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SUMMARY 

      The rising demands for mined products lead to the extraction of materials in geologically 
complex regions. This calls for mining process changes and interventions driven by 
technology and advanced data analytics. The dynamic development of state-of-the-art 
sensor technologies and their potential use in mining is projected to significantly reduce 
costs in the industry. However, despite rapid advances in sensor technologies, there is still 
a demand for novel data analytical approaches to enable accurate characterisation of material 
along the mining value chain, as advanced data analytics is key to gain knowledge from the 
complex sensor-derived data. Therefore, sensor technology, coupled with advanced data 
analytics is crucial for the rapid and accurate characterisation of material in mining 
operations. Access to rapid and accurate data on the key geological attributes (e.g., 
mineralogy and geochemistry) along the mining value chain has significant implications for 
the production process efficiency in commercial mines. Such data would greatly assist the 
improvement of deposit models, optimise ore processing, specify product quality and 
improve operational decision-making. 
      Sensor technologies operate over a specific range of the electromagnetic spectrum and 
provide information on certain aspects of material properties that are of potential interest 
for mining extraction. However, a single sensor might not provide a sufficiently 
comprehensive description of a material’s composition. This introduces uncertainty into 
both resource estimation and requirements definition for mineral processing. Thus, it is 
necessary to utilise strategic sensor combinations to improve accuracy, minimise 
uncertainty, and enhance specific insights of material compositions. Combinations of 
sensors can be implemented using a data fusion approach. The fusion of sensed data can be 
realised at different levels: low-, mid-, and high-level, when the integration occurs at the data 
level, features level and decision level, respectively.  
      This research aims to develop methods for the characterisation of raw materials using 
multiple sensor technologies and sensor combinations concept (data fusion at different 
levels), that can be potentially applicable to mining operations. The study involved the 
multispectral and hyperspectral imaging techniques, such as red-green-blue (RGB) imaging, 
visible and near-infrared (VNIR) and short-wave infrared (SWIR) hyperspectral imaging, 
and point spectroscopic techniques, such as mid-wave infrared (MWIR), long-wave infrared 
(LWIR) and Raman spectroscopy to acquire spectral information over a wider range of the 
electromagnetic spectrum. First, an investigation was conducted on the usability of the 
individual sensor technologies coupled with data analytics for the characterisation of a 
polymetallic sulphide deposit at different levels. The different levels of material 
characterisation aimed to allow mineral mapping, ore–waste discrimination, fragmentation 
analysis, and semi-quantitative analysis of elements and minerals. The positive outcomes of 
the use of the individual techniques led to the development of a data fusion framework that 
enables data integration (including multi-scale and multi-resolution data) at different levels 
(e.g., low-level and mid-level). The developed data fusion concept was implemented and 
validated using different test scenarios.  
     This contribution demonstrates the potential benefits of and opportunities for the use 
of sensor technologies and data fusion for the discrimination of ore and waste materials, 
mineral identification, mineral mapping, and semi-quantitative analysis of mineralogical and 
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geochemical information in polymetallic sulphide deposit. The use of the individual sensor 
technologies resulted in the successful characterisation of materials. For example, the use of 
RGB imaging allowed mapping of minerals and ore geometry delineation at a mine face in-
situ in an underground mine. Discrimination of ore–waste materials was achieved using the 
VNIR, SWIR, MWIR, and LWIR spectral data. This was done by direct detection of the 
signals from the sulphide minerals as well as the signals from the waste mineralogy. The 
MWIR and LWIR sensors are effective for semi-quantitative analysis of minerals (SiO2, 

Fe2O3 and Al2O3) and elements (the combined Pb‒Zn and Fe). The fusion of data blocks 
at different levels allowed for improved predictability and classification of materials. For 
example, the low-level fusion of MWIR and LWIR resulted in better prediction of 
mineralogical concentrations than the individual techniques. Likewise, the fusing of the 
VNIR and SWIR spectral data resulted in an enhanced classification of ore and waste 
material than the individual techniques. The integration of the SWIR, MWIR and LWIR 
resulted in even better classification of the ore and waste materials.  
      Overall, the use of the individual techniques enabled the effective characterisation of 
the polymetallic sulphide deposit. Moreover, data fusion further enhanced the performance 
of the prediction and classification models. In this study, semi-quantification of elements 
was achieved using the infrared technologies; such elements are commonly analysed using 
the geochemical (elemental) techniques. The MWIR technique is the least-explored region 
of the electromagnetic spectrum, owing to the limited development of instrumentation. 
However, the use of MWIR in this study suggests the potential use of the technology for 
effective characterisation of materials in mining operations. The sulphide minerals exhibit 
weak spectral signals in the infrared data. However, the developed approaches enabled the 
establishment of a robust mathematical relationship between the spectra and material 
properties to provide useful information on the key geological attributes. Moreover, the fact 
that the study was conducted using a low-grade base metals deposit indicates the potential 
use for the characterisation of material in other deposit types, including sub-economic 
deposits. The proposed approach can serve as a baseline for the development of a software 
tool that enables on-line analysis of materials along the mining value chain (e.g., in mineral 
exploration, extraction and processing). Thus, it can greatly benefit the productivity and 
efficiency of mining operations and can contribute to sustainability in mining.  
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SAMENVATTING 

      De toenemende vraag naar uit mijnbouw afkomstige producten leidt tot de extractie van 
materialen in geologisch complexe gebieden. Dit vraagt voor veranderingen en interventies 
in het mijnbouwproces, gedreven door technologie en geavanceerde data-analyse. Van de 
dynamische ontwikkeling van de nieuwe sensortechnologieën en hun potentieel gebruik in 
mijnbouw wordt verwacht dat deze de kosten in de industrie in belangrijke mate zullen 
reduceren. Ondanks de snelle vooruitgang in sensortechnologieën, is er nog steeds een vraag 
naar data-analysebenaderingen die nauwkeurige karakterisatie van materiaal in de mining 
value chain mogelijk maken, omdat geavanceerde data-analyse essentieel is om kennis te 
verkrijgen uit complexe, door sensors bepaalde data.    
      Daarom is sensortechnologie, gekoppeld aan geavanceerde data-analyse, cruciaal voor 
de snelle en nauwkeurige karakterisatie van materiaal in mijnbouwoperaties. Toegang tot 
snelle en nauwkeurige data van de geologische sleutelkenmerken (bijvoorbeeld mineralogie 
en geochemie) in de mining value chain heeft belangrijke implicaties voor de efficiëntie van 
het productieproces in commerciële mijnen. Dergelijke gegevens zouden een grote 
ondersteuning kunnen zijn in de verbetering van modellen van afzettingen, in het 
optimaliseren van ertsverwerking, in het specificeren van productkwaliteit en in de 
verbetering van operationele besluitvorming. 
      Sensortechnieken werken over een specifieke range van het elektromagnetisch spectrum 
en verschaffen informatie over bepaalde materiaaleigenschappen, die potentieel van 
interesse zijn voor mijnbouwextractie.  Echter, één enkele sensor verschaft mogelijk niet 
voldoende diepgaande beschrijving van de samenstelling van het materiaal. Dit leidt tot 
onzekerheid in zowel reserveschatting als de vaststelling van de vereisten voor 
mineraalverwerking. Het is dus noodzakelijk om strategische sensorcombinaties te 
gebruiken om nauwkeurigheid te verbeteren, onzekerheid te minimaliseren, en inzicht in 
specifieke materiaalsamenstellingen te vergroten. Combinaties van sensors kunnen worden 
ingezet wanneer hun gegevens worden samengevoegd. Deze versmelting van meetgegevens 
kan op verschillende niveaus worden gerealiseerd: laag, midden en hoog niveau, wanneer de 
integratie plaatsvindt op respectievelijk het gegevensniveau, het niveau van de kenmerken, 
en het beslissingsniveau. 
      Dit onderzoek beoogt het ontwikkelen van methoden voor de karakterisatie van 
grondstoffen met gebruikmaking van meerdere sensortechnologieën en een concept van 
sensorcombinaties (gegevensversmelting op verschillende niveaus), welke mogelijk 
toepasbaar zijn in mijnbouwoperaties. Deze studie bracht het gebruik van multi-spectrale 
en hyper-spectrale beeldvormende technieken met zich mee, zoals rood-groen-blauw (RGB) 
beeldvorming, zichtbaar licht en nabij-infrarood (VNIR), korte-golf infrarood (SWIR), 
hyper-spectrale beeldvorming en punt-spectroscopische technieken, zoals middengolf 
infrarood (MWIR), lange-golf infrarood (LWIR) en RAMAN spectroscopie, dit alles om 
spectrale informatie te verkrijgen over een groter bereik van het elektromagnetisch 
spectrum. Ten eerste werd een onderzoek uitgevoerd naar de toepasbaarheid van de 
individuele sensortechnieken, gekoppeld aan gegevensanalyse voor de karakterisatie van 
polymetallische sulfide-afzettingen op verschillende niveaus. De verschillende niveaus van 
materiaalkarakterisatie hadden als doel mineraalkartering, erts-afval onderscheiding, 
fragmentatie-analyse en semi-kwantitatieve analyse van elementen en mineralen mogelijk te 
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maken. De positieve uitkomsten van het gebruik van de verschillende technieken leidde tot 
de ontwikkeling van een gegevenscombinatie-netwerk, dat gegevensintegratie (inclusief 
multi-schaal en multi-resolutie gegevens) op verschillende niveaus mogelijk maakt. Het 
ontwikkelde gegevensversmeltingsconcept werd geïmplementeerd en gevalideerd onder 
gebruikmaking van verschillende testscenario’s.  
      Deze bijdrage demonstreert de potentiële voordelen en mogelijkheden van het gebruik 
van sensortechnologieën en gegevenscombinatie voor de onderscheiding van erts en afval, 
mineraal-identificatie, mineraalkarteringen en semi-kwantitatieve analyse van 
mineralogische en geochemische informatie in polymetallische sulfide-afzettingen. Het 
gebruik van individuele sensortechnologieën resulteerde in de succesvolle karakterisatie van 
materialen. Bijvoorbeeld, het gebruik van RGB-beeldvorming maakte de kartering van 
mineralen en erts-geometrie afbakening in-situ aan een mijnfront in een ondergrondse mijn 
mogelijk. Onderscheid tussen erts en afvalmaterialen werd bereikt door middel van VNIR, 
SWIR, MWIR, en LWIR spectraal-gegevens. Dit werd uitgevoerd door directe detectie van 
de signalen van de sulfidemineralen zowel als signalen van de afval-mineralogie. De MWIR- 
en LWIR-sensors zijn effectief voor de semi-kwantitatieve analyse van mineralen (SiO2, 
Fe2O3 en Al2O3) en elementen (gecombineerd Pb-Zn en Fe). De combinatie van 
gegevensblokken op verschillende niveaus liet verbeterde voorspelbaarheid en classificatie 
van materialen toe. Bijvoorbeeld, de combinatie op laag niveau van MWIR en LWIR leidde 
tot een betere voorspelling van mineralogische concentraties dan de individuele technieken. 
Evenzo, de combinatie van VNIR en SWIR spectraal-gegevens resulteerde in verbeterde 
classificatie van erts en afvalmateriaal dan de individuele technieken. De integratie van 
SWIR, MWIR en LWIR resulteerde in een nog betere classificatie van erts en 
afvalmaterialen. 
      In het algemeen heeft het gebruik van individuele technieken de effectieve karakterisatie 
van de polymetallische sulfide-afzetting mogelijk gemaakt. Bovendien heeft 
gegevensversmelting de prestatie van de voorspellings- en classificatie-modellen verbeterd.  
In deze studie is semi-kwantificatie van elementen bereikt door middel van infrarood 
technologieën; normaal worden dergelijke elementen geanalyseerd met geochemische 
(element) technieken. Het MWIR-gebied is het minst onderzochte deel van het 
elektromagnetische spectrum, als gevolg van de beperkte ontwikkeling van instrumentatie.  
Echter, het gebruik van MWIR in deze studie suggereert het potentiële gebruik van de 
technologie voor effectieve karakterisatie van mineralen in mijnbouwoperaties. De 
sulfidemineralen tonen zwakke spectrale signalen in de infraroodgegevens. Echter, de 
ontwikkelde benaderingen maken een robuuste wiskundige relatie tussen spectra en 
materiaaleigenschappen mogelijk, welke bruikbare informatie over belangrijke geologische 
kenmerken kan verschaffen. Bovendien, is deze studie uitgevoerd op een laaggradige 
afzetting van base metals. Dit geeft aan dat het potentieel gebruikt kan worden voor de 
karakterisatie van materiaal in andere afzettingstypen, inclusief sub-economische 
afzettingen. De voorgestelde aanpak kan dienen als een uitgangspunt voor de ontwikkeling 
van een software-tool dat online analyse van materialen gedurende de mining value chain 
(bijvoorbeeld in exploratie, extractie en verwerking) mogelijk kan maken. Het kan dus grote 
voordelen bieden voor de productiviteit en efficiëntie van mijnbouwoperaties en het kan 
bijdragen aan de duurzaamheid van mijnbouw.  
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LIST OF ABBREVIATIONS  

      The following table describes the various abbreviations used throughout the thesis. 
The chemical formula of minerals and symbol of elements are not on this list. 

Abbreviations Meaning 

ASEM automated scanning electron microscopy  
 ATR attenuated total reflectance  
 ATR-FTIR attenuated total reflectance Fourier transform infrared 
 BB blasting block  

BIL band-interleaved by layer  
 CCD 

 
charge-coupled devices 

CMOS complementary metal-oxide-semiconductor  
 DE-XRT dual-energy x-ray transmission   

DoE design of experiment  
 EDA exploratory data analysis  
 EPMA electron microprobe analyser  
 FIR far-infrared  

FOV 
 

field of view 
 FTIR Fourier-transform infrared spectrometer  
 GCP ground control point 
 ICP-MS inductively coupled plasma-mass spectrometry  
 IoT Internet of things  
 ICA independent component analysis  
 IP induced polarization  
 LHD 

LHD 
 

load-haul and dump 

LV latent variable 

LIBS laser-induced breakdown spectroscopy 

LIDAR light detection and ranging 
 LOOCV leave-one-out cross-validation  
 LWIR long-wave infrared 

MC mean centring  

MCR Multivariate curve resolution  

MD minimum distance  
 ML maximum likelihood 

MLR multiple linear regression  
 MNF minimum (or maximum) noise fraction  
 MR magnetic resonance  
 MSC multiplicative scatter correction  
 MCR-ALS multivariate curve resolution-alternating least squares  
 NaN non-numeric values 
 NIR near-infrared  
 PARAFAC parallel factor analysis  
 PC principle component 

PCA principle component analysis 

PCR principal component regression  

PCC Pearson correlation coefficient  
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Abbreviations Meaning 

PLS-DA partial least squares – discriminant analysis  

PLSR partial least squares regression  
 PPI pixel purity index  
 RBF radial basis function  

RGB imaging red-green-blue imaging 

RMSECV root mean square error of cross validation  
 RMSEP root mean square errors of prediction  

ROI region of interest  

SAM spectral angle mapping 

SDBS spectral database systems  
 SAM spectral angle mapper  

SNV standard normal variate  

SVs 
 

support vectors  

SVC support vector classification 

SVD singular value decomposition  

SVM support vector machine 

SVR support vector regression 

SWIR short-wave infrared 

SWOT strengths, weaknesses, opportunities, and threats 
 VNIR visible and near-infrared 

WD-XRF wavelength dispersive x-ray fluorescence  
 XRD x-ray diffraction 

XRF x-ray fluorescence 
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1 
 INTRODUCTION 

 

The first chapter of this dissertation provides the background information to address the research problem, 
the scope of the research, the proposed methodological framework, and addresses the relevance and potential 
benefits of the proposed approach. It also presents the general objective and the specific objectives of the study. 
The last part of the chapter presents an overview of the dissertation structure and contents.  
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1.1. CONTEXT   

      Global demand for mined products is increasing rapidly, because of population and 
economic growth. While accompanied by greater prosperity, the rise in demand for mineral 
resources requires a sustainable supply. However, the mining industry is challenged by 
various factors such as the overtime-declining trend of ore grade, discovery of new resources 
at deeper depths and increasing energy costs (Carvalho, 2017; Gordon et al., 2006; MinEx, 
2017; Rogich and Matos, 2008; Rötzer and Schmidt, 2018; West, 2011). For example, as 
shown in Figure 1.1, the recent trend in the discovery of base metals shows the occurrence 
of moderate-to giant-sized new deposits in deeper depths. The extraction of resources from 
low-grade deposits or deeper mines causes challenges related to access to the resource, 
identification of the minerals, and more time is required to extract, process and market the 
minerals. Therefore, mining requires novel technologies and rapid analysis of data for the 
potential economic benefits and sustainable extraction of mineral resources. 

 In mining, sensors can allow selectivity in the extraction process, ore grade control, 
sorting of blasted materials, optimisation of mineral processing and automation. In recent 
years, innovative sensor technologies are being introduced at a fast pace. However, sensor 
technologies are still rarely utilised for the characterisation of material in the mining industry, 
due to various factors, including (i) inadequate sensor design, since most are intended for 
laboratory use, or are specific to a particular deposit type and operational environment; (ii) 
the need to demonstrate the sensors’ utility in the mining industry; and (iii) the high initial 
cost related to purchasing and setting up the instruments, which may in some cases exceed 
the benefit to be realised. Despite the limited use of sensors, findings yielded by extant 
studies in this field (Aznar-Sánchez et al., 2019; Benndorf and Buxton, 2016; Buxton and 
Benndorf, 2013; Fox et al., 2017; Goetz et al., 2009; Lessard et al., 2014) show that the use 
of sensor technologies in the mining industry can improve efficiency, reduce operational 
cost, increase productivity, enhance safety and minimise environmental impact. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.1: A graph that shows the depth and size of the newly discovered base metals in the world from 
the year 1990 to 2013. The size of the bubbles refers to “Moderate”, “Major”, and “Giant”- sized deposits 
(Source: MinEx, 2017). 
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 Sensor technologies are as powerful as the information that can be derived from their 
spectral data. However, understanding the multivariate data is challenging for most of the 
sensor outputs. Therefore, despite the technological advancement, there is still a demand 
for advance in data analytics to extract knowledge from sensor data. The framework 
proposed in this study can enable resource efficiency and sustainability through technology 
and advanced data analytics (Figure 1.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: The proposed approach for addressing the rising demand in mined products through technology 
and advanced data analytics.   

 Sensor technologies provide qualitative, quantitative and semi-quantitative information 
on different aspects of material properties. Such information can be broadly categorized 
into geochemistry, mineralogy, and texture but is not limited to these attributes of materials. 
Each sensor technology operates over a specific range of the electromagnetic spectrum and 
provides chemical information that might be of potential interest in mining. The detection 
limit, sensitivity and material properties that the instrument detects and measures vary from 
sensor to sensor. Thus, a single sensor might not provide a sufficiently comprehensive 
description of material composition. Subsequently, it is necessary to utilise strategic sensor 
combinations to achieve a holistic view, improve accuracy, minimise uncertainty, and 
enhance specific inferences for raw material characterisation. Some of the potential benefits 
of data fusion in mining are presented in Figure 1.3. 
      Sensor technologies may be integrated physically or digitally (through data fusion). 
Physical integration is achieved when two or more sensors are combined on a single 
platform. Data fusion integrates data blocks from multiple sources or sensors into a single 
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comprehensive model (Cocchi, 2019; Hall and McMullen, 2004). It can be realised at three 
levels, designated as low-level, mid-level, and high-level fusion. Low-level data fusion 
involves the integration of multiple data sources by concatenating data blocks of different 
nature (Castanedo, 2013; Forshed et al., 2007; Silvestri et al., 2014). Mid-level or hierarchical 
data fusion is a feature-level fusion that involves variable screening (Borràs et al., 2015; 
Silvestri et al., 2014). High-level data fusion is a decision-level fusion that combines model 
outputs to produce a final fused response (Cocchi, 2019). The physical integration of multiple 
sensor technologies into a single platform is challenging, and in terms of practical 
implementation, it is expensive. Therefore, in this study, the data fusion approach was 
considered since it is an economic and practical alternative option.  

 

 

 

 

 

 

 

 

Figure 1.3: The potential benefits of data fusion in mining operations.  

 In mining, accurate and reliable resource estimation is required, as it is advantageous to 
be able to obtain more readily information on the potential economic and environmental 
operability of commercial mines. Sensor technologies can provide accurate data for the 
reliable estimation of resources and efficient extraction of materials. Sensors can be utilised 
along the mining value chain, starting from the exploration stage to the marketing of the 
mined products. Some of the potential sensor installation sites for sensor-based material 
characterisation along the mining value chain include mine face, drill core /drill hole logging, 
muck pile, load-haul and dump (LHD) and conveyor belts. The use of innovative 
technologies coupled with advanced data analytics at each potential sensor installation site 
offers the possibility for rapid, accurate and on-line analysis of materials in the mining 
process. Thus, it can contribute to the sustainable and cost-effective extraction of mineral 
resources.  
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1.2. RESEARCH HYPOTHESIS 

      This study was designed to validate or disprove the hypothesis that combinations of 
sensor enable improved accuracy, availability, predictability and quantification in raw material 
characterisation than individual sensor technologies. It is possible to use sensor technologies 
to characterise and define raw material properties in different applications such as in mining. 
However, such an approach requires the definition of combinations of sensor types to 
generate more accurate and reliable data, as this is beneficial for efficient process optimisation 
and effective decision-making in the mining industry.  

1.3. RESEARCH OBJECTIVES  

      This research aimed to explore the opportunities and benefits of the use of sensor 
technologies for the characterisation of raw materials in a polymetallic sulphide deposit and 
investigate the comparative advantages of sensor combinations using a data fusion approach 
that integrates multi-source and multi-scale data. The sensor technologies explored in this 
study are red-green-blue (RGB) imaging, visible and near-infrared (VNIR), short-wave 
infrared (SWIR), mid-wave infrared (MWIR), long-wave infrared (LWIR) and Raman 
spectroscopy. The use of the individual sensor technologies for the qualitative and 
quantitative analysis of the geological attributes (e.g., geochemistry, mineralogy) in a 
polymetallic sulphide deposit was assessed using the different multivariate techniques. The 
outcomes of the technologies usability assessment guided the development of a concept for 
the combinations of sensor. The conceptual framework illustrates the potential sensor 
combination options using a data fusion approach and it demonstrates the opportunities of 
data fusion at different levels (low-level, mid-level and high-level). The developed data fusion 
concept was implemented and validated using different test scenarios.  

      To achieve the aim of the research, the following specific objectives and the 
corresponding research questions were formulated (Figure 1.4). The objectives are briefly 
discussed in the subsequent chapters. In this section, the three key objectives (the black 
boxes of Figure 1.4) are further elaborated.  
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Figure 1.4: The specific objectives of the research and the corresponding tasks.  

1. Assessment of the applicability of the individual sensor technologies:  
evaluate the usability of RGB imaging, VNIR-SWIR hyperspectral imaging, Raman 
spectroscopy, MWIR, and LWIR sensor technologies for the characterisation of 
material in a polymetallic sulphide deposit. Measurements were performed both in-
situ and in the laboratory using the collected representative samples. Achieving this 
aim addressed the following specific objectives.  

a. Identify the geological attributes that can potentially be acquired from 
each sensor output 

What are the potential 

sensor installation sites 

along the mining value 

chain? 

What are the potential 

sensor technologies? 

Are the technologies 

applicable to the 

chractersation of the test 

case materials? 

How to develop a sensor 

combinations concept using 

a data fusion approach?

How do we implement and 

validate the concept? 

Comparative study: 

Does  the data fusion 

approach offer better 

models accuracies than the 

indvidual datasets?

What are the opportunities 

and potential benefits of the 

use of sensors and data 

fusion in mining?

 Based on the output of the technological usability 

assessment, develop a conceptual framework for potential 

sensor combinations. 

      Evaluate the usability of RGB imaging, VNIR-SWIR 

hyperspectral imaging, Raman spectroscopy, MWIR, and 

LWIR sensor technologies for the characterisation of the 

test case material (polymetallic sulphide deposit) using in-

situ and laboratory measurements. 

Identify and evaluate the potential sensor installation sites 

along the mining value chain within the scope of the 

research. 

Implement and validate the improvement after sensors 

data fusion. Models performance evaluation using the 

individual sensors and fused data blocks. Assessed based on 

three test scenarios:  

 Data fusion for quantitative analysis of elements  

 Data fusion for quantitative analysis of minerals  

 Data fusion for ore-waste discrimination  

 

Identify the potential matured sensor technologies for 

material characterization.   

Objectives Research questions 

2 

3 
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b. Assess the use of the individual technique for the detection, 
identification, ore–waste discrimination and quantitative analysis of 
elements and minerals   

c. Evaluate the opportunities and benefits of the use of each sensor 
technology  

d. Identify the optimum data pre-processing and the linear or non-linear data 
modelling algorithms required to maximise the information from each 
sensor output   

2. Develop a conceptual framework for sensor combinations: based on the 
output of the technological usability assessment, develop a conceptual framework 
for the potential sensor combinations options using a data fusion approach. The 
framework specifies a multi-step methodological approach for the fusion of 
multiple data blocks at different levels of integration using multi-source and multi-
scale data.  

3. Validate the defined data fusion concept: implement and validate the developed 
data fusion concept. Evaluate the performance of the prediction and classification 
models of the individual sensor data and fused data using three test scenarios. 

 Data fusion for quantitative prediction of elements (the combined Pb–Zn 
and Fe) using the mineralogical techniques (MWIR and LWIR) 

 Data fusion for quantitative analysis of minerals (SiO2, Fe2O3, and Al2O3) 
using the linear and non-linear algorithms and the infrared technologies  

 Develop a conceptual framework for the integration of image (VNIR and 
SWIR) and point (MWIR and LWIR) data: evaluate the performance of 
the fused hyperspectral image and point data for the discrimination ore–
waste.  

      The study focuses on the opportunities and potential benefits of the use of sensors and 
sensor combinations in mining operations. Techno-economic assessment of the feasibility 
of applying data fusion using multiple data sources is beyond the scope of this investigation. 
Further points that are out of the scope of this research are indicated in Table 1.1.  

Table 1.1: The research scope statement. 

In Scope Out of Scope 

Usability assessment of the RGB imaging, VNIR, 
SWIR, MWIR,LWIR, and Raman technologies in 
a polymetallic sulphide deposit  

Validation of the approach in multiple geological 
settings  

Development of methodological approaches for 
knowledge generation from each technique 

Investigation of the influence of the 
environmental factors on sensor measurements 

Design and development of a data fusion concept Assessment of textural and hardness information  

Implementation of the developed data fusion 
concept using multiple possible combinations  

Assessment of the techno-economic benefits of 
the developed approaches 

Evaluation of the results from the use of 
individual technique and fused data blocks  

Modelling of the ore body in 3D  
 

Indicate the benefits and possible limitations of 
the use of technologies and the developed 
methodological approaches in mining thus to 
indicate potential future research directions  
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1.4. DISSERTATION STRUCTURE  

      The structure of this dissertation contemplates the outlined research objectives. It is 
divided into 14 chapters and organised into five parts (Table 1.2).  

Table 1.2: Overview of the thesis structure. 

Part Chapter  Description 

  

P
A

R
T

 I
 -

 P
R

E
A

M
B

L
E

 

 

 

C
h

ap
te

r 
1
 

 

Illustrates why there is a need for state-of-the-art sensor technologies and 
advanced data analytics for effective raw material characterisation in mining 
operations. The chapter introduces the proposed methodological framework 
and explains its significance, relevance and potential benefits. The research aim 
and specific objectives are explained. The chapter also presents an overview of 
the dissertation structure and contents. 
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Presents the potential applications and opportunities for the use of sensors in 
mining. It discusses the possible role and benefits of sensors in real-time 
material characterisation. It also describes the potential sensor location sites 
along the mining value chain.  
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Describes the state-of-the-art sensor technologies with particular emphasis on 
the technologies assessed in this study, the material properties the techniques 
detect and the type of data the sensors produce. It also presents the 
specification and set-up of the technologies used in this study.  
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Elaborates the methodological approaches for the exploratory data analysis and 
data pre-processing. The chapter presents a review of the multivariate data 
analysis techniques used for the extraction of knowledge from the individual 
sensor data. It also explains the methodological approaches used for the fusion 
of sensor responses at multi-level.  
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Provides a brief explanation of the study site geological setting. It describes the 
regional and local geology. A detail description of the mineralisation at the 
defined study block is presented. The chapter finally describes the adopted 
sampling strategy and the different types of samples collected for this research.  
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Demonstrates the usability of RGB imaging for mineralogical face mapping 
and ore zone delineation in an underground mine. The technique was further 
assessed for the analysis of fragmentation using the RGB images taken from 
small muck piles. The chapter discusses the methodological approach for image 
data acquisition, processing and knowledge extraction. It also shows the 
potential benefits and possible challenges of the use of the technique in 
operational mines.  
 

 

C
h

ap
te

r 
7
 

 

Presents the use of the VNIR and SWIR hyperspectral images for the 
identification of the test case minerals and mineral mapping. The chapter also 
demonstrates the possibility of the techniques for the indication of ore zones 
using drill core and rock chips samples. It discusses the knowledge extraction 
processes and compares the outcomes of the two techniques. 
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Part Chapter  Description 
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Presents the use of MWIR and LWIR techniques coupled with chemometrics 
for the discrimination of sulphide ore. This study aims to evaluate whether 
MWIR, the least explored region of the electromagnetic spectrum in terms of 
material characterisation, is capable of discriminating the sulphide ore. The 
chapter also compares the performance of the MWIR data model with the 

LWIR data model for the discrimination of ore‒waste materials. The chapter 
starts with exploratory analysis. Thereafter, the methodological approach is 
briefly discussed. The chapter further provides the results with discussion and 
finally concludes with the overview of the outcomes and potential 
improvements. 
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Demonstrates the use of the Raman spectroscopy for the characterisation of 
material from the test case. The chapter compares the performances of two 
Raman spectrometers with excitation laser sources of 532 nm and 785 nm for 
the identification of minerals in powder, pellets and rock samples. It also 
assesses the use of Raman for ore and waste separation. The chapter further 
provides the results with discussion and finally concludes with the overview of 
the outcomes and potential considerations. 
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Evaluates the use of a fusion of hyperspectral image (VNIR and SWIR) and 
point data (MWIR and LWIR) for ore-waste discrimination. The chapter 
describes the different scenarios for the integration of image and point data. It 
also provides the results with discussion and finally concludes with the 
overview of the outcomes and potential improvements. 
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Evaluates the use of MWIR and LWIR data fusion for quantitative analysis of 
minerals. The chapter describes the developed methodological approaches for 
the fusion of MWIR and LWIR at low-level and low-level with features 
extraction. The results are discussed, and conclusions were drawn.  
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Studies how the multi-level data fusion of MWIR and LWIR reflectance 
spectral data influences the prediction of elemental concentrations. The 
elemental prediction was performed using the mineralogical techniques, 
individual data blocks (MWIR and LWIR) and the fused data. The following 
questions are addressed to compare the performances of the prediction models 
developed using the different data blocks. (i) Can the MWIR be used to predict 
elemental concentration? (ii) Can the LWIR be used to predict elemental 
concentration? (iii) Does data fusion improve model performance? (iv) Does 
the multi-level fusion (low-level and mid-level) result in different prediction 
accuracies? The chapter provides an extensive discussion on the outcomes and 
concludes with a recommendation.  
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Discusses the opportunities for the use of sensor technologies for the 
characterisation of a polymetallic sulphide ore deposit. The chapter also 
discusses the opportunities with multi-level sensors data fusion for 
classification and prediction of materials in mining operations. The chapter 
further discusses the possibilities and limitations of the developed 
methodological approaches for automated in-situ applications. 
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Presents the general conclusions of this research. The chapter also provides a 
few recommendations for future work to improve further and automate the 
classification and prediction of the geological attributes.  
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2 
POTENTIAL APPLICATIONS FOR 

SENSOR TECHNOLOGIES FOR MATERIAL 

CHARACTERISATION IN MINING    

This chapter presents the potential applications and opportunities for the use of sensors in mining. It 
discusses the possible role and benefits of sensors in real-time material characterisation. It also describes the 
potential sensor location sites along the mining value chain.  
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2.1. OPPORTUNITIES FOR THE USE OF SENSORS IN MINING  

Sensor technologies offer opportunities to address the essential parts of the mining 
process, such as ore grade control, mine planning and design, vehicle control, remote 
operation, and automation. Thus, various sensor systems can be used for different 
applications. For example, sensors for machine performance monitoring, collision 
avoidance, hazardous gas monitoring and raw material characterisation (Buxton and 
Benndorf 2013, Ehsan 2017, Ramjack 2019). Among the various potential use of sensors in 
mining, sensor-based material characterisation was the focus of this study. In mining, 
sensor-based material characterisation is beneficial for effective grade control, accurate 
delineation of lithological or mineralogical domains, the reduction of resources 
consumption, sorting of materials, quality control, optimisation of mineral processing, and 
can allow secondary recovery (Buxton and Benndorf, 2013; Lessard et al., 2016). Besides, 
technology can also permit the identification and discovery of new mineral reserves, mature 
new mines with the sub-economic deposit, increase the efficiency of the production process, 
and reduce waste volume. Therefore, it has a substantial contribution to the sustainability 
of mining. 

 The value or cost drivers for effective planning and predictability in mining operations 
include data accuracy, data availability, in-situ characterisation, automation and sample 
representativity. The potential benefits of the use of sensors in mining industries have a 
direct link to the most of cost drivers (Table 2.1). For example, high-end sensor technologies 
can enable the detection of minerals/elements of economic interest at very low 
concentrations. Accurate information on low-grade ore provokes the feasibility of mining 
in sub-economic deposits. The other important aspect of the use of sensors in mining is the 
tangible contribution of sensor-derived data for the digital transformation of the mining 
industry. As the digitalisation of mining is beneficial to lower operational costs, improve 
safety, and provide real-time data (Chaulay et al., 2016). Consequently, the use of sensors 
can potentially benefit the economic viability of mining operations and ensures 
environmental sustainability (Benndorf and Jansen, 2017; Benndorf et al., 2015; Buxton and 
Benndorf, 2013; Lessard et al., 2016). However, maximising these benefits requires well-
developed sensor technologies, advanced data analytics, as well as well-calibrated software.  

 Broadly, there are two types of mining methods; surface mining and underground 
mining. Surface mining is a mining method used for the extraction of minerals from the 
surface (e.g., open-pit mining, placer). Whereas, underground mining is the mining of 
minerals from a certain depth when the deposit is too deep for surface mining. The two 
mining types differ in different aspects. For example, the depth of mining, ore recovery, the 
environmental conditions, and the volume of materials to be moved. The main advantages 
of surface mining over underground mining include enhanced ore recovery, operational 
flexibility, lower cost, better safety and higher productivity (National Research Council, 
2002). Currently, most of the metallic, non-metallic and large portion of coal mines are 
surface mines (Hartman, 1987).  

 Mining begins with exploration, continues through extraction and production, and ends 
with mine closure and post-mining rehabilitation. Sensor technologies can be utilised at all 
stages of the mining life cycle and potentially benefit mining industries (Table 2.1 and Figure 
2.1). This includes the use of sensors along the mining value chain, starting from the 
exploration stage to the marketing of the mined products. The main components of the 
mining life cycle and the potential use of sensors at each stage are indicated in Figure 2.1. 
For example, in the discovery of new deposits, a variety of sensing technologies can be 
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employed. Depending on the preferred exploration approach, sensors can be used for drill 
cores logging, mapping of the target area (commonly using air-borne or remote sensing 
techniques) and rock chips analysis (Figure 2.1). Likewise, during the extraction stage of the 
mining cycle, sensors can provide mineralogical information at the mine face and can be 
used for automated drill cores logging.  

Table 2.1: Summary of some of the potential benefits of the use of sensors for raw material characterisation 
in the mining industries. 

Potential benefits 

Sensors can provide 

real-time data 

 

 Useful for a real-time updating of the resource models thus to promote 
continuous mining  

 Automation of material characterisation can be achieved  

 Minimises the time required for off-line analysis  

 Supports effective decision-making in mining 
 

Accurate sensor -

derived data can be 

used for 

 

 Grade control applications  

 Requirement definition and optimisation of geometallurgical processes (e.g., 
the energy requirement, the floatation properties and the recovery of metal 
ores) 

 Requirement definition of the blasting parameters  

 To understand the spatial distribution of mineable materials e.g., ore 
geometry delineation at the mine face 

 Material tracking  

 Ensures quick visualisation of data (e.g., mineral maps form hyperspectral 
images or RGB images)  

 Product quality control during processing and marketing 
 

In-situ measurements 
 

 This is beneficial in reducing the time required for sampling, sample 
transport and off-line analysis in the laboratories  

 More samples can be analysed therefore the issue of samples 
representativeness can be minimised  

 Increase data availability  (e.g., geochemical, mineralogical and textural) 
 

Sensors for ore‒
waste sorting 

 

 Dry separation of the ore and waste materials minimises the energy 
requirement at the later stage of mineral processing. Thus, ore–waste sorting 
sensors maximise the resource efficiency of mining operations  

Promote the digital 

transformation of 

mining 

 The digital transformation supports the transfer of the Industrial Internet 
of Things (IIoT) from other industries to the mining industry –  thus 
improves productivity and safety  

 Promotes the development of comprehensive digital databases  

 Increase data availability  (e.g., geochemical, mineralogical and textural) 

Provide spatial 
coordinates 

 Spatially constrained (georeferenced) data can be generated. Such kind of 
data is essential for resource model updating, understanding of the spatial 
distribution of minerals, and material tracking  

Maximises safety 

through automation 

and data availability 

 

 Identification of weak zones (e.g., at the mine face using image data) 

 Minimise human exposure to dangerous or unsafe conditions  

 Minimise the exposure to hazardous substances  
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Figure 2.1: The major components of the mining life cycle and some of the potential sensor-based material 
characterisation options at each stage.  

  

2.2. USE OF SENSORS IN REAL-TIME MATERIAL CHARACTERISATION  

 The demand for rapid, accurate and reliable resource estimation in mining operations is 
proliferating, as it is advantageous to be able to obtain more readily information on the 
potential economic and environmental operability of commercial mines. The use of sensors 
can allow rapid analysis of materials. Rapid and accurate data throughout the mining value 
chain permit automated material characterisation, prompt resource model updating, on-line 
ore quality control, prompt optimisation of mineral processing, enable sensor-based sorting, 
permits safety assurance, and allow material tracking (Benndorf et al., 2015; Benndorf and 
Jansen, 2017; Dalm, 2018). Thus, it benefits the mining industry through rapid process 
optimisation and control.  

 The growing interest in real-time information in the mining industry promotes the need 
for automated material characterisation along the mining value chain. The potential sensor 
locations (installation) sites along the mining value chain differ in terms of material flow, 
production environment, throughput and material type (form). Some of the sites are static 
with low speed of material flow such sites include mine face, drill core and muck piles. On 
the other hand, the dynamic sites that involve higher speed material flow include conveyor 
belt and material characterisation during transport (e.g., load-haul and dump—LHD)). 
Therefore, the time required for real-time material characterisation at the different potential 
sensor installation sites along the mining value chain varies. For example, mine face has 
intact material, no or slow material flow, the material can be analysed in undisturbed form 
and has excellent potential for in-situ analysis. Real-time mineral mapping at the mine face 
may require a time scale in the order of hours or days since mine face mapping can be 
performed after a new blast. In contrast, the sorting of materials at the conveyor belt 
requires information in the order of seconds. Therefore, real-time material characterisation 
at the potential sensor locations in the mining cycle may require different time scales. 
Besides, achieving a real-time material analysis is highly dependent on two factors. One is 
the competency of sensor technologies for rapid data acquisition, and the other key enabler 
is a well-calibrated software system that can promptly transfer the acquired data into usable 
information.  

2.3. POTENTIAL LOCATIONS FOR SENSORS IN MINING OPERATIONS   

 Some of the potential sensor location sites during material extraction and transport 
include mine face, drill core/drill hole logging, muck pile, LHD and conveyor belts. Figure 
2.2 and Figure 2.3 show the opportunities for sensor-based material characterisation in 
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open-pit and underground mines, respectively. This research focused on usability 
assessment of sensors at mine face, drill core and muck pile sites. Measurements of rock 
attributes were performed both in-situ and using rock samples collected from the sites. 
Figure 2.4 shows the investigated potential sensor installation sites and explored sensor 
technologies. The measurements were performed in-situ and in a laboratory; this is 
discussed in detail in Chapter 5. Sensors can be mounted at the three sites (mine face, drill 
core and muck pile) to acquire data on different material properties (geological attributes). 
However, the use of sensor at each potential sensor data acquisition sites along the mining 
value chain has also challenges. The potential benefits and possible challenges of the use of 
sensors at the mine face, drill core, and muck pile potential sensor data collection sites along 
the mining value chain are discussed and summarised in Table 2.2.  
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Figure 2.4: The explored potential sensor solutions for the characterisation of materials at (a) the mine 

face, (b) drill core, and (c) muck pile potential sensor installation sites in the mining value chain. 

Table 2.2: The potential benefits and the possible challenges of the use of sensors at mine face, drill core 
and muck pile potential sensor installation sites along the mining value chains. 

Sites                Potential benefits                    Possible challenges 

M
in

e
 f

a
c
e
 

 Ore geometry delineation 

 Block classification: as ore if above the cut-off 
grade 

 Blasting requirements definition   

 In-situ information (in its undisturbed original 
form)  can be generated before/after  blasting  

 Potentially allows for selective extraction of the 
material  

 Verification of the analysis results can be done 
on the same samples  

 No time pressure (the measurements will be 
taken between consecutive blasts)  

 There is no material flow  

 Enables to acquire georeferenced spatial data  

 Possible to combine with drill core and channel-
cut samples  

 Having access to real-time information of the 
geometry and mineralogy of the mine face could 
give an estimate of the ore-grade and volume 
being excavated  

 Both point and image data can be acquired 

 Surface mounting of compact device possible  

 Static site no time pressure  
 

 Under realistic conditions (i.e. 
routine use in a mine) the sensors 
have to be semi-automated; this 
could require a complicated 
mechanical and optical layout 
depending on the surface 
conditions of the mine face  

 Operator required  

 Requires long (power) cables  

 Needs illumination source 
depending on the technology 

 Surface information (only the 
exposed part)  

 Requires mobile platform – 
rotating platform (e.g., translation, 
up and down)  

 Surface contamination (e.g., dust 
after blast, surface weathering) 
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Sites                Potential benefits                    Possible challenges 
D

ri
ll

 c
o

re
 

 Information of the material composition is 
available before crushing of the material  

 Multiple measurements at the same samples are 
possible  

 Validation of the analysis results can be done on 
the same samples (e.g., by wet chemical analysis)  

 Requires static sensor mounting platform  (no 
time pressure) 

 Gives information about the unexposed surface 
geology (up to the depth of the drill core)  

 Remote ( up to few cm) application possible 
(distance between sample and sensor) 

 Low scanning speed is acceptable  

 Compact device can be mounted 
 

 Information is available only after 
drilling  

 Mechanical sample handling 
system required  

 Operator required  

 Requires a large area to handle the 
drill cores  

M
u

c
k

 p
il

e
 

 Verification of the analysis results can be done 
on the same samples (e.g. by wet chemical 
analysis)  

 Multiple measurements at the same samples are 
possible (allows for relatively simple validation of 
the analysis results)  

 Principally no time pressure, planning and 
organisation of the measurements can be 
performed beforehand and integrated into the 
mining procedures for routine use in a mine  

 Remote application possible 

 Static site no time pressure for the sensor 
measurements   
 

 
 

 Intensive de-mixing of the 
material during storage  

 No representative analysis results 
possible if only the surface of the 
pile is measured  

 Sampling necessary  

 Mixed materials  

 Homogeneity of the material 
composition of the pile and hence 
the sampling procedure depend 
on the storage duration of the pile 
and the weather conditions during 
storage, the same holds for a 
potentially ongoing chemical and 
physical alteration of the bulk 
material that may influence the 
analysis results  

 Operator required  

 Slow data acquisition  

 Piling has effect  
 

 

2.4. SENSOR-DERIVED DATA IN MINING   

2.4.1. TYPES OF SENSOR DATA 

      Sensors measure the different aspects of material properties and record the 
measurements into signals. The signals are stored as data for use in the digital domain. 
Sensors produce various types of data, and understanding of the different data natures is 
crucial in many ways. Such as, it is beneficial to choose the required pre-processing 
techniques, data analysis methods, and programming languages or software. It is also 
advantageous to assess data quality and understand data storage requirements. Therefore, a 
data type can determine the data analysis works. Sensors can produce a point, image or 
volumetric data (Figure 2.5). This division is based on the number of data points per a single 
measurement and the depth of penetration of sensor measurements. The number of data 
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points (e.g., pixels) per a single measurement varies from technology to technology. 
Therefore, some techniques produce point data, while others produce image data.  
      The point techniques offer a discrete unit of information (a single data point) for the 
whole measured area per a single measurement. Typically, each point measurement covers 
a very small area or spot and produce point data (1D information). However, the spot size 
varies from instrument to instrument. Depending on the technology, a point datum can be 
a spectrum that consists of wavelength and reflectance or intensity information. Whereas, 
image data constitutes multiple pixels (data points) and covers a larger area of a target per a 
single measurement. Image data is a 2D data that provide spatial and spectral information 
about the entities under investigation. On the other hand, the volumetric data provide 3D 
details up to the depth the measuring instrument can penetrate the sample. These kinds of 
sensors are commonly used in geophysical studies. However, other sensors also produce 
volumetric data such as dual-energy x-ray transmission (DE-XRT) or gamma-ray 
technologies (Haefner et al., 2017; Kern et al., 2019; von Ketelhodt and Bergmann, 2010).   

 

 

 

 

 

 

Figure 2.5: Example of data types: (a) point—represent a measurement at a single data point, (b) image — 
a 2D representation of multiple data points (pixels), and (c) volumetric—provide 3D information up to the 
penetration depth of the measuring system.  

      Sensors can also produce univariate, bivariate or multivariate data. Univariate data 
comprise one type of data (one variable) per observation. The bivariate data are data with 
two variables per observation. Whereas, multivariate data provide more than two variables 
for each observation. Types of data can be discrete or continuous. Discrete data can only 
take particular values, but it can be either numeric or categorical. Whereas, continuous data 
are not restricted to specific values, but can take any value within a range. Thus, continuous 
data are numeric. Sensors data can also be qualitative, semi-quantitative and quantitative. 
Qualitative data are categorical and quantitative data are numerical. Semi-quantitative data 
are numeric but less precise than quantitative data.  

 Data volume (the amount of data) has significant implications for data storage, 
processing, and visualisation. For example, the storage and analysis of big data require 
extensive data warehouse and computing systems with high computational power. Thus, 
the amount of data should be taken into account before any data analysis tasks. Data volume 
depends on the type of data and commonly expressed in bytes. The volume of data from 
the imaging spectrometers is usually higher than the point spectrometers. The data volume 
of image data depends on the spatial and spectral resolutions of the images. The higher the 
spatial and spectral resolutions, the larger the data volume.  For example, the data size of a 
point SWIR reading is ~ 54 KB, whereas the SWIR hyperspectral image of a rock piece is 
~ 215 MB. The various data types from sensors are stored in different data formats. The 

a) b) c) 
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common examples of data formats include integers, floating-point number, strings or arrays. 
Data volume also depends on the number of bits used to store data.  

2.4.2. DATA QUALITY PARAMETERS  

 There are many definitions of data quality, but generally, it can be defined as the fitness 
for intended uses. For example, in the context of this research, fitness for the 
characterisation of materials, modelling (e.g., classification and prediction), and decision-
making in mining operations. Data that is suitable for use with one application might not fit 
for use with another application. The fitness of data depends on the data quality parameters: 
accuracy, completeness, consistency, and precision of data (Veregin, 1999). Accuracy is the 
measure of the correctness of the information. Completeness refers to the 
comprehensiveness of the data (no missing values or complete information). Consistency 
means information from different data sources, but on the same entity does not contradict 
each other. Precision refers to the degree to which the measurement is reproducible. In 
other words, repeated measures give the same results. In this research, the quality of each 
sensor output was assessed based on the accuracy, completeness, consistency, and precision 
data quality parameters.  

2.4.3. KEY GEOLOGICAL ATTRIBUTES DERIVED FROM SENSOR DATA 

 The crucial information derived from sensor outputs is application dependent. In 
mining, the essential material properties from the sensor readings are the geological 
attributes. These key geological attributes include mineralogy, geochemistry, fragmentation, 
hardness, and ore geometry. Information on the geological attributes can directly be derived 
from sensor data (e.g., mineralogy) or indirectly inferred from the primary data (e.g., 
hardness). Table 2.3 shows some of the geological parameters that can directly or indirectly 
be derived from sensor data. Of the various geological attributes, the parameters considered 
in this study are mineralogy, geochemistry, separation of ore and waste, ore geometry and 
fragmentation.  

Table 2.3: Some of the geological attributes that can directly or indirectly be derived from sensor data. 

Geological attributes  Direct methods Indirect methods  

Mineralogy  X X 

Geochemistry  X X 

Grade X X 

Hardness X X 

Ore/waste ratio X X 

Texture X 
 

Lithology 
 

X 

Fragmentation X 
 

Density X X 

 
Imaging or point technologies can provide mineralogical information via direct 

interpretation of the spectra or using data-driven approaches. Besides, information on 
minerals can also be indirectly derived from chemical composition data. The imaging 
techniques that provide mineralogical information include the RGB imagers and infrared 
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hyperspectral imagers. Likewise, the x-ray diffraction (XRD), infrared (e.g., ASD TerraSpec, 
FTIR 4300) and Raman spectroscopy (e.g., IRIS echelle) are among the point mineralogical 
techniques. Mineralogical investigation can describe minerals chemical structure and 
composition. Such kind of description can permit the analysis of the types and amounts of 
elements present in a mineral. Primarily, elemental information can directly be acquired 
using several chemical analysis techniques such as x-ray fluorescence (XRF) and laser-
induced breakdown spectroscopy (LIBS). Imaging theologies are suitable techniques to 
define ore geometry at the mine face or outcrops. Likewise, analysis of rock fragmentation 
can be performed using the imaging techniques, or Radar reflectivity (this topic is discussed 
in detail in Chapter 6). 

 The applicability of sensor technologies for the characterisation of a specific deposit type 
depends on several factors. Such as, the nature of the deposit (material), the maturity of the 
techniques, the operational environment, and the material throughput. Deposit types define 
material properties that are relevant to sensors measurement that the kind of material 
profoundly influences sensor applicability. Technological readiness level is a crucial factor 
for the utilisation of the technology in in-situ or ex-situ applications. Matured technologies 
are desired to ensure rapid practical implementation in mining practices. The operational 
environment is essential in determining the need for ruggedized systems, especially for 
operations in harsh environmental conditions (e.g., underground mine). The data acquisition 
speed of sensor systems required for the analysis of material depends on the martial 
throughput, a high material flow (e.g., conveyor) requires a rapid method that acquires and 
analyses data in few seconds. Thus depending on the aim of application, sensor choice is 
determined by the points as mentioned above, among others. Consequently, based on the 
applicability potential and maturity of the technologies, sensors used in this research are 
RGB imaging, VNIR hyperspectral imaging, SWIR hyperspectral imaging, MWIR, LWIR, 
and Raman Spectroscopy. The technologies are briefly described in the next chapter.  
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3 
SENSOR TECHNOLOGY OPTIONS  

 

This chapter describes the state-of-the-art sensor technologies with particular emphasis on the technologies 
assessed in this study, the material properties the techniques detect and the type of data the sensors produce. 
It also presents the specification and set-up of the technologies used in this study.   
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3.1. INTRODUCTION  

 Sensor technologies operate over a wide range of the electromagnetic spectrum and 
provide information on various aspects of material properties. As indicated in the previous 
chapters, the sensor technologies used in this research are RGB imaging, infrared 
spectroscopy (VNIR, SWIR, MWIR and LWIR), and Raman spectroscopy. The RGB 
imaging, VNIR, and SWIR hyperspectral imaging are among the imaging technologies that 
produce image data. Whereas, the point techniques are the MWIR, LWIR and Raman. 

 Spectroscopy studies the interaction between radiation and matter as a function of the 
radiation wavelength (λ). Spectroscopic analysis usually requires a source light 
(electromagnetic radiation), a disperser that separates the light into its component 
wavelengths and a detector that senses the dispersed light. Spectrometers are the 
apparatuses that produce spectrum in different forms such as absorption, reflection, 
emission, and scattering. For example, absorption spectroscopies measure the loss of 
electromagnetic energy due to its interaction with a sample. This permits the identification 
of material since the energy levels of most of the atoms and molecules are unique and 
identifiable. Examples of the interaction of electromagnetic energy with matter are 
presented in Figure 3.1. The recent development in spectroscopy resulted in state-of-the-art 
sensor technologies that enable rapid and accurate determination of material composition. 
The electromagnetic spectrum and the operating wavelength region of the sensor 
technologies assessed in this study are indicated in Figure 3.2. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 13.1: Examples of the different phenomena (the red lines) that result from the interaction of light 
with matter. The blue lines indicate the incident light. 

       Sensor technologies that produce high-throughput multivariate data are advancing 
(STEINERT, 2021; SPECTRAL Industries, 2021; TOMRA, 2019). Sensors-derived data 
are in current use in a wide range of applications. The characterisation of raw material in 
mining operations is one of the potential application areas. Sensor technologies measure 
different aspects of material properties. Material property is a broad term that includes 
optical, electrical, magnetic, mechanical and other physical properties. A fundamental 
understanding of material characteristics is crucial in selecting suitable sensor solutions for 
operational decision-making in raw material characterisation. Besides, the selection of 
sensors for a specific application requires knowledge of sensor parameters. These 
parameters include operating wavelength range, spatial resolution, spectral resolution, 
accuracy, precision, sensors field of view (spot size), robustness for environmental 

Absorption Specular Reflectance Diffuse Reflectance Transmission 
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conditions (such as vibration, humidity and dust), detection limit and depth of penetration 
(e.g., surface or volumetric measurements). The operating wavelength range of a sensor is 
the window of the electromagnetic spectrum over which the given sensor operates. The 
spatial resolution specifies the pixel size of an image that provide details or the smallest 
addressable element the image holds (the distinct detail in the image). The spectral resolution 
is a measure of sensor ability to resolve spectral features and bands into separate 
components (width of spectral band). Finer spectral resolutions enable the higher resolution 
spectral characteristics of the targets to be captured by the sensor. Accuracy is a measure of 
the closeness of a result to the true or known standard value. On the other hand, precision 
refers to the reproducibility of multiple measurements. Robustness of sensor systems for 
harsh environmental conditions (e.g., vibration, humidity and dust) is essential for in-situ 
applications (e.g., in underground applications). The detection limit of a sensor is the lowest 
quantity of a substance that can be detected by the system with a general confidence level 
of 99%. It is one of the important parameters for the use of sensors in low-grade mines 
since the concentration of minerals or elements of interest are lower in such deposits. Depth 
of penetration is the depth light, or electromagnetic radiation can penetrate a material. 
Whereas, the sensor field of view or measuring spot refers to the size of the measured area 
of a single measurement. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: The electromagnetic spectrum and the different regions of the infrared range.  

      Sets of sensor solutions that are potentially applicable in raw material characterisation 
are available. These techniques include infrared technologies, LIBS, Raman spectroscopy, 
DE-XRT, and XRF. Previous studies indicated the use of sensor technologies for the 
characterisation of material in geological surveys and mining applications. For example, 
Death et al. (2008) showed the potential use of LIBS for on-line compositional 
determination of iron ore samples. Likewise, Kruse (1996) demonstrated the use of SWIR 
for rapid and enhanced production of drill logs and geological maps, as well as in the 
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definition of alteration zones. More recently, Culka et al. (2016) demonstrated the 
applicability of a handheld Raman spectrometer for in-situ detection and discrimination of 
arsenate minerals at outcrops. In another study, Wells and Ramanaidou (2015) assessed the 
utility of Raman spectroscopy in the automated in-situ mapping of iron ore and gangue 
mineralogy. Recent studies show, the use of XRF analysers for on-line in-situ elemental 
analysis of bulk materials (Orbit Technologies, 2017; ThermoFisher, 2017). On the other 
hand, Alov et al. (2010) used an XRF analyser over the conveyor belt to determine the 
quality of the iron ore mixture. These studies, among other numerous publications, indicate 
the potential benefits and opportunities of the use of sensors for raw material 
characterisation in mining operations.  
      In this research, the explored technologies (mentioned above) were assessed to address 
the different geological parameters that are crucial in mining. The rationales behind the 
choice of each technology for the analysis of the outlined geological attributes are presented 
in Table 3.1. The validation of the sensors measurements was performed using the 
conventional laboratory techniques namely XRD, XRF, and inductively coupled plasma-
mass spectrometry (ICP-MS). A brief description of the investigated techniques and the 
validation technologies is presented in the sections that follow. 
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Table 3.1: Summary of the sensor technologies, the analysed geological attributes and the rationale for each 
sensor choice in this work.  

3.2. INFRARED SPECTROSCOPY  

      Infrared spectroscopy is one of the most useful analytical techniques for the evaluation 
of organic and inorganic materials (Chukanov and Chervonnyi, 2016; Griffiths and Haseth, 
2007; Smith, 2011). It is a well-established technique that provides rapid, relatively high 

Sensor 
Technology 

The analysed 
geological 
attributes 

Why this sensor? 

 

RGB 

Imaging 

 

 Mineral mapping 

 Fragmentation 
analysis 

 Ore geometry 
definition 

 

It can be used for mapping of visually distinct minerals, edge 
detection, and geological structures identification.  

  

 

 

VNIR  

 

 Ore‒waste 
discrimination  

 Minerals 
identification  

 

The VNIR exhibits weak spectral signals for most of the 
sulphide minerals. Thus, the technique was assessed for the 

identification of the minerals and separation of ore‒waste 
materials in the polymetallic sulphide deposit. Besides, the VNIR 
region is ideal for the identification of iron oxides; in this study, 
the possibility of identifying the iron oxides in sulphide mineral 
mixture was assessed.   

 

 

SWIR 

 

 Ore‒waste 
discrimination  

 Minerals 
identification 

 

The sulphide minerals do not exhibit spectral features in the 
SWIR region, the featureless nature of the minerals was used to 
discriminate the ore and waste materials. SWIR is an ultimate 
technique for the identification of alteration minerals; thus, it 
was also assessed for the identification of the alteration minerals 
in sulphide matrix.  
 

 

 

MWIR 

 Ore‒waste 
discrimination 

 Elemental 
concertation 
indication 

 Quantitative 
mineralogical 
indication 

 

MWIR is an understudied region of the infrared spectra. Even 
though the sulphide minerals do not show particular absorption 
features in this region, the observed characteristic reflectance 
pattern of the minerals was assessed to establish a relationship 

between the MWIR spectra and the geological attributes (ore‒
waste separation, elemental indication, and quantitative 
mineralogical indication). 

 

 

LWIR 

 

 Ore‒waste 
discrimination 

 Elemental 
concertation 
indication 

 Quantitative 
mineralogical 
indication 

 

The LWIR is suitable for the identification of rock-forming 
minerals and the carbonates. The possibility of detecting the 
waste material minerals (e.g., carbonates and silicates) were used 
for the separation of the ore and waste material. Besides the 
observed characteristic reflectance pattern of the sulphide 
minerals in the LWIR spectra were assessed to establish 
relationships between the LWIR spectra and the geological 
attributes (ore-waste separation, elemental indication, and 
quantitative mineralogical indication). 

 

   Raman  

 Mineral 
identification 

 Ore‒waste 
separation   

Raman is a well-established technique for the identification of a 
wide range of minerals, such as the sulphide, silicates, and 
carbonates minerals. Thus, the technique was assessed for the 
identification of minerals and separation of ore-waste materials.   
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signal to noise ratio spectral data, and highly reproducible analytical measurements. 
Consequently, infrared is widely used in remote sensing, laboratories and field-based 
applications. The technique is a mineralogical technique that provides information on the 
functional groups (e.g., OH and CO3). Then, the information on the functional groups is 
used to identify various type of minerals.  

 Infrared sensors can be passive or active (McGrath and Scanaill, 2013). In the passive 
form, the sensors do not generate or radiate energy for detection; instead, they rely on heat 
detection or measures the infrared light radiated from the material of interest. On the other 
hand, active sensors employ an infrared light source to illuminate the sample. When infrared 
light interacts with a molecule, the bonds between molecule constituents selectively absorb 
the infrared radiation energy at specific wavelengths. The consequent changes in the 
vibrational energy level of the molecules can be observed through signals at particular 
wavelengths in the infrared spectrum. The infrared spectra can be measured as absorption, 
emission and reflection. The technique is also used in determining subtle molecular structure 
variations in a wide variety of minerals. 

 The infrared region of the electromagnetic spectrum extends from λ = 0.7 to 1000 µm 
with a corresponding wavenumber range from 14,285 to 10.0 cm-1 (Smith, 2011; Stuart, 
2004). The spectral range is subdivided into different regions, and defined as NIR (0.7 to 
1.0 µm), SWIR (1.0 to 2.5 µm), and far-infrared (FIR: 15.0 to 1000 μm) (Gupta, 2003; 
Kerekes, 2009; Patrice et al., 2009; Rogalski and Chrzanowski, 2014). Besides, the MWIR 
and LWIR are the subsets of the infrared that correspond to the wavelength ranges of 2.5 
to 7.0 µm and 7.0 to 15.0 µm, respectively (Gupta, 2003; Hackwell et al., 1996; Kerekes, 
2009; Patrice et al., 2009; Rogalski and Chrzanowski, 2014). NIR sensors can provide 
accurate identification and an indication of iron oxides, and sulphide minerals (Spectral 
Evolution, 2015; Szalai et al., 2013). SWIR is one of the most widely used infrared 
technologies in the identification and discrimination of phyllosilicates, sulphates and 
carbonates (Sun et al., 2001). SWIR is commonly employed in the identification of alteration 
minerals associated with mineralization. On the other hand, LWIR permits the identification 
of rock-forming minerals, whereas FIR can be employed in the rare earth mineral analyses 
(Clark, 1999; Karr and Kovach, 1969). The measurable material properties using the 
explored sensor technologies are presented in Table 3.2.  
 

Table 3.2: The operating wavelength range of the explored sensor technologies and measurable material 
properties in this work (based on Chukanov and Chervonnyi, 2016; Gupta, 2003; Hackwell et al., 1996; 
Kerekes, 2009; Patrice et al., 2009; Rogalski and Chrzanowski, 2014). 

Sensor technology  Spectral range  Material property   

RGB Imaging 0.4 to 0.7 µm Colour, Reflection, brightness, 
transparency  

VNIR 0.4 to 1.0 µm Reflection, absorption  

SWIR 1.0 to 2.5 µm Reflection, absorption 

MWIR 2.5 to 7.0 µm Reflection, absorption 

LWIR 7.0 to 15 µm Reflection, absorption, heat 
conductivity, emission  

Raman 0.18 to 1.4 µm Scattering of radiation 
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 The recent development of infrared technologies resulted in portable, rapid, sensitive, 
and versatile systems (Agilent, 2017; Malvern Panalytical, 2020). This dynamic advancement 
leads to an increased establishment of the technique in mining applications such as 
exploration studies, drill core logging, ore sorting, and mineral processing. The other main 
advantage of the infrared technology is its operability in a more extensive spectral range 
since this is essential to allow the characterisation of a great variety of minerals in different 
deposit types. The infrared spectroscopies offer both imaging and point infrared 
spectrometers. This permits the use of the technique in minerals profiling, fingerprinting, 
quantifying of minerals abundance, and mapping of the spatial distribution of minerals. 
Thus, the technique has great potential and benefits for material characterisation in mining 
operations. Some of the potential use of the infrared, RGB and Raman techniques in 
material characterisation are presented in Table 3.3. A detailed description of the 
characteristics of the infrared techniques, their potential applications and benefits in material 
characterisation is presented in the sections that follow. 

Table 3.3: Some of the potential minerals that can be identified with different sensors (based on Haskin et 
al., 1997; TERRACORE, 2016; TOMRA, 2020; von Ketelhodt and Bergmann, 2010; Wang et al., 1995). 

 

Sensor 
 

Minerals that can be detected or identified  

 
RGB Imaging 

 Iron oxides e.g., hematite  

 Sulphide minerals e.g., galena and pyrite 

 Industrial minerals e.g., talc 

 
VNIR 

 Fe oxides e.g., hematite and goethite  

 Sulphides e.g., pyrite, galena  

 Silicate e.g., olivine and pyroxene  

 
 

SWIR 

 Clay minerals e.g., illite and kaolinite  

 Sulphate e.g., alunite and gypsum  

 Chlorite e.g., clinochlore  

 Mica e.g., muscovite  

 Amphibole e.g., actinolite 
 

MWIR 
 Sulphates e.g., alunite 

 Silicate e.g., chlorite and epidote 

 
 

LWIR 

 Silicate e.g., olivine, pyroxene and silica 

 Phosphate e.g., apatite  

 Carbonates e.g., calcite and dolomite  

 Sulphate e.g., gypsum and alunite  

 
 

Raman 

 Sulphides e.g., sphalerite, pyrite, chalcopyrite, arsenopyrite  

 Carbonates e.g., calcite and dolomite 

 Sulphate e.g., gypsum, anhydride  

 Silicate minerals  

 Iron oxides 
 

3.2.1. VISIBLE AND NEAR-INFRARED (VNIR)  

      The VNIR sensor is a well-established technology that operates over the 0.4 to 1.0 µm 
wavelength range of the electromagnetic spectrum. VNIR combines the full visible region 
with the adjacent portion of the infrared. Visible light and near-infrared light is absorbed 
and emitted by molecules and atoms as the electrons move from one energy level to another 
(Clark, 1999; Hunt, 1977). The electronic molecular process produces the spectral features 
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within the VNIR range and allows the identification of minerals. VNIR technology provides 
highly repeatable analytical measurements, with an excellent spectral resolution. The current 
advancement of the VNIR technology resulted in rapid and portable systems that acquire 
data with nanoscale spatial resolution. Both point spectrometers and hyperspectral imagers 
that operate in the VNIR range of the electromagnetic spectrum are available from multiple 
manufactures. For example, Malvern Panalytical, (2020) and SphereOptics, (2019), 
manufacture portable point VNIR systems. Manufactures such as Specim offer 
hyperspectral imagers that operate in the VNIR range (Table 3.4). The portability of the 
available systems ensures the possibility of impeding the sensor in available platforms. 
VNIR is insensitive to smaller particles like dust and water in the air (Nienhaus et al., 2014). 
The technology has great potential for in-situ online analysis materials in mining 
applications.  

 The VNIR sensor operates over a limited spectral range of the electromagnetic 
spectrum; however, it provides valuable information about some of the minerals such as 
iron oxides. For example, Haest et al. (2015) and Szalai et al. (2013) used VNIR sensors to 
characterise Fe-bearing minerals. In another study, the technique was used in the separation 
of metal ores and waste materials (Shankar, 2015; Spectral Evolution, 2015). In another 
study, Bolin and Moon, (2003) showed the potential use of the technology for the 
identification of some of the sulphide minerals in ultramafic platinum-palladium ores. 
Besides, high-speed VNIR sensors are available for drill core scanning as well as sensor-
based sorting applications. For example, researchers and manufacturers indicate the 
potential use of the technology for sorting of materials (Goetz et al., 2009; Robben and 
Wotruba, 2019; TOMRA, 2019). 

 
Table 3.4:  Examples of portable VNIR spectrometers and their specifications (Source: Malvern Panalytical, 
2020; Specim, 2019). 
 

 

Data 
type 

Picture Manufacture Dimension Weight Operating 
wavelength range 
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Malvern 
Panalytical 

 
 

90 x 140 x 215 
mm 

 
 

1.2 kg 

 
 

0.32 - 1.07 µm 

Im
ag

er
 

 

 
 

Specim 

 
 

207 x 91 x 74 
mm 

 
 

1.3 kg 

 
 

4.0 - 1.0  µm 

Im
ag

er
 

  
 

Specim 

 
 

150 x 71 x 85 
mm 

 
 

1.4 kg 

 
 

0.4 - 1.0 µm 
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3.2.2. SHORT-WAVE INFRARED (SWIR)  

 SWIR sensors are well-established technologies that operate over the spectral range of 
1.0 to 2.5 µm (Table 3.2). In SWIR spectroscopy, absorption features are mainly related to 
overtones of stretching vibrations and combinations of stretching and bending vibrations 
(Clark, 1999). These diagnostic overtones and combinations are used for fingerprinting of 
materials. In the spectral range of SWIR, the molecular bonds that produce characteristic 
absorption features include H2O, OH, CO3, NH4, Al–OH, Fe–OH and Mg–OH 
(Thompson et al., 1999; AusSpec, 2008). Absorption in the SWIR region is related to the 
molecular bonds, whereas, the VNIR absorption is associated with sub-atomic transitions.  
      The SWIR is one of the most widely used infrared technologies that allow a rapid and 
non-destructive analysis of materials. The technique is applicable for the analysis of a wide 
range of minerals such as hydroxylated silicates, phyllosilicates, carbonates, sulphates, and 
ammonium-bearing minerals (AusSpec, 2008; Clark, 1999; Herrmann et al., 2001; Sun et al. 
2001). It is mainly used for the investigation of the alteration minerals, therefore; it can also 
be used for the exploration of hydrothermal deposits through the detection of minerals 
resulted from hydrothermal alteration (Thompson et al., 1999). Numerous previous studies 
indicate the use of the technique for mineralogical studies, such as in mineral mapping 
(Harraden et al., 2013; Herrmann et al., 2001; Kruse and Perry, 2013), drill core logging 
(Kruse, 1996), the indication of mineralogical concentration on moving conveyor belt 
(Goetz et al., 2009), and separation of ore and waste materials (Dalm et al., 2017).  

 Multiple manufactures supply laboratory-based and mobile SWIR range imaging and 
point spectrometers. Some examples of portable point SWIR analysers include ASD 
TerraSpec and PSR+ 3500 (Malvern Panalytical, 2019; SphereOptics, 2019). On the other 
hand, Corescan, Photonics, and Specim manufacture the SWIR hyperspectral imagers 
(Corescan, 2019; Photonics Online 2019; Specim, 2019). Examples of portable point and 
imaging SWIR spectrometers are shown in Table 3.5. The SWIR imagers are mainly used 
for rock chip samples and drill cores scanning whereas the portable point SWIR analyser 
can be used for drill cores, rock chips, or in-situ analysis of materials. Thus, the technique 
has great potential for use along the mining value chain, such as in mine face mapping, drill 
core logging and material sorting (Haest et al., 2015). The dynamic development of the 
technique, together with its enormous applicability potential ensures its potential benefits in 
mining applications.  
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Table 3.5: Examples of SWIR point spectrometer that simultaneously acquire spectral data in VNIR and 
SWIR ranges, and SWIR imager (Source: Malvern Panalytical, 2019; Specim, 2019). 

 

3.2.3. MID-WAVE INFRARED (MWIR)  

 The MWIR portion of the electromagnetic spectrum covers the wavelength region 
between 2.5 to 7.0 µm (Table 3.2). MWIR radiation triggers a change in the vibrational 
energy level of the molecules and causes molecular vibrations. The signals from the 
molecular vibrations are measured as the MWIR spectrum. Vibration mode is different for 
each molecule that the infrared spectrum can be analysed to get information on different 
functional groups (Hollas, 2004; El-Azazy, 2018). The functional groups can further be 
related to mineralogy. MWIR is the region in which many fundamental hydroxyl groups 
stretching vibration occurs (Li et al., 2015; Coates, 2000).  

 The MWIR is the least-explored region of the electromagnetic spectrum when compared 
to the other infrared techniques. This is mainly due to the limited historical instrumental 
development of the MWIR sensor. Most of the existing MWIR systems are designed 
integrated with the LWIR sensors. For example, Table 3.6 shows specifications of a point 
spectrometer that acquires MWIR and LWIR data simultaneously, and MWIR imagers, 
respectively. Recently, portable, rapid and non-destructive MWIR sensors that acquire both 
point and image data are emerging (Agilent, 2017; FLIR, 2019; Specim, 2019; SphereOptics, 
2020; TELOPS, 2019). Recent studies indicated the potential use of the technique for the 
characterisation of organic and inorganic materials in different applications (Li et al., 2015, 
Guatame-Garcia et al., 2018; Yitagesu et al., 2011). However, in raw material 
characterisation, the MWIR is still an understudied region of the electromagnetic spectrum.  
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Table 3.6: Examples of MWIR and LWIR spectrometers and their specifications. The point spectrometer 
collects MWIR and LWIR data simultaneously. The imagers acquire data in MWIR region. (Source: Agilent, 
2017; FLIR, 2019; Specim, 2019).   
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74 x 46 x 61 
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g 

 
 
 
3.4 to 4.9 
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Frame rate 
60 Hz 

 

3.2.4. LONG-WAVE INFRARED (LWIR)  

 The LWIR technologies operate over the 7.0 to 15 µm wavelength range of the 
electromagnetic spectrum (Table 3.2). The working principle of the LWIR is similar to the 
MWIR technique. Like other infrared technologies, LWIR is a molecular technique that 
provides information on the functional groups. It measures the reflectance, absorbance, 
transmittance and thermal emissivity of materials. These properties differ among various 
types of materials. Thus, the technique can be used for the characterisation of a wide range 
of materials. The wavelength range from 3 to 14 µm is also known as the thermal infrared 
region. Thus, the MWIR and LWIR regions are also referred to as the first and the second 
thermal imaging bands, respectively (Holst, 2000). MWIR and LWIR range thermal imagers 
that acquire emissivity of materials are available from multiple suppliers (FLIR, 2019; 
Quantum Design, 2019; SIERRA-OLYMPIC, 2019). The thermal imagers can be used for 
military applications (Andersson, 2017), food quality assessment (Teena and 
Manickavasagan, 2014) as well as mineral mapping (Aslett et al., 2018; Riley and Hecker, 
2013). 

 The LWIR sensors are widely used for mapping of minerals in remote sensing 
applications (Ayling et al., 2016; Gordon et al., 2016; Hecker et al., 2019; McDowel et al., 
2015; Notesco et al., 2016; Tanya et al., 2019). However, there are also laboratory-based 
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LWIR analysers (e.g., TELOPS’s Hyper-Cam,), drill core loggers (e.g., HyLogger, Specim’s 
AisaOWL) and field-based LWIR scanners such as TELOPS’s Hyper-Cam (TELOPS, 
2019; Specim, 2019; Schodlok et al., 2016). The recent development of the technology 
resulted in rapid and portable (point and imaging) LWIR spectrometers that can be used for 
in-situ analysis of materials (Agilent, 2017; Specim, 2019). An example of a portable LWIR 
analyser is shown in Figure 3.3.  

 The LWIR technique is a useful tool for the identification of rock-forming minerals 
(most of the silicates), carbonates, sulphates and phosphates (Clark, 1999; Lorenz et al., 
2018; Tanya et al., 2019; TERRACORE, 2016). In LWIR spectra, the silicon-oxygen bond 
(Si–O) stretching vibrations is the dominant spectral features (Baldridge et al., 2009). This 
makes it suitable for the analysis of feldspars, quartz, as well as other silicates. Numerous 
studies indicated the usability of the techniques for mineralogical analysis. For example, 
Hecker et al., (2012) used LWIR to determine the minerals modes of granitoid rocks. 
Similarly, Kuosmanen et al. (2015) applied LWIR for the identification and prediction of 
minerals compositions in rock samples. In another study, the technique was used for 
mapping rock-forming minerals that are indicative of sedimentary and meta-sedimentary 
lithology (Aslett et al., 2018). The recent development of the technology coupled with 
greater applicability potential indicates the usability of the technique for in-situ on-line 
analysis of materials in mining operations.  

 

 

 

 

 

 

Figure 3.3: An example of a LWIR imager (Source: Specim, 2019). 

3.3. RAMAN SPECTROSCOPY  

       Raman spectroscopy is a well-established laser-based molecular technique for the 
analysis of both organic and inorganic materials. The technique can be used for the 
identification of chemical composition, determination of sample stress and characterisation 
of molecular structure (Heintz, 2014; HORIBA Scientific, 2015). The excitation wavelength 
(laser) for Raman spectroscopy ranges from ultra-violet through visible to near-infrared of 
the electromagnetic spectrum. The technique uses a monochromatic laser beam to irradiate 
a sample with a particular well-defined wavelength. The laser interacts with the functional 
groups of the sample molecules and originates a scattered light. Most of the scattered light 
has the same frequency as the incident laser, and this is called Rayleigh scattering. The 
scattered light with a frequency different from that of incident light is called Raman 
scattering (White, 2005). The Raman scattered light is detected by the spectrometer to 
produce the Raman spectrum. Thus, the peaks in the spectrum are the scattered light that 
is shifted from the Rayleigh peak. These shifts produced by Raman scattering are called 
stokes and anti-stokes shifts. Stokes peaks are those with wavelengths longer than the 

Dimension: 100 x 143 x 185 mm 

Weight: 3.5 kg 

Data acquisition speed up to 60 fps 

Operating wavelength: 8 – 12 µm 
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incident light. Whereas, anti-stokes peaks are those peaks whose wavelengths are shorter 
than that of the incident light. The intensity of the stokes peaks is higher than that of the 
anti-Stokes peaks. Hence, the stokes peaks are used in Raman spectrometry (Bumbrah and 
Sharma, 2016). Figure 3.4 shows a schematic sketch of a Raman spectrum with the stokes 
and anti-stokes peaks. The width and intensity of the resulting Raman peaks are influenced 
by the arrangement, symmetry, and the strength of chemical bonds of atoms in the unit cell 
(White, 2005). Besides, the wavelength bands at which the Raman shift occur are used to 
identify materials using the characteristic fingerprinting pattern.  

 

 

 

 

 

 

 

Figure 3.4: A schematic sketch of a Raman spectrum with the Stokes and anti-Stokes peaks (Source: White, 
2005). 

      Raman spectra of minerals reveal sharp and mainly non-overlapping features. This 
makes Raman a powerful technique for mineralogical analysis, especially in the presence of 
a mixture (Gaft et al., 2005). The technique can be used for the identification of a wide range 
of minerals such as iron ore oxides, carbonates, silicate, sulphides and sulphate (Gaft et al., 
2005; Griffith, 1975; Mernagh and Trudu, 1992; White, 1975). On the other hand, Raman 
has a weak signal than the infrared technologies. Thus, noise might obscure useful Raman 
peaks and results in a low signal-to-noise ratio. However, it is an excellent complementary 
technique that provides highly specific molecular fingerprints of material through non-
destructive analysis. Raman spectroscopy can be used for remote analysis of materials (Gaft 
et al., 2005). The recent development of the technique offers portable high-resolution 
analysers that acquire reliable data at high speed. This shows the potential usability and 
benefits of the technique for rapid and in-situ analysis of materials in mining applications. 
For example, drill core and chip scanning Raman systems are currently in use in the iron ore 
industry (Ramanaidou et al., 2015). Figure 3.5 shows an example of a portable Raman system 
applicable in material characterisation.  
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Figure 3.5: An example of a portable IRIS echelle Raman spectrometer (Source: Spectral industries, 

2020).  

3.4. RGB IMAGING  

 The RGB imaging sensors operate in the visible range (0.4 to 0.7 μm) of the 
electromagnetic spectrum. RGB sensor is a multispectral sensor that provides RGB images 
(often called true colour images). The colour of each pixel of an RGB image is determined 
by the combination of the red, green and blue intensity values. RGB imagers characterise 
the reflectance property of a material and deliver three (red-green-blue) spectral band 
information often using three independent charge-coupled devices (CCD sensors). As an 
alternative, some cameras capture the three-band information using complementary metal-
oxide-semiconductor (CMOS) technology. An RGB camera captures images using a line 
scan technique and a frame (area scan) sensor. For image capturing, frame cameras use a 
two-dimensional array of sensors. Line scan cameras have a 1-dimensional array of sensors. 
RGB images are stored as 24-bit images, where the red, green and blue components are 8 
bits each. Therefore, RGB images can potentially show 16 million colours.  

 RGB sensors are matured and well-established technologies with rapid data processing 
capability. RGB imaging systems are easy to use, portable, fast, non-destructive, low-cost, 
and do not need complicated data analysis. Thus, its portability makes it ideal for embedding 
and surface mounting in different platforms. One potential such application is sidewall 
imaging at a mine face. Moreover, RGB sensors are robust to environmental conditions and 
have remote sensing capability that they can be used for in-situ applications in various 
environments. Multiple suppliers manufacture RGB sensors as consumer digital cameras. 
Therefore, commercial availability is not a concern. 

 The RGB imaging sensor is sensitive to colour differences or visual appearances. Thus, 
it has great potential for mapping visually distinct minerals. RGB cameras can be used for 
creating orthomosaic maps that show the entire area under investigation. This indicates the 
potential use of the technique for mapping minerals at mine faces or outcrops. The 
technology can be used for the mapping of minerals/lithological units. It produces images 
that can be seen by human eyes. The data becomes instantly understandable to viewers or 
operators, e.g., for quality control applications. In general, the technology can be directly 
applied in colour detection or indirectly for shape recognition of geological units.  

 The application of RGB images for material characterisation is very limited; so far, it is 
used in recycling, sorting and agricultural applications. TOMRA (2020) showed the use of a 
high-spatial-resolution and colour sensitive RGB camera for minerals (talc and calcite) 
sorting. Other studies showed the potential use of the RGB imagers for automatic detection, 
classification of plant leaf diseases and crop monitoring (Singh and Misra, 2017; 

Dimension: 220 x 195 x 80 mm (incl. CMOS camera) 

Weight: 3 kg (incl. CMOS camera) 

Data acquisition speed up to few seconds 
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Lebourgeois, et al., 2008). The technology can be used for colour sorting of different 
material streams and surface inspection of natural material (LLA Instruments GmbH, 2017; 
STEINERT, 2020; REDWAVE, 2020; Richter et al. 2016). 

3.5. VALIDATION CHEMICAL ANALYSIS  

 The conventional laboratory-based techniques namely XRF, ICP-MS and XRD were 
used for the validation of the material characterisation results from the investigated sensor 
technologies in this work. The ICP-MS and XRF measurements were performed using 115 
and 60 samples, respectively. Whereas, the XRD measurements were performed using 56 
samples. Descriptions of each of the validation techniques are presented in the sub-sections 
that follow.   

3.5.1. X-RAY FLUORESCENCE (XRF)   

 XRF is a well-established analytical technique used to determine the elemental 
composition of materials. Easy of automation and versatility are the most important features 
of the technology. The recent development and commercialisation of the XRF analyser, 
offer portable and ruggedized systems that can be utilised in harsh environments (e.g., 
underground mining operations). The technology offers a wide range of applications within 
diverse fields. For example, in mineral exploration, ore grade control, mineral processing, 
mine waste characterisation, material recycling, and environmental soil screening. Portable 
and laboratory-based XRF analysers are available from multiple suppliers. XRF is also a 
standard geochemical analysis method in analytical laboratories that analyse multiple major 
and minor elements simultaneously down to the ppm level. In this research, a conventional 
laboratory-based Malvern PANalytical Axios mAX wavelength dispersive x-ray 
fluorescence (WD-XRF) system was used to acquire quantitative elemental information. Li-
borate fusion was used to achieve a high detection limit and upper limit. This method has 
no recovery issue that may exist with acid digestions, especially when the sulphide content 
is high within the sample.  

3.5.2. INDUCTIVELY COUPLED PLASMA-MASS SPECTROMETRY (ICP-MS) 

 ICP-MS is the most widely used method for the determination of elemental 
concentrations in both organic and inorganic samples. It is a well-established laboratory-
based technique capable of detecting most of the periodic table elements down to the ppm-
level (Taylor, 2001; Thomas, 2008). The technique is used for the determination of elemental 
concentrations in broad subject areas, such as environmental monitoring, metallurgy, 
geochemical analysis, and clinical researches. In this research, a conventional laboratory-
based ICP-MC was used to acquire quantitative elemental information. Aqua Regia partial 
digestion was used to enhance the detection limit and maximise the number of analysed 
elements. This method is recommended for multi-elemental analysis of base metal–
sulphides. 

3.5.3. X-RAY DIFFRACTION (XRD) 

 XRD is a conventional laboratory-based technique for qualitative and quantitative 
analysis of a wide range of materials. The technique provides detailed information about the 
chemical composition, grain size, and structure of crystalline materials. The recent 
development of the technology resulted in portable XRD systems that allow a rapid in-situ 
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analysis of major and minor mineral components, for example, Olympus’s TERRA II 
Portable XRD analyser (OLYMPUS, 2019). In this research, qualitative and semi-
quantitative mineralogical data were acquired using a laboratory-based XRD analyser. The 
XRD data were used to validate the analysis results of the explored sensor technologies. 

3.6. INSTRUMENTS USED IN THIS STUDY  

 The specifications of the spectrometers used in this work and the types of data they 
produced are described in Tables 3.7 and 3.8, respectively. The RGB camera used in this 
study is a commercially available consumer Nikon camera (Figure 3.6). The raw data from 
RGB imagers are image data, with three bands of information (multivariate) and the R-G-
B values are continuous. Whereas, the classified RGB images (the mineral maps) show 
qualitative categorical data (mineral types). Thus, RGB raw data is transformed into discrete 
information. The VNIR and SWIR hyperspectral images were acquired using a Specim’s 
Lab Scanner. The VNIR and SWIR images were recorded using a single set-up but separate 
detectors. Pictures of the sensors and the specifications are presented in Figure 3.7 and 
Table 3.7, respectively. The SWIR hyperspectral imagers provide multivariate (288 bands) 
image data. Similarly, the VNIR hyperspectral camera provides multivariate (196 bands) 
image data. On the other hand, the point MWIR and LWIR data are continuous multivariate 
data with 5500 and 1691 variables, respectively. Two Raman spectrometers were 
investigated, one is the Bruker’s Raman microscopy, and the other one is the IRIS echelle 
Raman spectrometer. The laser sources and other specification of the Raman systems are 
presented in Table 3.7. Raman spectroscopy provides a point continuous multivariate data 
and the Raman data used in this study has 2907 variables. 

Table 3.7: An overview and specifications of the sensors used in this study.  

 Sensor Manufacturer Spectral 
range 

 Spectral 
resolution 

Image size 
(px) 

   Spatial 
resolution 

Bands 

R
G

B
 

Im
a
g

in
g

  D7100 
digital 
camera 

Nikon 0.4 to 0.7 
µm 

 - 6000 x 4000 
px frame 

0.25 mm    3 

In
fr

a
re

d
 

PFD-65-
V10E 

Specim 0.4 to 1.0 
µm 

3 nm 656 px per line 0.28 mm 196 

SWIR3 Specim 1.0 to 2.5 
µm 

12 nm 384 px per line 0.28 mm 288 

FTIR 4300 Agilent 1.9 to 
16.67 µm 
(5200 to 
600 cm-1) 

4 cm-1 Point 
measurement 

~ 2.0 mm - 

R
a
m

a
n

 

Raman 
microscopy 

Bruker 0.18 to 
0.8 µm 

(785 nm 
and 532 
nm laser 
sources) 

3 cm-1 Point 
measurement 

1 mm - 

IRIS echelle 
Raman 
spectrometer 

 

SPECTRAL 
Industries 

0.35 to 
0.8 µm 

(532 nm 
laser 

source) 

0.07 to 0.3 
nm 

Point 
measurement 

1 mm - 
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Table 3.8: Summary of the data types and data volumes of the sensor technologies used in this study.     

 

 

 

 

 

Figure 3.6: Photograph of the Nikon RGB camera used in this study.  

 
 

 

 

 

 

Figure 3.7: Specim’s (a) VNIR, and (b) SWIR hyperspectral imagers used in this work, the cameras were 
mounted on LabScanner stage (Source: Specim, 2019). 

 A modern Fourier-transform infrared spectrometer (FTIR) has considerable advantages 
over other infrared spectrometers. For example; it has improved the quality of infrared 
spectra (a higher signal to noise ratio), short data acquisition time, higher accuracy, higher 
precision, wider scan range and high resolution (Agilent, 2017; Chemistry libretexts, 2017; 
Perkins, 1987; Smith, 2011; Stuart, 2004). Advances in technology now permit the 
development and application of portable instrumentation. This indicates that the technology 

Sensors Operating 

Wavelength (µm) 

Data types Data volume per a single 

measurement 

RGB Imaging 0.4 - 0.7 Image  Multivariate        

(3 bands)  

Continuous   Per 1 x 1 m2 area  ~ 13 

MB 

VNIR Hyperspectral 

Imaging 

0.4 – 1.0 Image  Multivariate   

(196 bands) 

Continuous  Per a rock chip sample ~ 

239 MB 

SWIR Hyperspectral 

Imaging 

1.0 – 2.5 Image Multivariate   

(288 bands)  

Continuous Per a rock chip sample ~ 

215 MB 

MWIR 2.5 - 7.0 Point Multivariate  

5500 variables 

Continuous Per a single measurement 

~ 130 KB 

LWIR 7.0 – 15.0 Point Multivariate  

1691 variables 

Continuous Per a single measurement 

~ 50 KB 

RAMAN 0.24 – 1.06 Point Multivariate 

2907 variables 

Continuous Per a single measurement 

~ 124 KB 

Dimension: 135.5 x 106.5 x 76 mm 
Weight: ~ 0.68 kg 
Data acquisition speed up to 2 seconds 

Dimension: 470 x 176 x 178 mm 
Weight: 14 kg 
Data acquisition speed up to 450 fps 

a) b) 

Dimension: 231 x 80.5 x 78 mm 
Weight: 1.8 kg 
Data acquisition speed up to 150 fps 
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has the potential for real-time (in-situ) measurement of mineralogy (Agilent, 2017). In this 
study, Agilent FTIR 4300 handheld spectrometer was used to collect the MWIR and LWIR 
data, simultaneously. The instrument is depicted in Table 3.6, and the specification is 
presented in Table 3.7. 
      Overall, sensor data provide information about the different aspects of material 
properties. This information is crucial in diverse applications, including mining. However, 
not all-essential information can directly be interpreted from the spectral since the required 
information cannot directly be observed in the spectral data. Therefore, there is a need for 
ultimate methodological approaches for a better understanding and maximised analysis of 
sensor outputs. These methodological approaches could be the multivariate data analysis 
methods and data fusion approaches. The next two chapters describe the test case area and 
the methodological approaches developed in this study, respectively. 
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 4 
MULTIVARIATE ANALYSIS TECHNIQUES 

AND DATA FUSION  
 

This chapter describes the general workflow in this research. It elaborates on the applied multivariate 
analysis techniques and the implemented exploratory data analysis. It also discusses the developed data fusion 
concept and provides some insight into the different levels of data fusion.  
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4.1. INTRODUCTION  

      The general methodological approach developed as a part of this research is a multi-
step process that incorporates the design of experiments (the experimental scenarios), 
exploratory data analysis, data modelling and multi-block analysis using data fusion 
techniques. Possible experimental scenarios were formulated to address the main research 
objective. These scenarios are the specific objectives discussed in Chapter 1. The exploratory 
data analysis task includes pattern recognition, data pre-processing, outlier detection and 
data preparation. Following the exploratory data analysis, data modelling was performed to 
establish a relationship between the spectral signals from the different sensors and the key 
geological attributes. These include the use of linear and non-linear techniques for the 
prediction and classification of materials. The sensor data type and the objective of the 
analysis guided the choice of the analysis technique. Consequently, the usability assessment 
results from the individual sensors promoted the development of a data fusion concept that 
realizes a fusion of blocks at different levels (e.g., low- and mid-level). The concept was 
implemented and validated using multiple data sources and validation datasets. The details 
of the methodological approaches applied for the analysis of each sensor output are 
presented in the corresponding chapters. In this chapter, the general workflow, the 
multivariate analysis techniques, the exploratory data analysis and the data fusion approach 
are described (Figure 4.1 and 4.2). 
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Figure 4.1: Simplified overview of the general research workflow. It includes four major steps: setting 
experimental scenarios, exploratory data analysis, modelling of the individual data blocks and multi-block 
analysis using a data fusion approach.  

4.2. MULTIVARIATE ANALYSIS TECHNIQUES 

      Multivariate data analysis involves statistical and mathematical methods to process and 
evaluate large amounts of variables (Brereton, 2007; Mellinger, 1987; Miller and Miller, 2000; 
Roussel et al., 2014). These variables can be spectral data that are multivariate in nature. In 
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spectral data analysis, multivariate techniques correlate the physical properties of the 
material of interest to the spectral data. Thus, multivariate analysis is a useful technique that 
plays a significant role in material characterisation. For example, spectral interpretation or 
identification of minerals or elements using spectral data focuses on the analysis of each 
wavelength at which the diagnostic mineral features occur. However, attributed to various 
factors such as matrix effects or lower signals of the minerals, identification of the diagnostic 
features is sometimes challenging. In such cases, multivariate analysis can be the best 
alternative since it permits the use of the entire spectrum (much more information) at once 
to enable a better insight into the spectral data. Besides, multivariate analysis allows 
classification and quantitative analysis of materials. Thus, it is a useful method to understand 
the chemical composition of a material. Overall, multivariate techniques will enable the 
analysis of highly complex multivariate data to solve various real-world problems. 
Consequently, there is numerous application of the methods in a wide range of areas, such 
as, in material characterisation (Abedi et al., 2013; Death et al., 2008; Hecker et al., 2012; 
Zuo and Carranza, 2011), in petroleum reservoir characterisation (Scheevel and Payrazyan, 
2001), and food quality analysis (Bro et al., 2002; Roussel et al. 2014). 
      Several multivariate data analysis techniques are available to allow classification analysis, 
multiple regression analysis, and principal component analysis (Mishra and Datta-Gupta, 
2018; Roussel et al., 2014). These techniques can broadly be categorized into “supervised” 
or “unsupervised” learnings (Mishra and Datta-Gupta, 2018). In supervised learning, 
models are trained using labelled data that external supervision is required. The technique 
marks inputs to known output and can resolve both regression and classification problems. 
Whereas, unsupervised learning requires no prior information (no supervision) to train 
models. It identifies pattern and structures to solve classification and association problems. 
Thus, it discovers output based on trends. Hence, the classification techniques can be 
“supervised” or “unsupervised”. In the supervised classification techniques, the group 
membership is assigned to a given dataset based on a prior classification (Mishra and Datta-
Gupta, 2018). Such kind of classification is also known as discriminant analysis. On the 
other hand, unsupervised classification techniques (i.e., commonly known as cluster 
analysis) partition or cluster the data into relatively similar entities based on the 
characteristics of the data. Therefore, such kind of classification techniques does not require 
prior information. 
      Multivariate techniques can also be linear or non-linear. Linear techniques handle the 
linear relationship between the dependent and independent variables. However, some 
complex real-world problems might not be defined using linear relationships. In such cases, 
non-linear techniques that take different forms are required. The other crucial multivariate 
analysis technique is a principal component analysis. This technique enables data 
dimensionality reduction to allow data visualisation and pattern recognition in a reduced 
dimensional space. The supervised and unsupervised classification techniques considered in 
this study are partial least squares – discriminant analysis (PLSR-DA), K-means, maximum 
likelihood (ML), minimum distance (MD), and spectral angle mapper (SAM) Figure 4.2. 
Whereas, the linear and non-linear regression techniques are the partial least squares 
regression (PLSR), support vector machine (SVM) and principal component regression 
(PCR) Figure 4.2. The types of data used in this work are image and point spectral data 
produced by the assessed technologies. A detail description of these data types is presented 
in Chapter 2. Consequently, the different data pre-processing and multivariate techniques 
applied for each data type are presented in Figure 4.2. The figure also shows the methods 
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used for the fusion of multiple data blocks. Detail descriptions of the above-mentioned 
techniques and the data fusion methodological approach are presented in the sub-sections 
that follow.  
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Figure 4.2: Overview of the pre-processing and multivariate techniques applied at the different 
methodological steps. The diagram also shows the methods used in the data fusion approach.  

 
 

4.2.1. PRINCIPAL COMPONENT ANALYSIS  

       Principle component analysis (PCA) is a dimension-reduction tool that transforms 
multiple (possibly) correlated variables into a smaller set (uncorrelated variables) that still 
retains most of the important information (Eriksson et al., 2013; Esbensen and Geladi, 2009; 
Jolliffe, 2002; Yang, 2019). It reduces data dimensionality by computing new axes called 
principal components (PCs). PCs are linearly uncorrelated variables that are orthogonal to 
each other and describe complementary information. The first PC represents most of the 
variations in the data, and each succeeding component describes as much of the remaining 
variation in the original data. Thus, PCA is a feature extraction technique that expresses 
information as a set of PCs. It allows visualisation, data reduction, classification, trend 
analysis, outliers’ detection and pattern recognitions of multivariate data. Thus, it is the most 
fundamental multivariate data analysis method for effective exploratory data analysis. The 
other important aspect of the technique is its flexibility for the analysis of datasets with 
missing values, multicollinearity, categorical data, and imprecise measurements (Howard et 
al., 2015). 
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4.2.2. K-MEANS  

      The K-means clustering is a one of the most commonly used and efficient unsupervised 
classification technique (Jain et al., 1999; McCool et al., 2012). It is used for clustering of 

unlabeled data (e.g., data without defined classes or groups) into 𝑘 clusters.  When applying 

this method, 𝑛 observations are assigned to 𝑘 clusters, using the centroid of the clusters and 
minimising the sum of squared errors (Jain et al., 1999; Kaufman and Rousseeuw, 2005) as 
shown below 

J =  ∑ ∑(𝑥𝑖 − 𝑚𝑗)
2

,

𝑖∈𝐶𝑗

𝑘

𝑗=1

 

where mj = ∑i∈Cj xi/nj denotes the cluster centroid of Cj, nj is the number of points in 

Cj and (x1, …, xn) = X represents the data matrix.  

 The algorithm finds groups in the data based on feature similarity and the number of 

groups is determined by the variable 𝑘. It involves defining a target number of clusters (i.e., 
the number of centroids) required in the analysis and works iteratively to reassign each data 

point to one of the 𝑘 groups. K-means is an iterative algorithm that allocates every data 
point to the nearest group by minimising the in-cluster sum of squares. The technique 
identifies non-overlapping subgroups (clusters) in the data using similarity measures, such 
as Euclidean-based distance. Thus, it is a useful tool that allows finding hidden patterns or 
grouping structures in data.    

 

4.2.3. PARTIAL LEAST SQUARES REGRESSION (PLSR) 

      PLSR is a data prediction technique commonly applied in multivariate data analysis. It 
maximises the covariance between the predictor (X) and the response (Y) blocks, whereby 
the latent variables explain the variability of X with maximal Y correlation (Boucher et al., 
2015). It also allows identifying new predictor variables, called PCs, and the optimal PCs for 
the proposed linear relationship (Noonan, 2017). Therefore, the latent variables in X can be 
used to predict the latent variables in Y. While PCA is utilised to extract PCs that describe 
variations in the data, PLSR allows PCs to be correlated with the response (Y) to compute 
latent variables (LVs). PLSR finds the multidimensional direction in the predictor (X) space 
that explains the maximum multidimensional variance direction in the response (Y) space. 
The technique is useful for reducing data dimension into LVs, thus reducing the complexity 
of multivariate data. A multivariate PLSR model is generally expressed as 

𝑋 = 𝑇𝑃𝑇 + 𝐸, 

 𝑌 = 𝑈𝑄𝑇 + 𝐹, 

where X denotes an n × m matrix of predictors, Y denotes an n × p matrix of responses; 
T and U represents n × l matrices that are, respectively, projections of X (the X score, factor 
matrix) and projections of Y (the Y scores); P and Q are, respectively, m × l and p × l 
orthogonal loading matrices; and matrices E and F are the error terms. 

 PLSR is a useful tool that can handle collinear (correlated) variables, noisy, missing 
variables (in both the response and predictor) and also simultaneously model several 



CHAPTER 4 

58 

 

response variables (Wold et al., 2001). It is one of the computationally efficient techniques 
for modelling of datasets with high number of variables to sample ratio.  

4.2.4. PARTIAL LEAST SQUARES – DISCRIMINANT ANALYSIS (PLS-DA) 

      PLS-DA is a supervised classification method, used to optimise separation between 
different classes (Barker and Rayens, 2003; Lee et al., 2018; Christin et al., 2013). PLS-DA 
is a variant of PLS regression where the response variable is categorical. Development of 
the predictive PLS-DA model comprises two main steps: the first one is the construction 
of the PLS components (i.e., dimension reduction) and the second step is a construction of 
the prediction model (discriminant analysis). Therefore, it combines the dimensionality 
reduction and discriminant analysis into one algorithm that it is applicable for the modelling 
of multivariate data.  

 PLS-DA finds a linear regression model between the response and independent variables 
by projecting the predicted and the observed variables into a new space. In PLS-DA 
modelling, the categorical variables are internally recoded into continuous variables (dummy 
block matrix that records the membership of each observation). Therefore, it uses a binary 
encoding to assign one if the unknown measurement belongs to a specified class or zero if 
it belongs to other classes. Consequently, it uses one versus all approach and codes the 
response categories via an indicator variable. Once the classification model is developed, it 
can be used to assign unknown samples to the most probable class. Besides its use for 
classification problems, PLS-DA is a useful tool for identification of critical variables 
(feature selection) as well as for the understanding of differences among groups of samples 
(Christin et al., 2013). 

4.2.5. PRINCIPAL COMPONENT REGRESSION (PCR) 

 PCR is a regression technique that relates the variance in a response variable (Y) to the 
variance in several predictors (X variables). As PCR is a two-step method, the X-matrix 
(comprising of X variables) is decomposed using PCA (Jolliffe, 2002; Läuter, 1988). In the 
second step, the PC scores (instead of the original X variables) are used as predictors to fit 
a multiple linear regression (MLR) model, aiming to establish a linear relationship between 
the predictor (X variables) and the response (Y variable) using the typical least squares 
procedure (Gauthier and Hawley, 2007). As the PCR is based on the orthogonal scores, the 
model does not suffer from collinearity effects. Unlike in the PLSR, the response variable 
in PCR plays no role in identifying the PCs directions. 

4.2.6. SUPPORT VECTOR MACHINE (SVM) 

 SVM is a supervised learning algorithm for the analysis of classification (support vector 
classification—SVC) and regression (support vector regression—SVR) problems (Brereton 
and Lloyd, 2010; Deris et al., 2011). SVM maps the input data into a higher-dimensional 
feature space using kernel functions, which can take many forms, such as linear, polynomial, 
radial basis function (RBF), sigmoid, etc. Therefore, SVM is a powerful technique that can 
be applied to both linear and non-linear systems (Boucher et al., 2015). The SVC 
classification type used in this work is C-SVR with a polynomial kernel function, as this 
kernel type can be utilised to model non-linear systems of varying complexity. The SVC 
algorithm finds an optimal hyperplane (decision boundary) in a higher-dimensional feature 
space that distinctly classifies the data points using kernel functions. Data points that are 

https://mixomicsteam.github.io/Bookdown/pls.html#ref-Wol01
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closer to the hyperplane influence the position and orientations of the decision surface. Such 
data points are referred to as support vectors (SVs). Thus, SVs are a subset of the analysed 
samples that are closest to the hyperplane. The key model parameters for the specification 
of C-SVC models are C value and gamma. The C value is a capacity (penalty) factor for the 
measure of models’ robustness. It trades off the misclassification of data points against the 
simplicity of the hyperplane. The gamma parameter determines how far the influence of a 
single training example (single data sample) reaches and controls what is ‘close’ and what is 
‘far’. Thus, it adjusts the curvature of the hyperplane of the model. The SVM regression 
type used in this work is ε-SVR with RBF kernel function, as the RBF can be utilised to 
model non-linear systems of varying complexity. Detailed theoretical background on SVR 
can be found in pertinent literature (Awad and Khanna, 2015; Brereton and Lloyd, 2010; 
Deris et al., 2011; Kecman, 2005; Smola and Schölkopf, 2004). The key model parameters 
for the specification of ε-SVR models are C value and epsilon (ε), as they respectively 
determine the trade-off between the training error and the model complexity (flatness), and 
control the width of the band where the cost of errors in the epsilon-intensive loss function 
is zero. The value of ε can thus affect the number of SVs used to construct the regression 
function. 

4.2.7. SPECTRAL ANGLE MAPPER (SAM) 

 SAM is a supervised classification method that uses an n-D angle to match pixel to the 
reference spectra. The algorithm considers the reference spectra (endmembers) and the 
unknown pixels as vectors in a space with dimensionality equal to the number of bands 
(Kruse et al., 1993; Richards and Jia, 2006). Then, for each unknown pixel, SAM calculates 
the spectral angle between the two spectra to identify the different classes in the image. 
Smaller angles represent closer spectral similarity to the reference spectrum (endmember), 
and angle bigger than the specified maximum angle threshold remains unclassified. SAM is 
a rapid mapping tool, which is relatively insensitive to illumination effects and other spectral 
artefacts (Kruse et al., 1993). 

4.2.8. MAXIMUM LIKELIHOOD 

 Maximum likelihood (ML) is one of the most popular supervised classification methods 
in remote sensing. The algorithm computes the probability of each pixel belonging to a 
specific class that is represented in the signature file (endmembers) and assigns unknown 
pixel to the most probable class. ML is based on two principles: first, it assumes the 
distribution of the data within a given class obeys a multivariate normal distribution. The 
other principle is, it uses Bayes theorem to assign pixels to the corresponding classes, in 
which the unknown pixel with the maximum likelihood is classified into the corresponding 
class (Richards, 2013). The algorithm uses a sufficient number of pixels (e.g., greater than 
the number of bands in the respective images) for each training area (endmember), thus to 
allow the calculation of the covariance matrix. The model parameters can be adjusted to 
maximise the likelihood function of the ML method (Sisodia et al., 2014). For example, the 
probability threshold determines the number of pixels assigned to the class of the highest 
probability. The higher the threshold value than the highest computed probability, then 
pixel remains unclassified. However, without the probability threshold or with the 
probability values higher than the threshold, the algorithm assigns each pixel to the highest 
probable classes (Lillesand et al., 2004). 
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4.2.9. MINIMUM DISTANCE  

 The minimum distance algorithm (MD) is a supervised classification method that 
classifies pixels based on the Euclidean distance between the spectral signatures of image 
pixels and the reference (endmembers) spectral signatures. The algorithm uses the training 
data to determine the means of the classes and calculates the distance of every pixel to the 
mean vector of each class in multi-feature space. The distance indicates an index of similarity 
where the minimum distance corresponds to the maximum similarity. Therefore, based on 
the minimum Euclidean distance, it assigns each pixel to the nearest class (Richards, 2013; 
Richards and Jia, 2006). In MD classification, maximum distance criterion or distance 
thresholds can be set and pixels that do not meet the selected distance criteria remains 
unclassified. 

4.3. EXPLORATORY DATA ANALYSIS 

 Exploratory data analysis (EDA) is an approach for data analysis that involves a variety 
of techniques to explore data characteristics. It is the first step in the data analysis process 
that employs visual and quantitative methods to get a sense of the data (or understand the 
data) on hand. EDA provides new insights into a dataset, uncover underlying data structure, 
identify the most important variables, detect outliers and identify optimal factors in the data. 
It can be used to test the underlying assumptions related to specific models and could lead 
to a formulation of new experiments. Therefore, EDA is an essential process to manipulate 
the available data in a maximised way. The EDA performed in this research are explained 
below. 

4.3.1. PATTERN RECOGNITION  

      Pattern recognition is the automated recognition of regularities in data using different 
computer algorithms (Jain et al., 2000; Paolanti and Frontoni, 2020). It permits reliable and 
feasible decisions concerning the categories of the patterns. There are various pattern 
recognition frameworks used to design and develop systems that recognise a trend in data, 
such as, statistical methods, machine learning and deep learning approaches. Among the 
various pattern recognition techniques, PCA is the most widely applied method in different 
applications (e.g., spectral data analysis and image analysis). PCA is one of the most potent 
exploratory data analysis technique that can be applied to identify patterns in the samples, 
potential subtle outliers and informative variables (i.e., those responsible for the observed 
patterns). The scores and loading plots of the PCA models are used to investigate 
sample−variables relationships and the grouping structure (intra-sample relationships). The 
score plots show the grouping structure in the spectral data with respect to the analysed 
objectives (e.g., mineral concentrations or ore-waste classification). The loading plot thus 
reveals the most important (significant) variables within the spectral data that are responsible 
for the grouping observed in the score plots. Therefore, PCA improves the efficiency and 
accuracy of learning from multivariate data. 

4.3.2. OUTLIER DETECTION  

 Outlier detection is one of the key steps for solving real-world problems using statistical 
analysis of sensor data. Outliers are inconsistent and differ from the other observations that 
a different mechanism likely arises them, e.g., due to measurement errors, (Hawkins, 1980; 
Rodrigues et al., 2019; Wang et al., 2019). However, outliers can also be unique values that 
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carry valuable and relevant information. Either way, outliers can affect the analyses of any 
modelling tasks that prior detection is crucial. Outlier detection is an essential and broad 
subject that needs careful study in many application areas. In this research, potential outliers 
were identified using the following outlier detection techniques: Hotelling’s T², residual 
map, influence plot and visual inspection of unique measurements.  

 Hotelling’s T² is a useful outlier detection tool that describes the distance to the model 
centre, as spanned by the PCs (Jensen and Ramirez, 2017). It considers the inlier statistic 
(minimum Mahalanobis distance to the calibration samples) against Hotelling’s T² statistic 
for each sample to identify the potential outliers. It also provides a critical limit (p-value) 
with different statistical confidence limits. For example, for the p-value of 5%, the 95% 
confidence ellipse can be included in the score plots of the PCA models to reveal potential 
outliers (i.e., data points located outside the ellipse contour). The influence plot shows the 
sample residuals’ X-variance against Hotelling’s T2 and Leverage statistics. The residual 
statistics describe the sample distance to the model, whereas the Hotelling’s T² and Leverage 
indicate how well the model describes the sample. Likewise, an influence plot is a useful 
tool for detecting influential samples and dangerous outliers. For example, samples with 
high residual variance and high leverage are deemed to contain the most dangerous outliers. 
Besides, variable residual plots (a map of residuals) are useful for determining whether 
samples have high residuals on few or all variables, and thus helps in outlier detection. 
Therefore, an integrated finding yielded by these inspections was considered in this study 
to identify measurements that are possible outliers.  

4.4. DATA PRE-PROCESSING  

      Data pre-processing is an integral part of multivariate data analysis, irrespective of 
whether it is conducted for classification, exploration or prediction purposes (Engel et al. 
2013). Sensor measurements include undesired variations (e.g., instrumental artefacts), 
which are generally compensated by data pre-processing, whereby unwanted variation 
within the data is removed to enhance the signal pertaining to the analytical information 
(Rinnan et al., 2009; Roussel et al. 2014). While several data pre-processing strategies are 
currently available, the choice of the optimal data pre-processing method for a particular 
application depends on the nature of the data and the ultimate goal of data analysis (Rinnan 
et al., 2009). Thus, the pre-processing technique is typically selected based on a systematic 
approach, the visual inspection of the spectra and quality parameters, such as Pearson 
correlation coefficient (PCC), which measures the linear correlation between two variables 
(Engel et al., 2013). As this is mostly a systematic approach, Design of Experiment (DoE) 
is required to identify the optimal data pre-processing techniques that yield the best results 
either for classification or prediction problems. This approach is advantageous when the 
aim is to analyse and understand the main effect and the interaction effect of the pre-
processing techniques. Aiming to remove the most common artefacts of sensor 
measurements, the different scaling and signal correction methods considered in this 
research include mean centring (MC), baseline correction, standard normal variate (SNV), 
normalisation, multiplicative scatter correction (MSC) and smoothing (Gaussian filter 
smoothing). In spectroscopic data, the signal correction methods correct the influence of 
additive or multiplicative effects (Roussel et al. 2014). The additive effect can be a constant 
that depends on the wavelength location. Whereas, the multiplicative effect can be caused 
when a constant multiplies each element of the spectrum.  
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 MC is a data scaling technique that subtracts the variable mean to each value, and it 
represents variation around a mean (Bro and Smilde, 2003). It removes offsets by 
subtracting the variable mean from each value (Bro and Smilde, 2003; Roussel et al., 2014). 
On the other hand, when baseline correction is performed, the unwanted “background 
signal” is subtracted from the main signal information (Roussel et al., 2014). SNV removes 
the spectrum mean value from each variable in the spectrum and divides them by the 
spectrum standard deviation (Fearn et al., 2009; Roussel et al., 2014). It normalises the 
spectrum data to itself and minimises the light scattering effect and particle size effects in 
the spectra data. Normalisation aims to divide each spectrum based on the estimation of its 
spectral intensity and remove undesired intensity variation due to the multiplicative effects 
(Roussel et al., 2014). MSC is used to reduce multiplicative scattering effects (Fearn et al., 
2009). Smoothing is based on averaging the neighbourhood points, and it is used to 
minimise random noise (Roussel et al., 2014). It allows random noise to be removed from 
the dataset by averaging the neighbouring points (Roussel et al., 2014). The signal correction 
methods were performed on one sample at a time (row-wise), whereas for mean centring, 
the pre-processing is applied to individual columns. The pre-processing techniques used for 
the RGB and hyperspectral images are discussed in the subsequent chapters.  

4.5. DATA FUSION  

      Accurate and comprehensive raw material characterisation is essential in mining 
operations. This can be achieved via the use of different sensor technologies. Each sensor 
technology operates over a specific range of the electromagnetic spectrum and provides 
information on a particular aspect of materials. Consequently, a single sensor might not 
offer a sufficiently comprehensive description of a material’s composition. This introduces 
uncertainty into both resource estimation and defining requirements for mineral processing. 
Therefore, it is necessary to utilise strategic sensor combinations to improve accuracy, 
minimise uncertainty, and enhance specific inferences for raw material characterisation. 
      Sensor technologies may be integrated physically or digitally (through data fusion). 
Physical integration is achieved when two or more sensors are combined on a single 
platform. For example, Sharma et al. (2009) integrated remote-laser-induced breakdown 
spectroscopy (LIBS) and Raman system for analysis of minerals (e.g., carbonates, sulphates, 
iron oxides) with a single 532 nm laser. The integrated system was capable of simultaneously 
providing elemental and mineralogical information. Fernández et al. (2013) physically 
integrated RGB and multispectral imagery sensors for improved classification of the 
Cabernet Sauvignon grapevine elements. Hoehse et al. (2009) demonstrated the utility of 
mapping heterogeneous minerals using a single unified LIBS and Raman set up for a 
combined analysis of molecular and elemental information that resulted in comprehensive 
material characterisation. 
      Data fusion is the term applied to the analysis of multiple data blocks from different 
data sources that can interact and inform each other (Cocchi, 2019). It is a process of 
integrating data blocks from multiple sources or sensors into a single comprehensive model 
(Hall and McMullen, 2004). The fusing of different data sources enhances the reliability of 
prediction or classification models owing to the synergy among the incorporated datasets. 
Data fusion can be implemented in different ways using various multivariate data analysis 
techniques. For example, data fusion can be implemented using probabilistic descriptions 
of observations and processes. One such method is the Bayes’ rule, which is the most 
commonly employed method in robotics (Thrun and Burgard, 2005) and military 
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applications (Hall, 1997). However, when probabilistic methods are employed, a large 
number of probabilities needs to be specified, thus introducing inconsistencies into the 
specification of a consistent set of beliefs in terms of probability and model precision. Even 
though these limitations can be partially mitigated using alternative techniques, such as fuzzy 
logic (Siciliano and Khatib, 2016), this approach was not considered in the present study 
due to its high complexity. Data fusion can also be implemented using chemometric 
techniques, which require the collected data to have a relatively high quality. Chemometrics 
is a discipline that uses data-driven approaches to extract relevant information from 
chemical (material) systems. This approach is widely applied in analytical chemistry and 
metabolomics (Biancolillo et al., 2014; Borràs et al., 2015; Doeswijk et al., 2011; Silvestri et 
al., 2013; Smilde et al., 2005).  
 

 

4.5.1. LEVELS OF DATA FUSION  

      Data fusion can be achieved at multiple levels using various multivariate data analysis 
techniques. For example, data fusion using chemometrics can be realised at different levels, 
designated as low-level, mid-level, high-level and multiple-level fusion. Low-level data 
fusion involves the integration of multiple data sources by concatenating data blocks of 
different nature (Castanedo, 2013; Forshed et al., 2007; Silvestri et al., 2014). In this 
approach, correlations among all variables collected in the different data blocks are 
considered. This results in a single matrix, which yields a single classification or prediction 
model.  
      Mid-level or hierarchical data fusion is a feature-level fusion that involves two modelling 
steps (Borràs et al., 2015; Silvestri et al., 2014). First, the informative features (relevant 
information) of the different data blocks are separately extracted using suitable variable 
screening or selection methods (Cocchi, 2019; Li et al., 2018). In the second step, the 
extracted features are concatenated into a single matrix and are used to develop models 
(classification or regression) based on multivariate analysis techniques. In mid-level fusion, 
feature extraction can be accomplished using different strategies, such as data 
decomposition (multivariate curve resolution - MCR) and feature selection (PCA) methods. 
One of the advantages of mid-level data fusion is that it reduces data dimensionality, thereby 
allowing data blocks to be treated individually, avoiding the influence of other datasets. Mid-
level data fusion, however, requires an optimal combination of extracted features that 
describe most of the variation in the data. Whereas both low- and mid-level data fusion 
methods combine the data sources at the data level, high-level data fusion is a decision-level 
fusion that combines model outputs to produce a final fused response. In high-level fusion, 
separate models are developed for each available block of data, and their individual 
responses are combined (e.g., by averaging) to produce a final fused response (Doeswijk et 
al., 2011). In multiple-level fusion, a combination of low- and mid-level fusions are used 
together to obtain a final output (Castanedo, 2013). 
      Data fusion approaches are now widely used in several disciplines, such as robotics 
(Thrun and Burgard, 2005), image processing (Westa and Resminib, 2009), food analysis 
(Biancolillo et al., 2019; Borràs et al., 2015; Hong and Wang, 2014) and metabolomics 
studies (Smilde et al., 2005). For example, low-level data fusion has been widely used to 
authenticate the origin of foods and beverages and assess their quality. Available evidence 
indicates that low-level data fusion results in better prediction and classification models than 
individual techniques. For example, low-level data fusion has been shown to improve the 
quality assessment of wines (Gil-Sánchez et al., 2011), the identification of the origin of olive 
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oils (Haddi et al., 2013), the predictive model accuracy of the quality parameters of soybean 
flour (Brás et al., 2005) and apples characterisation (Zude et al., 2006), as well as to enhance 
the robustness in the discrimination of coffee varieties (Downey et al., 1997).  
      Mid-level data fusion approaches have also been proven useful in a wide range of 
applications, such as in the identification of food fraud (Márquez et al., 2016), analysis of 
geographic traceability of soil samples (Silvestri et al., 2013) and discrimination of different 
types of beer (Aranda-Sanchez et al., 2009; Vera et al., 2011). To date, high-level fusion has 
mainly been applied to classification tasks pertaining to, for example, fruit quality assessment 
(Aranda-Sanchez et al., 2009; Li et al., 2007) and identification of food fraud (Márquez et 
al., 2016). Findings yielded by pertinent studies indicate that data fusion approaches can be 
highly beneficial for mineralogical applications (Chari et al., 2005; Khajehzadeh et al., 2017). 
However, at present, the application of data fusion for mineralogical investigations remains 
very limited. 

 

4.5.2. CONCEPTUAL FRAMEWORK  

      A wide range of sensor technologies that are applicable for material characterisation in 
mining are rapidly emerging. The fusing of these different data sources likely enhances 
material characterisation owing to the synergy among the incorporated datasets. The 
imaging and point sensor technologies indicated in Figure 4.3 are among the various 
potential techniques applicable in mining. Taking into account these technologies, a general 
conceptual framework that deploys data fusion at multi-levels was developed (Figure 4.4). 
As shown in the figure, the workflow depicts the different steps required to achieve data 
fusion for improved and comprehensive characterisation of materials than that would have 
been possible by the use of the individual sensor outputs. The concept leads to an automated 
characterisation of material using a tool that links the combined sensor signals to material 
properties. 
 

 

 

 

 

  

 

 

 

 

 

 

 
 

 

Figure 4.3: Some of the potential imaging and point sensor technologies applicable in raw material 
characterisation using data fusion. 
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      Data fusion is mainly a data-driven approach that can be implemented using multiple 
data sources at multi-levels. Effective use of data fusion is highly reliant on the choice of 
the per-processing techniques, levels of fusion, ultimate sensor choice, and algorithms 
(models). Therefore, characterisation of material using a data fusion approach requires an 
optimised solution. Consequently, DoE is proposed to test the possible scenarios for the 
optimal data pre-processing techniques, sensor combinations options, and the preferred 
level of data fusion (denoted as Block C of Figure 4.4). For example, in terms of practical 
implementation, integration of all the indicated sensors into the same platform might be 
challenging (e.g., due to a high data volume). Thus, the optimal sensor combinations should 
be selected in an optimised way. The data fusion task (indicated by Block B in Figure 4.4) 
includes the fusion of data blocks at low-, mid- and high-levels to address multiple 
classification and prediction problems using the models described in Section 4.2. The 
developed classification and regression models were validated using reference data acquired 
from conventional laboratory-based measurements. The details of the validation approach 
applied for each analysis are presented in the subsequent chapters. The validation results led 
to make choices for optimal pre-processing techniques and sensors combinations 
(represented by Block C in Figure 4.4). The preferred combined sensor signals can be used 
to develop a tool for an automated material characterisation (indicated by Block D in Figure 
4.4). This sub-task is not performed in this work; however, within the framework of the 
proposed general concept, data fusion was realised. The implemented methodological 
approaches for the fusion of the different data sources are presented in the subsequent 
chapters (Chapter 10, 11 and 12). 
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Figure 4.4: A concept for automated material characterisation using a data fusion approach.  
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4.6. SOFTWARE AND PROGRAMS  

 The software and programs used in this study include  

 ArcGIS 10.6 (developed by Esri, California, United States) 

 MATLAB R2018a (developed by The Mathworks, Massachusetts, United 
States) 

 ENVI 4.5 (created by Harris Geospatial, Colorado, United States) 

 The Unscrambler 10.5.1 (developed by CAMO Software, Oslo, Norway) 

 R 3.5.0 (created by R Core Team, Vienna, Austria‒ an open-source software) 

 Datamine Studio RM 1.3 (developed by Datamine software limited, Wells, 
United Kingdom) 

 Split-Desktop 4.0 (created by Split Engineering LLC, Arizona, United States), 
and 

 OriginPro 9.6 (developed by OriginLab Corporation, Northampton, United 
States)  

      The RGB images were analysed in ArcGIS. The hyperspectral images were pre-
processed in MATLAB. ENVI software was used for features extraction and classification 
of the hyperspectral images. The point data analysis, modelling and data fusion, were 
performed using the Unscrambler and R programming. On the other hand, georeferencing 
of the RGB images in 3D and coordinate extraction from the point cloud was performed 
in Datamine Studio RM. Rock fragmentation was analysed using the Split Desktop image 
analysis software, and the OriginPro software was used for the processing of spectra and 
visualisation.  
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5 
 CASE STUDY SITE AND SAMPLE 

MATERIAL  
 

This chapter provides a brief explanation of the geological setting of the study site. It describes the regional 
and local geology. A detail description of the mineralization at the defined study block is presented. The 
chapter finally describes the adopted sampling strategy and the different types of samples collected for this 
research.  
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5.1. INTRODUCTION  

      The Reiche Zeche underground mine located in the Freiberg district, eastern Erzgebirge, 
Germany, served as the case study area (Figure 5.1). Originating in 1168, it is one of the 
oldest mines in Europe and, during its operation it was mined for silver, copper, lead, 
arsenic, zinc and pyrite (Scheinert et al., 2009; Seifert and Sandmann, 2006). In 1863 and 
1886, the elements indium and germanium were discovered, respectively at the local 
Freiberg district (Seifert and Sandmann, 2006). As the mine ceased operating in 1969, the 
“Reiche Zeche” and “Alte Elisabeth” shafts were reconstructed in 1976 and were reopened 
as a research and teaching mine.  

Figure 5.1: Location map of the Reiche Zeche underground mine. 

5.1.1. REGIONAL GEOLOGY  

 The Erzgebirge is one of the major polymetallic mineral provinces in Europe. It is part 
of the internal Mid-European Variscides metamorphic basement and located along the NW-
border of the crystalline Bohemian Massif core complex (Seifert and Sandmann, 2006; 
Ostendorf et al., 2019) (Figure 5.2). The Erzgebirge forms NE-SW trending antiformal 
megastructure that extends over 120 km in length and 45 km in width (Mingram, 1998). It 
comprises medium- to high- grade metamorphic rocks that are formed during the continent-
to-continent collision processes during Variscan Orogeny (Kroner et al., 2007; Sebastian, 
1995 as cited in Seifert and Sandmann, 2006; Seifert and Sandmann, 2006; Mingram, 1998). 
The Erzgebirge consists of five metamorphic units namely, low-grade unit, phyllite unit, 
garnet-phyllite unit, mica schist-eclogite unit and gneiss-eclogite units (Willner et al., 1997; 
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Rötzler et al., 1998). The metamorphic units are associated with numerous hydrothermal 
mineral deposits (Seifert and Sandmann, 2006). 
      Volcanic intrusions occur in the metamorphic core complex of the Erzgebirge region. 
The Variscan Orogeny and the subsequent crustal reorganisation triggered the magmatism 
process in the area. The hydrothermal deposits of the Erzgebirge are associated with 
intrusive bodies of Variscan and younger granite (Seifert and Sandmann, 2006). In the 
region, the polymetallic sulphide veins of the hydrothermal deposits are hosted by para- and 
orthogneisses, mica schists and subordinately by post-kinematic granites (Seifert and 
Sandmann, 2006). Two main gneiss units are identified in the eastern Erzgebirge region; the 
“red gneiss unit” and the “grey gneiss unit” (Tichomirowa et al., 2001; Willner et al., 1997). 
The grey gneiss unit is subdivided into two groups based on the textural differences: inner 
grey gneiss (orthogneiss) and outer grey gneiss (paragneiss). The inner grey gneiss is coarse 
to medium-grained texture, whereas the outer grey gneiss is mostly fine-grained 
(Tichomirowa et al., 2001; Willner et al., 1997). Mica schist is the main rock type of the mica 
schist–eclogite unit. It is subdivided into feldspar-free schist, graphite-bearing schist and 
albite-bearing schist (Mingram, 1998). 

 

Figure 5.2: A simplified geological map of the Erzgebirge (Saxony, Germany; Bohemia, Czech Republic) 
(reproduced after Seifert and Sandmann (2006) with permission).   

5.1.2. LOCAL GEOLOGY  

      The geologic setting of the Freiberg mining district is dominated by an orthogneiss 
dome (“inner grey gneisses”) surrounded by a paragneiss unit (“outer grey gneisses”). Red 
gneisses occur as elongated bodies in outer grey gneisses of the gneiss-eclogite metamorphic 
unit. The red gneisses are muscovite-bearing gneisses with variable textures (e.g., coarse-
grained augen gneisses and medium-grained foliated gneisses) (Tichomirowa et al., 2001). 
The other rock types in the vicinity include mica schist, gabbro, granulites, variscan granites, 
variscan rhyolites and eclogites. In the area, the ore vein network is characterised by NNE-
SSW to N-S and E-W to ENE-WSW trending shear systems (Scheinert et al., 2009; Kröner 
and Willner, 1998; Ostendorf et al., 2019). The ore veins in the district are associated with a 
system of dykes (Scheinert et al., 2009).  
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      In the Freiberg district, the deposit is characterised by polymetallic vein-type 
mineralization formed by two hydrothermal mineralization events of Late-Variscan (late 
Carboniferous to early Permian) and Post-Variscan age (Seifert, 2008). The Late-Variscan 
mineralization event dominates in the central part of the mine and mineralization is rich in 
Pb, Zn, Fe, S, and Cu. Typical ore minerals include pyrite, galena, arsenopyrite, chalcopyrite 
and sphalerite, along with quartz and minor carbonate gangue. Ore minerals with a smaller 
Cu, Zn and Fe content characterise the Post-Variscan mineralization event. This 
mineralization event consists of a fluorite-barite-lead ore assemblage, mainly containing 
sphalerite, pyrite, galena, chalcopyrite and marcasite, as well as quartz, fluorite, carbonates, 
and barite, as gangue (Benkert et al., 2015; Seifert, 2008). The polymetallic sulphide veins of 
the Freiberg district are mainly hosted by orthogneiss. Red gneisses, rhyolites, lamprophyres, 
gabbros and Permo-Carboniferous granites, host minor occurrences of the veins. More than 
1100 polymetallic ore veins run through the metamorphic core complex of the Freiberg 
district (Ostendorf et al., 2019). 

5.2. TEST BLOCK AND SAMPLING STRATEGY  

      A mine face of approximately 22 m long and 2 m high was defined to test the research 
concept at the Reiche Zeche underground mine, as shown in Figure 5.3. The defined mine 
face is characterised by high material variability and located at the first level of Wilhelm 
Stehender North, at a depth of about 150 m. The northern part of the mine face has an ore 
vein of thickness ranging from 30 to 100 cm; the vein consists of galena, pyrite, chalcopyrite 
and sphalerite minerals hosted by gneiss rock. At the central part of the mine face, the ore 
is disseminated throughout the gneiss rock whereas weathering of the host rock and the ore 
materials is observed at different locations. Moreover, small circular pores filled with calcite 
and ore can also be noted. Within the defined ~ 22m long mine face, a blasting block (BB) 
of ~ 4m long and 2m high was delineated. Blasting was performed at the BB area and 
samples were acquired from the freshly exposed mine face as well as, from the mine face 
before the blasting (Figures 5.4 and 5.5). The BB is located in the northern part of the bigger 
block, and an ore vein of 30 to 100 cm characterises it. A simplified geological map of the 
freshly exposed BB mine face is shown in Figure 5.6.  
      In this study, in-situ measurements were performed using an RGB imager. Besides, 
representative samples were acquired and analysed ex-situ. A strategic sampling campaign 
was conducted to collect reliable and representative samples. A detail description of the 
collected sample types is presented in the section that follows.   
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Figure 5.3: A sketch with sample photographs that illustrates the defined mine face having ~ 22 m lateral 
extent and ~2 m height. The red box shows the location of the blasting block having ~ 4m length and ~ 
2m height. 

 

 

 

 

 

 

 

Figure 5.4: Schematic sketch to show the blasting block mine face advancement after each blast. 
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Figure 5.5: A map showing the mine face advancement in the east direction after each blast. The red patch 
shows the mine face location before the blast, the green patch shows the mine face location after the first 
blast, and the blue patch shows the mine face after the second blast. 
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Figure 5.6: A simplified geological map of the blasting block showing the different lithotypes, reference 
points, drill hole locations, channel locations and channel intervals. This map shows the newly exposed 
mine face after the second blast.   

5.2.1. TYPES OF SAMPLES  

      In mining, inference about a deposit is developed based on the analysed samples. 
Therefore, sampling is an essential component of material investigation in mining 
operations. Optimal sampling minimises the uncertainty of the inference to be made for 
non-sensed positions based on the information of sensed locations. For this research, 
different types of samples: channel, muck pile, and drill core were collected. The significance 
of analysing the different types of samples include: to ensure sample representativity, to 
understand the unexposed dimension of the study block (e.g., 3D information using drill 
core samples), and to comprehend the spatial distribution and variability of minerals. It is 
also beneficial in assessing the potential of the technologies for future material tracking 
applications along the mining value chain. The sample collection procedures took in to 
account the integrity of samples in the field. The entire sampling and assay process was 
monitored on a continuous basis. The description of the different types of samples is 
presented in the sub-sections that follow:   

5.2.1.1. CHANNEL SAMPLES 

      Channel sampling is advantageous for capturing different lithotypes and variations in 
their abundance and distribution. It is an information-driven sampling strategy where the 
spacing of the channels and the intervals within each channel cut were determined based on 
the observed material variability. Channel samples were collected to address the observed 
spatial variability and ensure sample representativeness. At the ~ 22m long mine face, 
twenty-three channels spaced approximately 80 to 120 cm apart (depending on the material 
variability at each channel location) were cut, and 102 samples were acquired from the 
different intervals within each channel, as shown in Figure 5.7. The observed material 
variability determined the spacing between the channels. Besides, 12 channels spaced 
approximately 75 to 100 cm apart were cut at the newly exposed BB mine face following 
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the blasting, and 32 samples were collected from the different intervals of these channels. 

Therefore, a total of 134 channel samples were collected from the three batches.  

 

 

 

 

 

 

 

Figure 5.7: A photograph that illustrate a channel cut at the defined mine face. The channel crosscuts four 
different intervals, each belonging to a different lithotype and sampled separately (the red boxes).     

5.2.1.2. MUCK PILE SAMPLES 

      The blasted rock fragments (muck pile) are disturbed samples since the rock fragments 
moved from their original location (Figures 5.8 and 5.9). Forty muck pile samples were 
collected from the blasted fragments of the BB. The sampling strategy from the muck pile 
is random. However, to ensure material representativity, the sampling was done from each 
material type, based on the proportion of the observed material variability.  

 

 

 

 

 

 

Figure 5.8: Schematic sketch to show the muck piles after blasting. The yellow boxes show the channel 
samples.  
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Figure 5.9: Images of the muck piles. 

5.2.1.3. DRILL CORE SAMPLES  

      Drill core samples provide continuous information across the entire depth of the drill 
profile. Twelve 50 mm diameter drill cores each having a length of approximately 1.5 to 3 
m were acquired at different locations of the defined mine face (Figures 5.10 and 5.11). The 
total length of the drill cores is ~ 23.3 m. The drill cores provide information in the x-
direction (easting), thus crucial to have 3D information about the investigated block. Drill 
core logging was performed to identify the different lithotypes. Besides, the drill cores were 
analysed using sensor measurements.   

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: A sketch that illustrates the locations of the 12 drill holes at the ~22 m mine face. The blue 
square shows the blasting block site.   
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Figure 5.11: Images of drill core samples showing the different lithotypes at the drilled sites. The major 
lithotypes include the weathered materials (e.g., clay minerals), the ore that consists of the sulphide minerals 
and host rock (gneiss). 
 

5.2.2. GEOREFERENCING  

       Ground control points (GCPs) were marked on the mine face and the geographic 
coordinates of the GCPs were collected using light detection and ranging (LIDAR) scan by 
Mine Surveying and Geodesy team of TUB Freiberg. The collected GCPs were used to 
georeference and mosaic the RGB images. Georeferencing and mosaicking of the RGB 
images provided a comprehensive view of mineral distribution over the imaged part of the 
mine face. Thus, it is advantageous in understanding the spatial distribution, the relative 
abundance of minerals (therefore to infer grade indirectly), and used to define target domain 
for further detail analysis. Coordinates of the channel centroids were computed using the 
surveyed points (GCPs) and the point cloud generated using LIDAR (Figure 5.12). The 
locations of the drill cores at the mine face were also measured using LIDAR. Therefore, 
spatially constrained chemical and mineralogical data were generated to demonstrate the 
possibility of producing georeferenced data from each sampling location. The benefits of 
the spatially constrained data include providing location-based sensor data for the resource 
model updating, and it can also be used to link information from the different data sources 
based on location. However, for the integration of sensors data based on location, further 
considerations are required. These include the sensors field of view, spatial resolution, 
positional accuracies and the material variability. 
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Figure 5.12: Meshed surface of the blasting block showing the channel intervals (green rectangles) and 
channel centroids (red dots). Mine Surveying and Geodesy team of TUB Freiberg generated the meshed 
surface. 

5.2.3. SAMPLE PREPARATION  

      The nature (form) of samples analysed in this research were whole-rock, powder, and 
pellets samples. Analysing the different kinds of samples allows evaluating and maximising 
the usability of the sensor technologies in material characterisation. The powdering of 
samples reduces heterogeneity (ensures consistency) and minimises surface irregularities. 
The surface roughness of samples plays vital roles for sensor measurements that require 
actual contact with the sample. Without establishing good contact between the sample 
surface and sensor tip, a sensor detector might not collect all reflected lights from the 
surface. Therefore, powdering of the samples reduces the effect from the surface raggedness 
and can improve the analysing performances of sensors. Whole-rock samples preserve the 
natural condition (e.g., surface irregularities and sample heterogeneity) and require no 
sample preparation. Thus, analysing whole-rock samples is crucial to evaluate the 
competency of sensor technologies for in-situ applications. The other sample forms 
considered in this study are pellets.  Pressed pellets can minimise the particle size effect and 
voids since particles come together uniformly by pressing at high loads. Thus, it provides 
greater consistency and can enhance the signal from sensors.   

 

Figure 5.13: A drill core with different lithotypes. Each lithotype was sampled separately. 
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      Following the collection, samples were prepared in the laboratory. The channel and 
muck pile samples split into two. One part of the split powdered and the other half left as 
rock sample. Likewise, the drill core samples were cut into two along the drill core length. 
The half split remained in the core tray. Whereas, the other half cut of the drill cores was 
used to systematically collect representative samples from each lithotype (Figure 5.13). Thus, 
the different lithotypes sampled separately and powdered. Sensor measurements were 
performed using the drill cores in rock forms as well as the powdered samples. For the 
analyses using the drill cores in the natural form, the imaging technologies capture the whole 
drill cores length. Whereas, the length of each unit and the observed material variability 
within each unit determined the number and location of point measurements. The 
powdered samples of the channel, muck pile and drill core samples were sub-sampled to 
prepare 50 pressed pellets. The powder mix used to make the pellets was CEREOX wax, 
and the ratio of sample to the wax mix is 4:1. Sensor measurements using the different 
sample forms enabled the assessment of the preferred sample form for technology. Besides, 
it allowed comparison and validation of sensor outputs (e.g., whole-rock measurements 
were validated using the analysis from the powder samples). 

 

Figure 5.14: Photographs of some of the samples collected from the test site. The samples (a), (b) and (c) 
were collected from the host rock (gneiss and banded gneiss), samples in ((d), (f) and (h)) were collected 
from ore that consists of the sulphide minerals (e.g., galena, pyrite and sphalerite), and the pictures (e) and 
(g) show samples acquired from the weathered materials (e.g., clay minerals). 

      This research is based on 134 channel samples, 45 samples that were systematically 
collected from the different lithotypes of the drill cores, 12 drill cores each having a length 
of approximately 1.50 to 3 m, as well as 40 muck pile samples. The forms of samples 
analysed in this study were rock, powdered, and pellet samples. In each study, different sets 
of samples were used. Thus, the type and form of samples used in each study are described 
in the chapters. The collected samples represent different lithotypes in the vicinity. For 
example, Figure 5.14 shows some of the samples acquired from the ore, host rock and 
weathered materials. For this research, ore refers to the sulphide minerals such as galena, 
sphalerite, pyrite and chalcopyrite. These minerals are the main sources of Zn, Pb and Cu, 
which are of primary economic interest. Arsenic is a penalty element in mineral processing, 

5 cm 
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and its presence in the dust is a health concern; therefore, it is of importance as well. In the 
context of the current investigation, waste refers to the gangue materials, including the 
carbonates, quartz and the host rock (gneiss). The sensor technologies explored in this 
research (RGB imaging, VNIR/SWIR hyperspectral imaging, MWIR, LWIR, and Raman) 
and the forms of samples used for the analysis by each technology are indicated in Figure 
5.15. The target domain and sampling locations were determined using RGB imaging. 
Following this, samples were collected, and each sample was split into two. One part of the 
split powdered and the other half left as rock sample. Moreover, pellets samples were 
prepared using half split of the powdered samples. The rock samples were used for 
measurements using the hyperspectral imagers. The MWIR, LWIR and Raman 
measurements were performed using both the rock and powder samples. Besides, the 
Raman analysis was also performed using the pellets samples. On the other hand, the 
measurements using the validation techniques (ICP-MS, XRF and XRD) were performed 
using powder samples.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15: The technique used for the definition of sampling locations, and the types of samples used for 
the analysis using the investigated technologies and the validation techniques.  
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6 
  

RGB IMAGING FOR MINERALOGICAL 

FACE-MAPPING IN AN UNDERGROUND 

MINE 
 

This chapter demonstrates the usability of RGB imaging for mineralogical face mapping and ore zone 
delineation in an underground mine using RGB images taken at the defined mine face. It discusses the 
methodological approach for image data acquisition, processing and knowledge extraction. It also presents 
the applicability of the technique for fragmentation analysis using the RGB images taken from small muck 
piles. The last part of the chapter discusses the potential benefits and possible challenges of the use of the 
technique in operational mines.   

 

 

 

 

 

 

Parts of this chapter have been published in:  
 

Desta, F. S. & Buxton, M. W. N. (2017). The use of RGB Imaging and FTIR Sensors for 
Mineral Mapping in the Reiche Zeche Underground Test Mine, Freiberg. Proceedings of 
the Real-Time Mining International Raw Materials Extraction Innovation Conference, 
Amsterdam, The Netherlands, pp. 103-127.  
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6.1. INTRODUCTION  

      Mineralogical maps provide essential information in the exploration of new mineral 
deposits as well as during subsequent mining. This information indicates the type and 
distribution of minerals, ore-zone boundaries, and host rocks description. Mapping can be 
done at different stages of the mine-life cycle, such as during exploration (at a regional scale 
or local scale), mine planning (ore-reserve definition), and extraction (mine face mapping). 
Thus, accurate mineral mapping can lead to improved efficiency of mine development and 
operations.   
      Mineralogical maps can be produced using sensor-derived image data. Such images 
include the multispectral and hyperspectral images that are acquired from space-based, 
ground-based or laboratory-based platforms. Sensor-derived images are increasingly in use 
in a wide range of applications. One such application is mineral mapping. The use of images 
in geological studies is not limited to mineralogical mapping; instead, it extends to the 
identification of geological structures, textural analysis and ore-zone delineation. In remote 
sensing, mapping of minerals is commonly performed using hyperspectral images that 
provide up to hundreds of spectral channels or bands information at different spatial 
resolutions. For example, numerous studies show the use of hyperspectral images in mineral 
exploration (Beiranvand et al., 2019; Bishop et al., 2011; Kruse and Perry, 2013; Neville et 
al., 2003; Rajan and Mayappan, 2019). On the other hand, one of the most common 
laboratory-based imaging is drill core logging using hyperspectral images (Dalm et al., 2018; 
Kruse et al., 2012; Tusa et al., 2019). 
      Mine face mapping can be done using ground-based close-range multispectral or 
hyperspectral imaging. Studies show the use of ground-based imaging techniques for 
mineralogical face mapping. For example, the VNIR and SWIR sensors were used for the 
mapping of minerals (clay, iron oxide, carbonate, and jarosite) at vertical exposure in Carlin 
Style sediment-hosted gold deposit (Krupnik and Khan, 2019). Similarly, Krupnik and 
Khan, (2019) used VNIR and SWIR to map alteration minerals that correspond to the 
occurrence of ore in the copper porphyry deposit. In another study, Beckert et al. (2017) 
applied VNIR and SWIR to distinguish carbonate phases with slight compositional 
differences at quarry cliff faces. Mapping of minerals at higher resolution provides a good 
insight into the understanding of mineral types and their spatial distributions. Moreover, the 
digital mapping of minerals improves the efficiency of mapping and enable automation. 
Thus, mineralogical mapping using sensor-derived data plays a significant role in supporting 
effective decision-making in mining operations. 
      As discussed in Chapter 3, RGB imaging is one of the imaging sensor technologies that 
have potential in material characterisation. The RGB imaging operates in the 0.4 to 0.7 µm 
range of the electromagnetic spectrum and delivers 3-bands (red-green-blue) information. 
The technique is sensitive for colour differences and has a great potential in distinguishing 
ores consisting of visually distinct minerals. The use of RGB imaging in material 
characterisation is very limited. However, promising results were obtained in mineral sorting 
(TOMRA, 2020; STEINERT, 2020; Robben and Wotruba, 2019) and recycling applications 
(REDWAVE, 2020). Portable, high-resolution and high-speed RGB sensors are available 
from multiple suppliers. This allows rapid and accurate data acquisition, besides its 
portability permits embedding and surface mounting of the sensors on different platforms. 
Such applications include sidewall imaging at a mine face and muck pile imaging.  
      The fragmentation of rock is an essential step in the mining process that prepares 
material for excavation and transportation. The fragmentation of rock through blasting 
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influences the crushing and grinding operations. Thus, it is crucial information in mineral 
processing that has an economic significance (Singh et al., 2016; Workman and Eloranta, 
2003). The degree of fragmentation can be determined using direct (e.g., sieve analysis) or 
indirect methods (e.g., image processing) (Tavakol and Hosseini, 2017). Thus, RGB imaging 
can be deployed for the analysis of rock fragmentation. This approach is advantageous since 
there is no limitation on the mass size and volume of materials that can be analysed at once.  
The other advantage is that the data can be acquired and processed rapidly. Thus, it does 
not disrupt the production process and the blast parameters can be optimised using online 
data. Nevertheless, there are also some limitations of this method such as particle size can 
be underestimated or overestimated, it gives 2D information and the pilling effect since 
spatial size distribution of fragmented materials can vary (Kemeny et al., 1993). However, 
these effects can be minimised by selecting appropriate sampling location, suitable image 
scales and high-quality images (with high spatial and spectral resolution). 
      RGB imaging can create new data and knowledge in real-time that would be of great 
interest in mining. However, mapping of minerals at mine face using RGB images in 
underground mine has not been conducted. This gap in the current mineralogical mapping 
approach motivated this study. The purpose of this chapter is hence two-fold: (1) to explore 
the usability of the RGB imaging for the mapping of minerals and delineation of ore-zone 
(definition of target domains) at a mine face in an underground mine, and (2) to investigate 
the use of the technique for the determination of rock fragmentation size of small muck 
piles in the underground mine.   

6.2 DATA ACQUISITION 

      Image data were acquired in-situ from the mine face and muck pile sites using an RGB 
sensor (Nikon D7100 digital camera). The instrument used in this study is described in 
Chapter 3. Different imaging procedures were followed to obtain usable data from the two 
sites. These procedures are described in the sub-sections that follow. 
 

6.2.1. MINE FACE IMAGING  

      Reference points (GCPs) were marked at the 22 m long by 2 m height study block 
(Figure 6.1). These points have 50 cm spacing. The geographic coordinates of the GCPs 
were acquired using LIDAR technology by the Mine Surveying and Geodesy team of TUB 
Freiberg. As it is described in Chapter 5, a BB of ~ 4 m long and 2 m high was delineated 
within the bigger block. Thus, the same procedure was followed to acquire images at the 
mine face of the BB after each blast. Therefore, in this study, two sets of images were used; 
one is from the ~ 22 m long mine face, and the other one is from the newly exposed mine 
faces of the BB. 
      RGB sensor field of view varies depending on the distance between the camera and the 
mine face. Therefore, an attempt was made to maintain the same distance between the 
camera and the target. The same camera setting was used to acquire images from two vertical 
reference points (Figure 6.1 and 6.2). This allowed capturing the full defined mine face both 
laterally and vertically. Variation in illumination has a significant effect on image analysis. 
So, halogen lamps were used to ensure constant illumination throughout the mine face. 
Most importantly, each image ensures to cover at least three reference points, and the 
photos have about a 40% overlap. This is beneficial in providing full coverage of the mine 
face as well as the three GCP points of each image can be used to tie the images together 
(georeference and mosaic). Besides, the photographs were taken in front of the face (~ 900); 
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this is beneficial in minimising distortion. At each reference point, multiple images were 
taken to minimise errors that can be associated with the photographing process (e.g., 
distortion and illumination related issues). 
 

 

 

 

 

 

 

 

Figure 6.1: (a) A sketch illustrating the reference points at the mine face, and (b) illustrates the two 
vertical camera standpoints for image data acquisition.  

 

 

 

 

 

 

 

 

Figure 6.2: A sketch to illustrate the mine face cross-section and the two vertical camera standpoints.  

6.2.2. MUCK PILE IMAGING  

      After the blast of the BB, small muck piles were placed in the underground mine. The 
following procedures were followed to acquire RGB images at the muck piles. Halogen 
lamps were used to maintain the same illumination and minimise the shadow of bigger rock 
fragments. A known scale was placed at the muck pile; later, the scale was used to calibrate 
the fragment size analysis model. Besides, multiple pictures were acquired at each location; 
thus, images with better qualities can be chosen. Figure 6.3 illustrates the two-camera 
orientations for the acquisition of image data from the small muck piles. 
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Figure 6.3: A sketch to illustrate two of the camera orientation for the acquisition of image data from the 
muck piles.  

6.3. METHODOLOGY 

      As illustrated in Figure 6.4, the methodological approach developed for mapping of 
minerals using RGB images comprises a multi-step process that commences with data 
preparation, followed by features extraction and classification, and culminates with model 
validation. The data preparation task (denoted as Block A in Figure 6.4) includes data 
exploration, data pre-processing, georeferencing and mosaicking. The classification of the 
processed images was performed using both the unsupervised and supervised classification 
techniques (represented by Block B in Figure 6.4). The classification models were validated 
using independent datasets (indicated by Block C in Figure 6.4). This section also discusses 
the methodological approach for the fragmentation analysis using RGB images taken from 
small muck piles. The details of each step are described below. 

 

6.3.1. MINE FACE MAPPING  

      A total of 42 images were used to cover the defined 22 x 2 m block mine face both 
laterally and vertically. A low-pass filter was applied to enhance the distinct identification of 
feature types. A low-pass filter is an image filtering technique that reduces local variation 
and removes noise by averaging the neighbourhood high and low pixel values. The nearest 
resampling technique was used to resample the pixels of the images to the same cell size. 
The nearest resampling technique is the fastest interpolation technique that performs a 
nearest neighbour assignment. The mosaicked images were used to perform exploratory 
data analysis. The pre-processed images were georeferenced and mosaicked using the 
geographic coordinates of the GCPs (denoted as Block A in Figure 6.4). Image classification 
was performed using both unsupervised and supervised classification techniques 
(represented by Block B in Figure 6.4). First, unsupervised classification using K-means 
methods were applied to assess any clustering or grouping of pixels based on their grey level. 
A detail explanation of the K-means method is presented in Chapter 4. K-means was applied 
with no prior knowledge about the different classes; however, the number of cluster centres 
was specified. 
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Figure 6.4: A workflow diagram depicting the steps of the mineral mapping using the RGB images. 

 
      Supervised classification requires a labelled training set for the classifier. The classifier 
uses a training set of spectral signatures to identify similar signatures in the remaining pixels 
of the images. It labels all the image pixels as per the trained parameters (Kaufman and 
Rousseeuw, 2005). Prior knowledge of the different classes is crucial since the training set 
selection affects the classification accuracy. A large number of supervised classification 
algorithms are available for image classification and the choice of the classifier algorithm is 
based on classification accuracy (Kaufman and Rousseeuw, 2005; Kotsiantis, 2007). For this 
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study, the classification performance of ML, MD and SAM algorithms were compared. A 
detail description of the algorithms is presented in Chapter 4.  
      Visual interpretation of the RGB images was conducted to identify the main mineral 
classes within the defined mine face. The visual inspection of the images was supported by 
the geological map, which was generated during the sampling campaign and the 
unsupervised classification results. Training sets (groups of pixels) were generated to 
represent five broad classes in a supervised classification. The feature selection is based on 
the visual appearance (colour difference) of the designated material classes. The number of 
mineral types, which can be identified, depends on different factors, such as the presence 
of the minerals at a certain location, their clear appearance, the freshness of the exposure so 
that oxidation or other weathering processes will not lower the visibility of the minerals and 
the resolution of the camera. Thus, for some of the pictures more than five mineral classes 
are identified.     
      To ensure reliable prediction of the class membership, training area uniformity and 
representability of the same class over the whole image was taken into account. In addition, 
the separability of the classes in the multidimensional attribute space was checked using 
histograms. Overlapping classes were merged and five broad classes were identified for the 
classification. Some of the minerals are combined together (e.g., quartz and calcite) since 
distinguishing the minerals based on their colour and the utilised camera is limited. 
Following the selection of training areas, a signature file was generated and the whole image 
was classified using the signature file of the training sets. The output multiband raster is a 
classified image that shows the mineral distribution at the defined mine face. The 
classification work is validated using a separate validation sample set (represented by Block 
C in Figure 6.4). Classification accuracy was assessed by comparing ground truth classes 
with the predicted or classified pixel class at each ground truth location. The results are 
expressed in an error matrix (confusion matrix) which shows the overall and class 
accuracies. For this study, the ground truth classes (pixels) were collected using the raw 
RGB images. The choice of the pixels was based on the geological map produced for this 
study, close up RGB images taken in-situ (better resolution), visual inspection and using 
physical samples collected from the mine face. Using extract values to points geoprocessing 
tool, the value of the ground truth and the predicted (classified) pixels values at each ground 
truth location was extracted separately. A frequency table was created to generate a summary 
table of every class classification accuracy. To arrange it into confusion matrix form, a pivot 
table geoprocessing tool was used. The overall accuracy was calculated by dividing the 
correct predictions by the total predictions. The classes’ accuracy was calculated by dividing 
the number of correctly classified pixels of a class by the total number of ground truth pixels 
of the same class. 
 

6.3.2. FRAGMENTATION ANALYSIS  

      The rock fragmentation analysis was performed using multiple RGB images taken from 
two muck pile locations. The better quality images were imported into the Split desktop 
software and scaled using known scale references. The scale of each image was indicated 
during the image acquisition process using scale references; an example is presented in 
Figure 6.5. The rock fragments of each image were automatically delineated using the 
software. Following this, the delineation parameters were edited; for example, the fine areas 
were assigned or introduced as fine material. This task can be automated from the software; 
however, for improved performance, manual editing was also performed. Part of the images 
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that show other features than the rock fragments were masked. Likewise, the over delineated 
and under delineated fragments were edited to ensure better results. Once the preferred 
delineation was achieved, the size distribution of the delineated rock fragments of each 
image was calculated and reported in graphical and tabular forms.  

 

 

 

 

Figure 6.5: An example of an RGB image of a muck pile with known scale reference. This image shows the 
size of rock fragments at one of the muck pile site.  

6.4. RESULTS AND DISCUSSION 

      This section consists of two parts. In the first part, the mineral mapping results of the 
three models (ML, MD and SAM) are presented. It also discussed the application of the 
RGB images for the delineation of ore-zone. In the second part, the rock fragmentation 
analysis results are described in detail. The section also discusses the benefits and limitations 
of the approach for in-situ underground applications. 

6.4.1. MINERAL MAPPING AND ORE-ZONE DELINEATION  

      The use of unsupervised classifiers prior to any image classification tasks is beneficial in 
discovering unknown but useful classes (Roussel et al., 2014). Accordingly, a k-means 
classifier was applied to understand the general pattern or groups of the different classes. 
As shown in Figure 6.6, the general pattern or groups of the different classes that have a 
minimum degree of heterogeneity within a class were generated. This output of the 
unsupervised classifier was used as an additional input for the definition of the training set.  

 

 

 

 

 

 

Figure 6.6: (a) RGB image taken at the mine face, and (b) thematic map produced by k-means classifier. 
The thematic map shows the identified pattern or groups of the different minerals.  

       The same training set was used to compare the classification performances of the ML, 
MD and SAM classifiers. The classification results of the algorithms were examined visually 
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using a pattern match approach. As shown in Figure 6.7, a better pattern match between 
the original RGB image and the classified image was achieved using the ML algorithm. For 
example, comparing the SAM classifier to ML, the chalcopyrite/pyrite class, which is clearly 
observed in the RGB images, is misclassified as clay on the SAM image (Figure 6.7 (a) and 
(d)). Whereas, it is correctly classified using the ML classifier. The optimal classifier choice 
was optimised using one photograph at a time; however, it was tested on multiple images. 
Following this ML was selected as the preferred classifier, and it was applied to the 
mosaicked images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7: (a) RGB image taken at the mine face. Mineral mapping results produced by three classifiers (b) 
MD (c) ML and (d) SAM.  

      The facts that most of the sulphide minerals show sufficient variation in colour and 
mainly have medium–to-coarse grains allow the use of RGB imaging for mapping of minerals 
and delineation of ore-zones in the case study site. However, minerals (e.g., quartz) can have 
different visual appearances depending on their mixtures. Therefore, the definition of the 
training set should take into account the visual appearance of the minerals in specific deposit 
types. Consequently, the colours of the typical minerals from the test case were inspected 
prior to the selection of features (training set). In the area, arsenopyrite has a silvery/golden 
colour, pyrite has a golden appearance, galena has a grey colour, sphalerite is dark grey to 
black and quartz is white. This colour difference is the essential property of the minerals 
that enable RGB imaging to provide useful information on the minerals distribution and 
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ore-zone boundaries. For example, Figure 6.8 shows the RGB and classified images of a 
mine face, respectively. The ML classifier identified six main classes (mineral types). The 
classification algorithm performance was assessed using a validation set. Based on the 
confusion matrix results, the acquired overall accuracy is 78%, and the class accuracy ranges 
from 61% (e.g., galena/sphalerite class) to 94% (e.g., silica/calcite class). Joints and surface 
irregularities at some parts of the mine face can causes shadow (darker areas). These darker 
areas can be misclassified as galena/sphalerite mineral types since the minerals in the area 
also exhibit a dark grey colour. This is the likely reason for the obtained lower classification 
accuracy of the galena/sphalerite class.  

 

 

 

 

 

  

 

 

Figure 6.8:  a) shows an RGB face image taken from polymetallic ore at the Freiberg mine b) mineral map 
produced from RGB image.  

      The georeferencing and mosaicking of the RGB images are essential to comprehend the 
full spatial distribution (i.e., spatial variability) of minerals on a single image and can cover 
the entire area of a mine face. Besides, it is beneficial to generate spatially constrained image 
data that can further be linked to other sensor outputs based on location. The ML classifier 
was applied for the different sets of georeferenced and mosaicked images. For example, 
Figure 6.9 and 6.10 show mosaicked RGB images and the classified mineral maps, 
respectively. The classified images show the distribution of the minerals and the location of 
the images at the ~22 m long block is indicated in the inset of Figure 6.10. The RGB images 
were not taken immediately after the blasting of the mine face, consequently weathering 
occur and reduced the visibility of some of the sulphide minerals. This hinders 
differentiation among sulphide minerals. However, the image pixels were successfully 
classified into five mineral classes, namely weathered material, ore, quartz/ calcite, ore 
disseminated in gneiss and gneiss. This classification result is sufficient to indicate high-
grade, medium-grade and low-grade ore zones. Therefore, it is beneficial in providing usable 
information in mining operations.  
      Depending on the visibility of material (or spatial distribution of minerals) along the 
defined mine face the training set (the extracted minerals or classes) might vary from region 
to region. Nevertheless, the classification results show the mineral distribution that exists in 
the actual condition that the information can be combined and presented on a single image.  
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Imaging is advantageous since it covers a wider areal extent and gives information at each 
specific point on the image. Whereas point spectrometers such as LIBS or infrared (e.g., 
ASD point analyser) gives point data at specific locations. Compared to other techniques 
such as hyperspectral imaging, acquisition of RGB images are a low cost, low data volume 
and low computational intensity technique. For the same deposit type, if the illumination is 
kept constant over the imaged mine face, the same training set can be used to automate the 
classification process. In addition, an RGB imager is a rapid, easily repeatable data 
acquisition system and it has a good potential for automation. Moreover, the use of a base 
map is essential for geological or mineralogical mapping; however, a base map for sidewall 
mapping might be challenging to obtain due to the rapid (continuous) change of the mine 
face after each blast. Geological mapping without a base map might raise a scale issue for 
the mapping of different lithological and structural units. Therefore, mineral mapping using 
RGB imaging can be an alternative solution. 
      The environmental conditions in deeper mines might not be favourable to stay longer 
to undertake extensive geological mapping. RGB imaging with suitable illumination systems 
can offer a potential automated solution for mapping in such deeper or other hazardous 
environments. The other possible application of RGB imaging is its capability in providing 
safety information in an open-pit as well as in underground mines. The fragmented or 
unstable ground in an open-pit and underground mines creates hazardous conditions that 
endanger lives. Thus, early identification of weak zones is essential. Monitoring of risk zones 
at the mine face can be achieved using sensor technologies. The different geological 
attributes (e.g., mineralogical and structural data) that can be generated from sensors may 
further be linked to indicate hazard (weak) zones. For such applications, one of the potential 
sensor technologies is the RGB sensor. For example, the RGB images can indicate high-
risk, medium-risk and low-risk zones; thus can be applied in risk zones ranking. Besides, the 
technique can support surveying sample locations. In this study, the mine face was imaged 
after the channels were cut, and each channel location was digitalised (Figure 6.9). This 
allowed the production of georeferenced data. Spatially controlled data is beneficial to 
integrate sensor data based on location, it enables providing location-based sensor data for 
a resource model, and it is valuable for the understanding of the spatial distribution of 
minerals. The test case is a low-grade shallow underground mine that is characterised by 
vein-type mineralisation. In deeper mines, the use of RGB imaging might be challenging 
due to the harsh environmental condition and narrow nature of the cross-section. However, 
robust RGB imagers integrated with other scanning technologies (such as LIDAR) can 
enable scanning and imaging of a mine face under deeper level mining conditions. 
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Figure 6.9: Mosaicked RGB images showing the position of the channel samples superimposed. The 
channels have ~ 75 cm to 120 cm spacing.  
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Figure 6.10: The corresponding thematic map of the mosaicked images. The relative location of the 
classified images with respect to the 22 m mine face is indicated in the inset map.  
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      A mineral map was also produced using the RGB images taken from the BB (Figure 
6.11 and 6.12). The map shows three mineral classes within the ore vein of the block (Figure 
6.12). To enhance the classification result, the ore zone was digitized and defined as 
processing extent. Thus, the mineral types within the ore zone can be clearly identified. 
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Figure 6.11: Mosaicked RGB images showing the ore zone in the northern part of the ~ 22 m block.  
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Figure 6.12: The corresponding thematic map of the mosaicked images. The relative location of the 
classified is indicated in the inset map.   
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      Overall, the RGB images, coupled with the ML method, allowed the classification of 
materials into different groups (mineral types). The RGB images classification results were 
further compared to the results from other sensor technologies (such as SWIR and LWIR). 
The results show a close much in terms of indication of ore-waste regions as well as for the 
indication of some of the minerals. Comparing the approach with conventional mapping 
methods, RGB imaging gives objective, reproducible results and an expandable database. 
The fact that state-of-the-art RGB sensor that can rapidly scan a large area (e.g., mine face) 
are emerging and the promising results from this study ensure the great potential of the 
technique for material characterisation in mining applications. However, the test case has 
easy access and exhibits almost constant environmental conditions; for example, minimal 
dust, no vibration and no disturbance. Therefore, the influence of environmental factors is 
minimal. However, the use of the technique in operational underground mines might be 
challenged from disturbance due to vibration, dust and other factors. Therefore, to ensure 
the applicability of the technique under such conditions, sound approaches are required to 
reduce the effects of the different environmental factors on sensor measurements. 

6.4.2. FRAGMENTATION ANALYSIS  

      The test case area is characterised by heterogeneous materials, and the heterogeneity 
causes the size distribution of fragmented rocks in the blasting.  Consequently, variation in 
the particle size was observed in the fragmented rocks. Figure 6.13 (a) and (b) show the 
RGB images taken from the first muck pile and the delineation generated for the 
fragmentation analysis, respectively. The red patches on the figure show the fine areas. The 
size distribution graph of the rock fragments shows 100% of the rock fragments are below 
the size of 8 in (~20 cm). On the other hand, the percentage of fine fragments that passes 
0.08 in (0.2 cm) is 2.22% (Figure 6.14). The same muck pile was imaged from different sides. 
For example, the analysis result of another image taken from the different side of the same 
muck pile shows a higher fine percentage (i.e., about 50% of the material passes through 
0.75 in (~1.9 cm) (Figure 6.15). Figure 6.16 also shows the fragmentation analysis result of 
an image taken from the first muck pile. The percentage of fine fragments that passes 0.08 
in (0.2 cm) is 0.35%. This shows the need for an integrated analysis of multiple images taken 
from different sides of a muck pile, thus to understand the size distribution of the rock 
fragments comprehensively. 

 

 

 

 

 

Figure 6.13: a) RGB image taken at the first muck pile b) delineated image. The red patches show the fine 
areas.  

 

a) b) 
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Figure 6.14: The corresponding (a) size distribution curve, and (b) table of the image in Figure 6.13.  

 
Figure 6.15: (a) RGB image taken at a different side of the muck pile, and (b) the corresponding size 
distribution curve. 
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Figure 6.16: (a) RGB image taken at the first muck pile, and (b) the corresponding the size distribution 
table. 

      Figure 6.17 (a) and (b) show an RGB image taken at the second muck pile and the 
delineated image, respectively. The red patches show the fine areas or the areas introduced 
as fine, whereas the cyan colour patch shows the masked area that was excluded from the 
grain size calculation. In this image, the masked area is part of the sidewall since the muck 
piles were located next to the mine face (sidewall). The grain size calculation shows about 
29.69% of the rock fragments are below 0.75 in (1.9 cm) and 100% of the rock fragments 
are below the size of 4 in (~ 10 cm) (Figure 6.17 and 6.18). Likewise, another image was 
taken from the different side of this muck pile; bigger size rock fragments dominate this 
side of the muck pile (Figure 6.19). For example, only 2.78% of the rock fragments are 
below the size of 2 in (~ 5 cm). 

 

Figure 6.17: (a) RGB image taken at the second muck pile, and (b) the delineated rock fragments (the red 
patches show the fine areas and the cyan patch shows the masked areas).  
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Figure 6.18: The corresponding (a) size distribution curve, and (b) table of the image in Figure 6.17. 

 

 

 

 

 

 

Figure 6.19: (a) RGB image, and (b) the corresponding size distribution curve.  

      The size of the rock fragments of the two muck piles ranges from fine (less than 2 mm) 
to boulder size materials (~30 cm). The percentage of the fine materials varies from image 
to image, thus pictures taken from the same muck pile showed different fine portions 
(Figure 6.15 and 6.16). Multiple images were acquired from the different sides of the muck 
piles in order to capture the observed grain size variability. Different factors determine the 
size of rock fragments such as material composition, geological structures (e.g., joints, 
fractures, minor faults) and blasting parameters. For example, one of the main reasons for 
the observed size distribution of the rock fragments in the study area is the composition of 
materials. Consequently, bigger rock fragments (boulders) mainly characterise the host rock. 
Whereas, the ore material is relatively weaker (softer) in strength and resulted in smaller rock 
fragments size.  
      Knowledge of material composition and fragmentation has high importance in mining. 
For example, technical decisions, blasting costs, productivity, and operational efficiency can 
all be related to optimum fragmentation. Thus, a reliable estimation of rock fragmentation 
is crucial in mining operations to improve waste productivity, mill throughput and wall 
stability. Different direct and indirect techniques can be applied to determine the size of 
rock fragments. For example, Drebenstedt and Ortuta, (2012) used radar reflectivity to 
measure fragments of flying stones during blasting. However, there are some open questions 
(e.g., the analysis assume spherical shapes for all fragments) to be addressed to understand, 
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measure, and then estimate fragmentation using radar reflectivity. On the other hand, the 
sieve analysis is a direct and the most accurate method for the determination of rock 
fragments size distribution. Nevertheless, this method is time-consuming and expensive. 
Therefore, the determination of rock fragments size using image analysis is considered a 
rapid and economical option. As discussed in the introduction, the rock fragment size 
analysis using image data has some limitations (e.g., pilling has an effect, it gives 2D 
information and particle size can be underestimated or overestimated). In this study, the 
accuracy of the calculated rock fragment size was not validated using an independent data 
source. However, to maximise the results, appropriate sampling locations were chosen, 
suitable image scales and better quality images were used, and manual editing supported the 
automated delineation of the rock fragments. The algorithm can detect clast sizes up to 2 
mm, and everything below 2 mm is categorised in the same grain size class. Besides, the 
precision of the fragment size calculation was evaluated by analysing each image multiple 
times.   
      In this study, the use of RGB images taken from small muck piles located in the 
underground mine resulted in reproducible and consistent estimations of fragment sizes. 
Taking into account the blasting parameters, the result can further be used for the 
development of models that can better predict fragmentation in the test case. Rock 
fragmentation analysis using image data can be maximised by selecting appropriate sampling 
(imaging) locations, suitable image scales, and high-quality multiple images (high resolution). 
Besides, the delineation algorithm can be calibrated to automate the analysis of rock 
fragments. Therefore, the determination of rock fragments can be performed in a real-time 
application in underground mines (such as at LHD). The lower cost of the RGB sensor and 
the already existing software tool ensure rapid practical implementation. 

6.5. CONCLUSIONS  

      This study assessed the use of RGB imaging for the characterisation of a polymetallic 
sulphide deposit in an underground mine. The technique was tested at the mine face and 
muck pile sites for mineralogical mapping, ore-zone delineation, and fragment size analysis. 
RGB images were acquired at the mine face following a well-defined imaging procedure. 
The images were georeferenced, mosaicked, and mineral maps were produced using three 
supervised image classification techniques (ML, MD and SAM). Likewise, images from the 
two small muck piles were used to calculate the size of rock fragments after the blast.  
      The results reported in the preceding sections show that the RGB images include 
relevant information that can be used for mapping of minerals, delineation of ore zones, 
and analysis of fragment sizes. Different mineral types were identified and mapped. 
Comparing the classification algorithms, the results from the ML technique is superior to 
the SAM and MD techniques. The acquired overall classification accuracy (78%), spatial 
resolution (0.25 mm), and easy interpretability of the classification results make RGB 
imaging a potential technique for material characterisation in mining operations. Besides, 
the use of RGB images taken at small muck piles in underground mine resulted in a 
reproducible and reliable estimation of fragment sizes. Moreover, the delineation algorithm 
can be calibrated to automate the analysis of rock fragments. Therefore, fragmentation 
analysis can be performed in real-time in underground mines (such as at LHD).  
      The RGB sensor has excellent potential for in-situ material characterisation via colour 
detection or shape recognition of geological units or rock fragments. The technique can be 
used to create new data (e.g., minerals distribution and ore-zone boundaries) and knowledge 
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in real-time that would be of great interest in mining. Overall, the acquired results are 
promising and can likely be improved by using better quality images and image enhancement 
techniques (such as radiometric corrections that minimise the radiometric distortion related 
to camera optics and environmental conditions). The outcomes suggest that the technique 
is efficient and provides acceptable success for the characterisation of a polymetallic 
sulphide deposit in an underground mine. Therefore, it can be considered as a 
complementary technique.  
      RGB sensors with a well-defined imaging procedure and suitable illumination system 
can provide automated, reproducible and objective results for the mapping of visually 
distinct minerals. It offers the possibility of mapping minerals at a high spatial resolution. 
Moreover, RGB imaging systems are easy to use, portable, rapid, low-cost, have high data 
storage capability, and robust to environmental conditions. The technique also allows quick 
data access and visualisation, thus can improve the efficiency of mapping and support 
effective decision-making in mining operations. However, the future practical 
implementation of the approach requires ultimate resampling and co-registration techniques 
to enable automated image registration and mineral mapping. 
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7 
  

VISIBLE-NEAR INFRARED AND SHORT-

WAVE INFRARED HYPERSPECTRAL 

IMAGING FOR MATERIAL 

CHARACTERISATION IN A 

POLYMETALLIC SULPHIDE DEPOSIT  
 

 

    This chapter demonstrates the usability of VNIR and SWIR hyperspectral imaging for material 
characterisation in the polymetallic sulphide deposit using drill core, channel and muck pile samples collected 
from the defined block in the test case. The chapter compares the performance of the two techniques for the 

identification of minerals and ore‒waste discrimination. The chapter also discusses the potential benefits and 
possible challenges of the use of the techniques in operational mines.   
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7.1. INTRODUCTION  

      Hyperspectral imaging combines spectroscopy and imaging to provide a continuous 
spectrum of each pixel in the image. Thus, it provides both spectral and spatial information. 
Hyperspectral imaging sensor collects a digital image in hundreds of narrow adjacent 
spectral bands resulting in a stack of two-dimensional images referred to as a “data cube”. 
Hyperspectral images can be acquired over a wide range of the electromagnetic spectrum. 
The most popular hyperspectral imaging sensors operate in the VNIR, SWIR, and LWIR 
regions. Nevertheless, other types of hyperspectral imagers are also emerging, such as 
Raman and x-ray spectroscopies. Infrared-based hyperspectral imaging is mainly used in 
airborne or spaceborne remote sensing applications. However, a remarkable number of 
laboratory-based and field-based imaging systems are also available. Such as Specim FX10, 
Specim’s SWIR, and Specim OWL are some of the examples that operate in the VNIR, 
SWIR and LWIR regions of the electromagnetic spectrum, respectively (Specim, 2020).  
       Hyperspectral imaging sensors are non-destructive and do not require actual contact 
with a sample or material under the scene. These sensors can be used in a broad area of 
applications. One such application is the raw material characterisation in mining operations. 
For example, hyperspectral imaging is advantageous in analysing a large number of cores 
rapidly than the traditional logging methods. In mining, hyperspectral imaging can be used 
for on-line investigation of materials, thus has notable benefits in increasing the throughput 
and yield of the production process. Hence, it allows maximising the production capacity 
and efficiency of key operational areas in the mining industries. Therefore, it can offer a 
significant financial benefit in mining operations.   
      The sensor type and set-ups determine the spatial and spectral resolutions of the 
hyperspectral images. Therefore, the choice of suitable hyperspectral sensors is application 
dependent. In mineral mapping, the most commonly used hyperspectral imagers are sensors 
that operate in the VNIR and SWIR regions of the electromagnetic spectrum. The working 
principle and the current state-of-the-art of these sensors are discussed in Chapter 3. The 
VNIR and SWIR sensors are commonly utilised for the mapping of minerals during the 
exploration and extraction phases of the mining value chain. For example, Murphy and 
Monteiro, (2013) used VNIR hyperspectral imagery to map ferric iron minerals on the 
vertical mine face of an open-pit mine. Likewise, Baissa, (2011) applied SWIR images for 
the identification and mapping of minerals in carbonate rocks. Similarly, Dalm et al., (2017) 
utilise SIWR hyperspectral images for the separation of ore and waste materials in porphyry 
copper deposit. In another study, Mathieu et al., (2017) used SWIR image data to map 
alteration minerals as a pathfinder for uranium related deposit. Studies by Feng et al., (2018) 
and Sabins, (1999) indicated the usability of the VNIR and SWIR hyperspectral image data 
for mapping of geological units and geological structures in remote applications.  
      Numerous researchers showed the usability of the VNIR and SWIR sensors for the 
mapping of minerals at different scales and in diverse deposit types. However, the use of 
these techniques for mapping of minerals and separation of ore–waste in polymetallic 
sulphide deposit was not investigated. In this chapter, the use of the VNIR and SWIR 
hyperspectral images for the characterisation of polymetallic sulphide ore was explored 
using rock chips and drill-core samples. The techniques were assessed for the identification 
and mapping of minerals. Besides, the usability of the sensors for the discrimination of ore 
and waste materials was investigated. 
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7.2. INSTRUMENTATION AND DATA ACQUISITION 

      The VNIR and SWIR hyperspectral images were acquired using a Specim ‘Lab Scanner’. 
The instrument consists of two push-broom line scanners that acquire hyperspectral 
imagery in the VNIR and SWIR spectral ranges using separate detectors. The bush-broom 
scanners build an image one line at a time when the samples move on a sample tray. The 
models of the VNIR and SWIR cameras are PFD-65-V10E and SWIR3, respectively. The 
manufacturer of the sensors is Specim spectral imaging Ltd. (Oulu, Finland). These sensors 
are described in detail in Bakker et al., 2019. The VNIR hyperspectral images were recorded 
in the spectral range of 0.4–1.0 µm and consist of 196 bands, and 656 samples. The SWIR 
hyperspectral images were acquired in the spectral range of 1.0–2.5 µm and consist of 288 
bands and 384 samples. The number of bands indicates the number of spectral channels 
and samples represents the number of spatial pixels per image line for each band. The 
specifications of the VNIR and SWIR systems used in this study are presented in Chapter 
3. Specim’s diffuse line illumination unit was used to illuminate the sample surface under 
the scene. This illumination unit provides diffused line-illumination on the sample, thus 
optimising the imaging of various surfaces (Specim, 2020). The focusing prior to the imaging 
procedure was performed manually by adjusting the lens with the help of a focusing grid 
mounted on the tray. Before each sample scan, a reference measurement was carried out 
using both white and dark internal standard references. Thus, each sample measurement 
was referenced to account for the background spectral responses of the instrument (the 
instrumental noise) and illumination. The material used as a white reference is spectralon 
and the dark reference is a closed shutter (no material). The acquisition rate per sample 
measurements is about 1 min. There is no averaging involved in the post-processing; the 
binning was done in the hardware. For VNIR measurements, the spatial binning was two 
(meaning 2 × 2 sensor pixels averaged for each pixel saved), and spectral binning was four 
(four bands were averaged for each wavelength saved). For the SWIR, no spatial or spectral 
binning was applied. The Lumo recorder software (developed by Specim Spectral Imaging 
Ltd., Oulu, Finland) was used to set camera parameters, visualise the images in real-time, 
acquire and save data in the hard disk, and control the scanner system. The data is received 
in band-interleaved by layer (BIL) data format. The BIL format allows easy access to both 
spectral and spatial information. Thus, it is recommended for multivariate classification 
(Yoon and Park, 2015). In addition, the BIL format is compatible with several commercial 
software packages. Hyperspectral images were acquired using 50 rock chips samples and 8 
drill-cores.  

7.3. METHODOLOGY  

      As shown in Figure 7.1, the usability assessment of the VNIR and SWIR hyperspectral 
images for the identification of minerals and ore–waste discrimination in polymetallic 
sulphide deposit involves multiple steps that incorporates data-pre-processing, feature 
extractions (endmember selection), and mineral identification and mapping. The data 
acquisition and data pre-processing approaches are denoted as Block A in Figure 7.1. 
Minerals were identified using mineral spectral libraries and mineral maps were produced 
using a supervised classification technique (represented as Block B in Figure 7.1). Besides, 
the endmembers from the ore and waste materials were used to produce maps that show 
the ore and waste regions in drill-core samples. The details of each step are described below. 
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Figure 7.1: Workflow diagram depicting the steps of the mineral identification and mapping process using 
the VNIR and SWIR hyperspectral images.  
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7.3.1. PRE-PROCESSING  

      The raw VNIR and SWIR hyperspectral images were pre-processed prior to data 
analysis and information extraction. The pre-processing techniques applied were 
normalisation to reflectance, spectral subsetting, masking (spatial subsetting), and spike 
correction (Figure 7.1). The normalisation technique converts the irradiance data to 
reflectance using the white and dark references for the calibration. The white reference is 
the measurement with almost 100% reflection over the entire wavelength range, whereas 
the dark reference was captured with no light entering the sensor. Thus, the relative 
reflectance of the images is calculated by dividing the measured image by the white reference 
image after subtracting the dark reference image from both measurements. The raw 
hyperspectral images were acquired with more bands than the indicated range (e.g., the 
SWIR data were acquired from 0.98 µm to 2.53 µm; however, for the test case materials, the 
spectral ranges from 0.98 to 1.0 µm and 2.5 to 2.53 µm yielded noisy results). Thus, spectral 
subsetting was performed to eliminate the noisy bands. Likewise, spatial subsetting was 
performed to remove unnecessary (e.g., pixels that do not represent a sample) parts of the 
acquired images. This was performed by a manual spatial subsetting. Spikes are intensity 
values that differ significantly from their neighbouring pixels. The spikes were identified by 
finding the local maxima and minima and setting a threshold. Consequently, the intensity 
values of spikes were removed and replaced using a linear interpolation of the surrounding 
wavelength bands.  

7.3.2. FEATURE EXTRACTION AND MAPPING  

      The minimum (or maximum) noise fraction (MNF) transformation was applied for each 
processed image in order to isolate noise from the signal. The MNF transform is 
implemented in two cascaded principal component transformations (Figure 7.1). The first 
transformation estimates the noise from the data and, based on the estimated noise 
covariance matrix, the transformation decorrelates (no band-to-band correlations) and 
rescales (unit variance) the noise in the data. The data dimensionality was determined using 
the eigenvalues and the MNF images (eigenimages). The informative MNF components 
(with larger eigenvalues and coherent eignimages) were used to inversely transform the 
MNF data to relatively noise-free spectral images that have the same number of bands as 
the original dataset (Green et al., 1988).  
      The inverse transformed MNF images were used to generate 2D scatter plots using the 
most informative MNF components (usually the first two components). These scatter plots 
were used to identify spectrally unique pixels (endmembers). The extracted features (selected 
endmembers) checked for their uniqueness and similar endmembers that show the same 
spectral information were merged (or combined) by computing the average. Moreover, the 
endmembers of the spectra were also assessed by computing the pixel purity index (PPI). 
PPI is the most popular endmember extraction algorithm (spectral unmixing method) that 
uses the spectral information of the hyperspectral data to find spectrally unique pixels. It is 
usually performed on MNF data that have been reduced to coherent images (Boardman, 
1993; Kiran, 2015). The PPI is computed by continually projecting n-dimensional 
scatterplots onto a random vector. The extreme pixels for each projection are recorded and 
the total number of hits is stored in an image. These pixels are excellent candidates for 
selecting endmembers, which can be used in subsequent processing. Consequently, the pure 
endmembers of the VNIR and SWIR hyperspectral images were extracted separately.  
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      The collected unique spectra were interpreted to identify minerals using spectral 
databases such as the USGS digital spectral library (Clark et al., 2003), the spectral 
interpretation field manual (AusSpec, 2008) and the ECOSTRESS spectral library (Groves 
et al., 1992). The identification of minerals was based on the wavelength location of 
distinctive features, the shape of the main absorption features of each spectrum, reflectance 
intensity and depth of diagnostic absorption bands, in comparison to reference spectra. As 
the illumination condition of the mineral libraries spectra and the acquired spectra differ, 
the intensity of reflectance value was not solely considered for direct comparison. However, 
it was used to supplement the interpretation process. Consequently, some of the unique 
spectra were identified using the available spectral libraries. However, there are also 
unidentified unique spectra, possibly due to factors such as mineral mixtures, physical matrix 
effects or weak spectral responses. The identified minerals were also validated using the 
XRD and LWIR (e.g., in the identification of carbonates and quartz) data. In addition, visual 
inspection using RGB images was also performed to validate the identification of the 
sulphide minerals (since most of the test case sulphide minerals are visually distinct). 
      The endmembers (including the unique unidentified unique spectra) were used to 
generate a training set (region of interest - ROI) for each inverse transformed MNF images. 
The ROI’s were used to produce mineral maps that show minerals distribution and pixel 
abundances using SAM supervised classification technique. Besides, SAM was used to 
produce ore versus waste maps using the spectra from the ore minerals and other associated 
minerals. A description of the SAM technique is presented in Chapter 4. The advantages of 
the SAM classifier include its insensitiveness to illumination and albedo effects, besides it 
has a significant performance in hyperspectral data with few training sets (Yoon and Park, 
2015).  

7.4. RESULTS AND DISCUSSION 

      Inspecting the spectral variation of minerals using a false colour image gives a general 
and quick idea on the spectral behaviour of the minerals. However, minerals can show the 
same colour in one 3-band composite image that it is essential to examine multiple 3-band 
combinations. Consequently, the colour composite images of the VNIR and SWIR data 
show the minerals spectral variation within each sample (Figure 7.2). Moreover, the MNF 
images produced using the first three MNF components were used to examine the spectrally 
distinct minerals in the samples (Figure 7.3).   
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Figure 7.2: Colour composite image of a drill core showing the spectral variation of minerals (a) VNIR 
image, and (b) SWIR image.  

 

 

 

 

 

 

 

 

 

 
 

 
Figure 7.3: (a) An RGB image (true colour) of a drill core, and (b) the first three MNF components of the 
VNIR image.  

7.4.1. MINERAL IDENTIFICATION USING VNIR 

      The unique endmembers of the VNIR and SWIR data were interpreted to identify the 
minerals using spectral reference databases. The interpretation is based on the distinctive 
features of minerals in specific spectral regions. In the VNIR region, the wavelength location 
of the ferric iron absorptions was taken into account to identify hematite and goethite 
minerals. These minerals show distinctive spectral features at ~ 0.46 µm, ~ 0.65 µm and ~ 
0.85 - 0.95 µm (Townsend, 1987 as cited in Murphy and Monteiro, 2013; AusSpec, 2008). 
On the other hand, the sulphide minerals do not show absorption features in the VNIR 
region; thus, identification of the sulphide minerals could not be based on diagnostic 
absorption features. Instead, the reflectance pattern (e.g., higher reflection points) and the 
intensity of the VNIR data were matched to the reference spectral to identify some of the 
sulphide minerals in the analysed samples. The VNIR and SWIR reference spectra of some 
of the sulphide minerals are shown in Figure 7.4. Most of the VNIR data endmembers were 
interpreted. For example, Figure 7.5 shows the identified VNIR spectra of the pyrite and 
goethite minerals. However, there are also some mineral mixtures or unique spectra that 
could not be interpreted using the available spectral databases. 
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Figure 7.4: The VNIR and SWIR spectral signatures of some of the sulphide minerals based on USGS, 

2020).  

 

 

 

 

 

 

 
 

Figure 7.5: The VNIR spectra of (a) pyrite (b) goethite minerals.  

      The identified minerals using the VNIR data include the sulphides (e.g., pyrite, galena, 
sphalerite and chalcopyrite), the ferric iron minerals (e.g., hematite and goethite) and 
carbonates (e.g., siderites). Besides, the endmembers of the VNIR data and a SAM classier 
were used to produce mineral maps. Examples of the mineral maps produced using the 
VNIR data are shown in Figure 7.6. The mineral maps show the minerals distribution and 
the pixel abundance of minerals in the sample. Therefore, it is beneficial for the indication 
of mineral proportions in the analysed samples.  
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Figure 7.6:  VNIR images of rock chip samples (a) colour composite images, and (b) classified images.   

7.4.2. MINERAL IDENTIFICATION USING SWIR 

      In the SWIR region, most minerals show diagnostic absorption features between 1.3 to 
2.5 µm, mainly in the wavelength region between 2.05 to 2.45 µm most minerals have major 
characteristics absorption features (AusSpec, 2008; Clark et al., 1990; USGS, 2020). The 
main absorption features in the SWIR region are indicated in Table 7.1. The functional 
groups OH, water, Al-OH, Fe-OH, Mg-OH, and CO3 are major components of some of 
the minerals (such as phyllosilicates, sulphate, carbonates and Al-bearing minerals). Thus, 
the spectral information of these functional groups and a combination of the absorption 
features were used to identify those minerals that are active in SWIR. On the other hand, 
the sulphide minerals do not show spectral features in the SWIR region. Nevertheless, the 
featureless nature of the minerals was used to indicate the minerals. This approach enables 
the discrimination of ore and waste materials in polymetallic sulphide deposit using SWIR 
data.   
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Table 7.1: The main absorption features in the SWIR region of the electromagnetic spectrum based on 

AusSpec, (2008), Hauff, (2008) and USGS, (2020). 

Functional 
groups 

Diagnostic absorption features 
location 

Mineral groups 

OH ~1.4 µm (also ~1.55 µm and ~1.75 - 
1.85 µm in some minerals) 

Clays, sulphates, hydroxides 

Water ~ 1.4 µm and ~ 1.9 µm  Clays, sulphates, hydroxides, smectite 

Al-OH ~ 2.16 - 2.23 µm Clays, sulphates, micas 

Fe-OH ~ 2.23 µm Fe-clays 

Mg-OH ~2.3 - 2.37 µm Mg-clays, chlorites 

CO3
2- ~ 2.3 - 2.37 µm (and also at 1.87 µm, 

1.99 µm and 2.16 µm) 
Carbonates 

 

      The minerals identified using the SWIR data include mica (e.g., muscovite), clay minerals 
(e.g., montmorillonite and illite), carbonates (e.g., siderite), tectosilicate (e.g., quartz), 
sulphide ores (no features and results with featureless line) and mineral mixture (e.g., 
muscovite + sulphides). For example, the distinctive features of illite are the OH absorption 
at ~1.41 µm, the water absorption at ~ 1.91 µm, Al-OH absorption which varies in 
wavelength from 2.18 – 2.23 µm depending on the composition of the sample (Figure 7.7). 
The minerals illite and muscovite share most of the absorption features; however, water 
absorption at 2.2 µm is more pronounced in illite than muscovite. Thus, the two minerals 
were identified accordingly.  

 

 

 

 

 

 

 

Figure 7.7: The distinctive features of illite in SWIR spectrum.  

      Figure 7.8 shows the mineral maps of three samples produced using the SWIR data and 
training data (endmembers). As shown in the figure, the identified minerals include siderite, 
muscovite, illite, illite sulphide mixture and muscovite sulphide mixture. However, there are 
also unclassified pixels as well as unidentified unique spectral signatures. The unclassified 
pixels could be the unrepresented signature in the endmember or outliers. Whereas, the 
unidentified unique spectra are spectral signatures that could not be interpreted using the 
existing mineral databases. This can be due to minerals mixtures or unidentified mineral 
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response. Interpretation of mixed spectra is not a straightforward procedure as minerals can 
mix with different proportions and compositions. Mixed spectrum can be characterised by 
additional absorption features, wavelength shifts and deeper depth than the actual (AusSpec, 
2008). In some instances, the presence of certain minerals might lower the spectral 
responses of some of the minerals. For example, the occurrence of sulphide minerals in the 
proportion of > 5-10% has a significant effect in reducing the reflectance value and 
weakening the diagnostic absorption features of the SWIR active minerals (AusSpec, 2008). 
Consequently, these effects were taken into account for the identification of the sulphides 
mixture as well as other mineral mixtures.  

a) b) 

  

  

  

 

Figure 7.8:  SWIR images of the rock chips samples (a) colour composite images, and (b) classified images.  

      The spectral differences between the sulphide minerals and the associated minerals are 
sufficiently distinct to allow the classification of ore and waste mineralogy using the SWIR 
images. An example of a drill-core SWIR image with some of the identified minerals is 
indicated in Figure 7.9. As shown in the figure, the response from the sulphide minerals is 
featureless. However, this featureless nature of the minerals in the SWIR spectra was used 
as a characteristic value to map ore versus waste materials (Figure 7.10). Despite the 
limitation related to the absence of prominent spectral features of the sulphide minerals in 
SWIR data, a mineral map that shows ore and waste zone could be generated.  
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Figure 7.9: A false colour SWIR image of a drill core and some of the identified minerals. 

 

 

 

 

 

Figure 7.10: SWIR image (a) a false colour image, and (b) a classified image that shows the ore and waste 

materials of the drill core. 

7.4.3. COMPARISON OF THE VNIR AND SWIR DATA  

      As shown in Figure 7.11 and 7.12, different minerals were identified using the VNIR 
and SWIR data. The identified minerals using the VNIR data include sulphides, siderite and 
mixture. Whereas, minerals such as muscovite, illite, quartz and mixtures were identified 
using the SWIR data. Minerals that do not exhibit characteristics spectral features in one 
region can have useful spectral signals in the other areas of the electromagnetic spectrum. 
For example, as shown in Figure 7.11, the mineral illite could not be identified in the VNIR 
data; however, it was detected in the SWIR data. Similarly, quartz could not be distinguished 
in the VNIR data, while it has essential spectral information in SWIR data. This shows that 
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the integrated analysis of the VNIR and SWIR data can allow the identification of more 
minerals than that can be achieved using one of the sensors. Thus, the combined analysis is 
beneficial for an enhanced characterisation material in different deposit types.  
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Figure 7.11:  The VNIR and SWIR images of one of the samples showing the identified minerals in both 
regions.  

 

 

 

 

 

 

 

Figure 7.12: The RGB image and classified (a) VNIR, and (b) SWIR images of a drill core.  

      In this study, the minerals identified using the VNIR data include sulphides (e.g., pyrite, 
galena, sphalerite and chalcopyrite), the ferric iron minerals (hematite and goethite) and 
carbonates (siderites). Furthermore, mixed spectra were also observed. Likewise, the 
minerals identified using the SWIR data include mica (muscovite), sulphate (gypsum), clay 
minerals (montmorillonite and illite), carbonates (siderite), tectosilicate (quartz), 
phyllosilicate (Mg + Fe chlorite), sulphide ores (with no particular absorption features), and 
minerals mixture (e.g., muscovite + siderite). Some of the sulphide minerals were 
differentiated using the VNIR data without particular absorption features of the minerals in 
the region. This is also in line with a recent study that showed the potential use of the VNIR 
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technique for the identification of the sulphide minerals that are associated with platinum/ 
palladium (Brock et al., 2003). Likewise, the sulphide minerals do not show characteristics 
spectral features in SWIR spectral data (Clark et al., 1993). However, the sulphide minerals 
exhibit sufficiently distinct spectral signatures from the associated minerals that the 
technique is promising for ore–waste discrimination and can allow indication of ore zones 
in mining operations. Besides, the use of the SWIR data can permit automated mapping of 
the ore and waste zones using comprehensive training data (endmembers).  
      The VNIR data showed promising results in the detection and identification of some of 
the sulphide minerals. However, it needs careful analysis and validation since the sulphides 
do not show any particular absorption features. The SWIR data is mainly known for 
mapping of alteration minerals since it detects most of the functional groups of these 
minerals (e.g., OH and Al-OH). However, the results in this study show the potential use 
of the technique for the separation of ore and waste materials in polymetallic sulphide 
deposits. There are also some limitations of the techniques. For example, the VNIR and 
SWIR techniques are surface techniques; as a result, surface material (or contamination) can 
influence the measurements. Fresh surface measurements (no weathering), surface cleaning 
and information from other sensors can minimise the effect of surface contamination. In 
general, the VNIR and SWIR techniques resulted in promising results for the 
characterisation of materials in polymetallic sulphide deposit. The promising results 
achieved coupled with the recent development of portable hyperspectral cameras (e.g., 
Specim IQ developed by Specim, 2020) can allow the use of the technique for in-situ 
mapping of minerals. Besides, a robust imaging system with the already existing field set-up 
and a suitable illumination source can allow mapping of minerals at the mine face in 
underground mines. Likewise, the availability of high-speed hyperspectral sensors allows 
on-line analysis of materials at the conveyor belt (Goetz et al., 2009; TOMRA, 2019). Thus, 
the technologies have significant potential for the characterisation of materials in mining 
and can significantly assist effective decision-making in the mining process.  

7.5. CONCLUSIONS  

      This study assessed the applicability of the VNIR and SWIR hyperspectral images for 
the characterisation of materials in a polymetallic sulphide deposit. The VNIR and SWIR 
data were acquired from rock chips and drill core samples. The images were pre-processed, 
and spectrally distinct endmembers were extracted. The extracted unique spectra were 
interpreted using spectral reference databases. Besides, training sets were generated using 
the extracted endmembers, and mineral maps were produced using a SAM classifier. The 
results reported in the preceding sections show that both VNIR and SWIR datasets include 
relevant information that can be employed for the characterisation of polymetallic sulphide 
materials. The minerals identified using the VNIR data include the sulphides (pyrite, galena, 
sphalerite and chalcopyrite), the ferric iron minerals (hematite and goethite) and carbonates 
(siderites). Likewise, the minerals identified using the SWIR data include mica (muscovite), 
clay minerals (montmorillonite and illite), carbonates (siderite), tectosilicate (quartz), 
phyllosilicate (Mg + Fe chlorite), sulphide ores (with no particular absorption features), and 
minerals mixture (e.g., muscovite + siderite). Mixed spectra were also observed in both 
VNIR and SWIR spectral data. The use of individual VNIR and SWIR techniques resulted 
in a useful analysis of the materials. However, minerals that do not exhibit characteristics 
spectral features in the VNIR region can have useful spectral signals in the SWIR region. 
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Therefore, the use of both techniques is beneficial for an enhanced characterisation material 
in different deposit types. 
      The sulphide minerals do not have particular absorption features in the VNIR and 
SWIR regions. However, the featureless nature of the minerals was used as a characteristic 
value to map ore and waste materials using the SWIR data. Consequently, the use of SWIR 
data resulted in promising results for the separation of ore and waste materials in the 
polymetallic sulphide deposit. Overall, the VNIR and SWIR technologies are commonly 
used for the identification of minerals that have diagnostic absorption features. In this study, 
the use of the techniques for the characterisation of materials without diagnostic absorption 
features resulted in promising results. The VNIR data show a great potential to detect and 
identify among the sulphide minerals. However, it needs careful analysis and validation since 
the sulphides do not show any particular absorption features. Likewise, the use of SWIR 
allowed the identification of various minerals and classification of ore and waste materials 
in a polymetallic sulphide deposit. Therefore, the techniques have a significant potential for 
an automated indication of mineralised zones in polymetallic sulphide deposits. This will be 
beneficial in supporting effective decision-making in the mining process. 
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8 
MID-WAVE INFRARED AND LONG-WAVE 

INFRARED FOR SULPHIDE ORE 

DISCRIMINATION  

 
 

This chapter presents the use of the mid-wave infrared and long-wave infrared technologies for the 
discrimination of ore and waste in polymetallic sulphide ore deposit. The chapter also compares the 

performance of the MWIR data model with the LWIR data model for the discrimination of ore‒waste 
materials. This study was conducted using the channel samples collected from the mine face of the defined 
study block.  
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Desta, F.S. & Buxton, M.W.N. (2018). Chemometric Analysis of Mid-Wave Infrared 
Spectral Reflectance Data for Sulphide Ore Discrimination. Mathematical Geosciences. 
51(7), pp. 877-903.  doi: 10.1007/s11004-018-9776-4 
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Despite significant recent advancements in the sensor technologies, the use of sensors for raw 
material characterisation in the mining industry remains limited. The aim of the present study 
was to assess the utility of applying the MWIR and LWIR reflectance data acquired by the use 
of a handheld FTIR spectrometer, combined with PLS-DA, for the characterisation of a 
polymetallic sulphide ore deposit. In achieving the study objectives, focus was given to the 
MWIR portion of the FTIR dataset, as it is the least explored region of the infrared spectrum in 
mineral characterisation studies. Three datasets—covering different wavelength ranges—were 
generated from the FTIR spectral data, namely the full FTIR range (2.5 to 15 µm), MWIR (2.5 
to 7 µm) and LWIR (7 to 15 µm), in order to investigate the associated information level of each 
defined wavelength region separately. DoE was developed to determine the optimal data filtering 
techniques. Using the processed data and PLS-DA, a series of calibration and prediction models 
were developed for ore and waste materials separately. As the models applied to the MWIR data 
showed a successful classification rate of 86.3% for sulphide ore-waste discrimination, similarly 
using the full spectral FTIR dataset, a correct classification rate of 89.5% was achieved. This 
indicates that MWIR spectral range includes informative signals that are sufficient for classifying 
the material into ore or waste. The proposed approach could be extended for automating the 
sulphide ore-waste discrimination process, thus greatly benefiting marginally economical mining 
operations. 

8.1. INTRODUCTION  

      The metal ore grades have been declining over the last decades. This leads mining to 
move to the extraction of resources in lower-grade deposits. The extraction of low-grade 
ore bodies is challenging and typically have substantial portions of waste materials. Thus, 
haulage and processing costs become extremely expensive. This shows the need for efficient 
mechanisms to provide comprehensive mineral sorting solutions that can potentially 
minimise the costly issues in the processing of low-grade ores. One such tool can be a 
technology-driven physical separation of materials into different material streams. Sensor-
based sorting provides an innovative solution for the dry separation of ore and waste 
materials in mining operations. It has a substantial contribution in increasing productivity, 
lowering energy consumption, reducing greenhouse gas emissions and minimising water 
losses (Bamber et al., 2004; Batterham and Fleming, 2006; Robben and Wotruba, 2019; 
Wotruba, 2006). Thus, it can enable a significant increase in the efficiency and lifetime of 
mining operations.  
      Sensor-based sorting relies on measuring material properties to distinguish valuable and 
waste materials using sensor technologies. The sensor technologies that are currently in use 
for sensor-based ore sorting include VNIR, DE-XRT, XRF, magnetic resonance (MR), and 
RGB (Duffy et al., 2015; Robben and Wotruba, 2019; STEINERT, 2020; TOMRA, 2020). 
However, these technologies are only used in limited applications such as in the processing 
of industrial minerals, diamonds and gemstones. Therefore, there is still a demand for state-
of-the-art sensor technologies for the separation ore and waste materials in various deposit 
types.   
      The objective of this study was to develop classification and prediction models using 
chemometric techniques that are capable of discriminating sulphide ore and waste materials 
in economically suboptimal mining operations, using spectral data acquired by a handheld 
FTIR spectrometer. The acquired FTIR spectral data were processed to produce three 
datasets, namely full FTIR spectra (2.5 to 15 µm), as well as MWIR (2.5 to 7 µm) and LWIR 
(7 to 15 µm). This approach was adopted in order to evaluate the information level 
associated with each wavelength region (MWIR and LWIR) separately. In particular, as the 
MWIR part of the electromagnetic spectrum has been under-investigated to date due to 
historically limited instrument development, it was the focal point of this study. 
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8.2. MATERIAL AND INSTRUMENTATION  

8.2.1. MATERIAL  

      As a part of this study, channel samples were collected to address the observed spatial 
variability and ensure sample representativeness. For this purpose, twenty-three channels 
spaced approximately 80 to 120 cm apart (depending on the material variability at each 
channel location) were cut, and 102 samples were acquired from different intervals within 
each channel, as shown in Figure 8.1.  

 

 

 

 

 

 

Figure 8.1: Sketch that illustrates a channel cut at the defined mine face. The channel cross-cuts four 
different intervals, each belonging to a different lithotype and sampled separately.     

8.2.2. INSTRUMENTATION AND DATA ACQUISITION  

      An FTIR spectrometer simultaneously collects data in a wide spectral range in the time 
domain, whereby the resulting time-domain graph shows a signal changes over time. In the 
next step, a signal processing technique (Fourier transform) is used to convert the time-
domain information to data in the frequency domain, which allows distinguishing the 
amount of signal within each specified frequency band over a range of frequencies (Ismail 
et al., 1997). Such frequency domain representation is necessary to convert the input signal 
into a full spectrum, which can be used to identify or quantify different materials. A FTIR 
spectrometer has considerable advantages over grating-based IR spectrometers. For 
example, it produces spectra of higher quality relative to the infrared equivalents (a higher 
signal-to-noise ratio). Its other benefits include short data acquisition time, higher accuracy, 
higher precision, wider scan range and high resolution (Agilent, 2017; Chemistry libretexts, 
2017; Perkins, 1987; Smith, 2011; Stuart, 2004). Moreover, owing to the rapid technological 
advances, portable FTIR spectrometers can be produced, permitting their use in real-time 
(in-situ) applications (Agilent, 2017).  
      The FTIR 4300 analyser used in this study has three interchangeable sampling interfaces, 
namely external reflectance, attenuated total reflectance (ATR) and diffuse reflectance 
(Agilent, 2017). It provides point data at a high data acquisition speed (less than 30 s). FTIR 
obtains full-wavelength spectra over a wide range of the electromagnetic spectrum (1.9 to 
15 μm). Thus, it has a great potential for identification of various materials. The instrument 
is depicted in Figure 8.2, and is a portable handheld device, powered by two 100/120/240 
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V batteries. Its compact dimensions and relatively lightweight (under 2.2 kg) ensure its 
effective use in a wide range of in-situ applications in real-time. However, due to the harsh 
environmental conditions in the mine that served as the study site, in-situ underground 
measurements were not attempted. Instead, samples were collected and analysed in a 
laboratory.  
 

 

 

 

 

 

 

Figure 8.2: Handheld FTIR 4300 spectrometer and the three sampling interfaces. 

      The FTIR measurements were optimised by considering different instrument setups. 
This was done by interchanging the three sampling interfaces, varying the number of sample 
scans, modifying instrument calibration time and adjusting resolution. The external 
reflectance interface allows a mirror-like reflection (specular reflection) from the sample 
surface to be captured and is thus typically used for smooth surfaces. The ATR measures 
the internal reflection of the sample as the infrared radiation beam passes through an ATR 
element in contact with the sample. Finally, the diffuse reflectance interface allows internal 
and external reflection to be measured simultaneously and it is usually applicable for rough 
surfaces. The working principles behind all three setups are shown in Figure 8.3. 

 

 

 

 

 

Figure 8.3: The three FTIR spectrometer interfaces: (a) ATR, (b) specular reflectance, and (c) diffuse 
reflectance. 

      The performance of each of the three sampling interfaces was assessed using 
homogenized powdered samples to remove artefacts due to surface texture and 
compositional intergrowth. To obtain optimal sample scans, the influence of changing the 
number of sample scans on the measurement results was evaluated. The instrument was 
calibrated at different time intervals and the measurement results were compared. To 
evaluate the significance of the spectral differences, FTIR measurements were collected at 
4 cm-1, 8 cm-1 and 18 cm-1 resolutions and the results were compared. The resultant 
optimised instrument setup comprised of 64 sample scans, 126 background scans, 4 cm-1 
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resolution, 15-minute instrument calibration time and diffuse reflectance sampling interface. 
The FTIR spectroscopy data were collected over the ~1.9 to ~15 µm wavelength range. 
However, for the test case materials, the spectral range from 1.9 to 2.5 µm yielded noisy 
results and was excluded from further analyses. Three sub-datasets were prepared prior to 
modelling: the full FTIR data (excluding the range from 1.9 to 2.5 µm), the MWIR (2.5 to 7 
µm) data and the LWIR (7 to 15 µm) data. To accommodate sample heterogeneity, multiple 
spectra were collected from each sample, the analysis results pertaining to 605 
measurements collected using 102 samples are discussed in the sections that follow.  

8.2.3. CHEMICAL VALIDATION DATASETS 

      The conventional data acquisition techniques namely XRD, XRF and ICP-MS were 
used obtain the data that were employed in the validation of the material discrimination 
results. The ICP-MS and XRF measurements were performed using 50 samples, while XRD 
measurements were carried out using 34 samples. The XRD data used for this study provide 
semi-quantitative mineralogical information, whereas the XRF and ICP-MS data provide 
quantitative elemental information.  

8.3. METHODOLOGY 

      As illustrated in Figure 8.4, the material discrimination approach developed as a part of 
the present study is a multi-step process that incorporates data exploration, data pre-
processing, data modelling and model validation. The data exploration task (denoted as 
Block A in Figure 8.4) includes pattern recognition, material identification and data splitting 
(e.g., into calibration and validation datasets). DoE was developed to find the optimal data 
pre-processing techniques (represented by Block B in Figure 8.4 and 9.5). Using the pre-
processed data, a series of calibration and prediction models were developed (indicated by 
Block C in Figure 8.4). All prediction models were validated using independent datasets. 
The aforementioned approach was independently applied to three datasets, namely the full 
FTIR spectra, MWIR and LWIR. Therefore, the use of these three datasets for the 
discrimination of the test case materials was evaluated (Block D in Figure 8.4). The details 
of each step are described below. 

 

8.3.1. DATA EXPLORATION  

8.3.1.1. UNSUPERVISED CLASSIFICATION  

      To identify a pattern and points of interest in the spectral data, descriptive statistics, 
cluster analysis and PCA were performed. Descriptive statistics, including box plots and 
histograms, were used to describe the basic data features. The unsupervised classification 
technique was applied to assess any natural patterns or groupings in the FTIR data. One of 
the highly efficient and the most commonly used unsupervised classification methods is K-
means. Thus, K-means with Euclidian distance was applied to examine any clustering in the 
spectral data.  
      Using the full-range FTIR reflectance data and the K-means technique, the spectral data 
were classified into two classes. The unsupervised classification was implemented with no a 
priori knowledge about potential mineral groupings. However, the number of clusters was 
specified in advance and two distinct classes were distinguished. The geochemical difference 
between the two classes was investigated using validation data (XRF, ICP-MS and XRD). 
The two classes exhibited variations in elemental concentrations of Cu, Zn, Pb, As and Fe. 
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Thus, the class with a higher concentration of these elements was identified as ore, whereas 
the class with a lower concentration was considered as waste. In addition, the unsupervised 
classification results were compared with the hand specimen classification into the ore and 
waste classes. The comparison results revealed a very good agreement, confirming that the 
unsupervised classification method can be a practical alternative to a hand specimen 
description for ore−waste discrimination, as the former can be automated and the latter 
might be subjective. Subsequently, a category variable that indicates samples belonging to 
ore or waste classes was appended to the full FTIR data table. Once the category variable 
was added to the FTIR spectral data, three datasets (the full FTIR, MWIR and LWIR) were 
prepared. 

 

8.3.1.2. PCA MODELS  

      In the present study, PCA models were developed using the three aforementioned 
datasets separately. The potential for using each dataset for separation of the two classes 
was assessed and compared. The loading plots of the PCA models were interpreted to 
identify the important (informative) variables.   

 

8.3.1.3. OUTLIER DETECTION AND DATA SPLITTING  

      The outlier detection techniques considered in this study are Hotelling’s T², residual 
map, influence plot and visual inspection of unique measurements. Using the Hotelling’s T² 
technique, a critical limit (p-value) of 5% with 95% confidence limits was used to reveal 
potential outliers. The observed possible outliers were labelled, and the influence plots and 
residual map were inspected. The potential outliers identified using the Hotelling’s T2, 
influence plot and residual map were visually inspected and compared. Based on the 
integrated findings yielded by these inspections, fifteen measurements that are possible 
outliers were identified and were excluded from the datasets. Subsequently, each of the three 
datasets was split into calibration and validation sets, ensuring approximately equal 
representation of each class within the two datasets (Block A of Figure 8.4). To avoid 
introducing systematic errors, the datasets were split randomly, whereby measurements 
from the same samples were assigned to either validation or calibration dataset, but not 
both. The calibration and validation sets included 466 and 124 measurements, respectively.  

8.3.2. DATA PRE-PROCESSING 

      As shown in Figure 8.5, baseline correction, SNV, MSC, smoothing (such as Gaussian 
filter smoothing), normalization and data scaling were the pre-processing methods 
considered for this study. The upper box of Fig 6. (labelled 1) shows the independent pre-
processing techniques and the lower box (labelled 2) shows the combined pre-processing 
techniques. The choice of these methods was based on the fact that they are the most 
common artefacts of infrared data (e.g., baseline shift). In addition, the most prominent data 
artefacts (e.g., baseline, scatter and noise) were identified from the line plots of the 
reflectance spectra. With the exception of raw data, mean centering was performed in 
combination with each independent and combined techniques. The selected pre-processing 
methods were employed to develop a DoE that incorporates both independent and 
combined pre-processing techniques. The DoE was applied to the three datasets 
individually and sets of pre-processed data were generated.  
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Figure 8.4: Overview of the research workflow. It includes four major steps: data exploration and 
preparation (Block A), data pre-processing (Block B), data modelling and model validation using independent 
datasets (Block C) and model comparison (Block D). 
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Figure 8.5: The independent (Box 1) and combined (Box 2) pre-processing methods that were applied to 
the spectral data of the full FTIR, MWIR and LWIR datasets. 

 

8.3.3. DATA MODELLING AND VALIDATION 

      In the present study, to establish a discrimination rule of the two classes (ore and waste 
materials), PLS-DA classification models were developed using the pre-processed data of 
the three datasets. PLS-DA was implemented in two steps, whereby PLS regression was 
followed by prediction. In PLS regression, the categorical data (in this case, the ore and 
waste classes) as treated as a response variable and the spectral data at each wavelength is 
represented as the independent variables. As shown in Block C of Figure 8.4, the pre-
processed calibration data were used to develop a series of calibration models that were 
applicable to each of the two classes (ore and waste). The prediction model parameters were 
estimated using the calibration datasets and were subsequently validated using the 
independent (validation) datasets.  
      The performance of the calibration and prediction models when applied to the same 
dataset (e.g., MWIR data) after incorporating each of the previously described data filtering 
techniques was evaluated. The optimal data pre-processing methods were selected based on 
the calibration, validation and prediction statistics of the classification and prediction 
models, whereby lower error terms and higher predicted R2 value were deemed 
advantageous. In addition, confusion matrices were generated to assess the correct 
classification rates of individual models. The correct classification rates were computed by 
adding the number of true positives and true negatives and dividing their sum by the total 
number of the predicted samples. This approach was applied to the full FTIR, MWIR and 
LWIR datasets, and the material discrimination competencies of the three datasets were also 
assessed and compared.   
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8.4. RESULTS AND DISCUSSION  

8.4.1 EXPLANATORY DATA ANALYSIS  

8.4.1.1. K-MEANS  

      Application of the K-means method resulted into two separate classes indicating a 
natural pattern or grouping in the reflectance spectral data. The observed natural groupings 
are based on the correlation or similarity among the measured variables (spectral data). The 
obtained results were reproducible for the same clustering method. To elucidate any 
patterns in the spectral data, ascertaining the composition of the two classes (mineral 
groupings) is essential. Therefore, the geochemical compositional differences between the 
two classes were investigated using the validation data (obtained through XRF, ICP-MS and 
XRD measurements). As summarised in Table 8.1, the two classes differ in elemental 
concentration of Cu, Zn, Pb and Fe, all of which are of interest for the present study due 
to their economic value. In addition, they also differed with respect to As, which is also of 
interest, since it is a penalty element in mineral processing. Thus, its early identification 
would be highly beneficial for optimising product quality and eliminating risks, yielding 
saleable mineable material. In the material sampled from the study area for the test case, the 
primary sources of these elements are the sulphide ore minerals (chalcopyrite, pyrite, 
arsenopyrite, galena and sphalerite). Therefore, a higher/lower concentration of the 
elements signifies that the material is an ore/waste.  
      The class threshold value of each element concentration was set based on the value 
sequence observed in the classes and a relatively large change in elemental concentration. 
For example, the Cu content of 94% in the samples classified as Class 1 indicates greater 
than 250 ppm, as shown in Table 8.1. On the other hand, the Cu content of 93% in Class 2 
samples indicates less than 250 ppm. Similarly, the Fe concentration of 89% in the samples 
categorized in Class 1 signifies greater than 60,000 ppm (6%), otherwise they are categorized 
as Class 2. Even though Fe has many mineral sources (e.g., sulphides, oxides and silicates), 
for the test case materials, Fe shows moderate to strong correlation with sulphide minerals, 
indicating that the main Fe sources are likely the sulphide minerals. Likewise, the Zn, Pb 
and As concentrations are higher in Class 1 than in Class 2 (Table 8.1). Therefore, based on 
the elemental concentration difference, Class 1 is denoted as ore, while Class 2 represents 
waste. In addition, the ICP-MS and XRF measurement data were used to compute the 
correlation coefficients of the elemental dependencies. As shown in Table 8.2, there is a 
moderate positive relationship between Cu and Zn, Cu and Pb, and Pb and Zn. Moreover, 
while Zn−As correlation is strong, no Pb−As correlation was observed in the data. The 
acquired correlation coefficients (except for a few exceptions) indicate that the elements co-
occur. Therefore, a higher concentration of target elements is observed in one class than in 
the other.   
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Table 8.1: Summary of the XRF and ICP-MS data showing concentrations of the indicated elements above 
and below the specified threshold value of the two classes. The % shows the proportion of samples in a 

given class below or above the specified threshold. 

 
 

Class 

Cu Pb Zn As Fe 

Above 
250 
ppm 

Below  
250 
ppm 

Above 
10,000 
ppm 

Below  
10,000 
ppm 

Above 
10,000 
ppm 

Below  
10,000 
ppm 

Above 
1,000 
ppm 

Below  
1,000 
ppm 

Above 
60,000 
ppm 

Below  
60,000 
ppm 

Class 1 94%  6% 94% 6% 97% 3% 89% 11% 89% 11% 

Class 2 7% 93% 22% 78% 6% 94% 0% 100% 0% 100% 

Minimum 
value  

274 
ppm 

28 ppm 10,082 
ppm 

245 
ppm 

12,215 
ppm 

159 
ppm 

1,033 
ppm 

57 
ppm 

61,400 
ppm 

22,500 
ppm 

Maximum 
value  

90,142 
ppm 

235 
ppm 

208,000 
ppm 

7,014 
ppm 

96,400 
ppm 

7,474 
ppm 

22,049 
ppm 

792 
ppm 

313,900 
ppm 

59,600 
ppm 

 

      Elemental concentration varied across samples, as shown in Table 8.1, where the 
minimum and maximum content of the indicated elements is given for both classes. The 
qualitative XRD measurement results show that most of the minerals assigned to the two 
classes are the same. This is likely due to the fact that, even though their concentration 
varies, these minerals occur in both classes. This assertion is also supported by the XRD 
measurement semi-quantification results, indicating that a higher concentration of the 
sulphide minerals (ore minerals) was observed in Class 1 than in Class 2. It is highly likely 
that the acquired reflectance spectra are mixed spectra that are influenced by combined 
mineral signals or matrix effects. This is one of the possible reasons for not assigning 100% 
of the samples into one of the classes. However, with the indicated level of confidence (the 
% of samples in a class), samples containing the elements in quantities that are above or 
below the indicated value can be categorized into the two classes. Separation of the two 
classes based on the elemental concentration signifies presence of a signal in the spectral 
data that can be linked to mineralogy and hence to economic value. 
 

Table 8.2: Elemental correlation coefficient computed using 50 samples.  

Element pairs Correlation  coefficient 

Cu−Zn 0.55 

Cu−Pb 0.43 

Pb−Zn 0.48 

Mg−As -0.01 

Ca−As 0.17 

Pb−As -0.06 

Cu−As 0.11 

Zn−As 0.69 

 

      The cut-off grade of a commodity is a variable that changes due to fluctuations in metal 
prices and mining costs. Compared to the typical current mining cut-off grades, the materials 
from the test case contain lower concentrations of the target elements. For example, the 
typical average cut-off grade for Cu in underground mining operations is above 5,000 ppm 
(0.5%) (Calvo et al., 2016; Lundin mining, 2018). However Cu content exceeded 5,000 ppm 
(0.5%) in only two of the measured samples. Similarly, while the average cut-off grade for 
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Zn in underground mining operations is above 5.5% (Canadian Zinc Corporation, 2018; 
Lundin mining, 2018), in 85% of the measured samples Zn content was below this value. 
Therefore, for the test case materials, the cut-off grade based on the current underground 
mining operations cannot directly be used to generically classify the ore and the waste 
materials. However, even when using sampled material containing elements of economic 
interest in low concentrations, discrimination of materials into two mineral groupings (ore 
and waste) was still achieved. This experimental classification result is consistent with the 
manual specimen classification into ore and waste. However, to avoid subjective sample 
classification and automate the process, application of the K-means technique was 
considered. Therefore, for the present study, the Cu, Zn, Pb, Fe and As concentration in 
the class specified as ore (waste) is above (below) the threshold value indicated in Table 8.1.  

 

8.4.1.2. PCA MODELS  

      Figure 8.6 shows the PCA model score plots of the full FTIR, LWIR and MWIR 
datasets. A score plot provides valuable visual information on potential patterns in the 
samples. It depicts the relationship between sample differences or similarities and the data 
structure. As shown in Figure 8.6 (a) to (c), when the models are applied to the full FTIR 
dataset, the two classes are better distinguished than when the individual LWIR and MWIR 
datasets are used, most likely because the full FTIR incorporates more informative variables 
that can accommodate variations in the data. The PCA models were applied to transform 
the spectral data of the three datasets into PCs. The loading plots of the PCs were 
subsequently interpreted to identify the important or informative variables.  
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Figure 8.6: PCA models computed using raw (a) full FTIR data, (b) LWIR data, and (c) MWIR data. The 
three datasets can be separated into two classes. 
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      Figure 8.7 shows the loading plot of the full-range FTIR, revealing that large loading 
coefficients or most variations are observed at different wavelength locations denoted by 
orange rectangles, such as at 2.5 to 2.6 µm, 3.3 to 3.8 µm, 7 µm, 7.5 to 7.9 µm, 8.8 to 9 µm, 
10.0 µm and 10.7 µm (note that, for the purpose of clarity, not all informative variables are 
indicated on the plots). As such variations are highly informative, they indicate that these 
variables are responsible for the separation of the two classes. When the wavelength 
locations of the informative variables are compared with the data contained in spectral 
libraries (NASA, 2017), it is evident that most of the sulphide minerals show higher 
reflection at the identified wavelength locations. Thus, it is likely that the class separation is 
based on reflection signals from the sulphide minerals. For example, relatively higher 
reflection of galena is around 3.5 µm (NASA, 2017). These 3.3 to 3.8 µm wavelengths are 
identified as important variables for class separation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.7: The loading plot of the first three PCs of the full FTIR dataset. 

8.4.1.3. DETECTION OF OUTLIERS 

      Outliers can be unique sample measurement results or noise, or might arise due to 
measurement errors. As mentioned in Sect. 3.1, in the present study, outliers were detected 
using an integrated inspection of Hotelling’s T², residual map, influence plot and visual 
inspection. Figure 8.8 shows the possible outliers that were excluded using Hotelling’s T² 
and influence plots. Measurements located outside the Hotelling’s T² ellipse are potential 
outliers. The top right quadrant of the influence plot shows samples with higher leverage 
and higher residual, which are denoted as dangerous samples (as they are most likely outliers, 
as previously discussed). Samples in the lower right quadrant of the influence plot are 
influential, whereas those in the top left quadrant are poorly described by the model. 
Therefore, all samples in these two quadrants were carefully assessed using the Hotelling’s 
T2 and residual map to identify those that are potential outliers (i.e., samples that are poorly 
described by the developed models). Therefore, to ensure proper variable description, 
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fifteen measurements that are possible outliers were identified and excluded from the 
datasets. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8.8: (a) A score plot with Hotelling’s T2 limit (p-value of 5%) (b) Influence plot with Hotelling’s T2 
on the x-axis and F-residuals on the y-axis. Samples within red circles are potential outliers that were 
excluded from the datasets. 
 

8.4.2. DATA PRE-PROCESSING AND MODELLING  

      Figure 8.9 (a) and 10(b) show the score plots of the PLS models of the LWIR and the 
full FTIR dataset, respectively, after application of the previously described data filtering 
techniques. The first two latent variables (Factor 1 and Factor 2) of the PLS regression 
explain most of the variations in the data. For example, 94% of the variation in the LWIR 
data is explained by the first two factors. Moreover, the first two factors explain 94% and 

a) 

a) 

b) 
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73% of the variation in the spectra and the class category, respectively. This finding indicates 
presence of an unstructured variation in the spectral data that is not related to the class 
category. The difference in the variation is likely due to other mineralogical information that 
has not been considered in the classification process. For example, sub-clustering was 
observed within the ore class, which could potentially be attributed to the different mineral 
groups that occur within the ore. Therefore, there is a high potential for further 
discrimination of the materials into additional classes. 

Figure 8.9: Score plots of PLS models after data smoothing (Gaussian filter) is applied to (a) the LWIR and 
(b) the full FTIR dataset. 

 

      Table 8.3 shows the correct classification rates of models applied to the three datasets, 
after each dataset has been subjected to individual data pre-processing techniques. It is 
evident that an enhanced prediction was obtained by applying the data pre-processing 
techniques to all three datasets. For example, for the full FTIR raw data, a correct 
classification rate of 83.1% was obtained. However the correct classification rate increased 
to 89.5% after the FTIR dataset was treated with the SNV data filtering technique. 
Conversely, not all data filtering techniques necessarily improved model performance. For 
example, the MSC filtering technique did not improve the model performance when applied 
to the MWIR data, most likely because the multiplicative effect is not pronounced in the 
spectral data. For the given datasets, combining the pre-processing techniques did not result 
in a better prediction than that obtained when these techniques were applied individually. 
Therefore, the results are not reported in this study. Moreover, the pre-processing technique 
that was most optimal differed for the three datasets. For example, when applied to the 
MWIR data, model performance improved (86.3% correct classification rate) after baseline 
correction (Table 8.3). On the other hand, the best results were achieved when the LWIR 
data were subjected to SNV (84.7% correct classification rate). This finding implies that, in 
the LWIR dataset, the undesired intensity variation was more pronounced than in the 
MWIR data. These results also concur with the empirical evidence indicating that the choice 
of most optimal pre-processing technique is data dependent and requires a trial and error 
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approach (Engel et al. 2013). Therefore, DoE is a crucial step in determining the most 
optimal data filtering technique.  
      Comparing the three datasets, the full FTIR data resulted in better prediction 
performance than the MWIR and LWIR data alone (Table 8.3), likely because the former 
covers a wider wavelength region. Thus, the full FTIR dataset includes more informative 
variables to adequately explain the variation in the reflectance spectra than the individual 
MWIR or LWIR data. Overall, the three datasets showed a good potential for discrimination 
of the test case materials into ore and waste. Moreover, after baseline correction, SNV and 
normalization, the correct classification rates were higher when the MWIR, rather than the 
LWIR dataset, was utilised (Table 8.3). This is an interesting finding, since MWIR is the 
least explored infrared region in lithological material characterisation. Overall, the maximum 
correct classification rates achieved for the full FTIR, MWIR and LWIR datasets after data 
filtering were 89.5%, 86.3% and 84.7%, respectively. Owing to the limited information level 
in the infrared spectra of the sulphide minerals and the intermediate values that obscure 
clear class boundaries (and thus bias model performance), the obtained accuracies are 
sufficient to discriminate the materials into ore and waste.   

Table 8.3: Summary of the correct classification (ore−waste discrimination) rates when different models 
are applied to the full FTIR, MWIR and LWIR datasets. 

Model FTIR MWIR LWIR 

Raw 83.1% 75.8% 79.8% 

Normalised  87.1% 85.5% 84.7% 

Baseline  83.9% 86.3% 79.8% 

SNV 89.5% 85.5% 84.7% 

Gaussian 86.3% 79.0% 80.6% 

 

      Figure 8.10 shows representative spectra of ore and waste material samples. Using 
spectral libraries (NASA, 2017) and evidence reported by other authors (Ji et al., 2009; 
Schodlok et al., 2016), different minerals—including dolomite, muscovite, quartz and 
calcite—were identified. The sulphide minerals exhibit very weak spectral features in the 
infrared reflectance data that a direct interpretation of target minerals spectra is challenging. 
However, they have a higher and lower reflection points at different wavelengths. Hence, 
this sulphide minerals property can be transformed into valuable information using the 
approach proposed in this study.  
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Figure 8.10: Representative spectra of the two classes denoting (a) waste material (b) ore material. 

8.4.3. POTENTIAL APPLICATION FOR IN-SITU AND REAL-TIME MATERIAL 

CHARACTERISATION 

      In-situ real-time material characterisation requires both appropriate instrument design 
and software development. The current technological advancements have enabled design 
and implementation of portable instrumentation, making in-situ spectroscopy possible. 
However, for underground mining applications, care must be taken to avoid or minimise 
the effect of moisture and dust. With respect to software design, the findings reported in 
this work demonstrated the potential of using a FTIR spectrometer for distinguishing ore 
from waste, which is of particular relevance for marginally economical mining operations. 
A prediction model was developed to classify unknown spectra into ore and waste classes. 
The acquired results are promising and can be improved by the inclusion of additional 
samples into the calibration models. Thus, a test case-specific mineral library can be 
developed for automated online discrimination of ore−waste materials. 
      The present study was carried out using powdered homogenized samples. However, the 
approach can be extended for whole rock applications by developing customized sampling 
strategies to account for inherent material variability and heterogeneity. The ongoing 
depletion of mineral resources, accompanied by increasing societal demand, suggests that it 
is likely that increasingly lower-grade ores will be extracted in future mining operations. The 
work presented here has demonstrated the potential of utilizing the MWIR and LWIR data 
for ore−waste discrimination, which could assist in greater selectivity during extraction and 
pre-processing, thus maximising use of the resources while increasing economic viability. 

8.5. CONCLUSIONS  

      Infrared spectra collected using an FTIR spectrometer were analysed and classified 
using chemometric analytical methods. The utility of the obtained results for the 
characterisation of sulphide ore and waste minerals from the selected test site was 
investigated. Three datasets spanning different wavelength ranges were prepared, namely 
the full FTIR spectra, as well as MWIR and LWIR spectra. Without a priori knowledge of 
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the material types, the well-known K-means method was implemented to separate the 
datasets into two classes, whereby two distinct classes were identified. The mineralogical 
composition of the two classes was investigated using the conventional XRF, ICP-MS and 
XRD measurement techniques. The two classes exhibited differences in the elemental 
concentrations of Cu, Pb, Zn, As and Fe, and were thus defined as ore and waste. The 
identified categorical variables (the two classes) were inserted into the spectral data of the 
three datasets.  
      DoE was implemented to identify the optimal independent and combined data-filtering 
techniques for discriminating the two classes using the three aforementioned datasets. The 
processed data were used to make predictions about the composition of unknown samples. 
A series of prediction models were developed using the processed data combined with PLS-
DA. Model performance was evaluated using the calibration, validation and prediction 
statistics in the form of an estimated prediction error. In addition, the correct classification 
rate was calculated for each model. The same procedure was applied for the three (FTIR, 
MWIR and LWIR) datasets. In general, the results showed a good agreement in model 
performance when applied on the three datasets. However, when the full-wavelength FTIR 
dataset was employed, lower prediction errors and higher correct classification rates were 
obtained compared to those pertaining to the MWIR or LWIR data.  
      Even though not all data pre-processing techniques necessary improved model 
performance, baseline correction, normalization and smoothing improved the classification 
and prediction performance of the developed models. For example, when the models were 
applied to the full-range FTIR dataset, 89.5% correct classification rate was achieved after 
subjecting the data to the SNV technique. When models were applied to the MWIR dataset, 
the prediction improved to 86.3% after baseline correction. Finally, after normalization of 
the LWIR data, an enhanced correct classification rate of 84.7% was obtained. The MWIR 
data alone provides sufficient information to successfully classify the samples into ore and 
waste. Thus, it can be posited that this region offers great potential for rock and mineral 
characterisation. In this work, FTIR spectroscopy was successfully used to discriminate the 
ore and waste materials of the test case. For future research in this field, FTIR should be 
combined with PLS-DA to explore the potential for rapid automated online discrimination 
of ore and waste material. In sum, with accurate model calibration, the material 
discrimination process can be automated.   
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 9 
RAMAN SPECTROSCOPY FOR THE 

CHARACTERISATION OF A 

POLYMETALLIC SULPHIDE DEPOSIT    
 

This chapter demonstrates the usability of Raman spectroscopy for the characterisation of material in a 
polymetallic sulphide deposit using channel and muck pile samples collected from the defined block in the test 
case. Two Raman systems with 532 nm and 785 nm excitation laser sources were compared. The chapter 
also discusses the opportunities and limitation of the technique in material characterisation.  
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Extraction Innovation Conference, Freiberg, Germany, pp. 32-48. 
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9.1. INTRODUCTION  

      Accurate mineralogical information is crucial along the mining value chain from 
exploration and extraction, to mineral processing and environmental management after 
mine closure. It is beneficial to understand geological processes (e.g., hydrothermal 
alteration), optimise extraction (e.g., blasting) and understand the geometallurgical 
properties of a deposit. Thus, it has a substantial significance for the efficiency of a mining 
process. Various advanced laboratory-based and portable sensor technologies that provide 
mineralogical information are available, such as XRD, SWIR, and LWIR. However, most 
of these techniques might not offer a comprehensive description of some deposit types. 
Consequently, Raman technology can be considered as a complementary or in some cases, 
a substitutionary technique for the detection of Raman active minerals through vibrations 
of the mineral bonds. Raman is a well-established, non-destructive technique that provides 
mineralogical information. The method can be used to fingerprint each detected mineral. 
Raman is often used to complement infrared spectroscopy. However, in some applications, 
Raman may be preferred over other vibrational spectroscopies because it is less affected by 
water — i.e., water is a weak Raman scatterer (Li et al., 2014). Besides, some minerals that 
do not exhibit spectral features in infrared could produce Raman signals (e.g., some of the 
sulphide minerals). The working principle and the current state-of-the-art of the technique 
are discussed in Chapter 3.  
      The intensity of the Raman signal depends on the specific bond of a molecule and the 
excitation laser wavelength. However, the Raman signal is fundamentally very weak in 
nature. Laser-induced fluorescence is the most common source of noise in Raman 
measurements. The fluorescence interference in the spectra may result from the analysed 
material or fluorescent impurities in the sample. It occurs when the electron in a molecule 
returns from an excited state to a ground state (Gaft et al., 2005). This entails the emission 
of a photon as fluorescence. The detection of the Raman signals of highly fluorescent 
compounds might be challenging due to the intense fluorescence signal. Therefore, the 
characterisation of material using Raman requires mechanisms to minimise this effect and 
increase the signal-to-noise ratio of a spectrum. One possible strategy to reduce the effect 
of fluorescence is to select a suitable laser excitation wavelength. The low-energy (longer-
wavelength) laser sources can minimise the strong fluorescence; on the other hand, high-
energy (shorter-wavelength) laser sources can produce a more vigorous Raman signal 
intensity. Thus, the Raman intensity is not solely based on the molecular characteristics of 
materials but also strongly depend on the choice of the excitation laser source (Chryssikos 
and Gates, 2017). Consequently, different laser wavelengths ranging from ultra-violet 
through visible to near-infrared are utilised in Raman spectroscopy. 
      Raman technique can be used for the identification, quantification, and classification of 
minerals. It can be applied for the analysis of a wide range of minerals such as iron ore 
oxides, rock-forming minerals, carbonates, silicate, sulphides and sulphate (Haskin et al., 
1997; Gaft et al., 2005; Griffith., 1975; White., 1975; Mernagh and Trudu, 1993). Numerous 
studies show the usability of the technique for the characterisation of materials in different 
deposit types. For example, Pani et al., (2016) compared XRD, Raman and infrared systems 
for the analysis of minerals in manganese oxide ore. The results demonstrate the Raman as 
a complementary technique. Likewise, Escarate et al. (2010) showed the use of Raman for 
a quantitative indication of calcite in copper ore. Similarly, Ho et al., (2015) used Raman 
coupled with multivariate analysis techniques for the classification of uranium ore 
concentrates. In another study, Uusitalo et al., (2020) applied Raman for the identification 



 CHAPTER 9 

151 

 

and indication of valuable mineral levels of sulphide minerals during froth flotation. Various 
studies show the greater applicability of the technique in material characterisation. However, 
the usability of the method is highly dependent on the deposit type, the form of material 
and the choice of the excitation laser source that Raman measurements require an optimised 
approach.   
      In view of the preceding discussions, the objective of this study was to assess the 
usability of two Raman spectrometers with 532 nm and 785 nm excitation laser sources for 
the identification and classification of minerals in a polymetallic sulphide deposit. The 
collected Raman spectra were pre-processed and interpreted. In addition, classification 
models were developed to evaluate the relevant information in the Raman signals that can 
be related to the characterisation of sulphide minerals. 

9.2. METHODS  

      As illustrated in Figure 9.1, the assessment of the usability of the Raman technique for 
the characterisation of polymetallic sulphide ore involves multiple steps that incorporates 
data-pre-processing, minerals identification, and classification. Two Raman spectrometers 
with 532 and 785 nm excitation laser sources were compared using samples in the form of 
rock, pellet and powder. Minerals were interpreted using comprehensive mineral spectral 
libraries and published works. The Raman signals, coupled with supervised and 
unsupervised classification techniques, were assessed for the separation of ore and waste 
materials (Figure 9.1). The details of each step are described below. 
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Figure 9.1: The general workflow depicting the different steps. 
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9.2.1. MATERIALS AND EXPERIMENTAL SETUP 

      A commercially available hand-held Raman instrument (IRIS echelle spectrometer) and 
laboratory-based Raman spectrometer (Bruker Senterra Raman Microscope) were used to 
analyse 40 samples from the polymetallic sulphide deposit. Studies indicate that Raman 
measurements are dependent on grain size and samples degree of compaction (Chen et al., 
2012; Pellow-Jarman et al., 1996; Wang et al., 2002). Consequently, the Raman 
measurements were performed using the samples in three forms; rock, powder and pellet. 
The rock samples are in the natural form, the powder samples are ground into the finer 
grain, and the pellets are compacted samples. 
      The excitation laser sources used for the IRIS echelle spectrometer and Bruker Senterra 
Raman Microscope are 532 nm and 785 nm, respectively. The specifications of the two 
Raman systems used in this study are presented in Chapter 3. The set-ups for the IRIS 
echelle spectrometer were camera exposure of 1 second, frequency of 0.5 Hz and a camera 
gain of 20. The wavelength range recorded for an excitation wavelength of 532 nm was 
from 535 – 695 nm. The calibration was checked periodically using a paracetamol sample 
and compared to the reference spectrum. The software used for the data acquisition was 
SPECTRAL software and the measurements were performed at the Spectral Industry’s 
laboratory. Multiple measurements were performed at different spots using each sample to 
ensure the coverage of material variability. Besides, up to 30 measurements were taken at 
the same spot and summed to increase the signal-to-noise ratio. On the other hand, the 
specified parameters for the Bruker Raman microscope were laser power of 10 mw, the 
integration time of 2 seconds, 10 co-additions per spot measurement, and a Raman shift 
range of 78 - 1531 cm-1. The software used for the data acquisition was OPUS and the 
measurements were performed at the University of Twente laboratory. For the Raman 
measurements using the 785 nm excitation laser source, multiple measurements were taken 
for each analysed sample using 10 co-additions. An example of the location of the measured 
points with the corresponding Raman spectra is shown in Figure 9.2.  

 

 
 

 

Figure 9.2: (a) Raman image showing the locations of the measured spots at the surface of one of the 
samples, and (b) the corresponding raw Raman spectra of each point. The colour of the points on the 
image shows the corresponding spectra.  

 

      The conventional laboratory techniques XRD, ICP-MS and XRF were used to validate 
the Raman measurements. The interpretation results of the Raman spectra were validated 
using the XRD data. The ICP-MS and XRF quantitative elemental information were used 
to assess and validate the performances of the classification models developed using the 
Raman spectral data.   
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9.2.2. IDENTIFICATION OF MINERALS  

      The Raman spectra recorded using the Bruker Senterra Raman Microscope is in Raman 
shift. However, the spectra collected using the IRIS echelle spectrometer is in wavelength 
that was converted to Raman shift. The formula used to convert the wavelength to the 
Raman shift is   

∆𝑤 =  ( 
1

0
 −  

1

1
)  ×   107 

where w is the Raman shift (cm-1), 0 is the excitation laser wavelength (nm) and 1 is 

the Raman spectrum wavelength (nm). 

      Smoothing and baseline correction were performed to reduce the noise and remove the 
background from the raw Raman spectra. After the data were pre-processed, the spectra 
with no relevant information were excluded from further analysis (Figure 9.1). On the other 
hand, the RRUFF mineral spectral database and published literature were used to interpret 
the peaks in the usable Raman spectra. The interpretation results were validated using the 
XRD and other sensors (e.g., SWIR and LWIR) outputs.   

9.2.3. CLASSIFICATION OF MATERIALS 

      The Raman signals, coupled with supervised and unsupervised classification techniques, 
were assessed for the separation of ore and waste materials. First, PCA was performed to 
evaluate the grouping structure in the Raman spectra. Following this, K-means with 
Euclidian distance was applied to examine any clustering in the spectral data. Two cluster 
centroids were specified, and the classification results of the K-means were assessed for the 
separation of ore and waste materials. The sum of the concentration of the combined Cu-
Pb-Zn was used to designate the ore and waste materials. The elemental quantitative data 
were acquired using ICP-MC and XRF techniques. Cut-off grades (2% and 5%) were used 
to assign the samples into ore and waste classes. Besides, the supervised linear (PLS-DA) 
and non-linear classification techniques (SVC) were used to assess the use of the Raman 
spectra for the separation of ore and waste materials in polymetallic sulphide deposit. The 
PLS-DA model was developed using the material type (ore and waste) as dependent 
variables (the response), and the independent variables (the predictors) are the Raman 
spectra. 
      The model was validated using a leave-one-out cross-validation (LOOCV). LOOCV 
ensures that every observation from the original dataset has the chance of appearing in the 
training and test set. At each iteration of the algorithm, one sample was left out at a time 
from the calibration data, and the models were built using the remaining data in the training 
set. The performances of each of these resulting models were validated using the left-out 
sample. The algorithm repeatedly runs until each sample in the calibration dataset serves as 
the test. Thus, LOOCV provides an estimate of model performance as each sample 
measurement is allowed to represent in the validation dataset. The SVC model was 
developed using the polynomial and RBF kernel functions. The SVC classification type used 
in this work is C-SVC. The key model parameters for the specification of C-SVC models 
are C value and Gamma, which were optimised using a grid search approach with a 
LOOCV. The C-SVC model developed as a part of this work use the Raman spectra as the 
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input vector and material types (the ore and waste categorical data) as the response vector. 
Both the PLS-DA and SVC models were evaluated based on the correct classification rates. 
Detailed theoretical background on PLS-DA and SVC can be found in Chapter 4. 

9.3. RESULTS AND DISCUSSION 

      This section presents and discusses the interpretation results of the Raman spectra from 
the two 532 nm and 785 nm excitation laser sources. The section compares the 
performances of the two laser sources for the characterisation of the polymetallic sulphide 
deposit. It also presents the use of the Raman spectra for the separation of ore and waste 
materials in the analysed samples.  

9.3.1. INTERPRETATION OF RAMAN SPECTRA  

      The Raman spectra obtained using the 532 nm excitation laser source show a low signal-
to-noise ratio. As a result, the Raman peaks could not be identified from the pellets and 
powder samples since the signal strength was not significantly high to allow the detection 
of minerals above the noise level. To amplify the Raman peaks 30 measurements were taken 
at the same spot and summed. However, no clear peaks could be discovered in the pellets 
and powder samples spectra. On the other hand, the Raman signal obtained using the rock 
sample showed relatively better signals. For example, Figure 9.3 shows the Raman spectrum 
of a calcite mineral. Calcite was identified based on its intense Raman peaks at 195 cm-1, 317 
cm-1 and 1117 cm-1. Thus, comparing the sample forms the result acquired from the rock 
measurements are better than the pellets or powder samples measurements. This is likely 
due to the high fluorescence of the homogenised material that resulted in the drowning of 
the Raman peaks in the background fluorescence.  

 

 

 

 

 

 

 

Figure 9.3: Raman spectrum of calcite obtained with the 532 nm excitation laser source. 

      The Bruker Senterra Raman microscope has the option to switch between the 532 nm 
and 785 nm excitation laser sources. Thus, the measurements were performed using both 
excitation laser sources. However, the results from the 532 nm were not usable and similar 
to the IRIS echelle spectrometer 532 nm laser measurements that they were excluded from 
further analysis. Multiple Raman spectra were obtained using the samples and the 785 nm 
laser sources. It should be noted that the location of the spot is not the same for each 
spectrum as multiple measurements were performed for each sample to capture the 
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observed sample heterogeneity. Thus, for most of the sample measurements, some minerals 
were analysed. For example, Figure 9.4 shows the different peaks of the three spots 
measurements of a pellet sample. The minerals identified using the 785 nm laser sources 
include pyrite, quartz, calcite, sphalerite, kaolinite, marcasite and siderite. The minerals peaks 
were consistently observed in all spectra of the samples that compose the same mineralogy. 
However, slight variation (a few wavenumbers) of the peak positions were observed for 
some of the samples. This variation could be due to the slight compositional differences in 
the samples.   

 

 

 

 

 

 

 

 

 

Figure 9.4: The Raman spectra of three measurements taken at different spots of a pellet sample using the 
785 nm laser source.   

      Quartz was identified based on its intense Raman peak at 464 cm-1 and other peaks at 
127 cm-1, 205 cm-1 (Figure 9.5 (a)). The mineral pyrite shows Raman peaks at 342 cm-1 and 
378 cm-1 (Figure 9.5 (b)). Likewise, kaolinite is detected in some of the samples. This mineral 
shows an intense Raman peak at 142 cm-1 and other peaks at 515 cm-1 and 640 cm-1 (Figure 
9.6). The Raman peaks of siderite are found less often in the samples, and the peaks are not 
always easily distinguished from other mineral peaks such as calcite and dolomite, since the 
minerals co-occur together and the siderite peaks have a slight deviation. The peaks of pure 
siderite are found at Raman shift 290 cm-1 and 1090 cm-1. When the siderite contains 
magnesium and manganese, peaks appear at 190 cm-1. As shown in Figure 9.7, the peak at 
190 cm-1 is from siderite and the peak at 171 cm-1 is from calcite.  
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Figure 9.5: The Raman spectra of (a) quartz and (b) pyrite minerals obtained with the 785 nm excitation 
laser source. 

 

 

 

 

 

 

 

 

Figure 9.6: The Raman spectra of (a) kaolinite and (b) sphalerite minerals obtained with the 785 nm 
excitation laser source. 
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Figure 9.7: The Raman spectra of calcite and siderite minerals obtained with the 785 nm excitation laser 

source.  

      Depending on the iron content, sphalerite shows different Raman peaks. Consequently, 
sphalerite with high iron content has peaks at 295 cm-1 and 320 cm-1, whereas sphalerite 
with lower iron content has peaks at 295 cm-1 and 345 cm-1. When the mineral has iron 
content between high and low, the peaks can be shown at 295 cm-1, 320 cm-1 and 345 cm-1 
(Buzatua et al., 2013; Kharbish, 2007). In this study, sphalerite was detected in some of the 
samples. An example of a Raman spectrum of sphalerite is presented in Figure 9.6. The 
missing peak at 380 cm-1 indicates that the 342 cm-1 peak is not from pyrite but belongs to 
sphalerite with medium iron content. The rock samples were used to target the galena 
mineral. However, the acquired Raman signal was noisy and very weak (Figure 9.8). Galena 
exhibit a very weak Raman signal and this is in line with previous works (Mernagh and 
Trudu, 1993; RRUFF, 2020). 

 

 

 

 

 

 

 

Figure 9.8: Raw Raman spectrum of galena obtained with the 785 nm excitation laser source using a rock 
sample. 
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      The effect of fluorescence was observed in some of the Raman measurements. Mainly, 
in the measurements taken from the powder samples. The Raman spectra of some of the 
samples do not show Raman peaks due to the high levels of fluorescence in the signal. An 
example is shown in Figure 9.9 (b). The source of the high fluorescence in some of the 
Raman spectra can be the presence of fluorescent minerals such as calcite or fluorite in the 
analysed samples. Fluorescence was observed in the Raman spectra collected using both the 
532 nm and 785 nm excitation laser sources. However, the effect was more pronounced in 
the spectra collected using the 532 nm than the 785 nm. The level of fluorescence emission 
can be reduced and the signal-to-noise ratio of a Raman spectrum can be maximised using 
suitable excitation laser sources (Chryssikos and Gates, 2017; Haskin et al., 1997). For 
example, the use of longer excitation wavelengths (lower energy lasers) reduces the 
fluorescence emission since photon could not have sufficient energy to induce molecular 
fluorescence. The other challenge in the interpretation of Raman spectra is that the 
occurrence of overlapping peaks. Some minerals exhibit one or multiple Raman peaks in 
common thus, when the minerals co-occur, interpretation becomes difficult. In such cases, 
the decomposition of the overlapping peaks into pure components using decomposition 
techniques such as multivariate curve resolution-alternating least squares (MCR-ALS) can 
be a good solution to understand the peaks from the different minerals. 

 

 

     

 

 

     

 

 

 
 

Figure 9.9: Raman spectra of one of the sample obtained with the 785 nm excitation laser source (a) in 
pellet form (b) in a powder form.   

      Overall, the 785 nm laser Raman measurements resulted in good Raman signal 
intensities for the three sample forms (rock, pellets, and powder samples). However, the 
results obtained from the analysis of the rock samples were superior to the powder and 
pellet samples measurements. Similarly, the 532 nm laser Raman measurements resulted in 
a better signal for the measurements of rock samples than powder and pellets samples. 
Comparing the two excitation laser sources for the characterisation of the polymetallic 
sulphide materials, the 785 nm laser source outperforms the 532 nm laser source. This is 
likely due to the fact that longer excitation wavelengths are known to give less fluorescence 
than shorter excitation wavelength (Bumbrah and Sharma, 2016). The other possible reason 
can be for non-transparent samples (such as the sulphide minerals) the longer excitation 
laser sources penetrate deeper into the samples and provide a better signal than the shorter 
wavelengths (Tuschel, 2016).  
      The semi-quantitative mineralogical XRD data were used to validate the interpretation 
results of the Raman spectra. This allowed a comparison of the Raman peak intensities with 
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the concentrations of the minerals. Although the intensities difference was not that 
significant due to the weak Raman response, it was observed that the lower the 
concentrations of the minerals, the lower the peak intensities. This is in line with other 
researchers that indicate the proportionality of the Raman intensity to minerals 
concentration (Foucher et al., 2017). Factors that influence Raman measurements include 
particle size, sample compaction, material type, and the choice of excitation laser sources 
(Chen et al., 2012; Pellow-Jarman et al., 1996; Wang et al., 2002). In this study, the Raman 
measurements were assessed using different forms of samples and excitation laser sources. 
The results show that the 785 nm laser source is the preferred laser choice and the 
measurement performed using the rock samples was superior to the pellet and powder 
sample forms. The variation in the physical properties of samples such as particle size and 
compactness influences the Raman intensities. For example, increased sample compaction 
can enable the more effective penetration of laser light into a sample. This can lead to 
enhanced light scattering in the direction of the incident light, thus causes light absorption 
by the sample (i.e., enhanced Raman scattering). However, the compactability of (powder) 
samples depends on different factors such as the composition of the material, the crystal 
structure and grain size (Heigl et al., 2012). Likewise, particle size determines the intensity 
of the scattered Raman signal. Therefore, future studies are recommended to assess the 
influence of grain size and degree of sample compactness for the quantitative analysis of 
minerals in polymetallic sulphide powder samples using Raman. 

9.3.2. SEPARATION OF ORE AND WASTE MATERIALS   

      The usability assessment of the Raman spectra for the characterisation of material from 

the test case was extended to the applicability assessment in ore‒waste separation using the 
chemical fingerprints of the minerals. Even though the Raman measurements were 
performed using 40 samples, the results of some of the samples were dominated by the 
noise that they were excluded from further analysis. Consequently, the number of samples 
used in the classification analysis was 27. The grouping structure in the Raman spectra was 
assessed using a PCA model. As shown in Figure 9.10, the PCA of the Raman spectra shows 
not a good distinction between classes or clustering based on the concentration of the 
combined Cu-Zn-Pb. Besides, K-means unsupervised classification was applied to the 
Raman spectra. The K-means results were compared to the concentration of the elements 
from the ICP-MS and XRF data. However, the classification results show no significant 
relationship with the concentration of the elements. 
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Figure 9.10: A score plot of a PCA model that shows the structure of sample distribution based on the 
concentration of elements of economic interest (Cu-Zn-Pb).  

      The samples were designated into ore and waste material types using 2% and 5% cut-
off grades based on the concentration of the combined Cu—Zn—Pb concentration. 
Following this categorical data columns were generated in the data matrix. First, the 
measurements of the samples that show less than 2% of the combined Cu—Zn—Pb 
concentrations were considered as a waste and those samples with higher than 2% 
concentration was considered as ore. Likewise, in the second columns, the samples below 
5% concentration were considered as waste, whereas those samples above 5% were 
considered as ore. Then the SVC model was applied using the Raman spectra as independent 
variables and the categorical column as a response variable. This was done two times, once 
for the 2% cut-off grade and then for the 5% cut-off grade. The results of the correct 
classification rate (based on the confusion matrix) of the SVC models for the 2% and 5% 
cut-off grades are presented in Tables 9.1 and 9.2, respectively. As shown in the Tables, 
78% of the samples were correctly classified for the 2% cut-off grade (Table 9.1). On the 
other hand, the correct classification rate for the 5% cut-off grade was 59% (Table 9.2). 
However, both models predicted the materials into ore classes, this shows that the Raman 
spectra coupled with the SVC model could not differentiate the material into ore and waste 
classes instead all the samples were predicted as one class (ore). The observed difference of 
the correct classification rate was based on the number of samples in the ore class, the higher 
the number of ore samples the model tends to be more accurate. The SVC models with the 
polynomial and RBF kernel functions were assessed. However, comparable results were 
achieved using the different model parameters.  

 

 

 

 



CHAPTER 9 

162 

 

Table 9.1: The confusion matrix of the SVC (polynomial) prediction result for ore and waste classes based 
on 2% cut-off grade.  

 

 

 

 

Table 9.2: The confusion matrix of the SVC (polynomial) prediction result for ore and waste classes based 
on 5% cut-off grade.  

 

 

 

 

      The result attained from the PLS-DA model shows that a relationship could be 
established between the Raman spectra and the material types based on the elemental 
concentrations. The score plot of the PLS-DA model for the classification of the ore and 
waste based on a 2% cut-off grade was presented in Figure 9.11. As shown in the figure, the 
plot shows a fairly good distinction among the classes with some overlaps observed with 
ore and waste materials.  In addition, the correct classification rate that can be achieved 
using the PLS-DA for the classification of ore and waste based on a 2% cut-off was 81% 
(Table 9.3). On the other hand, the performance of the PLS-DA classification models 
declined when the cut-off grade was assigned as 5%. As shown in Table 9.4, the overall 
correct classification rate of the PLS-DA model for the 5% cut-off grade was 59%.   

 

 

 

 

 

 

 

Figure 9.11: The score plot of the PLS-DA model for the prediction of ore and waste with 2% cut-off 
grade.  

 Actual Ore Waste 

Predicted  1 2 

Ore 1 21 6 

Waste 2 0 0 

Correct classification rate 78% 

 Actual Ore Waste 

Predicted  1 2 

Ore 1 16 11 

Waste 2 0 0 

Correct classification rate 59% 
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Table 9.3: The confusion matrix of the PLS-DA prediction result for the prediction of ore and waste classes 
based on 2% cut-off.  

  Actual  Ore  Waste  

Predicted    1 2 

Ore 1 20 4 

Waste 2 1 2 

Correct classification rate 81%  
 

Table 9.4: The confusion matrix of the PLS-DA prediction result for the prediction of ore and waste classes based on 
5% cut-off.  

 

 

 

 

      In the present study, the adoption of linear and non-linear multivariate techniques (PLS-
DA and SVC) resulted in a comparable performance in terms of the classification of the 
materials into ore and waste. Both models exhibit a better classification of material for the 
lower cut-off grade (2%) than the 5% cut-off. The major difference between the PLS-DA 
and SVC models for the classification of the material into ore and waste at 2% cut-off is the 
PLS-DA was able to classify the waste material; however, the SVC could not classify any of 
the waste materials.  
      In general, the overall results show both the linear and non-linear techniques provided 
promising results. However, a strong correlation of the Raman spectra and the material 
types could not be established especially for separation of material with a 5% cut-off grade. 
One of the possible reasons for the lower performances of the classification models could 
be Raman is a mineralogical technique however in this study the ore and waste materials 
were determined based on the elemental concentration not based on the sourcing minerals 
concentrations (different minerals can source the same element). The other possible reasons 
could be the weaker Raman signals and the limited number of samples in the analysis. This 
analysis was performed using only 27 samples measurements and the samples exhibit high 
variability of materials (i.e., the concentration of the combined Cu—Zn—Pb ranges from 
0.14 to 19, 45 wt.%). Better results could be possible with extended datasets and optimal 
signal enhancing techniques. Thus, further study is recommended to ensure the applicability 
of the technique for the classification of ore and waste materials at different cut-off grades.  

9.4. CONCLUSIONS 

      In this work, the use of two Raman spectrometers with 532 nm and 785 nm excitation 
laser sources were investigated for the characterisation of polymetallic sulphide ore samples. 
The applicability of the Raman spectra for the identification of minerals and classification 
of materials into ore and waste were assessed using samples in three forms: rock, pellet and 
powder. The results reported in the preceding sections show that the 785 nm excitation 
laser source resulted in better Raman signals than the 532 nm laser source. The samples 
exhibit a strong fluorescence when excited with a 532 nm laser; thus; it limits the detection 

  Actual  Ore  Waste  

Predicted    1 2 

Ore 1 13 8 

Waste 2 3 3 

Correct classification rate 59% 
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of most of the minerals. The use of two Raman systems with 532 nm and 785 nm laser 
sources provided the flexibility to minimise the effect of unwanted fluorescence signal in 
the Raman spectra. Consequently, for the characterisation of the test case material, the 
preferred laser source is 785 nm. In addition, the Raman signals from the rock and pellet 
samples are better than the powder samples. The powder samples were highly influenced 
by fluorescence; as a result, robust Raman signals could not be recorded. The interpretation 
of the Raman spectra permits the identification of some of the test case minerals. The 
identified minerals using the 785 nm laser source Raman system include calcite, sphalerite, 
kaolinite, quartz, pyrite and siderite. The use of Raman spectra, coupled with the supervised 
classification techniques (SVC and PLS-DA) for the classification of ore and waste resulted 
in promising results. For example, for the classification of ore and waste material at a cut-
off grade of 2%, the PLS-DA model resulted in a correct classification rate of 81%. 
However, the classification accuracy (59%) of the model lowered for the separation of the 
material at a higher (5%) cut-off grade. Thus, future study is recommended to ensure the 
applicability of the technique for the classification of ore and waste materials at different 
cut-off grades. 
      The use of Raman enabled the identification of most of the test case minerals and 
yielded promising results for the separation of ore and waste materials. The technique has a 
high potential not only in the identification of broad range minerals but also in permitting 
quantitative analysis and classification of materials in different deposit types. Besides, 
advances in Raman spectroscopy led to the development of rapid hand-held spectrometers 
that enable an analysis of materials in the field. Thus, the technique has a great potential for 
in-situ characterisation of materials in mining operations. 
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10 
IMAGE AND POINT DATA FUSION FOR 

ORE–WASTE DISCRIMINATION  
 

Data generalisation for the reduction of data volume in material 
characterisation  

 
 
The previous chapters (Chapter 6, 7, 8 and 9) show the applicability of the individual techniques for the 

characterisation of material in the test case. The subsequent chapters (Chapter 10, 11 and 12) present the 
performance of the classification and prediction models after data fusion. This chapter presents an integrated 
image and point data fusion approach for the characterisation of material in polymetallic sulphide deposit 
using channel samples from the test case. The chapter compares the performance of the VNIR, SWIR, 

MWIR, and LWIR data models with the fused data model results for the discrimination of ore‒waste 
materials. 
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Desta, F. & Buxton, M. (2020). Image and Point Data Fusion for Enhanced Discrimination 
of Ore and Waste in Mining. Minerals, 10(12), 1110. doi: 10.3390/min10121110 
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Sensor technologies provide relevant information on the key geological attributes in mining. The 
integration of data from multiple sources is advantageous in making use of the synergy among 
the outputs for the enhanced characterisation of materials. Sensors produce various types of data. 
Thus, the fusion of these data requires innovative data-driven strategies. In this study, the fusion 
of image and point data is proposed, aiming for the enhanced classification of ore and waste 
materials in a polymetallic sulphide deposit at 3%, 5% and 7% cut-off grades. The image data 
were acquired in the VNIR and SWIR regions of the electromagnetic spectrum. The point data 
cover the MWIR and LWIR spectral regions. A multi-step methodological approach was 
developed for the fusion of the image and point data at multiple levels using the supervised and 
unsupervised classification techniques. Several possible combinations of the data blocks were 
evaluated to select the optimal combinations in an optimised way. The obtained results indicate 
that the individual image and point techniques resulted in a successful classification of ore and 
waste materials. However, the classification performance greatly improved with the fusion of 
image and point data, where the K-means and SVC models provided acceptable results. The 
proposed approach enables a significant reduction in data volume while maintaining the relevant 
information in the spectra. This is principally beneficial for the integration of data from high-
throughput and large data volume sources. Thus, the effectiveness and practicality of the 
approach can permit the enhanced separation of ore and waste materials in operational mines. 

10.1. INTRODUCTION 

      The dynamic development of sensors resulted in high-end technologies that are rapid 
and efficient for the accurate characterisation of various types of materials. These 
technologies produce different types of data that are applicable to the analysis of materials 
in several disciplines. The two primary data types output from sensors are images (e.g., RGB 
images and hyperspectral images) and point data (e.g., infrared spectrum and Raman 
spectrum). Hyperspectral images can allow the simultaneous characterisation of minerals, 
geological structures and textural information. Moreover, portable point spectrometers also 
play a significant role in the rapid determination of mineralogical and geochemical data in 
mining. For example, a portable XRF system and a SWIR sensor are in use for the rapid in-
situ analysis of materials (Malvern Panalytical, 2019, OLYMPUS, 2020). The two data types 
can provide valuable information on key geological attributes. Therefore, the integration of 
image and point data can significantly benefit mining by maximising the accuracy of material 
characterisation via the combined benefits from both data types. 
      Previous studies indicate that the fusion of hyperspectral images using different image 
fusion techniques resulted in improved performance in various geological and 
environmental studies. For example, the integration of the VNIR, SWIR and LWIR 
hyperspectral images using extracted spatio-spectral features resulted in greatly improved 
drill core mapping (Lorenz et al., 2019). Similarly, Feng et al. (2018) combined SWIR and 
LWIR hyperspectral image data for a better lithological mapping than with the individual 
techniques. More recently, Sun et al. (2020) showed that the fusion of hyperspectral images 
using the extracted spatio-spectral features resulted in the enhanced classification of land-
use/land cover maps. In another study, Kruse, (2015) demonstrated an integrated analysis 
of the VNIR, SWIR and LWIR hyperspectral images for the improved mapping of 
geological units. In raw material characterisation, the VNIR, SWIR and LWIR are 
commonly utilised separately, and the integrated analysis of these technologies is very 
limited. Although few studies indicated the advantages of data fusion, such applications 
usually combine imageries to achieve enhanced classification maps or better resolution 
images. The integrated analysis of hyperspectral images is commonly performed by the 
concurrent analysis of data blocks after wavelength range-specific absorption features are 
extracted, or by combining the mapping results of the individual data blocks using 
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geologically directed logical operators (Kopačková and Koucká, 2017; Kruse, 2015). The 
other common fusion approach is a continuous wavelet analysis that combines wavelet 
scales spectral profiles of the data blocks (Feng et al., 2018). In a recent study, Lorenz et al. 
(2019) integrated VNIR, SWIR and LWIR data via images co-registration and spectral–
spatial information fusion for enhanced drill core mineral mapping. However, the 
integration of multi-source and multi-scale data is still limited and requires novel fusion 
approaches for the integration of image-to-image, image-to-point or point-to-point spectral 
data. 
      In several studies, techniques have been developed to extract information using the 
diagnostic spectral features of minerals in the different wavelength regions of the infrared 
using both hyperspectral images and point measurements. However, such approaches 
become ineffective if, as in the case of sulphides, the minerals under study do not exhibit 
diagnostic features. Thus, in such cases, data-driven strategies that exploit the differences in 
the spectral responses of the minerals are required to extract knowledge from the infrared 
spectral data. Each sensor technology operates over a specific range of the electromagnetic 
spectrum and provides information on certain aspects of material properties. However, a 
single sensor might not offer a sufficiently comprehensive description of material 
composition. This study proposes a method of combining the hyperspectral images (VNIR 
and SWIR) with point spectrometer (MWIR and LWIR) data using machine learning 
techniques and data fusion approaches for the separation of sulphide ore from waste 
materials with no diagnostic absorption features of the sulphide minerals. To date, imaging 
and point infrared techniques have not been fused for the characterisation of material in 
polymetallic sulphide deposits. This gap in the current analytical methodology and the 
promising findings (Desta and Buxton, 2018; Desta et al., 2020) reported recently have 
motivated this study. Thus, the main aims of this study were (1) to assess the possibility of 
a fusion of hyperspectral images (VNIR and SWIR) and point (MWIR and LWIR) data for 
the discrimination of ore and waste materials at different cut-off grades using multivariate 
data analysis techniques and an endmembers weight-based data fusion approach, (2) to 
investigate the use of the generalised point spectra computed from hyperspectral image data 
(VNIR and SWIR) for the separation of ore and waste materials in a polymetallic sulphide 
deposit, and (3) to assess the improvements in the classification models after data fusion.  
      One of the main advantages of the developed methodological approach is that it 
dramatically minimises the data volume while maintaining most of the relevant information 
so as to enable ore and waste separation at different cut-off grades. This minimises the need 
for big data storage and high-performance computing systems for data processing. Thus, 
the approach is beneficial for the analysis of high-spatial and spectral resolutions data, as 
well as for high throughput data. The other advantage of the method is that it allows the 
establishing of a relationship between the spectral data of the different data blocks and the 
elemental concentration of the samples, thus permitting the classification of the materials at 
different cut-off grades. Besides this, the developed method relies on a data-driven 
approach, therefore does not require a prior specification or identification of minerals and 
elements. 

10.2. DATASETS AND INSTRUMENTATION  

      Thirty-eight representative rock chip channel samples acquired from the mine face of 
the study block were used in this study. The samples were acquired from the ore and waste 
materials sourced at different locations of the mine face. Examples of some of the samples 
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are presented in Figure 10.1. The different lithotypes were sampled separately. Each sample 
was split into two, one part of the split powdered and the other half left as rock sample. The 
powdered samples were used to perform the MWIR and LWIR measurements and the 
chemical analysis. The VNIR and SWIR hyperspectral images were acquired using the half 
split rock chip samples. As described in Chapter 3, the VNIR and SWIR hyperspectral 
images were collected using the Specim’s hyperspectral sensors. An Agilent 4300 FTIR 
analyser was used to acquire the MWIR and LWIR range spectral data. The data acquisition 
procedures followed for the collection of the hyperspectral images (VNIR and SWIR) and 
point data (MWIR and LWIR) are described in detail in Chapter 7 and Chapter 8, 
respectively. The samples were designated as ore and waste materials at 3%, 5% and 7% 
cut-off grades based on the concentration of the combined Pb—Zn elements. 

Consequently, the classification of ore‒waste was performed for each cut-off grade, 
separately. The conventional geochemical technique ICP-MS was used to obtain the data 
that were employed in the validation of the ore–waste discrimination results. 

 

 

 

 

Figure 10.1: Some of the analysed rock chip samples, (a) ore that consists of the sulphide minerals (e.g., 
galena, pyrite and sphalerite); (b) host rock—banded gneiss; and (c) the weathered material (e.g., clay 
minerals). 

10.3. METHODS  

      As illustrated in Figure 10.2, the material discrimination approach developed as a part 
of the present study is a multi-step process that incorporates data conversion, data pre-
processing, evaluation of possible combinations, modelling and model validation. The data 
conversion and pre-processing tasks (denoted as a green box in Figure 10.2) include the 
conversion of the pre-processed VNIR and SWIR hyperspectral image data into 
representative point spectra. The MWIR and LWIR data blocks were also pre-processed. 
Using the computed VNIR and SWIR representative spectra and the pre-processed MWIR 
and LWIR data, classification models were developed using the unsupervised and 
supervised classification techniques. The models were applied to the individual data blocks 
as well as to the multiple possible combinations of the four data blocks (Figure 10.2). The 
classification models were validated using the geochemical data. The details of each step are 
described below. 
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Figure 10.2: Workflow diagram showing the steps for the developed methodological approach in this study.  

 

10.3.1. THEORETICAL CONCEPT FOR POSSIBLE IMAGE TO POINT DATA FUSION   

      Depending on the sensor data type and application, data fusion can be implemented 
using various approaches. For example, the integration of image and point data can be 
image-to-image, image-to-point or point-to-point. This study focuses on the integration of 
image and point data, but the integration of image-to-image was also assessed. Image and 
point data are multiscale and multiformat data that require data transformation (or other 
possible strategies) for use in the same data models. This should be done in such a way that 
the relevant information is retained while the data are converted to different data forms. In 
this study, three possible image and point spectroscopic data integration options were 
evaluated, and the preferred approach was implemented. The first approach transforms the 
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image data into point data by extracting the endmembers (i.e., spectrally unique pixels) of 
the image and computing the average without considering the weight of the endmembers. 
The results are spectra (point data), and so the representative spectra computed from the 
images and the collected point data can be fused. The second approach takes image and 
point measurements at the same locality, and fuses the two data types based on location 
(i.e., location-based fusion). This can be achieved by selecting target locations on the image 
and taking point measurements at those points. The third option converts the image data 
into point data by extracting the endmembers of the image and computes the average based 
on the weight of each endmember. This approach relies on the prominence of the 
endmembers and enables weight-based fusion. The benefits and limitations of the three 
possible approaches are presented in Table 10.1. In this study, the third option was preferred 
because it ensures representation based on the weight proportion of each endmember. The 
effect of weight-based averaging is comparable with point measurements since the latter 
relies on taking multiple measurements at different locations of the sample surface and 
averaging. 

Table 10.1: Evaluation of some of the possible hyperspectral image and point spectroscopic data fusion 
options.    

No. Approach        Benefits                             Limitations 

1 Extract the 
endmembers and 
compute the 
average 

It comprises all the 
unique spectra  

• All endmembers get equal weight, and 
this is not the case in reality since some 
of the endmembers might exist in very 
few pixels 

• Underestimate the information from 
pixels with a higher count  

• Overestimate the signals from the 
pixels with a lower count 

• There might be information loss due 
to unclassified pixels  

• Averaging effect 

2 Select target 
locations from the 
image and take 
point 
measurements at 
the same spots 

The measurement 
targets the same 
spots 

• The pixel size and point measurement 
techniques sensor view should match  

• It is possible to upscale or downscale 
the pixels size using resampling 
methods, but this requires complex 
implementation (and it is out of the 
scope of this study) 

• Positional accuracy might not enable 
same spot measurements 

3 Consider the 
weight of each 
endmember to 
compute the 
representative 
spectrum 

The proportion or 
weight of the 
abundance of the 
minerals will be 
taken into account   

• Needs careful consideration of 
endmembers extraction  

• There might be information loss due 
to unclassified pixels 

• Averaging effect 
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      Unlike hyperspectral imagers, point spectrometers capture spectral information at 
specific points on the material surface. Depending on the measuring surface of the sensors, 
the size of the point of observation (spot) varies. For example, an FTIR 4300 sensor offers 
different FOVs corresponding to the three interfaces: the diffuse reflectance sample 
interface has a 2 mm diameter, the ATR interface has a 1 mm diameter and the external 
reflectance has a 6 mm diameter (Agilent, 2020). Despite the variation in the measuring 
surface diameter (field of views—FOVs) of the sensors, point spectrometers provide a 
single spectrum. Therefore, multiple measurements are taken at the surface of the sample 
to ensure the measurements are representative. Thus, sample heterogeneity can determine 
the required number of point measurements per sample. More homogenous material 
requires fewer measurements, while the higher the heterogeneity, the more measurements 
are required. The point measurements do not necessarily provide spatially resolved data; 
instead, the spectral data can include spectral information from the co-existing mineral 
mixtures in the vicinity or within the FOV of the sensor. Therefore, the spectra from point 
spectrometers are mixed in most cases. In contrast, the image data, such as the hyperspectral 
imaging of rock chips or drill cores, covers all parts of the samples under the imaged scene. 
Therefore, the spectral information at each point of the sample surface is available. Some 
of the benefits and shortcomings of the image and point data types are summarised in Table 
10.2.  

Table 10.2: Some of the benefits and shortcomings of point and image data types in material 

characterisation.  

Data 
Type 

Pros. Cons. 

Image 
data 

• Information all over the sample 
surface  

• Remote application possible  

• Suitable for the understanding of 
the spatial distribution of minerals  

• Allows simultaneous analysis of 
minerals, geological structures and 
textural information 

• Permits quantitative indication of 
mineralogical composition based 
on pixel count 

• High-data volume 

• Relatively lower resolution 

• Surface irregularities can cause 
difficulty in keeping all sample 
surface in focus 

Point 
data 

• Depending to the technology, 
more accurate data  

• Low-data volume  

• High spectral resolution 

• High dynamic range 

• High signal-to-noise ratio 

• Subjective in the way of selecting 
measurement points 

• Limited area coverage (spot 
measurement) 

• Needs actual contact with the 
sample 

 

10.3.2. IMAGE DATA CONVERSION  

      The raw VNIR and SWIR hyperspectral images were pre-processed using the required 
pre-processing techniques. The spectrally unique endmembers were extracted from the pre-
processed VNIR and SWIR images, separately, using the scatter plots and PPI technique. 
The details of the applied pre-processing and feature extraction techniques are described in 
Chapter 7. Some of the unique spectra were interpreted to identify minerals using the 
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available spectral libraries. However, there are also unidentified unique spectra, possibly due 
to factors such as mineral mixtures, physical matrix effects or weak spectral responses. The 
extracted endmembers (both the identified and unidentified unique spectra) were used to 
generate training sets (ROI). The ROI’s were used to produce mineral maps that show the 
mineral distribution and pixel abundances using a SAM classifier. SAM is a rapid mapping 
tool, which is relatively insensitive to illumination effects and other spectral artefacts (Kruse 
et al., 1993). This technique is described in Chapter 3. The mineral maps produced show 
the locations and pixel abundances of each endmember. A pixel count was performed using 
the classified VNIR and SWIR images of each sample separately. The number of pixels of 
each endmember was used to compute the relative abundance of the identified and 
unidentified minerals. Following this, the weight of each endmember was used to calculate 
the final average spectrum of each sample. The mathematical equations for the conversion 
(representation) of the image data to a spectrum are shown below  

𝑦𝑖= 
100𝑥𝑖

𝑤
, (1) 

𝑇 =  
∑ 𝑦𝑖

𝑛
𝑖=1

𝑘
, (2) 

where y denotes the proportion of an endmember in the sample, w is the total number of 
pixels of the image, x represents the endmembers (the identified and unidentified minerals), 
i is the number of endmembers, k is the total number of the endmembers, n represents the 
last endmember, and T is the average representative spectra of a sample.  

 

      As indicated in Table 10.2, both the image and point data have their advantages and 
limitations. Thus, the conversion of the image to point data is not because the point data is 
superior to the image data. Instead, for the combined analysis of the image and point data, 
one possible approach can be the converting of the two data types into the same data scale 
while maintaining the relevant spectral information from both data types. Consequently, 
data conversion was performed to transfer the hyperspectral image data of each sample into 
a representative spectrum. The representative spectrum represents the average of pure 
endmembers multiplied by their weight. The same procedure was followed to generate the 
VNIR and SWIR representative spectra separately. 
      The VNIR and SWIR sensors used in this study offer the same FOVs, such that a 
straightforward pixel-by-pixel co-registration of the two images is possible. However, this 
approach was not considered since the focus was the integration of the image and point 
data. Thus, the image data were converted to point representative spectra, and the usability 
of the transformed (generalised) data for the discrimination of ore and waste materials was 
assessed. In the proposed approach, two scenarios can be verified: (1) the usability of the 
images that were generalised into point data to still provide useful information, and (2) 
whether this approach permits the fusion of image (VNIR and SWIR) and point data 
(MWIR and LWIR) for the enhanced characterisation of materials.  

 

10.3.3. POINT SPECTRAL DATA PRE-PROCESSING  

      The PCA model was applied to the MWIR and LWIR datasets. The scores plots of the 
PCA models were used to investigate the grouping structure (intra-sample relationships). 
The loading plot of the PCs was interpreted to reveal the wavelength regions with a large 
loading coefficient or the most variations. These wavelength regions are important variables 
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that contain more information. Consequently, the features, those containing information 
pertinent for the separation of ore and waste material, were independently extracted from 
the MWIR and LWIR data blocks. The extracted informative variables from the MWIR data 
are the wavelength ranges from 2.5 to 3.0 µm, 3.5 to 4.2 µm and 5.6 to 6.3 µm. Likewise, 
the ranges 7.3 to 7.8 µm, 10.8 to 11.5 µm, 13.6 to 14.0 µm and 14.5 to 15.0 µm were extracted 
from the LWIR data. Thus, the MWIR and LWIR data blocks consist of the extracted 
informative features from the two spectral regions. Prior to modelling, the two data blocks 
were pre-processed using smoothing (Gaussian filter smoothing), baseline correction and 
normalisation techniques. The MWIR and LWIR data used in this study are point 
measurements. As described in Chapter 8, sample heterogeneity was accounted for by 
collecting multiple spectra from each sample and computing the average. Therefore, the 
datasets (VNIR, SWIR, MWIR and LWIR) used in this work are based on average spectra 
that were calculated based on material variability.  

 

10.3.4. DATA MODELLING  

      The multivariate analysis techniques used to develop the classification models are the 
K-means and SVC methods. Detailed descriptions of the K-means and SVC methods can 
be found in Chapter 4. One of the highly efficient, and the most commonly used, 
unsupervised classification methods, K-means with Euclidian distance was applied to 
examine any clustering in the spectral data. The K-means number of clusters was specified 
as two and clustering was independently generated for each individual and fused data block. 
The correct classification rate of each data block model was examined for the separation of 
ore and waste materials at the cut-off grades of 3%, 5% and 7%, separately. The 
classification results of the models and the reference values were used to compute the 
correct classification rate of the individual and fused data block models separately.  
       SVC is a supervised classification method, used to optimise separation between 
different classes or groups. The SVC classification type used in this work is C-SVR with a 
polynomial kernel function, as this kernel type can be utilised to model non-linear systems 
of varying complexity. The SVC is a supervised classification technique, thus prior to 
modelling, the samples were designated as ore or waste based on the concentration of the 
elements at the required cut-off grade. The data blocks with the material class information 
were used to develop the SVC models. The SVC model was validated using a LOOCV. 
LOOCV is one of the resampling (subsampling) procedures for the validation of models 
with a small dataset (Wong et al., 2015). In this work, the optimal model parameters (C and 
gamma) were optimised using a grid search approach. The correct classification rate of each 
left-out spectrum was calculated after selecting the optimal parameters. Finally, the average 
of the correct classification rate values of each iteration is reported as the performance of 
the classification model. 
      The performances of the K-means and SVC classification models were evaluated for 
the separation of ore and waste materials at the 3%, 5% and 7% cut-off grades using the 
individual as well as the fused datasets. Samples with a concentration below the cut-off grade 
are designated as waste, whereas those with a concentration above the cut-off grade are 
considered ore. This approach is beneficial in evaluating the usability of each technology for 

the separation of ore‒waste at different thresholds. Thus, the applicability to both low- and 
high-grade deposits can be determined.  
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10.3.5. DATA FUSION AND VALIDATION  

      The integration of multi-source and multi-scale data can be realized at different levels 
using the various approaches. Data fusion enables multiplatform characterisation of the 
analysed samples by processing all the spectral signals from each sensor. It is therefore likely 
to improve classification results. The data fusion approaches adopted in this study are low-
level, mid-level and multiple-level. The data fusion approaches in chemometrics are 
discussed in detail in Chapter 4. Multiple possible combinations of data blocks were 
explored to identify the optimal sensor combinations for the classification of the ore and 
waste materials at the indicated cut-off grades. These possible combinations include VNIR–
SWIR, SWIR–MWIR, SWIR–LWIR, and VNIR–SWIR–MWIR–LWIR. First, separate 
models were developed using individual data blocks. Later, data fusion strategies were 
applied to the possible combinations of the data blocks. Therefore, the performances of the 
individual data blocks have also guided the choice of the possible combinations (i.e., data 
blocks with better classification results were mainly considered in the possible combinations 
options). The level of data fusion applied for the combination of the VNIR and SWIR data 
is mid-level since the integration is based on the extracted features (Figure 10.3). In this 
case, the important variables, the endmembers, were extracted using the approach 
mentioned above and the features from the two blocks were concatenated to form the final 
fused data block. On the other hand, a low-level fusion with feature selection was applied 
to integrate the MWIR and LWIR data blocks. In this approach, the pre-processed extracted 
informative variables of the MWIR and LWIR data were concatenated to form a fused data 
block. The two classifiers (K-means and SVC) were applied to the fused data. 

 
 

 

 

 

 

 

 

 

 

Figure 10.3: The steps for the fusion of the VNIR and SWIR data using a mid-level data fusion approach. 
HSI stands for hyperspectral image. 

 

      The fusion of image and point data requires integrating sensor data that have different 
scales and spatial resolutions. An optimal data fusion strategy is required to ensure data 
integrity while maximising the amount of relevant information that can be linked to material 
properties. In this study, the integration of the image and point data blocks was conducted 
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using a multiple-level fusion that incorporates both low-level and mid-level fusions. The 
extracted features of the VNIR and SWIR data, as well as the selected informative variables 
from the MWIR and LWIR data, were aligned and concatenated into a single matrix. Thus, 
the most relevant variables that explain most of the variations in the spectra were fused. 
Classification models were developed using the fused data blocks and the two classifiers (K-
means and SVC). This approach offers the opportunity to explore the region from 0.4 to 
15 µm of the electromagnetic spectrum. In most cases, the wider the wavelength range, the 
greater the amount of pertinent information.  
      The performances of the K-means and SVC models were assessed based on the correct 
classification rates calculated using confusion matrices. The true (reference) values in the 
computation are the geochemical data from the ICP-MS measurements. The correct 
classification rates were calculated for each individual and fused data block model at the 
indicated cut-off grades, separately. Subsequently, the classification accuracies of the 
individual data blocks and possible combinations were compared. The performances of the 
K-means and SVC models were optimised using the different pre-processing techniques 
(smoothing, baseline correction and normalisation) applied to the datasets. Thus, the results 
reported in this study are based on the preferred pre-processing techniques. Consequently, 
smoothing was applied to each data block, and the pre-processed data blocks were 
concatenated to form the fused data blocks used by the K-means model. The SVC models 
were developed after baseline correction was applied to each data block; the pre-processed 
data blocks were concatenated and normalised.  

10.4. RESULTS AND DISCUSSION  

      This section consists of four parts. In the first part, the classification model results of 
the individual techniques for the separation of ore and waste materials using the 
unsupervised and supervised techniques are presented. In the second part, the results of the 
fused VNIR and SWIR data (i.e., image-to-image data fusion after data conversion) are 
presented. This section also compares the classification performances of the fused models 
with the individual data block models. In the third part, the ore and waste separation results 
after image and point data fusion are described in detail. In the last part, the potential 
benefits and possible limitations of the approach are discussed. 
 

10.4.1. EXPLORATORY ANALYSIS  

      The concentrations of the combined Pb–Zn elements varied greatly among the analysed 
samples. The values ranged from 0.16 to 19.6 wt. % with a mean of 6.17 wt. %. The numbers 
of samples in the ore and waste classes at the three cut-off grades are indicated in Table 
10.3. Figure 10.4 shows the PCA model score plots of the VNIR, SWIR, MWIR, and LWIR 
datasets patterns related to the ore and waste materials at the 3% cut-off grade. The plots 
show informative patterns (groupings) that are related to the combined Pb–Zn 
concentration. This indicates the possibilities for the use of the techniques in the separation 
of ore and waste materials in the analysed samples.  
 
 
 
 
 
 



CHAPTER 10 

180 

 

Table 10.3: Summary of the number of samples in the ore and waste classes at 3%, 5% and 7% cut-off 

grades.   

Material 
Number of samples 

Cut-off 3% Cut-off 5% Cut-off 7% 

Ore 23 18 15 

Waste 15 20 23 

Total 38 38 38 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.4: PCA model score plots of (a) VNIR; (b) SWIR; (c) MWIR; and (d) LWIR showing the patterns 
of the ore and waste materials at 3% cut-off grade.   
 

10.4.2. THE INDIVIDUAL DATA BLOCKS MODELS  

      In Tables 10.4 and 10.5, the correct classification rates of the individual data blocks and 
the fused data models for the separation of ore and waste materials at the indicated cut-off 
grades are summarised. As shown in the tables, the performances of the classification 
models vary from technique to technique. For example, the achieved correct classification 
rate of the VNIR data K-means model for the separation of the materials at the 3% and 5% 
cut-off grades are 66% and 73.7%, respectively. The VNIR data have a narrower wavelength 
range than the other techniques, and the amount of relevant spectral information is limited. 
However, the technique yielded promising results. At the 3% cut-off grade, the classification 
rates acquired using the SWIR, MWIR and LWIR data K-means models are 76%, 94.7%, 

c) 

a) b) 
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Waste  
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and 92%, respectively. As can be seen from Table 10.5, the SVC classifier resulted in a very 
good classification performance for the segmentation of ore and waste using the SWIR, 
MWIR and LWIR data. Similar to the K-means classifier, the rates for the VNIR model are 
lower than the other models. Comparing the performances of the individual data block 
models for the separation of ore and waste in a polymetallic sulphide deposit, generally, the 
results acquired from the MWIR data model are superior to the results from the data models 
of other techniques (Tables 10.4 and 10.5). This is intriguing because the MWIR is an 
understudied region of the electromagnetic spectrum in raw material characterisation.  
        
Table 10.4: Summary of the correct classification rates when a K-means classifier was applied to the 
individual and fused data blocks. The ore−waste classification rates for the three cut-off grades are indicated 
for each data model. The wavelength range indicates the operating wavelength range of the technologies.  

 

Sensors Wavelength (µm) 
Correct Classification Rate (%)  

3% Cut-off  5% Cut-off  7% Cut-off  

VNIR 0.4–1.0 66 73.7 61 

SWIR 1.0–2.5 76 79 81.6 

MWIR 2.5–7.0 94.7 81.6 79 

LWIR 7.0–15.0 92 90 87 

VNIR‒SWIR 0.4–2.5 76 79 81.6 

SWIR‒MWIR 1.0–7.0 90 92 90 

SWIR‒LWIR 1.0–2.5 and 7.0–15.0 90 84 81.6 

MWIR-LWIR 2.5–15.0 92 84 81.6 

SWIR‒MWIR‒LWIR 1.0–15.0 90 92 90 

All  0.4–15.0 90 92 90 

 

Table 10.5: Summary of the correct classification rates when the SVC classifier is applied to the individual 
and fused data blocks. The ore−waste classification rates for the three cut-off grades are indicated for each 
data model. The wavelength range indicates the operating wavelength range of the technologies.  

 

Sensors Wavelength (µm) 
Correct Classification Rate (%)  

3% Cut-off  5% Cut-off  7% Cut-off  

VNIR 0.4–1.0 58 60.5 66 

SWIR 1.0–2.5 73.7 60.5 81.6 

MWIR 2.5–7.0 92 87 87 

LWIR 7.0–15.0 92 76.3 73.7 

VNIR‒SWIR 0.4–2.5 81.6 79 84 

SWIR‒MWIR 1.0–7.0 95 90 87 

SWIR‒LWIR 1.0–2.5 and 7.0–15.0 92 90 76.3 

MWIR-LWIR 2.5–15.0 92 90 84 

SWIR‒MWIR‒LWIR 1.0–15.0 95 90 87 

All  0.4–15.0 95 90 87 
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      The MWIR and LWIR data models resulted in better performances at the lower cut-off 
grade than the higher cut-off grades. For example, the LWIR data K-means model yielded 
a 92% correct classification rate for the separation of the materials at the 3% cut-off grade; 
however, the classification performance of the model lowered to 87% for the separation of 
the materials at the 7% cut-off grade. The sulphide minerals exhibited strong spectral signals 
in the MWIR and LWIR; thus, even when they occur at a lower concentration, they can be 
detected and allow the classification of ore and waste materials at lower cut-off grades. The 
discrimination of the materials at lower cut-off grades addresses whether the sulphide 
minerals are in the samples or not. On the other hand, the separation of the ore and waste 
materials at mid-to-high cut-off grades requires detection of the sulphide minerals presence, 
as well as sufficient spectral difference among those samples having mid-to-high 
concentrations of the ore minerals. Therefore, when there is a limited spectral difference 
among the samples with the mid-to-high concentrations, the performances of the 
classification models at the higher cut-off grades can minimise. This is the likely reason for 
the observed relatively lower classification performances of the MWIR and LWIR data 
models at higher cut-off grades compared to lower cut-off grades.  
      The lower spectral difference among those samples having mid-to-high concentrations 
of the ore minerals is also evident from the descriptive analysis and the confusion matrices 
results. For example, the PCA plots of the LWIR data indicate better class separation at the 
3% cut-off than the 7% cut-off grade. The confusion matrix also supports this; a higher cut-
off grade means the majority of the misclassification is in signifying waste as ore. For 
example, at the 7% cut-off, all ore samples were correctly classified; however, some of the 
waste materials were misclassified as ore. The spectral difference between waste (lower 
concentrations) and ore (higher concentrations) materials is apparent (Figures 10.5). 
However, the signals from those samples with mid to high concentrations of the ore 
minerals show limited spectral variations. Extended datasets in the training model to better 
accommodate the spectral variation among the samples with mid to high concentrations 
could improve the performances of the classification models at higher cut-off grades. The 
excellent performance of the classification models at the lower cut-off grades suggests the 
usability of the techniques in economically suboptimal mining operations. A future work is 
recommended to find the optimal cut-off grade for the separation of the materials into ore 
and waste using the MWIR and LWIR technologies. It is also worth noting that the cut-off 
grade of a commodity varies due to fluctuations in the mined product prices and mining 
costs. 
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Figure 10.5: The spectra of some of the samples showing spectral variation based on the combined Pb‒Zn 
concentration values in the ((a) & (b)) MWIR, and ((c) & (d)) LWIR regions of the infrared.  

 
      The VNIR and SWIR data models yielded better classification outcomes at a higher cut-
off grade than the lower cut-off grade. The sulphide minerals exhibit very weak signals (low 
reflectance) in the VNIR and SWIR regions. When the minerals occur in lower 
concentrations, the signals even get weaker. This is likely the reason why the performances 
of the VNIR and SWIR data models lowered at the lower cut-off grade and yielded better 
classification results at higher cut-off grades. The data blocks of the VNIR and SWIR 
consist of extracted features, which tremendously minimised the data volume. Similarly, the 
MWIR and LWIR data blocks comprise the selected informative wavelengths. However, 
the extracted features from the four data blocks allowed the successful classification of ore 
and waste materials in the analysed samples. Overall, the individual techniques show good 
potential for the separation of ore and waste material at different cut-off grades, suggesting 
the presence of informative variables in each data block that can be linked to the ore and 
waste material properties. This could allow the use of these techniques for the separation of 
materials in different low-grade and high-grade deposits.  

10.4.3. FUSION OF THE VNIR AND SWIR DATA 

      As described in Section 10.3.2, prior to modelling, the spectral features of the VNIR 
and SWIR image data were extracted using spectral unmixing algorithm. The fusion of the 
VNIR and SWIR data involves variable screening using a feature extraction technique. Thus, 
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it is considered a mid-level data fusion. This approach allowed the removal of non-
informative variables while maintaining the relevant information in the spectra. As discussed 
in the previous section, both data blocks consist of the relevant information that can be 
linked to material properties (ore and waste materials in this case). Spectral plots of the ore 
and waste materials in the VNIR and SWIR regions can also support this (Figure 10.6). 
Thus, the fusion of the two data blocks benefited from the synergy between the individual 
datasets and resulted in a better separation of ore and waste material. For example, the 
fusion of the VNIR and SWIR data resulted in a remarkable improvement in the 
classification performance of the SVC models, suggesting the advantage of data fusion for 
the enhanced characterisation of materials (Table 10.5). When the K-means was applied to 
the fused VNIR and SWIR data block, the results were not necessarily improved compared 
to the individual techniques’ data models (Table 10.4). However, the K-means clustering 
results of the two data block models resulted in better performances than the use of other 
algorithms, and could likely improve the results (this was also evident from the classification 
result of the SVC classifier). The fact that the image VNIR and SWIR data were converted 
to point data, integrated at the data level, and resulted in a better performance suggests the 
benefits and usability of the approach in material characterisation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10.6: Representative spectra of samples that belong to ore and waste classes in the (a) VNIR and (b) 
SWIR wavelength regions. 
 

      The interpretation of the sulphide minerals using the VNIR and SWIR is challenging 
since the minerals do not exhibit particular absorption features in the regions. The VNIR 
allowed the identification of the ferric iron minerals (hematite and goethite), carbonates 
(siderites), and some of the sulphide minerals (such as pyrite and galena). However, the 
identification of the sulphides was not comprehensive since the minerals do not exhibit any 
absorption features. The minerals identified using the SWIR data include mica (muscovite), 
clay minerals (montmorillonite and illite), carbonates (siderite), tectosilicate (quartz), 
phyllosilicate (Mg + Fe chlorite), sulphide ores (with no particular absorption features), and 
a minerals mixture. The featureless nature of the sulphide minerals can be used to map the 
ore and waste regions of the analysed samples using the SWIR image data. This map can 
show the distribution and relative abundance of the minerals at the surface of samples. 
However, SWIR cannot be used to discriminate between the sulphide minerals, and the 
image data cannot be used to relate the spectral information to specific elemental 
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concentrations. Thus, it is challenging to indicate the ore and waste materials at different 
cut-off grades. The approach developed in this study allowed for establishing a relationship 
between the spectral data and the concentration of the elements of economic interest, and 
thus to classify the samples into ore and waste. This approach gives flexibility in analysing 
the spectra for various quantitative geochemical and mineralogical information. Therefore, 
it is efficient and has significant benefits in providing information about high-grade, 
medium-grade and low-grade areas in mining operations.  

 

10.4.4. IMAGE AND POINT DATA FUSION  

      Imaging of the rock chips samples enables capturing the entire material composition at 
the surface of the sample. Examples of classified VNIR and SWIR images are shown in 
Figure 10.7. Depending on the spatial and spectral resolution of the imagers, imaging 
technologies can provide accurate and usable spectral information at every surface of the 
sample under the imaged scene. This allows the visualisation of the spatial distribution of 
minerals, and can also be used to estimate the relative abundances of minerals at the surface 
of the samples. However, the main drawback of hyperspectral images is the vast volume of 
data that require a large amount of computational power and data storage. Therefore, the 
proposed approach in this study is beneficial in minimising data volume by adopting a 
sequential features extraction and modelling approach. In addition to significantly 
minimising the volume of data, this approach allows the analysing of spectral data from 
multiple data sources operating over the wider range of the electromagnetic spectrum. An 
example of the representative spectra of ore and waste material across VNIR, SWIR, MWIR 
and LWIR is presented in Figure 10.8. This kind of approach permits the use of the relevant 
information in each spectral region to address the material property of interest. Overall, the 
integration of image and point data enables the integration of data of different scales and 
types.  

 

Figure 10.7: Examples of the classified images of (a) VNIR and (b) SWIR image acquired using the 

same sample. 
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Figure 10.8: Representative spectra of the ore and waste materials across the VNIR, SWIR, MWIR and 

LWIR regions of the electromagnetic spectrum. The concentrations of the combined Pb‒Zn in these ore 
and waste samples are 17.5 wt. % and 0.59 wt. %, respectively. 

 
      As shown in Tables 10.4 and 10.5, multiple possible combinations of the image and 
point data were evaluated using the K-means and SVC techniques. For example, the 
integration of the SWIR and MWIR data improved the correct classification rate of the SVC 
model at the 3% and 5% cut-off grades compared to the individual data models (Table 10.5). 
Likewise, the fusion of these two data blocks resulted in enhanced K-means classification 
rates at the 5% and 7% cut-off grades (Table 10.4). The integration of the VNIR, SWIR, 
MWIR and LWIR data blocks yielded better classification performance compared to those 
based on individual techniques. However, the classification performance of the fused four 
data blocks model did not show improvement over the fused SWIR and MWIR data model. 
This indicates the need for an optimised approach to identify the optimal combination or 
an alternative data fusion strategy. The likely reasons for not achieving improved results for 
the integration of the four data blocks compared to the results from the fused SWIR and 
MWIR data model could be the dominance of some of the data blocks or the occurrence 
of redundant information in the data blocks. Each data block resulted in good classification 
results and indicated the presence of relevant information in the spectra. Therefore, the 
result from the combination of the four data blocks might be maximised using alternative 
relevant information extraction techniques and classification models. The MWIR data 
model results show that MWIR technology alone can play a significant role in the 
discrimination of ore and waste in low-grade polymetallic sulphide deposits. However, 
looking at the overall performance trend of the two models (K-means and SVC), the results 
from fused data blocks models are better than those of the individual data blocks models 
for the classification of the materials at the indicated cut-off grades. 
      The classification of the materials at the three cut-off grades resulted in different model 
performances. For example, at the 3% cut-off grade, very good classification performances 
were achieved using the MWIR and LWIR data models (Tables 4, 5 and S7); however, at 
the higher cut-off grades, the performances of theses individual data blocks models 
declined. The fusion of the data blocks for the classification of the materials at the three 
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cut-off grades resulted in improved classification performances compared to the outputs 
produced using the individual data blocks models. However, the difference in the 
performances of the models at the three cut-off grades suggests the importance of model 
calibration at the required threshold (in this case, cut-off grade). 
      Comparing the K-means and the SVC models, both models resulted in an improved 
classification rate for the fused data blocks compared to the individual datasets. Thus, the 
general performances of the models in showing the presence of relevant information in each 
data block, and the improved accuracies after data fusion, are comparable. Overall, the 
results of these models indicate the possibility of integrating image and point data for 
enhanced characterisation of materials in polymetallic sulphide deposits. These datasets 
have different scales and resolutions. The conversion of the image data into representative 
spectra allowed a significant reduction in data volume and permitted the fusion of the image 
data to point data for the enhanced separation of ore and waste materials in the analysed 
samples. 
      As discussed in Chapter 7, the distinct spectral features were used to identify some of 
the minerals in VNIR and SWIR data. However, the interpretation and identification of 
minerals using sensor output (spectra) are sometimes challenging for various reasons, such 
as the co-occurrence of minerals, the physical matrix effect, environmental influences (e.g., 
moisture) and a weak spectral response from some of the minerals. Thus, the identification 
of minerals using sensor outputs may result in an incomplete description of the minerals in 
the analysed samples. This shows the importance of understanding unidentified unique 
spectra using machine-learning techniques. Accordingly, the features extracted from the 
VNIR and SWIR data encompass both the identified spectrally pure mineral spectra and 
the unidentified (e.g., spectrally mixed) unique spectra. The unidentified unique spectra were 
also represented in the computation of the final spectra. Thus, the proposed approach is 
beneficial in providing a comprehensive description of mineral compositions in mining 
operations. The other advantage of the approach is the use of multiple data sources to 
permit enhanced classification results via the use of relevant information from each 
technique.  
      Feature selection requires highly efficient data reduction methods, as the aim is to retain 
only the most important variables in the model. In this work, the extraction of the 
endmembers from the VNIR and SWIR data, as well as feature selection using the MWIR 
and LWIR data, enabled the screening of the most informative variables for the separation 
of ore and waste materials. While the approach generalises the spectral information (i.e., the 
conversion of the image data), the generalised data allow for the efficient simplification and 
classification of materials at different cut-off grades. Thus, the developed methodology is 
effective in enhancing material characterisation with enormously reduced data volume.  
      In material characterisation, the techniques VNIR, SWIR and LWIR are commonly used 
for separate analysis. An integrated analysis of the techniques for enhanced characterisation 
is very uncommon. Of these limited applications, pixel location-based hyperspectral image 
fusion is now becoming popular, especially in remote sensing applications. However, this 
kind of approach is applicable to image-to-image fusion. The proposed approach in this 
study allows the integration of image and point data, remotely operated sensors with sensors 
that need actual contact, and data of different coverage, resolutions and scales. The 
approach further allows the holistic description of materials by providing the opportunity 
to explore a wider range of the electromagnetic spectrum. The classification accuracies 
achieved in this study show promise in terms of the separation of ore and waste materials 
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in polymetallic sulphide deposits using data sources that have different natures (i.e., image 
and point data). Therefore, this study can serve as a baseline for the integration of different 
forms of sensor outputs for the improved characterisation of materials in various deposit 
types.  
 

 

10.4.5. THE OPPORTUNITIES AND LIMITATIONS OF THE APPROACH  

      The fusion of multiple sensors is challenging due to data complexity. The extraction of 
the features from data blocks and fusion helps simplify the data, make the classification 
results efficient, and can be maximised using optimal features selection methods. The 
proposed approach significantly minimised data volume while maintaining most of the 
relevant information in the spectra that can be related to material properties. For example, 
the average data size of an SWIR hyperspectral image of one of the rock samples used in 
this study was ~215 MB. However, the conversion of the hyperspectral image to the 
representative point spectrum reduced the data size to ~27 KB. This considerable reduction 
in data volume has implications for the requirements for data storage, data processing and 
visualisation. Thus, it can allow the analysis of high-spatial and -spectral resolution images 
from large datasets. This suggests the practicality of the approach for use in high-throughput 
active operational mines. 
      As discussed in Section 10.3.1 and Table 10.2, both the image and point data have the 
advantage that the integration of the two datasets likely maximises the benefits. For example, 
the image data represent all the information from the sample surface at the scene, where the 
point measurements might be subjected to a subjective decision on the selection of the 
measurement spots. However, depending on the technology, the point techniques can offer 
a higher signal-to-noise ratio than the image spectral data. Thus, the fusion of the two data 
types likely benefits from the synergy between them. The integration of image and point 
data can also be performed by the decomposition of the point spectra into pure components 
and the extraction of endmembers from image data. Thus, both datasets can have multiple 
spectra for each sample; however, such a kind of fusion requires optimal spectral 
decomposition algorithms and sophisticated data processing techniques.  
      The sulphide minerals exhibit limited spectral signals in the infrared region of the 
electromagnetic spectrum. However, the combined analysis of a wide range of infrared 
spectral data yielded better classification accuracies than the individual data block models. 
Thus, a combined analysis of these technologies likely results in the enhanced classification 
or prediction of materials in various deposit types. Moreover, the approach allows for 
correlating the concentration of the combined Pb and Zn to the spectral responses of the 
extracted or computed spectra of the VNIR, SWIR, MWIR and LWIR data. The 
interpretation of spectra might fail to identify all the minerals due to the mineral mixture or 
weaker signals of the minerals. However, the proposed approach enables the unidentified 
(unknown) unique spectra to be considered in the computation of the final spectra. 
Therefore, they are represented in the models based on their proportion.  
      The developed methodological approach has several potential benefits. For example, it 
simplifies data, enables the fusion of data from multiple platforms, reduces data volume, 
enhances classification accuracies, minimises information loss by including information 
from unidentified unique spectra, and can be used to relate the infrared spectra to 
quantitative elemental data. Besides, it is a data-driven approach that does not require a prior 
specification or identification of minerals and elements. Table 10.6 summarises some of the 
potential benefits and limitations of the proposed method. The limitations of the approach 



 CHAPTER 10 

189 

 

include that the conversion of the image data into a single spectrum causes the loss of spatial 
information from the hyperspectral images. The other possible limitation is the loss of 
information related to the unclassified pixels. The former can be compensated by 
representing the pixels based on their proportion. The latter can be minimised by 
representing most of the unique spectra in the training dataset. Overall, this approach is a 
multi-step process that involves endmember extraction and image classification. Thus, it 
requires optimal feature extraction and classification techniques to minimise the error 
propagation in the final results.  

Table 10.6: The potential benefits and limitations of the proposed methodological approach.  

Benefits Challenges 

Significantly reduces data volume  
Data conversion results in a loss of the 
spatial information (context) at the sample 
surface  

Simplify data dimensions 
Simplification or generalization of data 
might introduce uncertainty 

Allow fusion of data having different scales, spatial and 
spectral resolutions (image and point)  

Might cause error propagation 

Do not require interpretation of each spectrum; rely 
on data-driven approaches 

 

Incorporate the unidentified unique spectra in the 
analysis, thus minimise the information gap  

Enable multi-sensors data analysis for enhanced 
classification of ore and waste materials  

Allow correlation of the infrared image and point 
spectral data to the elemental concentration at 
different cut-off grades 

      The main contribution of this work is to integrate the hyperspectral image and point 
data using multivariate data analysis techniques and a data fusion approach. The different 
scales of observations from the image and point data sources were converted to form fused 
data blocks. The fused data blocks allowed the incorporation of the two data types into a 
single model for the enhanced separation of ore and waste materials in the analysed samples. 
Overall, the experimental results suggest the use of the developed methodological approach 
for the discrimination of ore and waste materials. Besides this, the use of the approach for 
the separation of the materials at lower cut-off grades suggests its potential applicability in 
sub-economical deposits. The proposed approach provides a versatile solution for the 
fusion of multiple sensor outputs in raw material characterisation. The analysed samples are 
highly variable and limited in number. Going forward, better classification results are 
possible with extended datasets that sufficiently represent the observed material variability. 
The successful practical implementation of the approach can lead to the pre-concentration 
of complex sulphide ore into a major classification of concentrated and less concentrated 
materials. This plays a significant role in ensuring energy efficiency in mineral processing. 
The developed method can be a baseline for the development of a framework for the 
spectral–spatial fusion of data from multiple sensors that have different scales of 
observation, spatial resolutions and spectral resolutions. Thus, it can play an essential role 
in the development of an optimally functioning process that informs decision-makers in 
real-time. 
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10.5. CONCLUSIONS  

      In this work, different scenarios were investigated to assess the use of integration of 
image and point data for the discrimination of ore and waste materials in polymetallic 
sulphide deposits using infrared technologies, namely:  

(1) the use of individual spectral regions (VNIR, SWIR, MWIR and LWIR);  
(2) the use of the computed representative spectra from the hyperspectral images (VNIR 

and SWIR); 
(3) potential for improvement in ore–waste discrimination accuracy by applying data 

fusion. 
      The experimental results reported in the preceding sections show that the representative 
spectra computed using the hyperspectral VNIR and SWIR images include relevant 
information that can be employed in ore–waste discrimination. Moreover, the fusion of the 
computed VNIR and SWIR spectra significantly improved the classification of ore and 
waste material in the analysed samples. At the 3% cut-off grade, the best achieved SVC 
model after fusion of the VNIR and SWIR resulted in a correct classification rate of 81.6%, 
whereas the results from the individual VNIR and SWIR data blocks at the same cut-off 
grade are 58% and 73.7%, respectively. At the 5% cut-off grade, the SWIR and MWIR data 
K-means models yielded correct classification rates of 79% and 81.6%, respectively. 
However, the fusion of the SWIR and MWIR data blocks improved the classification 
performance to 92%. Likewise, at the 7% cut-off grade, the fusion of the four data blocks 
improved the correct classification rate to 90%. Similarly, when the SVC model was applied 
to the fused four data blocks, the result improved to 95% for the classification of the 
material at the 3% cut-off grade. The multiple-level fusion of the four data blocks using 
both the K-means and SVC models resulted in improved classification performances 
compared to the individual data models. However, the achieved classification performances 
of the four data blocks models and the fused SWIR and MWIR data blocks are the same. 
This shows the need for an optimised data fusion approach to identify the optimal sensor 
combinations out of the possible options. Overall, the use of the individual data blocks 
coupled with K-means and SVC for the classification of ore and waste materials in the 
polymetallic sulphide deposit at the 3%, 5% and 7% cut-off grades resulted in good results. 
Moreover, the use of the data fusion strategy improved the model’s classification ability 
relative to the results yielded by using individual techniques. 
      The developed workflow provides a versatile solution for the integration of 
hyperspectral imaging and point spectrometer data for use in material characterisation. The 
fusion of multi-source (VNIR, SWIR, MWIR and LWIR) spectral data with different 
spectral information significantly improved ore–waste discrimination at different cut-off 
grades. This novel methodology is very promising in minimising data volume and provides 
enhanced material characterisation. The results indicate the possibility and opportunities of 
the approach in material characterisation. Going forward, better results are possible with an 
optimised fusion of multiple data blocks for the quantitative and qualitative analysis of 
materials in various low-grade and high-grade deposits. 

 

 



 CHAPTER 10 

191 

 

REFERENCES  

Agilent. (2020). FTIR Accessories - 4300 Handheld FTIR sampling accessories [Online]. 
Available: https://www.agilent.com/en/products/ftir/ftir-accessories/4300-
handheld-ftir-sampling-accessories [Accessed May 2020]. 

Desta, F. S. & Buxton, M. W. N. (2018). Chemometric Analysis of Mid-Wave Infrared 
Spectral Reflectance Data for Sulphide Ore Discrimination. Mathematical 
Geosciences, 51(7), pp. 877-903. doi: 10.1007/s11004-018-9776-4 

Desta, F., Buxton, M., & Jansen, J. (2020). Data Fusion for the Prediction of Elemental 
Concentrations in Polymetallic Sulphide Ore Using Mid-Wave Infrared and Long-
Wave Infrared Reflectance Data. Minerals, 10(3), 235. doi: 10.3390/min10030235  

Feng, J., Rogge, D. & Rivard, B. (2018). Comparison of lithological mapping results from 
airborne hyperspectral VNIR-SWIR, LWIR and combined data. International Journal 
of Applied Earth Observation and Geoinformation, 64, pp. 340-353.                                         
doi: 10.1016/j.jag.2017.03.003 

Kopačková, V. & Koucká, L. (2017). Integration of Absorption Feature Information from 
Visible to Longwave Infrared Spectral Ranges for Mineral Mapping. Remote Sensing, 
9(10), 1006. doi: 10.3390/rs9101006 

Kruse, F. (2015). Integrated visible and near infrared, shortwave infrared, and longwave 
infrared (VNIR-SWIR-LWIR), full-range hyperspectral data analysis for geologic 
mapping. Journal of Applied Remote Sensing, 9(1), 096005,                                                  
doi: 10.1117/1.JRS.9.096005 

Kruse, F. A., Lefkoff, A. B., Boardman, J. W., Heidebrecht, K. B., Shapiro, A. T., Barloon, 
P. J. & Goetz, A. F. H. (1993). The spectral image processing system (SIPS)—
interactive visualization and analysis of imaging spectrometer data. Remote Sensing of 
Environment, 44(2), pp.145-163. doi: 10.1016/0034-4257(93)90013-N 

Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., 
Contreras, I.C. & Gloaguen, R. (2019). Multi-Sensor Spectral Imaging of Geological 
Samples: A Data Fusion Approach Using Spatio-Spectral Feature Extraction. Sensors, 
19(12), 2787. doi: 10.3390/s19122787  

Malvern Panalytical. (2019). About ASD [Online]. Available: 
https://www.malvernpanalytical.com/en/about-us/our-brands/asd-inc [Accessed 
December 2019].   

OLYMPUS. (2020). Handheld XRF analyzers [Online]. Available:  URL: 
https://www.olympus-ims.com/en/xrf-xrd/xrf-handheld [Accessed May 2020].  

Sun, G., Zhang, X., Jia, X., Ren, J., Zhang, A., Yao, Y. & Zhao, H. (2020). Deep Fusion of 
Localized Spectral Features and Multi-scale Spatial Features for Effective 
Classification of Hyperspectral Images. International Journal of Applied Earth 
Observation and Geoinformation, 91, 102157. doi: 10.1016/j.jag.2020.102157 

Wong, T. T. (2015). Performance evaluation of classification algorithms by k-fold and leave-
one-out cross validation. Pattern Recognition, 48(9), pp. 2839-2846.                                                               
doi: 10.1016/j.patcog.2015.03.009 

 

 

 

https://doi.org/10.3390/rs9101006
https://doi.org/10.1016/0034-4257(93)90013-N
https://doi.org/10.3390/s19122787
https://www.malvernpanalytical.com/en/about-us/our-brands/asd-inc
https://www.olympus-ims.com/en/xrf-xrd/xrf-handheld/
https://doi.org/10.1016/j.jag.2020.102157


 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

193 

 

11 
DATA FUSION FOR SEMI-QUANTITATIVE 

ANALYSIS OF MINERALS  

 
 

The previous chapter shows the use of data fusion for the separation of ore and waste materials in a 
polymetallic sulphide deposit. This chapter presents the use of data fusion approaches for semi-quantitative 
analysis of minerals in polymetallic sulphide ore using the MWIR and LWIR sensor technologies. The 
chapter compares two low-level data fusion approaches; one without features selection the other with feature 
selection for the prediction of mineralogical concentrations using PLSR, PCR and SVR algorithms. The 
analysis was performed using the channel, drill core and muck pile samples from the test case.  
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In this work, data fusion approaches for integrating datasets pertaining to the MWIR and LWIR 
spectral regions are proposed, aiming to facilitate more accurate prediction of SiO2, Al2O3, and 
Fe2O3 concentrations in a polymetallic sulphide deposit. Two approaches of low-level data 
fusion were applied to these datasets. In the first approach, the pre-processed blocks of MWIR 
and LWIR data were concatenated to form a fused data block. In the second approach, a prior 
variable selection was performed to extract the most important features from the MWIR and 
LWIR datasets. The extracted informative features were subsequently concatenated to form a 
new fused data block. Next, prediction models that link the mineralogical concentrations with 
the infrared reflectance spectra were developed using PLSR, PCR and SVR analytical techniques. 
These models were applied to the fused data blocks as well as the individual (MWIR and LWIR) 
data blocks. The obtained results indicate that SiO2, Al2O3, and Fe2O3 mineral concentrations 
can be successfully predicted using both MWIR and LWIR spectra individually, but the 
prediction performance greatly improved with data fusion; where the PLSR, PCR, and SVR 
models provided good and acceptable results. The proposed approach could be extended for 
online analysis of mineral concentrations in different deposit types. Thus, it would be highly 
beneficial in mining operations, where indications of mineralogical concentrations can have 
significant financial implications. 

11.1. INTRODUCTION  

      Geometallurgical investigation links the geological and mineralogical characteristics to 
the metallurgical performance of an orebody. It is an important approach to optimise 
resource efficiency and reduce the technical risk associated with mining operations. The 
required information for geometallurgical applications is not limited to knowledge on the 
grades of valuable elements and their variability, but also extends to the gangue minerals, as 
their composition and volume also play a crucial role in ore processing. Extant studies 
highlight the importance of mineralogical information for the sustainability and energy 
efficiency of geometallurgical processes (David, 2013; Dominy et al., 2018). Ore minerals 
occur in veins, disseminated in the host rock and/or in pores with varying concentrations 
of other associated minerals such as silica, oxides and carbonates. The concentration of 
these minerals can be associated with the metallurgical behaviour of the ore minerals. 
Therefore, quantitative mineralogical information on the co-occurring minerals is one of 
the crucial parameters for the optimisation of ore processing.  
      Despite rapid advances in sensor technologies, there is still a demand for novel ideas to 
enable quantitative investigations of mineralogical compositions using sensor-derived data. 
In addition, in-situ application of sensor technologies requires portable and high-speed 
systems. Portable sensor technologies (such as XRF and SWIR) that provide geochemical 
or mineralogical data are available. However, most of the currently available sensor 
technologies are laboratory-based techniques. Owing to the growing interest in an accurate, 
in-situ and on-line quantitative analysis of minerals, infrared technologies coupled with 
advanced data analytics can be promising alternative tools.  
      Numerous previous studies indicate that infrared technologies can be utilised for the 
accurate identification of minerals. Such applications are usually qualitative. For example, 
near-infrared (NIR) sensors can provide accurate identification of clay minerals and rock-
forming minerals (Spectral Evolution, 2019; Szalai et al., 2013), whereas SWIR is one of the 
most widely used infrared technologies for the identification of alteration minerals (Dalm 
et al., 2018; Sun et al., 2001). On the other hand, LWIR permits identification of rock-
forming minerals, whereas far-infrared (FIR) can be used for the identification of rare earth 
minerals (Clark, 1999; Karr and Kovach, 1969). Characteristic features of the minerals have 
also been utilised to quantitatively relate variations in mineral concentrations. For example, 
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Hecker et al. (2012) estimated concentrations of rock-forming minerals using LWIR. 
Similarly, Mroczkowska-Szerszeń and Orzechowski (2018) used ATR-FTIR (attenuated 
total reflectance Fourier transform infrared) for semi-quantitative analysis of minerals in 
carbonate rocks. Palayangoda and Nguyen (2012), on the other hand, estimated mineral 
concentrations in oil shale using ATR-FTIR spectra combined with PCR method. In 
another study, Guatame-Garcia and Buxton (2018) assessed the use of infrared 
spectroscopy for predicting the soluble Al2O3 content in calcined kaolin. Although few 
researchers indicated the potential for using infrared technologies in quantitative analysis of 
minerals, some authors also discussed the limitations of this approach. Specifically, 
Kaufhold et al. (2012) assessed the possibility of the use of infrared spectra for quantitative 
analysis of clay minerals and pointed out the mineral-specific challenges owing to instrument 
detection limit, availability of suitable reference and particle size. At present, infrared 
techniques are insufficiently used in quantitative analysis of minerals. Moreover, most of the 
existing studies in this field addressed the challenge for the development of reliable 
calibration models to predict mineral concentrations in complex mixtures. Consequently, 
there is a need for advanced data-driven approaches and spectral signal pre-processing 
techniques that can be incorporated into comprehensive calibration models, thus to achieve 
accurate estimation of mineral concentrations in different commodities.  
      As discussed in Chapter 4, fusing of different data sources enhances the reliability of 
prediction or classification models owing to the synergy among the incorporated datasets. 
Data fusion can be implemented in different ways and at different levels using various 
multivariate linear (e.g., PLSR) and non-linear (e.g., SVM) data analysis techniques (Borràs 
et al., 2015; Cocchi, 2019). Findings yielded by pertinent studies indicate that data fusion 
approaches can be highly beneficial for mineralogical applications (Chari et al., 2005; 
Khajehzadeh et al., 2017). However, at present, the application of data fusion for 
mineralogical investigations remains very limited.  
      To date, quantitative analysis of minerals in polymetallic sulphide ore samples using 
MWIR and LWIR spectra combined with data fusion methods has never been conducted. 
This gap in the current analytical methodology and the promising findings (Desta and 
Buxton, 2018; Desta et al., 2020) reported recently have motived the present study. Its main 
aims are thus (1) to investigate the use of diffuse reflectance infrared (MWIR and LWIR) 
spectra for quantitative analysis of mineral mixtures in polymetallic sulphide ore samples, 
(2) to access the effect of different data pre-processing techniques on the prediction 
performance, (3) to assess the potential improvement in the prediction accuracies after data 
fusion, and (4) to evaluate the data fusion methods using linear (PLSR and PCR) and non-
linear (SVR) multivariate regression techniques. The implemented low-level data fusion 
approaches are data fusion without feature selection (fusion of the entire variables in the 
MWIR and LWIR data blocks) and with feature selection (fusion of the extracted features 
of the two data blocks).  

11.2. MATERIALS AND INSTRUMENTATION  

11.2.1. MID-WAVE INFRARED AND LONG-WAVE INFRARED DATASETS  

      The study described in this paper is based on 58 representative rock samples collected 
from the test case site. The samples were obtained from the ore and waste materials, which 
are sourced from different locations. The collected samples were powdered, and 
measurements were performed using the Agilent portable 4300 FTIR sensor. The data 

https://www.spiedigitallibrary.org/profile/Srikant.Chari-42989
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acquisition procedures followed for the collection of data are described in Chapter 8. 
Samples heterogeneity was accommodated by collecting multiple spectra from each sample. 
Depending on the observed variability within each sample, 7 to 10 measurements were 
collected, and the averages were subsequently computed for each sample. The acquired full-
range FTIR dataset (covering the full wavelength span from 2.5 to 15.0 µm) were split into 
MWIR (2.5 to 7.0 µm) and LWIR (7.0 to 15.0 µm) spectral datasets. The full-range FTIR 
data were also analysed to compare the obtained results with the individual datasets and the 
data fusion outcomes. Therefore, the SiO2, Al2O3, and Fe2O3 composition prediction 
accuracy obtained using the three datasets (namely full-range FTIR, MWIR, and LWIR) and 
the fused datasets pertaining to 58 samples are discussed and compared in the sections that 
follow.  

 

11.2.2. CHEMICAL ANALYSIS 

       XRF is an established method for determining the major and minor elements 
constituting whole rock (SGS, 2019). As mentioned in Chapter 3, a conventional laboratory-
based XRF was used to acquire mineralogical information on SiO2, Al2O3, and Fe2O3 
minerals. The quantitative mineralogical data obtained were employed in the validation of 
the developed methodological approaches. 

11.3. METHODOLOGY  

11.3.1. MULTIVARIATE ANALYSIS  

      As a part of the exploratory data analysis, PCA was performed. Quantitative prediction 
of mineral concentrations in the polymetallic sulphide ore samples was achieved using both 
linear (PLSR and PCR) and non-linear (SVR) techniques. A brief description of these 
multivariate techniques is given in Chapter 4. In this study, PCA was performed to reduce 
data dimension by generating new sets of variables PCs. It was applied to the individual 
datasets as well as to the fused spectral data. The scores and loading plots of the PCA models 
were used to investigate sample−variables relationships and the grouping structure (intra-
sample relationships). The PLSR models were developed using both individual and fused 
data blocks. The dependent variables (the response) are mineral concentrations and the 
independent variables (the predictors) are the infrared spectra (e.g., MWIR and fused data 
blocks). The calibration datasets were used to develop the PLSR models and their predictive 
performance was validated using independent datasets (validation datasets). The PCR 
models were developed using the IR spectra (individual MWIR and LWIR, as well as fused 
data blocks) as the predictor and the mineral concentrations as the response variables. The 
singular value decomposition (SVD) algorithm was used to calculate the PCs of the PCR 
models. The weights of X variables and the Y variables were standardised.  
      For the implementation of SVR, three different kernel functions (RBF, sigmoidal, and 
polynomial) were examined and the optimal kernel function was selected based on the 
RMSE and R-squared values. As result, RBF kernel function was selected. RBF can be 
utilised to model non-linear systems of varying complexity. The SVM regression type used 
in this work is ε-SVR with RBF kernel function. The key model parameters for the 
specification of ε-SVR models are C value and epsilon (ε), as they respectively determine 
the trade-off between the training error and the model complexity (flatness), and control 
the width of the band where the cost of errors in the epsilon-intensive loss function is zero. 
The value of ε can thus affect the number of SVs used to construct the regression function. 
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The ε-SVR models developed as a part of this work use the infrared spectra (comprising the 
individual and fused datasets) as the input vector and mineral (SiO2, Al2O3, and Fe2O3) 
concentrations as the response vector. As in SVM the values of the optimal model 
parameters are not known in advance, C and ε were optimised using grid search approach 
with a leave-one-out cross-validation.  

11.3.2. MODEL PERFORMANCE ASSESSMENT 

      The performance of the prediction models was investigated using root mean square 
error of cross validation (RMSECV), the root mean square errors of prediction (RMSEP) 
and the coefficient of determination (R2) of the prediction value. Lower statistical error 
terms (RMSECV and RMSEP) and higher predicted R2 signify an improved predictive 
performance. In RMSECV, the error on test split is calculated using a cross-validation 
scheme; however, performance is based on the calibration cases. In this work, the RMSECV 
corresponds to the results of a LOOCV that prevents model over-fitting. The RMSECV 
was used to select the optimal number of PCs in the PLSR and PCR models, and to specify 
model parameters in SVR. 

 

11.3.3. DATA PRE-PROCESSING  

      The undesired variation in the infrared data is removed to enhance the signal pertaining 
to the analytical information. The choice of data filtering techniques adopted for this 
purpose affects the outcome (Rinnan et al., 2009; Roussel et al., 2014). Therefore, DoE was 
developed considering MC and the signal correction methods, namely baseline correction, 
normalisation, SNV and smoothing (Gaussian filter smoothing) data pre-processing 
techniques. These methods were chosen, as the aim was to remove the most common 
artefacts from the infrared spectra (e.g., baseline shift). Detail descriptions of the pre-
processing techniques are presented in Chapter 4.  

 

11.3.4. DATA FUSION  

      The schematic diagram of the data fusion method adopted in this work is provided in 
Figure 11.1. As can be seen, the pre-processed datasets and the three multivariate techniques 
(PLSR, PCR, and SVR) were used for the realisation of low-level fusion of the MWIR and 
LWIR data blocks without feature selection and with feature selection (the grey and blue 
boxes of Figure 11.1, respectively). The methodological approaches applied for the 
implementation of the two data fusion approaches are described below.  

 

11.3.4.1. LOW-LEVEL DATA FUSION WITHOUT FEATURE SELECTION  

      Depending on the dataset or detector, the amount and type of noise might differ across 
the infrared range. Therefore, pre-processing of the individual data blocks, separately, allows 
investigating and treating the various noise sources across the two infrared (MWIR and 
LWIR) wavelength ranges, independently. In the low-level fusion without feature selection 
approach, the individual pre-processed reflectance spectra acquired from the MWIR and 
LWIR data sources were concatenated into a single matrix, as shown in the grey box of 
Figure 11.1. Therefore, four fused data blocks were generated, corresponding to the 
application of four pre-processing techniques (SNV, normalise, baseline, and smoothing) to 
the individual data blocks (MWIR and LWIR). The fused data blocks were used to develop 
the prediction models using PLSR, PCR, and SVR algorithms, as shown in Figure 11.1. The 
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models were developed using the training (calibration) datasets and were subsequently 
validated using the independent (validation) datasets.  
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11.3.4.2. LOW-LEVEL DATA FUSION WITH FEATURE SELECTION 

      Unlike low-level fusion, mid-level data fusion requires features reduction, which is 
achieved through variable screening, and thus allows all non-informative variables to be 
removed in the feature selection step. The mid-level fusion requires a modelling step for the 
extraction of the informative features. However, the feature selection method deployed in 
this study was not based on models’ outputs. Thus, the approach is not a standard mid-level 
fusion where modelling is involved for the extraction of the important variables. Therefore, 
it is referred to as a low-level fusion with feature selection.  
      In the low-level fusion with feature selection approach, informative features (in this 
case, those that contain information pertinent for the prediction of mineral compositions 
of interest) were independently extracted from the MWIR and LWIR data blocks. The 
variable selection or feature extraction technique used in this study is based the reference 
spectra of the minerals from the well-established mineral spectral libraries. Feature selection 
requires highly efficient data reduction methods, as the aim is to retain only the most 
important variables in the model. The mineral libraries show the infrared reflectance spectra 
of the (relatively pure) minerals and were used to identify the wavelength locations of the 
spectral features corresponding to the functional groups of the target minerals (e.g., Si−O). 
In this work, the hypothesis for the low-level fusion with feature selection implementation 
is that variables that correspond to the main spectral features are the most informative for 
the prediction of mineral concentrations. Therefore, variable screening was performed 
based on a prior knowledge-based approach.  
      The pre-processing techniques described in Section 10.3.3 were applied on the 
individual datasets prior to variable screening. Subsequently, the important variables 
(relevant information related to the chemical composition) were retrieved from both MWIR 
and LWIR pre-processed data blocks separately. The extracted features from the two data 
blocks were aligned and concatenated into a single matrix. Therefore, the most relevant 
variables that explain most of the variations in the spectra were fused and mean centred. 
Prediction models were developed using the fused data blocks comprising of the extracted 
features and the three multivariate regression techniques (PLSR, PCR, and SVR). The 
workflow of the low-level fusion with feature selection approach is presented in the blue 
box of Figure 11.1.  
 

11.3.4.3. INDIVIDUAL DATASETS  

      The prediction models were developed using the individual data blocks (MWIR and 
LWIR) and the three aforementioned analytical techniques (PLSR, PCR, and SVR). The Y 
(response) variables are the concentrations of the minerals (SiO2, Al2O3, and Fe2O3). A 
series of models were developed using the pre-processed MWIR and LWIR data separately. 
The prediction performance of each model was evaluated using independent validation 
datasets. Next, performance of the prediction models based on the fused datasets was 
compared with that of the models developed using individual data blocks (MWIR and 
LWIR). In the present study, the MWIR and LWIR spectral data were acquired using a 
single instrument (physically integrated system). Thus, to assess the performance of the full-
range FTIR data model with the fused and individual data blocks, prediction models were 
developed using the full-range FTIR data. The main difference between the full-range FTIR 
data and the low-level fusion is the later pre-processed the individual datasets separately and 
concatenated. Whereas, the former considers both ranges (the MWIR and LWIR) in the 
pre-processing stage. The low-level fusion approach is useful in treating different forms of 



 CHAPTER 11 

201 

 

noise in the spectra data block by data block. Finally, the prediction performances of the 
models developed using the individual techniques, the full-range FTIR and the two low-
level data fusion approaches were assessed based on the RMSECV, RMSEP, and R2 values. 

 

11.3.5. CALIBRATION AND VALIDATION DATASETS  

      The 58 samples that were analysed were divided into calibration and validation subsets 
using a random sample selection algorithm, which was first applied to the MWIR dataset. 
The randomly selected samples were assigned into the calibration and validation datasets of 
the full-range FTIR and LWIR datasets. The same procedure was followed for the three 
datasets (Si2O3, Al2O3, and Fe2O3) to ensure that all models related to each mineral utilise 
the calibration and validation datasets comprising of the same samples. The calibration 
dataset consisted of 43 sample measurements and the validation dataset included 15 
remaining measurements. To allow a direct model comparison, the same split was 
maintained in the calibration and validation datasets of the individual data blocks (MWIR 
and LWIR), the full-range FTIR dataset, and the fused datasets. In this study, all the analyses 
were performed using the Unscrambler and R software.  

11.4. RESULTS AND DISCUSSION  

11.4.1. SPECTRAL FEATURES OF THE MINERALS  

      Typical MWIR and LWIR spectra of nearly pure SiO2, Al2O3, and Fe2O3 are shown in 
Figure 11.2. In the MWIR region, the Al2O3 spectrum exhibits significant features at 2.9 
µm, 3.97 µm, 4.75 µm, and 6.28 µm wavelengths. In the LWIR region of the SiO2 spectrum, 
stretching vibration modes can be seen in the 8−10 µm and 12–14 µm regions due to Si-O 
stretching. Fe2O3 spectrum similarly shows prominent spectral features (peaks) at 3.45 µm, 
3.97 µm, 5.57 µm, and 6.76 µm. The spectra pertaining to the three minerals show important 
features (prominent peaks) that are caused by the molecular vibration of the functional 
groups of each mineral. Therefore, it is likely that the mineral concentrations can be related 
to the reflectance value of each sample’s spectrum.  
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Figure 11.2: The mid-wave infrared (MWIR) and long-wave infrared (LWIR) reflectance spectra of 
(a) SiO2; (b) Fe2O3; and (c) Al2O3 (Source: NASA, 2019). 

11.4.2. EXPLORATORY ANALYSIS  

      Mineral concentrations varied greatly among the analysed samples, as the Fe2O3 value 
ranged from 3.03 to 59.9 wt% with a mean of 24.61, whereas the SiO2 value ranged from 
1.66 to 84.1 wt% with a mean of 41.28 wt%, and 0.06−15.9 wt% (M = 4.22 wt%) was 
obtained for Al2O3. Figure 11.3 shows the PCA model score plots of the full-range FTIR 
data for the SiO2, Fe2O3, and Al2O3 datasets. The plots provide information on the potential 
patterns that are related to the mineral’s concentration.  
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Figure 11.3: PCA model score plots of (a) SiO2; (b) Fe2O3; and (c) Al2O3 concentrations categorized 
into two ranges (the concentrations are expressed in wt %). 

11.4.3. MWIR AND LWIR DATA MODELS 

      In Tables 11.1–11.3, the calibration and prediction statistics of the five datasets for 
Fe2O3, SiO2, and Al2O3 prediction, respectively, are summarised. The prediction models 
were developed once each dataset has been subjected to the data pre-processing techniques 
mentioned in Section 10.3.3. However, the prediction performance of the data models 
declined after SNV filtering and not showed significant improvement after data smoothing. 
Therefore, the tabulated data indicate model performance after normalisation and baseline 
correction have been applied to the datasets.  
      It is evident that a more accurate prediction was obtained by applying the data pre-
processing techniques to MWIR, LWIR, and full-range FTIR datasets. For example, for 
Al2O3 prediction using PLSR, the normalised MWIR data model resulted in an improved 
performance than the raw MWIR data model (Table 11.3). Similarly, the prediction 
performance of both PCR and SVR models improved after data pre-processing (Tables 
11.1–11.3). For all three models (PLSR, PCR, and SVR) used to predict Fe2O3 and SiO2, 
the error terms declined and the R2 value improved after MWIR data normalisation. 
Likewise, the LWIR data models developed using the three algorithms (PLSR, PCR, and 
SVR) exhibited improvement after data pre-processing. For example, for the prediction of 
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SiO2 concentration, the normalised LWIR data model showed a remarkable improvement 
than the raw LWIR data model (Table 11.2).  
      As can be seen from the results reported in Table 11.1–11.3, normalisation of the 
infrared data resulted in remarkable improvement in the performance of all models, 
suggesting presence of undesired intensity variations in the spectra caused by multiplicative 
effects. On the other hand, not all data filtering techniques necessarily improved model 
performance, as was the case for the SNV filtering technique, irrespective of the dataset or 
multivariate regression method (PLSR, PCR, or SVR) used. This is most likely due to the 
minimal effects of light scattering and particle size in the infrared spectra of the analysed 
samples. Combination of the pre-processing techniques were analysed for the prediction of 
the mineral’s concentration, however, the prediction performances of the models were not 
improved, thus the results are not included in this paper.  
      It is also evident that the prediction performance of models based on MWIR and LWIR 
data depends on the mineral type. For example, LWIR-based models outperform those 
utilising MWIR data in the quantification of the SiO2 concentration (Table 11.2). 
Conversely, MWIR data models yielded more accurate Al2O3 concentration prediction 
(RMSEP = 1.86, R2 = 0.85) than those based on LWIR (RMSEP = 2.14, R2 = 0.8), as shown 
in Table 11.3. It is likely that prediction accuracy is linked to the amount of spectral 
information (relevant spectral features) in the infrared dataset. For example, as shown in 
Figure 11.2 and discussed in Section 10.4.1, the Al2O3 spectrum contains more informative 
spectral features in the MWIR region than in the LWIR region. Conversely, the SiO2 
spectrum shows a greater number of prominent spectral features in LWIR than in the 
MWIR region (Figure 11.2), thus resulting in superior prediction of SiO2 concentration by 
the model based on LWIR data.  
 
Table 11.1: Statistical summary of the PLSR, PCR, and SVR models for the prediction of Fe2O3.The 
concentrations of Fe2O3 in the analysed samples were in the range of 3.03−59.9 wt%. 

Datasets/ 
Fusion 
method  

Pre-
processing  

PLSR PCR SVR 

RMSEP R
2
 RMSEP R

2
 RMSEP R

2
 

MWIR 

Raw  6.18 0.78 7.88 0.64 5.50 0.81 

Normalise 4.53 0.88 4.97 0.86 3.95 0.90 

Baseline 5.02 0.86 4.01 0.91 6.39 0.77 

LWIR 
Raw  7.32 0.69 5.97 0.80 4.78 0.85 
Normalise 4.51 0.88 5.34 0.84 4.57 0.87 
Baseline 7.50 0.68 5.79 0.81 5.26 0.84 

Full-range 
Raw  6.05 0,79 5.2 0,84 4.71 0.87 
Normalise 3.68 0,92 3.95 0.91 3.40 0.93 
Baseline 4.29 0.89 4.03 0.91 4.86 0.87 

Low-level 
Normalise 3.30 0.94 3.36 0.94 3.16 0.95 
Baseline 4.57 0.88 3.87 0.91 4.94 0.84 

Low-level 
with the 
selected 
features 

Normalise 4.22 0.90 4.44 0.89 4.34 0.89 

Baseline 5.18 0.85 5.76 0.81 7.34 0.69 
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Table 11.2: Statistical summary of the PLSR, PCR, and SVR models for the prediction of SiO2.The 
concentrations of SiO2 in the analysed samples were in the range of 1.66−84.1 wt%. 

Datasets/ 
Fusion 
method  

Pre-
processing  

PLSR PCR SVR 

RMSEP R
2
 RMSEP R

2
 RMSEP R

2
 

MWIR 

Raw  7.95 0.87 8.22 0.86 10.30 0.74 

Normalise 7.77 0.88 8.80 0.84 8.47 0.86 

Baseline 8.40 0.86 7.38 0.89 9.89 0.82 

LWIR 

Raw  12.8 0.67 9.69 0.81 9.13 0.83 

Normalise 6.12 0.92 6.50 0.91 6.56 0.90 

Baseline 9.13 0.83 9.06 0.83 8.74 0.85 

Full-range 

Raw  6.95 0.90 7.55 0.88 9.14 0.86 

Normalise 6.42 0.92 7.16 0.90 7.52 0.90 

Baseline 7.19 0.90 8.44 0.86 9.08 0.83 

Low-level 
Normalise 5.96 0.93 7.17 0.90 6.85 0.90 

Baseline 7.66 0.88 8.56 0.85 8.69 0.89 

Low-level 
with the 
selected 
features 

Normalise 6.40 0.92 6.06 0.93 6.77 0.91 

Baseline 8.30 0.86 8.37 0.86 10.10 0.81 

 
Table 11.3: Statistical summary of the PLSR, PCR, and SVR models for the prediction of Al2O3. The 
concentrations of Al2O3 in the analysed samples were in the range of 0.06−15.9 wt%. 

Datasets/ 
Fusion 
method  

Pre-
processing  

PLSR PCR SVR 

RMSEP R
2
 RMSEP R

2
 RMSEP R

2
 

MWIR 

Raw  2.16 0.79 2.05 0.81 1.69 0.86 

Normalise 1.86 0.85 1.92 0.84 1.93 0.83 

Baseline 2.11 0.80 1.99 0.82 1.68 0.88 

LWIR 

Raw  2.47 0.73 2.59 0.70 2.3 0.77 

Normalise 2.09 0.80 2.03 0.82 1.86 0.85 

Baseline 2.29 0.76 2.71 0.75 1.83 0.84 

Full-range 

Raw  2.02 0.82 1.99 0.82 1.75 0.87 

Normalise 2.02 0.82 1.99 0.82 1.9 0.85 

Baseline 2.15 0.79 1.82 0.85 1.69 0.87 

Low-level 
Normalise 1.95 0.83 2.06 0.81 1.83 0.86 

Baseline 2.06 0.81 2.13 0.80 1.68 0.88 

Low-level 
with the 
selected 
features 

Normalise 1.40 0.91 1.48 0.90 1.79 0.86 

Baseline 1.82 0.85 1.77 0.86 1.59 0.89 

 
      As shown in Figure 11.2, the pure minerals show spectral features in both MWIR and 
LWIR regions. However, the spectrum of each sample also includes information pertaining 
to the complex matrix of sulphide minerals, making identification of each individual 
component challenging. For this reason, in this work, three multivariate analysis techniques 
(PLSR, PCR, or SVR) were adopted, confirming that semi-quantification of the minerals in 
a polymetallic sulphide ore samples was possible using individual MWIR and LWIR datasets. 
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This is an interesting finding, since the MWIR region of the electromagnetic spectrum is 
rarely used in lithological material characterisation. 

11.4.4. LOW-LEVEL FUSION WITHOUT FEATURE SELECTION  

      In low-level data fusion, data integration occurs in the initial stages of the analytical data 
flow, after proper pre-processing (Cocchi, 2019). Thus, mineral concentration prediction 
based on this approach is highly influenced by the choice of pre-processing techniques. In 
the present study, as shown in Table 11.1, a better prediction of Fe2O3 concentration 
(RMSEP = 3.31, R2 = 0.94) was achieved using the PLSR model when the normalised 
MWIR and LWIR data blocks were fused than when these datasets were treated with SNV 
(RMSEP = 4.76, R2 = 0.87). Moreover, the SVR model resulted in a better prediction of 
Fe2O3 after normalisation (RMSECV = 3.90, RMSEP = 3.16, R2 = 0.95) relative to that 
yielded by the PLSR or PCR models (Table 11.1 and Figure 11.4).  
      Similarly, enhanced SiO2 prediction was achieved after the normalised MWIR and 
LWIR data blocks were fused compared to the outputs produced using other pre-processing 
techniques (Table 11.2). For the prediction of Al2O3, low-level fusion of normalised MWIR 
and LWIR data blocks resulted in a better prediction than when the data blocks were treated 
with the other data filtering techniques (Table 11.3 and Figure 11.5). These findings confirm 
the need for adopting DoE in the selection of most optimal data filtering techniques.  
       As noted in Section 10.2.1, the MWIR and LWIR datasets were acquired using a single-
sensor FTIR spectrometer. This allowed the performance of models based on the full-range 
FTIR data (which includes both MWIR and LWIR datasets) to be assessed and compared 
to the low-level fusion results. The findings revealed that the prediction models applied to 
the dataset formed by low-level fusion are superior to the full-range FTIR data models. For 
example, for the prediction of Fe2O3, the optimal PLSR model after low-level fusion has an 
RMSEP = 3.3 and R2 value of 0.94, compared to RMSEP = 3.68 and R2 = 0.92 obtained 
for the full-range FTIR (Table 11.1). Similarly, using low-level fusion for the prediction of 
SiO2 and Al2O3 concentration is superior to the results obtained using the full-range FTIR 
data (Table 11.2 and 11.3). This might be due to the different amount of noise in the MWIR 
and LWIR wavelength regions that require independent pre-processing of the two data 
blocks. Even though these improvements are not statistically significant, the results suggest 
data fusion as a better and comparative option for a combination of multiple sensors. This 
is an interesting point, since the physical integration of multiple sensors into a single 
platform is challenging and expensive, in terms of practical implementation. Thus, for a 
combination of multiple data sources, data fusion can be considered as an economic and 
practical alternative option. 
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Figure 11.4: (a) SVR; and (b) PCR regression results for the predicted vs. actual Fe2O3 concentration after applying low-
level fusion on the normalised MWIR and LWIR data blocks. 

 

Figure 11.5: PLS regression results based on the dataset formed by low-level fusion of the normalised 
MWIR and LWIR data blocks for predicting Al2O3 concentrations (a) the explained variance (b) the 
predicted vs. actual concentration for the calibration (RMSEcal) and cross-validation (RMSECV) models. 

 

11.4.5. LOW-LEVEL DATA FUSION WITH FEATURE SELECTION 

      In this study, the extracted informative variables from the two data blocks are indicated 
in Table 11.4. The prediction of Al2O3 concentration using PLSR and the low-level fusion 
with the selected features after data normalization, significantly improved compared to 
applying the models to datasets subjected to low-level fusion without feature selection as 
well as the full-range FTIR data models (Table 11.3). Similarly, after low-level fusion with 
the selected features, enhanced Al2O3 prediction performance was observed for models 
based on the PCR and SVR (Table 11.3). These findings indicate that the feature selection 
approach was able to capture most of the important variations in the spectral data. In 
addition, by excluding the irrelevant information, feature selection method enhanced the 
prediction performance of the Al2O3 models. 

a) b) 
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Table 11.4: The wavelength range of the features related to SiO2, Al2O3, and Fe2O3 mineral composition 
extracted from the MWIR and LWIR reflectance datasets. 

 

Minerals  MWIR wavelength (µm) LWIR wavelength (µm) 

 
Al2O3 

2.85–3.10 7.00–7.29 

3.83–5.73, 6.20–6.40 10.50–11.40 

 
Fe2O3 

2.78–2.92, 3.38–3.5, 3.92–4.03,  
5.0–5.10 

7.00–7.20, 7.74–8.05,  
9.38–10.00 

5.30–5.39, 5.53–5.69, 6.15–6.31,  
6.76–7.00 

11.30–11.6, 13.90–14.10, 14.40–14.60 

 
SiO2 

 
3.65–4.93 

8.00–10.00, 12.00–13.00 

 

      The SiO2 and Fe2O3 prediction models after the selected features fusion were better than 
the individual datasets models (Table 11.1, 11.2, and Figure 11.6). However, low-level fusion 
without feature extraction resulted in a better Fe2O3 and SiO2 concentration prediction 
relative to the extracted features fusion (Table 11.1 and 11.2). This is likely due to the fact 
that not all relevant information was retained in the extracted spectra of the minerals. 
Therefore, alternative feature extraction techniques (e.g., multivariate curve resolution-
MCR) can likely improve the fusion results.  

Figure 11.6: PLS regression of predicted vs. actual SiO2 concentration after the selected features fusion of 
the normalised MWIR and LWIR data blocks (a) for calibration and cross-validation; and in (b) the 
prediction model. 

 

      The main advantage of feature selection (variable screening) is that non-informative 
variation can be removed in the variable screening step, potentially enhancing the prediction 
accuracy. The rapid advances in sensor technologies allow generation of multi- and mega-
variate data. These datasets can be utilised in data-driven approaches. Nonetheless, high 
data volume remains a significant challenge for both data processing and storage. Therefore, 
data volume reduction without loss of information is always preferable. This can be achieved 
using multivariate data analysis techniques and data fusion approaches. For example, in this 
work, when variable screening was performed prior to the implementation of the low-level 
data fusion, data volume reduction from 79% to 58% was achieved. Specifically, for the 
prediction of Fe2O3 and Al2O3 concentration 21% and 40% of the variables (data) were 
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used, respectively, in the prediction models to retain the important information while 
enhancing prediction accuracy. 

 

11.4.6. DATA FUSION VS. INDIVIDUAL SENSORS 

      Despite the fact that infrared technologies are mainly used for qualitative analysis of 
materials, the results obtained in this work show the potential of the individual techniques 
(MWIR and LWIR) for quantitative analysis of minerals in polymetallic sulphide ore 
samples. Moreover, data fusion both with and without feature selection yielded better 
prediction performance compared to those based on individual techniques and the full-
range FTIR data models (Table 11.1–11.3). This is likely due to the fact that the fused data 
blocks use the synergy between the two data blocks (MWIR and LWIR). In addition, 
extraction of the informative variables maximises the relevant information (related to the 
concentration of the minerals) in the fused data models. Therefore, data fusion is a preferred 
approach for quantitative analysis of minerals.  
      It is also worth noting that some of the models based on individual (MWIR and LWIR) 
datasets yielded more accurate prediction than did models based on the full-range FTIR 
dataset. For example, applying models based on PLSR, PCR, and SVR on the LWIR data 
resulted in enhanced SiO2 prediction compared to the full-range FTIR model (Table 11.2). 
This indicates the importance of extracting the informative variables from the two datasets 
prior to modelling, which was achieved in this work by adopting data fusion. 
      Data fusion allows handling different forms of uncertainties (e.g., different forms of 
noise) prior to modelling and is thus very useful approach for both classification and 
prediction problems analysis using various classification or regression algorithms. Its main 
benefits are enhanced prediction accuracy, lower uncertainty, enhanced availability of 
information, and holistic description of materials under investigation. Moreover, the 
physical integration of sensors requires complex and expensive system design. Therefore, 
data fusion is a promising alternative for enhanced characterisation of materials in mining 
operations using multiple sensors.  

 

11.4.7. COMPARISON OF THE PROPOSED MODELS  

      In the present study, adoption of linear and non-linear multivariate techniques (PLSR, 
PCR, and SVR) resulted in comparable performance in terms of prediction of the minerals 
concentrations. Particularly, the PLSR and PCR results are similar. The major difference 
was obtaining the higher number of factors (PCs) for PCR. In general, the overall results 
show both the linear and non-linear techniques provided good and acceptable results. 
Therefore, for the given datasets, moderate effects of the choices of models (linear or non-
linear models) were observed.  

 

11.4.8. BENEFITS AND LIMITATIONS OF THE PROPOSED APPROACH FOR MINING 

APPLICATIONS  

      The results reported in this work demonstrate that MWIR and LWIR spectral ranges 
capture information relevant for predicting mineral concentrations in polymetallic sulphide 
ore samples. While data fusion appears to enhance model prediction accuracy, it may be 
difficult to apply to data obtained from multiple sources. A further potential challenge stems 
from the large data matrix produced by data concatenation, as this is likely to cause both 
computational and data storage issues. However, fusion of the extracted informative 
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variables minimises the data volume using variable screening and was shown in this work 
to yield enhanced or comparable prediction performance. This is an interesting finding, 
since it shows the potential of the proposed approach for integration of multiple data 
sources (such as SWIR or Raman spectra) without generating a large data matrix after 
concatenation.  
       Quantified mineralogical information is crucial for elucidating the variability within a 
deposit, and can benefit in geometallurgical characterisation (e.g., different minerals have 
different flotation properties), controlling ore grade, defining blasting parameter 
requirements, and ensuring product quality. Thus, it can be highly valuable for maximising 
the potential economic benefit of mining operations. Currently, quantitative analysis of 
minerals is conducted using XRD or automated scanning electron microscopy (ASEM), 
both of which are laboratory-based techniques. Thus, infrared systems coupled with data 
fusion approaches can be considered as complementary techniques to achieve rapid 
determination of mineral concentrations. Overall, the prediction accuracies achieved in this 
study are sufficient for rapid in-situ indication of mineral concentrations in polymetallic 
sulphide ores using a portable system. Therefore, the availability of the portable instruments 
combined with the promising results of this study supports the practicality of the proposed 
approach for online in-situ analysis of minerals.  

11.5. CONCLUSIONS  

      In this work, different scenarios were investigated to assess their influence on the 
prediction of SiO2, Al2O3 and Fe2O3 concentrations in polymetallic sulphide ore samples 
using infrared reflectance spectra, namely:  

(1) the use of individual spectral regions (MWIR and LWIR);  
(2) the effect of different data pre-processing techniques on the prediction performance;  
(3) potential for improvement in prediction accuracy by applying low-level and low-level 

with feature selection data fusion approaches; 
(4) comparative benefits of applying linear (PLSR and PCR) and non-linear (SVR) 

multivariate analysis techniques. 

      The results reported in the preceding sections show that both MWIR and LWIR datasets 
include relevant information that can be employed in determining mineral concentrations. 
Moreover, data fusion significantly improved model prediction accuracy. Models 
incorporating both the linear and non-linear multivariate techniques (PLSR, PCR, and SVR) 
resulted in comparable performance. The choice of the data pre-processing techniques was 
shown to exert significant influence on the model output. For the prediction of Al2O3, the 
best-performing model was achieved using PLSR and the low-level fusion of the extracted 
features after data normalisation (RMSEP = 1.4, R2 = 0.91). The PLSR model better 
predicted Fe2O3 in polymetallic sulphide ore after low-level fusion of normalised MWIR 
and LWIR data blocks (RMSEP = 3.3, R2 = 0.94). Finally, the best prediction of SiO2 

concertation was achieved by the PLSR model after normalised data blocks were subjected 
to low-level fusion (RMSEP = 5.96, R2 = 0.93). Overall, both the linear and non-linear 
techniques provided good and acceptable results. Although the acquired prediction 
accuracies are lower than those of the standard laboratory-based techniques, the proposed 
method is suitable for rapid in-situ indication (semi-quantification) of mineralogical 
concentrations along the mining value chain. 



 CHAPTER 11 

211 

 

      The fact that the use of the extracted features significantly reduced the data volume and 
resulted in promising results suggests a great potential of applying data fusion to data 
obtained from multiple sources. Our future work will focus on extending the data fusion 
framework for integration of additional data sources (e.g., SWIR and Raman) to achieve a 
holistic description and improved quantification of minerals in different deposit types using 
the synergy among the different data sources. This will be beneficial for improving resource 
efficiency in the mining industry.  
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12 
DATA FUSION FOR THE INDICATION OF 

ELEMENTAL CONCENTRATIONS  

 
 

Chapter 10 and 11 show the use of data fusion for the discrimination of ore‒waste and semi-quantitative 
analysis of minerals, respectively. This chapter presents the use of data fusion for the prediction of elemental 
concentrations in polymetallic sulphide ore using the MWIR and LWIR technologies. The chapter compares 
the use of low-and mid-level fusions for the indication of the elemental concentrations. It also compares the 
performances of the individual data models with the fused data models. The analysis was performed using 
the channel, drill core and muck pile samples from the test case.  

 

 

 

 

 

 

 

 

 

Parts of this chapter have been published in:  

Desta, F., Buxton, M. & Jansen, J. (2020). Data Fusion for the Prediction of Elemental 
Concentrations in Polymetallic Sulphide Ore Using Mid-Wave Infrared and Long-Wave 
Infrared Reflectance Data. Minerals, 10(3), 235. doi: 10.3390/min10030235       
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In this work, a PLSR model was used for the prediction of elemental concentrations using the 
mineralogical techniques MWIR and LWIR combined with data fusion approaches. In achieving 
the study objectives, the usability of the individual MWIR and LWIR datasets for the prediction 
of the concentration of elements in a polymetallic sulphide deposit was assessed, and the results 
were compared with the outputs of low- and mid-level data fusion methods. Prior to low-level 
data fusion implementation, data filtering techniques were applied to the MWIR and LWIR 
datasets. The pre-processed data were concatenated and a PLSR model was developed using the 
fused data. The mid-level data fusion was implemented by extracting features using principal 
PCA scores. As the models were applied to the MWIR, LWIR, and fused datasets, an improved 
prediction was achieved using the low-level data fusion approach. Overall, the acquired results 
indicate that the MWIR data can be used to reliably predict a combined Pb–Zn concentration, 
whereas LWIR data has a good correlation with the Fe concentration. The proposed approach 
could be extended for generating indicative element concentrations in polymetallic sulphide 
deposits in real-time using infrared reflectance data. Thus, it is beneficial in providing elemental 
concentration insights in mining operations. 

12.1. INTRODUCTION  

      The increasing availability of complex multivariate data yielded by sensor technologies 
permits qualitative and quantitative data analysis for material characterisation. Multivariate 
data are hard to understand by visual inspection and intuition. Thus, data-driven models are 
required to derive study-specific insights from large datasets. Qualitative and quantitative 
geochemical data can be acquired using the elemental techniques such as LIBS, XRF and 
ICP-MS. On the other hand, technologies that provide qualitative, quantitative and semi-
quantitative mineralogical information include infrared, Raman and XRD. Numerous 
researchers deployed the geochemical techniques for the analysis of elements in different 
applications. For example, elemental analysis using LIBS system is used in the multi-
elemental analysis of iron ore deposit (Death et al., 2008; Khajehzadeh et al., 2017), mineral 
exploration (Cuñat, 2008; Harmon et al., 2019; Lemière and Uvarova, 2019), major 
elemental analysis (Boucher et al., 2015), and metal contaminant analysis (Wainner et al., 
2001; Yamamoto et al., 1996). XRF systems are widely used in elemental analysis of various 
deposit types, such as in iron ore characterisation (Alov et al., 2010; Khajehzadeh et al., 
2017), in the elemental composition analysis of highly organic-rich sediments (Kern et al., 
2019), and the exploration of komatiite-hosted nickel sulphide deposits (Le et al., 2014). 
Despite the availability of well-established geochemical methods, a single sensor might not 
provide a sufficiently comprehensive description of a material composition. For example, 
materials often comprise more than the elements of economic interest. However, due to 
complex mineral mixtures, most of the analytical techniques are not able to detect the 
complete range of elements in mineral deposits. Thus, it is necessary to utilise strategic 
sensor combinations to improve accuracy and availability in raw material characterisation. 
Moreover, the use of mineralogical techniques (e.g., infrared) for the indication of elemental 
concentration can be beneficial for the simultaneous analysis of elements and minerals in 
various deposit types.  
      As discussed in Chapter 3, the infrared wavelength range is divided into different 
regions, and the choice of the infrared region depends on the type of minerals under 
investigation. Mineralogical techniques (MWIR and LWIR) have not been previously 
employed for the indication of element concentrations in polymetallic sulphide ore. This 
gap in the current analytical approaches and the promising findings reported recently (Desta 
and Buxton, 2018) have motivated the present study. The objective of this investigation was 
twofold: to develop prediction models that indicate the elemental concentration in 
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polymetallic sulphide ore using the mineralogical techniques (i.e., MWIR and LWIR 
reflectance spectral data) separately, and to assess the improvements in the predictive 
models using low-level and mid-level data fusion approaches. 

 

12.2. MATERIALS AND INSTRUMENTATION  

12.2.1. MATERIALS 

      One hundred and seventeen representative samples were acquired from the test case 
area. These samples included 62 channel samples acquired from the mine face, 45 samples 
that were systematically collected from eight drill cores each having a length of 
approximately 2 to 3 m, as well as 10 muck pile samples collected after blasting part of the 
mine face (Figure 12.1). The collected samples were powdered and the measurements were 
performed using the powdered samples. 
 
 
 
 
 
 
 
 
 

Figure 12.1: Images of (a) the mine face showing a channel cut with different intervals (the red boxes); (b) 
drill core samples; and (c) muck pile samples. 
 

12.2.2. MWIR AND LWIR DATASETS 

      The Agilent 4300 FTIR analyser was used to acquire reflectance spectral data using the 
collected 117 samples. The instrument set-up and data acquisition procedures followed for 
the acquisition of data are described in Chapter 8. To accommodate the samples’ 
heterogeneity, multiple spectra (7 to 10 measurements) were collected from each sample 
and the averages were computed. Three sub-datasets were prepared prior to modelling: the 
full FTIR data (excluding the range from 1.9 to 2.5 µm), the MWIR (2.5 to 7 µm) data, and 
the LWIR (7 to 15 µm) data.  

 

12.2.3. CHEMICAL ANALYSES 

      Conventional data acquisition techniques XRF and ICP-MS were used to obtain the data 
that were used as response variables and in the validation of the element concentrations 
prediction results. The datasets of Pb, Zn, and Cu comprised XRF and ICP-MS 
measurements performed using 117 samples. The analysis of As, Fe, Mg, and Ca was 
performed using the ICP-MS technique and 89 samples. In this study, the number of 
samples analysed using the FTIR analyser was 117. All 117 samples were analysed for Cu, 
Pb, and Zn. However, 89 out of the 117 samples were analysed for Fe, As, Ca, and Mg. 
Therefore, the same samples were used; however, the number of samples used to analyse 
the elements differed. Therefore, the Cu, Pb, and Zn dataset consisted of 117 sample 
measurements whereas the Fe, As, Ca, and Mg dataset consisted of 89 sample 
measurements. Due to their co-occurrence, Pb and Zn are mainly mined simultaneously. 
Thus, Pb and Zn were combined (the concentrations of the two elements were summed) in 

Channel cut 
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this study. The analysis results pertaining to 117 powder samples of Cu and the combined 
Pb–Zn and 89 powder samples of Fe, As, Ca, and Mg are discussed in the sections that 
follow. 

12.3. METHODOLOGY 

      Prediction of elemental concentration in polymetallic sulphide ore using MWIR and 
LWIR reflectance spectra requires an integrated methodology. Therefore, the 
methodological approach developed as a part of the present study comprises a multi-step 
process that commences with data exploration, followed by data pre-processing and data 
fusion, and culminates with data modelling and model validation (Figure 12.2). The 
unscrambler software was employed for the analysis. The data exploration task includes 
outlier detection and data splitting (i.e., into calibration and validation datasets). In the 
present study, data pre-processing was performed using different data filtering techniques. 
The pre-processed data were subsequently used to develop a series of calibration and 
prediction models for MWIR and LWIR datasets separately. The low-level (the red box in 
Figure 12.2) and mid-level (the green box in Figure 12.2) data fusion approaches were 
implemented using the concatenated pre-processed MWIR and LWIR data blocks, and the 
features extracted from the two data blocks, respectively. All prediction models were 
validated using independent datasets. The use of the individual datasets and the fused dataset 
for the prediction of element concentrations in polymetallic sulphide ore was evaluated and 
compared. Each of these steps is described in detail below. 

 

12.3.1. DATA EXPLORATION 

      PCA models were developed using the full-range FTIR data. Potential outliers were 
identified using Hotelling’s T2 of the PCA model with the critical limit (p-value) of 5%. 
Therefore, the 95% confidence ellipse was included in the score plots of the PCA models 
to reveal potential outliers (i.e., data points located outside the ellipse contour). Potential 
outliers were further investigated using the influence plot. The pattern of the spectral data 
with respect to the elemental concentration was assessed using PCA. The proportion of the 
variance in the y-variable (the quantitative elemental data) that is predictable from the x-
variables (full-range FTIR reflectance spectra) was computed using PLSR and each target 
element, separately. Elements that showed a weak linear relationship with the spectral data 
(a coefficient of determination less than 0.4) were excluded from further analysis. 

 
 

12.3.2. DATA SPLITTING 

      For the combined Pb–Zn dataset, the full-range FTIR, MWIR, and LWIR datasets, each 
containing 113 samples, were split into calibration (72 measurements) and validation (35 
measurements) subsets using a random sample selection algorithm. To encompass the entire 
variability domain and allow for direct model comparisons, the same split was maintained 
in the calibration and validation datasets pertaining to the three data blocks. The same 
procedure was followed for the Fe dataset to obtain calibration (64 measurements) and 
validation (23 measurements) datasets. 

 

12.3.3. PRE-PROCESSING  

      Data from different sensors should be treated based on the specific characteristics of 
the spectral data and the ultimate goal of data analysis in order to remove undesired 
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variations (e.g., instrumental artefacts) (Roussel et al., 2014). Accordingly, prior to 
modelling, the data matrices were treated with normalization, baseline correction, MC, SNV, 
and smoothing (Gaussian filter smoothing). MC was performed in combination with each 
pre-processing technique.  
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Figure 12.2: A workflow diagram depicting the steps of the research approach. 
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12.3.4. PREDICTION MODELS 

      In this study, PLSR models were developed using the infrared spectral data as 
explanatory variables (X) and the concentration of elements as response variables (Y). 
Models were developed for the prediction of each element concentration, separately. Thus, 
the usability of the infrared spectra for the prediction of the individual element under 
investigation was assessed. A series of PLSR models were developed using the pre-
processed data. The models were developed using calibration datasets and the performance 
of the models was validated using independent datasets (validation datasets). The predictive 
performance of the models was evaluated in terms of statistical error terms (RMSECV and 
RMSEP) and the coefficient of determination (R2) of the prediction values. RMSECV is 
calculated on the test split using a 10-fold cross validation. The optimum number of PLS 
factors was determined using the RMSECV values. RMSEP represents the prediction error 
based on a comparison of real cases not used to make the model with reference values (in 
this case, an independent dataset). Consequently, RMSEP indicates how well the model built 
using calibration data performs when applied to unknown cases. R2 denotes the strength of 
the linear relationship between the response and predictor variables. When R2 is computed 
using the validation samples it signifies a model’s predictive ability. Improved predictive 
performance is associated with a lower value of statistical error terms (RMSECV and 
RMSEP) and a higher predicted R2. 

 
 

12.3.5. MWIR AND LWIR DATA MODELS 

      PLSR models were developed using the MWIR and LWIR reflectance spectral data 
separately. A series of models was developed using the pre-processed MWIR data after 
applying the aforementioned data-filtering techniques. Similarly, a series of prediction 
models was developed using the pre-processed LWIR data. The prediction performance of 
each model was evaluated using independent datasets. The predictive performances of 
MWIR and LWIR data models for the prediction of elemental concentrations were 
compared. 

 

12.3.6. LOW-LEVEL DATA FUSION 

      Potential correlations between wavelengths in different infrared ranges (e.g., MWIR and 
LWIR) require data fusion to capture latent information that cannot be extracted by analysis 
of individual data blocks separately. In low-level data fusion, the way in which the data 
matrices from different sources are concatenated, normalised, and scaled, and the variation 
in variable magnitude, potentially have a profound effect on model performance in terms 
of both prediction and classification. For the choice of the optimal model, a “systematic 
approach” is recommended to understand the effect of the pre-processing techniques on 
model accuracy (Engel et al., 2013). The pre-processed data from the MWIR and LWIR 
data blocks were concatenated to form a series of new data blocks. The unified (fused) data 
were mean-centred and a single model that provides the final elemental concentration 
prediction was developed (indicated by the red box in Figure 12.2). The PLSR models were 
developed using calibration datasets and were validated using the independent datasets. The 
pre-processing techniques applied to the datasets prior to modelling resulted in different 
model performances. Thus, the optimal pre-processing method was selected by comparing 
the performance of the prediction models using RMSECV, RMSEP, and R2 values. 
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      For data blocks based on a different measurement scale, low-level fusion may require 
additional pre-processing (e.g., block scaling with log scaling, root square scaling) of data 
blocks to compensate for the scale differences. However, as the MWIR and LWIR data 
blocks were obtained by adopting the same measuring scale (reflectance value in the 0−100 
range), the chance of one technique being dominant was very low. The MWIR and LWIR 
data considered in the present study were acquired using a single instrument. Therefore, to 
fully elucidate the importance of the low-level fusion approach, the performance of the 
predictive models based on the full-range FTIR data and low-level fusion results was 
compared. 

 

12.3.7. MID-LEVEL DATA FUSION 

      Mid-level data fusion consists of feature extraction from the signals pertaining to each 
data block (Cocchi, 2019). In this study, a PCA model was used to extract important 
variables from the MWIR and LWIR data (Figure 12.2). The most informative variables that 
explain most of the variations in the spectral data were extracted from the results yielded by 
the PCA models developed using the two data blocks. These extracted features were fused 
to develop a final model. Prior to conducting PCA, different data pre-processing techniques 
(discussed in Section 12.3.3) were applied. The number of PCs that explain most of the total 
variance in the data was chosen based on the minimum RMSECV value. The scores of the 
extracted PCs were concatenated to build a final fused data block of the calibration datasets. 
Similarly, the same procedures were followed to build the validation datasets separately. The 
fused data block was mean-centered and a prediction model was developed using PLSR (the 
green box in Figure 12.2). The new variable blocks formed matrices of the elemental 
concentration and PC scores that were used in the models as response and explanatory 
variables, respectively. Finally, the performance of the models developed using low-level 
and mid-level data fusion approaches was compared. 

12.4. RESULTS AND DISCUSSION 

      This section consists of seven parts. In the first two, the exploratory data analysis results 
and the results of the MWIR and LWIR prediction models are presented. In the subsequent 
two parts, the results of the low-level and mid-level data fusion for the prediction of element 
concentrations are described in detail. In the remaining three parts, the comparisons of the 
adopted approaches, assessment of infrared spectra usability for prediction of elemental 
concentrations, and benefits and limitations of the current approach for in-situ applications 
are discussed, respectively. 

 

12.4.1. EXPLORATORY DATA ANALYSIS AND PRE-PROCESSING 

      Descriptive statistics were used in the present study to describe and summarize the basic 
features of the elemental concentrations in the analysed samples (Table 12.1). The results 
reported in Table 12.1 indicate that the samples exhibit high variability in elemental 
concentrations. This likely stems from the sample collection strategy, whereby the ore zone 
region and waste (host rock and weathered) material were obtained to ensure material 
representativity (Figure 12.3). However, variability was also observed within the ore 
material. 
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Table 12.1: Summary statistics of elemental concentrations (in wt.%) in the analysed samples. 

Statistics Fe Cu As Mg Ca Pb–Zn 

Mean 13.72 0.1 0.27 0.25 0.69 6.43 

Std Deviation 10.45 0.12 0.46 0.21 0.56 5.87 

Min 2.30 0.002 0.006 0.03 0.08 0.04 

Median 10.22 0.08 0.13 0.22 0.52 5.08 

Max 40.00 0.9 2.44 1.4 3.33 30.32 

 

Figure 12.3: A mine face photograph that shows the location of some of the channel samples (the green 
boxes). The yellow line shows the boundaries of the ore zone.  

 

      As shown in Table 12.2, the use of the infrared spectra for the prediction of the As, Cu, 
Ca, and Mg concentrations resulted in lower R2 values (<0.4). Therefore, these elements 
were excluded from further analysis. Conversely, Fe and the combined Pb–Zn 
concentration showed a strong association (linear relationship) with the infrared reflectance 
data. Therefore, the analysis results presented in this and the subsequent sections focus on 
Fe and the combined Pb–Zn only. The lower relationships of As, Cu, Ca, and Mg with the 
infrared reflectance spectra are likely attributed to the lower concentration of the sourcing 
minerals in the samples that resulted in a lower spectral signal. It is also possible that the 
concentration of the sourcing minerals was below the detection limit of the instrument, or 
that the spectral signals of the sourcing minerals in the infrared reflectance spectra were very 
weak. 



CHAPTER 12 

222 

 

Table 12.2: Coefficient of determination values for the prediction of each target element using the 
full-range FTIR reflectance spectra and partial least squares regression (PLSR). 

Element As Ca Mg Cu Fe Pb–Zn 

R2 0.07 0.2 0.19 0.35 0.80 0.81 

 
      Figure 12.4 shows the PCA model score plots of the full-range FTIR data for Fe and 
the combined Pb–Zn datasets. The plots provide information on the potential patterns that 
are related to elemental concentration. As shown in Figure 12.4, elemental concentrations 
(Fe and the combined Pb–Zn) were categorized into three ranges. The plots further reveal 
the presence of patterns that can be related to the elemental concentration. Potential outliers 
were identified. As a result, two outliers were excluded from the Fe dataset, whereas four 
outliers were excluded from the combined Pb–Zn dataset. 

Figure 12.4: Principal Component Analysis (PCA) model score plots of (a) the Fe concentration categorized 
into three ranges; and (b) the combined Pb–Zn concentration categorized into three ranges (the 
concentrations are expressed in wt.%). 
 

12.4.2. MWIR AND LWIR DATASETS 

      As shown in Table 12.3, the model based on the MWIR dataset yields a better Fe 
prediction, with the RMSEP of 4.80 and the R2 value of 0.69, after data normalization. 
Compared with the model performance based on raw MWIR data (the RMSEP of 5.63 and 
the R2 of 0.58), data filtering using normalization improved the results. Likewise, the model 
developed using the normalised LWIR data resulted in RMSEP = 3.38 and R2 = 0.85, which 
is a remarkable improvement relative to the RMSEP = 4.59 and the R2 = 0.72 obtained 
using the raw LWIR data. Therefore, for Fe prediction, data normalization resulted in a 
better prediction performance for both MWIR and LWIR models. This shows that the 
removal of the undesired intensity variation in the spectra caused by multiplicative effects 
enhances the signals from the Fe-bearing minerals. Comparing the two datasets in terms of 
Fe prediction, the LWIR data model is superior to the MWIR model. The Fe-bearing 
minerals include oxides (e.g., hematite, goethite), carbonates (e.g., siderite), sulphides (e.g., 
pyrite, chalcopyrite), and silicates (pyroxene, olivine). LWIR is suited for rock-forming 
mineral and carbonate identification (Clark, 1999; Hecker et al., 2012; Terracore, 2018). This 
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is likely one of the reasons for the better prediction of Fe concentration based on the LWIR 
relative to MWIR data. The other possible reason is the presence of certain minerals that 
have a good correlation with both infrared spectra and Fe concentration but do not contain 
Fe. For example, minerals formed as a result of retrogressive mineralization during 
hydrothermal events have a high chance of correlation. 
      Model performance in terms of predicting the combined Pb–Zn concentration using 
MWIR and LWIR data is summarised in Table 12.4. The model based on the MWIR data 
yielded a better prediction after the data were treated using baseline correction (RMSEP = 
2.23 and R2 = 0.83). The model prediction accuracy obtained using raw MWIR data was 
lower than that based on the pre-processed data (RMSEP = 2.46 and R2 = 0.80). The 
prediction accuracy of the model based on the LWIR data treated using baseline correction 
is reflected in RMSEP = 3.25 and R2 = 0.65. As shown in Table 12.4, a better prediction 
was attained using the LWIR data subjected to baseline correction. A combination of the 
pre-processing techniques was analysed for the prediction of both Fe and the combined 
Pb–Zn concentrations. However, the prediction performances of the models were not 
improved; thus, the results were not included in this paper. 
      Comparing the model performance in terms of the combined Pb–Zn concentration 
prediction, the model based on the MWIR data is superior to that using the LWIR data. The 
primary mineral sources of Pb and Zn in the test case deposit are galena and sphalerite, 
respectively. This is one of the likely reasons for a better prediction of the combined Pb–
Zn concentration using the MWIR data than the LWIR data. For example, sphalerite has a 
lower reflection pattern in the spectral data in the 2.33–3.78 µm range and at 14.9 µm 
(NASA, 2017). Similarly, for galena, higher reflection points are found in the MWIR region 
(Figure 12.5). Therefore, the amount of spectral information (signals) in the MWIR dataset 
is greater (more pronounced) than in the LWIR dataset, resulting in a superior combined 
Pb–Zn concentration prediction yielded by the model based on MWIR data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12.5: Reflectance spectra of (a) sphalerite and (b) galena (source: NASA, 2017). 

 
 

      The elemental concentration prediction results yielded by the MWIR and LWIR models 
show that the infrared technique is capable of indicating the concentration of elements in 
polymetallic sulphide ore semi-quantitatively. The infrared technique is a mineralogical 
technique that provides information on the functional groups of minerals. Thus, elemental 
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information cannot directly be derived from the infrared spectra. However, the acquired 
results show that an indicative elemental concentration can be estimated using multivariate 
techniques without directly examining the fingerprint of individual elements in the infrared 
spectral signals. The results of the present study indicate that MWIR data are a promising 
candidate for prediction of combined Pb–Zn concentrations. Thus, MWIR has great 
potential for use in material characterisation. 
      The models developed using MWIR and LWIR data explained the variations in the Y-
variables (concentration of elements) from the variations in the X-variables (reflectance 
spectral data), and resulted in acceptable prediction model accuracies. The model based on 
the MWIR data yielded a better prediction of the combined Pb–Zn concentration than that 
based on the LWIR data, whereas the Fe concentration was more accurately predicted using 
LWIR rather than MWIR data. Based on the available spectral libraries (e.g., the NASA 
mineral library), the sulphide minerals showed weak spectral features in the MWIR and 
LWIR spectral data. Such weak spectral information (signal) is insufficient for a direct 
interpretation or mineral fingerprinting, especially when target minerals are present in a 
mixture (co-occurring with other minerals). Moreover, the infrared sensors provide 
mineralogical information but cannot directly identify the elements in the spectral signal. 
However, such information can be extracted using multivariate data analysis techniques. 

 

12.4.3. LOW-LEVEL DATA FUSION 

      Table 12.3 shows a summary of the Fe prediction model performance when applied to 
the individual data blocks, full-range FTIR data, and low-level data fusion results. As shown 
in Table 12.3 and Figure 12.6, better model performance was achieved using low-level data 
fusion (RMSEP = 2.71 and R2 = 0.90) after the normalised data blocks based on the MWIR 
and LWIR datasets were fused. 
      As described in Section 12.2.2, the MWIR and LWIR datasets were acquired using a 
single-sensor FTIR spectrometer, which allowed for the performance of models based on 
the full-range FTIR data (which include both MWIR and LWIR datasets) to be assessed and 
compared to the low-level fusion results. This was done to test whether the low-level data 
fusion approach yielded superior results to those based on the full-range data. Though the 
performance of the prediction models based on the full-range FTIR data was better than 
that obtained using the individual datasets (Tables 12.3 and 12.4), the prediction 
performance acquired from the low-level data fusion (after data block normalization) was 
superior to that acquired from the full-range FTIR data model. Similarly, the combined Pb–
Zn prediction using a low-level data fusion was better than the results obtained using the 
individual and the full-range FTIR data (Table 12.4). 
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Table 12.3: Summary of the predictive performances of MWIR, LWIR, full-range FTIR, and low-level data 
fusion models for Fe concentration prediction. 

Filtering 
Techniques 

Statistics MWIR LWIR Full Range 
FTIR 

Low-Level 
Fusion 

Raw data 
RMSECV 3.76 4.54 3.75  

RMSEP 5.63 4.59 3.87  

R2 0.58 0.72 0.80  

SNV 
RMSECV 3.57 3.96 3.89 3.81 

RMSEP 5.49 4.13 4.43 4.12 

R2 0.60 0.77 0.74 0.77 

Normalise 
RMSECV 3.46 3.51 2.88 2.71 

RMSEP 4.80 3.38 3.18 2.71 

R2 0.69 0.85 0.87 0.90 

Baseline 
RMSECV 4.27 4.87 3.80 3.85 

RMSEP 5.73 4.20 4.50 4.11 

R2 0.56 0.77 0.73 0.77 

Gaussian 
RMSECV 3.93 4.35 3.09 2.97 

RMSEP 5.47 4.44 3.40 3.43 

R2 0.60 0.74 0.84 0.84 

 
 

Figure 12.6: Predicted versus actual (a) Fe concentration values (wt.%); (b) the combined Pb–Zn 
concentration values (wt.%) computed using a low-level data fusion approach. 
 

      The portable full-range FTIR sensor is an example of a physically integrated MWIR and 
LWIR sensor. This is an interesting achievement of the current advancement of infrared 
technologies. The performance of the prediction models based on the full-range FTIR data 
was better than that obtained using the individual datasets. However, the results of this study 
suggest data fusion to be a better and comparative option for a combination of multiple 
sensors. Moreover, the physical integration of multiple sensor technologies into a single 
platform is challenging and, in terms of practical implementation, it is expensive. Therefore, 
for the integration of multiple data sources, such as short-wave infrared (SWIR), Raman, 
and LWIR data (provided each sensor technology has its own advantages in providing useful 
information), data fusion can be considered to be an economic and practical alternative 
option. 
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Table 12.4: Summary statistics of the predictive performances of MWIR, LWIR, full-range FTIR, and low-
level data fusion models for the combined Pb–Zn concentration prediction. 

Filtering 
Techniques 

Statistics MWIR LWIR Full Range 
FTIR 

Low-Level 
Fusion 

Raw data 

RMSECV 1.97 2.94 2.04 

 RMSEP 2.46 3.48 2.37 

R2 0.80 0.60 0.81 

SNV 

RMSECV 2.37 3.65 2.41 1.96 

RMSEP 3.11 3.39 2.79 2.86 

R2 0.68 0.62 0.74 0.73 

Normalise 

RMSECV 1.87 3.32 1.88 1.90 

RMSEP 2.33 3.28 2.19 2.24 

R2 0.82 0.64 0.84 0.83 

Baseline 

RMSECV 2.09 3.04 2.07 1.89 

RMSEP 2.23 3.25 2.32 2.10 

R2 0.83 0.65 0.82 0.85 

Gaussian 

RMSECV 2.04 3.15 2.09 1.98 

RMSEP 2.34 3.34 2.28 2.27 

R2 0.82 0.63 0.83 0.83 

 
      The Fe and the combined Pb–Zn concentrations yielded by the low-level data fusion 
approach were highly affected by the choice of pre-processing technique. This is in line with 
the recommended “systematic approach” (Engel et al., 2013). The normalization of the two 
data blocks prior to data fusion resulted in a better prediction of Fe concentration, whereas 
baseline correction resulted in a better model prediction for the combined Pb–Zn 
concentration. The MWIR and LWIR data considered in this study were acquired using a 
single instrument, thus ensuring that the data scale difference is not an issue. However, 
treating the noise in the two data blocks separately and fusing the pre-processed data blocks 
enhanced the prediction performance of the PLSR models. 
      In low-level data fusion, as the name suggests, data integration occurs at the bottom of 
the analytical data flow. Indeed, this strategy implies that the matrices describing the 
individual blocks, after proper pre-processing, are concatenated to build a fused data block, 
which is then processed by the desired chemometrics technique. Suppose X denotes an m 
x n matrix of independent variables, where m is the number of samples and n is the number 
of MWIR and LWIR wavelengths together. Y (m p) is the matrix of dependent variables, 
where p denotes the elements to be predicted. The purpose is to train a model estimating 
the concentration of the elements in each polymetallic sulphide ore sample through the 
matrix of the measured spectra. The problem is formulated by constructing input (X) and 
output (Y) matrices. For example, the combined MWIR and LWIR reflectance for 89 
samples is formed as X (89 7190) and the matrix of outputs for Fe will be Y (89 1). As the 
fusion occurs at the level of the original data matrices, the resulting data block will typically 
contain a very high number of variables. Consequently, the main drawback of this strategy 
is that the increase in information obtained by adding one or more blocks of data to describe 
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the sample may not compensate for irrelevant variability introduced by the addition of the 
same blocks. 
      The PLSR model developed using the fused data blocks simultaneously considers the 
MWIR and LWIR measurements, due to which it takes advantage of having a greater 
number of informative explanatory variables to perform the elemental concentration 
prediction with better accuracy than that achieved by the models based on individual data 
blocks. Low-level fusion is conceptually simple to implement and the acquired results are 
superior to those yielded when using individual techniques. However, the prediction 
performance of the individual MWIR and LWIR data models also resulted in a good 
prediction potential for Fe and the combined Pb–Zn concentration. It is possible that the 
same minerals were measured in both datasets or the minerals were highly correlated to each 
other due to their co-occurrence in the deposit. However, the improvement of the predictive 
model after low-level data fusion implies that, as there is unique spectral information in both 
datasets, combining the two data blocks results in better prediction performance. 

 

12.4.4. MID-LEVEL DATA FUSION 

      Feature selection is an important step in mid-level data fusion implementation. Hence, 
an attempt was made to ensure proper coverage of the existing variation in the reflectance 
spectra data. For example, for the prediction of the combined Pb–Zn concentration using 
the MWIR data treated with baseline correction, four PCs that explain 98% of the variance 
in the data were chosen. Similarly, five PCs that explain 97% of the variation in the data 
were chosen for the LWIR data treated with baseline correction. These PCs (four from the 
MWIR data block and five from the LWIR data block) were concatenated to generate the 
fused data matrix. Using the newly generated variable data matrices, final elemental 
concentration prediction models were developed by adopting PLSR. 
      As shown in Table 12.5, for the prediction of the combined Pb–Zn concentration, 
better model performance was achieved (RMSEP = 3.05 and R2 = 0.69) after baseline 
correction. For the Fe concentration prediction, a better model was achieved after the 
normalised data block features were fused (RMSEP = 5.09 and R2 = 0.65). The acquired 
prediction performance of the models for estimation of the combined Pb–Zn concentration 
was good. However, model performance in terms of predicting the Fe concentration was 
lower (RMSEP = 5.09). Overall, the performance of the prediction models after mid-level 
data fusion was lower than that of the models employing individual techniques. 
Nonetheless, the acquired results are promising and can likely be improved by adding more 
data to the calibration dataset (thus to fully capture the high variability between the samples) 
or by considering other feature selection techniques. 
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Table 12.5: Summary of the low-level and mid-level data fusion model performance in terms of prediction 
accuracy of Fe and the combined Pb–Zn concentration. The total number of selected PCs shows the 
number of selected PCs from the PCA models of the MWIR and LWIR data. 

Element 
Data Pre-

Processing 
Technique 

Statistics 
Low-
Level 

Fusion 

Total No. 
of 

Selected 
PCs 

Mid-
Level 

Fusion 

Factors for 
the Model 
after Mid-

Level 
Fusion 

Pb–Zn 

Normalise 

RMSECV 1.90 

7 

2.37 

2 RMSEP 2.24 3.12 

R2 0.83 0.68 

Baseline 

RMSECV 1.89 

9 

2.09 

2 RMSEP 2.10 3.05 

R2 0.85 0.69 

Fe 

Normalise 

RMSECV 2.71 

7 

2.87 

2 RMSEP 2.71 5.09 

R2 0.90 0.65 

Baseline 

RMSECV 3.67 

7 

5.08 

4 RMSEP 4.58 5.67 

R2 0.72 0.57 

 

      In the mid-level data fusion approach, data reduction using variable screening is a pre-
requisite. The data volume of the combined MWIR and LWIR datasets and the new data 
matrices generated from the extracted features have a significant difference. The combined 
MWIR and LWIR datasets contain 7190 variables, whereas the new data blocks generated 
from the extracted features included only seven to nine variables, depending on the amount 
of the explained variance from the score results of the PCA models. With feature extraction 
methods, the important information (informative variables in the spectral data) is retained 
using fewer variables than in the original data blocks (MWIR and LWIR datasets). This is 
an interesting point, since a large data volume (megavariate or multivariate data) may lead 
to several computational challenges and, due to the development of high-throughput 
instrumentation, complex datasets are increasingly becoming available. 
      The reflectance infrared data likely contains a certain amount of noise (e.g., caused by 
instrument imprecision and/or measurement errors) and, in some instances, may include 
irrelevant information in the spectra (data that are unrelated to elemental concentrations). 
Therefore, treating the datasets with the data filtering techniques mentioned above 
improved the prediction accuracy of the models developed as a part of this study. Irrelevant 
information can also hinder the predictive ability of the available information; in this case, 
extracting the important variables can result in better prediction. 

 

12.4.5. DATA FUSION VERSUS INDIVIDUAL SENSORS 

      The prediction model performance based on the individual MWIR and LWIR datasets 
is favorable in terms of the elemental concentration (Fe and the combined Pb–Zn 
concentration) prediction accuracy. Owing to the fact that these mineralogical techniques 
are mainly used for qualitative analysis of mineralogical information, the results obtained in 
this study are encouraging, indicating that the potential of these techniques, especially the 
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MWIR data, should be explored further, since it is the least-utilised region of the infrared 
spectrum. The approach presented in this study is a data-driven approach as a part of which 
the hidden information in the spectral signal is transformed into a quantitative indication of 
elemental concentration. 
      Comparing the performance of the prediction models based on the individual 
techniques with the data fusion results, an improved prediction accuracy was achieved using 
a low-level data fusion approach. Low-level data fusion enhanced the reliability of the 
prediction models by increasing the prediction performance and minimising the uncertainty 
implicit in each individual technique. Data fusion is effective in identifying the correlations 
and the similarities/differences (common and distinctive information) among different 
variables. However, if applied to correlated or noisy data blocks, data fusion might not 
necessarily improve model performance (Forshed et al., 2017). In some cases, unnecessary 
information can also hinder model performance, due to which a better prediction can be 
achieved from individual data blocks than from the fused dataset. 
      The prediction performance of the models after low-level data fusion was superior to 
that yielded by the mid-level data fusion models. This is likely due to the fact that the original 
information from both data blocks (MWIR and LWIR) is maintained in low-level fusion, 
making it potentially more accurate. In mid-level data fusion, PCA potentially failed to 
describe all-important variations in the data. However, this issue can be overcome by 
considering other data decomposition methods, such as MCR-ALS or independent 
component analysis (ICA). Review studies (Borràs et al., 2015) indicate that there is no 
preferred level of data fusion, as the choice is always application-dependent. 

 
 

12.4.6. USE OF INFRARED REFLECTANCE SPECTRA FOR INDICATION OF ELEMENTAL 

CONCENTRATION  

      Understanding the spatial variability in elemental concentration is crucial for the 
effective extraction of minable products in mining operations. The data-driven approach 
proposed in this study provides an insight into the quantifiable elemental concentrations in 
polymetallic sulphide ore using infrared reflectance data. PLSR was used to relate the 
concentration of elements of interest with complex high-dimensional infrared data to reveal 
hidden information in the spectra. Low-level data fusion resulted in better predictive 
performance of models than could be attained using models based on the individual 
techniques. This is likely due to the fact that the two data blocks (MWIR and LWIR) contain 
different chemical information that can be linked to the description of the sourcing minerals 
containing elements of interest. In addition, the comparable predictive performance of the 
MWIR and LWIR data models likely indicates the occurrence of similar chemical 
information as well. Therefore, the two techniques are complementary to each other. 
      The performance of the prediction models utilizing the MWIR, LWIR, and fused 
datasets indicates that prediction improves with higher Fe concentration in the samples. 
This is likely due to the fact that a higher Fe concentration in the samples results in a better 
spectral signal of the Fe sourcing minerals in the datasets. Thus, a better linear relationship 
can be established with the infrared spectra. Conversely, for the combined Pb–Zn 
concentration prediction, a lower concentration of these elements was better described by 
the models. However, the higher the Pb–Zn concentration in the samples, the lower its 
description by the models, likely due to higher reflectance variation, as more samples are 
needed in the calibration data to obtain a better description by the models. 
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      In mineralogical or elemental investigations, identification of as many minerals or 
elements as possible in the material is advantageous to finding indirect proxies of target 
minerals and understanding the requirements for mineral processing. However, material 
characterisation is a multi-step process that involves addressing different issues at different 
levels. The entire process, which is comprised of data generation, analysis, information 
extraction, and the depth of information (or scope of material characterisation), is illustrated 
in Figure 12.7. Nowadays, most sensors produce high-throughput multivariate or 
megavariate data. The raw data is complex, making it challenging to interpret and handle 
the megavariate data obtained from different sources. Therefore, there is a need for machine 
learning methods, such chemometrics, for data-driven understanding of the complex 
datasets. Using multivariate techniques, the hidden information in spectral data can be 
transformed into useful information, such key geological parameters (elemental, 
mineralogical, and textural data) in mining operations. However, based on the information 
level that can be acquired from the sensor signals, the depth of information or the amount 
of information that can be generated differs. The depth of information or scope of material 
characterisation from the bottom up can be organised into (i) detection (determines the 
presence of materials in the entity under investigation), (ii) discrimination (separates 
materials into similar groups based on the signals in the spectral data), (iii) identification 
(determines the fingerprints of individual entities), and (iv) quantification (determines the 
quantity of materials). 
       Thus, quantification of the composition of a material under investigation is at a higher 
level of the material characterisation or information extraction process. Quantification can 
be achieved after identification of a unique identity of a material in the acquired spectra, or 
it can be achieved indirectly by developing prediction models based on the correlation 
between the spectral signal and the entity under investigation (e.g., elemental concentration). 
In the present study, the use of MWIR and LWIR data for semi-quantification of elemental 
concentration was analysed. The prediction accuracies acquired from the fused data or 
individual datasets were very good. The achieved results should be termed ‘semi-
quantification’, since the acquired RMSEP was not as low as would be expected for exact 
prediction. However, the achieved RMSEP gives a very good indication of the elemental 
concentration in the samples and can be used to indicate high-, medium-, and low-
mineralization zones in mining operations. In addition, a lower RMSEP can be achieved 
using more data in the calibration datasets. One of the advantages of the use of infrared 
data for the indication of elemental concentration stems from the fact that the infrared data 
can be further analysed to acquire mineralogical information simultaneously. Thus, infrared 
can be considered to be a complementary technique to technologies that provide elemental 
information (e.g., XRF or LIBS). 
      Overall, the prediction accuracies acquired in this study show promise in terms of semi-
quantification of elemental concentrations in polymetallic sulphide ore samples using data 
sources that have historically been used for mineral identification only. Therefore, this study 
can serve as a baseline to show a framework for the implementation of data fusion using 
multiple data sources and various classification or regression algorithms. 
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Figure 12.7: A schematic diagram illustrating the process of knowledge generation from sensor data 
and the level of information. 

12.4.7. OPPORTUNITIES AND LIMITATIONS FOR IN-SITU APPLICATION 

      Owing to current technological advancement, rapid and non-destructive sensor 
technologies are feasible for mineral and mining applications. These technologies produce 
high-throughput megavariate datasets. As a result, understanding and interpreting the sensor 
data directly might not be possible. This leads to computational challenges in analysing the 
megavariate data and generating knowledge based on fast fingerprinting approaches in order 
to automate a material characterisation process. Therefore, as illustrated in Figure 12.7, 
knowledge generation from sensor-derived data requires advances in analytics using 
machine-learning techniques. The approach presented in this study enables semi-
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quantification of elemental concentrations using infrared spectra and data fusion. The 
reflectance infrared spectra were linearly correlated to the elemental concentrations in 
polymetallic sulphide ore. Data fusion resulted in improved model prediction accuracies and 
lower detection errors (uncertainty) than the individual datasets. This is likely due to jointly 
analysing data blocks from different sensors, which allowed us to capture the latent 
information that would not be extracted by analysing each data block individually. 
      Data fusion is mainly a data-driven approach in which the preferred level of data fusion 
depends on the nature of the data. Low-level fusion is conceptually simple, uses a single 
model, and can capture correlations between variables contained in different blocks. The 
disadvantages of the low-level data fusion are the high data volume (high variable to sample 
ratio) and the possible predominance of one data source over the others. The concerns 
stemming from a high data volume can be resolved using mid-level data fusion. For 
example, data reduction via feature selection (the scores in this case) in mid-level data fusion 
reduced the data dimensionality tremendously in the present study. Comparing the number 
of variables used in the two levels of data fusion, the mid-level data fusion used ~0.14% of 
the data volume required for low-level fusion. Thus, feature extraction in mid-level fusion 
reduces data dimensionality (in this case by ~99.86%), which significantly minimises the 
time required for computational analysis. The disadvantage of mid-level data fusion is that 
it requires the development of many models prior to fusion (each dataset must be reduced) 
and there is a need for an ultimate variable screening method. Therefore, the choice of the 
preferred level of data fusion is dependent on the performance of prediction or classification 
models and their applications, and should thus be made using a “systematic” approach. 
      Polymetallic sulphide ore characterisation using infrared spectra considers weak infrared 
features, complex matrices due to the presence of multiple sulphide minerals and other 
associated minerals, peak overlaps, and additional variability that results from physical and 
chemical weathering. Therefore, the need to reveal the hidden information in infrared 
spectra related to the material of interest mandates the use of multivariate analysis (e.g., 
integration of data blocks from multiple sensors). Elemental concentration indication into 
low-, medium-, and high-mineralization zones is advantageous for elemental spatial 
variability mapping in ore grade control applications. The proposed framework can be 
extended to simultaneous fingerprinting of the mineralogical information and elemental 
concentration indication (measurements of concentrations of valuable elements) in order to 
achieve comprehensive quantitative analysis. 
      The in-situ application of elemental concentration indication using an infrared spectra 
and data fusion approach is highly advantageous. However, to achieve this aim in practice, 
a robust system design and an integrated principled tool that integrates efficient data 
collection, processing, and knowledge generation is necessary. Going forward, automated 
material characterisation is possible with a robust system design (exemplified by a portable 
and ruggedized system) and efficient software (test-case-specific mineral libraries) that can 
be developed using a combined sensor signal. As currently available sensor technologies 
measure different aspects of material properties, information acquired from each technique 
likely adds to a holistic description of materials. The application presented in this study was 
based on a point technique (FTIR spectrometer data), which yields information at a specific 
point. However, a correlation model can be developed using image data yielded by other 
sensor technologies, such as hyperspectral imagery or RGB imaging, to predict the elemental 
concentration in unmeasured areas (to extend the coverage). 
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12.5. CONCLUSIONS 

      This study developed prediction models for the indication of elemental concentration 
in polymetallic sulphide ore using infrared reflectance spectra. Different factors that possibly 
influence the performance of the prediction models were used to formulate testing 
scenarios: (1) the usability of the individual datasets (MWIR and LWIR) for the prediction 
of the elemental concentrations; (2) the effect of the different data pre-processing 
techniques on the prediction performance; and (3) the potential for improvement in 
prediction accuracy by applying low-level data fusion and mid-level data fusion. 
      The results reported in the preceding sections show that both MWIR and LWIR datasets 
include relevant information that can be related to the concentrations of the elements. 
Comparing the best-performing models, the prediction performance of the MWIR model 
after baseline correction (RMSEP = 2.23 and R2 = 0.83) for the combined Pb–Zn elemental 
concentration prediction was superior to that obtained using LWIR data (RMSEP = 3.25 
and R2 = 0.65). On the other hand, the LWIR-based model after data normalization 
predicted the Fe concentration (RMSEP= 3.38 and R2 = 0.85) better than the MWIR-based 
model (RMSEP = 4.80 and R2 = 0.69). The MWIR is the least-explored region of the 
electromagnetic spectrum for mineralogical applications. However, the results yielded by 
this study show the potential of this technique for material characterisation. The use of a 
low-level data fusion strategy improved the model predictive ability relative to the results 
yielded by using individual techniques. After the low-level fusion, the best-achieved model 
performance for the prediction of the combined Pb–Zn concentration was RMSEP = 2.10 
and R2 = 0.85 and for the prediction of the Fe concentration was RMSEP = 2.71 and R2 = 
0.90. The performance of the prediction models after the mid-level fusion was lower than 
that of the models employing individual techniques. However, the acquired results are 
promising and can likely be improved by adding more data to the calibration dataset (thus 
to fully capture the high variability between the samples) or by considering other feature 
extraction techniques. 
      Overall, the low- and mid-level data fusion approaches proposed in this study showed 
promising results. The outcomes suggest that the approach has a great potential to be 
extended for the integration of more complex data from a range of sensor technologies, due 
to the fact that each sensor technology has its own advantages in providing useful 
information. Prediction or indication of elemental concentration using mineralogical 
techniques (infrared data) is useful to understand compositional properties, both in terms 
of mineralogy and geochemistry. The individual techniques (MWIR and LWIR) exhibit a 
great potential for use in elemental concentration characterisation in sulphide ore, and the 
model performance can be improved using data fusion. This study is a baseline for future 
research that involves multiple sensor integration aimed at developing predictive models 
that can estimate elemental concentrations in different types of deposits. We recommend 
enhancing the current work using data from other sensors. 
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13 
 DISCUSSION  

 

This chapter discusses the key findings in the dissertation and indicates the links between the research 
objectives and the results. The chapter also discusses the implications of the results and indicates the 
opportunities and limitations of the use of sensor technologies and data fusion in mining operations. 
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13.1. SYNTHESIS 

      This research assessed the potential benefits and opportunities of data fusion for 
improved accuracy, availability, predictability and quantification in raw material 
characterisation than can be achieved using the individual sensor technologies. Multiple 
sensor technologies, namely RGB imaging, VNIR, SWIR, MWIR, LWIR, and Raman 
spectroscopy, coupled with multivariate analysis techniques and data fusion approaches, 
were explored to inform about the geological attributes that are important in mining 
operations. The positive outcomes of the use of the individual techniques guided the 
development of innovative methodological approaches for the integration of multi-scale 
and multi-source sensor data. The study provides a brief overview of the use of sensors and 
data fusion for material characterisation at different levels. Thus, it can contribute to the 
current need for enhanced material characterisation to enable effective process control, 
decision-making and sustainability in the mining sector. 
      The value of the use of sensor technologies in mining is diverse. For example, permit 
the production of reproducible data that can be validated via independent measurements, 
allow rapid and non-destructive analysis, enable the provision of comprehensive 
descriptions of materials, and permit a repeatable analysis using new analytical methods at a 
late stage. Therefore, sensors can play a vital role to achieve efficiency in the mining process. 
In mining, the required information from sensor data is not limited to grade control 
applications. Nevertheless, information on co-occurring minerals or elements is also 
essential to identify indirect proxies of elements or minerals of interest, define requirements 
in mineral processing, specify blasting parameters, and environmental monitoring of toxic 
material. Moreover, information on rock fragmentation, ore geometry and ore versus waste 
materials are also crucial information for efficient mining. Consequently, the geological 

attributes investigated in this research were mineralogy, geochemistry, ore geometry, ore‒
waste discrimination, and rock fragmentation (summarised in Table 13.1). 
      Technology-driven physical separation of materials into ore and waste can lead to the 
realisation of sensor-based sorting in mining. Sensor-based sorting permits the dry 
separation of ore and waste materials and pre-concentrating the ore for further processing. 
Thus, it offers potential economic and environmental benefits by eliminating the waste from 
the subsequent steps of mineral processing. For the separation of ore and waste materials, 
a prior determination of the economic cut-off grade is required. Cut-off grades are essential 
to determine the economic feasibility and life of a mining project. The determination of 
economic cut-off grades requires a feasibility study that takes in to account different factors 
such as commodity market value, depth of the deposit, and location of the mine. Therefore, 

the technological assessment for the use of ore‒waste separation requires the evaluation of 
the usability at different cut-off grades. Subsequently, in this study, the technological 

assessment for the separation of ore‒waste considered different cut-off grades. The 
technologies assessed for the separation of ore and waste in the analysed samples are VNIR, 
SWIR, MWIR, LWIR and Raman spectroscopy (Table 13.1). The applied methodological 

approaches and results of the ore‒waste discrimination are presented in Chapters 7, 8, 9 and 
10. 
      The identification and mapping of minerals are essential information in any geological 
studies. Accurate information on the distribution and occurrence of minerals is significant 
input for mine development, resource extraction and environmental studies. The use of 
sensor technologies can allow automatic identification and mapping of minerals. In this 
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study, the use of RGB imaging and hyperspectral images (VNIR and SWIR) were assessed 
for the identification and mapping of minerals at the mine face and in drill core samples, 
respectively. Besides, Raman spectroscopy was used to identify some of the minerals in the 
case study site, this is discussed in Chapter 9. The potential use of RGB imaging for the 
mapping of minerals, delineation of ore-geometry, fragmentation analysis, and target 
domain definition was assessed in Chapter 6. In Chapter 7, the results of the VNIR and 
SWIR techniques for the identification and mapping of minerals are presented. Quantitative 
mineralogical and geochemical information has substantial benefits along the mining value 
chain, such as in resource model updating and mineral processing. In this study, the 
applicability of infrared technologies that are commonly used for mineralogical studies was 
assessed for the prediction of elemental concentrations. The techniques used for semi-
quantitative analysis of minerals and elements are MWIR and LWIR, as discussed in 
Chapters 11 and 12, respectively.  
      The use of sensor combinations for improved semi-quantitative analysis of minerals and 
elements were assessed using MWIR and LWIR data. In addition, a data fusion approach 
was developed and implemented to integrate hyperspectral images (VNIR and SWIR) and 
point spectral data (MWIR and LWIR) for the discrimination of ore and waste materials. 
The data fusion approach developed and implemented in this study allowed fusing of the 
data blocks at different levels, as discussed in Chapters 10, 11 and 12. The test scenarios 
investigated in this work are summarised in Table 13.1. The table restates the specific 
objectives of the use of each technology and the combined sensors to investigate the 
material properties that define the key geological attributes. It also outlines the levels of data 
fusion and fused data types that are relevant for model specifications. 
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Table 13.1: Summary of the use of individual techniques and the combined sensors for the characterisation 
of materials at different levels.  
 

  Sensors           Use of the technologies   

In
d

iv
id

u
al

 s
en

so
r 

te
ch

n
o

lo
gi

es
 

RGB imaging 

 Mineral mapping 

 Fragmentation analysis 

 Ore geometry delineation 

 Target domain definition 

VNIR hyperspectral imaging 
 Mineral identification 

 Ore‒waste discrimination 

SWIR hyperspectral imaging 
 Mineral identification 

 Ore‒waste discrimination 

MWIR 

 Indication of elemental concertation 

 Indication of mineralogical concertation 

 Ore‒waste discrimination 

LWIR 

 Indication of elemental concertation 

 Indication of mineralogical concertation 

 Ore‒waste discrimination 

Raman 
 Mineral identification 

 Ore‒waste discrimination 

Sensor combinations using the data fusion approach 

 Fused data 
types 

Fused technologies 
Levels of data 

fusion 
Use of sensors 

D
at

a 
fu

si
o

n
 

Point data to 
point data 
fusion 

MWIR and LWIR 

 Low-level fusion   Indication of 
elemental concertation 

  Indication of 
mineralogical 
concertation 

 Low-level with 
feature 
extraction 

 Mid-level fusion 

Image to 
image fusion 

VNIR and SWIR Mid-level fusion Ore‒waste discrimination 

Point data to 
image data 
fusion 

 VNIR, SWIR, MWIR and LWIR Multiple-level fusion Ore‒waste discrimination 

 

      The subsequent sections discuss the key findings in this work pertaining to the research 
objectives. The first section synthesises and evaluates the use of the technologies for the 
characterisation of materials in mining. The section also discusses the use of each technique 
for the characterisation of the polymetallic sulphide deposit. In the subsequent parts, the 
implications of the key findings and opportunities for the use of sensors and data fusion in 
mining operations are discussed. The chapter also demonstrates how the approach fits 
within the real-time material characterisation framework, identifies software and hardware 
requirements, and defines the gaps and limitations of the application of sensors and data 
fusion in mining.  
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13.2. THE USE OF THE INDIVIDUAL TECHNIQUES FOR MATERIAL 

CHARACTERISATION  

      Deposit type defines the material properties that are relevant to sensor measurements.  
For example, it determines the composition, grain size, texture and porosity of a material. 
Thus, assessment of the applicability of sensors for the characterisation of a particular 
deposit type is essential. In this work, the use of the above-mentioned technologies resulted 
in the successful characterisation of a polymetallic sulphide deposit at different information 
levels. The results from each technology are discussed in the corresponding chapters. In the 
subsequent sections, summaries of the usability assessment of the techniques are discussed. 
Moreover, the applicability and viability of the sensors in both open-pit and underground 
mines were synthesised and evaluated using a SWOT (strengths, weaknesses, opportunities, 
and threats) analysis (Table 13.2). 

13.2.1. RGB IMAGING  

      RGB imaging can allow the characterisation of material based on visual appearance (colour 
difference). This can enable the mapping of minerals if there is a colour contrast among them. 
RGB imaging is a surface technique that measures the exposed surface of a material; thus, 
surface weathering might affect the classification results. However, imaging relatively soon after 
a new blast can minimise the effect of surface weathering. The presence of water on the mine 
face is the other challenge that might affect the reflectance value. Conversely, calibration of the 
classification algorithm with a training dataset that contains water can minimise this effect. In 
this study, the use of the technique allowed mapping of minerals, delineation of ore geometry 
and fragmentation analysis. It was also deployed for the definition of target domains (i.e., the 
indication of the mineralised zone) thus to define the locations of the collected samples (Figure 
13.1). The minerals in the test case mainly have medium–to-coarse grains. This is advantageous 
for the mapping of the minerals using an RGB sensor since having larger grain sizes likely 
minimise the effect of the mineral mixture in each pixel. The use of the technique for mapping 
of minerals in fine-grained and mixed materials could be challenging since the sizes of the grains 
might be too small to be detected from the RGB image data. However, the type of 
mineralisation also determines the applicability of the technique. For example, for disseminated 
mineralisation in smaller pores, the detection of the ore minerals might be difficult due to 
mineral mixtures, surface irregularities and limitation related to sensitivity capability of the 
technique. The other important consideration for the use of the technique in material 
characterisation is the data acquisition procedure. For example, the variation in illumination at 
mine faces might lead to the misclassification of mineral types that maintaining constant 
illumination throughout the mine face is essential.  
      Overall, the results of this study suggest the potential use of the technique for the mapping 
of visually distinct minerals remotely in a polymetallic sulphide deposit. Besides, imaging of a 
mine face after consecutive blasts can provide information on how material changes with depth. 
However, for volumetric information, other approaches, such as geophysical techniques, are 
required. The geological conditions, the data acquisition process and the sensitivity of sensors 
determine the usability of the technique for mapping of minerals in different deposit types. 
Some of the potential benefits and limitations of the technique are discussed in Table 13.2. 
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Figure 13.1: Schematic sketch that shows the potential use of the imaging techniques to define target 
domains for point analysis. 
 

13.2.2. VISIBLE AND NEAR-INFRARED 

      The VNIR signals are a response to the molecular electronic transition process 
produced by changes in the position of electrons from one energy level to a higher energy 
level (Hunt, 1977; Clark, 1999). The VNIR radiation is characterised by high-energy 
compared to other infrared radiation; thus, it can excite electrons and induce electronic 
transitions. The energy change associated with the electronic transition can be used to 
determine the molecular properties of some of the minerals. The spectral features in the 
VNIR are generally broad and relatively weaker. However, they are characteristic to identify 
some of the minerals such as the Fe oxides (Hunt, 1977). In this study, the VNIR 
hyperspectral images were analysed to identify some of the test case minerals and separate 
the ore from the waste. The identified minerals were the Fe oxides (e.g., hematite) and some 
of the sulphides (e.g., pyrite). The previous study by Bolin and Moon, (2003) indicated the 
potential of VNIR to estimate sulphide minerals percentage in drill core samples. The study 
showed the use of the technique for mapping sulphide minerals versus other minerals (e.g., 
serpentinised olivine and augite minerals). In this work, the VNIR spectral data were used 
to distinguish among some of the sulphide minerals based on their spectral response pattern 
(intensity and shape). However, the sulphide minerals were not identified in some of the 
samples likely due to the lower concentrations of the minerals or mineral mixture. The 
technique can detect and identify some of the sulphide minerals but it requires careful 
analysis and validation since the sulphides do not show any particular absorption features.  
      The spectral information in the VNIR data enabled the classification of ore and waste 
materials in the polymetallic sulphide deposit. The classification model performance of the 
VNIR data is lower than that of the SWIR, MWIR and LWIR data models. This is likely 
due to the limited amount of relevant spectral information in the VNIR data than the other 
infrared regions. However, the achieved classification rate using the VNIR data model alone 
is promising to indicate ore and waste materials in a polymetallic sulphide deposit. Overall, 
the technique can provide crucial information in material characterisation. Point 
spectrometers and hyperspectral imagers that operate in the VNIR wavelength range are 
available from multiple suppliers, such as Specim’s VNIR sensor and Headwall’s Nano-
Hyperspec® (Specim, 2019, Headwall, 2020). The potential applicability, coupled with the 
state-of-the-art instrumental availability indicates the possible use of the technology in the 
mining industry. Some of the potential benefits and limitations of the technique are discussed 
in Table 13.2. 
 
 

Target domain (mineralized zone) Not to scale 

Imaging  
RGB  
Hyperspectral  

Mine face 
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Table 13.2: SWOT analysis for the usability of sensor technologies for the characterisation of polymetallic 
sulphide deposits in underground mining operations.  

Technology Strength Weakness Opportunities Threats 

  

R
G

B
 I

m
ag

in
g
 

 Good for qualitative 
analysis  

 Semi-quantification is 
possible with pixel 
count  

 Rapid data processing  

 Can be used in colour 
detection and shape 
recognition (ore-
geometry) 

 Can be used for 
fragmentation/textural 
analysis  

 No actual contact is 
required/ can be used 
for remote application 

 Non-destructive 

 Non-intrusive 

 High spatial resolution  

 No sample preparation 
needed 

 Surface 
technique  

 The 
information 
is limited to 3 
bands  

 Lower 
reflection 

 Minerals 
having the 
same colour 
cannot be 
differentiated 

  

 Light sources can be 
optimised  

 Improved signal 
processing/Image 
processing techniques 
available 

 Applicable for visually 
distinct minerals  

 Most advanced 
technology  

 Ruggedized systems 
available  

 Small size: ideal for 
embedding and surface 
mounting  

 Potential for 
mineral/lithological 
mapping 

 Indirect proxy for 
mineralogy/grade 

 Low-cost 

 Multiple suppliers  

 Variable 
operating 
conditions  

 Can be 
affected by 
surface 
impurities 

 Surface 
roughness 
affects the 
measurements  

 Dust affects 
the 
measurements 

 

V
N

IR
 

 Good for qualitative 
and semi-quantitative 
analysis  

 Can be used to 
distinguish between 
some of the sulphide 
minerals  

 Imaging techniques do 
not require actual 
contact with samples 

 Non-destructive  

 Good for mapping of 
iron oxides and REEs 

 No sample preparation 
needed 

 

 The narrow 
the 
wavelength 
range the 
limited the 
information 

 Surface 
technique 

 Detects 
fewer 
minerals  

 Exhibit 
broad 
spectral  
features 

 Developments are 
dynamic and advancing 
rapidly  

 Potential for sensor-
based sorting  

 Well established 
technology 

 Rapid data acquisition (in 
seconds) 

 Remote application 
possible  

 Multiple suppliers 
available  

 Passive systems available  

 Relatively low power 
requirements 

 Environmental 
influence 
(such as water 
and dust) can 
affect in-situ 
measurements  

 Mineral 
mixtures affect 
the results  

 Least 
commonly 
used for 
quantitative 
analysis  

 Calibration 
difficult  
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Technology Strength Weakness Opportunities Threats 
   

S
W

IR
 

 Can be used for 
sulphide ore and waste 
discrimination using 
the approach described 
in Chapter 7  

 Can be used for 
identification of 
associated minerals  

 Imaging techniques - 
do not require actual 
contact with the 
samples  

 Can be used for 
textural and 
mineralogical analysis  

 Applicable for the 
characterisation of a 
wide range of minerals 
e.g., alteration 
minerals, sulphates and 
REEs  

 No sample preparation 
needed 

 Provide sharp spectral 
features  

 Processing 
and handling 
of the large 
volumes of 
the image 
data  

 Surface 
technique 

 Can be 
affected by 
matrix effect  
 
 
 

 
 

 Developments are 
dynamic and advancing 
rapidly  

 Most advanced 
technology in terms of 
technological 
development and 
availability of well-
established mineral 
library  

 Portable instruments are 
available and emerging 

 Image and point data can 
be acquired  

 Rapid technique 

 Multiple suppliers 
available  

 Nano scale spatial 
resolution  

 Remote application 
possible  

 Relatively low power 
requirements  

 Environmental 
influence 
(such as water 
and dust) can 
affect in-situ 
analysis 

 Least 
commonly 
used for 
quantitative 
analysis  
 

  

M
W

IR
 

 Can be used for 
sulphide ore 
discrimination 

 Spectra showed a very 
good correlation with 
Fe, the combined 
Pb_Zn, SiO2, Al2O3, 
Fe2O3 

 Detection limit ~0.01 
% 

 No sample preparation 
needed 

 Least 
explored 
region  

 Lack of well 
documented 
mineral 
library  

 Surface 
technique 

 Mainly 
provide 
broad 
features 

 

 The least explored region 
of the IR but with a good 
potential  

 Portable instrument 
already available 

 Hyperspectral imager is 
developed  

 Relatively low power 
requirements  

 Passive systems available 

 No 
commercial 
system for 
mineral 
identification 

 Robust system 
is required for 
underground 
(harsh 
environment) 
application 

 

L
W

IR
 

 Can be used for 
discrimination of 
sulphide ore and waste  

 Can be used for 
identification of  rock 
forming minerals  

 Spectral signal has a 
good correlation with 
some of the test case 
elements thus can be 
used for elemental 
prediction  

 Detect a wide range of 
minerals e.g., silicates 
and carbonates 

 Detection limit~0.01 
% 

 Surface 
technique 

 
 

 Good potential for 
mining applications  

 Advanced technology  

 Point and imaging 
spectrometers are 
emerging  

 Portable instruments are 
available  

 Remote application 
possible  

 Relatively low power 
requirements  

 Passive systems available 
 
 

 Robust system 
is required for 
underground 
(harsh 
environment) 
applications 

 Camera need 
robust housing 
(e.g., water and 
dust proof)  
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Technology Strength Weakness Opportunities Threats 
 

R
am

an
 

 Detect a wide range of 
minerals  

 Detect some of the 
sulphide minerals  

 Enriched spectral 
libraries  

 No sample preparation 
needed 

 Non-destructive 

 

 

 Detection 
limit (ppm 
level 
detection is 
not 
attainable)  

 Weak in 
intensity 
compared to 
Infrared  

 Raman signal 
has a very 
low 
correlation 
with the 
elemental 
concentration 
of the test 
case materials 

 Surface 
technique 

 Mobile units available  

 Both imaging and point 
techniques are available  

 Provides complementary 
information to infrared  

 High spatial resolution 
(< 1μm)  

 Ruggedized system 
available  

 Not interfered by water 

 Rapid technique (few 
seconds)  

 Remote analysis is 
possible  

 Sensitive to 
vibration and 
dust  

 Conflict with 
fluorescent 
minerals  

 Intense laser 
radiation can 
destroy the 
sample or 
cover the 
Raman 
spectrum 

 Due to weak 
scattering it 
provides the 
best result 
under 
complete 
darkness 

 
 

13.2.3. SHORT-WAVE INFRARED 

      The absorption of the infrared radiation in the SWIR-MWIR-LWIR ranges causes 
vibration of molecules that trigger a change in the dipole moment as the bonds expand and 
contract. The molecular bonds and the mass of the elements in the molecule determine the 
frequency and intensity of the vibration (Clark, 1999). However, not all minerals absorb 
infrared radiation. For example, the metals in the sulphide minerals exhibit higher 
reflectance, and the minerals do not absorb the infrared light in the VNIR, SWIR, MWIR 
and LWIR wavelength regions (Bolin and Moon, 2003; Clark et al., 1993). Therefore, the 
sulphide minerals do not show diagnostic absorption features in the infrared wavelength 
region (AusSpec, 2008). In this study, the featureless nature of the minerals in the SWIR 
spectra was used as a characteristic value to discriminate ore and waste materials. This 
suggests the potential of the technique for the separation of materials without particular 
absorption features, instead using the spectral reflectance difference of the minerals. The 
required infrared radiation to change the energy of the molecule from one state to another 
(vibrational transitions) differs since the structure of molecular bonds are different. For 
example, the SWIR range infrared radiation induces vibration in the molecules of most of 
the alteration minerals. Therefore, these minerals exhibit characteristic diagnostic features 
in the SWIR region. However, infrared radiation in the VNIR range could not evoke 
vibration in the molecules of these minerals. Moreover, the absorption peaks within the 
SWIR region is usually sharper compared to the absorption peaks in the VNIR.  
      The SWIR technique is sensitive to the determination of functional groups within a 
material since different functional groups absorb the SWIR light at particular wavelengths. 
The absorption of the functional groups at certain wavelengths is characteristics for the 
corresponding molecules thus, used to fingerprint minerals. Consequently, the SWIR data 
allowed the identification of some of the minerals such as muscovite, montmorillonite, 
siderite, quartz, and mineral mixtures in the case study site. In SWIR, the difference in grain 
size and mineral contents in the sample can change the reflectance value and absorption 
features depth of the spectra (Zaini et al., 2012). In this study, the VNIR and SWIR 
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measurements were performed using drill core and rock samples having mainly medium-to-
coarse grains minerals. Generally, the finer the grain size the higher the reflected light due 
to volume scattering (Clark, 1999; Zaini et al., 2012). However, minerals with finer grains 
and smaller quantities might not be detected using the VNIR and SWIR imaging techniques 
because they are too small grains and mixed with other co-occurring minerals. Therefore, 
co-occurring minerals can dominate the spectral response. This is especially more 
problematic for those minerals that produce weak spectral features.  
      Overall, SWIR is a well-established technology with enriched mineral libraries such as 
the USGS and TSG mineral spectral databases (AusSpec, 2008; Clark et al., 2003). 
Moreover, portable and high-speed SWIR technologies emerged recently from multiple 
suppliers such as Malvern Pananlytical and Specim (Malvern Pananlytical 2020; Specim, 
2019). Thus, with integrated hardware and a comprehensive spectral database, the technique 
has excellent potential for automated material characterisation in different deposit types. 
Besides, the SWIR imagers can permit remote or ground-based applications for mine face 
mapping in open-pit or underground mines. Some of the potential benefits and limitations of 
the technique are discussed in Table 13.2. 

13.2.4. MID-WAVE INFRARED 

      As discussed in section 13.2.3, sulphide minerals do not absorb MWIR radiation due to 
their molecular structure. Thus, fingerprinting of the minerals using MWIR is challenging. 
However, the sulphide minerals show variation in their reflection values at different 
wavelength locations. The variation in reflectance value is not constant; instead, it varies 
within the MWIR range. For example, the MWIR spectra show variation in the reflectance 

value based on the concentration of the combined Pb‒Zn in the wavelength ranges from 
2.5 to 2.6 µm and 3.5 to 4.0 µm (Figure 10.5). The sourcing minerals of the elements (galena 
and sphalerite in the case study site) exhibit a spectral pattern in these ranges (NASA, 2018). 
This is the likely reason for the observed variation in the spectra according to the 
concentration of the elements. In this work, the spectral variations in the reflectance value 
were used to perform a semi-quantitative analysis of elements and minerals. With this 
approach, the MWIR data provided sufficient information and showed great potential for 

semi-quantitative analysis of minerals and elements, and the separation of ore‒waste 
materials. Besides, minerals such as epidote and alunite exhibit broad spectral features in the 
region that the technique can be used for the identification of some minerals.  
      Water has absorptions in the infrared regions. For example, water absorbs MWIR light 
within the range from 2.6 µm to 3.1 µm due to H–O–H symmetrical and asymmetrical 
stretching vibrations (Aines and Rossman, 1984). The effect of water in the MWIR spectra 
was not investigated in this study. However, the measurements were carried out under a 
similar condition within a short time interval in the laboratory. The applicability of the 
MWIR for the characterisation of polymetallic sulphide deposit is an interesting finding 
since this region of the electromagnetic spectrum is not well studied for application in raw 
material characterisation. There has been limited instrumental development, but recent 
advancement of the technology has resulted in portable imaging and point MWIR 
spectrometers. For example, FLIR, Specim, SphereOptics, and TELOPS developed rapid, 
sensitive and lightweight MWIR spectrometers (FLIR, 2019; Specim, 2019; SphereOptics, 
2020; TELOPS, 2020). The potential usability of the technique, coupled with the current 
technological advances, likely permits its use in raw material characterisation. Some of the 
potential benefits and limitations of the technique are discussed in Table 13.2. 
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13.2.5. LONG-WAVE INFRARED 

      LWIR is mainly used for the characterisation of rock-forming minerals such as silicates 
and carbonates (Lorenz et al., 2018). The non-diagnostic or minimal spectral information 
of silicate minerals in the VNIR and SWIR data makes LWIR a good alternative for the 
characterisation of these minerals. In this study, the use of LWIR data models resulted in 
successful discrimination of ore and waste in a polymetallic sulphide deposit. This was 
achieved due to the spectral differences between the minerals of the ore and waste materials. 
The LWIR reflectance data were also analysed for the prediction of the concentration of 
elements and minerals in the analysed samples. The achieved promising results for the 
determination of both elemental and mineralogical concentrations indicate the possibility 
for simultaneous semi-quantitative analysis of minerals and elements in mining.  
      The spectral response can vary depending on material characteristics such as grain size 
and surface roughness (Clark, 1999; Rost et al., 2018; Zaini et al., 2012). In the LWIR region, 
the band positions of some minerals (e.g., calcite and dolomite) can also change according 
to their grain sizes (Zaini et al., 2012). In this study, the MWIR and LWIR measurements 
were performed using powder samples (fine grains) and rock samples (having relatively 
larger grain sizes). The powder sample measurements resulted in better-infrared signals than 
that of the rock sample measurements. Several factors could be attributed to the observed 
difference. For example, measurement using fine-grained material is advantageous in 
maximising the amount of light reflected in infrared measurements. The other possible 
reason is that the irregularities at the rock sample surface can inhibit all the reflected light 
to reach the detector of the sensor. This is because of the gap created between the sensor 
tip and the sample surface due to surface roughness that could allow reflected light to escape 
before reaching the detector. Therefore, the signal from rough surface measurements could 
be lower. It is also important to note that powder samples are homogenised material whereas 
the analysed rock samples are heterogeneous in nature. This could also cause spectral 
differences. Investigation of the differences in model results according to the grain sizes is 
out of the scope of this work. However, the physical and chemical matrix can influence 
spectral responses and this is discussed in detail in Section 13.6.1.  
      LWIR is commonly used in the field of remote sensing (e.g., satellite data) and laboratory 
measurements. The technique has excellent potential for use in ground-based close-range 
remote sensing of mine faces. Both imaging and point spectrometers are available from 
multiple suppliers such as Agilent, Corescan, FLIR, and Specim (Agilent, 2017; Corescan, 
2019; FLIR, 2019; Specim, 2019). Some of the potential benefits and limitations of the 
technique are discussed in Table 13.2. 
 

13.2.6. RAMAN SPECTROSCOPY 

      Raman spectra were collected using two excitation laser sources of 532 nm and 785 nm. 
The identified minerals using Raman include calcite, sphalerite, kaolinite, marcasite, pyrite 
and siderite. Some of the sulphide minerals such as galena do not exhibit a well-defined 
Raman peak due to their structural symmetry and distinct metallic characteristics (Mernagh 
and Trudu, 1993). This is the likely reason for galena not being identified in the analysed 
samples. Comparing the two excitation laser sources, the spectra signal (Raman peaks) from 
the 785 nm is superior to that obtained with the 532 nm laser for the characterisation of the 
polymetallic sulphide deposit. This is likely because longer excitation wavelengths give less 
fluorescence than shorter excitation wavelengths (Bumbrah and Sharma, 2016; Gaft et al., 
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2005). The other possible reason could be that the opaque (non-transparent) nature of the 
sulphide minerals needs lower energy (higher wavelength) laser sources to penetrate deeper 
into the samples than high-energy (low wavelength) laser sources (Tuschel, 2016). Thus, 
higher wavelength laser sources provide better Raman signals for non-transparent minerals.   
      The Raman spectra were also analysed for the separation of ore and waste in 
polymetallic sulphide ore samples. Promising ore and waste classification results were 
achieved using the PLS-DA model at a lower cut-off grade (2%). The overlapping of peaks, 
weak peak intensity and the fluorescence effect are the main challenges in Raman 
spectroscopy. Overlapping peaks can be resolved using spectral decomposition algorithms 
such as MCR-ALS. Adaptive signal-processing techniques can allow enhancing the signals 
of the Raman spectra. The fluorescence effect can be minimised by considering longer 
excitation wavelengths since the laser photon could not have enough energy to excite 
molecular fluorescence. The other method to avoid the effect of fluorescence emission is 
to consider a time-gated Raman spectroscopy. The Raman and fluorescence signals can be 
separated in a temporal domain. The lifetime of Raman scattering is shorter than the 
fluorescence process since the later involves real electronic excited states. Thus, time-gated 
Raman spectroscopy can be used to collect the Raman signal during the short laser pulses, 
and the fluorescence emission can be rejected during the measurement process (Edwards, 
2005; Kgler and Heilala, 2020; Yaney, 1976).  
      Raman spectroscopy is a well-established technique that has good potential for the 
analysis of a wide range of minerals. The current state of the technology supports a hand-
held and portable instrumentation permitting in-situ measurements. For example, Agilent’s 
portable Raman system, BWTEK’s i-Raman® Plus and Spectral solutions’ Raman imager 
(Agilent, 2020; BWTEK, 2020; Spectral solutions, 2020). However, on-line analysis of 
materials requires a deposit-specific mineral library that takes into account the heterogeneity 
(variability of materials). Raman is very well known as a point spectroscopy. However, 
Raman hyperspectral imagers are now available from different suppliers. For example, 
WITec provides high-speed sensitive microscope Raman Imagers and Photon provide an 
ultrafast Raman hyperspectral imager:  RIMA™ (Photon, 2020; WITec, 2020). Table 13.2 
shows some of the benefits and limitations of the technique.  

 

 

13.2.7. COMPARISON OF TECHNIQUES  

      As presented in Table 13.2, each technique has its benefits and drawbacks for the 
characterisation of raw materials in mining. For example, water has intense absorptions in 
the infrared, whereas Raman is not affected by water. Infrared (SWIR, MWIR and LWIR) 
and Raman are vibrational techniques that involve changes in vibrational modes of 
molecules in a different manner. In infrared spectroscopy, the photon energy interacts with 
a molecule to change its dipole moment and result in infrared absorption. Conversely, the 
Raman effect is observed when the vibration mode of molecules causes changes in the 
polarizability of molecules. Thus, the Raman effect is weak that results from an inelastic 
scattering process whereas, infrared has stronger spectral signals that result from absorption 
of light by vibrating molecules. Unlike infrared spectroscopy, which is limited to infrared 
frequencies, Raman spectroscopy can use a monochromatic light source in UV, visible and 
near-infrared ranges to generate the Raman effect. This gives the opportunity to measure 
using a high-intensity laser.  
      The infrared techniques are capable of identification, quantification and classification of 
most minerals. However, quantitative and classification analysis using the infrared requires 
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a well-calibrated model with mineralogical concentration values quantified by a primary 
technique, such as XRD or XRF. XRD is flexible in the quantification of minerals and can 
provide relatively more accurate results than infrared. In addition, it is capable of identifying 
a wide range of minerals, including the sulphides. Conversely, the main advantage of the 
infrared techniques over the XRD is the availability of portable and rapid systems that 
enable in-situ and on-line analysis of materials. For example, rapid VNIR systems, which 
operate over a conveyor belt to determine mineralogy, are available. The other advantage of 
infrared systems is that they offer lower detection limits than XRD. For example, the 
detection limit for XRD is 1 - 3 wt%; whereas, infrared systems such as FTIR spectrometer 
has a detection limit of 0.01 wt%.   
      Some of the technologies can collect both point and image data. For example, SWIR 
data can be acquired using a point spectrometer (Malvern Panalytical, 2018) or a 
hyperspectral imaging spectrometer (Specim, 2019). The advantage of the hyperspectral 
imaging systems over the point spectrometers include, the former offer wider area coverage 
and the spatial resolution of most of the imagers is better than that of the point 
spectrometer. For example, one spot size that is measured by an ASD sensor covers 10 mm 
whereas; the Specim OWL hyperspectral camera has a spatial resolution of 48 µm (Malvern 
Panalytical, 2018 and Specim, 2019). High-resolution images likely minimise the matrix 
effects due to the likely chance of finding pure minerals and can result in better mineralogical 
information. Pixel-by-pixel classification of hyperspectral images is advantageous to 
understand the distribution pattern of the constituent minerals. It also allows semi-
quantification of the abundance of the minerals based on pixel count. For example, 
georeferencing and mosaicking of the RGB images provided a comprehensive view of 
mineral distribution over the imaged mine face surface. On the other hand, point 
spectrometers offer high spectral resolution and high signal spectral data; however, unlike 
the image data, they lack spatial reference. Thus, point measurements require precise 
positioning to provide a spatial context. This can be achieved by projecting the measurement 
points on the surface (e.g., at the mine face). Overall, each technology has its advantages 
and shortcomings: thus, sensor combinations can allow enhanced and holistic 
characterisation of materials using multiple techniques. 

13.2.8. POLYMETALLIC SULPHIDE DEPOSITS AND SENSOR TECHNOLOGIES  

      The sulphide minerals are the major sources of metals and are the most important group 
of ore minerals (Richards, 1998; Vaughan, 2021; Vaughan and Corkhill, 2017). The minerals 
occur in all rock types; except for dissemination in certain sedimentary rocks; they occur 
concentrated in ore deposits or mineralised zones filling the geological structures such as 
veins and fractures (Richards, 1998). The metals that occur most commonly in sulphide 
minerals include Cu, Zn and Pb. The sulphide-bearing deposits are also the sources of 
various precious metals such as Au, Ag and Pt. Sulphide minerals have a significant 
economic and environmental importance that understanding the compositional information 
using sensor technologies is crucial. Most of these minerals exhibit properties such as 
electrical conductivity, striking colour, emissivity, low hardness and high specific gravity. 
These properties are subject to measurement using various sensor technologies. For 
example, a thermal infrared camera can be used to measure the emissivity of metals 
(FLUKE, 2020). Most of the sulphide minerals show colour differences, so the RGB 
imaging can be used to map the minerals. Attributed to the higher specific gravity of the 
sulphide minerals, the DE-XRT can also be a potential technique for the separation of ore 
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and waste materials based on their density differences. Metals have high reflectivity, due to 
this; metal ores are not commonly analysed using infrared reflectance technologies. However, 
the results of this research indicate the potential use of the infrared techniques for the 
characterisation of base metal enriched ores. This is a promising result for future 
applications of infrared technologies for the characterisation of sulphide-bearing deposits. 
Besides, information on the base metals can also be used as indirect proxies for information 
on precious metals. For example, galena is the most important ore of Pb and an important 
source of Ag. Thus, the quantitative analysis of Pb in the sample can indirectly indicate the 
amount of Ag present.  

13.3. SENSOR DATA AND DATA QUALITY  

      Sensor technologies are as valuable as the data they can produce, so ensuring quality is 
fundamental for any sensor application (McGrath and Scanaill, 2013). Consequently, the 
quality of the sensor outputs was investigated using the data quality parameters: accuracy, 
completeness, consistency and precision. Table 13.3 summarises the assessed data quality 
parameters for each sensor data and data model. The other data quality parameter evaluated 
in this study was noise in the spectra; different signal correction methods were applied to 
minimise the effect of noise and this is discussed in the subsequent chapters. The reliable 
use of sensor derived data is not only limited to the quality of data that is produced by 
sensors; instead, it also depends on the quality control procedure that ensures the integrity 
of all the factors involved in the process. Therefore, ensuring quality also requires a well-
defined quality control procedure that regulates the sampling protocol, data collection 
process, data analysis methods, and interpretation of results.  
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Table 13.3: Summary of the assessed data quality parameters for each sensor output.  

 
Technology 

Data quality parameters 

Accuracy Completeness Consistency Precision 

  
 

R
G

B
 I

m
ag

in
g
 

 Compared with field 

verification and high 

quality pictures taken 
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correct classification 

rate  

 

 Full pixel 
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defined mine face) 
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geological map 

and RGB image 

taken using 

LIDAR 
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acquisition stand 
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V
N

IR
 

 The accuracy was 
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(for mineral 
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the target imaged 
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 Visual inspection 
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Technology 

Data quality parameters 

Accuracy Completeness Consistency Precision 
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MS data 
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availability of each 

analysed sample 

spectrum) 

 Compared with 
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SWIR and LWIR 

results  
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measurements 

were taken and 
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13.4. DATA FUSION AND ANALYTICS 

13.4.1. THE USE OF DATA FUSION  

      Data fusion permits the simultaneous analysis of data blocks of different nature and 
integrates various kinds of information about the same entity. It reduces the uncertainties 
by combining data from multiple sources. Therefore, it is a useful approach for the 
classification and prediction problems. In this study, the use of a low-level fusion of the 
MWIR and LWIR data for the prediction of the elemental concentration of the combined 

Pb‒Zn and Fe resulted in better performance than that of the individual techniques. 
Similarly, the low-level fusion of the extracted features from the MWIR and LWIR resulted 
in predictions of mineralogical concentrations enhanced over those generated from the 
individual data models. Achieving improved prediction using extracted features is an 
appealing approach since it allows the reduction of data volume while maintaining the 
relevant information. For the prediction of the mineralogical concentrations, the low-level 
fusion with feature extraction approach required prior knowledge for the extraction of 
important variables using the already existing well-established mineral libraries. Thus, the 
applied features selection method was not based on the outputs of models. The standard 
mid-level data fusion approach instead requires features extraction through a modelling 
step. The low-level fusion with the feature extraction approach reduced the data volume, 
was able to capture most of the informative variables and resulted in enhanced prediction 
performances. Therefore, this approach has great potential for the analysis of mineralogical 
information using multiple sensors. 
      The spectra of the analysed samples show variation based on the concentration of the 
Al2O3, SiO2 and Fe2O3 minerals (Figures 13.2 and 13.3). Likewise, the reflectance value of 
the samples shows variation based on the concentration of the minerals over the key 
wavelength regions extracted in the low-level fusion with feature extraction approach 
(Figure 13.3). This is in-line with the achieved semi-quantitative mineralogical analysis 
results of the individual and fused data models. Commonly, quantitative analysis of minerals 
using infrared becomes complicated in regions where mineral signals overlap (Bou-Orm et 
al., 2020). In this study, a combined approach using absorption depth and reflectance values 
were used to relate the relevant spectral information to the concentration of the minerals.  
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Figure 13.2: The spectra of some of the samples showing a variation in the spectral response based on the 
concentration of (a) Al2O3, and (b) Fe2O3 minerals.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.3: The spectra of some of the samples in the wavelength region of 2.5 to 2.75 µm, which shows 
the variation of reflectance value, based on the concentrations of the minerals (a) Al2O3, and (b) SiO2. 

      Data fusion is a multidisciplinary technique that involves multiple fields. Numerous 
researchers (Castanedo, 2013; Cocchi, 2019; Khaleghi et al., 2013) discuss the various 
approaches of data fusion in different disciplines. Despite the discrepancy in the fusing of 
different data sources together, data fusion is aimed at increased accuracy, increased 
availability, reduced uncertainty and rapid analysis. However, not all data fusion approaches 
result in enhanced material characterisation. For example, as discussed in Chapter 12, for 

the prediction of the combined Pb‒Zn concentration using the MWIR and LWIR data, the 
prediction model performances of the fused data blocks after mid-level data fusion is lower 
than that of the individual models. This is likely because the extracted variables (PCA 
components) could not fully capture the variation in the data. Nonetheless, the acquired 
results are promising and can likely be improved by considering other feature selection 
techniques such as MCR-ALS.  
      The results of the low-level fusion approach suggest that fusing data blocks from 
multiple sources could likely result in enhanced prediction and classification models 
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performances. However, low-level data fusion might cause a high data volume issue and the 
possible predominance of one data source over the others that feature-level fusion with 
variable screening might be preferred in some applications. Conversely, mid-level fusion 
requires the development of an ultimate model for the extraction of relevant information 
(Cocchi, 2019). Therefore, each level of fusion has advantages and disadvantages that a 
systematic approach is required to find the optimal level of fusion in different applications. 
Studies also indicated that the preferred level of data fusion is always application dependent 
(Borràs et al., 2015; Khaleghi et al., 2013). 
      The integration of image and point data is advantageous to make use of the combined 
effect between the two data types; the image data covers an extended area whereas the point 
data is more accurate for most of the sensor outputs but covers a smaller area. The different 
scale of observations and resolutions of the image and point data brought to the same data 
scale for enhanced separation of ore and waste materials in the analysed samples. The image 
data was converted to representative spectra using endmember selection techniques and the 
developed methodological approach. This approach is beneficial for data simplification, data 
volume reduction, classification accuracy enhancement and relating the geochemical data to 
infrared image data. The method is data-driven that does not require a prior specification 
or identification of minerals and elements. As the experimental results show, enhanced 
classification accuracies were achieved by the integration of the SWIR (image data) and 
MWIR (point measurement) data than the individual techniques. The fusing of the VNIR, 
SWIR, MWIR and LWIR data blocks also resulted in enhanced classification accuracies than 
that of the individual techniques. However, the result from the integration of the four data 
blocks is comparable to the fusion results of the SWIR and MWIR data blocks solely. This 
shows the need for an optimised approach for the selection of the optimal sensor 
combination. Overall, the results from the integration of image and point data suggest the 
use of the approach for enhanced characterisation of materials in different deposit types.  
      The results of this study indicate that data fusion is a promising approach for enhanced 
material characterisation. The developed methodology can enable rapid analysis of materials in 
near real-time using a fused sensors signal and the inherent material properties. However, the 
actual implementation of data fusion for rapid analysis of materials in mining requires advanced 
instrumentation and comprehensive tools. Such an efficient integrated intelligence system is not 
currently available or operationally implemented. However, it is a key enabler for a holistic 
overview and accurate analysis of material along the mining value chain.  

 

13.4.2. MODELS IN DATA FUSION 

      Multivariate analysis techniques were used to assess the usability of each sensor and the 
comparative merits of the combined data for the characterisation of a polymetallic sulphide 
deposit. For the prediction of the mineralogical concentrations, linear and non-linear 
multivariate techniques (PLSR, PCR, and SVR) resulted in comparable performances. 
Therefore, for the given datasets, only moderate effects of the choices of models (linear or 
non-linear models) were observed. In regression models, the relationship between the 
predictor and response variables can be linear or non-linear. This relationship is dependent 
on the nature of the data. Understanding of the relationship between the predictor and 
response is crucial to maximise the performances of the classification or prediction models. 
Researchers in various fields indicate that the use of the linear or the non-linear models for 
the same application may outperform one another or may result in comparable model 
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performances. For example, Khosravi et al., (2017) indicated that for the prediction of 
arsenic content in soil samples using VNIR spectra, the performance of the SVR model was 
superior to the PCR and PLSR models. Likewise, Shi et al., (2015) showed the superiority 
of the SVR model to the PLSR model for the prediction of elements in sedimentary rocks 
using LIBS data. In contrast, Boucher et al. (2015) compared the performances of the linear 
and non-linear models for the prediction of major elements in igneous and meta-igneous 
rocks using LIBS data, and their results show that the linear models resulted in better 
prediction performances than the non-linear models.  
      The classification models applied in this study include unsupervised (K-means) and 
supervised techniques (e.g., SVC and PLS-DA). The classification accuracies achieved using 
these techniques is acceptable for the separation of ore and waste materials at different cut-
off grades. In this work, the level of data fusion or the data fusion strategy is more influential 
than the model choice. However, there is a small difference in the performances of the 
models, meaning that model choice might have a significant influence on the 
characterisation of materials in other deposit types.  Generally, the results of this study and 
previous studies suggest that the preferred model depends on the nature of the data. Thus, 
future application of models for the prediction or classification of different material types 
requires optimisation of the response and predictor relationship. 

 

13.4.3. OPPORTUNITIES WITH FUSING OF DATA 

      Combination of sensors has an advantage over a single sensor in providing improved 
accuracy, improved precision, reduced uncertainty and holistic description of materials (Bi 
et al., 2015; Doeswijk, 2011; Kruse, 2015; Morors et al., 2010; Moros and Laserna, 2015; 
Rajalakshmi and Chamundeeswari, 2014; Sjoqvist, 2015; Westa and Resminib, 2009). As 
discussed in Chapter 4, a combination of sensors can be implemented using different 
approaches, such as physical integration of sensors and data fusion. The former requires a 
complicated and expensive system design to be implemented in practice. For example, a 
physical combination of sensors that operate remotely and sensors that need physical 
contact to the surface of the sample requires a complex solution. Moreover, the portability 
of the integrated system might be challenging to achieve. On the other hand, data fusion 
allows handling data with diverse natures such as data with different scales of observation, 
data that are acquired with actual contact and remote sensors, data on various material 
properties (e.g., reflectance and Raman scattering) and data with varying strengths of signals. 
Therefore, for the combination of multiple sensors, data fusion can be an economical and 
practical alternative option.  
      Most minerals show certain spectral information in different regions of the 
electromagnetic spectrum. The fusing of the data from these regions likely results in an 
enhanced analysis of the minerals since each region can provide new information to the 
models. Moreover, data from multiple sources can also offer different sorts of information 
such as mineralogical, geochemical and textural information. Thus, simultaneous analysis of 
multiple data blocks can likely enhance the results and enable the comprehensive description 
of materials. However, data fusion might not necessarily result in the improved 
characterisation of material under certain conditions. These conditions include the presence 
of highly correlated data blocks, lack of relevant information in one or more of the data 
blocks, high dominance of one or more of the data blocks, use of suboptimal variable 
screening techniques, a shortfall in relevant data scale conversions and incompetence of the 
modelling algorithms. Therefore, a successful application of data fusion requires meeting 
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certain conditions. Some of the requirements for the selection of appropriate sensors and 
data analytics to realise the benefits of data fusion are provided in Figure 13.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.4: Some of the requirements for the selection of appropriate sensors and data analytics for 
improved spectroscopic characterisation of raw materials.  

 

      There is an ever-increasing interest in a near-complete description of materials using multi-
sensor data across diverse areas of application. One such application is a mining operation. A 
comprehensive view of materials in mining applications is advantageous to understand the 
requirements in mineral processing, find indirect proxies of minerals of economic interest, 
provide mineralogical information to the resource model, and convey safety information. Near-
complete description materials can be achieved using a data fusion approach. In general, data 
fusion in mining operations enables effective grade control, improves process control, 
minimises handling of waste or zero-value material and allows automation. Therefore, it can 
significantly support effective decision-making and play an essential role in ensuring resource 
efficiency. 
      Advances in technology have resulted in multiple state-of-the-art sensors that produce 
high-throughput multi- and megavariate data. The high frequency and high data volume 
impose a challenge for the computational analysis and understanding of the sensor outputs. 
Therefore, advances in data analytics are required to generate knowledge from complex 
data. Data fusion is one of the approaches that provide the opportunity to use the synergy 
among the different data sources. It can permit an understanding of the contribution of the 
relevant information that is common among the data blocks and unique to individual data 
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blocks. The fusing of data at different levels allows an assessment of the different 
abstraction levels and associated uncertainties to enable improved accuracy, improved 
availability, and reduced uncertainty.  
      Sets of sensor solutions that are applicable to material characterisation are available. 
Each technology measures several aspects of material properties at different depths of 
penetrations and scales. Figure 13.5 shows some of the potential sensor solutions applicable 
to mining and the possible benefits of data fusion. These suggested technological solutions 
can provide information on the key geological attributes. Moreover, the benefits of the use 
of the technologies can be maximised via integration of data outputs using scalable data 
fusion algorithms. Maximised results do not necessarily require the integration of data from 
several sources: the optimal combination can be selected in an optimised way. This way, the 
complexity that might arise because of the fusing of multiple sensors can be minimised.   

 

 

 

 

 

 

 

 

 

 

 

Figure 13.5: Some of the potential sensors and benefits of data fusion in mining. 

13.4.4. CHALLENGES IN DATA FUSION  

      The majority of the challenges in data fusion arise from the varied data types and the 
diversity of sensor technologies (Khaleghi et al., 2013; Wongthongtham et al., 2017). For 
example, sensors produce data with different observation scales and resolutions. This might 
pose a challenge when fusing data from multiple sensors. Therefore, data fusion need to 
address the issue related to the differences in observation scale and resolution. In Figure 
13.6, the data types, scales and resolutions of the data used in this study are shown as an 
example. The integration of these data types requires upscaling or downscaling resampling 
approaches and logical reasoning based on the nature of the material and data types. The 
other challenge is related to data volume: depending on the technology, some of the sensors 
(e.g., hyperspectral imagers) produce a large volume of data. In some cases, redundant data 
on the same target from different sources increases the confidence of the analysis. In other 
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cases, model performances can be enhanced by removing redundant and non-relevant 
information in the spectra. Therefore, to resolve the issue of data volume and remove 
redundant information, variable screening techniques are a good option. Some of the data 
fusion challenges and the corresponding possible solutions are summarised in Table 13.4. 

 

 

Figure 13.6: The FOV and scales of the different sensor technologies used in this work (a) RGB image of 
a mine face, (b) a drill hole having a 5 cm diameter—the hole in the red circle, (c) drill core, (d) a drill core 
having a length of 35 cm, the green box shows the imaged area, (e) SWIR hyperspectral image having a 
pixel size of 0.28 mm (the red square), (f) MWIR spectra taken at a spot indicated by the red circle, and (g) 
a thin section image taken using an optical microscope.  
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Table 13.4: Some of the possible challenges of data fusion and proposed solutions.  

 Issues Solutions 

 
 
 
 

  Data quality 

Low signal to noise ratio\ noisy data   Data pre-processing techniques that 
can enhance signals can be 
considered, data blocks need to be 
processed separately   

Sensor data can have measurement 
errors 

 Data quality assessment should be 
performed 

Data redundancy   Variable screening techniques can 
filter relevant information and reduce 
the effect  

Presence of outliers   Outlier detection can be performed 
for the individual and fused datasets  

 
  Data volume 

High data volume  Data pre-processing and variable 
screening techniques can minimise 
data volume 

 
 
 
 

Sensor diversity 

Sensors signal with different 
response or intensity 

 Consider data scaling techniques (e.g., 
block scaling techniques) 

High data correlation between data 
blocks  

 Consider other technologies that have 
low correlation or extract the 
uncorrelated relevant information  

Data from multiple sensors have 
different resolution thus impose 
challenge for data fusion  

 The data fusion approach needs to 
consider data upscaling or 
downscaling techniques and consider 
logical reasoning that takes into 
account material type and data type 

 
 
 
 
 

     Others 

Reliability of the data fusion results   Validate the data fusion results using 
reference standards  

Computational power - depending 
on the data types and volume data 
fusion tasks might me 
Computationally expensive 

 The effect can be minimised by 
considering data filtering and relevant 
variable extraction techniques or 
divide the steps in data fusion and 
perform parallel analysis   

Software scalability - processing 
power and database might not 
expanded to accommodate high 
throughput in online analysis  

 Scale-up data storage 

 Consider scalable computing 
infrastructure for the parallel analysis 
of the different steps in data fusion 

 

13.5. IMPLICATIONS OF THE RESULTS  

      As discussed in Chapter 12, the level of information that can be generated from sensor 
data differs. Sensors can be used for the detection, identification, discrimination or 
quantification of materials. These levels of information can be linked to the geological 

attributes that are crucial in mining such as mineralogy, geochemistry, ore geometry, ore‒
waste discrimination, and rock fragmentation. The subsequent sections discuss the 
significance of the results of this study to mining. 
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13.5.1. IDENTIFICATION OF MINERALS 

      Identification of minerals is crucial to understand the material composition in any 
geological investigations. Numerous researchers studied the spectroscopies of minerals and 
indicated the wavelength regions of the functional groups of specific minerals that possess 
diagnostic features (Clark, 1983; Clark, 1999; Clark et al., 2003; Lyon, 1965; Hunt et al., 
1971; RRUFF, 2020). Mineral libraries and published works were used to identify various 
minerals using the VNIR, SWIR, LWIR and Raman sensor technologies. For example, the 
minerals identified using the VNIR spectral data were the iron oxides (e.g., hematite and 
magnetite) and some of the sulphide minerals (e.g., pyrite). The SWIR was used to identify 
the hydroxyl-bearing dioctahedral silicates (e.g., kaolin, montmorillonite, and muscovite 
clays) and carbonates (e.g., calcite, dolomite). The LWIR reflectance spectra were utilised to 
identify the silicates (e.g., quartz) and carbonates. The minerals identified using the Raman 
spectroscopy include sulphides (e.g., sphalerite and pyrite), carbonates (e.g., calcite and 
siderite), and layered silicates (e.g., kaolinite). In addition, the RGB imaging was successfully 
used to map visually distinct minerals such as galena/sphalerite, quartz/calcite, 
pyrite/chalcopyrite, and the oxidized minerals.  
      In this study, the interpretation of the spectra from the different sensors enabled the 
identification of various kinds of minerals. However, the identification of minerals might 
not be complete due to several factors, such as influence from the matrix effect, weaker 
spectral responses and the fluorescence effect (AusSpec, 2008; Kafle, 2020). For example, 
depending on the composition of a mixture, the wavelength locations of the diagnostic 
features of minerals can shift. As shown in Figure 13.7, the Raman peak position of pyrite 
shifts in pyrite samples collected from the three localities. Therefore, holistic description of 
material compositions is challenging to achieve. This drives the need for data-driven 
approaches to find relationships between spectral data and material properties. Establishing 
and understanding these relationships are useful for transforming the hidden aspect of the 
spectra into crucial information. This approach can contribute to a better description of the 
required details of material compositions. 
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Figure 13.7: The Raman spectra of pyrite from three different sample localities (Source: RRUFF, 2020).  

13.5.2. ORE‒WASTE DISCRIMINATION  

      In mining, waste material is excavated to reach the ore. The amount of waste material 
that needs to be removed depends on the nature, location and geometry of the ore body. 
Besides, the mining method, and the stability and composition of the host rocks determine 
the waste volume. The higher the waste volume, the higher the financial implications for 
material transport, handling and processing. This shows the need for efficient methods to 
separate the ore from the waste as early as possible in the mining process. The waste material 
can be rejected, and the waste volume reduced early in the extraction and mineral processing 

phases. For example, the ore‒waste boundary can be indicated during mineral mapping at 
the mine face, and sensor-based sorting can allow the pre-concentration of ore and rejection 
of waste material prior to mineral processing.    

      Ore‒waste discrimination is one of the key processes in the extraction, material 
transport and mineral processing. The successful separation of ore and waste material relies 
on the sensor technology and the software tool that sorts the material into ore and waste 
streams. Minerals occur in association with other minerals, which makes the identification 
or quantification of each mineral a challenge. Therefore, materials are designated as ore if 
they contain the minerals or elements of economic interest above the determined cut-off 
grade or considered to be waste if the commercially worthless material dominates. 
Therefore, the separation of the ore material is advantageous in minimising the material 
transport cost incurred during material handling. Moreover, removing waste material prior 
to mineral processing reduces the energy and water requirements of each tonne of ore 
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concentrate produced and minimises the time required for processing (Buxton and 
Benndorf, 2013; Lessard et al., 2014; Wills and Finch, 2016). Therefore, it has a tangible 
contribution to maximise the recovery and resource efficiency in mining.  
      In this study, ore and waste materials were segmented using imaging and point 
technologies: VNIR, SWIR, MWIR, LWIR and Raman. The individual data blocks, coupled 
with the supervised and non-supervised classification techniques, resulted in an acceptable 
classification rate. The use of data fusion strategy improved the models classification ability 
relative to the results yielded by using the individual techniques. The sulphide minerals 
exhibit very weak features in infrared spectra, which made identification of the minerals in 
the sulphide ore challenging. However, in this study, it has been demonstrated that without 
direct fingerprinting of the sulphide minerals, the economically valuable material can be 
distinguished from the zero-value material using data-driven approaches. This indicates the 
potential of the technologies for future sensor-based sorting applications.  

13.5.3. SEMI-QUANTITATIVE ANALYSIS OF MINERALS AND ELEMENTS  

      Quantitative mineralogical and geochemical information is crucial for the understanding 
of the material compositions at a higher-level. For example, along with other conditions 
such as the accessibility and extent of the ore zone, quantitative geochemical data are used 
to determine the economic feasibility of a deposit. However, for most of the sensor outputs, 
quantitative analysis of minerals and elements are challenging to achieve. Therefore, sensor 
technologies such as infrared, Raman and XRD are commonly used for qualitative analysis 
of minerals. In this study, the data-driven approaches enabled the definition of a relationship 
between the infrared spectra and the concentrations of SiO2, Fe2O3 and Al2O3 minerals for 
semi-quantitative analysis of minerals in the polymetallic sulphide ore. Pure minerals are 
difficult to find in nature and in mixed spectra identification of each mineral is challenging, 
so this result is very promising. The characteristic of ore have direct implications for 
metallurgical behaviour; it determines the grinding capacity, mineral hardness and flotation 
behaviour. Therefore, the gangue minerals can be used to define the ore types. For example, 
for iron ore, silicate gangue minerals can be used to define the ore types. Likewise, the semi-
quantitative information on SiO2, Fe2O3 and Al2O3 is essential in understanding the 
requirements of mineral processing.   
      Geochemical data play an essential role in supporting effective-decision making in 
mining operations. The multi-elemental geochemical analysis is commonly carried out using 
elemental technologies such as XRF and LIBS. Depending on the working principle of these 
technologies, signals are generated, and the spectral signals are related to qualitative or 
quantitative elemental data. In other words, the fingerprints in the spectra are interpreted to 
determine the elemental compositions of material. The infrared spectra provide information 
on the functional groups of molecules. Thus, it is a mineralogical technique. The elemental 
information cannot directly be observed in infrared spectra. The mineralogical information 
in the infrared spectra can identify which minerals are the source of the elements. In this 
study, robust correlations were observed between the infrared spectra (MWIR and LWIR) 

and the elements of economic interest (the combined Pb‒Zn and Fe concentrations). 
Elemental techniques provide information on the geochemistry; however, the sourcing 
minerals of the elements could not be derived from the spectra. Knowledge of minerals is 
beneficial for resource modelling and in understanding the requirements for mineral 
processing. The results of this study suggest the potential use of the technologies for 
simultaneous semi-quantitative analysis of mineralogical and elemental information. The 
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analysis was performed using a rapid and portable system; thus, it can allow on-line in-situ 
characterisation of materials. This is beneficial in maximising the efficiency of mining. 

      The performance of the MWIR model for the prediction of the combined Pb‒Zn, 
Fe2O3 and Al2O3 concentrations is superior to the LWIR model, but Fe and SiO2 
concentrations were better predicted using the LWIR model than the MWIR data model. 

This indicates that adequate spectral signals of the combined Pb‒Zn, Fe2O3 and Al2O3 exist 
in the MWIR than in the LWIR. Likewise, in the LWIR region, the amount of information 
related to Fe and SiO2 is superior to that in the MWIR region. These findings are in line 
with the available spectral information related to the minerals and the presumed source 
minerals of the elements (Kokaly et al., 2017; NASA, 2019). Despite the difference in the 
prediction performances of the MWIR and LWIR models, the results of the quantitative 
analysis of the minerals and elements reveal the presence of relevant spectral information in 
the two regions.  
      Overall, geochemical data are commonly used in mining operations; however, chemical 
analysis alone cannot ensure efficiency in the mining process. For example, both 
geochemistry and mineralogy can define the ore grade; nevertheless, in mineral processing, 
the mineralogy determines the recovery rate. Likewise, dry separation of ore and waste 
materials ensures resource efficiency. Information on rock fragments is crucial in defining 
requirements in blasting parameters and mineral processing. This shows the need for 
comprehensive information to enable effective process control and optimisation in mining. 

13.6. FEASIBILITY OF THE USE OF SENSORS AND DATA FUSION FOR 

MATERIAL CHARACTERISATION IN MINING  

      In mining, sensors can be used for different applications—for example, sensors for 
machine performance monitoring, collision avoidance and material characterisation. 
Sensors for material characterisation can be utilised along the mining value chain, to provide 
usable data on several aspects of material properties. The technical and economic feasibility 
of the use of sensors and data fusion for material characterisation in mining relies on various 
viability measures. These viability criteria include sensor robustness, portability, sensitivity, 
accuracy, data acquisition speed, operational costs, purchasing cost, data transmission 
availability, high throughput data capability, low-power technology and the availability of a 
well-calibrated tool for automatic determination of material composition. Recent advances 
in sensor technology and data analytics, coupled with the enormous opportunities from 
internet and wireless networking, suggest the feasibility of the use of sensors and data fusion 
in mining operations. This integrated solution should be operated economically with reliable 
technical performance. Thus, the economic viability of the use of sensors and data fusion 
requires a cost-benefit analysis.  

13.6.1. SENSOR-BASED MATERIAL CHARACTERISATION 

      Material characterisation along the mining value chain is increasingly reliant on new 
sensor technologies that operate from satellites, drones, field-based and drill-core logging 
systems. Sensor-based material characterisation is crucial in providing continuous (or near 
real-time) data on the essential geological attributes (e.g., mineralogy and geochemistry). The 
key performance indicators for the use of sensor technologies in mining operations include 

better grade accuracy, better availability, enhanced ore‒waste separation, and automated 
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results. Therefore, sensor-derived rapid and accurate information along the mining value 
chain is advantageous for effective grade control, process optimisation and effective-
decision making in mining operations (Figure 13.8). 

 

 

 

 

 

 

 

 

Figure 13.8: Some of the values of the use of sensors in mining operations. 

      Some of the specific findings of this research that potentially indicate the benefits and 
feasibility of the use of sensors and data fusion are discussed below:  

 RGB imaging enabled mineral mapping, ore zone delineation and fragmentation 
analysis using in-situ measurements in an underground mine. An RGB sensor is a 
simple technique that is capable of providing mineralogical insights, structural 
information, and a semi-quantitative indication of ore/waste ratio in deposits with 
visually distinct minerals. Lightweight, rapid, high-resolution and robust RGB 
cameras are available from multiple manufacturers. This technology has great 
potential for in-situ mapping of mine faces in underground and open-pit mines. 
However, in-situ measurements in harsh environments require optimal 
compensation techniques for enhanced results.  

 Infrared technologies were successfully used to semi-quantify metals in 
polymetallic sulphide ore samples. The infrared spectra can simultaneously be used 
for the identification and quantification of minerals.  

 The successful discrimination of ore‒waste materials using the SWIR, MWIR and 
LWIR indicates the potential use of these technologies in the dry separation of ore 
and waste materials. The pre-upgrading or dry separation of ore and waste 
minimises the extraction and ore processing costs (Buxton and Benndorf, 2013; 
Lessard et al., 2014; Wills and Finch, 2016). Thus, it is beneficial in maximising 
efficiency in mining operations. 

 In material characterisation, the MWIR is the least-explored region of the 
electromagnetic spectrum due to limited instrumental development in the past. 
Recently, significant development of novel MWIR technologies has been 
undertaken by different manufactures. The very promising results obtained in this 
research, coupled with the dynamic development of MWIR sensors, establish the 
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high potential of this technique for rapid and accurate characterisation of materials 
in mining. 

 This research was conducted using a block of ~ 22 m long and ~2 m high. The 
measurements were taken in-situ at the mine face and in a laboratory using the 
collected samples. One of the possible mechanisms to scale-up the approach into 
a larger area in operational mines could be by the integration of image and point 
data. Image data provide information over a wider area with a relatively small 
amount of time compared to the point measurements. The point measurements 
have an advantage in providing a certain amount of specific information (e.g., 
elemental concentrations). The image data and the point data can be linked using 
the methodological approach developed in this study or based on the geographic 
locations. However, to connect the two data types based on location, it is crucial 
to take into account the positional uncertainty, the spatial resolution of the sensors, 
and the material variability. Therefore, the measurement can be performed within 
certain very small areas to incorporate the positional uncertainty. The point 
measurements in the defined small area can be linked to the image data in that same 
area to develop a correlation model. The learned relationship can be used to predict 
the quantitative elemental or mineralogical information at unmeasured locations. 
Therefore, an established correlation of the point measurements with the image 
data at each location can be used to predict the quantitative information at 
unmeasured locations. Moreover, the established relationship could be used to 
indicate mineralised zones such as low-grade, medium-grade and high-grade 
regions.   

 Fusing the different data blocks enhanced the classification and prediction models 
performances relative to the results yielded by using individual techniques. The 
physical integration of multiple sensor technologies into a single platform is 
challenging and, in terms of practical implementation, it is expensive. Therefore, 
data fusion can be the ultimate alternative option for the combination of multiple 
sensors. 

 Data fusion techniques can reduce data volume. In this work, the developed 
methodological approach for fusing of the image and point data allowed a 
significant reduction of data volume, while maintaining the most relevant 
information. One of the main issues for the use of sensors in operational mines is 
the high data volume resulting from the high material throughput. Several factors 
determine data volumes such as the data frequency, spatial resolution, spectral 
resolution, spatial extent of the study site, and the nature of the data. For example, 
the higher the spatial or spectral resolution, the higher the data volume. However, 
higher resolutions yield better information that the effort should not be on 
minimising the spatial or spectral resolutions; instead, the strategies should focus 
on reducing data volume using data analysis techniques. One such approach is the 
use of features extraction techniques. Multiple variable screening techniques are 
available, such as parallel factor analysis (PARAFAC) and MCR (Cocchi, 2019). 
However, the ultimate method depends on the nature of the data.  

      The nature of the deposit defines the properties of the material that are relevant to 
sensor measurements. Deposit types are typified by composition, grain size, crystallinity, 
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and the likes. These properties can cause spectral variations; for example, grain size 
influences the amount of light reflected and absorbed (Clark, 1999; Hapke, 2012; Zaini et 
al., 2012). Larger grains have a greater internal path where photons may be absorbed than 
smaller grains. Therefore, reflectance usually decreases as the grain size increases in the 
VNIR and SWIR spectra (Clark, 1999). This indicates the importance of understanding the 
material variability to accommodate the variations caused by the chemical and physical 
matrix effects. The chemical effects are related to the composition of materials (e.g., mineral 
associations). Whereas, the physical matrix effects are caused by material properties 
attributable to grain size, water content, surface texture, as well as textural and porosity 
changes. The size of a spot measured by a point spectrometer or the spatial resolution of an 
image can also determine the degree of the chemical matrix effects. The smaller the spot 
(measurement) size, or the smaller the pixel size of an image, the lower the matrix effect. 
For example, Figure 13.9 shows an electron microprobe analyser (EPMA) image taken using 
one of the samples. The red circle shows a spot size for a point measurement using an FTIR. 
The identified minerals at the indicated spot using the EPMA include galena, pyrite, 
feldspar, quartz, and mica, whereas the point measurement provides a mixed spectrum, 
which combines the spectra of all these minerals. Spectral data can be complex in nature, 
and fingerprinting of most of the minerals in the mixture is challenging. One of the potential 
approaches to minimise the chemical matrix effect is the use of data-driven approaches that 
make use of multivariate analysis techniques and data fusion. For example, decomposition 
techniques can separate a mixed spectrum into (nearly) pure components. This can provide 
a better insight to understand material compositions. 

 

Figure 13.9: A microscope image of one of the analysed samples showing the different mineral grains within 
the red circle, where the red circle indicates a spot size (~ 2 mm) of a point measurement (for example, a 
spot for measurement using an FTIR spectrometer).  

      The use of the explored techniques and the developed methodological approaches for 
the characterisation of materials in other deposit types might require different 
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considerations. One such consideration is the customisation of the technologies via 
optimised sensor parameter specifications. For example, in this study, the 785 nm excitation 
laser source resulted in better Raman spectra than the 532 nm excitation laser source. 
Likewise, the diffuse interface resulted in a better FTIR signal than the ATR interface. 
However, the use of the techniques in other deposits might require a different specification. 
Use of the developed methods for the characterisation of materials in other deposit types 
might require different levels of data fusion and alternative features extraction techniques. 
However, the developed general framework of the data fusion concept provides a versatile 
solution for use on various deposit types.   
      Sensor derived information could be generated throughout the mining value chain such 
as at the mine face, using drill cores and blast hole logging, over conveyor belts, and at muck 
pile sites. This is valuable in generating consistent and accurate on-line data throughout the 
mining process. Advances in sensor technologies have resulted in simplified designs and 
low-cost systems. In the near future, it is likely that even lower cost systems will emerge. 
Portable, rapid and flexible systems are already available from multiple suppliers. This 
ensures maximised use of sensors in mining applications. However, due to economically 
marginal deposits, deeper mines and complex geology, there is still a need to define and 
develop improved technology that can address current and future mining challenges.  

 

13.6.2. PROSPECT FOR AUTOMATED (REAL-TIME) ANALYSIS OF MATERIAL  

      Real-time accurate data is crucial for rapid resource model updating, mine operational 
planning and decision-making. It offers opportunities for cost savings and increases mineral 
recovery rates through optimised process control and effective-decision making. Real-time 
material characterisation requires rapid data acquisition, automated data processing and 
rapid return of results. This requires an advanced platform that integrates hardware and 
high-performance computing software systems. The development of such integrated 
systems could enable the generation of on-line data along the mining value chain such as 
for face mapping, drill core logging and ore sorting applications. Material flow at potential 
sensor installation sites along the mining value chain can be categorised into static and 
dynamic sites. Static sites are sites with a relatively slow movement of materials such as the 
mine face, drill core logging and muck piles, whereas dynamic sites are those sites with a 
rapid flow of materials (e.g., conveyor belt). For example, the required real-time response 
of material characterisation at the mine face might be in the order of a few hours to a few 
days while conveyor applications could be in the order of milliseconds, and sometimes 
microseconds depending on the conveyor belt speed. Therefore, real-time material 
characterisation at the potential sensor mounting sites along the mining value chain has 
different time requirements. 
      In this research, the prediction and classification calibration models developed using the 
individual and fused data blocks resulted in the successful prediction and classification of 
the unknown spectra. Likewise, for visually distinct minerals, mineral mapping using RGB 
imaging can provide automated, reproducible and objective results. Therefore, well-
calibrated prediction and classification models can allow the automation of the material 
characterisation process. Besides, better results are possible with test case-specific 
calibration models since they likely capture the material variability in each deposit type. 
Moreover, the identification of minerals can be automated using mineral search algorithms 
and test case-specific mineral libraries (Lorenz et al., 2018). Some of the technologies are 
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already in use for on-line analysis of materials. For example, RGB imaging is currently being 
used in sorting of visually distinct materials (TOMRA, 2017) and NIR systems are used for 
sorting of materials over the conveyor belt (Mahlangu et al., 2016; Robben and Wotruba, 
2019). There is an excellent opportunity for the use of sensor technologies for automated 
characterisation of material in mining operations.  

 

13.6.3. IN-SITU CHARACTERISATION OF MATERIALS    

      The operational environment is one of the key criteria for the use of sensors in in-situ 
measurements. For example, some environments require ruggedized systems due to the 
harsh environmental conditions; others such as conveyor belt applications require sensors 
capable of rapid data acquisition. In-situ use of sensor technologies requires portable, 
ruggedized and high-speed systems. Rapid in-situ determination of material properties saves 
the time previously needed for the shipment of samples to conventional laboratories and 
the turn-around time necessary for the analysis. Thus, it has a tangible contribution to 
effective process control in mining operations. In some circumstances, the operational 
environment, coupled with the nature of deposit, can determine sensors applicability. For 
example, sulphide minerals and metals heat faster than other minerals. The underground 
mine environmental condition can cause the self-heating of sulphide ores because of the 
ambient exothermic oxidation reactions such as pyrite oxidation. Therefore, thermal 
cameras can likely provide useful information for mapping the sulphide minerals in 
underground mines.  
      Environmental factors (e.g., dust and moisture) and surface weathering likely influence 
in-situ sensor measurements, requiring optimal compensation techniques. This is discussed 
in the next chapter. Moreover, surface weathering is a common issue in underground mines. 
An example of surface weathering which occurred at the mine face is shown in Figure 13.10. 
Most of the available sensors are surface technologies that provide information on the 
topmost part of the sample surface. The depth of penetration varies from technology to 
technology. For example, an FTIR spectrometer with a diffuse interface can penetrate from 
200 to 700 µm into the sample (Agilent, 2017). However, these penetration depths are not 
deep enough to provide information under the weathered surface. Consequently, mine face 
measurements should be done at freshly exposed surfaces (e.g., immediately after a new 
blast) to minimise the effect of weathering. Understanding of the alteration assemblages 
resulted from minerals weathering is crucial in the interpretation and analysis of the spectral 
data. However, for estimation of the mineable products, relying only on surface 
measurements can underestimate or overestimate the reserve. Therefore, surface 
measurements should be combined with subsurface information to provide minerals 
distribution in 3D.    
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Figure 13.10: A picture that shows surface oxidation at the mine face in an underground mine.  

      The recent advances in sensor technologies resulted in innovative development of rapid, 
sensitive, and lightweight sensor systems,  for example, the FTIR analyser by Agilent and 
the ruggedised Raman systems by StellarNet (Agilent, 2017; StellarNet, 2019). This shows 
the high potential of the techniques for in-situ characterisation of materials. However, for 
underground applications, most sensor systems still require a protective shield or 
robustness. Lightweight sensors can potentially be embedded into a single platform to 
acquire data simultaneously in in-situ measurements. Then the data from multiple sensors 
can be integrated using data fusion approaches. Therefore, the recent advances and future 
developments in the field of sensor technology coupled with advances in data analytics (e.g., 
data fusion) can potentially lead towards the practical implementation of partially or fully 
automated in-situ material analysis in mining operations.  
      Overall, the use of sensors and data fusion can allow in-situ automated material 
characterisation in mining. However, the technical and economic feasibility needs to be 
investigated. The technical feasibility involves assessment of the hardware, software and 
other technical requirements. The hardware design requirements include portability, 
robustness, and rapid data acquisition speed, while the software requirements include the 
availability of comprehensive mineral libraries and high computational power. The 
economic feasibility of the use of sensors in mining operations depends on different factors 
such as the cost of the sensor technologies, the quality of the data, the price of the mined 
product on the market, the efficiency of the sensor technology, the nature of the deposit, 
the ore to waste ratio and the operational costs. Thus, future practical implementation of 
in-situ automated material characterisation requires economic feasibility assessment, system 
robustness, comprehensive test case-specific well-calibrated models, and a principled 
integrated tool for efficient data collection, processing and knowledge generation. 

13.7. OPPORTUNITIES AND LIMITATIONS  

      The technologies explored in this study provided useful information on the key 
geological attributes at different levels. Moreover, the use of data fusion resulted in increased 
availability and enhanced accuracy in material characterisation. This suggests the practicality 
and efficiency of the use of sensors and data fusion for material characterisation in mining. 
Going forward, better results are possible with extended datasets that address material 
variability, optimal variable screening techniques, novel signal processing methods and an 
optimised fusion of multiple sensors at different levels. This is beneficial in maximising 
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resource efficiency and can contribute to ensuring sustainability in mining. However, a cost-
benefit analysis is required to assess the economic feasibility in operational mines. In this 
section, the prospect and societal significance of the use of sensor technologies and data 
fusion in mining are discussed. In addition, the possible shortcomings of the research are 
identified and presented to propose a direction for future studies. Additional 
recommendations for future research directions are outlined in the next chapter. 

13.7.1. INTERNET OF THINGS (IOT)  

      The use of sensors in mining plays an essential role in the digital transformation of 
mining. Sensor data and advanced data analytics are the main components of the realisation 
of the Internet of things (IoT) in the mining industry. IoT is a system that connects 
computing devices, machines, and internet to collect, transfer and analyse data for 
addressing specific needs (Atzori et al., 2010, Chehri et al., 2019, Xiaosan, et al., 2018). The 
implementation of IoT in several industries has resulted in improved productivity and safety. 
Recent studies indicated the potential benefits of IoT in mining operations for the 
optimisation of the performance of mining equipment and mineral processing plants 
(Chehri et al., 2019, Mining Technology, 2020). IoT in mining, become the current and 
future active area of research that is highly dependent on sensors and advanced data analytics 
to inform about the geological and metallurgical properties of raw materials.  

 

13.7.2. SOCIETAL RELEVANCE  

      The transformation into clean energy and electrification drives base metal demand into 
the future. Currently, there is a growing demand for metals to use in renewable energy and 
battery technologies (VISIUAL Capitalist, 2018). This could lead to the extraction of low-
grade ore, mining in geologically complex regions or deeper mines. In the near future, 
economically marginal deposits will become industrially viable. These more challenging 
environments require advanced integrated software (data analytics) and sensor technologies. 
This work investigates the applicability of sensor technologies and data fusion concepts for 
the characterisation of materials in a low-grade or sub-economic deposit.  
      The approach developed here potentially realises resource efficiency through the 
promotion of dry separation of ore from waste, the ability to extract currently sub-economic 
“waste”, the automation of the material characterisation process and the provision of 
information that is more accurate, available and precise. For example, with enhanced dry 
separation of ore from waste, only value-containing material will be extracted and processed. 
This minimises water and energy requirements in mineral processing, and reduce waste 
volume. Moreover, selective mining (i.e., extraction focused on the target domains) can also 
reduce waste volume. This target domains or areas of interest can be defined using imaging 
technologies. The other potential benefit of the developed approach in this research is that 
it leads to automated systems that minimise human exposure risk to dust and hazardous 
materials during material extraction. 
      Much of the sustainability and energy efficiency of mineral extraction and processing is 
driven by the knowledge of the composition of materials such as mineralogy and 
geochemistry (Sterling and Johnson, 2010). Therefore, enhanced or improved 
characterisation of materials benefits the realisation of resource efficiency and supports 
sustained economic growth. This work is a baseline for the future development of focused 
solutions that deliver tangible contributions to resource efficiency through sensor 
technologies and data analytics. However, the achieved enhanced material characterisation 
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can potentially lead to resource efficiency and contribute to sustainability to ensure societal 
relevance.  
 

13.7.3. LIMITATIONS  

      The results achieved in this research are very promising and imply potential practical 
applications in the mining sector. The explored technologies, coupled with the developed 
methodological approaches, were applied to the characterisation of materials in a 
polymetallic sulphide deposit. However, this approach might not offer universal 
applicability for all deposit types. The variability of the spectral responses of minerals does 
not only vary from deposit to deposit. Indeed, the same deposit can show geological 
variations (e.g., mineral mixtures) attributed to the geological formation and settings. The 
use of the methodological approaches of this work to other deposits might require an 
optimised procedure for recalibration of models, features extraction and sensor 
customisation based on the material type. Sensor measurements are vulnerable to different 
environmental factors, including temperature, humidity, vibrations and dust. These 
environmental factors are more pronounced in in-situ applications than in laboratory 
measurements. As discussed in previous chapters, most of the sensor measurements were 
performed in the laboratory: the use of sensor technologies for in-situ applications will 
require optimal compensation techniques for enhanced sensor responses. Nevertheless, the 
key findings and essential values of this work rely on the developed methodological 
approaches for enhanced characterisation of materials at different levels (e.g., semi-
quantification and classification). In mining, the approaches can be adapted to various 
applications in different deposit types. The versatility of the data fusion approach developed 
in this work can allow the integration of multi-scale and multi-source data into a single 

model. Moreover, the ore‒waste discrimination assessments were made based on different 
cut-off grades, indicating that the approach can accommodate the change on the cut-off 
value to some degree. This flexibility also permits the evaluation of the approaches in low-
grade and high-grade deposits. Nevertheless, the practical implementation of the results of 
this work in actual operational mines requires a techno-economic assessment to compare 
the associated costs and benefits.   
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14 
CONCLUSIONS AND 

RECOMMENDATIONS 
 

The last chapter of the dissertation presents a brief overview of the general conclusions. It also provides 
few recommendations for future work to further improve and automate the classification and prediction of 
material attributes. 
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14.1. CONCLUSIONS  

14.1.1. THE USE OF SENSOR TECHNOLOGIES  

      Sensor technologies can provide information on the geological attributes along the 
mining value chain. These geological attributes include mineralogy, geochemistry, ore 

geometry, ore‒waste ratio and texture. In mining, accurate data on the geological attributes 
are crucial for updating resource models, definition of requirements in mineral processing, 
effective grade control, improved ore quality control and effective decision-making. 
Therefore, the use of sensors benefits mining operations in achieving resource efficiency.  
      The increasing advances in sensor technology have resulted in greater availability of 
sensor data for a wide range of applications. One such application is the characterisation of 
raw materials in mining operations. In this study, sensor technologies were utilised to extract 
knowledge about the key geological attributes of polymetallic sulphide deposit. 
Technologies namely RGB imaging, VNIR, SWIR, MWIR, LWIR and Raman spectroscopy 
were investigated. Using the sensor outputs, a direct fingerprinting of minerals and indirect 
data-driven approaches were implemented to generate information on the key geological 
attributes. The indirect data-driven approaches were implemented by defining the relation 
between the spectral data and material properties. This approach greatly benefited the 
realization of indirect characterisation of materials without a direct fingerprinting or 
interpretation of the spectra.  
      This contribution demonstrated that sensor techniques could be utilised for 
discrimination of ore and waste, identification of mineral, mapping of minerals, and semi-
quantitative analysis of minerals and elements. Each technology resulted in the successful 
characterisation of materials, although at different levels. For example, the RGB imaging 
technique was successfully used for mineral mapping and ore geometry delineation. The 

VNIR and SWIR techniques are good for the identification of minerals and ore‒waste 
discrimination. Likewise, the MWIR and LWIR technologies are efficient for the 
discrimination of ore and waste material, quantification of minerals (SiO2, Fe2O3 and Al2O3) 

and semi-quantification of the combined Pb‒Zn and Fe.  Moreover, the Raman technique 
was used for the identification of some of the minerals in the analysed samples. Therefore, 
the use of the sensor technologies enabled effective characterisation of the polymetallic 
sulphide deposit. This indicates the potential benefits of the use of sensors in mining 
operations. 
      Overall, the techniques provided crucial information required to understand material 
composition (e.g., ore mineralogy) and can be considered as complementary techniques. 
The results are promising and the technologies are efficient for automated characterisation 
of materials in mining operations. However, owing to the current and future mining 
challenges, exemplified by economically marginal deposits, deeper mines and complex 
geology, there is still a need to define and develop improved technologies and tools that can 
automate the accurate characterisation of materials in mining operations. The observed 
rapid advancement and dynamic development of the technologies assure the emergence of 
high-end state-of-the-art sensor technologies that are capable of rapidly providing accurate 
data. However, practical use of sensors along the mining value chain still requires sensors 
that gather high throughput data, sensors that provide greater data quality, robust 
technologies that withstand the harsh environmental conditions and rapid techniques that 
provide data in real-time. 
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14.1.2. DATA FUSION IN MATERIAL CHARACTERISATION  

      The use of sensor combinations should aim to maximise the accuracy of models by 
minimising the uncertainty related to the models’ performance. Accordingly, the use of data 
fusion allowed for improved predictability and classification of materials. In this study, data 
fusion was implemented at three levels: low-level, low-level with feature selection and mid-
level. The fused datasets were used to develop classification and prediction models. The 

models were used for ore‒waste discrimination and semi-quantitative analysis of minerals 
and elements. The results showed that the fusion of the MWIR and LWIR data resulted in 
better classification and prediction models than the individual sensor techniques. Likewise, 
fusion of the VNIR and SWIR spectral data resulted in better classification of ore and waste 
material than the individual sensor techniques. The fused data results illustrate that 
integrated analysis provides enhanced prediction accuracy than the use of individual data 
sources. Even though acceptable results were acquired from the use of the individual sensor 
technologies, the results from the fused data models were superior.  
      Overall, data fusion resulted in improved accuracy, improved availability, increased 
sensitivity and reduced uncertainty. Thus, it is an effective strategy for a comprehensive 
description and an enhanced material characterisation. Going forward, better results are 
possible with extended datasets, multiple sensors data fusion and optimal variable screening 
techniques. Furthermore, a tool that correlates the combined sensor signals to material 
properties can be developed using advanced artificial intelligence. This is beneficial for the 
automation of the material characterisation process in mining operations. The approach can 
be used throughout the mining value chain (e.g., in mineral exploration, extraction and 
processing) and would significantly enhance productivity and efficiency in mining. 

 

14.1.3. GENERAL CONCLUSIONS 

      The use of sensor technologies coupled with data analytics has enabled the 
determination of material properties that are relevant to the primary components of 
economic interest (e.g., Pb and Zn) and the gangue minerals (e.g., SiO2) in the polymetallic 
sulphide deposit. The key findings of this study demonstrate:  

 the use of infrared technologies for the characterisation of polymetallic sulphide 
ore, 

 the use of RGB imaging for mapping of mine face in-situ in an underground mine, 

 the use of MWIR (the least explored region of the electromagnetic spectrum) for 

ore‒waste discrimination, and as an indication of elemental and mineralogical 
concentrations,  

 the integration of image and point data for ore‒waste discrimination and  

 the use of data fusion for improved material characterisations in mining 
applications.  

      The results from the use of the individual techniques indicate the feasibility of utilizing 
sensors in mining. Data fusion improved the classification and prediction performance of 
the models. The merits of data fusion include improved accuracy, improved availability, 
reduced uncertainty, and automation. Thus, data fusion techniques can lead to effective 
grade control and process control (e.g., minimising the handling of zero-value waste 
material) and effective optimisation of mineral processing in mining operations.  
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      This study contributed to the development of an effective and efficient tool for 
automated characterisation of materials applicable to mining operations. The success of this 
study suggests the significant potential of sensors and data fusion for enhanced material 
characterisation in polymetallic sulphide deposits. The fact that the investigated techniques 
are well-established (or matured) techniques ensures the potential of the developed 
methodology for rapid practical implementation. Moreover, the developed methodology 
can be implemented for use in other deposit types and in different disciplines, such as in 
environmental studies (modelling of contaminants in air or water), mine waste 
characterisation (modelling of hazardous minerals/elements in the waste) and secondary 
recovery studies.   
      The growing global demand for metals and the declining ore grades urges advances in 
sensor development and data analytics to allow fast and effective characterisation of ore-
bearing rocks. This study can be considered as a baseline for the future development of 
sensor technologies and tools that could enable automated characterisation of materials in 
the in-situ analysis.  Such an innovative approach is not currently commercially available or 
operationally implemented, but is a key enabler for a holistic overview and enhanced mineral 
extraction and processing. The success of this experiment suggests possible data fusion 
applications in future mining operations, such as automation of mine face mapping and core 
logging. Going forward, automated material characterisation is possible with a robust system 
design (exemplified by the portable and ruggedized system) and efficient software (test case-
specific mineral libraries) that can be developed using combined sensor signals. Moreover, 
with integrated software and hardware systems, sensor technologies can be impeded on 
machinery or robots to provide online information in unsafe underground mines. This is 
beneficial for ensuring safety by minimising the exposure to hazardous materials and 
unstable ground conditions while maintaining the mining process. Overall, the approach 
can contribute to sustainability in mining via reduction of waste volume, less energy 

consumption (as a result of dry ore‒waste separation) and automation. Thus, it can 
potentially offer short- and long-term economic, social and environmental benefits. 

14.2. RECOMMENDATIONS FOR FUTURE WORK 

      This dissertation presents promising results of the use of sensors and data fusion for 
enhanced material characterisation in mining operations. It shows great potential for the 
utilisation of sensor outputs coupled with data analytics for improved accuracy, improved 
availability and effective decision-making. However, further researches are required to 
advance the developed methodological approaches to a higher level of maturity (or 
readiness). Some interesting new research directions that potentially lead to maximised 
benefits and practical implementation of automated on-site analysis of materials in 
operational mines are outlined below. The proposed potential research directions were 
formulated based on the actual existing limitations and open questions that are related to 
sensor-based material characterisation in mining operations. Practical implementation of the 
proposed approach benefits from research and development in six key areas: (a) further 
experiments to assess the use of the methods in different geological settings, (b) additional 
experiments to optimise the data fusion approach, (c) tools for automation, (d) sensor 
design and development, (e) mechanisms to minimise the effect of environmental factors 
on sensor measurements, and (f) extending the approach into material characterisation in 
three-dimensional (3D) subsurface environments.  
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14.2.1. FURTHER EXPERIMENTS IN DIFFERENT GEOLOGICAL SETTINGS 

      The use of sensor technologies and the developed methodological approaches presented 
in this work resulted in promising outcomes for the characterisation of materials in 
polymetallic sulphide deposit. However, deposit types define the properties of a material 
that are relevant for sensor measurements that future work is required to assess the usability 
in multiple geological settings. Applicability assessment in different deposit types could 
consider  

 a complete understanding of how the properties of various deposit types affect the 
usability of the techniques and developed methodologies,  

 the use of each technique for the characterisation of materials at different levels 
(e.g., detection, classification and quantification), and 

 usability for the classification of materials at different cut-off grades, thus to assess 
the applicability in low- and high-grade deposits.  

Besides, the implementation of the developed methodologies in the polymetallic sulphide 
deposits could also benefit from future works that address the below-mentioned points:  

 assess the techno-economic viability of the developed approaches for the 
separation of ore-waste and quantitative analysis of minerals and elements in 
operational mines. An efficient implementation might be limited by the 
environmental factors influence on sensor measurements, classification/prediction 
algorithms accuracy and sensor efficiency in performing in different material 
mixtures, 

 use of the developed methodologies with extended datasets in the calibration 
models is recommended to better accommodate the variabilities of materials in the 
deposit, and improve the performances of the models,  

 assessment of the methods for the simultaneous analysis of the geological 
parameters (e.g., quantitative analysis of minerals and elements) using the same 
prediction models and datasets is beneficial to generate information 
contemporarily,  

 valuation of the developed approach in an operational environment, and 

 evaluation of the applicability of the developed methods in other polymetallic 
sulphide deposit with different mineral mixtures and complexity is valuable to 
ensure the inclusiveness of the approaches in addressing properties of a material in 
wide-ranging compositional variations.   

 

14.2.2. ADDITIONAL EXPERIMENTS TO OPTIMISE THE DATA FUSION APPROACH 

      The data fusion approaches presented in this dissertation resulted in promising results 
for enhanced characterisation of materials. The study focused on the application of low-
level and mid-level data fusion approaches. Because most sensor outputs are complex and 
different by nature, a practical implementation of the methods requires an optimised 
approach. Optimisation of the approach could consider  

 the different levels of data fusion (e.g., high-level),  

 different fusion algorithms that can define the linear or non-linear relationships,  

 different pre-processing techniques (e.g., block scaling and auto-scaling) depending 
on the nature of the data, 
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 integration of various sensor outputs into a fused data block likely results in high 
data volume, which can be computationally expensive; therefore alternative 
information screening techniques could be considered to maintain the relevant 
spectral information, 

 further study of multiple sensor technologies to identify the optimal sensor 
combination options.  

      The optimised results can lead to the development of a tool that identifies material 
properties based on the fused sensor signals. Therefore, the proposed approach could be 
extended to characterise materials in real-time using multiple sensor outputs.   
      The low- and mid-level data fusion approaches proposed in this study showed 
promising results for semi-quantitative analysis of elemental and mineralogical information. 
The individual techniques (MWIR and LWIR) exhibit high potential for use in semi-
quantification of the minerals and elements; however, the results acquired from the data 
fusion processes are superior to the results obtained using data models of individual 
techniques. This outcome suggests that the data fusion approach has a great potential to be 
extended for the integration of more complex data from a range of sensor technologies, 
owing to the fact that each sensor technology has its advantages in providing useful 
information. This study is a baseline for future research that involves multi-sensor 
integration aimed at developing predictive models that can estimate elemental and 
mineralogical concentrations in different types of deposits. We recommend enhancing the 
current work by using data from multiple sensors such as Raman and LIBS in an optimised 
way.  
      For sensor combinations, data fusion is a more economical and practical alternative 
option than the physical integration of multiple sensors into a single platform. However, in 
terms of the practical implementation of data fusion, a techno-economic assessment is 
required to evaluate the feasibility of the approach in mining operations. Therefore, a future 
study is recommended to assess the techno-economic benefits of the fusion of multiple 
sensor outputs. Such an assessment should take into account various factors such as 
portability of sensor technologies, the robustness of technologies for in-situ applications, 
the efficiency of the resulting classification or prediction models, the throughput of material 
and data, the market trend and price of commodities, cost related to the initial investment 
for instrument purchase, installation and maintenance and the limitations related to 
environmental influences of sensor measurements.   

14.2.3. TOOLS FOR AUTOMATION  

      Automation of the material characterisation process requires integrated hardware and 
software systems with high-performance computing power. The hardware requirements are 
discussed in section 14.2.1. Software capability is the other key factor for automated 
determination of material properties using sensor-derived data. Currently, the software 
related issues include lack of well-established comprehensive mineral spectral database 
systems (SDBS), lack of well-calibrated models for automated characterisation of materials, 
and limitations related to the computing power of software and operating systems. 
Therefore, to achieve automation in material characterisation and maximise the benefits of 
the use of sensors for effective, prompt decision-making in mining operations, it is highly 
recommended that tools be developed that have high-performance (high-throughput) 
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computing power, efficient spectral matching algorithms, comprehensive SDBS, and 
efficient platform designs.   
      A combination of the emergent technologies could accelerate the accurate and 

automated analysis of materials in different applications, such as ore‒waste discrimination 
or quantitative analyses of minerals. Automated characterisation of materials using the 
combined sensor signals requires a software tool that links the material properties to the 
fused sensor signals. Such a software tool requires comprehensive SDBS, a platform that 
integrates data of a different nature, efficient spectral matching algorithms, and data 
processing and visualisation methods. The associated hardware must also have high-
performance (high-throughput) computing power. 
 

 

14.2.4. SENSOR DESIGN AND DEVELOPMENT  

      The primary limitations of most sensor technologies for use in mining include lack of 
system robustness, portability, rapid data acquisition speed, higher detection limits, 
affordability and optional sensor parameters to retune sensor specifications. These factors 
are crucial for the use of sensor systems in operational mines (e.g., open pit or underground 
mines). Future sensor developments or sensor design plans could consider these factors to 
develop the ultimate solutions that address each of the outlined concerns. For example, 
system robustness can be ensured via a ruggedized system design that has a protective shield 
or other technological alternatives. Currently, some lightweight sensor technologies are 
emerging. However, most of the well-matured technologies are still laboratory-based, and 
integrated portable and robust systems are very limited. Therefore, the size of the sensor 
systems should also be taken into account in the sensor development plan. To ensure the 
use of sensors along the mining value chain, the data acquisition speed of the sensor system 
is a key aspect. The different potential sensor installation sites along the mining value chain 
require different data acquisition speeds. For example, the use of sensors for sorting of 
material on a conveyor belt requires sensors that provide data within microseconds. This 
shows the need for sensor systems with rapid data acquisition speed. The other limitation 
of the use of sensors for the characterisation of material is the detection limit of the sensor 
systems. The detection limit is a very crucial issue, especially when dealing with low-grade 
ore that is more likely to be encountered in most of the future mining operations. The high 
cost of the sensor systems is also one of the reasons for the limited use of sensors in mining. 
Therefore, cost-effective solutions (inexpensive sensors) could be proposed. The other 
important factor is provision for optional sensor parameters to retune sensor specifications; 
i.e., to configure sensor set-up and optimise measurements according to the commodity 
type. Therefore, addressing these factors during sensor development (sensor design) could 
encourage exploitation of sensor technologies in operational mines, thus achieving 
improved process control and effective decision-making.  

14.2.5. COPING WITH THE ENVIRONMENTAL FACTORS ON SENSOR MEASUREMENTS  

      The development of new and improved coping strategies is crucial to grand challenges 
that affect the quality of sensor outputs (data). Sensor measurements are vulnerable to 
different environmental factors, including temperature, humidity, vibration and 
illumination. These environmental factors influence the sensors’ operability, measurement 
results (spectral data) and sample behaviour (e.g., weathering and saturation). The effect is 
much more pronounced in in-situ applications than in laboratory conditions. Therefore, to 
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ensure online in-situ analyses of materials in different environmental conditions, coping 
strategies are recommended to compensate or minimise the effect of the environmental 
factors on the analysis results. The possible coping strategies include developing pre-
processing algorithms that correct the noise caused by the environmental influences, 
simulation of measurements with different moisture content, models calibration considering 
certain levels of the influences, and development of new innovative illumination correction 
algorithms. The effect of the environmental factors on the sensor system can be minimised 
or controlled with a ruggedized system design that tolerates a certain level of vibration, 
moisture and dust. These approaches potentially lead to improved data quality and generate 
usable data along the process, thus maximises the benefits of the use of sensor systems in 
mining operations.  

 

14.2.6. EXTENDING THE APPROACH INTO SUBSURFACE (3D) INFORMATION  

      The investigated sensor technologies are surface techniques that provide information at 
the upper measured surface of the analysed samples. However, volumetric information is 
crucial for the understanding of mineral composition within a sample, quantification of the 
reserves and prediction of geological conditions in advance of the mining face. The 
implantation of sensors that provide 3D (volumetric) information can potentially be 
beneficial for the understanding of the extent of the mineralized zones and useful geological 
structures that influence the mineralization and that incur stability (safety) (e.g., 
identification of faults, openings, and aquifers). Thus, the geophysical techniques having 
greater depth penetration can be a potential candidate to support the resource estimation 
and prediction conditions in advance of extraction at the mining surface. The potential 
geophysical sensing methods that could be explored include electrical resistivity, magnetic 
sensors, gravity, induced polarization (IP), and ground-penetrating radar. For example, 
electrical resistivity measures how strongly a material resists the flow of electric current. 
Most minerals (including some of the sulphides) vary in their electrical resistivity property 
and exhibit different resistivity values. Thus, electrical methods could allow material 
characterisation in mining and can be used in combination with the surface techniques (e.g., 
infrared) to provide better insight on the material under study. However, the value of 
resistivity of a material is influenced by different factors such as the presence of a porous 
structure and joints that the use of the electrical resistivity in material characterisation should 
investigate and account for the variation caused by such factors. The other example is IP 
that measures the chargeability of materials (i.e., how well materials hold charges). The 
chargeability of materials depends on different factors, such as mineral types and grain size. 
The minerals that are the most chargeable include sulphide minerals and clay-rich materials. 
Therefore, IP can be used for the detection and delineation of mineralized zones, and this 
can be applied along the mining value chain, for example, during exploration and extraction 
(e.g., mine face mapping). However, discrimination of mineral types based on chargeability 
alone could not be sufficient since the effect from other factors such as grain size can 
influence measurements. Thus, a combination of this method with sensor measurement can 
likely lead to the enhanced characterisation of material in 3D.  
      Accordingly, it would be advantageous to explore the combination of the geophysical 
methods with sensor technologies for material characterisation, to maximise the synergy 
among the surface and volumetric techniques for improved information in 3D, over a wider 
area. The integration can be performed using geographic coordinates or data fusion based 
on locations. Thus, transferring the current 1D point measurements and 2D mine face 
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images into a 3D framework requires a state-of-the-art software platform that integrates 
sensor systems, data processing and visualisation of spatially constrained data of a different 
nature. If a good relationship is established between sensor measurements and the 
geophysical sensor, for example, at mine face or drill hole analysis, the learned relationship 
(calibration model) can be used to predict information at unmeasured areas. Advances in 
ground geophysical techniques coupled with this proposed approach can be beneficial for 
the indication of the mineralised zones within specific depths over a wider area and 
prediction of geological conditions in advance of the mining face.  Thus, it provides support 
for effective planning in the mining process.  
 

SPATIALLY CONSTRAINED DATA  

      In this study, spatially constrained compositional data were generated using geographic 
coordinates from the LIDAR technique. This was performed using the ArcGIS, Datamine 
Studio RM and RiSCAN PRO software platforms. However, future work is required to 
develop a self-contained software platform that integrates the LIDAR data, the image 
classification tool, and prediction models in a 3D environment. Such a platform can 
integrate 1D (point measurements), 2D (image data) and 3D (geographic coordinates) data 
to permit accurate results with lower positional uncertainties. Thus, it is beneficial to 
generate spatially constrained compositional data (such as mineral maps and geochemical 
information) along the mining process.  
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