they are
coupled. A switching strategy was developed in [54] that is capable of switching between
impedance and admittance control in the face of different environments.

2-2-1 Simple Cartesian Impedance Control

In order to approach the ideal of impedance control, being able to specify the apparent spring
and damping behaviour at the end-effector, one has to overcome the inherent impedance char-
acteristics of the manipulator. One way of course is to compensate for the robot’s dynamics
with active control, detailed in Chapter 2-2-2. Another more straightforward approach is
through highly back-drivable mechanics; minimal gearing, low friction and small inertias con-
trolled with high bandwidth DC motors. Allowing for the specification of desired end-point
behaviour as a spring and damper:

W ext = KP (xv − xe) +Kd(ẋv − ẋe) (2-6)

First let us review the control theory of robotic manipulator dynamics. The general class of
systems we consider can be represented by a set of n nonlinear differential equations in joint
space:

q̇ = f(q,u)− JTg W ext, where q ∈ Rn, u ∈ Rm

Using the Lagrangian formulation, the form known as the Mechanical Equation can be
adopted:

M(q)q̈ + C(q, q̇)q̇ + g(q) = u− JTg (q)W ext (2-7)

whereM is the inertial matrix, C is the centrifugal and Coriolis term, g accounts for gravity
forces andW ext = [fT , τT ]T is the wrench of the external contact forces and torques applied
on the end-effector and u is the vector of input torques applied to the joints, accounting for
possible gearing.

The closed-loop behaviour of Equation (2-6) is approached by transposed Jacobian control,
utilizing the direct and differential kinematic map of (2-4) and possible gravity compensation:

τm = J(q)T
[
KP

(
xv − f(q)) +KD(ẋv − J(q)q̇

)]
+ g(q) (2-8)

Resulting in the closed-loop system:

M(q)q̈ + C(q, q̇)q̇ = J(q)T
[
Kd

(
xv − f(q)) +Bd(ẋv − J(q)q̇

)]
− JT (q)W ext (2-9)

Simple impedance control thus consists of driving an intrinsically light, low-friction mechanism
with force- or torque-controlled actuators, and using motion feedback to increase output
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impedance. This approach makes no attempt to compensate for any physical impedance
(mass, friction) in the mechanism, so the actual output impedance consists of that due to the
controller plus that due to the mechanism.
Due to the non-linear kinematics of a typical robot, constant stiffness and damping matrices
in the control law of Equation (2-6) result in stiffness and damping apparent at the robot’s
end-effector (the usual interaction port) that vary with its configuration. Note that the simple
impedance controller does not rely on force feedback and does not require a force sensor.

Some interesting possibilities for Variable Impedance Learning (VIL) present itself with re-
spect to Simple Impedance Control (SIC). Accurate dynamics compensation can be a major
challenge. Precise models might not always be available or practical implementation might
be outside the scope of moderate embedded hardware specs. For constant gain IC a trade-off
has to be made between performance on the one hand and energy, safety and stability con-
straints on the other hand. Variable Impedance Control (VIC) allows time-varying gains to
be conditioned on a reward function tailored to the higher-level goal specification, which can
resolve the trade-off in an optimal manner, compensating for model mismatch only at places
where it is beneficial for the agent, while still exploiting the mentioned benefits and simplicity
of SIC.

2-2-2 General Cartesian Impedance Control

General Impedance Control (GIC) is an extension in which we can fully specify the inertial,
damping and stiffness parameters experienced by the end-effector. It was proposed by Hogan
in [12] and it aims to achieve the closed-loop system:

Md ¨̃xe +KD ˙̃xe +KP x̃e = W ext (2-10)

The block diagram in Figure 2-3 shows the control system design that achieves this behaviour
up to a kinematic coupling term. Dynamic model-based compensation8 is achieved by the
following control law

u = M(q)α+ C(q̇, q)q̇ + g(q) (2-11)

which when substituted in (2-7) results in resolved acceleration in joint space:

q̈ = α− δ −M(q)−1(q)JTg W ext (2-12)

Where δ accounts for any unmodeled dynamics resulting from inaccurate parameter estima-
tion or unmodeled friction.

The dynamics of the system can be directly expressed in the operational space formulation
[52]. This will require careful consideration of kinematic and representational singularities,
as well ass redundant DOFs. Taking the time derivative of (2-4) yields

ẍe = J̇a(q, q̇)q̇ + Ja(q)q̈ (2-13)

Which allows to express the Mechanical Equation from (2-7) in operational space coordinates:

Θ(xe)ẍe + Γ(xe, ẋe)ẋe + η(xe) = J−Ta (q)T TJ (xe)u+ T TJ (xe)W ext (2-14)
8Sometimes called inverse dynamics or computed torque control
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Figure 2-3: Block diagram of general Cartesian impedance control. Four distinct blocks can be identi-
fied; inverse dynamics in joint space, transformation of joint variables to Cartesian coordinates, resolved
acceleration in Cartesian space and defining the desired closed-loop behaviour. Open arrowheads indicate the
variable is used as an input to the block, solid heads indicate a multiplication.

Which for the case of a non-redundant manipulator (n = m) in a non-singular configuration
(J−1
a exists) and dropping the dependencies for readability, has

Θ = J−Ta MJ−1
a

Γ = J−Ta

(
C − J−1

a J̇a
)
J−1
a

=
(
J−Ta C −ΘJ̇a

)
J−1
a

η = J−Ta g

(2-15)

To arrive at a closed-loop double integrator system in Cartesian space, α in (2-12) is set to

α = J−1
a (q)

(
a− J̇a(q, q̇)q̇

)
(2-16)

Looking at (2-15) and (2-16) the inherent difficulties with respect to control in the operational
space become apparent. Besides having to compute the kinematic mappings on-line, it is
not guaranteed to be well-behaved throughout the workspace. Even when avoiding exact
singularities, in computer-controlled systems, inversion of a near-singular matrix will cause
numerical problems long before the physical system reaches a physical singularity9.

To arrive at a system that is uncoupled from the system’s inertial matrix and external forces,
computed torque control is combined with force-based inner loop impedance control. For this
the control law in (2-11) is expanded to:

u = M(q)α+ C(q̇, q)q̇ + g(q) + JTg (q)W ext (2-17)

9For a redundant manipulator, a joint space control scheme is naturally transparent to this situation, since
redundancy has already been solved by inverse kinematics, whereas an operational space control scheme should
incorporate a redundancy handling technique inside the feedback loop.
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The inclusion of the last term exactly compensates the contact forces and makes the manip-
ulator infinitely stiff with respect to the environment. For α we set

α = J−1
a (q)

(
a− J̇a(q, q̇)q̇ − TJ(φ)W ext

)
= J−1

a (q)
(
ẍd +M−1

d

(
KD ˙̃x+KP x̃

)
− J̇a(q, q̇)q̇ −M−1

d TJ(φ)W ext

) (2-18)

In this case the (transformed) wrench in the last term was introduced to render the end-
effector linearly compliant with respect to the equivalent forces. Combining these control
laws defines the following closed-loop dynamics:

Md ¨̃xe +KD ˙̃xe +KP x̃e = TJ(φe)W ext (2-19)

Notice that rotational impedance still depends on the end-effector’s current orientation through
TJ(φe). Here lies another possible application of VIL. Decoupled Cartesian stiffness param-
eters is critical when having to specify impedance parameters by hand. In VIC however, the
time-varying gains are tailored to the higher level goal. For sufficiently expressive policies,
the coupling can be implicitly incorporated into the controller.

Finally a note on practical implementation on commercial systems. For good performance it
is critical that the torque commanded to the motors is close to the actual torque delivered to
the joints. Due to effects such as friction, this is not always the case. Hence IC works best
on torque controlled systems, such as the KUKA LWR iiwa. For the more common position-
based manipulators, an admittance is defined that maps the desired Cartesian torques to
spatial commands presented to the inner control loop. Hence the performance of these sys-
tems is highly dependent on the bandwidth of the inner position loop.
A promising research effort has been made at the ‘DLR Institute of Robotics and Mecha-
tronics’, where they have developed a unified framework based on passivity theory for force,
torque and impedance control of flexible joint robots, detailed in [55]. They showed that an
inner torque feedback loop can be incorporated into a passivity based analysis by interpreting
torque feedback in terms of shaping of the motor inertia. They implemented these architec-
tures on a Deutsches Zentrum für Luft- und Raumfahrt - German Aerospace Center (DLR)
flexible-joint Manipulator and highlighted its performance in completing a piston-insertion
task, wiping a table and opening a door. Due to the cooperation between the DLR institute
and KUKA, some of these advances in hardware and software have made its way into the
KUKA iiwa series. This light weight torque-controlled 7-DOF arm is therefore highly suited
for impedance controlled tasks and is utilized in this thesis to perform experimental studies,
documented in Chapter 5.

2-3 Force Guided Peg-in-Hole Insertion

Estimates from industry suggest that more than 30% of all industrial procedures can be
classified as part mating [18]. A typical example of such tasks is PiH insertion. PiH is a
category of assembly tasks in which a generally shaped peg is inserted in a suitably sized
hole. Humans are incredibly adept at performing such tasks at great speed and accuracy. For
modern robots however, these procedures are immensely difficult as eluded to in Chapter 1.
This is because when two parts mate, there will always exist small errors in the positioning of
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2-3 Force Guided Peg-in-Hole Insertion 17

both parts. These arise from inaccurate sensing, uncertainty in the mechanical parameters of
the manipulator and parts or from the dynamics of the control algorithm (see Chapter 5-2).
For a colourful - admittedly speculative - example, we present an application in the field of
interplanetary robotics. Specifically that of an interplanetary rover equipped with a multi-
DOF force-sensing arm and optical imaging sensor. These robots will soon be expected
to perform construction and repairs on both themselves and their surroundings on distant
planets. The robot might autonomously decide that a certain interaction is necessary and
ask for confirmation from an earth-based control center. Due to inherent time delays the
operators can not perform the task remotely through haptic tele-operation. This is but one
outline of a scenario in which time for the agent to ‘think’ is abundant, but the risk for
irreversible damage in the face of unknown contact dynamics to the distant and expensive
rover is extremely high. Increasing data-efficiency and minimizing interaction time then
becomes a critical requirement, while computational complexity constraints can be greatly
relaxed. For a rover stationed on mars, the round-way trip for communication can quickly
be up to an hour. As we will see in Chapter 5, in this time the robot can have reached an
almost converged policy for the task with just a few roll-outs using the proposed algorithm.
Even for relatively simple insertion tasks, an exact estimate for the goal state might be
unavailable. Increasing the physical intelligence of the robot (see Chapter 4) alleviates the
requirement for expensive, weighty and fault-vulnerable camera systems. In this setting, the
robot can infer a rough initial estimate of the hole location through on board image recognition
modules. In such a setting, compliance in the closed-loop system, whether passive [56] or
active [57], is of paramount importance for successful insertion.
Traditionally, several phases in PiH can be identified; (1) an initial approach followed by (2) a
search for the hole’s location together with (3) an alignment, the actual insert (4) and finally
(5) a retreat.
The PiH can be solved by straightforward completion of these individual phases, such as in
[57]. The approach phase includes possibly picking up the relevant part and moving towards
the vicinity of the hole. The initial contact with the surrounding environment happens during
this approach (see Chapter 5-2-1). Next the robot will start its search for the hole. Often
this is done by following a predefined motion plan [58] and monitoring for tell-tale signs that
hint at the presence of the hole (see Chapter 4-1 and 5-1). When the orientation of the peg
is relevant for the insertion10 an additional path is defined for the orientation of the TCP.
In theory, when placing the desired position of the TCP behind the hole and repeating these
exploratory motions, successful insertion can be achieved, even for non-symmetric pegs. Such
an approach was experimentally demonstrated in which a square peg is inserted in a hole
with a clearance of 0.05 [mm] on either side [59]. An advantage of this simple approach is
that there is no need for of force sensing from the robot’s wrist (see Chapter 5-4-2). This
essentially combines the search, align and insert phase into a single procedure, although it
resulted in jamming more than 20% of trials, tripling insertion time, with the risk of damaging
the mated part or manipulator. For more agile and rapid insertion, an additional alignment
can be performed. A similar motion plan as before is executed where now a force sensor
monitors for any signs of the hole’s location. These moment measurements contain clues to
the location and orientation of the hole. Theoretically, a single measurement made in the
appropriate capture region is enough to deduce the size and location of the hole. Ideally, this
mapping (dx,dy) →W ext is well behaved for this capture region. To achieve this mapping

10This is the case for non-symmetric pegs
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Newman [60] performed multiple roll-outs around the hole, measuring position and force
signals along the trajectory (see Chapter 5-5). To obtain the inverse mapping from force to
position command, the data was presented to a neural network trained by back-propagation.
However, the moments observed along the trajectory are not unique and hence inversion of
the observed function is problematic. Instead of directly using single force measurements,
a higher level feature map can be build to infer the hole’s location. Other more advanced
strategies have since been developed for estimating hole location within the capture region
based on force measurements. When the peg is properly aligned with the hole, insertion can
start. During this time, the robot sets its desired TCP location somewhat behind the hole
until the parts are successfully mated. In certain scenarios such as the one considered in this
thesis, an additional stiffness is encountered during insertion (see Chapter 5-2-1), for example
when inserting an electric plug into a socket or click-mating two mechanical parts. When
insertion is completed, the gripper may detach from the peg and retreat back to its starting
pose. Most of these five phases will show up in the problem description of Chapter 5. In
essence what the proposed strategy attempts to do is combine all phases into a single learning
problem by defining a high level goal (see Chapter 3-4-1) that steers the agent towards viable
policies.

Victor van Spaandonk Master of Science Thesis



Chapter 3

Probabilistic Inference for Learning

Traditional control system design has allowed highly accurate control, often at high speeds and
repeatability. Much of the success of strategies such as PID and optimal control design can
be attributed to their solid mathematical foundation. Often the environments that allow for
these rigorous derivations are assumed to be linear, stationary and exhibiting low uncertainty.
Several issues arise when attempting to apply such methods for complex manipulation tasks
or systems containing highly non-linear or uncertain dynamics. An alternative approach for
these types of tasks is Reinforcement Learning (RL). In RL an agent learns a control strategy
by interacting with its environment and, akin to the way humans learn, the system tries to
improve its behaviour by minimizing a (long-term) cost in a trial-and-error fashion [4].

There are several challenges with respect to RL in the context of robotics that need to
be addressed if one attempts to formulate a tractable problem. This chapter will begin
by introducing some basic concepts of RL and highlight some of the challenges specific to
robotic interaction tasks in Chapter 3-1, including the advantages and pitfalls of models in
Chapter 3-1-1. Chapter 3-2 will introduce a Bayesian approach to model-based learning called
Probabilistic Inference for Learning COntrol (PILCO) [13] that is able to mitigate some of
the difficulties and decrease the required interaction time for the agent. The mathematics
underlying planning with Gaussian Processes is presented in Chapter 3-3. Chapter 3-4 briefly
details how policy updates are performed, although the exact structures suitable for learning
impedance control is saved for Chapter 4.
Note that some of the nomenclature has changed slightly with respect to the first chapter.
To stay congruent with most of the RL literature, s and a are used for states and actions
respectively. Jπ represents the total return over a trajectory τ . Notice that the objective
measure in this work is in the form of a cost function, as opposed to its conventional inverse:
reward.
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20 Probabilistic Inference for Learning

3-1 Reinforcement Learning - a Brief Introduction

RL is a trial-and-error learning strategy, popularized by the work of Sutton & Barto [4]. The
goal of RL is making an agent achieve a certain goal through executing actions by maximizing
its reward1 over time by interacting with its environment, as schematically framed in Figure
3-1.

Figure 3-1: Simple representation of the reinforcement learning framework [4].

At each time step t the agent interacts with the environment by executing a specific action
a ∈ RDu which changes the state s ∈ RDs of the system as well as presenting a cost c ∈ R. At
each time step, the agent implements a mapping from state representations to probabilities
of selecting each possible action. This (possibly stochastic) conditional mapping is called a
policy π, often represented by a parametrized function through ψ:

πψ(s,a, t) = p
(
at|st

)
The system under consideration is a (Finite) Markov Decision Process (MDP)2 [61]. Which is
defined as a (non-linear) one-step ahead, state-space transition model with independent and
identically distributed (i.d.d.) Gaussian noise σo:

st+1 = f(st,at) + σo (3-1)

Following a certain policy will result in a subsequent state, according to some (stochastic)
transition function p(st+1 = s′|st,at), leading the agent to an expected numeric penalty:

C = E
[
ct+1|st,at, st+1

]
One trial lastingNT steps of ts seconds, is defined by the trajectory τ = {s0,a0, s1,a1 . . . sNT }.
The objective measure judging the quality of a roll-out we call the expected return J :

Jπ(ψ) = E[C(τ |ψ)] =
∫
C(τ )pψ(τ )dτ (3-2)

where C(τ ) =
∑T
t=0 γ

t · c(st,at, st+1, t) is the (possibly discounted through γ) accumulated
cost during one episodic trajectory. Over the course of multiple roll-outs3 this measure of
success allows the agent to update its policy in a way that increases its expected return.

1For this thesis we actually work with the inverse reward, i.e. cost.
2This essentially means that all relevant information is retained in the state of the system. If an environment

has the Markov property, then its one-step dynamics enable us to (stochastically) predict the next state and
expected next cost given the current state and action.

3These interactive phases are also called trials, here and in other RL literature.

Victor van Spaandonk Master of Science Thesis



3-1 Reinforcement Learning - a Brief Introduction 21

This manner of updating the policy without an explicit representation of a value function is
known as direct policy search. These algorithms are pervasive in robotic applications, since
the more traditional value-based methods do not perform well in those types of domains [24],
also see Chapter 1-1-2. There are in fact several characteristics inherent to robotics that
make successful implementation of RL more challenging. The survey by Kober [15] gives a
comprehensive overview of concepts, successes and challenges in robotic RL. For this work,
learning robotic impedance control, we can identify the following key challenges:

1. High dimensionality

2. Continuous state & action-spaces with local discontinuities

3. Partially observable Markov Processes

4. Noise and uncertainty in sensor data

5. For physical contact, interaction could be damaging or dangerous.

Within direct policy search strategies we can distinguish between model-free and model-based
algorithms. The former relies on trials to obtain the relevant trajectory data in Equation
(3-2). One popular methodology is to then use that data to estimate a gradient in which to
policy updates.
Model-free policy search imposes only general assumptions on the entire learning process,
but due to the sampling nature, they can be applied to policies with a moderate number of
parameters. The objective of model-based methods essentially comes down to increasing the
data-efficiency compared to model-free methods. Model-based methods do not update based
directly on experience from the real world, but instead use the experience to formulate an
internal model, upon which policy updates can then be performed, i.e. planning.

3-1-1 The Use of Models

Figure 3-2: Schematic diagram of the Dyna architecture introduced by Sutton in [4].

Figure 3-2 gives a schematic overview of a strategy known as the Dyna-architecture, proposed
by Sutton in [4]. The idea is that in addition to direct (model-free) RL, the same data can be
used to construct a model for further policy improvements. Which in the case of the Dyna
architecture can even be done on-line during the spare time of every control loop.
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22 Probabilistic Inference for Learning

In model-based RL we can thus distinguish two phases: model learning and planning. There
are different methodologies for all these phases and varying ways of combining them depending
on whether the algorithm learns on-line or off-line in batch-mode or in real-time [42].

On top of the standard topics in RL such as parameter tuning, there are a few major compo-
nents that need to be specifically addressed in model-based RL [24]; (1) what model type to
learn: (non-)parametric, stochastic or deterministic. (2) How to use the model for long-term
prediction: stochastic inference (e.g. PEGASUS [62]) or deterministic approximate infer-
ence (e.g. PILCO [13]) and lastly (3) the policy update method based on these predictions:
gradient-based (e.g. REINFORCE [26]) or gradient-free (e.g. PoWER [31]).

One of the main performance criteria for model-based learning is sample complexity, or data-
efficiency. Naturally the efficacy of model-based algorithms are highly dependent on the
accuracy and expressiveness of the learned model. Errors in learned forward dynamics can
not only cause degraded policies, but often drastically bias the learning process [15]. It is
thus of crucial importance to account for model bias by accounting for the uncertainty about
the underlying dynamics itself.
Typically in deterministic model-based learning, a certainty-equivalence assumption is made
and planning is done based on the maximum likelihood model [42]. Moreover, many ap-
proaches obtain derivatives of the expected return by back-propagating derivatives through
learned forward models of the system. This step is particularly prone to model errors since
gradient-based optimizers improve the policy parameters along their gradients.

3-2 The PILCO Algorithm

The main weakness with any model-based algorithm is that of a false certainty-equivalence
assumption, i.e. model bias. For on-line model-based control algorithms such as a resolved
rate controller on a robotic arm, an erroneous model will often lead to decreased performance
in terms of speed, accuracy or energy efficiency. For off-line learning algorithms however, the
consequences for control based on erroneous models can be much greater. Due to the iterative
nature of policy search algorithms, an inaccurate model can cause policy iterations to diverge
into unstable regions, unbeknownst to the agent. This discrepancy will only manifest itself
when the policy is applied to the real system for data acquisition. By then a possibly reckless
policy could cause harm to the system or its environment. It would thus be desirable for
learned models to contain a measure of certainty about their beliefs regarding the model in
specific parts of the state space.

PILCO is such an algorithm which applies the concept of Gaussian Processs (GPs) to con-
struct non-parametric models in a Bayesian fashion. These learned models are then used to
perform long-term predictions and exhaustive planning. Pseudo-code for PILCO is given in
Algorithm 1. The lines of the code supplemented with forward references are presented in
more detail in the respective sections of this chapter.

The algorithm can be decomposed into two phases: Interaction and Simulation, as color-
coded4 in Algorithm 1. During an interaction trial, relevant trajectory data is recorded. This
will include states, actions and possibly the immediate cost at each time step, although not

4Note that all results reported in Chapter 5 follow the same color scheme where red always refers to
simulated distributions and blue is recorded data.
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3-2 The PILCO Algorithm 23

Algorithm 1: Pseudo-code for the PILCO algorithm.
Data: Initial roll-out data: τ init
Result: Learned transition model and final policy

1 Initialize ψ & θ . Sec. 5-1
2 repeat
3 Learn GP dynamics model using all available data . Sec. 3-3-3
4 (Learn sparse GP model) . Sec. 4-4
5 repeat
6 Perform long-term predictions: st ∼ N (µt,Σt) for t = 1, 2, . . . T . Sec. 3-3-4
7 Evaluate policy: Jπ(ψ) . Sec. 3-4-1
8 Compute value gradient for policy improvement: dJ

dψ ; . Sec. 4-2
9 Update policy parameters w/ gradient-descent optimization . Sec. 3-4

10 until convergence or max. iterations;
11 Set π ← π(ψnew)
12 Record new roll-out data: τ ∗ = {(s0,a0), (s1,a1), . . . , sT }
13 until task learned or max. iterations;

directly used for updates. This data is used to train a GP model, and to verify the current
policy’s performance in the real world.
When the hyper-parameters are conditioned on the recorded data, planning starts. During
this phase, the GP model is used for making long-term predictions according to the method-
ology outlined in Chapter 3-3-4. These planned trajectories serve as input to an immediate
cost and ultimately an expected return distribution. When taking care of certain smoothness
constraints, the gradients to these fitness measures can be derived analytically. This is one of
the main strengths of the PILCO algorithm. The efficiency of analytical optimization as op-
posed to gradient estimation schemes allows the usage of much richer and expressive policies
with more parameters. Please refer to the references in Algorithm 1 for where the different
concepts are detailed and implemented. Figure 3-3 shows the result of a comparison on a
pendulum swing-up task for seven algorithms with respect to PILCO. A tremendous decrease
in interaction time is seen. The price to pay for this improvement lies in the computational
complexity of the algorithm (See the discussions in Chapter 4-4 and 5-6).

Figure 3-3: Comparison of the required interaction time for policy convergence on a pendulum swing-up
task. KK= Q-learning w/ local linear control, D= Continuous Actor-Critic, C= TD-λ with NNs, WP= In-
tensive Randomized Policy Optimizer (direct adaptive control), R= Neural-fitted Q-iteration, RT=Optimistic
Inference Control, vH= Continuous Actor-Critic Learning Automata (CACLA).

Chapter 3-3 will establish the mathematical definitions related to GPs. After this, a method-
ology for fitting the posterior GP to observed data is outlined. Finally a strategy for making
predictions using the computed posterior at new and uncertain inputs is introduced. These
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24 Probabilistic Inference for Learning

one-step-ahead predictions can then used for probabilistic simulations of dynamical systems,
as explained in Chapter 3-3-4.

3-3 Gaussian Process Models

Supervised learning can be divided into two categories: regression and classification. Where
classification deals with assigning data to discrete categories, regression relates observed data
to continuous quantities. In the context of robotics, one example of non-linear regression is
that of learning forward or inverse dynamics from recorded data.
In the following chapter, x ∈ RN×D and y ∈ RN×1 are used as the general independent
(regressor) and dependent (regressand) variables, where N is the number of data points. Still
s and a are specifically used to denote states and actions. For multiple target dimensions we
will use E independent GPs.
A GP is a general class of probability distributions on functions. They can be seen as an
infinite-dimensional generalization of multivariate normal distributions and can conveniently
be used to specify very flexible non-linear regression. With proper care, GPs can identify the
uncertainty coming from noisy data as well as the inherent uncertainty of the system.
The following definition is taken from [44]:

Definition 3.1. Gaussian Process A GP is a collection of random variables, any finite number
of which have consistent joint Gaussian distributions

Given is the following process, governed by the latent (non-linear) function f :

y = f(x) + εo (3-3)

Here, x ∈ RD and f ∈ RD → R and εo ∼ N (0, σ2
o) is identically distributed Gaussian white

noise. This system can then be modeled by a GP:

f ∼ GP(m(x), k(xq,xp)
m(x) = E[f(x)]

k(xq,xp) = E[
(
f(xq)−m(xq)

) (
f(xp)−m(xp)

)
]

(3-4)

A GP is fully specified by its mean function m(x) and covariance function k(xp,xq). Hence
whereas the Gaussian distribution is over vectors, the GP is over functions. The goal of
GP regression is to find a posterior distribution of possible models, conditioned on observed
training data using Bayes’ theorem [63].

3-3-1 GP priors

The prior mean function m(x) reflects the expectation of how the average is likely to behave.
When using GPs for dynamical system identification it is common to assume a prior mean
function m(x) = 0. This work proposes an extension to non-zero priors, which we will return
to in Chapter 4-1-1, but for now we assume m(x) = 0.

There are many possibilities for the choice of covariance function. A general name for a
function k of two arguments mapping a pair of inputs xp,xq ∈ X into R is a kernel. The kernel
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3-3 Gaussian Process Models 25

fulfilling the role of covariance function must be symmetric positive-definite. These functions
can be either stationary or non-stationary and degenerate or non-degenerate. Some stationary
examples include a constant, (squared) exponential, Matern or rational quadratic. Non-
stationary, degenerate examples are linear or (piecewise) polynomial covariance functions. A
more complex non-stationary, degenerate covariance function is a neural network.

Given a set of input points {x|i = 1 . . . N}, we can compute a Gram matrix K, with
Kij = k(xi,xj). When using kernels as covariance function this matrix is usually called
the covariance matrix and is of crucial importance during predictions. The consistency re-
quirement says that if a GP specifies some joint (y1, y2), it must also specify a distribution for
just y1. Handling a bigger dataset does not alter distributions of smaller subsets of that data.
This is known as the marginalization property [44]. This requirement can be automatically
fulfilled if the covariance function specifies the entries of the covariance matrix. However
if one were to choose a covariance function specifying the entries of the inverse covariance
matrix, the marginalization property would be violated and the resulting model would not
be a GP. As we will see later, this means K−1 will have to be computed numerically.

For this thesis we will utilize a squared exponential covariance function5 with Automatic
Relevance Determination (ARD) [64] plus a noise covariance term:

k(xq,xp) = kSE + δpqσo = σf · exp
(
−1/2

(
xp − xq

)T Λ−1 (xp − xq))+ δpqσo (3-5)

Where σf controls the the typical amplitude of the function. The length-scale matrix Λ =
diag[λ1, . . . , λn] can informally be thought of as the distance you have to move in input space
before the function value can change significantly. The fact each input dimension has its own
length-scale is known as ARD. If a particular input dimension d has no relevance for the
regression, then the appropriate length-scale will increase to essentially filter that feature out.
This is because the evidence will suggest that the underlying function is very slowly varying
in the direction of that feature. This means that alternative ad-hoc feature selection methods
are not necessary. σo is included to model the output noise εo in (3-3). The Kronecker
symbol δpq is unity for p = q and zero otherwise (independent noise contributions). All these
characteristic parameters are known as hyper-parameters and are collected in the vector θ.

Additionally, the input locations and targets can be considered parameters to be optimized
too. These are then often referred to pseudo-inputs and pseudo-targets. This gives the final
hyper-parameter vector:

θ =
[
σf σo Λ xin y

]T
∈ Rnθ (3-6)

Given a certain θ, a GP posterior can be used for making predictions at unseen inputs.

3-3-2 GP Posteriors

Assume for one target dimension a training set ofN observations: D =
{
(xi, yi) |i = 1, . . . , N

}
.

Where x ∈ RD denotes an input vector and yi denotes a scalar output or target. The vector
of inputs for all N observations are aggregated in the design matrix X ∈ RN×D. The targets
for a given output dimension are collected in the vector y ∈ RN , so we can write D = (X,y).

5This corresponds to a Bayesian linear regression model with an infinite number of basis functions
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26 Probabilistic Inference for Learning

Bayesian theory calls for the use of the posterior predictive distribution to do predictive
inference, i.e., to predict the distribution of a new, unobserved data point. That is, instead
of a fixed point as a prediction, a distribution over possible points is returned. In order to
compute the posterior distribution over possible models, we need to reject all realizations that
do not agree with the data by employing Bayes’ Rule [63]:

p(f |X,y,θ) = Likelihood · Prior
Evidence

= p(y|X, f,θ)p(f |θ)
p(y|X,θ) (3-7)

The finite probability distribution denoted as the likelihood encodes an assumed noise model
and is represented by a finite distribution:

p(y|f,X,θ) =
N∏
i=1

p(yi|f(xi),θ) =
N∏
i=1
N (yi|f(xi), σ2

o) = N (y|, f(X), σ2
oIN ) (3-8)

Where for tractability we have assumed that the observations yi are conditionally independent
given X, allowing for the multiplication. Despite this likelihood being finite dimensional, the
infinite dimensional GP prior makes that the posterior behaves as a GP as well.
The normalizing evidence p(y|X,θ) is often termed a marginal likelihood, since f has been
“marginalized” out by integration:

p(y|X,θ) =
∫
p(y|X, f,θ)p(f |θ) df (3-9)

When fitting the hyper-parameters to the observed data, this term is used as a measure for
the fit in a two-level inference scheme, explained in Chapter 3-3-3.

3-3-3 GP Model Learning

In the previous section we defined a posterior distribution over f given a known set of hyper-
parameters θ. For training the posterior distribution to reflect the observed data as closely
as possible, we consider these hyper-parameters to be latent unknown variables. Following
Bayes theorem, we could find the optimal set of parameters by placing a hyper-prior p(θ) on
them and integrating them out. However this gives an intractable integral due to multiple
dependencies on θ. So instead, we employ an optimization technique known as Evidence
Maximization (EM) to find a good point estimate θ̂.

Figure 3-4 shows the two-level inference scheme employed for learning θ. The EM procedure
goes through this diagram bottom to top, starting with the data.

Figure 3-4: Hierarchical model for 2-level Bayesian inference for GP model learning [5].

Victor van Spaandonk Master of Science Thesis



3-3 Gaussian Process Models 27

The first level of inference gives a GP posterior on the latent function f , as defined in Equation
(3-7). At the second level we analogously express a posterior distribution over the hyper-
parameters given the data:

p(θ|X,y) = p(y|X,θ)p(θ)
p(y|X) (3-10)

Where we see that the evidence of level-1 now plays the role of likelihood at level-2. The
prior in (3-10) is known as the hyper-prior, assumed to be ‘flat’ so as to not exclude possible
models. An implicit advantage of this flatness is that the posterior in (3-10) is proportional
to the likelihood, which was the evidence from level-2: p(θ|X, y) ∝ p(y|X,θ). As eluded to
in the beginning, ideally we would maximize the evidence in this level-2 inference. However
the integral in p(y|X) =

∫
p(y|X,θ)p(θ)dθ is analytically intractable. Due to the flat prior

however, the maximum a posteriori estimate θ̂ can be found by maximizing the Log Marginal
Likelihood (LML) from Equation (3-7)

log p(y|X,θ) = log
∫
p(y|f,X,θ)p(f |θ) df (3-11)

= −1
2y

T
(
K + σ2

oI
)−1

y − 1
2 log

∣∣∣K + σ2
oI
∣∣∣− D

2 log 2π

The resulting optimized vector is known as a type-II maximum likelihood estimate:

θ̂ = arg max
θ

log p(y|X,θ)

Looking at the expression in Equation (3-11) we can see several characteristics that are
penalized. The first term is a measure for data-fit. The second term is a complexity term
that avoids over-fitting. It is this built-in trade-off between model-fit and model-complexity
that makes the marginal likelihood measure such a useful one for model selection. The
new parameter vector θ̂ can now be used in the posterior prediction estimates of Equation
(3-12). Of course, one should be careful with such an optimization step, since it opens up the
possibility of over-fitting, especially if there are many hyper-parameters [44]. In the following
section we will look at making short and long-term predictions using GPs in the case of
time-series data.

3-3-4 Dynamic Simulation using Gaussian Processes

So far we have established the prior and posterior characteristics of a GP. In the context of
RL, the true strength of GPs lies in long-term simulations of dynamical systems. This is done
by cascading one-step-ahead predictions [5]. The following sections will detail how to use the
posteriors found in Chapter 3-3-2 for making predictions at unseen and uncertain test points.

Predictions at Deterministic Inputs

From the definition of a GP the function values for training and test inputs are consistently
jointly Gaussian. This allows writing the joint of training y = f(x) + σo and test outputs y∗

p(y,y∗|X,x∗) =
[
y
y∗

]
∼ N

0,
[
K(X,X) + σoI K(x∗, X)
K(X,x∗) K(x∗,x∗)

] (3-12)
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where y =
[
f(x1) + εo . . . f(xN ) + εo

]T
and k∗ = K(X,x∗) = K(x∗, X)T denotes matrix of

the covariances evaluated at all mutual pairs of training and test points.
For a given θ and using the prior, likelihood and evidence defined in Equation (3-5), (3-8)
and (3-9) respectively, the conditional rule from Equation (A-12) results in the posterior:

p(f∗|X∗,D) ∼ N
(
µpred,Σpred

)
(3-13)

where

µpred = Ef [f(x∗)|X,y,θ] = k(x∗, X)
(
K(X,X) + σ2

oI
)−1

y

= kT∗

[
K(X,X) + σ2

oI
]−1

y (3-14)

= kT∗ β
T

Σpred = Cov[f(x), f(x∗)|X,y,θ]

= k(x∗,x∗)− k(x∗, X)
(
K(X,X) + σ2

oI
)−1

k(X,x∗) (3-15)

= k∗∗ − kT∗
[
K(X,X) + σ2

oI
]−1

k∗ + σ2
oI

The mean in Equation (3-14) is the result of a linear combinations of observations y. Also
note that the predicted covariance is solely a function of the inputs, and not the targets. The
first term is the prior covariance of the GP. The second term represents the gained insight
on the variance through the data. Since this latter term is positive definite, the posterior
variance will always be lower than that of the prior.
Bayesian inference can thus be considered a three-step procedure: First, a prior on the un-
known quantity is specified. In our case, this is the function f itself. Then data is observed
and lastly a posterior distribution over f is computed that refines the prior by incorporating
evidence from the observations.

Predictions at Uncertain Inputs

For our case, the input at time t will be the prediction from t− 1. This section will focus on
making predictions for x∗ ∈ N (µ∗,Σ∗). In the case of multiple target dimensions (y ∈ RN×E)
we can train E independent GPs. Generally, mapping a Gaussian distributed input through
a non-linear GP is done by averaging over the input. As can be seen by the green shaded area
in Figure 3-5, simply averaging over the distribution of x∗ yields a result that is not Gaussian.
Therefore instead, we approximate the result by a Gaussian and compute the moments of the
predictive distribution exactly. This is known as moment matching and is done by averaging
over both the input and the distribution of the function represented by the GP. The predictive
mean at uncertain inputs can then be computed using the law of iterated expectations (See
Appendix A):

µpred =
∫ ∫

p(f,x∗)f(x∗) d(f,x∗)

= Ex∗
[
Ef
[
f(x∗)|x∗

]]
= Ex∗

[
mf (x∗)

]
= βTq

(3-16)
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Figure 3-5: GP predictions at an uncertain input (blue line in lower plot). The exact predictive distribution
(left panel, shaded area) is approximated by a Gaussian (left panel, blue line) after mapping through the non-
linear dynamics (top right) [5].

Where qi is the expected covariance between the function values6 f(xi) and f(x∗):

qi =
∫
k(xi,x∗)p(x∗) dx∗

= σ2
f

∣∣∣Σ∗Λ−1 + I
∣∣∣−1/2

exp
(
−1/2(xi − µ∗)T (Σ∗ + Λ−1)−1(xi − µ∗)

)

For multivariate targets, each mean is simply computed separately. For the predictive variance
we can construct the following matrix:

Σpred =


σ2

11 . . . σ2
1m

... . . . ...
σ2
m1 . . . σ2

mm



Now clearly it matters whether there are multivariate targets, since these will start to covary
on the off-diagonals. First we derive the predictive variance of a single target dimension σii ,
again by integrating over the input and function distributions. This time with help of the
law of total covariance (See Appendix A):

σ2
ii

= Varx∗,fi
[
fi(x∗)|µ∗,Σ∗

]
= E

[
Varf

[
fi(x∗)|x∗

]]
+ Varx∗

[
E
[
f(x∗)|x∗

]]
= E

[
σ2
fi

]
+ E

[
mfi(x∗)2|x∗

]
− E

[
mfi(x∗)|x∗

]2
= E

[
σ2
fi

]
+ E

[
mfi(x∗)2|x∗

]
− (µ(i)

pred)
2 (3-17)

6Conflated by the input’s uncertainty Σ∗.
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The variance of the off-diagonal terms will have one term less due to the assumption of
independence for a given x∗. But as a whole are still non-zero due to input uncertainty.

σ2
ij = Cov

[
fi(x∗), fj(x∗)

]
= Ef,x∗

[
fi(x∗) · fj(x∗)

]
− µ(i)

predµ
(j)
pred

...

= βTi

(∫
k

(i)
f (x∗, X) · k(j)

f (x∗, X) · p(x∗)dx∗
)
βj − µ(i)

predµ
(j)
pred

= βTi Qβj − µ
(i)
predµ

(j)
pred

(3-18)

For more in depth derivations the interested reader is referred to [5].

Probabilistic Long-Term Predictions

For policy evaluation it is required to compute the full state trajectory τ = {s0,a0, . . . sT }
through deterministic approximate inference. This amounts to solving the integral

p(st) =
∫ ∫ ∫

p(st|st−1,at−1)p(st−1,at−1) dst−1 dat−1 dσo (3-19)

In the previous chapter it was detailed how to make predictions at deterministic and uncertain
inputs. PILCO needs to propagate uncertainties since even for a deterministically given input
the GP dynamics model returns a Gaussian predictive distribution to account for the model
uncertainty. These trajectories are found by cascading one-step-ahead predictions. Predicting
the subsequent state distribution involves several steps, outlined in (3-20).

p(st−1) exact−−−→
1

p(at−1) approx.−−−−→
2

p(st−1,at−1) MM−−−→
3

p(st) (3-20)

Step 1 involves computing the distribution over controls: p(at) ∈ N (µa,Σa), where the policy
input sπ(t) is a subset of the GP outputs. During roll-outs these states are deterministically
sensed and fed to the controller. During a planning iteration however, they are distributions.
Hence to properly account for this uncertainty, a distribution over controls is computed. This
imposes a requirement on the policy structure that this distribution should be analytically
available.
In step 2 we compute the joint distribution p(st,at), which serves as the input to the GP.
When using a concatenated saturating controller (see Chapter 4-3) this involves two actions.
First the joint distribution between the state and unsaturated control is computed: p(st, π̂).
Next the joint p(st, π̂, π) is computed, after which the unsaturated control signal is marginal-
ized out to arrive at the required joint state-action distribution.
Step 3 involves taking this joint probability as the input to the learned GP. As was shown
in Chapter 3-3-4, the result is no longer Gaussian and moment matching7 is employed.
When learning relative state differences and possibly non-zero priors are used, an additional
step 4 has to be included where we account for all the cross-covariances between the state-
action input pair and the predictions. More on this in Chapter 4-1-1.

7Alternatively one could linearize the GP for an analytical moments, which is computationally advantageous
but the result is not in general the exact predictive moments of the real distribution.
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We have now arrived at the distribution of the state at time t, which can now be fed back
to the beginning and used as the initial condition for the subsequent time step. As in any
dynamical simulation, due to the sequential nature of this procedure, it is not possible to
parallelize the computations in any significant manner.

3-4 Policy Updates

The previous sections outlined the way in which GPs can be used to formulate analytical
long-term predictions of the state evolution during a trial. What rests is to formulate a
policy structure that also allows for analytical expressions of its (saturated) outputs, given a
distributed input. The simplest possible policy is a straightforward affine linear combination
of the inputs.

π̃Lin(sπ) = Asπ + b (3-21)

Resulting in a policy parameter vector ψLin = [A b]T . Quasi-Newton gradient-descent op-
timization as detailed in Appendix A-2 is then used to update ψ. The measure used for
guiding this search is the expected return, a summation of immediate costs over a trajectory,
as detailed below. Non-linear policies are possible and the policy structures and saturation
functions used in this work are dealt with in Chapter 4-3.

3-4-1 Cost Function and Expected Returns

The total cost over an entire episode is referred to as the expected return of that episode. It
is the sum of all immediate costs received at each time step. When taken care of smoothness
constraints throughout the algorithm, a learned GP model allows the derivation of analytical
gradients with respect to the value function. The immediate target cost cs(st) can be any
(piecewise) differentiable function; linear, quadratic or saturating. The inputs are any or all
output dimensions of the GP model. Being careful to properly account for all the uncertainties
and gradients, multiple cost functions can be stacked on top of each other, possibly acting on
different parts of the state space.

The expected return in PILCO is defined in (3-22). It is composed of two terms, summed
over the entire trajectory.

Jπψ (s0|w1, w2)7 =
T∑
t=0

[
w1 · E

[
cs(st)

]
+ w2 · σ

[
cs(st)

]]
(3-22)

=
T∑
t=1

[w1E + w2S] (3-23)

The first term E is the target cost, penalizing deviations from the desired goal state.
The second term S is an exploration term. It is defined as the standard deviation of the
cost function. During long-term predictions, the state uncertainty will be reflected in the
cost c ∼ N (µc, σ2

c ). When w2 < 0, uncertainty in the predictive states will drive the overall
cost down and hence incentivize exploration in that space. The weight w2 can thus be
used to tune the exploration-exploitation trade-off. It also smooths out the optimization
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numerically, increasing speed. When w2 is positive, the system is inclined to exploit more
certain trajectories.

For this thesis the expected return was modified in order to accommodate Variable Impedance
Learning (VIL). Chapter 4-2 gives the exact definition along with the expanded derivation of
that return function. For now it suffices to say that the policy-dependent parameter vector
ψ is updated through analytical gradient-descent in the direction that minimizes an expected
return similar to that in Equation (3-22). The specific analytical minimization techniques
used in this thesis are Limited-memory Broyden-Fletcher-Gretchen-Shanno ((L)BFGS) and
Conjugate Gradient (CG), which are described in Appendix A-2. Both these techniques are
line-search methods, which are iterative algorithms to compute (local) minima. In general,
each iteration k of a line-search algorithm computes a search direction pk = ∇Jπ(ψk) and
a positive step length αk along the search direction that satisfies a sufficient decrease in the
function as measured by the inequality

J(ψk + αkpk) ≤ J(ψk) + c1αkpk
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Chapter 4

Learning Variable Impedance Control

We shall now combine the theoretical groundwork laid out in the previous chapters to for-
mulate a methodology for learning Variable Impedance Control (VIC). The ideas articulated
here are original to this work with a few well indicated exceptions.
For this thesis, two skill-learning problems are investigated. The first scenario is termed
Variable Impedance Learning (VIL). For this problem, appropriate state-conditioned stiff-
ness parameters are learned along predefined kinematic trajectories so as to complete the task
with an optimal trade-off between accuracy and minimization of contact forces.
The second scenario is called Variable Impedance Learning with Trajectory Adaptation (VILTA),
for a task where neither the trajectory nor the desired end-pose is known and the agent is
additionally expected to learn an optimal motion plan in Cartesian space.

The constrained motion task chosen for this work is a variant of the Peg-in-Hole (PiH) problem
described in Chapter 2-3. To return to our imagined example, imagine again an industrial
robot or interplanetary rover set to perform an unknown mating procedure of two parts.
Several degrees of abstraction can be identified with increasing problem complexities. The
first scenario is where both the initial condition x0 and the target xgoal are constant. In
this case, VIL is used to compute an optimal stiffness trajectory that achieves its goal while
minimizing contact forces and energy expenditure through time-varying stiffness gains. When
properly trained, the agent can accommodate for small changes in the goal’s location by
allowing deviations from the reference that yield higher reward.
A more difficult scenario is when the location of the goal is known only to a lower degree
of certainty: xgoal ∈ N (µgoal,Σgoal), likely due to imperfect measurement. For this case,
VILTA attempts to formulate a motion plan that achieves insertion, effectively learning the
exact location of the hole, while additionally optimizing the closed-loop stiffness gains. One
additional abstraction is investigated in this work, namely that of variable start states x0 ∈
N (µ0,Σ0). For which the agent is expected to learn VILTA, regardless of its initial condition.
Finally one can imagine the fully general scenario, where both the start and goal state vary
between each episode. Even though the architecture of the proposed algorithm allows for
such problems, it is not experimentally verified for reasons discussed in Chapter 5-6.
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Figure 4-1 contains a block diagram showing the complete structure of the VIL problem.
Solid lines indicate direct signal flow, while dashed lines indicate learned adjustments to
the parameters inside the respective blocks. The subsystem labelled Impedance Controller
contains the Simple Impedance Control (SIC) or General Impedance Control (GIC) laws
from Chapter 2-2. For VILTA, the references are part of the policy blocks, instead of being
externally supplied. Descriptions and justifications of the different concepts relevant to this
diagram are presented in this chapter.

Figure 4-1: Block diagram of the VIL algorithm. Data is recorded during the interaction phase and passed
to the Learning block. Policy updates based on probabilistic long-term predictions occurs inside the simulation
sub-system. The block diagram shown here is specific to the VIL problem. For VILTA, the virtual trajectory
signal [xv ẋv ẍv ] is suggested by the policy.

4-1 GP Model and Actions

Wolpert in [19] notes three ways in which humans make Bayesian sense of the stream of
sensory inputs; First, multiple channels (for example, visual and tactile inputs) are optimally
combined to achieve estimates that reduce the effects of noise. Interestingly, this integration
process can take into account the properties of external objects, so that the visuo–haptic-
integration is optimal even through a tool. Second, by learning the statistical distribution
of possible states of the world, in our case through the Gaussian Process (GP) prior (see
Chapter 4-1-1). Lastly, by combining these processes with internal models of the body that
map the motor commands into the expected sensory inputs, Bayesian inference can be used
to estimate the evolving state of our body and the world. These observations suggest GP
models are a good choice for mimicking a human approach to sensorimotor control.

Chapter 3-3 gave the definition of the system dynamics to be modeled in terms of regressor
and regressand variables:

y(i) = f (i)(x) + εo (4-1)

In general we can say that x =
(
s
′
t,at

)
∈ RN×(Ds+Du) and y = st+1 ∈ RN×E , where
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the apostrophe indicates a subset of the outputs1. Typical benchmarks for Reinforcement
Learning (RL) algorithms are problems such as the cart-pole balancing or swing-up of the
single and double pendulum. For these problems the state- and input vector are chosen in
joint space. This make sense in that they are the lowest level of state representations that
define the dynamics of the system.
For VIL, several considerations have to be made. Namely what states and actions to use for
the GP regressor variables, which subset of the state to use as targets and finally the type of
output for the policy. Which does not necessarily have to lie in the same space. Presented
next is the rationale for choosing the contents of x and y.

For s the options are either the joint- or Cartesian state vector. The former has the advantage
that angles are mapped to finite intervals, thereby reducing the range that states can take
while still encapsulating all dynamics. Another consideration is that of redundancy and non-
uniqueness. Alternative null-space configurations might result in different behaviour at the
Tool Center Point (TCP)2. This dependence would be encoded in the joint-space formulation,
but possibly be lost in the Cartesian one. Though the Cartesian state vector has a length
that is shorter by twice the dimensionality of the redundancy.
However the most important consideration lies in the relation between the output of the policy
and the control inputs to the GPs. The control law in Chapter 2-2-2 can be reduced to ut =
uimp+udyn. If any part of u is chosen as control input to a (joint-space) GP model, this would
require the output of the policy to preferably be in this same space: π(sπ) = ut/imp. The
advantage is that the distribution over controls is easily computed. An important weakness of
this formulation is that the resulting policy will be black-box controllers. We can not deduce
the impedance characteristics of these controllers by looking at their outputs. A solution could
be an intermediate layer between a policy suggesting high-level stiffness gains and control
inputs to the GPs. However this would greatly increase the complexity of computing the
distribution over controls, which is then a combination of multiple interdependent Gaussians.

Additionally we have to honour some real world implementation constraints. In computer
simulations, all states and inputs are theoretically available at any time step. For commercial
manipulators this is often not the case. Chapter 2-2-2 already hinted at some pitfalls when
designing impedance controllers for real robots. It was found that the torque-controlled robots
have been a major improvement over position-controlled systems. However, for safety and us-
ability, the commands send to commercial robots are not torques, but high-level instructions
for the proprietary controllers to interpret and translate into signals applied to the motors.
This means that the joint-space implementation is infeasible. The joint torques τi are avail-
able, but these will be inflated with both τ dyn and τ ext and there is no way of extracting the
signal we are interested in. This would result in erroneous inputs during long-term inference
and planning. For these reasons we thus define a high-level stiffness policy as:

π(sπ)V IL = kP (4-2)

Where kP = diag [KP ] ∈ RDu depends on the problem and dimensionality and sπ is the subset
of y that serves as input to the policy and can be freely chosen. The complete model becomes:

xV IL =
[
s a

]T
=
[(
s
′
e, t

)
kP

]T
yV IL =

[
se W ext

]T
(4-3)

1In order to be available as input at time t, it needs to be part of the outputs at t − 1.
2This is especially true for non-quaternion orientation control, see Appendix B.
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Where s′e denotes a desired subset of se, which itself depends on the dimensionality of the
problem. The external forces are not a part of x, since in closed-loop these will be a direct
consequence of the states, gains and reference. They can thus be inferred without serving as
inputs. Notice the inclusion of time for VIL in x. Since we are doing closed-loop identification,
omitting the driving references would result in conflicting state-transitions when identical
states are encountered at different times during a roll-out3. However concatenating xV IL
with all references would increase the dimensionality too quickly. Instead what we do is have
time t serve as an input. Since reference trajectories are constant between roll-outs time
serves as an order-reduction, encoding for virtual trajectories in all dimensions.

For the case of VILTA, the policy is divided in two main parts; one for the stiffness gains and
one for the reference values4. The additional dimensions of the policy will suggest changes
in positional reference in Cartesian space. The advantage of suggesting absolute positions
would be that they are easily saturated in a smooth manner to keep the robot from leaving
its workspace or running into singularities. The obvious problem is that the initial policy
would likely suggest absolute values that are far away from each other, resulting in dangerous
accelerations. This problem does not occur when computing velocities, which we can saturate
at desired values. This gives the final policy:

π(sπ)V ILTA =
[
kP ṡrefe

]T
(4-4)

For VILTA, the reference becomes part of the action space and thus input t is dropped:

xV ILTA =
[
s
′
e

(
kP , ṡ

ref
e

)]T
yV ILTA =

[
se W ext

]T
(4-5)

Again the specific dimensionality depends on the problem at hand. Chapter 5-4 and 5-5
detail several scenarios with specific choices for the above expressions applied to Cartesian
Impedance Control.

The advantage of defining the problem in such a manner is that it permits VIL and VILTA in
joint-space without any further modifications. To make the problem more tractable, several
additions are presented next.

4-1-1 Relative Targets

We have seen the mathematical framework for learning hyper-parameters and making long-
term predictions in Chapter 3-3-4. The work in [6] presents the concept of relative targets
where instead of yabs := st+1, we use yrel := ∆s = st+1 − st. In Chapter 3-3 we assumed
a prior mean of zero. When using the absolute targets this will cause the predictions to fall
back to zero when little data is available. Using instead the state transitions ∆s as the GP
targets implies the assumption that the state will remain unchanged in scarce data spaces.
This is a more reasonable assumption of Newtonian mechanics, including dexterous manip-
ulation and interaction. Also, learning state transitions as opposed to absolute values has a
positive numerical effect on learning [5].

3This observation was confirmed experimentally but is not presented here.
4For algorithmic simplicity, we treat the policy as one entity, taking the same inputs.
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For this work these benefits will be exploited by defining relative targets for all spatial di-
mensions in (4-3) and (4-5). Note that this has the following effect when making long-term
predictions:

µt = µt−1 + µ∆s

Σt = Σt−1 + Σ∆s + Cov[st−1,∆s] + Cov[∆s, st−1]
(4-6)

The most difficult dimension to model is force. When using relative targets for these dimen-
sions, the most significant non-zero value would occur at the contact transition. Thus it is
found that a better Log Marginal Likelihood (LML) is found when using absolute targets for
the force dimensions.

4-1-2 Informative Prior Means

In addition to relative targets, this work proposes an extension in the form of informative
prior means. Especially for VIL, we would be foolish to suppose that there is no prior belief
to be formulated about the expected motion of a system following a predefined trajectory.
Indeed this observation suggests the option to encode the computed reference trajectory as a
non-zero prior on the posterior model.
Since the reference is merely a time dependent deterministic constant, we can encode it as a
prior and maintain the properties of a zero-mean GP. This is done by subtracting the relevant
reference value at each time step from the corresponding target. For absolute targets this
gives yrabs = s− srefe and for relative targets: yrrel = ∆s−∆srefe . Which again gives a zero-
mean GP that is translated by a time-dependent reference. During long-term predictions,
the respective reference value is added back onto the translated GP. Now when the model
encounters parts of the input space with little or no data, the prediction will fall back to zero
as usually. Which is now a prediction of the error between the state and virtual trajectory
and hence the prediction will either fall back to the reference or remain at constant distance
in the case of absolute and relative targets respectively.
From a system identification point of view, this approach requires the GP to model the devi-
ation of the realized state trajectory and the imposed virtual one. This deviation originates
from environmental interaction, unmodelled friction effects and errors in model compensa-
tion. For the case of SIC of Equation (2-6) this deviation will thus be much more explicit due
to there being no inverse dynamics. This is where one potential application of the algorithm
lies, where now the GPs can model the inverse dynamics and adept the stiffness values and
virtual trajectories to achieve its goal. There are a few reasons for opting for SIC that were
given in Chapter 2-2-1, such as naturally resolving singularities. Chapter 5-4-2 present the
results of VIL for SIC.
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4-2 Cost Function and Expected Returns with Energy Penalty

This work proposes an expansion to the expected return presented in Chapter 3-4-1 in the
form of an energy cost function A = E[ca(at)], giving:

Jψ(τ ) =
T∑
t=1

[
w1 · E[cs(st)] + w2 · σ[cs(st)] + w3 · E[ca(at)]

]
=

T∑
t=1

[w1E + w2S + w3A]
(4-7)

A justification for the choice of cost functions is given next, followed by a derivation of the
gradient.

4-2-1 Accuracy Cost Function for Sensorimotor Control

With respect to sensorimotor control, it was experimentally validated by Kording in [65] that
a saturating cost function resembles the one used by humans when learning a new skill. They
showed the cost to be approximately quadratic for small errors, but significantly less than
quadratic for large errors, thereby encoding a robustness towards outliers. Incidentally such a
saturating cost function is also proposed by Deisenroth in the original Probabilistic Inference
for Learning COntrol (PILCO) algorithm of [5]. There it is noted such a cost has benefits for
learning, stating that it has a smoothing effect on policy optimization and carries an intrinsic
exploration incentive for the agent when far away from the goal, while preferring exploitation
of low-variance trajectories when close to the target. For these reasons we will implement a
saturating cost function in the form of inverted squared exponential:

cs(st) = 1− exp
(
−(st − starget)TS−1(st − starget)

)
(4-8)

Where S−1 acts as both a selector and scaling matrix, defining the width of the inverted
Gaussian.
Figure 4-2 shows the distribution of an instance far away from the goal (left) and close to
it (right). The saturation makes that in the former case, wide state distributions will have
a lower total expected cost than a narrow distribution, resulting in exploration of uncertain
trajectories. For the latter case however, narrow state distributions yield a lower expected
cost when integrating over the whole state distribution and hence will steer the agent into
exploiting that certainty when close to the finish [6].

4-2-2 Energy Cost Function for Sensorimotor Control

Optimal control, RL and adaptive control often employ an energy penalty term in their cost
functions. A strategy that seems to have a resemblance with biological learning. Diedrichsen
shows in [66] that motor schema in the Central Nervous System (CNS) are optimally tuned to
the goals of the task by trading off energy consumption with accuracy constraints. Generally,
the goal of effective impedance control that is confirmed from human arm studies can be
summarized as
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Figure 4-2: Plots showing the cost and state distribution far away from the goal (left) and close to the
goal state (right) [6].

“Be compliant when possible, stiffen up only when the task desires it.” [67]

Such behaviour is highly desirable for robotic systems since it promotes efficient and safe
operation when the possibility for spatial reward is small. Two ways present themselves for
serving as energy penalty. When active force sensing is performed, a zero-centred state penalty
on the external forces can be employed, as is done in this work. This ensures that during
constrained motion, when spatial rewards are inhibited by the surroundings, the stiffness
gains can be lowered in order to reduce the forces at the end-effector. However, for combined
free and constrained motion, such an approach is insufficient, since the forces experienced
by the end-effector are by definition zero during this phase. This results in “flat” gradients
and thus no incentive to lower the gains. Instead we propose an additional energy term to
be added to the Expected return in Equation (3-22) of Chapter 3-4-1. An quadratic cost is
assigned proportional to the normalized control actions at each time step, indicated by A in
Equation (4-7).

ca(at) = p(at)TS−1p(at) (4-9)

where S = diag
[
a2

1max a2
2max . . . a2

mmax

]
∈ RDu×Du is a diagonal matrix used to normalize

the actions with respect to their maximum value for that respective dimension. For excluding
dimensions from energy penalties the respective index can be set to zero. This is relevant for
parts of the policy that suggest reference changes in VILTA (see Chapter 4-1). We can derive
the following moment definitions using the rules in Appendix A.

E[ca(at))] = Tr[ΣaS
−1] + µTa S−1µa

Var[ca(at))] = Tr[2S−1ΣaS
−1Σa] + 4µaS−1ΣaS

−1µa
(4-10)

4-2-3 Gradient of the Expected Return

We now present a concise analytical derivation of the expected return’s gradient. The full
derivatives related to the accuracy cost are given in [6]. The derivative with respect to the
energy penalty is original to this work.
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Accuracy Gradient

For the mean of the target cost E the gradient is derived as follows.

dE
dψ = ∂E

∂p(st)
dp(st)

dψ

= ∂E
∂p(st)︸ ︷︷ ︸

(1)


∂p(st)
∂p(st−1)︸ ︷︷ ︸

(2)

·dp(st−1)
dψ + ∂p(st)

∂ψ︸ ︷︷ ︸
(3)


(4-11)

From Equation (4-11) it is deduced that the state penalty is affected by the policy parameters
through three partial derivatives5.

(1) : ∂E
∂p(st)

=
{
∂E
∂µt

,
∂E
∂Σt

}
(2) : ∂p(st)

∂p(st−1) (3) : ∂p(st)
∂ψ

The first derivative (1) follows from the structure of the cost function, which here is a saturated
squared exponential. The partial derivative in (2) is that of the state distribution with respect
to the previous state. Its form depends on the manner in which predictions are made and
is found by applying the chain rule to all steps of Equation (3-20) in Chapter 3-3-4, with a
small addition due to relative targets6.

∂p(st)
∂p(st−1) = ∂p(st)

∂p(s′t)
· ∂p(s

′
t)

∂p(∆s) ·
∂p(∆s)

∂p(st−1,at−1) ·
∂p(st−1,at−1)
∂p(π(st−1)) ·

∂p(π(st−1))
∂p(st−1)

Where again each distribution derivative is taken to both mean and variance:

∂p(st)
∂p(st−1) =

{
∂µt

∂p(st−1) ,
∂Σt

∂p(st−1)

}

=
{

∂µt
∂µt−1

+ ∂µt
∂Σt−1

,
∂Σt

∂µt−1
+ ∂Σt

∂Σt−1

} (4-12)

Finally, (3) denotes the change in state distribution with respect to a change in parameters.
These parameters are mapped through the policy and hence

∂p(st)
∂ψ

= ∂p(st)
∂p(π̃ψ(st−1))

∂p(π̃ψ(st−1))
∂p(πψ(st−1))

∂p(πψ(st−1))
∂ψ

(4-13)

5The remaining derivative of the previous state distribution with respect to the policy parameters is retrieved
from memory at the previous time step.

6For learning relative targets we additionally need to account for the input/output covariance and thus also
their derivatives. The translated prior has a derivative of zero.
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Exploration Gradient

The gradient of the target cost standard deviation is relatively straightforward. Where the
squared root appears due to a transformation from standard deviation to variance:

dS
dψ = ∂S

∂p(st)
∂p(st)
∂ψ

= ∂
√

Σc

∂Σc

∂Σc

∂p(st)
∂p(st)
∂ψ

= 1
2
√

Σc

∂Σc

∂p(st)
∂p(st)
∂ψ

(4-14)

Energy Gradient

Finally we examine the derivative of the energy penalty with respect to the parameter vector
based on the expressions in Equation (4-10)

dA
dψ = ∂E[ca(π(st))]

∂p(at)
dp(at)

dψ

= ∂E[aTt S−1at]
∂µa

dµa
dψ + dE[aTt S−1at]

∂Σa

dΣa

dψ

= 2µTa S−1 dµa
dψ + S−1 dΣa

dψ

= 2µTa S−1
[
∂µa
∂p(st)

dp(st)
dψ + ∂µa

∂ψ

]
+ S−1

[
∂Σa

∂p(st)
dp(st)

dψ + ∂Σa

∂ψ

]
(4-15)

Where for dp(st)
dψ we substitute the bracketed expression from equation (4-11). The gradient

∂µa
∂ψ denotes a direct change in mean control effort relative to a change in ψ, but a change
in parameters will also result in a different state distribution, which in turn affects the policy
outputs, captured by dµa

dp(st) multiplied with the partial derivative of the state with respect to
ψ, which was computed earlier.
Not all output states of GP model are necessarily inputs to the policy and hence these gradi-
ents will have non-zero values only at relevant indices. They both depend on the particular
controller structure under consideration. For example the non-saturated linear controller in
Equation (3-21) results in the gradients

∂µa
∂p(st)

=


∂µa
∂µt

= A ∈ RDu×n
∂µa
∂Σt

= 0 ∈ RDu×n2
∂µa
∂ψ

=
[
st Im×1

]
∈ RDu×nψ

For more complex control policies, including the saturation described in Chapter 4-3-1, the
mean of the control input depends on the state variance supplied to the preliminary control
policy. Rendering the partial derivative in the expression above to non-zero values.
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Gradient of the Expected Return

For determining the gradient of the expected return with respect to the policy parameters,
the summation rule is used for taking the derivative of each term separately. The expressions
typeset in red indicate the contribution original to this work.

dJπ(ψ)
dψ =

T∑
t=1

[
w1

dE
dψ + w2

dS
dψ + w3

dA
dψ

]

=
T∑
t=1

∂(w1E + w2S + w3A)
∂p(st)

· dp(st)
dψ + w3

(
2µTa S−1∂µa

∂ψ
+ S−1∂Σa

∂ψ

)
=

T∑
t=1


w1

∂E
∂p(st)

+ w2
1

2
√

Σc

∂Σc

p(st)
+ w3

(
2µTa S−1 ∂µa

∂p(st)
+ S−1 ∂Σa

∂p(st)

)
· dp(st)dψ + w3

(
2µTa S−1∂µa

∂ψ
+ S−1∂Σa

∂ψ

)
=

T∑
t=1


w1

∂E
∂p(st)

+ w2
1

2
√

Σc

∂Σc

p(st)
+ w3

(
2µTa S−1 ∂µa

∂p(st)
+ S−1 ∂Σa

∂p(st)

)
·
(

∂p(st)
∂p(st−1)

dp(st−1)
dψ + ∂p(st)

∂ψ

)
+ w3

(
2µTa S−1∂µa

∂ψ
+ S−1∂Σa

∂ψ

)
(4-16)

Where for distributions the derivative is always taken to both the mean and variance as
in Equation (4-12). We have thus arrived at an analytical expression for the expected re-
turn’s gradient which accounts for all the uncertainties in correct Bayesian manner, providing
gradients for line-searches as detailed in Appendix A-2.

4-3 Policy Structure

The linear policy was already mentioned in Chapter 3-4. For some learning problems, pos-
sibly including VIL, such a simple policy might be enough to successfully learn the task at
hand. For more complex scenarios such as VILTA, more expressive representations are likely
necessary. A more expressive policy that meets the smoothness and analytical requirements is
the deterministic GP, which according to [6] is equivalent to a Radial Basis Function (RBF)
network. The following explanation is inspired by that work.

π̃GP (sπ) =
Nc∑
i=1

kπ(si, sπ)βi = kπ(Xπ, sπ)Tβπ ∈ RDu (4-17)

This expression is very similar to that used for the GP model. Where Nc is the number of
basis functions used to express the policy. Xπ = [s1, . . . sNc ] are the centers of the Gaussian
basis functions, also known as support points and kπ(Xπ, sπ) is a covariance function similar
to Equation (3-5). Just as in Equation (3-14), βπ is a weight vector containing the entries of
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the design matrix (Kπ)ij , the noise variance σ2
π and the target vector yπ = π̃(Xπ) + επ, επ.

Contrary to the GP model of the dynamics, here it is assumed that there is no uncertainty
regarding the controller itself (Varπ

[
π(s)

]
= 0) making it degenerate. This means that the

uncertainty in the output of this controller when presented with an uncertain input arises from
the cross-covariance between the inputs. Its predictive covariance matrix will thus have zeros
on its diagonal. As discussed in the next section, this preliminary policy will be squashed
through a saturation function. If this function has a finite input domain before repeating, we
can further set the signal variance to 1. This allows to define a Signal-to-Noise Ratio (SNR)
for the policy by fixing σ2

π. For example a value of 0.012 would give a SNR of 100. This is
essentially a measure for how smooth the policy is.

The training of this RBF is similar to the methodology in Chapter 3-3-3, where in this case the
locations of both the support points and the targets are treated as learnable hyper-parameters.
Such a data set is sometimes referred to as a pseudo-training set. This leaves the following
hyper-parameter vector:

ψGP =
[
Λ Xπ yπ

]T
∈ Rnψ (4-18)

Instead of conditioning on observed data, the gradient of the value function serves as a
constraint to guide updates of the hyper-parameters. Generally, for an M -dimensional signal
and nπ policy inputs, this leaves nψ = Nc(nπ + m) + nπm learnable parameters, since the
support points can be shared across target dimensions.

4-3-1 Saturation

The second requirement for suitable policies is the possibility for the magnitude of the prelim-
inary input to be saturated between certain extrema without violating any of the smoothness
properties needed for the gradient derivation. The requirement for bounded control inputs is
in some ways obvious in that all actuators will saturate at certain limits and not respecting
those might result in unexpected or dangerous behaviour.
For this thesis an additional requirement is imposed on the stiffness part of the policy, namely
non-negativity.

It is convenient to define the controller as a concatenation of two parts; the computation of
the unbounded control signal, and a subsequent saturation and scaling.

π(st) = sat(π̃(st)) =
{
at ∈ RDu |amin ≥ at ≥ amax

}
(4-19)

Several options for saturating an arbitrary function are given in Equation (4-20): sigmoid
functions, cumulative distribution functions through integration of the probability density
function (pdf), or sinusoids.

hsat(π̃) = 1
1 + e−π̃

, gsat(π̃) =
+∞∫
−∞

p(π̃) dπ̃, fsat(π̃) = sin(π̃) (4-20)

The sigmoid hsat is a simple way of saturating any function between [−1, 1] and still be
differentiable. However it attains its maximum values at ±∞, which can lead to numerical
instability when extreme values are computed. The cumulative distribution function gsat will
map any continuous random variable between [0, 1]. However it suffers the same problem at
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its extremes as the sigmoid.
The sinusoid fsat does not have this problem and is bounded by the interval [−1, 1]. Which it
attains for the points π̃(st) = π

2 + kπ for k ∈ Z. This allows the preliminary policy to merely
map its output to an interval of ±π, reducing the number of learnable parameters by 2m as
the signal variance σπ and noise can be set to constant values. It also allows an analytical
derivation of the distribution over controls, given a Gaussian distributed input, although in
this case the mathematics is less involved than for gsat [44].
Presented with an uncertain input the rules in Appendix A give:

fsat(π̃) = p(π)

µa = E[sin(π̃)] =
∫

sin(π̃)p(π̃) dπ̃ = e−
1
2 Σã sin (µã)

Σa = E[sin(π̃)2]− E[sin(π̃)]2 = 1
2

(
1− e−2Σã cos 2µã

)
− µã

(4-21)

For distributed inputs the output mean depends on the negative exponential of the input
variance. Practically this results in mid-range outputs for parts of high uncertainty.

For this thesis, in the case of a linear policy, the preliminary output is scaled by π̃lin(st) =
(π̃lin(st)

′ ·(amax−amin)) · 32 , ensuring effective saturation and unique outputs. The saturation
function suggested in [6] and employed here is a combination of sinusoids: a 3rd-order Fourier
Transform scaled by the upper limit:

π(st) = amax

[
9 sin π̃(st) + sin π̃(3st)

]
8 (4-22)

Partial Non-negative Saturation

For the case of learning high-level policies for VIC, additional care has to be taken for saturat-
ing the policy. First and foremost, the suggested control actions for all stiffness, damping or
inertia gains have to be strictly positive7 since implementing negative gains will inject energy
into the system and cause instability. Thus after saturating and scaling the actions on the
interval [−amax, amax], an additional translation of amax + amin is concatenated after the
squashing of the preliminary signal. This maps the final control actions dictating gains on
the interval [amin amax], where amin > 0 and amax > amin.

π(st) = amax

([
9 sin π̃(st) + 3 sin π̃(st)

]
8 + 1

)
+ amin (4-23)

It suffices to say that in contrary to the stiffness dimensions, the reference actions from
Equation 4-4 are still allowed to be negative. Although it is still desirable to saturate them to
prevent dangerously large accelerations. These are thus exempted from the final translation
in Equation (4-23), yielding outputs for dimension i that are bounded by (−a(i)

max, a
(i)
max).

Practically these depend on the controller sampling time and the maximum Cartesian velocity:

aimax = v(i)
max∆tc (4-24)

7A gain of zero is often not allowed on most real robots and can cause unexpected behaviour in simulation
and are thus avoided.
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4-4 Discussion

The steps described in this chapter present a significant computational burden for commercial
computers. Two main procedures dominate computation; model training and policy learning.

The most computationally expensive step in training the model (see Chapter 3-3-3) is the
inversion of the covariance matrix K at O(N3). However once K is known, it takes only
time O(N2) to compute the gradient of the LML with respect to a specific hyper-parameter.
Hence it is often justified to employ gradient-based optimization from Appendix A-2.
Since the target dimensions are considered mutually independent, for this work parallel
threads are designated for training the hyper-parameters of each individual target dimen-
sion. This thus results in Otr((N3 +N2 ·nθ) ·ng), where ng indicates the number of gradient
evaluations per optimization iteration and nθ stands for the number of hyper-parameters,
which according to Eq. (3-6): nθ = ((N + 1)D +N + 2) and thus Otr

(
(N3(D + 2) + 2)ng

)
.

We conclude that the most effective way of minimizing training time is to limit the number
of (induced) inputs.

It turns out that training the model is relatively cheap compared to the computational re-
sources required for propagating uncertainties and computing gradients during long-term
predictions. Which, due to the inherent sequential nature of these predictions, can not be
parallelized. As was found, the predicted mean is simply a linear combination of N basis
functions: µ∗ = k∗β. Hence β will not change for a given set of parameters and can thus
be stored in memory during training, reducing the number of inversions when computing
predictive means.
Looking at Equation (3-18), computing the the entries of Q ∈ RN×N requires a D-dimensional
scalar product per entry, where D is number of inputs to the GP. This gives a computational
complexity of O(DN2). For multivariate targets, the burden scales quadratically with target
dimensionality E. This is because Q has to be computed for each entry of the predictive
covariance Σy ∈ RE×E , resulting in a total complexity of O(E2N2D).
We can thus note that for reducing the total computational burden during policy learning,
reducing either the training set or target dimensionality is the most effective, while the di-
mensionality of the input states can be increased relatively cheaply. However when dealing
with data-sets larger than roughly N = 500, the complexity starts getting too large. For this
reason it will be necessary to use a sparse approximation with the help of inducing inputs.

Large datasets present a significant problem for making the procedures computationally
tractable. Multiple measures can be put into place to reduce the computational complex-
ity. One could for example utilize only a subset of the recorded data during training and
prediction. Depending on the sampling frequency one can expect many data points to closely
resemble each other. An algorithm for sorting through the dataset, removing similar data
points can be useful. Also when making predictions in certain parts of the state space, data
far away from there will result in near-zero entries in k∗. This suggests one can reduce the
dimensionality of the design matrix by only performing regression on nearby data points.
Multiple ways exist of deciding which data to use for training and regression. The approach
taken in the [6] is through Sparse Pseudo-Inputs Gaussian Process (SPGP), proposed by
Snelson in [68] and has an elegant trade-off between under- and over-fitting For an overview
of different methodologies and how they relate, the work by Quionero in [69] is an excellent
resource. Chapter 5-6 presents an analysis of computational burden for multiple dimensions.
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Chapter 5

Experimental Results

The following chapter presents the experimental results of the proposed algorithm for two
scenarios; Variable Impedance Learning (VIL), learning variable stiffness gains along prede-
fined motion plans; and Variable Impedance Learning with Trajectory Adaptation (VILTA),
learning both stiffness gains and trajectory adaptations simultaneously. Both settings are
implemented on a simulated planar robot and experimentally on a KUKA LBR 7 R800 iiwa.
We start by formulating some general concepts and ideas related to the motion plans and the
initial stiffness trajectories. Followed by a description of the experiment design for both the
simulated and real system. Results are presented with a concluding discussion on them.

The original Probabilistic Inference for Learning COntrol (PILCO) algorithm developed by
Rasmussen and Deisenroth in [5], [24] is implemented in MATLAB and can be found at
http://mlg.eng.cam.ac.uk/pilco/release/pilcoV0.9.zip. The files needed for VIL and
VILTA can be found in the GitHub repository: http://tinylink.net/PILCOT.

5-1 Trajectory Generation

Both scenarios require some form of predefined trajectories before learning can start. For
VIL this entails both motion plans and stiffness trajectories, for VILTA only the latter. The
following sections address some points regarding these hand-crafted trajectories.

5-1-1 Kinematic Trajectories

For VIL, the kinematic trajectory is predefined before a run. This motion plan consists of
several hand-crafted via-points in the Cartesian workspace. Here these are placed to reflect
the part-mating phases detailed in Chapter 2-3. Since the Gaussian Process (GP) model will
attempt to model the closed-loop dynamics we want to avoid discontinuities where possible.
Hence instead of a trapezoidal velocity profile, a minimum-jerk trajectory is preferred. This
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type of path is one which minimizes the total jerk throughout the duration of the motion:∫ T

t=0

...
xe(t)T

...
xe(t) dt

This path has the property d6xe
dt6 = 0 and thus is defined by a 5th-order polynomial xe(t) =

a5t
5 + · · ·+ a0. The coefficients in this polynomial are defined through boundary conditions

on the initial position, velocity and acceleration.

5-1-2 Initial Stiffness Trajectories

To start off the algorithm, an initial roll-out must be performed to supply the model with
a preliminary data set. For benchmark problems such as the cart-pole system or the in-
verted (double) pendulum, the system is actuated with random control inputs drawn from
a Gaussian or uniform distribution. For impedance control this approach is not valid. The
learned policy will be suggesting high-level stiffness parameters implemented by a lower-level
impedance controller. Changing the stiffness value from by two orders of magnitude between
two consecutive time-steps will likely be faster than the cut-off frequency of the impedance
controller. Thereby not giving an honest estimate of how the system will behave giving such
inputs. Also, oscillations due to fast changing impedance targets with a stiff environment are
likely to occur. Finally, commercial robots often do not allow the stiffness to change dramat-
ically from one time step to the next for these same reasons. We would thus like the initial
data-set to cover a large area of the state-action space, while still being safe to implement.
To this end, initial stiffness gains are generated that follow an Ornstein-Uhlenbeck1 trajectory
shown in Figure 5-1. This is a stationary mean-reverting Gauss–Markov process. Since it is
autoregressive, its output will depend on previous values, inhibiting drastic changes.

Figure 5-1: Four initial stiffness trajectories following an Ornstein-Uhlenbeck process.

5-2 Simulated System Setup

Simulations are performed in a Simulink environment. The Robotics Toolbox by Corke is used
to model the robot and compute dynamics [70], [71]. The controller contains the impedance

1Used to describe the velocity of massive Brownian particle under the influence of friction.
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law detailed in Chapter 2-2-2 and 2-2-1 acting on a frequency of fc = 200 [Hz]. Resolved
acceleration in joint space is achieved through a recursive Newton-Euler algorithm [3]. For
increased speed, MATLAB executable (.mex) files are generated beforehand that implement
the forward and backwards dynamics in C++.
Simulations are performed on a planar 3-Degrees of Freedom (DOF) manipulator as depicted
in Figure 5-2. The robot’s base is located at xbase = 0. All three links share the same length

Figure 5-2: Three dimensional overview of the simulated robot in the environment.

li = 0.40 [m] and mass mi = 1 [kg]. This gives it a total workspace of a 1.2 [m] circle around
the base2. Each joint has a motor with inertia Im = 1e−4 [Nm/rad] and small viscous friction.
For forward simulation of the system’s dynamics, the inertial parameters are perturbed by
15% with respect to the model used for kinematics and feedback. This offers a possibility for
the learning agent to compensate for a mismatch in inverse dynamics through GP modeling
and ultimately its impedance gains.
The robot is assumed to be endowed with joint position encoders and tachometers. Each
sensor suffers under independent and identically distributed (i.d.d.) Gaussian noise with a
variance of σ2

qi = 0.1 [deg] for the encoders and tachometers and σ2
qi = 0.1 [N] for the

Force/Torque-sensor. The joint positions at each time step are used for computing the
Cartesian state vector according to the formalism introduced in Chapter 2-1. The overall
block-diagonal noise matrix in SI units is:

5-2-1 Contact Simulation

The environment consists of a solid wall at xwall,x = 0.65 [m] relative to the base. It is
modelled as a highly stiff spring with low damping. The force exerted by the wall is thus a
function of the displacement of the TCP with respect to the wall’s initial position.

W ext = Kenv(xe − xwall) + d(ẋe)
2The actual reachable workspace is smaller since singularities will occur near the boundaries which have to

be avoided.
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Where d(ẋe) is some directional linear damping term3 and Kenv = I6 · 105.
The additional insertion resistance eluded to earlier is modelled as linear spring with kinsert =
300 [N/m] that catches just after the centre of the hole and stops 2 [cm] before the end. Such
resistances are often encountered in part mating procedures for clicking or forcing the part
in place. Here it serves as an increased complexity for the desired compliance. At the end of
the hole, another constraint is placed which has the same stiffness as the other surfaces. A
small viscous friction effect with Cf,visc = 0.5 is simulated whenever the robot is in contact
with a surface.

5-2-2 Geometric Problem Description

The goal of the agent is to insert the peg as far as possible into the hole. Geometrically this
means it will try to minimize the distance between via-point 3 in Figure 5-3 and its Tool
Center Point (TCP). The centre of the hole (2) is located at xhole = [0.7 0.2 0]. It has a
radius rhole = 0.005 and a depth of lhole = 0.1. Since the TCP of the end-effector is simulated
as having no volume, the radius of the hole is also the tolerance on either side.
One trial lasts for T = 10 [s]. The diagram in Figure 5-3 shows a geometric overview of

Figure 5-3: Schematic overview of the stiffness learning task in (left) with via-points indicated by blue
solid circles. Minimum-jerk trajectory profile (right) with moment of contact indicated with black dotted line.

the experiment with the relative via-points. Firstly the manipulator must move towards the
vicinity of the target, this is the approach. For this the TCP moves from via-point (0) at
x0 = [0.5 0 0] to (1) at 50 [mm] behind the wall, ensuring contact with the environment.
for alignment it then moves to point (2) located at the centre of the hole xhole4. For the
insertion phase, point (3) is placed just behind the end of the hole at x3 = xhole + lhole/2.
The resulting trajectory is shown Figure 5-3 (right).

5-2-3 Coupled Closed-loop Damping

As shown in Chapter 2, impedance control simplifies controller design to the selection of
impedance parameters of the closed-loop system:

Md ¨̃xe +Bd ˙̃xe +Kdx̃e = W ext (5-1)
3Since the end-effector is not rigidly connected to the environment, damping only occurs when moving in

the direction of the wall.
4Since this simulation does not accurately model jamming and friction and the location of the hole is known

precisely, alignment occurs relatively easy.
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The selection of parameters define the frequency response variables as

ωn =
√
Kd

Md
ζ = Bd

2
√
KdMd

(5-2)

For this thesis only the stiffness gains are learned. The inertial matrix is set to a predetermined
value and the damping term is tuned to obtain a nicely damped system. Defining a damping
ratio ζ = 0.7, allows computing the desired damping matrix at each time step as Bd =
2ζωnMd. When the robot comes in contact with the environment, its dynamics will become
coupled. This in turn effects the natural frequency of the coupled arm-wall system:

ωncoupled =
√
Kd +Ke

Md

The damping ratio is inversely proportional to this frequency and thus for stiff environments
(Ke � Kp), we expect to see decreased damping and stronger oscillations during the tran-
sient between free and constrained motion. For this thesis we will assume the environment
characteristics to be known and adjust the desired damping accordingly to Bd = 2ζ

√
Kd+Ke
Md

,
which achieves a nice stable transient. Schemes for on-line estimation of wall stiffness have
been shown to improve performance and the interested reader is referred to [72].

5-3 KUKA iiwa Experimental Setup

Chapter 2 gave an introduction to the control theory behind ideal impedance behaviour. In
practice this has been hard to accomplish. One of the reasons for this is the non-linearity of
the torque-current relationship in even the best electric motors. This means that for commer-
cial robots, impedance control is often realized by cascaded inner positional controllers. The
newest wave of professional manipulators are light-weight, flexible-joint, torque controlled
systems. The KUKA LBR 7 iiwa R800 depicted on the left in Figure 5-4 is such a system.
The block-diagram in Figure 5-4 gives a schematic overview of the communication protocols
during the experiments. The Robotic Operating System (ROS) metapackage ‘iiwa stack’
(https://github.com/SalvoVirga/iiwa_stack [73]) is used to establish a UDP communi-
cation with the KUKA operating system ‘sunriseOS ’ running a local ROS node in its Java
environment. The ‘MATLAB Robotics Toolbox’ [74] is used to create a node within the
MATLAB environment for easy integration with the learning algorithm.

Figure 5-4: Photograph of the KUKA iiwa experimantal setup (left) with a schematic overview of the
communication protocol (right) in place to control the KUKA iiwa from MATLAB through ROS.
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Figure 5-5 shows a geometric overview of the setup with trajectory via-points. The goal for
the agent is to minimize the distance between the TCP and point (2). Two walls placed at
45 degree angles constrain the motion.

Figure 5-5: Geometric overview of the experiment design with blue circles indicating via-points.

5-4 Variable Impedance Learning

Below are presented the results for the stiffness learning scenario with the relevant concepts
as defined above. Table 5-1 to 5-4 summarize the parameters chosen for each of the relevant
parts of the learning algorithm. For the non-linear Radial Basis Function (RBF) controller,
multiple numbers of basis function are implemented to asses their effectiveness compared to
a linear controller.

GP Model
∆t 0.1 [s]
xin x y ẋ ẏ t

ytarget ∆xr ∆yr ∆ẋr ∆ẏr fx fy
Nii 300

Table 5-1: Relevant parameters for the GP
model in planar VIL. Differences are indicated
by ∆, reference priors by an r superscript.

Policy
Linear RBF

Nc - 10 25
a Kpx Kpy

sπ x y ẋ ẏ

Limits (5, 250)
nψ 10 68 208

Table 5-2: Parameters relevant to the high
level stiffness controller.

Value function
cs(sc) ca(ac)

type sat. quad.
input x y fx fy kpx kpy
target 0.75 0.2 0 0 0 0
width 0.05 0.05 20 -
weight w2 = −0.25 w3 = 0.01

Table 5-3: Relevant parameters for the GP
model. wi are relative to w1 = 1.

Optimization
method (L)BFGS
N 25
K 1
Length 50
MFEPLS 25
MSR 100

Table 5-4: Parameters relevant to the policy
optimization algorithms.

Victor van Spaandonk Master of Science Thesis



5-4 Variable Impedance Learning 53

With respect to Table 5-4: N is the number of roll-outs, K is the number of initial states for
which the policy is optimized, Length the number of line-searches per iteration, MFEPLS the
number of function evaluations per line-search and MSR is the maximum slope ratio.

5-4-1 General Impedance Simulation Results

We start by examining the results for General Impedance Control (GIC) detailed in Section
2-2-2. The plots in Figure 5-6 give a comparative overview of the final policies for both the
linear policy and increasingly expressive non-linear ones. It also shows the predicted expected
returns superimposed with the recorded values over 25 iterations. For this and all episodic
cost plots, green circles indicate all trials during that episode were successful at inserting
the peg fully into the hole. Yellow diamonds indicate some roll-outs were successful and red
squares mean that none were. All distributions show 95% confidence intervals.

(a) (b) (c)

Figure 5-6: Expected returns and final policies after 25 iterations for three policy structures; linear (a)
and RBF with Nc = 10 (b) and Nc = 25 (c).

For all types, the expected return converges to roughly 61. For the linear policy this takes
almost 15 trials as the uncertainty in the model is reduced. For RBF policies the overall strat-
egy is found before a mere 10 episodes. The linear policy fails for 9 trials before succeeding,
despite the initial roll-out resulting in success. This is likely due to the initial energy penalty
taking up too much of the reward. The policy thereby adjusts its (limited) expressiveness
into lowering the gains too much and thus failing. Only after exploratory actions does it
manage to converge to successful insertion. This behaviour is seen in 5-6b at episode 5 and
is no longer present when Nc = 25.
Despite the similarity in values, each policy has found another local optimum for its expected
return.
What is similar for every policy are low stiffness gains perpendicular to the wall both before
and after insertion. Stiffness is only increased when the peg is located in front of the hole, to
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increase insertion speed and overcome the resistance encountered at t ≈ 6.5. The RBF con-
troller with 10 support points shows a short increase in lateral stiffness while the peg moves
in the y-direction, followed by a short drop in stiffness to reduce the momentary lateral forces
encountered from the side of the hole’s wall. This behaviour is not shared in the particular
run shown here for Nc = 25, but was informally observed as a recurring strategy.

5-4-2 Simple Impedance Simulation Results

An interesting application is in Simple Impedance Control (SIC), detailed in Chapter 2-2-1.
Naturally such control will give somewhat degraded performance over the fully compensated
case, but several advantages over GIC where given in Chapter 2-2-1, such as naturally dealing
with singularities. Instead, compensating for model mismatch only at places where it is
beneficial for the agent by increasing its stiffness gains can be of much value in such scenarios.
The maximum stiffness values are increased to kx,yP = 500 to allow for this. The results are
discussed below. Looking at Figure 5-7 we see that the model and data trials convergences to

Figure 5-7: Results of stiffness learning for SIC. Predicted and recorded returns (left) converge to a value
of 80. Sparse approximation starts at k = 4. The final policy is shown in (right).

a return of 78. The increased cost with respect to GIC being a result of the larger interaction
forces arising from uncancelled inertial and Coriolis terms. The difference in cost over the
course of a single run is now more drastic than before, since less of the reward is ‘taken up’
by the initial low-level controller, leaving more for the policy.
The final policy has some interesting characteristics. For the perpendicular x-direction, wee
see initial high stiffness, dropping to a minimum just before contact to minimize the external
forces as much as possible. When insertion starts at t ≈ 5, stiffness is quickly increased
to accommodate faster movement. For k(y)

P , the stiffness remains higher over the course of
the task, since lower stiffness values (the case in early iterations) are too small to succeed at
insertion in the absence of dynamic compensation. The plots in Figure 5-8 show the immediate
predicted and recorded cost after one episode and at the end of learning. Initially the model
misjudges the expected return because the early policies are unsuccessful at inserting the peg.
At the end of learning the predicted cost has matched the real data.
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Figure 5-8: Predicted and recorded immediate cost distributions of VIL after episode 1 (left) and after
convergence (right).

5-4-3 Experimental Results on KUKA LBR iiwa

Finally the stiffness learning algorithm was implemented on a physical KUKA iiwa robot. Due
to real-time constraints in the communication chain the loop-time is increased to ∆t = 0.15
[s]. For these experiments the inputs to the GPs are set to xin = [x y]. The KUKA iiwa does
not allow the definition of specific damping constants, but instead takes a damping ratio ζ
for each Cartesian direction. For these experiments this was set to ζ = 0.7.

Figure 5-9: Progression photographs of VIC experiments on the KUKA LBR iiwa.

The left of Figure 5-10 indicates that the expected return quickly drops from an initial 44 to
34 after 6 interactions and 4 policy updates. Afterwards the policy varies around this (sub)-
optimal solution. The stiffness progressions ion the right again show an initial high stiffness
in x, up until the moment of contact when it is lowered to accommodate the wall before being
increased to help in penetration. The stiffness in y is maximal during free motion until t ≈ 3
when it drops sharply to already allow for movement towards the target.

Figure 5-10: Expected returns (left) and final policy (right) after 25 episodes of VIL on the “KUKA LBR
7” Nc = 10.
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The learned model for VIL on the KUKA LBR is shown in Figure 5-11. It is clear that the
GPs are limited in predicting the velocities, resulting in increasing uncertainty from t ≈ 4,
possibly due to encountered static friction throwing the model off. Chapter 5-6 gives some
further thoughts on this uncertainties. The cost dimensions of x, y and fx,y show better fits,
although the final spike in fx is not modelled properly. The predictive variance does indicate
an uncertainty about those final dynamics. Judging from the low variance policy outputs on
the right in Figure 5-10, the uncertain velocities are not important for computing stiffness
gains.

Figure 5-11: Long-term predictions and data trials for KUKA iiwa VIL, Nc = 10. Shaded areas are the
full models, red errorbars the sparse GPs used for policy improvements.

5-5 Variable Impedance Learning with Trajectory Adaptation

VILTA entails learning both stiffness gains and reference trajectories simultaneously. The
additional problem that the agent is presented with is that the location of the hole is unknown
before learning. The only thing known is that the end of the hole is located somewhere on
the interval xy ∈ (0.1 0.3) and xx ∈ (0.5 0.8). Analogous to the search phase described in
Chapter 2-3, the initial hand-crafted references are thus shaped in a manner that scans over
the interval in x and y. The following tables summarize the parameters relevant to the GPs
and policy.

Value function
cs(sc) ca(ac)

type sat. quad.
input x fx fx k

(x)
P k

(y)
P

target 0.8 0 0 0 0
width 0.05 0.05 20 -
weight w2 = −0.25 w3 = 0.01

Table 5-5: Relevant parameters for the GP
model in planar VILTA. Weights relative to
w1 = 1.

Policy
Type RBF
Nc 50
a kpx kpy ∆xref ∆yref
sπ x y ẋ ẏ

Limits (5, 250) (−0.0025 0.0025)
nψ 416

Table 5-6: Parameters relevant to VILTA
policy.
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Notice that time has been dropped as an input since the followed trajectory is no longer
predetermined and the policy now conditions the model on similar encountered states for
different references.
Also, since the exact location of the hole is unknown to the agent, the inputs to the state-
dependent cost function can clearly not remain the same. Instead y is dropped as input to
cs(st) and instead only the displacement perpendicular to the wall serves as input to the cost
function5. This cost function basically tells the agent to maximize the penetration depth into
the wall, while keeping contact forces to a minimum. We do not want to kill the, already
small, initial motivation for suggesting non-zero reference changes, especially since there is
no direct reward to be reaped from moving in the y direction.

5-5-1 Simulation Results

Although some runs resulted in more elegant outcomes than the ones here, these were chosen
for a more interesting and honest discussion on the strengths and weaknesses of the algorithm.

Figure 5-12: Episodic cost (left) and final policy (right) of simulated VILTA for Nc = 50.

The left graph in Figure 5-12 shows the episodic cost for VILTA for Nc = 50. The initial
‘searching’ trial results in a return just over 60. Roughly equal to the converged returns
during VIL of Section 5-4-1. During the third planning phase the policy finds a spatial
trajectory capable of reaching the end of the hole, drastically decreasing the recorded and
expected returns. A slight modification during iteration 4 again misses the hole. After 11
policy updates the policy converges to a solution that consistently completes insertion at a
cost of 20.
Figure 5-12 reveals that it does this by immediately moving in the +x/y-direction towards
the opening in the wall while maintaining high stiffness values. When the task no longer
requires movement, the stiffness gains are lowered to values of 60 and 10 respectively.
The long-term predictions depicted in Figure 5-13 show accurate predictions for x and y,
with increased uncertainty around the discontinuity. The velocities and forces are again hard
to capture by the sparse model. The aggressive movement likely increases the effect of the
contact discontinuity. The local solution does not properly minimize the forces encountered
inside the hole by continually suggesting non-zero reference changes even after the hole’s
lateral position has been reached. See Section 5-6 for a discussion on these phenomena.

5The position and force both have their own saturated cost function with appropriately sized widths, which
are later added together in a Bayesian manner.
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Figure 5-13: Long-term predictions and recorded data for simulated VILTA with Nc = 50. Shaded area
are full GPs for comparison.

Generalizing to Variable Start States

Another interesting generalization is that of variable start-state VILTA. For many practical
applications, even when the start state can be accurately determined, it is useful to learn
trajectory policies that can generalize to a range of initial conditions. To this end, the
algorithm is adjusted to allow policy optimization for start states varying over an interval
of 20 [cm]. The goal still remains constant during learning, although unknown to the agent
before learning6. In the current scenario the policy essentially learns where the hole is located
and generalizes in such a way to adjust its trajectories in order to reach that point. Each
iteration now consists of 4 physical roll-outs, the start state of each being uniformly drawn
on the interval xy ∈ (0.1, 0.3). One of these is used for supplying the GPs with new data.
Each line-search direction of every policy improvement is now determined by making K = 3
long-term predictions and averaging the expected return and gradient directions over them.

Figure 5-14: Learned reference trajectories for y direction for variable start states, Nc = 75. Despite a
relatively high variance fit, the policy correctly steers the peg into the hole for a range of starting conditions.

Figure 5-14 shows the cost and y dimension model. We can see that the RBF policy has
6Another interesting scenario lies in variable goal states, where the policy learns to generalize insertion even

when the hole is located at different locations each iteration. Force-conditioned polices would be necessary
(see the discussions in Chapter 5-6 and 6-2).
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learned to find the hole after 10 iterations for initial conditions on the interval y = [0.1 0.3].
However we can also see that for this run, the sparse model is very crude and does not converge
to the recorded data, likely due to an increased range of different contact transitions.

5-5-2 Experimental Results on KUKA LBR iiwa

The final scenario presented is VILTA implemented on the physical KUKA iiwa robot.

Figure 5-15: Episodic cost and final policy for VILTA on KUKA LBR 7 iiwa, Nc = 25.

The left plot in Figure 5-15 shows the cost reaching 22 from an initial of 36 after 6 roll-outs,
a mere 80 seconds of interaction. The right graph shows that the policy again settles on
immediately steering the end-effector towards the goal with high gains. When the goal is
reached the gains are lowered and the reference settles to zero. The variance in the predicted
actions stems from the cross-covariances of the policy’s input states. The higher variance for
the reference thus suggests they rely more heavily on their velocity inputs through decreased
length-scales on those dimensions.

5-6 Discussion

What follows is brief discussion on the obtained results and an analysis on computational
complexity and scalability. A summary, conclusions and possible future directions are given
in Chapter 6.

Overall we may state that the proposed algorithm is capable of learning several variants of
simple Peg-in-Hole (PiH) tasks. The average convergence speeds for all scenarios is promising
with most runs converging to a local optimum within 100 seconds of physical interaction (10
trials). However the sparse model fit and quality of the obtained solutions are not always
optimal.

For VIL detailed in Section 5-4 it was found that several policy structures, including a linear
architecture, was able to converge to a (local) optimum. The RBF policies were capable
of some finer adjustments after a general stiffness trajectory was found. Interestingly, the
(sparse) GP model in the case of SIC was observed to often behave better than in the case
of GIC. One reason for this could be the remaining presence of open-loop dynamics in the
recorded data. These dynamics might be more suitable of being modelled by the chosen
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squared exponential kernel. Whereas for GIC, the GPs are expected to only model the way
in which the recorded data deviates from the imposed trajectory, after dynamical model
compensation by the control law. This might force the hyper-parameters to try and explain
the thing they are not good at fitting, the contact transition. While for SIC, the GPs capture
the more general dynamics and use these for the sparse posterior. Also, GIC has the (normally
beneficial) effect of a very short transient between the moment of contact and a constant
desired force. SIC however shows more gradual transient forces, although levelling out at
larger values. This results in higher cost, but is beneficial for the underlying GPs.

Figure 5-16: Comparison between the full GP models and their sparse approximation for GIC VIL after
20 episodes using 300 inducing inputs.

Looking at Figure 5-16, it is seen that the full model predicts the real-life data better and
with higher certainty than the sparse approximation. This discrepancy is likely a result of
the difficulty induced input models have with incorporating data points far away from the
existing set [68].

For the case of VILTA the learning algorithm is again capable of finding a (locally) optimal
solution. The final policies exhibit behaviour that aligns with a common sense intuition: high
gain feedback during free motion towards the hole followed by large compliance in the vicinity
of the hole and zero reference velocities after insertion. Convergence guarantees for VILTA
are weaker than for VIL. It is not uncommon for the model to diverge into high variance
estimates halfway into the learning process. It is hypothesized that the discrete nature of
possible outcomes during simulation has a negative effect on model convergence. For the
rather simplistic contact simulation, there are a number of discrete ‘choice points’ for the
model. For example the references might suggest a trajectory that moves towards the wall
and simultaneously laterally to the hole. In the ideal case the peg arrives at the y location of
the hole at exactly the moment the peg would otherwise touch the wall. If in a subsequent
trial, the robot’s lateral velocity is just a fraction higher, it will miss the hole entirely and
obtain widely different output data for what it perceives are virtually the same inputs. It is
reasoned that because of this the hyper-parameters start to drift in non-intuitive directions,
trying to account for multiple things at once, thereby loosing the ability to accurately predict
the more common dynamics.
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Lastly the absence of force as policy input needs to be addressed. Defining force-conditioned
policies could improve the generalization power of the algorithm by for example lowering its
stiffness in the case of unplanned obstructions or dealing with variable goal states. It was
empirically observed that presenting forces as inputs to the policy could result in instability
by venturing into dangerous parts of the action space. This happened if the policy rightfully
decided to sharply lower the stiffness values at the moment of contact. This sudden change
would result in the end-effector loosing contact, which in turn yielded maximum stiffness
values from the policy. This behaviour would then spiral into a jittering motion, oscillations
and instability, especially in the case of simulated VILTA. Intelligent reward shaping could
help in steering the policy away from these parts of the action space.

5-6-1 Computational Complexity Analysis

Probabilistic inference is notoriously heavy in terms of computational complexity. The ex-
periments presented here were for mere planar scenarios. The plots below show the average
computation times for different parts of the algorithm during the fifth iteration without any
parallelization. The data was recorded on a ‘Windows 7 x-64 ’ machine sporting an ‘Intel
Xeon E5 ’ CPU with 8 cores7 running at 3.50 [GHz].

Figure 5-17: Computational burden for training (left, colours indicate Nc) and prediction (right, colours
indicate sπ) of planar VIL.

Figure 5-18: Computational burden for training (left, colours indicate Nc) and prediction (right) of planar
VILTA.

Figure 5-17 (left) shows the average CPU time for a single model update in VIL, including 300
line-searches for fitting the sparse GP. It can be seen that both the number of policy inputs

7As stated earlier, the sequential nature of dynamical simulation does not allow for parallel threads and
hence the physical architecture of a high core-count CPU offers limited advantage.
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and basis functions have little effect as expected. The defining variable is number of inducing
inputs. For the number chosen in this thesis (Nii = 300), fitting 6 output dimensions (see Eq.
(4-3)) we get Ttrain = 2 [min], for Nii = 400 this has increased to almost 8 minutes. The right
plot in Figure 5-17 reveals that a number of basis functions between nc = 10 and nc = 50
has little effect on the time needed for a single policy update, confirming the expectation
that the number of policy parameters can be increaed relatively cheaply compared to other
learning methods [24]. The inducing input count again does have an influence and the number
of policy basis functions can interestingly be increased from 10 to 50 at almost no cost and
doubled from 50 to 100 for a 25% increase in learning time. Setting the number of inducing
inputs to Nii = 300, the total episode time amounts to Tep = 17 [min].

Scalability

What do these findings mean for the scalability of the proposed algorithm?
For the sake of this discussion, let us imagine full 6-DOF VIL with 300 sparse inputs and

π(se) = kP ∈ RDu=6, x = [se ṡe kP ]T ∈ RD=18, y = [se ṡe W ext]T ∈ RE=18 (5-3)

For training we found8 in Chapter 4-4 that Otr
(
(N3

ii(D + 2) + 2)E
)
∝ D,E. Without using

parallel threads, for the full spatial case this suggests

T fulltrain ≈ 2 · (18/4) · (18/6) = 27 [min]

Now for policy learning, from Figure 5-17 it is seen that Tlearn = 19 [min] when Nc = 50 and
Du = 6 (right plot). For the sake of argument we can assume only the pose to serve as policy
input in the spatial case to keep Du constant. We had found that prediction complexity
scales as Opl(E2N2D). In other words if we consider learning quadratically proportional to
the number of GPs and linearly to the number of inputs to those models and to the number
of policy outputs, this would give:

T fulllearn ≈ 19 · (18/6)2 · (12/4) · (6/2) = 2308 [min] ≈ 38 [h]

This means every policy update would amount to over a one and a half days of computation
time. Even for the imagined example of interplanetary rovers in Chapter 2-3 these time-spans
are at the very least impractical.

Now it has to be said these are very crude extrapolations without any dimensionality reduction
applied to the problem. For example one could imagine the rotational stiffness gains to be
shared or constant, certain dimensions might not have to be modelled, or in the case of
symmetric tasks policy outputs can be shared for multiple dimensions. However the spirit
of this extrapolation does tell us something about the overall scalability of the proposed
algorithm on current hardware. Especially in light of the conclusions presented in Chapter
6, which suggest several ways of mitigating the weaknesses of the algorithm, but will likely
inject more complexity and thus computational burden into the overall architecture of the
learning problem.

8For constant line-search optimization settings.
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Chapter 6

Conclusions and Future Directions

This thesis has detailed the theoretical underpinnings, development and implementation of
a model-based algorithm for learning Variable Impedance Control (VIC). What follows is
a summary of, and conclusions on, the important points of this work based on the research
objectives formulated in Chapter 1-2. Concluded by a rationale of the author on what further
research directions are worth considering in order to move us forward based on the insights
learned over the course of this thesis.

6-1 Summary and Conclusions

Chapter 1 introduced a number of ways in which Bayesian inference is used in biological
learning along with a number of recent approaches to learning robotic force control. To
recreate this behaviour in robotic force control with the goal of minimizing the required
interaction time for learning constrained motion, a model-based approach using Gaussian
Processes was proposed.

Chapter 2 presented the mathematical framework for Cartesian Impedance Control (IC). First
of all it must be stated that the design choices for IC are not in general straightforward and
research into new architectures is an ongoing endeavour. Two methodologies were outlined;
Simple Impedance Control (SIC), suitable for back-drivable, low inertia robots with a natural
ability to deal with singularities. In General Impedance Control (GIC) the system dynamics
of the robot are partially decoupled and linearized through feedback. Only recently has
ideal IC been significantly approximated by the development of light-weight torque-controlled
manipulators.

The concepts related to Reinforcement Learning (RL) and Gaussian Process (GP) models
were introduced in Chapter 3, in particular with respect to the Probabilistic Inference for
Learning COntrol (PILCO) algorithm. This model-based RL algorithm uses learned GPs to
perform long-term simulations in a fully Bayesian manner. Due to its high sample-complexity,
the PILCO algorithm has shown to yield great improvements in the required interaction time.
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A drawback from a system’s point of view on GPs is that the hyper-parameters in a non-
parametric model do not usually yield a mechanical or physical interpretation. This can make
the resulting models opaque to engineers trying to analyze its behaviour.

Chapter 4 introduced several contributions for model-based learning of impedance control
tasks, in line with the first research objective. These included the particular state and ac-
tion spaces used in planning for Variable Impedance Learning (VIL) and Variable Impedance
Learning with Trajectory Adaptation (VILTA) with partial non-negative saturated policies.
Relative targets with informative reference priors accommodated closed-loop system identi-
fication. Another contribution was made in the form of an explicit energy penalty in the
expected return in the framework of Gaussian state trajectories. Borrowing from studies into
human sensorimotor control, saturated exponential accuracy cost were combined with a nor-
malized quadratic energy cost acting on part of the action space to mimic the reward function
in biological skill learning. Analytical gradients were derived for the extended return function.
The concepts put forth here do not need to be constrained by the exact form investigated in
this work and can be applied to any Bayesian model-based learning setting.

Finally Chapter 5 presented results for simulated and physical experiments in VIL and VILTA.
The proposed learning framework succeeded in a variable impedance planar Peg-in-Hole (PiH)
task without any predetermined gain schedules and, in the case of VILTA, any kinematic mo-
tions plans or knowledge of the target location.
For VIL, policy convergence to a local optimum is often reached within 10 interactions, in-
cluding for linear policies. Recent work on model-free VIL of force-perturbing tasks still
required up to 200 episodes for policy convergence1 [1]. Although due to the current appli-
cation being limited to a planar setting and a different type of task, we should be cautious
in drawing conclusions on this decrease of interaction time in the order of a magnitude. An
interesting application was found through the combination of VIL and SIC, which benefited
the behaviour of a posterior model. The variable stiffness gains were able to partially mitigate
the weaknesses of SIC while maintaining its benefits.
VILTA was capable of finding solutions for learning stiffness and trajectories simultaneously,
deducing the hole’s location in a common-sense manner, including for distributed start states.

The developed algorithm is by no means free of problems. The final objective was inves-
tigating the effects of local discontinuities and how uncertainty bookkeeping could help in
mitigating their effect. It was found that singular GP system identification is not fully re-
liable in capturing the global dynamics for the scenarios considered. The discrete nature of
the task could steer the sparse approximated model off-course. In simulation this was mainly
due to simplistic contacts and in the real-world experiments likely due to friction and contact
transitions. Force-conditioned policies could not implemented. Mainly due to the tendency
of the policy venturing into dangerous part of the action space. Contact forces would induce
abrupt stiffness changes, creating oscillations and finally instability. Better reward shaping
could help in this.

1The advantage for learning of such tasks over scenarios presented here is the absence of obvious disconti-
nuities during the trials. It would be interesting to see how this framework performs in such a setting.
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6-2 Future Directions

It is hard to say how far away the imagined ideal of full scale humanoids operating effortlessly
in the real world is. What seems to be clear is that deterministic approaches developed for
well-behaved problems and clear structured rule systems will not apply to any of the current
robotic frontiers. The PILCO algorithm and its extension presented here are an interesting
step into more intelligent, human-like Bayesian inference and advances in computer hardware
will partially offset the scalability pitfalls. However to expand the sophistication of robotic
sensorimotor skill-learning algorithms, more generalized problem formulations will need to
be combined with further improvements in variable impedance hardware. Research into
biological physiology and neurology will help in crystallizing the way forward. We might not
have build flapping-wing aircrafts, but birds are not the only things capable of generating
lift in an atmosphere. For intelligent and effective manipulation though, it seems logical that
biology is still our best guide.

A promising step was taken with Dynamic Movement Primitives (DMPs) in [35] and [36]
combined with the path integral approaches to VIL in [38]. It was considered using DMPs
in this work for encoding the learned kinematic trajectories, before deciding against it for
two reasons; the added complexity of did not immediately outweigh the benefits from more
generalized movement representations; secondly the current framework of DMPs is based
around constant goal state attractors. For this work, the exact goal state was often unknown.
An interesting extension could lie in variable, possibly learned, attractor targets for DMPs.

Another issue is the effect of input noise. The learned GPs incorporate an estimate of the
output noise, but assume noiseless inputs. Since we are dealing with sequential time-series
data, this is obviously untrue. This leads to estimation errors especially in parts of the state-
space with fast changing dynamics [75]. One way of dealing with this is to project the input
noise to the output. To render the problem tractable, this technique should be combined with
sparse GPs.

For resolving some of the problems with respect to local discontinuities, several solutions can
be investigated. One possibility is different choices of covariance functions. The exponential
used in this thesis is attractive due to its infinite smoothness, however this is probably too
stringent of a requirement, especially in the context of interaction. The Matern function for
example is a kernel that is still twice differentiable which might allow more drastic function
changes to accommodate contact transitions. To this end, non-stationary covariance functions
such as in [76] are likely even more suitable to adapt to functions whose smoothness varies
with the inputs. These non-stationary kernels allow the local differentiability of the GPs
to be learned from data to accommodate abrupt changes. Local Gaussian Process Models
[77], [78] can also serve this purpose. These are multiple smaller-scale GPs that model only
a part of the state-action space. For contact environments, it would be interesting to see
if the boundaries between the models can be learned. Predictions along the boundaries of
these regions can be a mixture of surrounding local solutions. Another approach is through
hierarchical GP models [79], which have already been applied to human motion studies in
[80].

Master of Science Thesis Victor van Spaandonk



66 Conclusions and Future Directions

It is however also important to reflect on the larger applicability and consider honestly the
viability of pursuing certain directions. The PILCO algorithm has scored genuinely impressive
improvements in learning from scratch. It is however also a complex algorithm in terms of
its meticulous analytical bookkeeping and mathematical underpinnings. Whether injecting
more complexity into this framework through the use of local or hierarchical models remains
to be seen.
This thesis started by citing an observation known as the “Moravec Paradox” [8], which states
the counter-intuitive propositions that learning effective and robust sensorimotor skills is far
more difficult and computationally intensive than what is normally considered sophisticated
reasoning in humans. If nothing else, of these two claims, this thesis has certainly been an
exhibition of the former and a useful exercise in the latter.
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Appendix A

Mathematical Background

A-1 Statistical Properties

Assume x and y are two sets of random variables.
Then the expected value and variance is

E[x] =
∫
xp(x)dx Var[x] = σ2

x = E[(x− E[x])2] = E[x2]− E[x]2 (A-1)

and the covariance is

Cov[x, y] = E[(x− E[x])(y − E[y])] = E[xy]− E[x]E[y] (A-2)

The joint probability is given by

p(x, y) = p(x|y)p(y) = p(y|x)p(x) = p(y, x) (A-3)

The marginal or evidence is found by integrating over the joint:

p(x) =
∫
p(x, y) dp(y) =

∫
p(x|y)p(y) dp(y) (A-4)

Which allows defining a conditional probability known as Bayes’ Theorem.

p(y|x) = p(y, x)
p(x) = p(x|y)p(y)

p(x) (A-5)

Adding two random variables results in

E[x+ y] = E[x] + E[y] Var[x+ y] = Var[x] + Var[y] + Cov[x, y] + Cov[y, x] (A-6)

Other useful manipulations are the Law of Iterated Expectations

E[x] = Ey[Ex[x|y]]
(
= Ey,x[x|y]

)
(A-7)
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and the Law of Total (Co-)Variance

Var[x] = Ey[Var[x|y]] + Vary[E[x|y]] (A-8)

In the case of a Gaussian random variable x, the probability density function is

pdf(x) = p(x) = (2π)−
D
2 |A+B|−1 exp

(
−1

2 (x− µx)T Σ−1 (x− µx)
)

(A-9)

The marginal distributions of the joint

p(x1, x2) = N

[µ1
µ2

]
,

[
Σ11 Σ12
Σ21 Σ22

] (A-10)

are arrived at by selecting the proper parts

p(x1) = N (µ1,Σ11) p(x2) = N (µ2,Σ22) (A-11)

Now the conditional distributions are given by the following formula

p(x2|x1) = N
(
µ2 + Σ21Σ−1

11 (x1 − µ1), Σ22 − Σ21Σ−1
11 Σ12

)
(A-12)

Which is a result of completing the squares in a Schur complement.
The product of 2 Gaussians N (a,A)N (b,B) = c · N (c,C) is another Gaussian distribution,
multiplied by a factor c which is itself a Gaussian distribution:

C =
(
A−1 +B−1

)−1

c = C
(
A−1a+B−1b

)
c = (2π)−

D
2 |A+B|−1 exp

(
−1

2 (a− b)T (A+B)−1 (a+ b)
) (A-13)

Which is different from the so called product normal distribution.

A-2 Gradient Descent Optimization

The optimization algorithms used for conditioning the Gaussian Process (GP) and policy
updates are Limited-memory Broyden-Fletcher-Gretchen-Shanno ((L)BFGS) and Conjugate
Gradient (CG). Both these techniques are line-search methods, which are effective iterative
algorithms to compute local minimizers in unconstrained optimization problems. In general,
each iteration k of a line search algorithm computes a search direction pk and a positive
step length αk along the search direction that satisfies a sufficient decrease in the function as
measured by the inequality

f(xk + αkpk) ≤ f(xk) + c1αk∇f(xk)Tpk

for some constant c1. This condition is the first of the Wolfe conditions1. In the context of
line search, this condition could be satisfied for all sufficiently small values of α, so it may not

1Also called Armijo condition.
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be enough by itself to ensure fast convergence and thus another condition is proposed, called
the curvature condition:

∇f(xk + αkpk)Tpk ≤ c2∇f(xk)Tpk

for some constant c2 satisfying c1 ≤ c2 < 1. Once a scalar αk has been found that satisfies the
Wolfe conditions we can update the unknown xk+1 = xk + sk, sk = αkpk being the accepted
step at the current iterate.

Most line search algorithms require pk to be a descent direction.
In other words: pTk∇f(xk) < 0. Which ensures reducing f(x) along this direction. In steepest
descent, pk is simply the opposite of the gradient pk = −∇f(xk).
For the quasi-Newton method (L)BFGS, pk is computed by minimizing the predictive quadratic
model

mk(p) = f(xk) +∇f(xk)Tp+ 1
2p

THkp

leading to pk = −H−1
k ∇f(xk). where Hk is a symmetric and non-singular approximation of

the Hessian updated at every line search. Then when pk is defined in this way and the matrix
Hk is positive definite, we have

pTk∇f(xk) = −∇f(xk)TH−1
k ∇f(xk)

Which is negative definite and hence pk is a descent direction [81].

CG relies on the fact that the solution x∗ to the linear matrix equality Ax = b for the
known symmetric and positive definite A ∈ Rn×n and b ∈ Rn can be expressed in the basis
P = {p1 . . .pn} of n mutually conjugate vectors as

x∗ =
n∑
i=1

αipi

Filling the known conjugate directions allows solving for α. Now if n is large, as is the case
for us, we can approximate the solution by iteratively considering the first k entries of P .
This is done by realizing that x∗ also minimizes the quadratic form f(x) = xTAx − xTb.
Then starting from an arbitrary guess of x0, the first search direction is taken equal to the
gradient of f(x): p0 = ∇f(x0) = Ax0 − b. This leaves a residual of rk = b− Axk, which is
the negative gradient of f(xk). Thus in steepest descent the next direction would be along
rk. Instead in CG we insist that the new direction pk+1 be conjugate to the gradient and
hence the name Conjugate Gradient. This gives an expression for the next direction:

pk+1 = rk+1 −
k∑
i=1

ptiArk+1
pTApi

pi = rk+1 +
rTk+1rk+1

rTk rk
pk

Where the last equality holds because rk+1 is orthogonal to all pi for i < k and we thus only
need to maintain memory of the previous iterate. pk+1 can now be used as the direction for
a line search xk+1 = x(k) + αkpk, where

αk = rTk rk
pTkApk
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Appendix B

Orientation Representation

A point that needs to be addressed in operational space control is the particular choice of
orientation representation. For an analysis and comparison of all methods for orientation
representation the interested reader is referred to [82]. What follows is a derivation for the
representation used in this thesis, namely the relative Euler angles, based on the work in [51].

The choice of axes can be divided into two categories: proper Euler angles and Tait-Bryan
angles. As eluded to in Chapter 2-2-2, one can see that all Euler angles suffer from two
representation singularities occurring when the first and last axes of rotation in the sequence
lie along the same direction. For proper Euler angles this occurs at β = 0. For the Tait-Bryan
angles their singularity lies at β = ±π

2 . When articulating the relative spatial orientation
of the end-effector with respect to a certain reference in a specific manner, the chances of
encountering this singularity can be minimized.

Proper Euler angles perform the first and last rotation about the same axis (zxz or zx′z′′),
while the latter performs all three rotations about distinct axes (xyz or xy′z′′). In both cases,
each successive rotation may be performed about the axes of the original coordinate system1,
or they may be performed about the axes of the coordinate system resulting from the previous
rotation, indicated by an apostrophe.
The most widely used proper angles are zx′z′′ . However this formulation has a representa-
tional singularity at β = 0 and for this reason are not ideal for spatial impedance control.
The following Tait-Bryan angles are used in this thesis:

Re(φ) = Rx(α)R′y(β)R′′z (γ) (B-1)

This succession of rotations is often referred to as aerospace-, or roll-pitch-yaw angles. The
angular velocity ωe is related to the time derivative of the rotation matrix Re through the
skew symmetric operator S:

Ṙe = S(ωe)Re (B-2)

1These types of Euler angles are called extrinsic rotations and its counterpart as intrinsic rotations.
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Differentiating the mapping between Euler angle derivatives and angular velocity yields the
angular acceleration of the end-effector in terms of its Euler angles:

ω̇e = T (φe)φ̈e + Ṫ (φe)φ̇e (B-3)
The vector a represents a resolved acceleration that can be decomposed into a linear and
angular part a =

[
aTp aTo

]T
. Which will result in the resolved acceleration ẍe =

[
p̈Te ω̇Te

]T
.

For the positional impedance control, the choice of Euler angles naturally does not make a
difference. Now according to traditional operational space control, the orientation error is
defined as the difference in Euler angles between the desired and end-effector frame:

∆φde = φd − φe
In view of (B-3), the resolved acceleration is then chosen as

ao = T (φe)
(
φ̈d +KDoφ̇de +KPoφde

)
+ Ṫ (φe, φ̇e)φ̇e

The above manner of Euler angles feedback becomes ill-conditioned when the actual (absolute)
end-effector orientation approaches a representation singularity. Since for a general trajectory
this is bound to happen despite the choice of Euler angles, an alternative approach is adopted
that described in Appendix B.
Instead of the absolute orientation, the Euler angles are extracted from the relative orientation
between the end-effector and a desired reference frame.

Red = RTe Rd (B-4)
We now define φde as the set of Euler angles extracted from Red, who’s temporal derivative is
Ṙed = S(∆ωde)Red. Where ∆ωde is the end-effector angular velocity error. Which is related
to relative Euler angle derivative through

∆ωde = T (φde)φ̇de
The resolved angular acceleration can now be set to

ao = ωd − Ṫe(φde)φ̇de + Te(φde)
(
KDoφ̇de +KPoφde

)
(B-5)

Where Te(φde) is the transformation between the angular acceleration and the derivative of
the Euler angles [51], referred to the static base-frame by Te(φde) = ReT (φde).
The clear advantage of the alternative over the classical Euler angles feedback is that, by
adopting a representation for which T (0) is nonsingular, representation singularities occur
only for large orientation errors. For this reason, the widely adopted choice zyz-angles is
not recommended, since it’s singularity will occur at φde = 0. This motivates the choice for
roll-pitch-yaw angles, whose singularity lies at a relative orientation error of |βde|= π

2 .
As a final remark, the above operational space control schemes have been derived with refer-
ence to a minimal description of orientation in terms of Euler angles. It is understood that
it is possible to adopt different definitions of orientation error such as the angle/axis or the
unit quaternion. The advantage is the use of the geometric Jacobian in lieu of the analytical
Jacobian, thereby completely eliminating representational singularities. The price to pay,
however, is a more complex analysis of the stability and convergence characteristics of the
closed-loop system. Even the inverse dynamics control scheme will not lead to a homogeneous
error equation, and a Lyapunov argument should be invoked to ascertain its stability. Due
to its added complexity these representations are not considered here, but are used on the
KUKA robot.
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List of Acronyms

CAGR Compound Annual Growth Rate

IC Impedance Control

DOF Degrees of Freedom

IFR International Federation of Robotics

CNS Central Nervous System

NN Neural Network

TCP Tool Center Point

PiH Peg-in-Hole

VIC Variable Impedance Control

GIC General Impedance Control

SIC Simple Impedance Control

pHRI physical Human-Robot-Interaction

AI Artificial Intelligence

PI2 Policy Improvements with Path Integrals

DMP Dynamic Movement Primitive

pde partial differential equations

HJB Hamilton-Jacobi-Bellman

PoWER Policy learning by Weighting Exploration with the Returns

NAC Natural Actor-Critic
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PEGASUS Policy Evaluation-of-Goodness And Search Using Scenarios

REINFORCE REward Increment = Non-negative Factor × Offset Reinforcement ×
Characteristic Eligibility

GP Gaussian Process

RL Reinforcement Learning

i.d.d. independent and identically distributed

ARD Automatic Relevance Determination

EM Evidence Maximization

LML Log Marginal Likelihood

(L)BFGS Limited-memory Broyden-Fletcher-Gretchen-Shanno

CG Conjugate Gradient

RBF Radial Basis Function

SPGP Sparse Pseudo-Inputs Gaussian Process

VIL Variable Impedance Learning

VILTA Variable Impedance Learning with Trajectory Adaptation

PILCO Probabilistic Inference for Learning COntrol

MDP Markov Decision Process

pdf probability density function

DLR Deutsches Zentrum für Luft- und Raumfahrt - German Aerospace Center

SNR Signal-to-Noise Ratio

ROS Robotic Operating System

Victor van Spaandonk Master of Science Thesis



81

List of Symbols

Abbreviations
a Action vector
η Gravity vector in Cartesian space
µ Mean of multivariate distribution
ω Angular velocity vector
φe Euler angles of end-effector w.r.t. base
g Gravity matrix in joint space
u Input torque vector
ψ Hyper-parameter vector of policy
q Vector of robot joint angles.
s State vector
se Minimal Cartesian state vector
sπ Input states for the policy, subset of y.
Σ Variance of multivariate distribution
θ Hyper-parameter vector of Gaussian Process (GP) model
W ext Wrench vector of external forces
x Independent variable (regressor)
xe Pose of end-effector in operational space
y Dependent variable (regressand)
∆ Discrete difference
q̇ Vector of robot joint angular velocities.
Γ Coriolis/Centrifugal matrix in Cartesian space
Λ Diagonal matrix of length-scales
C Set of all complex numbers
R Set of all real numbers
Z Set of all integer numbers
A Expected value of the energy cost function
E Expected value of the accuracy cost function
S Variance of the accuracy cost function
∇ Gradient operator
π(·) Policy
σf GP function variance
σo GP output noise hyper-parameter
Θ Inertia matrix in Cartesian space
π̃ Unsaturated policy
C Coriolis/Centrifugal matrix in joint space
Du Policy dimensionality
E GP Target dimensionality
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Hb
a Homogeneous transformation matrix from frame a to b, belonging to SE(3).

Ja Analytic Jacobian
Jg Geometric Jacobian
Jπ Expected return
KD Desired Cartesian damping matrix
KP Desired Cartesian stiffness mtrix
M Mass inertia matrix in joint space
m Joint-space input dimensionality
N Number of GP input points
n Joint-space state dimensionality
p(·) Distribution
Re Rotation matrix in R3×3 of end-effector orientation w.r.t. base
S Selection and scaling matrix
t Time index
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