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Motivation



Motivation
Semantic segmentation
• Mapping of land cover
• Object detection
• Change detection
• Etc.

Example: BGT updating
• Automized?



State of the art



CNNs (1/2) • Specialized in detecting patterns
• Encoder – decoder structure for semantic segmentation

Source: Noh, Hong & Han (2015)



CNNs (2/2)

Layer types:
• Convolutional
• Transposed-convolutional
• Non-linear function
• Spatial pooling



Related work

•Couprie et al. (2013) 
•RGB-D indoor scene segmentation
•Addition of depth increases labeling precision!

Added value of 2.5D or 3D

•Kampffmeyer et al. (2016) & Liu et al. (2017)
•No examination of added value of height info
•No examination of most suitable height type

Semantic segmentation of aerial imagery + height

•Hazirbas et al. (2017) 
•Fusion outperforms stacking approaches for indoor scenes with 

depth information

Data stacking versus data fusion



Gaps in research

Added value of height 
information for semantic 
segmentation of aerial imagery?

Does data fusion or data stacking 
work better for semantic 
segmentation of aerial imagery?

What type of height information 
can best be presented to the 
network?



Objectives



Objectives 

Generate a CNN model that performs automatic, 
pixel-level semantic segmentation of remotely 
sensed imagery.1

Examine the added value of the included height 
information for the semantic segmentation of aerial 
imagery.2

Explore in what way the height information can 
best be presented to the algorithms.3



Research questions



Research 
question

To what extent can convolutional neural
networks be used for automatic semantic 
segmentation of RGB-Z aerial imagery?



Sub-questions

Which neural network architectures are a suitable starting point for 
semantic segmentation of aerial RGB-Z imagery?

To what extent does the addition of height information improve 
semantic segmentation results?

For which classes is the segmentation most successful; for building, 
road, water or other?

How does the performance compare of different approaches on 
combining height information with RGB information (stacking and 
fusion) in a network?

What type of height information provided to a network leads to the 
most accurate results?



Methodology







Selection of CNNs

Suitable when adherent to criteria: Led to selection of 4 architectures:

F

seNet-SF5

• Successful performance on any type of imagery
• Source code available, no license restrictions
• Not specific to one task & allows for input own data
• Implementation in Python

• FCN-8s
• SegNet
• U-Net
• FuseNet-SF5



Architectures

Sources LTR: Long et al. (2015), Badrinarayanan et al. (2017), Ronneberger et al. (2015), Hazirbas et al. (2017)

FCN-8S
• Learns to deconvolve 

input feature maps
• Focusses on details

SegNet
• Preserves high-

frequency information
• Focusses on boundaries

U-Net
• Preserves neighboring 

information
• Focusses on limited 

training data

FuseNet-SF5
• Two encoders
• Allows for learning more 

distinct features

Data stacking Data fusion



Architecture 
implementations

Python

PyTorch

PyTorch-SemSeg repository 





Training & test data 
generation

Green = training extent, red = test extent



Preparing the BGT

Class BGT
Building Gebouw installatie Pand

Overig bouwwerk

Road Overbruggingsdeel Wegdeel

Water Waterdeel

Other Begroeid terreindeel Ondersteunend waterdeel

Gebouwinstallatie Ondersteunend wegdeel

Kunstwerkdeel Openbare ruimte

Obegroeid terreindeel Overig bouwwerk



Mask layer:
• Cleaned & rasterized BGT: 

• 1 class label per pixel

Training & validation data generation
Imagery:

• True ortho (READAR)
• Corrected for relief displacement 
• 1600 tiles, 512x512 pixels per tile
• Every pixel 10x10 cm

Height information:
• DSM (READAR)
• Matching to true ortho

80%

20%

Random division

Training

Validation



Height
approaches

• DSM

Absolute

• Min-max feature scaling [0-1]
• Tile-level
• Whole train/test area
• 𝑋𝑋𝑋 = 𝑋𝑋 −𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋

𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 −𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋

Rescaled

• DSM-DTM
• Pixel-level
• Tile-level

• DTM from AHN3 (0.5m)

Relative



Data 
augmentation

Horizontal flipping



Test data and inference



True ortho & DSM

Ground truth

Cut in overlapping tiles

Cut in overlapping tiles

1 example
(512x512)

1 example
(512x512)

Crop
(256x256)

Feed to CNN Output prediction

Performance measure
calculation & 

merge predictions

Crop
(256x256)





Training of CNNs

• External server 

• Performance measures

k = number of classes i = actual class of pixel 
j = predicted class of pixel pii = number of true positives
pij = number of false positives p ji = number of false negatives
Pi = number of pixels assigned to class i by prediction 
Ci = actual total number of pixels belonging to class i



Experimental setup

Optimize on RGB 
(no height)

Train on RGB-Z 
(with height)

FuseNet-SF5 Height approaches 

CP = cross-entropy, WCP = weighted cross-entropy, AH = Absolute height, SHT = Rescaled height [0-1] (tile-level), SHW = Rescaled height [0-1] 
(whole area), RHP = Relative height (pixel-level), RHT = Relative height (tile-level)





Drawing conclusions

(m)IoU Visual



Error maps and morphological erosion



Object-level performance

Detection of ground truth objects

• Percentage of correctly classified pixel per object in ground 
truth

False positives?

• Polygonize eroded false-positive error maps



Results & analysis



Hyperparameters 

• CP   = Cross-entropy
• AH  = Absolute height
• SHT = Rescaled height [0-1] (tile-level) 
• RHP = Relative height (pixel-level)



RGB baseline comparison

Performance measures on test data 

Model mIoU F1

FCN-8s 0.8121 0.8958

SegNet 0.8219 0.9015

U-Net 0.7637 0.8647



True ortho Ground truth

FCN-8s SegNet U-Net

Building
Road
Water
Other



True ortho Ground truth FCN-8s SegNet U-Net

Building
Road
Water
Other



Data stacking: RGB vs. RGB-Z

Model Input mIoU F1

FCN-8s RGB 0.8121 0.8958

FCN-8s RGB-Z 0.8177 0.8990

SegNet RGB 0.8129 0.9015

SegNet RGB-Z 0.8257 0.9039

U-Net RGB 0.7637 0.8647

U-Net RGB-Z 0.7851 0.8786

True ortho DSM Ground truth FCN-8s (RGB) FCN-8s (RGB-Z)

Overall performance

Performance measures on test data 
Building
Road
Water
Other



Data stacking: RGB vs. RGB-Z
Model Input Building Road Water Other

FCN-8s RGB 0.8305 0.7822 0.8661 0.7698

FCN-8s RGB-Z 0.8567 0.7714 0.8700 0.7725

+0.0262 -0.0108 +0.0039 +0.0027

SegNet RGB 0.8426 0.7810 0.8907 0.7735

SegNet RGB-Z 0.8538 0.7827 0.8841 0.7822

+0.0112 +0.0017 -0.0066 +0.0087

U-Net RGB 0.7814 0.6974 0.8353 0.7225

U-Net RGB-Z 0.8384 0.7134 0.8365 0.7521

+0.0570 +0.0160 -0.0170 +0.0296

Class performance 

Performance measures on test data 



Stacking vs. fusion
Model Building Road Water Other mIoU

SegNet (RGB-Z) 0.8538 0.7827 0.8841 0.7822 0.8257

FuseNet-SF5 0.8723 0.7767 0.9143 0.7890 0.8381

+0.0185 -0.0060 +0.0302 +0.0068 +0.0124

Building
Road
Water
Other

True ortho DSM Ground truth SegNet (RGB-Z) FuseNet-SF5

Performance measures on test data 



Height approaches

Height type Building Road Water Other mIoU

Absolute 0.8723 0.7767 0.9143 0.7890 0.8381

Rescaled [0-1] (tile-level) 0.8671 0.7750 0.9023 0.7860 0.8326

Rescaled [0-1] (whole area) 0.8708 0.7846 0.9152 0.7897 0.8401

Relative (pixel-level) 0.8744 0.7865 0.9131 0.7966 0.8427

Relative (tile-level) 0.8792 0.7785 0.9070 0.7891 0.8384

IoU performance on the test data of FuseNet-SF5  



True ortho DSM Ground truth

Rescales (whole area) Relative (tile-level)

Building
Road
Water
Other



Building
Road
Water
Other

True ortho

Ground truth

DSM

FuseNet-SF5 
relative height 
(pixel-level)



Object-level detection



Missed objects: Building

• Limited visibility due to trees
• Error in BGT
• Error of algorithm (rare)



Missed objects: Road

• Limited visibility due to trees
• Error in BGT
• Error of algorithm
• Shade 



Missed objects: Water

• Limited visibility due to trees
• Thin water bodies (ditches)



Missed objects: Other

• Small objects that are not 
clearly distinctive

• Thin segments 
misinterpreted for road

• Errors in BGT



Object-level false positives

Red = False positive polygons for building
Yellow = Ground truth for building



Disputable inconsistencies

Not eroded

Eroded

Misplaced objects in BGT (yellow) are correctly detected 
by algorithm (red)



Building
Road
Water
Other

True ortho DSM Ground truth FuseNet-SF5



Discussion



Methodology 
limitations 

Significance?

“Pixel”-level subtraction?

Influence interpolated holes in 
DTM? 



Influence interpolated holes DTM?

True ortho DTM Interpolated DTM



Conclusions



Conclusions

To what extent can convolutional neural 
networks be used for automatic semantic 
segmentation of RGB-Z aerial imagery?



Which neural network architectures are a suitable 
starting point for semantic segmentation of aerial 
RGB-Z imagery?

FCN-8s, SegNet, U-Net, FuseNet-SF5

• Showed successful semantic segmentation
• Openly available implementation
• Allowed for use of own data



To what extent does the addition of height 
information improve semantic segmentation 
results?

• On average performance improved by 1% (mIoU)
• Valuable and essential information is encoded in 

height data



For which classes is the segmentation most successful; for 
building, road, water or other?

• Most successful for ‘water’ and ‘building’
• ‘Building’ benefits most from addition of height information
• Best performing algorithm detected in the ground truth 

over 90% of:
 65% of ‘building’ objects 
 82% of ‘road’ objects 
 58% of ‘other’ objects
 39% of ‘water’ objects



How does the performance compare of different 
approaches on combining height information with 
RGB information (stacking and fusion) in a network?

• Fusion outperforms stacking
• Fusion allows for different types of features learned 

from height 
• Fusion exploits potential of height information to a 

higher degree  



What type of height information provided to a 
network leads to the most accurate results?

• Relative height outperforms absolute height
• Pixel-level, relative height shows higher mIoU than 

tile-level relative height
• Part of success probably due to flat nature of 

Haarlem



Contributions

Height information can add value to semantic segmentation of aerial RGB 
imagery

Adding height information through data fusion can result in higher segmentation 
quality of aerial imagery than when data stacking is used 

Providing relative height, rather than absolute height, to a network can improve 
semantic segmentation quality of aerial imagery, especially for large objects



Future work



Future work

BGT error removal

Relative height without DTM of AHN

Fusing stacked height information



Thank you for your attention!
Amber E. Mulder
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Extra slides



Deep learning

Source: RSIP Vision (n.d.) Source: SUMMER_story (n.d.)



FCN-8s

• Long et al. (2015)

• Converted classical classification networks to FCNs

• Originally designed for natural imagery

• Why selected
o Successfully used by participants in

ISPRS Semantic Labelling Challenge 
o Relatively simple to understand and to train
o Focuses on capturing detail 

• Architecture
o Replaced fully connected layers by 

convolutional layers
o Learns deconvolution filters to perform upsampling

FCN-8s architecture (bottom) (Long et al., 2015)

http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html


SegNet

• Badrinarayanan et al. (2017)

• Originally designed for road scenery understanding (natural 
imagery)

• Why selected
o Focused on improving boundaries 
o Similar semantic segmentation task 

• Architecture
o For every encoder layer: a corresponding decoder layer
o Encoders pass on max-pooling indices which are used for 

upsampling

SegNet architecture (Badrinarayanan et al., 2017)

Max-pooling and unpooling on 4x4 feature map 
(Badrinarayanan et al., 2017)



U-Net

• Ronneberger et al. (2015)

• Originally designed for biomedical segmentation tasks 

• Goal: work with very little training data

• Why selected
o Often selected by high performing participants in  

Dstl Satellite Imagery Feature Detection Competition 

• Architecture
o Input differs from output dimensions
o Transfers entire feature maps of encoder

to matching decoders & concatenates them
to the by deconvolution upsampled feature 
maps of decoder 

U-Net architecture (Ronneberger et al., 2015) 

https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection/overview/timeline


FuseNet-SF5
• Hazirbas et al. (2017)

• Originally designed for semantic segmentation of indoor 
scenes using RGB-D data

• Fusion of the depth information into RGB information 
instead of stacking

• Allows to learn depth (height) specific features

• Why selected?
o Showed to outperform stacking approaches for indoor 

scenes with depth information
o Successfully used on aerial imagery + LiDAR data 

(Audebert et al., 2018)

• Architecture 
o Two encoders: one for RGB & one for depth (or 

height)
o Depth features are fused into RGB feature maps

Architecture of FuseNet-SF5 (Hazirbas et al., 2017)



Methodology flowchart
Literature study

Preparation/implementation
Algorithm training

Result analysis



Assessment BGT

Conclusion: quality and quantity sufficient to serve as mask layer for ‘building’, ‘road’, ‘water’ and ‘other’ 

+

+ Many different classes

+ Size and extent of dataset is large

+ Generally detailed geometry

+ Quality requirements are set

-

- Occasional boundary issues

- Different resolution 

- “Begroeid” & “onbegroeid” mixed up



Deviating boundary “Onbegroeid terreindeel” contains grass and 
trees

“Begroeid terreindeel” contains tarmac



Addition of extra band 

• How? 
 Change number of input channels!



Pretrained weights

RGB

FCN-8s, SegNet and FuseNet-SF5: 
VGG16

U-Net: 
Not available

RGB-Z

FCN-8s and SegNet: 
VGG16 + random

FuseNet-SF5:
VGG16 + average VGG16

U-Net: 
Not available



Class frequencies 



The performance on the 
validation data, 
achieved per class during 
training



Confusion matrices (1/2)

SegNet (RGB) SegNet (RGB-Z)



Confusion matrices (2/2)

FuseNet-SF5 (absolute height) FuseNet-SF5 (pixel-level, relative height)



True ortho Ground truth FCN-8s SegNet U-Net

Building
Road
Water
Other



True ortho DSM Ground truth FCN-8s (RGB) FCN-8s (RGB-Z)

Building
Road
Water
Other



Building
Road
Water
Other

True ortho DSM Ground truth Rescaled (tile-level) Rescaled (whole area)



True ortho DSM/error map Ground truth FuseNet-SF5

Building
Road
Water
Other

Error map



Height approaches
Absolute Relative 

(pixel)
relative 
(tile)

Rescaled 
(tile)

Rescaled 
(whole)



Object-level 
detection



Comparison to related work

Results gained by related studies and this study for the class building. 
PB = Patch based, HSN = Houreglass-shaped network, OI = Overlap inference, 
GT = Ground truth, erGT = Eroded ground truth, RC = Residual correction, 
RHP = Relative height (pixel-level), RHT = Relative height (tile-level).



Eroded error maps per class

Building

Water

Road

Other



Influence of interpolated holes

True ortho

DTM

Interpolated 
DTM

DSM

Ground truth

FuseNet-SF5 
using pixel-
level, relative 
height



Recommendations supervisors P4

Include a performance assessment based on the number of in/correctly classified objects, besides the current pixel-
based measure.

Improve on the DTM that you use for computing the relative heights. Instead of using DTM of AHN, generate 
DTM from used DSM.

If you don't improve on the DTM, then it would be good if you could give a better assessment on to what extent 
the results for the pixel-based, relative height method are affected by the building contours in the DTM.

Elaborate on how is the DSM created from READAR’s DM point cloud. Which algorithms are used for creating the 
DSM?


	Slide Number 1
	Content
	Motivation
	Motivation
	State of the art
	Slide Number 6
	CNNs (2/2)
	Related work
	Gaps in research
	Objectives
	Objectives 
	Research questions
	Research question
	Sub-questions
	Methodology
	Slide Number 16
	Slide Number 17
	Selection of CNNs
	Architectures
	Architecture implementations
	Slide Number 21
	Training & test data generation
	Preparing the BGT
	Training & validation data generation
	Height approaches
	Data augmentation
	Test data and inference
	Slide Number 28
	Slide Number 29
	Training of CNNs
	Experimental setup
	Slide Number 32
	Drawing conclusions
	Error maps and morphological erosion
	Object-level performance
	Results & analysis
	Hyperparameters 
	RGB baseline comparison
	Slide Number 39
	Slide Number 40
	Data stacking: RGB vs. RGB-Z
	Data stacking: RGB vs. RGB-Z
	Stacking vs. fusion
	Height approaches
	Slide Number 45
	Slide Number 46
	Object-level detection
	Missed objects: Building
	Missed objects: Road
	Missed objects: Water
	Missed objects: Other
	Object-level false positives
	Disputable inconsistencies
	Slide Number 54
	Discussion
	Methodology limitations 
	Influence interpolated holes DTM?
	Conclusions
	Conclusions
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Contributions
	Future work
	Future work
	Slide Number 68
	References
	Extra slides
	Deep learning
	FCN-8s
	SegNet
	U-Net
	FuseNet-SF5
	Slide Number 76
	Assessment BGT
	Slide Number 78
	Addition of extra band 
	Pretrained weights
	Class frequencies 
	Slide Number 82
	Confusion matrices (1/2)
	Confusion matrices (2/2)
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Height approaches
	Object-level detection
	Comparison to related work
	Eroded error maps per class
	Influence of interpolated holes
	Recommendations supervisors P4

