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Motivation




Motivation

Semantic segmentation

e Mapping of land cover
e Object detection

e Change detection

o Etc.

e Automized?




State of the art




CN NS (1/2) * Specialized in detecting patterns

* Encoder — decoder structure for semantic segmentation
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Source: Noh, Hong & Han (2015)



CNNs (2/2)

Layer types:
e Convolutional
* Transposed-convolutional
* Non-linear function
* Spatial pooling

Filter (3x3)

Input (5x5)

Output (3x3)

Stride = 2
Zero padding =1




Related work

e Added value of 2.5D or 3D

e Couprie et al. (2013)
* RGB-D indoor scene segmentation
e Addition of depth increases labeling precision!

Semantic segmentation of aerial imagery + height

e Kampffmeyer et al. (2016) & Liu et al. (2017)

* No examination of added value of height info
e No examination of most suitable height type

mem  Data stacking versus data fusion

® Hazirbas et al. (2017)

e Fusion outperforms stacking approaches for indoor scenes with
depth information




Gaps in research

Added value of height
information for semantic
segmentation of aerial imagery?

Does data fusion or data stacking
work better for semantic
segmentation of aerial imagery?

What type of height information

can best be presented to the
network?




Objectives




Objectives

Generate a CNN model that performs automatic,
pixel-level semantic segmentation of remotely
sensed imagery.

Examine the added value of the included height
information for the semantic segmentation of aerial
imagery.

Explore in what way the height information can

best be presented to the algorithms.




Research questions




Research

To what extent can convolutional neural
networks be used for automatic semantic
segmentation of RGB-Z aerial imagery?

guestion




Sub-questions

Which neural network architectures are a suitable starting point for
semantic segmentation of aerial RGB-Z imagery?

To what extent does the addition of height information improve
semantic segmentation results?

For which classes is the segmentation most successful; for building,
road, water or other?

How does the performance compare of different approaches on
combining height information with RGB information (stacking and
fusion) in a network?

What type of height information provided to a network leads to the
most accurate results?



Methodology
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Selection of CNNs

Suitable when adherent to criteria: Led to selection of 4 architectures:
* Successful performance on any type of imagery * FCN-8s
* Source code available, no license restrictions * SegNet

* Not specific to one task & allows for input own data U-Net
* Implementation in Python * FuseNet-SF5



Architectures

Data stacking

v
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ool Pealing [ Upsampling Softmax

FCN-8S U-Ne.t |
* Learns to deconvolve * Preserves high- Preserves neighboring
input feature maps frequency information information

e Focusses on details « Focusses on boundaries Focusses on limited
training data

Sources LTR: Long et al. (2015), Badrinarayanan et al. (2017), Ronneberger et al. (2015), Hazirbas et al. (2017)

Data fusion

g
v

'Nrﬂi Depth encoder

O Conv+BN+ReLU (CBR) M Fusion B Dropout B Pooling B Unpooling B Scorc

FuseNet-SF5
 Two encoders
» Allows for learning more
distinct features




Architecture

implementations

Python

PyTorch

PyTorch-SemSeg repository



e 1
S 1
a c "
h n -m -
Q. 2 :mO 7 & . _
S E= < !

2 5 5 0 =3 » > 5 _
® | 282 || 2E - = = |
= = © ® O ) n < ®© :
(4y] mp V.rm o & o r_mm I
C T £ m.ﬂ o & > » O '
© s, = = "_Hm (@) QO = 1
— mc d.m..v ms .m p.m I
m 1= << O m “ _WJ .
> c e :
D N _
S SN SO SRS SO B
o :
) 2 _
a = |
= pe :
o O \
o S :
c ) _
- — cC !
c c !
© i :
- — "
3 = 7 "
© o "
c £ w S \
s T » O _
S5 w Q= .

- = Z o !
O ® Z o 2 "
..nm o3 O mue !
© c'5 £ o !
o] O T O \
— - (@ '

o) 5 = :
[l a I
o %) '



Training & test data
eneration

'

Green = training extent, red =_';t_e.§t-'e'Xté,r|"q,t'.'




Preparing the BGT

Class BGT

Building Gebouw installatie Pand

Overig bouwwerk

Road Overbruggingsdeel Wegdeel

Water Waterdeel

Other Begroeid terreindeel Ondersteunend waterdeel
Gebouwinstallatie Ondersteunend wegdeel
Kunstwerkdeel Openbare ruimte

Obegroeid terreindeel  Overig bouwwerk




Training & validation data generation

Imagery:
* True ortho (READAR)
e Corrected for relief displacement
e 1600 tiles, 512x512 pixels per tile
e Every pixel 10x10 cm

A7

A ¥

Height information:
* DSM (READAR)
* Matching to true ortho

Mask layer:
* (leaned & rasterized BGT:
* 1class label per pixel

Random division

Training

MW Validation




e DSM

: e Min-max feature scaling [0-1]
Helght e Tile-level

e Whole train/test area
approaches . X—xmin

Xmax —Xmin

e DSM-DTM
e Pixel-level
e Tile-level
e DTM from AHN3 (0.5m)




Data
augmentation

Horizontal flipping




Test data and inference
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T h DSM Feed to CNN Output prediction
rue ortho & DS Cut in overlapping tiles (512x512)

N .
Crop
(256x256)
Ground truth Cut in overlapping tiles 1 example Crop Performance. measure
(512x512) (256x256) calculation &

merge predictions
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Training of CNNs

 External server
 Performance measures

k = number of classes i = actual class of pixel
j = predicted class of pixel p;; = number of true positives
p; = number of false positives p ;i = number of false negatives

Pi = number of pixels assigned to class i by prediction
Ci = actual total number of pixels belonging to class i

F

1 —n precision; x recall;
| e

precision; + recall;

mlol =

1k

k+l_Z

1=

0

.. Pii Pii
precision = —, recall =
f G’ b;

Pii

Lj=0 Pij T Lij=o Pji — Pii



Experimental setup

Optimize on RGB
(no height)

Train on RGB-Z
(with height)

R

FuseNet-SF5

A\

Height approaches

RGB

RGB-Z (data stacking)

RGB-Z (data fusion)

Hyperparameter

Options

| FCN-8s

SegNet

U-Net |

FCN-8s SegNet U-Net

FuseNet-SF5

Weight initialization
(Initial) learning rate
Optimizer

Loss function

# epochs no improvement
Horizontal flipping
Height type

Pretrained / random

le-3 / le-4 / 1le-5

SGD / Adam

CP / WCP

10 / 20 / 50

Yes/no

AH /SHT / SHW / RHP / RHT

X

X X

AH &SHT AH &SHT AH &SHT




Selection & adjustment
of CNNs




Drawing conclusions

(m)loU Visual



Error maps and morphological erosion

Erosion iteration 1

Erosion iteration 2




Object-level performance

Detection of ground truth objects

e Percentage of correctly classified pixel per object in ground
truth

False positives?

e Polygonize eroded false-positive error maps



Results & analysis




Hyperparameters

Hyperparameter FCN-8s SegNet U-Net FuseNet-SF5
Weight initialization Pretrained Pretrained Random Pretrained
(Initial) learning rate le-4 le-4 le-4 le-4
Optimizer Adam Adam Adam Adam

Loss function CcP CP CcP CcP

# epochs no improvement 50 50 50 50
Horizontal flipping Yes Yes Yes Yes

Height type (only with RGB-Z) | SHT SHT SHT RHP

* CP = Cross-entropy

 AH = Absolute height

SHT = Rescaled height [0-1] (tile-level)
RHP = Relative height (pixel-level)



RGB baseline comparison

mloU F1
FCN-8s 0.8121 0.8958
SegNet 0.8219 0.9015
U-Net 0.7637 0.8647

Performance measures on test data






Ground truth FCN-8s SegNet U-Net
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Water
Other



Data stacking: RGB vs. RGB-Z

Overall performance

Model Input mloU F1
FCN-8 RGB 0.8121 0.8958

FCN-8s RGB-Z 0.8177 0.8990 frueortho —  DSM Ground truth

SegNet RGB 0.8129 0.9015

SegNet RGB-Z 0.8257 0.9039

U-Net RGB 0.7637 0.8647

U-Net RGB-Z 0.7851 0.8786

Building

Performance measures on test data
Water
Other



Data stacking: RGB vs. RGB-Z

Class performance

FCN-8s
FCN-8s

SegNet
SegNet

U-Net
U-Net

RGB
RGB-Z

RGB
RGB-Z

RGB
RGB-Z

0.8305
0.8567
+0.0262

0.8426
0.8538
+0.0112

0.7814
0.8384
+0.0570

0.7822
0.7714
-0.0108

0.7810
0.7827
+0.0017

0.6974
0.7134
+0.0160

0.8661
0.8700
+0.0039

0.8907
0.8841
-0.0066

0.8353
0.8365
-0.0170

Performance measures on test data

0.7698
0.7725
+0.0027

0.7735
0.7822
+0.0087

0.7225
0.7521
+0.0296



Stacking vs. fusion

Model Building Road Water  Other mioU
SegNet (RGB-Z) 0.8538 0.7827 0.8841 0.7822 0.8257
FuseNet-SF5 0.8723 0.7767 0.9143 0.7890 0.8381

+0.0185 -0.0060 +0.0302 +0.0068 +0.0124

Performance measures on test data

s

« 4

True ortho Ground truth SegNet (RGB-2Z) FuseNet-SF5

Building

Water
Other



Height approaches

Absolute

Rescaled [0-1] (tile-level)
Rescaled [0-1] (whole area)
Relative (pixel-level)

Relative (tile-level)

0.8723
0.8671
0.8708
0.8744
0.8792

0.7767
0.7750
0.7846
0.7865
0.7785

0.9143
0.9023
0.9152
0.9131
0.9070

0.7890
0.7860
0.7897
0.7966
0.7891

loU performance on the test data of FuseNet-SF5

0.83381
0.8326
0.8401
0.8427
0.8384



True ortho | DSM Ground truth

Rescales (whole area) Relative (tile-level)

Building

Water
Other



True ortho >

Ground truth - %‘ elative hig
PVEL RSN relative height
. (pixel-level) Building

=~ Hing Water



Object-level detection

% of total building objects

% of total water objects

100
90
80
70
60
50
40
30
20
10

100
90
80
70
60
50
40
30
20
10

Object-level building detection

S S H & S S
& FEE S

% pixels correctly predicted

Object-level water detection

)

S © §

SISO

% pixels correctly predicted
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100
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% of total road objects
c 56 3 8 &8 8

100
90
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% of total other objects

Object-level road detection

S S & S

% pixels correctly predicted

Object-level other detection

S O H & S

% pixels correctly predicted
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Missed objects: Building

* Limited visibility due to trees
* Errorin BGT

* Error of algorithm (rare)




Missed objects: Road

Limited visibility due to trees
Error in BGT

Error of algorithm

Shade




Missed objects: Water

* Limited visibility due to trees
* Thin water bodies (ditches)




Missed objects: Other

* Small objects that are not
clearly distinctive

* Thin segments
misinterpreted for road

* Errorsin BGT




Object-level false positives

Red = False positive polygons for building
Yellow = Ground truth for building

i



Eroded

o~

Misplaced objects in BGT (yellow) are correctly detected
by algorithm (red)



True orth | DSM Ground truth FuseNet-SF5

IBVE

Building

Water
Other



Discussion




Significance?

Methodology
limitations

“Pixel”-level subtraction?

Influence interpolated holes in
DTM?




Influence interpolated holes DTM?
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Conclusions




Conclusions

To what extent can convolutional neural
networks be used for automatic semantic
segmentation of RGB-Z aerial imagery?




Which neural network architectures are a suitable
starting point for semantic segmentation of aerial
RGB-Z imagery?

FCN-8s, SegNet, U-Net, FuseNet-SF5
» Showed successful semantic segmentation

* Openly available implementation
» Allowed for use of own data



To what extent does the addition of height

information improve semantic segmentation
results?

* On average performance improved by 1% (mloU)

* Valuable and essential information is encoded in
height data




For V\(hich classes is the segmentation most successful; for
building, road, water or other?

* Most successful for ‘water’ and ‘building’
* ‘Building’ benefits most from addition of height information

* Best performing algorithm detected in the ground truth
over 90% of:

» 65% of ‘building’ objects
» 82% of ‘road’ objects

» 58% of ‘other’ objects

» 39% of ‘water’ objects




\

How does the performance compare of different
approaches on combining height information with
RGB information (stacking and fusion) in a network?

* Fusion outperforms stacking

* Fusion allows for different types of features learned
from height

* Fusion exploits potential of height information to a
higher degree



What type of height information provided to a
network leads to the most accurate results?

* Relative height outperforms absolute height

* Pixel-level, relative height shows higher mloU than
tile-level relative height

* Part of success probably due to flat nature of
Haarlem



Contributions

Height information can add value to semantic segmentation of aerial RGB
imagery

Adding height information through data fusion can result in higher segmentation
quality of aerial imagery than when data stacking is used

Providing relative height, rather than absolute height, to a network can improve
semantic segmentation quality of aerial imagery, especially for large objects



Future work




Future work

=== BGT error removal

Relative height without DTM of AHN

Fusing stacked height information




READAR

real estate radar
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Deep learning

hidden layer

Input 1
output
Input 2
output 2
Input 3 ? E ;
Input 4 Shallow neural network
weights
inputs
X
activation
functon

X @ net input
net;

S =
activation

transfer
function

Source: RSIP Vision (n.d.)

input layer

Deep neural network

hidden layer 1 hidden layver 2 hidden layer 3
Y

Source: SUMMER _story (n.d.)

output layer




FCN-8s

® Lon g e t a / . ( 2 0 1 5 ) i v _ _ Y conv3 pool3 convd poold convh poolh  convG-7
e Converted classical classification networks to FCNs % EB D
 Originally designed for natural imagery e e

4x conv?

e  Why selected
o Successfully used by participants in 2 ool

o Relatively simple to understand and to train
o Focuses on capturing detail

FCN-8s architecture (bottom) (Long et al., 2015)

 Architecture

o Replaced fully connected layers by
convolutional layers

o Learns deconvolution filters to perform upsampling



http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html

SegNet

Badrinarayanan et al. (2017)

Originally designed for road scenery understanding (natural
imagery)

Why selected
o Focused on improving boundaries

o Similar semantic segmentation task

Architecture
o For every encoder layer: a corresponding decoder layer

o Encoders pass on max-pooling indices which are used for
upsampling

Convolutional Encoder-Decoder

Pooling Indices b

N
RGB Image I conv + Batch Normalisation + ReLU
I Pooling I Upsampling Softmax

Segmentation

SegNet architecture (Badrinarayanan et al., 2017)

indices

(1,1 (21)

maxpooling (0.2) (33) unpooling

/"_'N

2.
activations
Max-pooling and unpooling on 4x4 feature map
(Badrinarayanan et al., 2017)




U-Net

irhna%lg > i output
tile |} | segmentation
* Ronneberger et al. (2015) AR

e Originally designed for biomedical segmentation tasks

* Goal: work with very little training data

* Why selected
o Often selected by high performing participants in

=» conv 3x3, ReLU
copy and crop

: . ¥ max pool 2x2
e Architecture Y : woo 4 up-conv 2x2

=» conv 1x1
o Input differs from output dimensions

o Transfers entire feature maps of encoder _
to matching decoders & concatenates them U-Net architecture (Ronneberger et al., 2015)
to the by deconvolution upsampled feature
maps of decoder



https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection/overview/timeline

FuseNet-SF5

* Hazirbas et al. (2017)

P RGB encoder RGB-D decoder
* Originally designed for semantic segmentation of indoor &l A - W
scenes using RGB-D data ' '

* Fusion of the depth information into RGB information
instead of stacking

» Allows to learn depth (height) specific features ’

Depth

branch

C WhV selected? fusion zoomed in

) ) O Conv+BN+ReLU (CBR) M Fusion B Dropout B Pooling B Unpooling B Score
o Showed to outperform stacking approaches for indoor
scenes with depth information

Architecture of FuseNet-SF5 (Hazirbas et al., 2017)

o Successfully used on aerial imagery + LiDAR data
(Audebert et al., 2018)

e Architecture

o Two encoders: one for RGB & one for depth (or
height)

o Depth features are fused into RGB feature maps




Orientation Azszessment quality
of BGT
Preparing initial First training
fraining and test = da?aeroﬂgngiT;;B 3 experiments of
data (RGB - data FCM-85 and
A00=400) SegMet (RGE)
Examination of True
Ortho imagery
Literature research theritg rr:arr?tisf e SESELTCE
Literature research - e i > zegmentation on +|architectures (FCH- Adjustments to fit to
- > » ;
on deep learning segmentation remote sensing 85 & SegMet) and geographical data
framework
data
Data stacking Examining DSM & | | » 4 cfing FCN-8s, Implementing

preparing training
data DSM. 512x512
for FCN-85, SegNet

& 572x572 for U-

Net.

L 4

.

>

U-Met: preparing
training & test data with
required dimensions
(572x572 for training
data & 338x388 for
ground truth)

Deciding on new
dimensions of training
data: 512x512.

Generating new fraining

data.

Literature study on
inference: decided
on overlap sirategy

SegNet and U-Net
to allow for exira
band and 4-band

weight initialization

v

Training of FCN-8s,

» Seghlet & U-Net
with RGB-Z

approaches to
visually assess
performance (j.e.
error maps)

Ly

Training of FCN-8s,

Seghet & U-Net
with RGB

v

~

Data augmentation
(horizontal flipping)

v

Assessment of
resulis
(performance
different
architectures, RGE
vs. RGB-z & class
performance)

Methodology flowchart

Literature study on
height approaches

T

Implementing F1

score to allow for

comparison with
other studies

A 4

Literature study on
alternatives to data
stacking: fusion

L

Generating all
training, validation
and test data for the
height approaches

Incorporating

.| FuseMet-SF5 into

trainingftesting
pipeline

!

Training of
FuseMet-5F5

A

Data fusion

Aszessment of

. |resulis (stacking vs.
| fusion & different

height approaches)

Comparison best
performing model to
state of the art

Assessment of
ohject-level
performance of best
performing model




Assessment BGT

- Occasional boundary issues

- Different resolution
- “Begroeid” & “onbegroeid” mixed up

Conclusion: quality and quantity sufficient to serve as mask layer for ‘building’, ‘road’, ‘water’ and ‘other’



iy |
Deviating boundary

“Onbegroeid terreindeel” contains grass and
trees



Addition of extra band

e How?
» Change number of input channels!

self.conv_blockl = nn.Sequential(

nn
nn
nn
nn
nn

)

.Conv2d(4, 64, 3, padding=100),
.ReLU(inplace=True),

.Conv2d(64, 64, 3, padding=1),
.RelLU(inplace=True),

.MaxPool2d(2, stride=2, ceil mode=True),

self.conv_block2 = nn.Sequential(

nn
nn
nn
nn
nn

)

.Conv2d(64, 128, 3, padding=1),
.ReLU(inplace=True),

.Conv2d(128, 128, 3, padding=1),
.ReLU(inplace=True),

.MaxPool2d(2, stride=2, ceil_mode=True),

self.conv_block3 = nn.Sequential(

nn

nn.
nn.

nn
nn

nn.
nn.

)

.Conv2d(128, 256, 3, padding=1),
RelLU(inplace=True),

Conv2d(256, 256, 3, padding=1),
.ReLU(inplace=True),

.Conv2d(256, 256, 3, padding=1),
RelLU(inplace=True),

MaxPool2d(2, stride=2, ceill mode=True),

self.conv_block4 = nn.Sequential(

nn.
nn.

nn

nn.

nn
nn
nn

Conv2d(256, 512, 3, padding=1),
RelLU(inplace=True),

.Conv2d(512, 512, 3, padding=1),
ReLU(inplace=True),

.Conv2d(512, 512, 3, padding=1),
.ReLU(inplace=True),

.MaxPool2d(2, stride=2, ceil mode=True),




Pretrained weights

RGB RGB-Z

FCN-8s, SegNet and FuseNet-SF5: FCN-8s and SegNet:

VGG16 VGG16 + random

U-Net: abl FuseNet-SF5:

Not available VGG16 + average VGG16
U-Net:

Not available



Class frequencies
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The performance on the

validation data,

achieved per class during

training

lou
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lou
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Confusion matrices (1/2)

Prediction Prediction
Building Road Water Other Building Road Water Other
— Building 90.55 1.04 0.09 8.32  ~ Building 91.77 0.84 0.15 7.24
= Road 1.19 89.49 0.14 919 = Road 1.19 89.51 0.18 9.11
< Water 198 070 92.31 501 < Water 313 057 91.58 4.71
Other 415  8.01 0.67  87.16 Other 391  8.06 0.59 87.44

SegNet (RGB)

SegNet (RGB-2)



Confusion matrices (2/2)

Prediction Prediction
Building Road Water Other Building Road Water Other
— Building 93.10 0.92 0.04 5.94 — Building 93.31 0.74 0.05 5.90
= Road 1.18 88.94 0.07 9.81 2 Road 1.47  89.69 0.27 8.57
< Water 1.34  0.82 93.61 4.23 < Water 1.31 044 94.55 3.69
Other 3.78  8.02 0.47  87.73 Other 359 795 0.60 87.86

FuseNet-SF5 (absolute height)

FuseNet-SF5 (pixel-level, relative height)
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True ortho DSM Ground truth FCN-8s (RGB) FCN-8s (RGB-2)

Building

Water
Other



True ortho DSM Ground truth Rescaled (tile-level) Rescaled (whole area)
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True ortho DSM/error map Ground truth FuseNet-SF5
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Comparison to related work

Method F1 Building Note

PB + FCN [ , ] 0.9586 On validation data, with eroded ground truth boundaries.
HSN + OI erGT [ , ] 0.9466 On validation data, with eroded ground truth boundaries.
HSN + OI GT | , ] 0.9237 On validation data, no eroded ground truth boundaries.
SegNet-RC [ , ] 0.9450 On validation data, unclear if boundaries are eroded.

This study

FuseNet-SF5-RHT (validation) 0.9436 On validation data, no eroded ground truth boundaries.
FuseNet-SF5-RHP (validation) 0.9429 On validation data, no eroded ground truth boundaries.
FuseNet-SF5-RHT (test) 0.9330 On test data, no eroded ground truth boundaries.
FuseNet-SF5-RHP (test) 0.9288 On test data, no eroded ground truth boundaries.

Results gained by related studies and this study for the class building.

PB = Patch based, HSN = Houreglass-shaped network, Ol = Overlap inference,
GT = Ground truth, erGT = Eroded ground truth, RC = Residual correction,
RHP = Relative height (pixel-level), RHT = Relative height (tile-level).



Eroded error maps per class
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Influence of interpolated holes

True ortho |

Ground truth

FuseNet-SF5

using pixel-

Height .
Interpolated " °- : level, relative

DTM - height




Recommendations supervisors P4

N\

Include a performance assessment based on the number of in/correctly classified objects, besides the current pixel-
based measure.

\
Improve on the DTM that you use for computing the relative heights. Instead of using DTM of AHN, generate
DTM from used DSM.
|

If you don't improve on the DTM, then it would be good if you could give a better assessment on to what extent
the results for the pixel-based, relative height method are affected by the building contours in the DTM.

[

‘ Elaborate on how is the DSM created from READAR’s DM point cloud. Which algorithms are used for creating the
DSM?

/
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