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Chapter 1

Introduction

This chapter will start with a small introduction into the landmine problem. 
After that the array-based GPR of IRCTR is briefly described which is 
followed by some necessary processing steps needed for all GPR data. The 
need for imaging algorithms will also be made clear in this section. The 
approach of my thesis work is outlined in the final section.

1.1 Landmine problem ï

The UN states that around 80-110 million landmines are laid throughout 
the world. Landmines can remain active for decades, so they continue to 
be a threat even after the conflict has long been resolved. Since mines 
can not distinguish between soldier and civilians, they cause a high number ' 
of civilian casualties. Annually thousands of people are killed or maimed 
by landmines. Not only casualties are a negative aspect of landmines, the 
infected ground can not be used for agricultural of infrastructural use. This 
will inevitable inhibit the economic growth potential as well. For these 
reasons it’s important that the mine fields are cleared. The UN states that ■' ■ 
a mine field is considered safe when 99.6% of the mines are cleared, [1], i ‘

Roughly two types of landmines can be distinguished; anti-persoiinel 
mine and anti-tank mine. The names are quite self-explanatory. The first is 
aimed to incapacitate personnel, it has a diameter smaller than 15 cm and . : 
will explode at the pressure of around 10-15 kilos. The second is used to ' 
take out vehicles, it’s diameter is larger than 25 cm and needs a pressure • 
higher than 100 kilos to detonate. Obviously the anti-personnel mines are 
more difficult to detect. ■

Currently the most effective detection techniques involve dogs and care
fully interrogating the soil by using a metal prod. Various detection tech
niques currently being developed are detection by acoustics, nuclear quadrupole 
resonance and ground penetrating radar. The first methods sends souhds 
waves into the ground and looks at the reflection, while the second detects 
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the nitrogen isotope N-14 which is abundant in high-explosives. This thesis 
deals with landmine detection using GPR.

1.2 Array-based GPR for landmine detection

The data used has been obtained with an ultra-wideband array-based time- > 
domain radar sensor [2]. This radar array is vehicle mounted and it’s impor- ■ 
tant to note that it works in the near-field when imaging hurried landmines. ,, 
Other key characteristics of this configuration will also be discussed in ‘this * :
section. ? ;

Figure 1.1: Radar array

Figure 1.1 shows the used array consisting of one transmitting antenna ; 
which is a dielectric wedge antenna with a 84 cm diameter footprint\(at’ 
-10 dB level) and an array of 13 receiving loops. The basic element chosen ' 
for the receiving array is the shielded loop antenna.' The receiving array is 
located 27 cm under the transmitter to reduce the direct coupling of. .the; 
antennas. The pulse generator fires a double-exponential pulse with'a pulse 
duration of 41 ps (half-amplitude level) and a magnitude of 40 V. This pulse-.; - • 
type has been chosen to have a large spectral density at frequencies below 
1 GHz, which are not radiated effectively by the transmitting antenna due. - 
to the relatively small size of its physical aperture. The resulting pulse has ■ 
a bandwidth from 0.5 GHz to 3.3 GHz (-3 dB level). The receiver chain 
consists of a switch, a seven-channel signal conditioner and an eight-channel 
sampling converter, which allows for simultaneous receiving of the scattered ' 
field. The entire chain has an analog bandwidth from 200 MHz to 6 GHz. 
The sampling rate of the converter is 525 kHz, which is more than sufficient?. - v, 
to apply averaging to reduce the noise floor. The overall system bandwidth;' ; 
is 3.56 GHz and starts at 240 MHz. , : , 7. \

The total length of the aperture is 84 cm, the 13 loops are placed at 7 
cm intervals. Having a receiving array instead of one antenna removes the , .' 
necesity of scanning in two dimensions. In this case an area with a width of ’ '
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84 cm can be scanned one-dimensionally.

1.3 Processing of GPR data

All data acquired by the array needs processing to compensate for some • 
unwanted influences. It is described here because the steps that need to 
be taken are the same regardless of what imaging algorithm is used. First : 
the data is pre-processed to remove among others the ground reflection and ■ 
direct coupling. This is further described in the first subsection. In the next ■ 
subsection the need for an imaging algorithm is discussed and there the goal 
of this thesis work will be made explicit. The final part of this section is. 
used to discuss the post-processing of the imaged result. For each imaging ' 
technique and result the same method is used which makes the performance 
comparison of the techniques possible.

1.3.1 Pre-processing
Before imaging several steps are taken to pre-process the data acquired by ■. 
the array. This includes low-pass filtering (cut-off frequency 6 GHz) to 
suppress uncorrelated noise, alignment of the direct coupling in every B- 
scan to compensate for time drift, and background subtraction (by moving 
average subraction) to remove direct coupling and ground surface reflection ■ 
[2].

The antenna footprint introduces a non-uniform amplitude distribution 
to received signals over the loops, consequently this results in weaker reflec
tions when objects are located at the side of the array. This is compensated 
by scaling all the B-scans with linear weights as introduced in' [3]. The 
weights are determined by comparing the antenna coupling of all sepefate 
B-scans. The antenna coupling of each loop is measured to quantify the 
non-uniformity of the footprint, and to provide weighting factors accord
ingly. For every B-scan the peak of the antenna coupling is taken and that 
peak relative to the maximum peak determines the factor the B-scan needs 
to be compensated with. Figures 1.2 and 1.3 [3] show the normalised peak , 
antenna coupling and the corresponding weights, being the inverse of the 
normalised peak.

The final step is time-gating the raw data. This basically removes' all ; 
the information up till a certain point in time and this very effectively ire- 
moves all the direct coupling and ground reflection. When the ground;re- . 
flection is also removed then information from surface-layed targets is also' 
discarded. Normally that would be inacceptable, but the entire landmine 
system comprises of multiple sensors with one especially focused at detec- > ' 
tion of surface-layed and / or shallowly buried landmines. The GPR’s task 
is to interrogate deeper parts of the soil and therefore removing informä- • 
tion from surface-layed objects is not objectionable. These steps are taken
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sequentially and Figure 1.4 shows this process in a flowchart. It should be • 
noted that it is absolutely vital that the time-drift compensation is done 
before time-gating is applied. j

Raw data ■’ Pre-processed data -Moving average 
subtraction Weighting /Timè^atirig-iLow-pass filtering Time-drift 

compensation

Figure 1.4: Pre-processing flowchart

The result of these pre-processing steps is shown in Figures 1.5 and 1.6.
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1.3.2 Migration
Migration is the process of focussing target reflections in the recored data' 
back into their true position and physical shape [4]. Figure 1.6 shows the 
pre-processed reflection of a sub-surface target. First the array is placed at , 
0 cm and there the received signal is recorded, this results in one A-scan.for 
every loop. A series of A-scans aquired over a scan-line forms the shown B- 
scan. Due to the finite beamwidth of the transmitting and receiving antenna 
the reflection of the point scatterer is perceived as a hyperbola. Figure 1.7 
schematically shows what happens.

The array is shown at two positions on the scan-line, a point-scattefer 
(denoted in red) is present in the center and the resulting hyperbola can 
be seen. From the first position the transmitter fires the pulse and because 
of the finite beamwidth of the antennas the reflection of the small .sphere ,
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Figure 1.7: Hyperbola created by point scatterer •

is already noticeable in the A-scan. The same is done when the array is 
placed directly above the target. Since the distance from antenna to object 
is larger at the first position the reflection occurs later in time. As can be 
seen in Figure 1.7 this results in the hyperbola.

This distribution of energy over a B- or C-scan does not provide good 
localisation and resolution of buried targets and therefore needs to be re
versed. The process of focussing this energy back to the object’s actual 
position is called migration.

1.3.3 2D confidence map of 3D data
Two main ways of mine detection exist in 3D GPR data, the first being slice 
by slice detection and the second being by constructing a confidence map. 
The former is more suited when the data is being examined by a human 
operator, the latter is more suited for automated mine detection and since 
the final goal is to have an automated system our results will be presented 
in that manner. A confidence map is created by means of energy projection, 
which is a method that projects the energy of some kind of feature of a 3D 
migrated dataset onto a 2D surface. Three main projection techniques >are 
available that will be discussed in this subsection [5].
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Energy projection

This method determines the total energy for every point with fixed coordi- 
nates (x,y) by integrating the signal power over the time-axes by '

M
(1-1)

«=1

EPij - Confidence value at (i,j)
CZiij - Migrated A-scan

f
This method is easy to implement but the result can have substantial 

artefacts.

Windowed energy projection

Windowed energy projection is a more advanced version of Energy projec
tion. It uses the knowledge that migrated images of mines are quite short (3 
to 6 cm) and that no objects of interest were placed directly underneath of 
each other in the test scenarios [5]. Taking this shortness into account when 
calculating the energy of the A-scan we can deduce that only the small pärt, . 
in which the mine is present, contributes to the mine image, while all. the 
rest contributes to clutter. This leads to replacing Equation 1.1 to:

k+L
EWij = max[ C^z)] (1.2)

z=k—L
EWij - Confidence value at (i,j) 
Cijlz) - Migrated A-scan

Equation 1.2 represents the maximum energy contained in a window i 
with width L of each A-scan of the migrated C-san. The window length 
should be large enough to be able to contain the entire length of the mine, 
but as small as possible to suppress the levels of the mine-free scans [5].; .

This method is slightly more computationally intensive but reduces the 
clutter levels heavily in comparison to windowless Energy projection.

Alternating sign windowed energy projection

Alternating sign windowed energy projection (ASWEP) uses even more a- 
priori knowledge of the images of mines in migrated C-scans. Not only 
mine height tends to remain unchanged, a mine image seems to consist of a 
negative and positive bulb [5]. This makes it possible to further elaborate 
1.2 to: . ' :
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k+L
EAij = max[ * Q(^)]2 (1-3)

z=k—L
The ASWEP given by Equation 1.3 uses the mask Q{z) to discriminate 

between negative and positive parts and maximise the expected output for 
mines. The following triple valued mask:

QU) =■" (i-4)

ZN - Collection of negative depth portion 
Zp - Collection of positive depth portion

Q(z) is the mask that’s representative for the changing signs of mine 
images. This technique offers the best result but with a little more compu
tational effort as compared to Windowed energy projection1.

1.4 Goal of thesis

The field of my thesis is the migration of GPR data. Many methods that 
exist now are adapted versions of seismic migration methods that use geo
metric approaches or back-projection. These methods only take some radar 
characteristics and only the relative electrical permittiviy er of the soil into 
account and therefore a new method of migration by deconvolution has been 
proposed in [6]. Migration by deconvolution does use system characteristics 
and also soil characteristics (f.e. loss-tangent and ground impulse response) ■ 
and by doing so can offer an improvement of the results of the migration. 
A second drawback of the currently available methods is that they require 
considerable computational effort and as such they are mostly used in offline 
processing. These drawbacks determine the goal of this thesis work: to im
plement a fast migration technique by extending the deconvolution approach 
to the case of the array-based GPR of IRCTR.

1.5 Thesis approach ,

The research started by familiarising with the problems and challenges in, 
landmine-detection by GPR. This entails the studying of the GPR array 
used by IRCTR and the migration problem in particular. The results of 
this preliminary study are discussed in chapter 1. Before developing the 
new algorithm I implemented a commonly used algorithm (diffraction stack) 
for the GPR array. The goal of this was two-fold: First a good reference 
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was needed to compare the results of the to be developed new migration 
algorithm, second the implementing of this algorithm would give me more- 
insight and experience in the field of migration in general. The implemena- 
tion and results of the diffraction stack are discussed in chapter 2. When 
this was completed the work was started on developing the method proposed 
in [6] for our GPR array. First a 2D version of the algorithm was developed, 
which performance was compared to that of the diffraction stack algorithm.. 
After that the 3D version was developed and it soon became clear That 
additional processing steps were needed. The road to the final developed 
algorithm and it’s performance are discussed in chapter 3. Chapter 4 deals 
with more GPR data to validate the functionality of the algorithm and to 
validate approximations that were made. The final chapter summarises the 
thesis work and draws conclusions after which some recommendations for 
further research are given.
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Chapter 2

Diffraction stack algorithm

This migration algorithm is widely used in seismic and GPR processing 
and the reason for describing is two-fold. For my research a good reference 
method was needed to compare the results of the new imaging algorithm, 
but developing an implementation for the GPR array would also benefit 
my personal understanding of the migration problem. Diffraction stack is a 
time-inversion technique is based on the travel times of the signal from the 
transmitter to the object and back again to the receiving array. At first a 
grid is created which will be the focused volume, then for each grid point 
the travel time from transmitter to receiving loop is calculated. From the 
B-scan the corresponding value is taken and this is added to the value of that 
grid point. This process is repeated for each grid point for each individual ■ 
loop. The algorithm can be.described by Equation 2.1 [2]. All data used in 
this chapter is pre-processed and weighted according to the steps described . 
in the previous chapter. ‘ ,

L M 
s{xi,ym,zn) = EExh yj, zn) (2-1)

fc=l j=l

tkj - travel time to (xi, yj, zn) for k-th loop
Skttkjixi,yi,zn) - Pre-processed weighted signal amplitude

This chapter is divided in three main parts. The first being free space 
data imaged and the second being sub-surface data, followed by the conclu
sions discussing the performance of the algorithm.

2.1 Focusing of free space data

The focusing of free space data is easier because the travel time calculations 
are very straightforward. To illustrate the performance of the algorithm we . ■ 
used a dataset acquired with the array-based GPR for a surface-laid sphere
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in IRCTR. The sphere had a 2 cm diameter and was located directly under , 
the transmitter at a distance of 42 cm from the transmitting antenna and at 
the middle of the scan-line (30 cm). This measurement set-up is shown in 
Figure 2.1. The original received data for one loop is shown in Figure 2.2, . 
with Figure 2.3 showing the focused image. The result has dimensions :[126; 
x 61] and needed 52 seconds to focus.

Figure 2.1: Measurement set-up of free space scenario

Pre-procossed B-scan (signal level)

Z 5

02 0.3 0.4
Scan-One [m]

Figure 2.2: Raw B-scan

Migrated B-scan {dB]

0.2 0.3 0.4
scen-tlne (mJ

Figure 2.3: Focused B-scan

In Figure 2.3 the sphere is clearly visible.
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2.2 Focusing of subsurface data
i

The ability of focusing subsurface data is more relevant to detecting land
mines. As an example, we used a dataset acquired by IRCTR with two mine- 
like objects in the ground which was again pre-processed and weighted. Thé 
transmitting antenna was located 52.5 cm above the ground and the er of the 
soil was 3.03. Because of the different dielectric properties of free space and 
soil the travel time calculation is less straightforward. The shortest distance 
(from the wave’s point of view) is not a straight line from target to antenna, 
but is through a refraction point which is located on the border of the two 
dielectrics (the ground). This is further illustrated in Figure 2.4. The loca
tion of this refraction point is needed for calculating the travel times. Two 
ways are discussed to calculate these travel times; both depending on. the 
(chosen) location of the refraction point.

Figure 2.4: Imaging geometry

Rx-array

subsurface

2.2.1 Travel time calculation with approximated refraction 
point

The first method approximates the location of the refraction point by using 
a point which has the same x and y coordinates as the imaged point (directly 
above the target). Figure 2.5 illustrates this more clearly [7].

Tr(iV€-l'ti,mciQiai • ■ TTdVGltiTnGj‘reQSpace -I- TrQIvdtin'Lcsui)Surj(iCQ (2.2) *

Traveltime  fs. = y/(xt - xr)2 + (yt - yr')2 + (zr)2 + {xa — xr)2 + (ya yr)2 + (za - zr)2 
c0 ■ ■ - J • ...

(2.3) ’
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Traveltime.. = p.4).
Co .

-.42

Rx (xa.ya.za)

(O.O.zr)

È Target (xo,yo,zo)

Refraction point (xo.yo.zr) '

.42 X

Tx (O,yt,O)

Figure 2.5: Approximate refraction point

The method has the advantage of being simple. The lower complexity comes 
at a cost of accuracy. Both the ASWEP result and a slice are shown in Figure 
2.6.
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100

80

40

20

(D 
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-40 -20 0 20 40
(a) x [cml

w
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80

20

a> 
c

c

-40 -20 0 20 40
(b) x [cm]

Slice across z = 60.8 cm [dB] 
100 r--------------------------------------------- ■

Figure 2.6: Result of approximation (a) ASWEP, (b) Slice

Both results are normalised, but have different dynamic ranges. The 
10 dB range that’s used for the slice result is acceptable and increasing it 
would only add clutter. The ASWEP uses more information, because it' 
projects the entire 3D dataset on a 2D surface. Therefore it’s logical that 
a higher dynamic range can be expected and this is a clear asset of the 
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ASWEP. Although this image shows both targets it’s clear that the .side , 
target, even after weighting, is considerably weaker. Furthermore a very -. 
large artefact is present between the two targets. This approach is useful 
when conditions involve dry soil and shallow targets, because these both 
conditions minimise the error of the approximation of the refraction point. 
Last it should be noted that this algorithm (even being an approximation) 
is very computationally intensive. The algorithm needed 6 hours to migrate,, 
a matrix with dimensions [85 x 101 x 27].

2.2.2 Travel time calculation with exact refraction point
It’s also possible to find the exact location of the refraction point. This - 
requires more computational power, but will give more accurate results. 
The travelpath is illustrated in Figure 2.7 [7].

Rx (xa,ya,za)

Lra

Target (xo,yo.zo)

RP Tx (xr_1 ,yr_1 ,zr)

Lta

.42 X

Tx(O.yt,O)

(O.Ozn/Ltb 
\Lrb /

RP Rx (xr_2,yr_2,zr)X-

-.42 ;

Figure 2.7: Exact refraction point

The refraction point lies on the path of the signal with the shortest , 
travel time from transmitter to target. For the total travel time the path 
from target to the receiver needs to be calculated as well. This path has 
another refraction point so the process needs to be repeated. This will not 
be treated here, because it’s basically the same process. ,
First an equation for the travel time (from transmitter to target) is needed.

Lta = {xt - zri)2 + (yt - yri)2 + (zr)2 ,(2.5)

Ltb = J(xo - xri)2 + (yo - yri)2 + (zo - zr)2 (2.6)
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, _ ,,. Lta Ltby/ë . .Travelttme = ——I----—— (2.7)
Co Co

The objective is to find the refraction point which will generate the 
shortest travel time. Equation 2.7 must have only one variable, namely the 
x or y coordinate of the refraction point. The missing coordinate can be 
calculated from the other. The find the minimum travel time the following 
equation is solved , ■

dTraveltime „ , ’ ;
----- ----------= 0 2.8 dxa

The coordinate-system as given in Figure 2.7 concurs with the coordi
nate system that was used. Our coordinate-system has its’ origin at the 
transmitting antenna and the beginning of the scan-line. So the aperture 
starts at x = -42 cm untill x = 42 cm, z starts at the antenna (0) and 
increases as we go deeper.

Solving Equation 2.8 !

Equation 2.8 is a fourth order polynomial and several polynomials are needed 
to calculate all the exact travel times in a given grid. This is due to the fact 
that when antenna and object are in the same plane the refraction point 
calculation differs, which results in three scenarios: Antenna and object 
at same x, antenna and object at same y, antenna and object in different . 
planes. As said earlier the polynomials between Tx and target are also 
different from the polynomials between the receiving loops and the target. 
Therefore to calculate all refraction points accurately six scenarios (and 
therefore six fourth order polynomials are needed). First the polynomials 
between Tx and target will be discussed, followed by the other three. As 
with any fourth order polynomial four solutions will be produced and only 
one is the refraction point coordinate that is needed. The logic used to select 
the correct solution from the set of four will be discussed after considering 
the polynomials.

• Polynomial from Tx to target, scenario 1
Antenna and object are in the same x plane. This scenario is illustrated 
in Figure 2.8.
Here the X and Z coordinate of refraction point are known, we can
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Txto target, scenario 1
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Figure 2.8: Tx and object in same x plane

find the y coordinate by solving
A ■ yr^ + B • yrs + C • yr2 + D - yr + E — 0 ;
A = e — 1
B — 2yo + 2yt — 2e ■ yt — 2e • yo ' :
C = —zo2 + 2zr • zo — zr2 — yo2 — ^yt • yo — yt2 + e • (zr2 + yt2} 4- 4e • yo • yt + e • yo2 
D = 2(zo2 — 2zr ■ zo + zr2 + yo2}yt + 2yt2 • yo — 2e ■ yo(zr2 + yt2) - 2e ■ yo2. • yt 
E = e • yo2(zr2 4- yt2} — (zo2 — 2zr • zo + zr2 + yo2)yt2

(2.9) '
where:
yo, zo y-,z-coordinates of the location of the grid-point
yt y-coordinate of the transmitting antenna
yr, zr y-,z-coordinates of the refraction point 1
e permittivity in the ground

• Polynomial from Tx to target, scenario 2
Antenna and object are in the same y plane. This scenario is illustrated
in Figure 2.9.
Y and Z coordinate of refraction point are known, we can find the x 
coordinate by solving
A ■ xr4 + B • xr3 + C • xr2 + D ■ xr + E = 0 ■ ; .
A = e- 1 . !
B = 2xo + 2xt — 2e-xt — 2e-xo >
C = —zo2 + 2zr • zo — zr2 — xo2 — 4xt • xo — xt2 + e(zr2 + xt2) -H 4e • xo ■ xt + e • xo2 
D = 2(zo2 — 2zr ■ zo + zr2 + xo2)xt + 2xt2 ■ xo-2e- xo(zr2 + xt2) — 2e • xo2 ■ xt 
E = e • xo2(zr2 + xt2) — (zo2 — 2zr • zo + zr2 + xo2)xt2

(2.10)
where: ' . 1
xo, zo x-,z-coordinates of the location of the grid-point
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Tx to target, scenario 2
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Figure 2.9: Tx and object in same y plane

xt x-coordinate of the transmitting antenna (zero in our set-up) 
xr, zr x-,z-coordinates of the refraction point
e permittivity in the ground

• Polynomial from Tx to target, scenario 3
Antenna and object are in different x and y planes. This scenario is 
illustrated in Figure 2.10.

, Tx to target, scenario 3
10Qp---------- 1----------1---------- 1-------- ------------- 1----- ---- <---------- •----------q
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Figure 2.10: Tx and object in different x and y planes

Only the Z coordinate of the refraction point is known, but the relation ?.'
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between the Y and X coordinate can be derived.
A ■ xr4 + B ■ xr3 + C ■ xr2 + D • xr + E = 0 
yr =—(yt —yo) ■ xr/xo + yt
A = (1 + (yt - yo)2/xo2)3 - (1 + (yt - yo^/xo^e
B = —2(1 + (yt — yo)2/xo2)2e(-xo — (yt — yo)2/xo) . ! '
---- F (1 + (yt - yo)2/xo2)2(—2xo — 2(yt — yo)2/xo) ■ : 
C = — zr2e(l + (yt — yo)2/xo2)2 — (1 + (yt — yo)2 / xo2)e(—xo — (yt — yo)2/xo)2 
---- 1- (1 + (yt - yo)2/xo2)2((zr - zo)2 + xo2 + (yt - yo)2) 
D ——2zr2 ■ e(—xo — (yt — yo)2/xo)^ + (yt — yo)2/xo2) 
E = —zr2e(—xo — (yt — yo)2/xo)2

(2.11) ' 
where: 
xo, yo, zo x-,y-,z-coordinates of the location of the grid-point ' 
xt,yt x-,y-coordinates of the transmitting antenna 
xr, yr, zr x-,y-,z-coordinates of the refraction point :
e permittivity in the ground

• Polynomial from Rx to target, scenario 1
The scenario, antenna and object are in the same x plane, is illustrated 
in Figure 2.11. 

Rx to target, scenario 1 
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Figure 2.11: Tx and object in same x plane

The X and Z coordinate of refraction point are known, we can find the 
y coordinate by solving

A • yr4 + B ■ yr3 + C ■ yr2 + D • yr + E = 0
A = l-e
B = 2e ■ yo + 2e • ya — 2ya — 2yo
C = —e • yo2 — 4e • yo • ya — e((za)2 + ya2) + ya2 + 4ya • yo + (zo — zr)2 + yo2 
D — 2e ■ yo2ya + 2e • yo((za)2 + ya2) — 2ya2 • yo — 2ya((zo — zr)2.+ yo2) 
E = ya2 • ((zo — zr)2 + yo2) — e • yo2((za)2 + ya2) 1

(2.12) ;
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Rxto target, scenario 2

Target

-40 -30 -20 -10 0 10 20 30 40

where:
yo, zo y-,z-coordinates of the location of the grid-point ' .
ya, za y,z-coordinates of the receiving loop 
yr, zr y-,z-coordinates of the refraction point :
e permittivity in the ground

• Polynomial from Rx to target, scenario 2
Antenna and object are in the same y plane. This scenario is illustrated 
in Figure 2.12.
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S 40 to
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Figure 2.12: Tx and object in same y plane

The Y and Z coordinates of refraction point are known, we can find 
the x coordinate by solving

A ■ xr4 + B ■ xr3 + C ■ xr2 + D • xr + E = 0
A — 1 — e
B = 2e • xo + 2e • xa — 2xa — 2xo
C = —e • xo2 - 4e ■ xo - xa - e((za)2 + xa2) + xa2 + Axa • xo + (zo — zr)2 + xo2 
D = 2e • xo2xa 4- 2e • xo((za)2 + xa2) — 2xa2 ■ xo — 2xa((zo — zr)2 + xo2)
E = xa2((zo — zr)2 + xo2) - e- xo2((za)2 + xa2) ;

where:
xo, zo x-,z-coordinates of the location of the grid-point 
xa, za x-,z-coordinates of the receiving loop
xr, zr x-,z-coordinates of the refraction point 
e permittivity in the ground

• Polynomial from Rx to target, scenario 3
Antenna and object in different x and y planes. This scenario is illus
trated in Figure 2.13. :
Only Z coordinate of the refraction point is known, but the relation 
between the Y and X coordinate can be derived. ' ''
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Rx to target, scenario 3 
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Figure 2.13: Tx and object in different x and y planes

A ■ xr^ + B • xr3 + C • xr2 + D • xr + E = 0 
yr = (ya — yo^xr^x — xa)/(xa — xo) + ya 
A = (1 + (ya - yo)2/(xa — xo)2)3 - (1 + (ya - yo)2/(xa — xo)2)3e ■ 
B = — (—2xa — 2(ya — yo)2 • xa/(xa — xo)2)e(l + (ya — yo)2/(xa — xo)2)2 
-----2(1 + (ya - yo)2/(xa - xo)2)2 • e ( 
• • • * (—xo + (—(ya — yo)xa/(xa — xo) + ya — yo)(ya — yo)/(xa — xo)) 
■ ■ ■+ 2(—xa — (ya — yo)2xa/(xa — xo)2)(l + (ya — yo)2/(xa— xo)2)2- 
---- 1- (1 + (ya - yo)2/(xa - xo)2)2
• • • * (—2xo + 2(—(ya — yo)xa/(xa — xo) + ya — yo)(ya — yo)/(xd— xo)) 
C — —(xa2 + za2 + (ya — yo)2 ■ xa2/(xa — xo)2)^ + (ya — yo)2/(xa — xo)2)2 
• • • — 2(—2xa — 2(ya — yo)2 ■ xa/(xa — xo)2)
■ ■ ■ * e(—xo + (—(ya — yo)xa/(xa — xo) + ya — yo)(ya — yo)/(xa — xo)) ■
• • • * (1 + (ya — yo)2/(xa — xo)2)
• • • — (1 + (ya — yo)2/(xa — xo)2)e(-xo + (—(ya — yo)xa/(xa — xo) +ya — yo) 
• • • * (ya — yo)/(xa — xo))2
• • • + (—xa — (ya — yo)2 • xa/(xa — xo)2)2(l + (ya — yo)2/(xa — xo)2)
• • • + 2(—xa — (ya — yo)2 • xaj(xa — xo)2) f <
• • • * (1 + (ya — yo)2/(xa — xo)2)
• • • * (—2xo + 2(—(ya — yo)xa/(xa — xo) + ya — yo)(ya — yo)/(xa — a;o))+
• • • * (1 + (ya — yo)2/(xa — xo)2)2 • (xo2 + (zr — zo)2 
 f- (-(ya - yó)xa/(xa - xo) +ya- yo)2)
D = — 2(xa2 + za2 + (ya — yo)2 ■ xa2/(xa — xo)2)
• • • e(—xo + (—(ya — yo)xa/(xa — xo) +ya — yo)(ya — yo)/(xa — xo))
• • • * (1 + (ya — yo)2/(xa — xo)2) —
• • • * (—2xa — 2(ya — yo)2 ■ xa/(xa — xo)2) ।
• • • e(—xo + (—(ya — yo)xa) (xa — xo) + ya — yo) (ya — yo) / (xa — xo))2 
■ • • + (—xa — (ya — yo)2 ■ xa/(xa — xo)2)2 < . *
• • • * (—2xo + 2(—(ya — yo)xa/(xa — xo) + ya — yo)(ya — yo)/(xa — xo))
• • • + 2(—xa — (ya — yo)2 ■ xa/(xa — xo)2) ’
• • • * (1 + (ya — yo)2/(xa — xo)2)(xo2 + (zr — zo)2
• • • + (-(ya - yo)xa/(xa - xo^ ya - yo)2) 
E = (—xa — (ya - yo)2 • xa/(xa — xo)2)2
• ■ ■ * (xo2 + (zr — zo)2 + (—(ya — yo)xa/(xa — xo) + ya — yo)2) 
■ ■ ■ — (xa2 + za/2 + (ya — yo)2 • xa2/(xa — xo)2)
• • • e(—xo + (—(ya — yo)xa/(xa — xo) + ya — yo)(ya — yo)/(xa — xo))2 

(2-14)



where: i
xo, yo, zo x-,y-,z-coordinates of the location of the grid-point ' 
xa,ya, za x-,y-,z-coordinates of the transmitting antenna 
xr, yr, zr x-,y-,z-coordinates of the refraction point 
e permittivity in the ground

• Selecting the correct root
The polynomial is solved by computing the eigenvalues of the compan
ion matrix. This results in four roots of which one concurs with the 
coordinate of the refraction point. Two imaginairy solutions can be 
discarded immediately since our solution is a real point in our coordi
nate system. The choice between the last two solutions is made based 
on geometry. We know that the refraction point has to be between 
the grid-point of the focused volume and the antenna; this will only 
be the case for one root.

Now the coordinates of the refraction point are known and this information 
can be introduced to Equation 2.7 to calculate the exact travel time. With 
the travel time calculated the implementation of the algorithm is straight
forward (and as such identical to the free space case). The results in Figure 
2.14 show that the exact method shows the two targets clearly, but as with 
the approximate method (as shown in Figure 2.6) the side target is weaker 
and a large artefact is present. The increased complexity is noticeable in the 
computation time; the same matrix [85 x 101 x 27] needed 21 to 22 hours 
to focus.
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2.3 Conclusions

We described a commonly used focusing technique based on geometrical 
optics, namely the diffraction stack algorithm. This technique has been ex
tended to the array-based GPR. For the sub-surface case two methods of 
travel time calculation were implemented, the first being an approximation 
and the second being the analytically obtained solution. For the geomet
rical optics paths equations were derived for finding the exact location of 
refraction points in two-layer media. These equations gave slightly better 
results than the approximation at the expense of a three- to fourfold in
crease in computational time. For both implementations it’s clear that the 
diffraction stack method can only be used in off-line applications since the 
focussing of an area of interest of 1 m2 takes at least six hours.
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Chapter 3

Advanced radar imaging by 
parametric space-time 
deconvolution algorithm

The previously discussed algorithm only uses the data as input for the mi
gration. In migration by deconvolution the system characteristics (of radar 
and ground) are also taken into account and this is expected to give bet
ter results. The basic concept of the algorithm will be discussed first and 
there the importance of the time-domain model of a reflection by a point- 
scatterer will be clarified. In sections 3.2 and 3.3 a 2D implementation of 
the algorithm is discussed and the performance is compared to that of the 
diffraction stack algorithm. The implementation of the 3D version needed 
some additional steps which are described in section 3.4. The results of the 
3D-implementation are compared to the diffraction stack method in section 
3.5 after which this chapter is ended with the conclusions.

3.1 Basic concept

The key assumption of this algorithm is that the aquired signal from any 
given object can be approximated by combining reflections from a collection 
of point-scatterers; basically through modeling each object by a set of small 
independent isotropic point-scatterers [4]. If this operation is assumed linear 
their combining is a convolution in space which leads to the received signal 
being described by

c(x,y,t) = w(x,y,zo,t')®x^tKzo{x,y,t) (3.1)
where:
^■zo(x,y,t') collection of point-scatterers 
c(x, y, t) recorded data
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®x,y,t convolution operator
w(x, y, zo, t) reflection of an individual isotropic point-scatterer

In Equation 3.1 it is shown that the acquired data is represented as a con
volution of a collection of point-scatterers and the reflection of one of those 
scatterers. Equation 3.1 introduces two terms that will play a vital role 
in understanding and implementing the algorithm: w(x, y, z0, t) being the 
point-spread function and Kzo{x,y, t) being the target scattering matrix.

The target scattering matrix is the desired result in this problem because 
that is the collection of point-scatterers giving rise to the acquired signal. 
This matrix contains the objects located in the interrogated section and 
therefore is the migrated dataset. In the following subsections the method 
of determining the reflection of an individual point-scatterer is discussed and 
after that the filtering of the point-spread function out of the acquired data 
is treated. ‘

3.1.1 Time-domain model of reflection by point scatterèr
The time-domain model of the reflection of an isotropic point scatterer is 
obtained by considering the system as a cascade of linear responses. A time
domain model is intuitively more fitting for the used time-domain radar, it 
has the advantage that no assumptions on frequency dependent terms have 
to be made [4]. This cascade is illustrated in Figure 3.1 where each block 
denotes a linear response. A pulse is fired and after propagating through 
air it arrives at the air-ground interface. It then propagates through the 
ground and reflects at the target point scatterer, the wave returns through 
the ground-air interface to finally arrive at the receiving antenna.

The combination of these linear responses will result in a convolution in 
the time-domain

= ^2 ® hN<Tx{ai, t) ® A0(t) ® hNtRx(-as, t) ®
oTV^ rCtilrC al

(3-2) 
where: ;
Vs^t) excitation voltage applied to the transmitting antenna 
hAr,Ta:(di,t) normalised impulse response (IR) of the transmitting antenna 
hN,Rx(—as, t) normalised IR of the receiving antenna 
gd(t) IR of the ground 
Ao(t) IR of the target
Rt total path length from the transmitting antenna to the target
Rr total path length from the target to the receiving antenna
Tg-a,Ta-g transmission coefficient at the ground-air/air-ground interface 
td exact time-delay (of the wave between the transmitter and receiver)
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Figure 3.1: Cascade of linear responses
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All the blocks in Figure 3.1 are accounted for in Equation 3.2. Vs(t) is the 
excitation pulse, t) accounts for the transmit antenna and its’ value
depend on the direction of the transmitted wave. Both the air to ground 
and ground to air interfaces are implemented by Ta-g and Tg-a where gd^t) 
deals with the ground influences. Propagation losses and time-delay are 
introduced by S^RtRrC and td- The IR of the target and the receiving 
antenna at last are accounted for by Ao(t) and as, t), respectively.

This model is used to calculate a A-scan, which is a vital part 
in forming the synthetic B- or C-scan, i.e. the point-spread function (PSF). 
How this is done will be explained further in the sections on PSF formation.

3.1.2 Inverse Wiener filter with quality criteria
In Equation 3.1 the relation between the migrated image, A(a;, y,t), the 
point-spread function, w(x, y,zo, t), and the acquired data, c(x,y, t) is de
noted. This subsection treats on how to retrieve the point-spread function 
out of the aquired dataset to give us the migrated image. To obtain this 
scattering matrix the point-spread function needs to be deconvolved out of 
the acquired data. This leads to
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^zo{x, y, t) = c(x, y, i) ®x^y t w(x, y, zo, t) (3.3)
where: 1
^■zo(x,y,t) migrated image 
c(x, y, t) acquired data

ƒ deconvolution
w(x,y,z0,f) point-spread function

A first issue of the point-spread function is that it depends on the depth of • 
the point-scatterer, which prevents the possibility of calculating A.zo^x,y,t) 
in one step. It can be shown that the depth-dependency of the point-spread 
function is not very strong and therefore an approximation is made [4], which 
is validated more thoroughly in Chapter 4. The depth-dependency is omitted 
and a fixed depth is chosen for the point-scatterer. The chosen depth-value, 
depends on the application but a frequently used value in landmine detection 
applications is zq = 6 cm [4]. By fixing the depth of the scatterer Equation 
3.3 can be calculated in one step.

The second issue is that the deconvolution operation is very computa
tionally intensive, so this operation is performed in the frequency-wavenumber 
domain. But due to noise and the finite bandwidth equation 3.3 is ill-posed, 
so a straightforward true inverse filter can not be used. Therefore the de
convolution needs to be regularised and this is done by means of a inverse 
Wiener filter [6]. This filter minimises the variance of the error between 
the restored input data (obtained by convolving the result with the point
spread function) and the original input data, and allows for regularisatión 
by means of a single parameter. Since the filtering is done in the frequency
wavenumber domain the acquired dataset and the point-spread function are 
Fourier transformed with the following transform

X^ky,^^ 11 X(x,y,t)eikxX+ikyy-ibjtdxdydw (3.4)

The deconvolution is done by the inverse Wiener filter, which is described 
as !

AfL L .a— C(kx,ky,a>')W*(kx,ky,aj') 
^kx,ky,^_ w{kxyky^}w^ky^Uß ^-5)

where:
C{kx, kyjw) Fourier transformed acquired data-set 
W^kxfky,^ Fourier transformed point-spread function 
ß regularisatión parameter

The regularisatión parameter is actually the inverse of the SNR, which is 
difficult to be determined beforehand because the signal is not known: To ' 
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resolve this a procedure is introduced that determines the performancé of 
the filter based on two quality criteria: the Energy ratio and the Error [8]1

• Energy ratio
The energy ratio is the ratio of the energy of raw data and the energy 
of the deconvolution result.

7= IIM^>100% 
l|c(a:,2/, t)||2 (3-6)

• Error
The error is the measure of difference between the original signal and 
deconvolution result convolved with the point-spread function. Ideally 
this convolution should result in exactly the recorded B-scan.

e = (3 7)
l|c(z,3M)||2+ ||Ä(a;,y!t) 0w(x,y,t)112

Since the convolution is a computationally intensive operation A(y, t)® 
w(y, t) is performed in the frequency domain and calculated as

A.(x,y, t) ® w(x,y, t) = ifft2[Ä(kx,kyiu;) • w(kx, ky, w)] (3.8)

Ideally the error would be zero, so the natural approach is to vary the 
regularisatión parameter to minimise the error. The maximum energy ratio 
functions as a constraint for the parameter, since not only the error matters 
but the quality of the resulting image as well. Also the maximum energy 
ratio needs to be less than 100% to avoid ringing. This maximum energy 
ratio depends on the scenario (2D- or 3D-data) and good rule-of-thumb 
values are discussed in the sections that deal with real 2D- or 3D-data. 
Basically with the error the accuracy can be controlled, while energy ratio 
controls the stability of the result.

After this A{kx, ky, w) is transferred back to time-space domain with the 
inverse Fourier transformation as described by

A(a:,y, t) = — J J A.(kx, dkxdkyda> (3-9)

Equation 3.9 results in the migrated dataset.
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3.2 2D PSF calculation

This section deals with how to create the point-spread function that is used 
as an input for the inverse Wiener filter in a 2D scenario. In the first 
subsection all terms in Equation 3.2 are treated and an implementation of 
them is giving. The second subsection shows how to construct the 2D PSF 
(B-scan) from all known data.

3.2.1 Estimation of PSF terms
The propagation losses and time-delay depend on the distance between the 
object and the array. This requires the location of the refraction points, 
but since these calculations are the same as with the ’’exact method” [7] 
discussed in the previous chapter they will not be discussed again here.

Transmission coefficients

The transmission coefficients are dimensionless values and they are a func
tion of the relative permittivities, permeabilities and the angles of incidence 
and refraction [6]. The angle of refraction depends on the relative permit
tivities and the angle of incidence, which in geometrical optics is described 
by Snell’s law

sm(<$2) = (3.10)

where:
ei permittivity in first medium
62 permittivity in second medium
<^1 incident angle
</>2 refraction angle

The permeability of the ground and the air are both 1. Geological media 
in general are considered conductive, this implies that the reflection and 
transmission coefficients are complex. But it has been shown that at radar 
frequencies, the case can be accurately approximated by calculating the 
coefficients as if the media were loss-less [6]. This simplifies the case, because 
now only the real part of permittivity needs to be used. The angles of 
incidence and refraction not only depend on the permittivities, but as well 
on the antenna and target position. The exact method [7] for refraction 
point calculation gives all the necesary information to accurately calculate 
the incident and refraction angles. These angles are then used to calculate 
the transmission coefiicients by
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Ta-g
2x/ë^cos(^1)

T■‘-g-a

where:
eo permittivity in free space
e' real part of the permittivity in the ground
</>i incident angle
</>2 refraction angle

2\/e'cos(^i)
7'cos^r) +

(3.11)

Equations 3.11 imply that the boundary interface is flat. This is correct 
in our experimental set-up, but this may not be realistic for actual field 
conditions.

In Figure 3.2 the point-scatterer is positioned at the center (50 cm) of 
the scan-line at a depth of 6 cm. The transmitting and receiving antenna 
were located at respectively 52.5 cm and 26 cm above a ground with er = 
3.03.

Transmission coefficient for air to ground interface Transmission coefficient for ground to air interface
0.73 
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Figure 3.2: Transmission coefiicients as a function of antenna position
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Ground impulse response

The effects of the ground on the phase and magnitude fired of the fired 
pulse are accounted for by modelling the ground as a low-pass filter, which 
parameters depend on the soil characteristics (permeability, permittivity, 
losses) and the two-way path length (from the transmitter to the target 
back to the receiver) [6]. The filter is expressed as 

I
Gd(üj) = e-(“+^)rf , (3.12)

where:
a = cjy/fiQc'^i(-\/(1 + tan2(<J)) - 1) attenuation constant

ß = wvTzEë7 ^1(^(1+ tan2(5)) + 1) phase constant 

d two-way travel path length in the soil

The loss-tangent tan(d) and permittivity e1 are in fact frequency dependent, 
but determining these characteristics over a large frequency band can: be 
quite difficult and therefore an approximation is made that assumes them 
constant over the band of interest. Now the desired constants can be de
termined with one measurement in the middle of the frequency band. The 
attenuation and phase constant can now be determined from

a = (3.13)

ß = cuvW (3..14)

where: )
e' permittivity in the medium 
/z permeability in the medium 
tan((5) loss-tangent of the soil

Equation 3.12 can be written as

So far we’ve been speaking about a filter in the frequency-domain. In order 
to get the needed impulse response (in the time-domain) Equation 3.15 is 
transformed to the time-domain by means of an inverse Fourier transform 
(Equation 3.16).

1 r°°= 7T / Gd^e^duj (3.16)
J—oo

The impulse response of the ground can now be expressed as
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=
dv/jüë'(tan(5)/2

7r[(t — dvT^7)2 + (dVA^7 tan S/2)2]
(3.17)

where:
d distance (in meters) propagated in the ground
êq permittivity in free space
e' real part of the permittivity in the ground
tan(<5) loss-tangent of the soil

An example of such an impulse response is shown in Figure 3.3. The soil 
characteristics in this example are tan(5) — 0.08 and er — 3.03. The distance 
to the point scatterer depends on the antenna position, and is therefore 
different for every A-scan. So it follows that for every A-scan the ground 
impulse response needs to be recalculated. Figure 3.3 shows the impulse 
response when the antenna and point scatterer are directly above eachother. 
It can be shown that the peak concurs with a distance of 12 cm. Since the 
depth of the scatterer is 6 cm this is in accordance with a two way travel 
path of 12 cm.
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Figure 3.3: IR of ground for parameters er = 3.03 and tan^d) = 0.08

Excitation voltage and IRs of the antennas

The system parameters hN,Tx(ai, —hs, t), dVsare combined
into one vector acquired by one measurement. The angle-dependency of 
the IRs of the antennas is dismissed here for ease of implementation, so 
for every A-scan the same system vector is used. The convolution of the 
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impulse responses and the excitation voltage is the received reflected signal 
after firing the pulse from the transmitter towards a metal plate (that acts 
as a mirror). The measurement set-up can be seen in Figure 3.4. ?

‘Zu *

Figure 3.4: Measurement set-up for determining the convolution of excita
tion voltage with the IRs of antennas

Impulse response of the point-like target

Equation 3.2 also denotes the influence of a point-like target. It has been 
decided not to implement this by convolving with the IR of a point-like 
target, but to implement this differently. Small point-like targets have the 
property of time-differentiating incoming waves upon reflection [9]. This 
influence on the A-scan is implemented by simply differentiating in the time 
dimension as the final step of the PSF formation.

3.2.2 Formation of 2D PSF ;
All terms in Equation 3.2 have been described in the previous chapter and 
what remains is the implementation to actually create the 2D PSF. The 
point-scatterer is placed at the center of the mechanical scanning direction 
at a depth of 6 cm. The processing is summarised in the following step 
program.

• Step 1.
Start as if the array were at the beginning of the mechanical scan ■ 
direction.

• Step 2.
Calculate the first term of Equation 3.2. \
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• Step 3.
Determine the time-delay td- The time-delay depends solely on the 
distance travelled, i.e. the free space path length and the sub-surface 
path length. Both are divided by the respective wave velocities to give 
the travel times in the two media.

• Step 4.
As said before the system parameters hNtTx(ai, t^hN^^—asft), ~V3^td^ 
are combined into one vector, from here on called the system vector, 
which is the same for all calculated A-scans. This system vector is 
shifted with the time-delay calculated in the previous step. This shift 
is implemented by padding zeros at the beginning of the vector. Since 
the point-spread function has the same dimensions as the raw data it’s 
possible that when many zeros are padded the last time-part of the' 
system vector is cut off. This will reduce the information content in 
the point-spread function, so to prevent this cut-off the minimum num
ber of padded zeros is subtracted from every padded zero sequence. In 
other words, the minimum time-delay of the entire B-scan is calculated 
and this is subtracted from all the time-delays calculated. This reduces 
the zero-padding (and so the cut-off) and therefore maximises the in
formation content in the point-spread function, without removing the 
important relative time-delay information between the A-scans. Basi
cally, the point-spread function is shifted earlier in time so that it can 
contain a larger part of the system vector.

• Step 5.
The convolution in time is performed with the first term and the time
shifted system vector as described by

/
OO

f(T)g{t - T)dr (3.18)
“OO

The result of this convolution is the synthetic A-scan.

• Step 6.
Take one step further on the scan-line and start over from step 2 until 
all A-scans are computed.

• Step 7.
Form the B-scan from all A-scans.

• Step 8.
Take the 2-norm of the B-scan (to normalise the energy).

An advantage of this approach is that, when the configuration (radar and 
soil) conditions remain the same, the PSF only needs to be calculated once. 
This PSF can then be used to migrate all datasets. Figure 3.5 shows the
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PSF where the transmitting and receiving antenna are located at 52.5 .cm 
and 26 cm above the ground, depth in the soil of the point-like scatterer is 6 
cm and the soil has tanfS) = 0.08 and er = 3.03. The hyperbola can clearly 
be seen.

x IO4 Forward modelled reflection of point-scatterer (signal level)

0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 3.5: An example of a point-spread function (magnitude is dimension
less)

3.3 2D space-time deconvolution

In the first subsection the actual inverse filtering operation will be discussed. 
This filter operation introduces a shift in every dimension of the result which 
needs to be compensated. This compensation is discussed in the second 
subsection after which the results and performance of the algorithm are 
compared to those of the diffraction stack algorithm.

3.3.1 Inverse filtering operation
The inverse Wiener filter and quality criteria are implemented as described 
by Equations 3.5, 3.6 and 3.7. The filter operation will only work if both 
the PSF and the raw data have matching dimensions and resolutions. By 
experience it’s determined that good 2D deconvolution results have a max
imum energy ratio of 100% so to obtain this the loop illustrated in Figure 
3.6 is used.

The error is calculated as well, but as shown by the loop it does not play 
a role in determining the optimal regularisatión parameter. It’s only used as 
a performance indicator that gives some information on the migrated result.
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Figure 3.6: Flowchart of the deconvolution filter operation

3.3.2 Shift compensation
The deconvolution introduces a shift in both dimensions of the result. The 
point-spread function is transformed to the frequency-wavenumber domain 
and so becomes complex. The complex PSF is introduced to the filter and 
as is known phase information in the frequency domain concurs with a time
shift in the time domain. The same happens in the space-dimension because 
that dimension of the transformed PSF is also complex. These shifts only 
depend on the PSF and are therefore constant regardless which dataset is 
migrated. The result needs to be compensated in space and time in order 
to get the objects at their proper location. The goal is to determine a fixed 
shift for all dimensions and apply that to the deconvolution result as being 
a part of the calibration process.

Space shift

The shift introduced by the filter along the scan-line direction will always 
be half the length of the scan-line, regardless of how long the mechanical
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scan direction is. In the dataset shown in Figure 3.7 one object is located 
around 80 cm and the effect of the filtering and compensation can be seen. 
Before compensation the target is imaged at 30 cm and after compensation 
the object is imaged at the correct position.

2.5

( |Q* Result «About tKMhttcampenMfcn

02 08

os

2.5

l1Q'* Re«unwfth»ld»-tNftcomp«nMIIon

62 0.8

Figure 3.7: Space-shift introduced by filtering and the compensation

Time shift
As said earlier the shift that occurs in time is constant and needs to be 
compensated. Determining the necessary shift is based on the intuitive re
lation between the locations of the strongest reflection in the raw data and 
in the migrated dataset. Even though the energy in the raw data is spread . 
over a large area by the hyperbola the strongest reflection will appear at 
its’ apex, in other words the object location. The location of this reflection 
in the recorded B-scan should concur with the strongest value of the mi
grated image. The procedure is as follows: First the strongest reflection is 
located in the recorded B-scan, after which the strongest signal level in the 
deconvolution result is located. The difference denotes the time shift that 
is introduced by the filter. The final step involves the deconvolution result 
being shifted circularly. This is further illustrated in Figure 3.8.

Figure 3.8 shows the reflection of a landmine after clutter removal. The 
original A-scan is shown in blue and the deconvolution result in red. The 
maxima are clearly not in the same position and so they can accurately give 
the time-shift that will be introduced when using that particular PSF.

3.3.3 Migration results
First the deconvolution results of the same free space data focused with the 
diffraction stack will be given and discussed. After that results of the 2D 
version of thè sub-surface scenario treated in Chapter 2 are shown.
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Figure 3.8: Time-shift compensation based on maximum signal levels

Free space data

This scenario involves a sphere at 42 cm from the transmitting antenna. 
Equation 3.2 deals with sub-surface scenarios; therefore it has to be adapted 
to be suited for the free space case. This means that the transmission 
coefficients Ta-g, Tg_a are set to 1 and the ground IR g^t) is 6(t). The 
assumed depth of the scatterer of the PSF has been set at 42 cm. The 
pre-processed B-scan is shown in Figure 1.7.

The result of the deconvolution is in the space-time domain so the time
axes is converted to the space-domain (in order to give accurate depth in
formation). Since this is free space data the conversion is straightforward. 
The first .9 ns are cut off, this corresponds to the time that the wave trav
els from the transmitter to the receiver (26.5 cm). The rest of the time
information corresponds to a two-way travel path, so what remains is the 
time-information which has a linear relation with the depth. In Figure 3.9 
the results of the deconvolution algorithm are shown. In Figure 2.3 the 
results of the diffraction stack algorithm can be seen.
The sphere can be seen clearly at the correct location in the deconvolution 
result (center of the image). The dimensions of the object in the image con
cur with the actual dimensions (diameter of 2 cm). The result is better than 
with the diffraction stack algorithm, which clearly has a lower resolution. 
Table 3.1 shows the quality parameters and the calculation times. ; 
We can conclude by saying that the new migration algorithm gives higher 
resolution free space images at much lower computational expense.

Sub-surface data

The original B-scan is shown in Figure 3.10. The data used is the same as 
the sub-surface data used with the diffraction stack algorithm, but only the
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Figure 3.9: Result of deconvolution

Diffraction stack 
Deconvolution

Error
Energy ratio
Assumed SNR

Calculation time 
55 s 
< 5 s 
23% 
100% 
41 dB

Image size
126 x 61 

2048 x 667

Table 3.1: Quality criteria and performance of free space result

B-scan of the middle loop of the receiving array is used in this section;. A 
hyperbola can clearly be seen at the right side and at the left some ground • 
residu remains. The object in the ground is a PNM-2 landmine model at 
a depth of around 6 cm, where the transmitter is positioned 52.5 cm above 
the ground. The soil characteristics are assumed to be tan^S) = 0.08 and er 
= 3.03. The results of the migration by deconvolution and diffraction stack 
can be seen in Figure 3.11, respectively.
The deconvolution and diffraction stack yield comparable results; both show 
the PMN-2 at the right and some ground reflection at the left. The decon
volution result does have a small artefact above the target, which can be 
attributed to the low-pass filter property of the inverse filter. The perfor
mance figures are shown in Table 3.2.
We can conclude by saying that the new migration algorithm gives compa
rable sub-surface images at a higher resolution at much lower computational 
expense.
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Figure 3.10: Raw B-scan
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Figure 3.11: Sub-surface migration result (a) Deconvolution, (b) Diffraction J 
stack

Table 3.2: Quality criteria and performance of sub-surface result'

Diffraction stack 
Deconvolution

Error
Energy ratio
Assumed SNR

Calculation time 
71 s 
< 5 s 
11% 

100%
38 dB

Image size
44 x 101 .

1024 x 410

3.4 3D array PSF formation and 3D space-time 
deconvolution

The eventual goal of the migration algorithm is to generate 3D results. The 
formation of the 3D PSF is described in this section after which interpolation 
to increase the resolution is explained. The actual deconvolution operation 
has many similarities with the 2D scenario and so will only be briefly dis- : 
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cussed in section 3.4.3. For accurate imaging all targets multiple PSFs are 
needed, which is first confirmed with modeled data and then followed by 
actual GPR data. In the conclusions we reflect on the performance of the 
developed algorithm.

3.4.1 3D PSF for central array channel
In this stage the algorithm is extended to be able to deal with 3D data, 
which of course needs a 3D PSF as input for the inverse Wiener filter. In 
this subsection the PSF is constructed as if the array consisted of 13 identical 
receiving loops, only the system vector of the central channel was used. The 
point-scatterer was positioned at the middle of the scan-line as (with the 2D 
scenario) but now also at the center of the aperture (directly underneath the 
central channel). The formation of a 3D PSF is an extension of the method 
presented in section 3.2. All terms in Equation 3.2 are calculated similarly 
remembering that the path lengths of the pulse are now in 3D. The following 
procedure is followed to arrive at a 3D PSF for the central array channel.

• Step 1
Start at the beginning of the aperture (left most loop).

• Step 2
Calculate 2D PSF as described in section 3.2 for a point-scatterer 
located at the center of the aperture and scan-line at a depth of 6 cm.

• Step 3
Go to the next loop and repeat step 2 untill all 13 B-scans are calcu
lated.

• Step 4
Combine all B-scans to form C-scan.

• Step 5
Normalise the C-scan by dividing it by its’ total energy

The process is illustrated with a flowchart in Figure 3.12. This results 
in a C-scan consisting of 13 B-scans, which in turn yields a resolution of 7 
cm over the aperture dimension. This is insufficient for landmine detection 
applications and therefore interpolation is applied.

3.4.2 Interpolation of array data and PSF
To achieve a higher resolution interpolation is applied over the aperture di
mension. Implementing the interpolation on a standard desktop machine 
quite quickly led to memory problems. Through trial and error the resolu
tion was set at 1 cm over the aperture and the scan-line, which is deemed

43



Select first loop Calculate 20 PSF
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Figure 3.12: Flowchart of 3D PSF formation for central array channel ,

Form C-scan of 13 
B-scans ': Nonnalise. . •

acceptable for landmine detection purposes. The memory problems also 
led to chosing linear interpolation for the method, because it is one of the 
simpler ones. The linear method is a standard method that’s illustrated in 
Figure 3.13.

Xo

Xi

Figure 3.13: Example of linear interpolation

Further research should definitely also look at other interpolation meth
ods (such as spline) because an easy quality improvement can be expected 
from this. The result of the interpolation is shown in Figure 3.14. It shows 
that the resolution has increased but that the sides of the PSF aren’t com
pletely smooth.

3.4.3 3D space-time deconvolution
The first section deals with the actual filtering operation, the second de
scribes the determination and compensation of the shifts introduced by the 
filter while the last section shows the results.

Filtering operation :

The 3D implementation is virtually the same as the 2D implementation de
scribed in section 3.2, only now the 2D raw data and PSF are replaced by 
their 3D counterparts. The loop used to determine the optimum regulari- 
sation parameter is the same as shown in Figure 3.6 only that the (inverse)
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Figure 3.14: Interpolated PSF over aperture dimension

Fourier transforms are now 3D and that the maximum energy ratio now is 
determined to give optimal images when set at 5%.

Shift compensation

In the 3D scenario, next to the shifts in time and over the scan-line, also 
a shift over the aperture dimension is introduced. Just like with the shift 
regarding the scan-line this shift is half of thé length of the aperture. Since ' 
the other shifts are the same as with the 2D case all shifts can be easily 
compensated.
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Migration results

Only the subsurface scenario with two PMN-2 mines will be discussed in 
this section. Both of them are located at around 80 cm of the scan-line at 
a depth of 6 cm. The 3D results are shown in Figure 3.15 projected using 
AS WEP as discussed in Chapter 1.
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Figure 3.15: Result of 3D deconvolution using one PSF

Directly it’s clear that only the center target can be seen well. The side 
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target is very weak and therefore this result is just unacceptable. One reason 
for this result is that only the system vector of the center loop was used for 
the implemenation. The other reason is that the used PSF is calculated 
with the point-scatterer located at the center of the aperture and therefore 
it’s logical that objects located at the center are imaged stronger. When 
the object is located at the center the hyperbola will have the strongest 
correlation with the PSF and so have a stronger migrated result. In a single
target scenario this will not give problems and single targets at the side will 
still be imaged. In a multi-target scénario however the targets located at 
the center will be imaged stronger than targets at the side of the array and 
it’s possible that side targets become more vague.

3.4.4 Modeling result
A target that’s located at the same location as the point-scatterer will al
ways have a stronger migrated result than a target at a different location. 
Therefore an algorithm that uses multiple PSFs (where in every PSF the 
scatterer’s location over the aperture dimension was different) is proposed 
to deal with this issue. Synthetically generated datasets were used to in
vestigate the necessity and usefulness of multiple PSFs. Synthetic data has 
the advantage of being able to accurately determine the influence of target 
positions and multiple PSFs, since the input is exactly known and noise is 
by definition zero. One scenario in particular is of interest to us, namely the 
two target scenario with one center target and one side target. To analyse 
this scenario a zero matrix was generated with the same size as the other 
datasets. Two ’’objects” were placed in this matrix by giving two sets of 
elements a non-zero value. The result of this is illustrated in Figure 3.16.
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Figure 3.16: Two synthetic targets in the matrix
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To create the ’’raw” C-scans both targets are convolved separately with 
point-spread functions that have point-scatterer at the same location as the 
targets, i.e. the center target is convolved with a PSF where the scatterer is 
located at the center where as the side target is convolved with a PSF with 
a scatterer at the side. Both convolution results are then summed and that 
gives the C-scan that for our filter will function as the raw dataset. Both 
targets are located at the center of the scan-line; Figure 3.17 shows thé raw 
data at that position. Both the hyperbolae can clearly be seen.

x in9 Slice of C-scan (at half of scan-llne)

-40 -30 -20 -10 0 10 20 30 40
x[cm]

* r. . * ♦ V*

.. « !

.................

Figure 3.17: Two hyperbolae in the ’raw data’

Figure 3.18 shows the result when the middle PSF is used, the side PSF 
is used and the combination of these results.

Figure 3.18 very clearly illustrates the need for multiple PSFs and the 
combining of their results. When separated they’re not able to image both 
targets with equal strenghts, but by combining the results will image both 
targets properly. Concludingly we can say that the use of multiple PSFs is 
necessary to image all targets correctly over the aperture dimension.
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Figure 3.18: Modeling result (a) only PSF with center scatterer, (b) only 
PSF with side scatterer, (c) Combined result
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3.4.5 Array PSF with amplitude correction
Multiple PSFs will give multiple deconvolution results which need to be 
combined to one. How this is done will be discussed first after which the 
choice for the number of PSFs will be explained. The B-scans of the PSFs 
calculated in this chapter use the corresponding system vector of that loop to 
give extra accuracy. After implementing an algorithm with multiple PSFs 
the side-targets were still imaged weaker which was resolved by an extra 
compensation which is described in the last section.

Combining deconvolution results

Using more PSFs also generates more migrated matrices which obviously 
need to be combined to one. Three main possibilities remain for the combi
nation: Add all results, Combining with overlap, Combining without over
lap. The first method is the simplest one but shows many artefacts, so soon 
it became clear that this was not a good method. The second and third 
method use only a part of each deconvolution result to form the final mi
grated matrix. It can be argued that a particular PSF with it’s scatterer at 
f.e. x = 35 cm will have the best result for all targets located at x = 35 cm, 
therefore when combining the results this PSF result should be used for x 
= 35 cm. This is illustrated more clearly in Figure 3.19.

Combined deconvolution result

Result of PSF 
-with scatterer 
atx = -42 cm

Result of PSF with 
scatterer at x - 0 cm

Result of PSF 
with scatterer 
at x = 42 cm

*40 *30 >20 >10 0 10 20 30 40
x(cm)

Figure 3.19: Combining deconvolution results when using 3 PSFs

In this case the result is divided into three parts and the corresponding 
sections of the migrated results are used to create the result. Using overlap 
usually smoothes out the result but also introduces more artefacts than com
bining the result without any overlap. Therefore it was chosen to combine 
without overlap (regardless of the number of PSFs used) and smoothing out 
the final result by applying 2D median filtering. This is a commonly used 
tool in image processing to remove single spikes or speckles. 2D median 
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filtering is a spatial filtering operation of which each value of the matrix is 
compared to its nearby neighbours to decide whether or not it is representa
tive. When the window is of equal size of that of a target its’ edges will be 
smoothed as well. In our case a window of 6 cm by 6 cm was used and the 
median of that window was set to be the new value of the filtered matrix 
entry. This in combination with the ASWEP as described in Chapter 1 gave 
the best results, so it follows that all shown 3D deconvolution results are 
formed this way.

Selecting the number PSFs

Choosing the number of PSFs and their distribution over the aperture was 
not straightforward, since using more PSFs would treat more objects fairer 
but will also give an increase in the computational effort (because for every 
PSF the filtering operation has to be performed). At first a 12 PSF im
plementation was introduced that placed the scatterers between the loops. 
This implementation showed both targets better, but the result was still 
unacceptable. Part of this depended on how the point-spread-function was 
calculated, because first the 13 B-scans were formed after which they were 
linearly interpolated. Figure 3.20 shows the problem when the scatterer is 
located between loops 8 and 9. The hyperbola occurs at the same point in 
time at the loops 8 and 9, so when this result is interpolated (as indicated 
in Figure 3.20 with red) no clear apex at the exact location of the point 
scatterer is formed. This can be resolved by placing the scatterers directly 
underneath the loop, this operation will place the apex on one of the B- 
scans after which interpolation has less negative influence. Since hyperbolea 
of targets naturally have a clear apex it was chosen from here on to only 
place the point-scatterers directly under the loops.

Interpolated PSF (signal level)

2

3

9

10
-40 -30 -20 <10 0 10 20 30 40

x[cm]

Figure 3.20: Schematic PSF of scatterer placed at 10.5 cm ;

Several configurations were implemented using 3, 5 or 13 PSFs and there 
the initial assumption was validated that more PSFs give a better result/ So 1 
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there was opted for an implementation using 13 PSFs but this still showed 
side targets imaged weaker, as illustrated in Figure 3.21.

ASWEP result without median filtering [dB] ASWEP result with median filtering [dB]
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Figure 3.21: Combined result (no overlap) of 13 PSFs (a) without 2D median 
filtering, (b) with 2D median filtering

The side target is clearly visible but still weaker than the center target. 
It should also be noted that using different PSFs also means compensating 
for different shifts. Over the aperture dimension it was found that this shift 
was always the summation of half the aperture length and the scatterer 
location. For example, for the PSF with the scatterer at -42 cm the shift 
was (-42 + 42) = 0 cm.

Amplitude correction

Looking for reasons to account for this difference in strength we went back 
to the original acquired data. The GPR array has a footprint which non
uniformity is compensated by weighting as discussed in Chapter 1. But when 
we look at the hyperbolae of targets we see that they require substantial 
length in both dimensions. We assume that the majority of the energy of 
a hyperbola of a PMN-2 mine is spread over a surface of f.e. 1 m2 (so. we 
need about 1 m2 of hyperbola as input for the migrating algorithm to give 
a correct result). This is no problem when the target is laid at the center of 
the aperture, but when a target is laid at the side of the array a large part 
of the hyperbola (and therefore the energy) is ” missed”. Simply stated, the 
array will acquire less reflection energy of side-targets than center-targets.

Having less energy in the raw data also means less energy in the migrated 
result. This is partly caused by the normalising of all PSFs separately. 
Normalising is common practice when using an inverse Wiener filter [8] but 
there’s another reason why we’ve opted for this approach because it has 
the major advantage of being able to compare all filtering operations: by 
selecting one value for the energy ratio which then will give comparable 
results for each used PSF. Normalising the PSF does have the disadvantage 
of removing it’s energy information, which is important in relation to the 
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other PSFs. In the un-normalised PSFs already a difference in energy can 
be seen between the energy of a scatterer which is placed in the center 
and a scatterer placed at the side. Basically the value which is used to 
normalise each PSF gives us the relation between the total energies of all 
PSFs and therefore can be used to compensate the results. In Figure 3.22 the 
normalisation factor, y/'Eaii* Hally ^aiit Cx,y,t^ of each of the thirteen PSFs 
and the resulting weighting factors for the migrated matrix are shown. ,

2

2.5

x 105 Normalisation factor of PSF related to position of scatterer 
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Weights for each deconvolution result related to position of scatterer

1.6
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Figure 3.22: The relation between the PSF total energies and their weights

3.5 Reference data set result

This section deals with the result concerning the two PMN-2 mine scenario. 
This result is obtained by combining the result of deconvolution of 13 dif
ferent PSFs (each PSF having the point-scatterer under a different loop), 
subsequent amplitude correction and 2D median filtering. The ASWEP as 
described in Chapter 1 is used for creating the confidence map. Figure 3.23 
shows the results.

The two targets can clearly be seen in the image, but some clutter at the
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Figure 3.23: Deconvolution result

left and top side remains. The diffraction stack result (Figure 2.14) shows 
a large artifact right next to the center target, but has less clutter. Even 
though the deconvolution result has more clutter the two targets are clearly 
visible, however the quality of the diffraction stack image is higher. The 
performance figures are given in Table 3.3.

Table 3.3: Quality criteria and performance of 3D result

Diffraction stack 
Deconvolution

Avg. Error 
Avg. Energy ratio 
Avg. Assumed SNR

Calculation time 
22-23 hrs 

8 mins 
26% 
5% 

-32 dB

Size of migrated matrix
27 x 101 x 85

512 x 101 x 85

It’s clear that the proposed method is considerably faster than it’s diffrac
tion stack counterpart while still having a higher resolution (in the time
dimension). The high error and very low assumed SNR are related to the 
maximum energy constraint. It’s also logical that the SNR in the 3D case 
is lower because a larger area gives more noise and does not necessarily add 
more signal. The 5% was chosen as the maximum energy ratio because this 
value gives good images for different datasets.
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3.6 Conclusions

An extended version of the method proposed in [6] has been developed for 
the GPR-array and is able to migrate real GPR-datasets at a fraction of 
the time needed by the diffraction stack algorithm. Varying the regular- 
isation parameter to get the quality criteria (as introduced in [8]) within 
certain boundaries has proven to give good and consistent results for !2D 
and 3D datasets. Interpolating the 3D version of the deconvolution algo
rithm showed to be a good way to increase the resolution over the aperture. 
Implementing the algorithm with multiple filtering operations (each using 
a PSF with a different location on the aperture of the point-scatterer) and 
combining their result is a novelty and is needed to image all targets over 
the aperture dimension. To image the side-targets as strong as the center
targets another novelty being a new kind of amplitude correction was de
veloped based on the total energy of the corresponding PSFs. All novelties 
contribute at imaging a real GPR dataset many times faster than diffraction 
stack, while still giving good results.
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Chapter 4

Validation of developed 
imaging algorithm

This chapter will further validate several approximations and assumptions 
made in the previous chapter on the developed algorithm. Up till now only 
one dataset, containing one PNM-2 mine at the center and one PMN-2 
mine at the side, has been migrated. The first section will give the migrated 
results of another dataset to show the performance and capabilities of the 
algorithm. When developing the algorithm the assumption was made that 
the depth of the point-scatterer of the PSF had little influence on the result 
and was therefore given the fixed value of 6 cm [6]. In the second section 
this will be validated by migrating some datasets with deeper targets and 
also by using PSFs with varying point-scatterer depth. Finally, the antenna 
height has little influence on the implementation of the algorithm, since only 
the PSFs need to be recalculated for a different antenna height. However 
it is possible that varying the antenna height does have an influence on the 
quality of the result and therefore in this last subsection two similar datasets 
with different antenna heights are migrated.

4.1 Different positions of targets

Figure 4.1 shows with what targets this dataset is acquired. At the upper
left corner a PMN-2 mine is laid, to the right a stone is positioned. The 
bottom-left corner contains a M-14 mine and a piece of barbed wire is located 
to the side.

To arrive at the migrated result the exact same method was used as with 
the two target scenario, only this dataset was acquired with the transmitting 
antenna positioned at 46.5 cm above the ground. Figure 4.2 shows the 
migrated result for both algorithms and Table 4.1 shows the performances 
for this 4 target scenario.

Some clutter and artifacts remain and not all targets are visible in the
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Figure 4.1: Target scenario

Diffraction stack 
Deconvolution

Avg. Error
Avg. Energy ratio
Avg. Assumed SNR

Calculation time
22-23 hrs
7:11 mins

22% ’
5%

-30 dB

Size of migrated matrix
27 x 101 x 85

512 x 101 x 85

Table 4.1: Quality criteria and performance of 3D result

deconvolution result. The PMN-2 mine has definitely the clearest reflection 
but as can be seen in Figure 4.1 it’s also one of the bigger targets. The stone 
has similar dimensions but the difference in electrical permittivity between 
the soil and stone is small which is the reason for the weaker reflection. The 
barbed wire is visible, but the M-14 mine can not be seen (this is contributed 
to the radar’s resolution which is too course to detect this small mine prop
erly) . The diffraction stack result has nicer shapes of the targets and offers 
better positioning, but does have more clutter and artifacts. Again the de
convolution algorithm gives good results at a fraction of the computation 
time needed for the diffraction stack algorithm.
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Figure 4.2: Migrated result with antenna height 46.5 cm (a) Deconvolution 
result, (b) Diffraction stack
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4.2 Different depths of targets '

This section validates the approximation that the depth chosen of the PSF 
scatterer and the depth of the actual target does not have a big influence. 
For this comparison a stretch of 1 m is chosen containing two PMN-2 mines, 
one at a depth of 5 cm and the other at 10 cm. First in Figure 4.3 the result 
is shown when processed by the algorithm (PSF depth at 6 cm) then a PSF 
depth of 10 cm is used and the data is processed again.

The PMN-2 target at 10 cm depth is located at the top and clearly has 
a weaker reflection, but since this is the case in both results this is due 
to propagation losses. Since both results are so similar it validates the low 
influence of the PSF scatterer depth. Now only the deeper target is migrated 
using the two different PSFs, the results are shown in Figure 4.4.

Again the results are very similar in shape and energy. Since the pulse 
has a penetration depth of around 20 cm, this applies over the entire depth 
range of the radar. All results contribute on validating the approximation 
of using a fixed object depth for the point-scatterer. ft is shown that this 
depth has little influence on the deconvolution result.
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Figure 4.3: Deconvolution result using a PSF with depth (a) 6 cm, (b) 10 
cm
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Figure 4.4: Migrated PMN-2 mine with PSF depth (a) 6 cm, (b) 10 cm
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4.3 Different elevation of the antenna system

This section will deal with the influence of the height of the antenna system. 
We have the choice between 46.5 cm and 52.5 cm for the height of the 
transmitter above the ground. The results shown earlier in this chapter 
(Figure 4.2) are obtained with an antenna height of 46.5 cm. The result 
shown in Figure 4.5 is derived from the same target scenario but the data 
was acquired with an antenna height of 52.5 cm.
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Figure 4.5: Deconvolution result for antenna height of 52.5 cm

The result shown in Figure 4.5 shows all 4 targets, but has definitely 
more clutter than the result obtained with an antenna height of 46.5 cm. 
The latter only shows 3 targets but they are far more condensed, so both 
results have their pros and cons. A slight preference to results obtained at 
46.5 cm exist because of its’ low clutter and condensed images.
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Chapter 5

Summary and conclusions

5.1 Summary

Landmines continue to pose a large threat to people, while clearing them 
is a dangerous and laborious process. Several detection methods are cur
rently being developend, where GPR has shown to be promising sensor. A 
novel array-based GPR has been developed in IRCTR for vehicular land
mine detection. The GPR uses a single transmit antenna and a linear array 
of 13 loop antennas receiving the scattered EM field simultaneously. Near- 
held imaging of buried landmines is being done by focusing the acquired 
data along the direction of mechanical scanning (SAR) and along the array 
aperture [2].

The widely used diffraction stack algorithm is a time-inversion technique 
that migrates data by calculating signal travel times. This algorithm was 
extended for the array-based GPR and equations were derived to analytically 
solve the location of the refraction point. The algorithm was tested with 
real GPR data and showed to image subsurface datasets at the expense of 
large computational effort.

The currently available methods only take some radar properties and 
some soil characteristics (in general only er) into account. The method 
proposed in [6] models the rehections from arbitrarily shaped targets as the 
convolution of the reflection of one point-scatterer (point-spread function) 
with the collection of point-scatterers (target scattering matrix). This is 
described by

c(x, y, t) = w(x, y, z0, t) ®Xiytt hZo(x, *) (5-1)
The A.zo(x,y,t) is the desired result in Equation 5.1 because that ba

sically is the migrated dataset; the objects in the ground are modeled by 
collections of point-scatterers. The point-spread function (w(x,y, zo,ty) is 
obtained by forward modeling as described in [6], where the radar character
istics are implemented by using one measurement (reflection of the pulse on 
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a metal plate). The point-spread function is then filtered out of the acquired 
signal (c(x, y, t) by means of an inverse Wiener filter which results in the 
migrated result.

First a 2D version of the migration by deconvolution method was de
veloped according to [6] but the first novelty here was to use two quality 
criteria, Energy ratio & Error [8], to determine the performance of the fil
tering operation and automatically select a good regularisation parameter 
for the inverse Wiener filter. The second novelty was implementing the in
fluence of the point-scatterer in the 2D PSF not by it’s impulse response, 
but by differentiating the entire PSF in the time dimension. The devel
oped method could migrate 2D data considerably faster and with a higher 
resolution than the diffraction stack method, without compromising on the 
quality of the result.

Extending the 3D version of the algorithm to the array-based GPR was 
done with several extra steps. The third novelty was forming the 3D PSF by 
calculating 13 B-scans (one for each loop) and then use interpolation. The 
raw data was also interpolated to increase the resolution. The filter and 
quality criteria were extended to a 3D version where it soon became clear 
that the position of the point-scatterer in the PSF influences the strength of 
imaged targets. Similar targets at the same position as the point-scatterer 
are imaged stronger than those targets at other positions. To resolve this 
the use of multiple PSFs was developed, which is the fourth main novelty of 
the 3D implementation. This was first confirmed with synthetically gener
ated data where it proved to image targets better over the entire aperture 
dimension. When this was applied to actual GPR data this still did not im
age identical targets at different locations over the aperture dimension with 
equal strengths. The fifth novelty was to correct the deconvolution result 
per PSF. Targets at the side have less hyperbola energy in the acquired data 
because of the finite dimensions of the array; a larger part of the energy of 
a hyperbola of a center target is recorded than that of a side target. Less 
energy in the raw data leads to weaker reflections in the migrated result; A 
method was developed that weighted the filtered result with a factor that’s 
inversely proportional to the square root of the total energy of that par
ticular PSF (before normalisation). This weighting is done after filtering 
so not to interfere with the quality criteria and subsequent regularisation 
parameter calculation.

The novelties of this thesis work are

1. Introducing the quality criteria to control the accuracy and stability 
of the inverse Wiener filter.

2. Differentiating the PSF to account for the differentiating property of 
a point scatterer.
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3. Applying interpolation to increase the resolution over the aperture 
dimension.

4. Using multiple PSFs with scatterers at different positions and com
bining their results.

5. Weighting the deconvolution result with a factor depending on the 
energy of the corresponding PSF.

5.2 Conclusions

An advanced imaging algorithm based on migration by parametric, regu-. 
larised deconvolution has been developed, where the method introduced in 
[6] was extended to an array-based GPR. The algorithm was tested on real 
GPR datasets and it is shown that it produces high quality subsurface im
ages, regardless of their position over the aperture dimension. In a 2D and 
3D scenario this has shown to give higher resolution results than the diffrac
tion stack algorithm, at a minor fraction of the computational time. It’s 
straightforward that the calculation time increases with scan length, but 
the increase is much higher with the diffraction stack method. The per
formance difference and the dependency on scan-length of one particular 
dataset are illustrated in Table 5.1.

Table 5.1: Calculation time dependency on scan-line length

Scan length 1 m 2.5 m
Diffraction stack 
Deconvolution

22-23 hrs 
4 mins

6.4 days 
5:50 mins

A small degradation in quality is present with regard to the diffraction 
stack result, mainly because the target images are less condensed and their 
spacing is less precise. It seems that the images of center targets have nicer 
shapes and better spacing than their counterparts located at the side, a 
reason for this can be the omitting of the angle-of-incidence dependency of 
the antennas.

Furthermore we can conclude that the approximations made in [6] on 
target depth were valid. It should be noted that the radar can only image 
to a soil depth of 20 cm. No large differences in the results were noted when 
using PSFs with scatterer depths of 6 and 10 cms, so this approximation 
can be made over the entire depth range of the radar.

The influence of the height of antenna system is visible in the decon
volution result and it is preferred to use a height of 46.5 cm, because this 
in comparison to an antenna height of 52.5 cm results in more condensed 
images.
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5.3 Recommendations for further research

(1) Interpolation technique

The method of interpolation deserves more attention. Because of mem
ory limitations there was opted for linear interpolation, but other methods 
should definitely be implemented for they can give easy image quality im
provements.

(2) Optimal scan-length

The optimal scan-length should be determined. Although an increase of 
scan-length from 1 m to 2.5 m only takes a couple minutes of processing 
more, they have the disadvantage that weak targets can be missed because 
large and strong targets overpower their reflections.

(3) Angle-of-incidence dependency of antennas

The angle-of-incidence dependency of the impulse responses of the antennas 
have been ignored. When forming one PSF B-scan the same measurement 
data was used with every A-scan. Further research should investigate if this 
has a large influence on the result; a performance increase can be expected 
from this.

(4) Programming efficiency

The programming efficiency of the algorithm should be further investigated. 
The currently developed software can be made faster and more efficient, f.e. 
by reducing the resolution in the time-dimension. More attention should 
also be given to the start value of the regularisation parameter. With the 
current implementation it starts for every PSF deconvolution operation with 
the same parameter, an implementation where the final parameter is used 
as a first input for the next operation could already give a performance 
improvement.

(5) Position of point-scatterer on scan-line

With all 3D PSFs formed the point-scatterer was positioned at the middle 
of the scan-line. This does not gave any problems (or biased results) on the 
available datasets used, but it can be argued that the same problems that 
were present over the aperture dimension can also occur over the scan-line.
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Appendix A

Description of developed 
software

A.1 Diffraction stack

This section deals with the software that migrates 3D subsurface data. It’s 
comprised of two parts, the first does some additional steps of pre-processing 
and creates the focused box (migrated volume). For every position on the 
aperture dimension (x) thirteen migrated B-scans (one for each loop) are 
calculated and summed. The calculation of the B-scans is done by the 
second file.

Fo cusedB oxExact. m

First the data is weighted and the time-drift is compensated after which 
nulling is applied. Then the focused box is formed where the depth is basi
cally the only variable, because the aperture dimension is fixed and scan-line 
depends on the acquired data. Before migration several properties of the 
array (heights) and the soil (er) need to be specified. The loop is initi
ated starting at the left side of the aperture and then the 13 B-scans are 
calculated by initiating another loop.

Exact tt2.m

This function migrates the B-scan of a specific loop. For this it needs the 
following information: B-scan and it’s time- and scan-information, loop
number, position on aperture, dimension of grid, antenna heights and elec
trical permittivity. Now a large nested loop is started; for each depth the 
antenna’s are placed at all positions on the scan-line. For each antenna 
position separately the object position is varied over the entire scan-line. 
For each object position the travel time can be now calculated. First the 
travel time from transmitter to object is calculated (according to the three 
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scenarios described in Chapter 2) and then the travel time from object to 
receiver. The total travel time now corresponds to a value in the original 
B-scan which is added to the grid point where the object is located.

A.2 Deconvolution

This section deals with the developed software for the subsurface 2D and 
3D migration by deconvolution algorithm. The 2D and 3D implementations 
are treated in different sections, but they’re built up in the same way. A 
very important part of this is the point-spread function. It only has to be 
calculated once for a certain set of parameters, including antenna and soil 
characteristics. The first subsection describes the formation of the PSF, 
the second subsection deals with the actual deconvolution operation. Some 
post-processing of the multiple results for the 3D case and their combination 
are treated in the final subsection.

A.2.1 2D implementation
The main script is deconv shift.m, which calls to psf exact.m. The PSF 
is recalculated every time, strictly speaking this is not necessary but does 
hardly add any significant computation time.

deconv shift.m

The raw data and system vector information are loaded after which the 
latter is compensated. Some pre-processing is done after which the PSF 
is calculated. The filter operation (loop) is performed and the criteria are 
calculated. The final step compensates the time and space shift, resulting 
in the migrated B-scan.

psf exact.m

The function is called with the parameters regarding the time- and me
chanical scan direction, the system vector, epsilon, object depth and the 
loss-tangent. To further clarify: yo, zo refer to the object, yt, zt refer to the 
transmitter, yr, zr refer to the receiver, yp, zp refer to the refraction point.

First the refraction points are calculated, which are needed to calculate 
the terms of the PSF. The PSF is built up A-scan per A-scan eventually 
giving the required B-scan with the same dimensions as the raw data. After 
normalising the PSF is returned as the result of the function.

A.2.2 3D implementation
In the 3D implementation the PSFs are calculated beforehand, because the 
3D versions do take significant time to calculate. Psf 3D.m calculates the 
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PSFs. The main algorithm which loads the PSFs and raw data is comb 
deconv.m. Deconv perpsf.m performs the filtering operation and quality 
criteria calculation.

psf 3D.m

First the raw data is loaded so the dimensions for the PSF can be deter
mined, after that the system vectors are loaded and aligned. This is followed 
by setting some radar properties (as antenna height of transmitter, z ground, 
and receiver, z Rx), some soil properties (er and loss-tangent tan(ö)) and 
finally the location of the point scatterer. This last one is determined by 
setting xo, yo and depth. To further clarify: xt, yt, zt refer to the trans
mitter. xa, ya, za refer to the receiver, xr, yr, zr refer to the refraction 
point. When the parameters are all set correctly the script can be run. Per 
A-scan it will calculate the refraction points and all coefficients of the first 
term of Equation 3.2. The system vector is shifted with the time-delay by 
using zero-padding (the minimum number of padded zeros of the entire C- 
scan is subtracted from this to maximise the information content). The two 
vectors are now convolved with eachother resulting in the final A-scan. The 
following step combines all the formed A-scans to a C-scan, which is then 
differentiated in the time-dimension. The resulting C-scan is interpolated 
with the function interp 3D.m after which it’s normalised. The result is the 
interpolated PSFs with its’ point-scatterer at location xo. The normalisa
tion factor (manual norm) should also be saved as it’s needed for weighting 
the deconvolution results.

deconv perpsf.m

This function performs the deconvolution operation and has the migrated C- 
scan as result. It uses the raw C-scan, the PSF and the desired Energy Ratio 
for inputs. First the raw data and the PSF are transformed to the frequency 
wavenumber domain using fft3.m (the inverse operation is performed with 
ifftS.m). After that a first guess SNR is used to determine the start value of 
the regularisation parameter. Then the data is filtered and the Energy Ratio 
is calculated, after which the regularisation parameter is altered until the 
actual Energy Ratio is close to the desired one. The final step is calculating 
the error.

comb deconv.m

First some pre-processing steps are taken such as weighting, compensation 
for time-drift and nulling. The desired Energy Ratio is then set after which 
the 13 deconvolution operations are performed. A complicated clear, load 
and save structure is needed to avoid memory problems. After the deconvo
lution the results are weighted with the manual norm of the corresponding 
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PSF. The shifts of the results (induced by the filter) are compensated with 
one command. The shifts over the scan-line and aperture are implemented 
as described in Chapter 3, the time-shift has been manually detèrmined. 
The results are then combined (without overlap) over the aperture dimen
sion and ASWEP is performed. Median filtering is the final step before 
the transition to the power-scale is done. The maximum of the result is 
determined so the give the final image a dynamic range of 20 dB.

interp 3D.m

This function performs the linear interpolation. The C-scan needs to be 
entered with the coordinate system [x,t,y]. The function results in the in
terpolation of the x-dimension and sampling of the t- and y-dimension.
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Appendix B

MATLAB code of developed 
software

B.l Diffraction stack

FocusedB oxExact. m

Xthis script will focus the data in a 3d BOX. The 
dimensions are 1.0m
%(resolution 1cm) by 42 cm (resolution 1 cm) and 5 cm 
depth (.55 cm to .60 m, resolution 0.3 cm) 
clear all;
load lanel_pro_Tx465
t_orig = dt.*(1:length(Cpro(:,1,1)));
t = t_orig;
dy =dx;
y_orig = dy.*(1:length(Cpro(1,:,1)));
y=y_orig;

% Channel amplitude weights
coeffs= [0.1363 0.1584 0.1969 0.3528 0.5261 0.8970 0.9621 1 
0.6389 0.3853 0.2089 0.1798 0.1340]
for p=l:13
Cpro(:,:,p) = Cpro(:,:,p)*l/coeffs(p);
end

/(Offset vector
Tzero=[0.57 0.57 0.53 0.56 0.17 0.55 0.39 0.43 0.6 0.62 
0.62 0.61 0.62]*le-9;

’/.Compensate offset CHECKED RAW DATA HAS CORRECT TIME-SCALE 
Tzero=[0.57 0.57 0.53 0.56 0.17 0.55 0.39 0.43 0.6 0.62
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0.62 0.61 0.62]*le-9;
for loopcouirter=l:length(Cpro(1,1,:))

B = squeeze(Cpro(:,:,loopcounter));
offset = Tzero (loopcounter) ; °/0offset in B-scan 
offset_index = round(offset/t(end)*length(t));
Cpro(:,:,loopcounter) =[B(offset_index:end,:) ;

zeros (of f set_index-l,length(y))] ;7,Keep same size 
end

7oNull first part until 270
Cpro(l:270,:,:) = zeros(270,1025,13);

’/Create the volume in where the data will be focused 
z_start = .50;
z_end = .57;
dz=(z_start:0.003:z_end);
°/odz = 0.52; ’/Extra image for Timofey
y_start =0;
y_end = dy*length(Cpro(l,: ,1));
dy=(y_start:0.01:y_end);

x_start = -.42;
x_end = .42;
dx=(x_start:0.01:x_end);

z_Rx = .265;
z_ground = .465
epsilon =3.03;

Cmigr_exact = zeros(length(dz),length(dy),length(dx));

’/Go through the box in the x-direction
for k=l:length(dx)

dx(k)
’/Focus B-scans (one for each loop, and add them) 
Bmigr_final = zeros(length(dz),length(dy));
for loop=l:length(Tzero)

Bmigr_final = Bmigr_final +
Exact_tt2(Cpro(:,:.loop),dz,dy,dx(k),loop,Tzero(loop),t_or 
ig,y_orig,z_Rx,z_ground,epsilon);

end
Cmigr_exact(:,:,k) = Bmigr_final; 

end
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Exact tt2.m

7,This program determines the traveltimes to subsurface objects. It 
/»calculates the exact position of the refraction point on the ground.
Then
/»it searches the corresponding element in the B-scan and migrates 
it.

function Bmigr =
Exact_tt2(B,dz,dy,x_pos,loop,off set,t,y,z_Rx,z_ground,epsilon)

7»’New x’
7. dz = [.625];
7. dy = [0:0.01:1] ;
7. dx = [-.42] ;
7» loop =7;
/»offset = l*10'-9;
xo = x_pos;
xt = 0; •
zr = z_ground;
za = z_Rx;
if (loop == 7)

xa = 0;
else

xa = -0.42 + (loop-1)*0.07;
end

specialcounterl =0;
specialcounter2 =0;
specialcounterB = 0;

Bmigr = zeros(length(dz),length(dy));

for z=l:length(dz) /»all z
zo = dz(z);
for a=l: length(dy) /»all antenna positions

yt = dy(a);
ya = dy(a);

for l=l:length(dy)°/oall y 
yo = dy(l);

/»First the refraction point between Tx and the object is 
/»calculated
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coeff = zeros(1,5);
if (xo == xt) ’/. Object and transmitter in same x_plane 

xr = xt;
coeff(1) = epsilon-1;
coeff(2) = 2*yo+2*yt-2*epsilon*yt-2*epsilon*yo;
coeff (3) = -zo‘'2+2*z_ground*zo-z_ground''2-yo~2-

4*yt*yo-
yt''2+epsilon*(z_ground~2+yt~2)+4*epsilon*yo*yt+epsilon*yo''2;

coeff (4) = 2*(zo'‘2-
2*z_ground*zo+z_ground~2+yo''2)*yt+2*yt''2*yo-
2*epsilon*yo*(z_ground~2+yt''2)-2*epsilon*yo~2*yt ;

coeff (5) = epsilon*yo~2*(z_ground“2+yt''2)-(zo'‘2- 
2*z_ground*zo+z_ground~2+yo"2)*yt~2;

solutions = roots(coeff);

“Zselect the proper solution 
for p=l:length(solutions)

if (abs(imag(solutions(p))) <= 0.001), 
if (yo == yt)

if((real(solutions(p))-yo) < 0.001) 
yr = yo;

end
elseif (yo < yt)

if(real(solutions(p)) -yo >= -.00001 &&
real(solutions(p)) -yt <= 0.0001)

yr = real(solutions(p));
end

else
if(real(solutions(p)) -yt >= -.00001 &&

real(solutions(p)) -yo <= 0.0001) 
yr = real(solutions(p));

end
end

end
end
refr_point = [xr yr] ;
Lta = (z_ground~2 + (yt -yr)~2)~.5;
Ltb = ((z_ground - zo)~2 + (yr - yo)~2)~.5;

traveltime_Tx = Lta/(3*10~8) +
Ltb*sqrt(epsilon)/(3*10~8);

XObject and Tx are in the same y-plane 
elseif (yt == yo)
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yr=yo;
coeff(1) = epsilon-l; T
coeff(2) = 2*xo+2*xt-2*epsilon*xt-2*epsilon*xo;
coeff(3) = -zo"2+2*z_ground*zo-z_ground"2-xo''2-

4*xt*xo-
xt''2+epsilon* (z_ground~2+xt;''2)+4*epsilon*xo*xt+epsiloii*xo~2;

coeff(4) = 2*(zo~2-
2*z_ground*zo+z_ground~2+xo~2)*xt+2*xt~2*xo-
2*epsilon.*xo*(z_ground~2+xt"2)-2*epsiloii*xo"2*xt;

coeff (5) = epsilon*xo''2*(z_gröund'‘2+xt"2)-(zo''2-
2*z_ground*zo+z_ground~2+xo'2)*xt"2;

solutions = roots(coeff);

Zselect the proper solution 
for p=l:length(solutions)

if (abs(imag(solutions(p))) <= 0.001)
if (xo == xt)

if((real(solutions(p))-yo) < 0.001)
xr = xo;

end
elseif (xo < xt)

if (real (solutions (p)) -"xo >= -.00001 &&
real(solutions(p)) -xt <= 0.0001)

xr = real(solutions(p));
end

else
if (real (solutions (p)) -xt >= -.00001 Sc&

réal(solutions(p)) - xo <= 0.0001)
xr = real(solutions(p));

end i
end

end
end
refr_point = [xr yr];
Lta = (z_ground~2 + (xt -xr)"2)~.5;
Ltb = ((z_ground - zo)~2 + (xr - xo)"2)~.5;

traveltime_Tx = Lta/(3*10~8) +
Ltb*sqrt(epsilon)/(3*10~8) ;

else ’/«Most general case target not in same x-plane or y- 
plane

7, yr = -(yt-yo)*xr/xo+yt is used to let the polynomial
7. have only one variable (xr)
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zr = z_ground;

coeff(l) = (l+(yt-yo)*2/xo"2)"3-(l+(yt- 
yo) ■'2/xo“2) “S+epsilon.;

coeff(2) = -2*(l+(yt-yo)~2/xo~2)~2*epsilon*(-xo-(yt-  
yo) ~2/xo) + (1+ (yt-yo) ~2/xo''2) ~2* (-2*xo-2* (yt-yo) '"2/xo) ;

coeff(3) = -zr''2*epsilon*(l+(yt-yo)“2/xo''2)''2-(l+(yt- 
yo) ''2/xo~2) *epsilon* (-XO- (yt-yo) ~2/xo) ~2+(l+(yt- 
yo)~2/xo"2)~2*((zr-zo)~2+xo~2+(yt-yo)"2) ;

coeff(4) = -2*zr~2*epsilon* (-XO-(yt-yo)''2/xo)* (1+(yt- 
yo)''2/xo"2) ;

coeff(5) = -zr~2*epsilon*(-xo-(yt-yo)"2/xo)~2; 
solutions = roots(coeff);

Xselect the proper solution 
for p=l: length.(solutions) 

if (abs(imag(solutions(p))) <= 0.001) 
if (xo == xt)

if((real(solutions(p))-yo) < 0.001) 
xr = xo;

end
elseif (xo < xt)

if(real(solutions(p)) -xo >= -.00001 && 
real(solutions(p)) -xt <= 0.0001)

xr = real(solutions(p)); 
end

else
if(real(solutions(p)) -xt >= -.00001 && 

real(solutions(p)) - xo <= 0.0001)
xr = real(solutions(p));

end '
end 

end 
end 
yr = -(yt-yo)*xr/xo+yt; 
refr_point = [xr yr]; 
Lta = sqrt(zr~2 + xr~2 + (yt-yr)~2); 
Ltb = sqrt((zr-zo)~2 + (xr-xo)~2 + (yr-yo)~2);

traveltime_Tx = Lta/(3*10~8) +
Ltb*sqrt(epsilon)/(3*10~8);

end
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7oNow the traveltime from the object to the receiving 
loop

coeff_Rx = zeros(l,5);

xa = roundd00*xa); % This is done to eliminate a 
rounding error.

xo = roundd00*xo) ;
xa = xa/100;
xo = xo/100;

if (xo == xa) “/Object in same x-plane as receiving loop 
(Different implementation than in notebook!)

xr = xa;

coeff_Rx(l) = 1-epsilon;
coeff_Rx(2) = 2*epsilon*yo+2*epsilon*ya-2*ya-2*yo;
coeff_Rx(3) = -epsilon*yo"2-4*epsiion*yo*ya-

epsilon* ( (za)'■2+ya~2)+ya~2+4*ya*yo+(zo-zr) ~2+yo~2;
coeff_Rx(4) =

2*epsilon*yo''2*ya+2*epsilon*yo* ((za) ~2+ya''2) -2*ya~2*yo-
2*ya* ( (zo-zr) "2+yo"'2) ;

coeff_Rx(5) = ya~2*((zo-zr)''2+yo~2)~ 
epsilon*yo~2* ((za) ■'2+ya~2);

solutions_Rx = roots(coeff_Rx); .

“/select the proper solution
for p=l:length(solutions_Rx)

if (abs(imag(solutions_Rx(p))) <= 0.001)
if (yo == ya)

if((real(solutions_Rx(p))-yo) < 0.001) 
yr_Rx = yo;

end
elseif (yo < ya)

if(real(solutions_Rx(p)) -yo >= -;00001.&& 
real(solutions_Rx(p)) -ya <= 0.0001)

yr_Rx = real(solutions_Rx(p));
end 

else
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if(real(solutions_Rx(p)), -ya >= -.00001 &&
real (sol'

7.
7.

utions_Rx(p)) -yo <= 0.0001)
yr_Rx = real(solutions_Rx(p)); 

end
end 

end
end

xr
yr_Rx

specialcounterl = specialcounterl +1;
Lra = sqrt((zr-za)~2 + (yr_Rx - ya)~2);
Lrb = sqrt((zr-zo)~2 + (yr_Rx - yo)"2); 
traveltime_Rx = Lra/(3*10~8) + .

Lrb*sqrt (epsilon)/(3*10~8);

elseif (yo == ya) 7oObject in same y-plane as receiving
loop

yr = ya;
7oDifferent structure in these equations the height from 
70the antenna to the ground is expressed with za

coeff_Rx(l) = 1-epsilon;
coeff_Rx(2) = 2*epsilon*xo+2*epsilon*xa-2*xa-2*xo;
coeff_Rx(3) = -epsilon*xo',2-4*epsilon*xo*xa-

epsilon* ((za) ~2+xa~2) +xa''2+4*xa*xo+ (zo-zr) ''2+xo~2; 
coeff_Rx(4) =

2*epsilo
2*xa*((z

n*xo"2*xa+2*epsilon*xo*((za)~2+xa~2)-2*xa~2*xo- 
o-zr)~2+xo"2);

coeff_Rx(5) = xa''2*((zo-zr)~2+xo"2)-
epsilon*xo~2*((za)~2+xa~2);

solutions_Rx = roots(coeff_Rx);

7oSelect the proper solution
for p=l:length(solutions_Rx)

if (abs(imag(solutions_Rx(p))) <= 0.001) 
if (xo == xa)

if((real(solutions_Rx(p))-xo) < 0.001) 
xr_Rx = xo;

end
elseif (xo < xa)

if(real(solutions_Rx(p)) -xo >= -.00001 &&
real(solutions_Rx(p)) -xa <= 0.0001)

xr_Rx = real(solutions_RX(p));
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end
else

if(real(solutions_Rx(p)). - xa >= -.00001 && ■ 
real(solutions_Rx(p)) - xo <= 0.0001)

xr_Rx = real(solutions_Rx(p));
end

end
end

end
xr_Rx

7. yr

specialcounter2 = specialcounter2 +1;
Lra = sqrt ((zr-za) ~2 + (xr_Rx - xa)'’2);
Lrb = sqrt((zr-zo)“2 + (xr_Rx - xo)~2)j 
traveltime_Rx = Lra/(3*10~8) +

Lrb*sqrt(epsilon)/(3*10'8);

else 7omost general case. Object and receiving loop not in 
the same plane.

coeff_Rx(l) = (l+(ya-yo)~2/(xa-xo)'2)~3-(l+(ya-
yo) '’2/(xa-xo) ~2) ~3*epsilon;

coeff_Rx(2) = -(-2*xa-2*(ya-yo)~2*xa/(xa-
xo) '"2) *epsilon* (l+(ya-yo) "'2/ (xa-xo) '‘2) "2-2* (1+ (ya-yo) "2/ (xa-
xo)~2)"2*epsilon*(-xo+(-(ya-yo)*xa/(xa-xo)+ya-yo)*(ya-yo)/(xa-
xo))+2*(-xa-(ya-yo)"2*xa/(xa-xo)~2)*(l+(ya-yo)"2/(xa-
xo)~2)"2+(1+(ya-yo)"2/(xa-xo)~2)"2*(-2*xo+2*(-(ya-yo)*xa/(xa-
xo) +ya-yo)*(ya-yo)/(xa-xo));

coeff_Rx(3) = -(xa~2+za"2+(ya-yo)"2*xa"2/(xa-
xo) "2)*epsilon*(l+(ya-yo)"2/(xa-xo)"2)"2-2*(-2*xa-2*(ya-
yo) "2*xa/(xa-xo)"2)*epsilon*(-xo+(-(ya-yo)*xa/(xa-xo)+ya- 
yo)*(ya-yo)/(xa-xo))*(l+(ya-yo)"2/(xa-xo)"2)-(l+(ya-yo)"2/(xa- 
xo) "2)*epsilon*(-xo+(-(ya-yo)*xa/(xa-xo)+ya-yo)*(ya-yo)/(xa- 
xo) )"2+(-xa-(ya-yo)"2*xa/(xa-xo)"2)"2*(1+(ya-yo)"2/(xa-
xo) ~2)+2*(-xa-(ya-yo)"2*xa/(xa-xo)~2)*(1+(ya-yo)“2/(xa-xo)"2)*(-
2*xo+2*(-(ya-yo)*xa/(xa-xo)+ya-yo)*(ya-yo)/(xa-xo))+(1+(ya-
yo) "2/ (xa-xo)~2)"2*(xo"2+(zr-zo)"2+(-(ya-yo)*xa/(xa-xo)+ya- 
yo)"2);

coeff_Rx(4) = -2*(xa“2+za"2+(ya-yo)"2*xa"2/(xa-
xo) "2) *epsilon*(-xo+(-(ya-yo)*xa/(xa-xo)+ya-yo)*(ya-yo)/(xa-
xo) )*(1+(ya-yo)"2/(xa-xo)~2)-(-2*xa-2*(ya-yo)~2*xa/(xa-
xo) "2) *epsilon*(-xo+(-(ya-yo)*xa/(xa-xo)+ya-yo)*(ya-yo)/(xa- 
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xo))"2+(-xa-(ya-yo) '’2*xa/(xa-xo)~2)~2*(-2*xo+2*(-(ya-yo)*xa/(xa- 
xo)+ya-yo)*(ya-yo)/(xa-xo))+2*(-xa-(ya-yo)~2*xa/(xa-
xo) ~2) * (1+ (ya-yo) ''2/ (xa-xo) ~2) * (xo“2+ (zr-zo) “2+ (- (ya-yo) *xa/ (xa- 
xo) +ya-yo) '‘2) ;

coeff_Rx(5) = (-xa-(ya-yo)~2*xa/(xa- 
xo)"2)~2*(xo~2+(zr-zo)“2+(-(ya-yo)*xa/(xa-xo)+ya-yo)~2)- 
(xa~2+za"2+(ya-yo)~2*xa“2/(xa-xo)~2)*epsilon*(-xo+(-(ya- 
yo) *xa/ (xa-xo) +ya-yo) * (ya-yo) / (xa-xo)) '‘2;

solutions_Rx = roots(coeff_Rx);
Xselect the proper solution 
for p=l:length(solutions_Rx) 

if (abs(imag(solutions_Rx(p))) <= 0.001) 
if (xo == xa)

if((real(solutions_Rx(p))-xo) < 0.0Ó1) 
xr_Rx = xo;

end
elseif (xo < xa)

if(real(solutions_Rx(p)) -xo >= -.00001 && 
real(solutions_Rx(p)) -xa <= 0.0001)

xr_Rx = real(solutions_Rx(p)); 
end

else

if(real(solutions_Rx(p)) - xa >= -.00001 && 
real(solutions_Rx(p)) - xo <= 0.0001)

xr_Rx = real(solutions_Rx(p));
end 

end 
end

end

yr = (ya-yo)*(xr_Rx-xa)/(xa-xo)+ya;

specialcounters = specialcounters + 1;
Lra = sqrt((zr-za)"2 + (ya - yr)"2 + (xr_Rx - xa)"2);
Lrb = sqrt((zr-zo)"2 + (yr - yo)~2 + (xr_Rx - xo)~2);
traveltime_Rx = Lra/(3*10"8) + 

Lrb*sqrt(epsilon)/(3*10~8) ;
end

traveltime_total = traveltime _Tx + traveltime_Rx;’/0 + 
offset; "ZOffset is already compensated
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"/determine to which, element in B this corresponds 
diff_t = t-traveltime_total;
[k,i] = min(abs(diff_t));
t_index = i;

diff_y = y-dy(l);
[k,i] = min(abs(diff_y)); 
y_index = i;

Bmigr(z,a) = Bmigr(z,a) + B(t_index,y_index); 
end 

end
end

81



B.2 Deconvolution

B.2.1 2D implementation
deconv shift.m

70Th.is script creates the point spread function for a sub-surface 
scenario
Xwith the following geometry.

70z_Tx=O - height of Transmitter (origin of coordinate system) 
7oZ_Rx=O.27 m - position of Receiver with respect to Tx 
7»y - mechanical scan direction, [0, 60] cm

7oZ_target - .608 m m with respect to Tx
7oTime of B-scan = 9.7752e-012s per step. 1024 steps gives 
1.0010e-008 total
7otime
70Mechanical scan direction 0.0024 m per step. 410 steps gives 
.9840 m

clear all;
load MPdataSOcm;
load test_data_subsurf;

loopnumber = 7;
B = squeeze(C(:,:,loopnumber));
epsilon
loss_tangent = 0.08 7olbss tangent of soil
depth = 0.06; 7»depth of scatterer

t = dt*(l:length(B(:,1)));
t_orig = t;
y=dy*(1:length(B(1,:)));

^Compensate offset CHECKED RAW DATA HAS
CORRECT TIME-SCALE
offset = Tzero (loopnumber); 7ooffset in B-scan 
offset_index = round(offset/t(end)*length(t)); 
B=[B(offset_index:end,:); zeros(offset_index- 
1,length(y))];%Keep same size

hl = channels(:,loopnumber); 7edon’t normalize because 
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excitation voltage information is in there as well
h_short = hl(l:2:length(hl)) ; °/oadapt channel information to 
new situation
ht = [h_short(350:end)];

’/.THE ALGORITH WORKS AS 70WELL WITH REALLY
LONG B-SCANS. ALL OBJECTS ARE IMAGED
PROPERLY. THE MIDDLE
’/.ARTEFACT DECREASES WITH B-SCAN LENGT, BUT 
IS ALMOST ALWAYS TO BE SEEN

point_spread_function =
psf_exact(t,y,z_ground,ht,eps ilon,z_Rx,loss_tangent,depth);
point_spread_function = [zeros(1,410);
diff(point_spread_function)];

7offt of raw data and psf,
f_psf = fft2(point_spread_function);
f_raw = fft2(B);

SNR_db = 36;
Energy_ratio = 0;
while (Energy_ratio < 100) ’/.This loop will change the 
regularization parameter until the energy ratio is too big.

SNR = 10*(SNR_db/20);
’/.wiener filter
wif = conj(f_psf)./((conj(f_psf).*f_psf)+ 1/SNR);
f3= wif.*f_raw;
7.result back to time domain 
sl=real(ifft2(f3));

7.Calculate ’Quality parameters’
Energy_ratio = norm(sl,2)/norm(B,2)*100;
7. Recontstructing the data for the deconvolved result 
rData=real(ifft2(f3.*f_psf));
7. Difference between the original and reconstructed data as 

error
err=norm(B - rData,’fro’)/(norm(B,’fro’) + 

norm(rData,’fro’))*100;
SNR_db = SNR_db + 1;
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end
SNR_db
Energy_ratio 
err

orig_result =sl;
“/Compensate the side-way shift introduced by the 
deconvolution. It’s fixed 
“/(always half of the mechanical scan direction) 
temp = sl(:,l:round(length(y)/2));
temp2= sl(:,round(length(y)/2)+l:end); 
si = [temp2 temp];

“/use automatic shift compensation with circular shift!! Find 
time-index of maximum in raw
“/data. Shift maximum of deconvolution result to that time
index. The maxima

“/should be on the same location

raw_max = max(max(abs(B))); “/location of maximum of raw 
data 
[q,max_raw_index_y] = min(min(abs(abs(B)-raw_max))); “/to 
find y index 
[q,max_raw_index_t] = min(min(abs(abs(B)- 
raw_max) , [] ,2)) ;“/to find t index 
column_with_maximum = max_raw_index_y;

raw_res = max(max(abs(si(: ,max_raw_index_y)))); “/location 
of maximum of deconvolved result,
“/search area confined to column where maximum of raw data 
is located.

“/This is to ensure that the same objects are compared. 
[q,max_index_res] = min(min(abs(abs(sl)-raw_res),[],2));

diff_index = max_raw_index_t - max_index_res "/the shift is 
now known

if diff_index >= 0 “/Perform circular shift
s2 = [sl(end-diff_index:end,:); si(1:end-diff_index-l,:)]; 

else
diff_index_comp = length(t) + diff_index "/make the 

negative shift positive by using the circularity
s2 = [sl(end-diff_index_comp:end,:); si(1:end

diff _index_comp-l,:)] ;
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end
close all;
figure;
imagesc(y,t,B).title(strcat([’B-scan with compensation for ’
num2str(offset) ’ s offset’])),ylabel(’t [s]’),xlabel(’y 
[m]’),colorbar

figure;
imagesc(y,t,point_spread_function).title(’Point spread 
function’),ylabel(’t [s]’),xlabel(’y [m]’),colorbar

orig_result_db = 20*logl0(abs(orig_result)+.001);
sl_db = 20*logl0(abs(sl)+.001);
max_orig = max(max(orig_result_db));
max_sl = max(max(sl_db));

figure;
subplot(1,2,1);imagesc(y,t,orig_result_db,[max_orig-10 
max_orig])»title(’Result without side-shift compensation’) 
subplot(1,2,2);imagesc(y,t,sl_db,[max_sl-10
max_sl]),title(’Result with side-shift compensation’)

7oFor the depth axis we start counting from 2.6 ns (.785 m) , 
after that only 
/.subsurface reflections will be measured and the traveltime 
and depth will have a
/linear dependency. The first 2.6 ns of the deconvolved image 
is cut off and
/a proper depth axes is constructed
7.

time_shift = (z_ground + (z_ground-z_Rx))/3e8; 
shift_index = round((time_shift/t(end))*length(t));

s3 = [s2(shift_index:end,:)] ;

t_compensated = ((t(end))/length(t))*(0:length(s3(:,1))-l);

max_s3 = max(max(20*logl0(abs(s3)))); 
depth_of_image =

(t_compensated(end))*3e8/(sqrt(epsilon)*2);
depth_axes = (0:depth_of_image/(length(s3(:,1))-

1):depth_of_image);
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figure;
imagesc(y,100*depth_axes,20*logl0(abs(s3)+.0001),[max_s3-

10 max_s3]),ylabel(’z [cm]’),xlabel(’y
[m]’),title(strcat([’Deconvolved image (only subsurface) in 
[dB] ’])),colorbar
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psf exact.m

7,This function creates the point-spread function. One scatterer is 
placed
%at the center. For the refraction point calculation the 
approximation
70method is used. Then the left and right side are shifted. R 
coordinates
/«are of refraction point. 0 coordinates are of object in soil 
(relative to ground). R are for
7othe receiving loop. P are for the refraction point. T for the 
Yotransmitter
function B_scan =
psf_exact(t,y,z_ground,ht,epsilon,zr,loss_tangent,depth)

c = 3e8;
mu = 4*pi*10"-7;
e_0 = l/(c"2*mu);

zt = 0; %the coordinate system starts at the tranmitter.
zp = z_ground;
zo = z_ground + depth; y.estimated depth of object (subsurface)
yo = y(end)/2; 7oscatterer in center

7ocalculate minimum number of added zeros (see compensation
for meaningless
y.zeros further on)
min_td = (z_ground + (z_ground-zr))/c + 2*(zo-
z_ground)*sqrt(epsilon)/c;
7othe minimum number of added zeros is when the antenna and
object are directly above eachother.
min_zeros = round(min_td/(t(end))*length(t));

Zomake the psf the same size as raw data
B_scan = zeros(length(t),length(y));
res = zeros(2,length(y));
trans = zeros(2,length(y));

for k=l:length(y) 7oall the antenna positions. At every one
position one A scan is calculated.

clear yp yp2;
yt = y(k);
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’/.Calculate refraction point with, the exact method
’/.First the refraction point between transmitter and 

target

if yt == yo
yp = yt;
yp2 = yt;

else
coeff = zeros(l,5);
coeff(l) = 1-epsilon;
coeff(2) = 2*yt*epsilon+2*epsilon*yo-2*yt-2*yo;
coeff(3) = -(yt~2+zp~2)*epsilon-4*yt*epsilon*yo- 

epsilon*yo~2+yf'2+4*yt*yo+yo~2+(zo-zp)“2;
coeff(4) =

(2*(yt~2+zp“2))*epsilon*yo+2*yt*epsilon*yo~2-2*yt~2*yo-
2*yt*(yo~2+(zo-zp)~2);

coeff (5) = yt~2*(yo~2+(zo-zp)~2)-
(yt~2+zp“2)*epsilon*yo~2;

solutions = roots(coeff); :
for p=l:length(solutions)

if (abs(imag(solutions(p))) <= 0.01)
if(real(solutions(p)) -yo >= -.00001 &&

real(solutions(p)) -yt <= 0.0001)
yp = real(solutions(p));

end
if(real(solutions(p)) -yt >= -.00001 && 

real(solutions(p)) -yo <= 0.0001)
yp = real(solutions(p));

end
end 

end

’/.Now the second refraction point is calculated 
coeff2 = zeros(l,5);
coeff2(l) = 1-epsilon;
coeff2(2) = 2*yt*epsilon+2*epsilon*yo-2*yt-2*yo;
coeff 2 (3) = -epsilon*yo‘'2-4*yt*epsilon*yo-

epsilon*(yt~2+(zp-zr) '"2)+yt~2+4*yt*yo+yo~2+(zo-zp) "'2;
coeff2(4) =

2*yt*epsilon*yo~2+2*epsilon*yo*(yf'2+(zp-zr)~2)-2*yt'"2*yo- 
2*yt*(yo"2+(zo-zp)"2);

coeff 2(5) = yt''2*(yo"2+(zo-zp) "2)- 
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epsilon*yo"2*(yt"2+(zp-zr)“2);

solutions2 =roots(coeff2);
for 1=1:length(solutions2)

if (abs(imag(solutions2(l))) <= 0.01)
if(real(solutions2(l)) -yo >= -.00001 && 

real(solutions2(l)) -yt <= 0.0001)
yp2 = real(solutions2(l));

end
if(real(solutions2(l)) -yt >= -.00001 && 

real(solutions2(l)) -yo <= 0.0001)
yp2 = real(solutions2(l));

end
end

end
end

philtx = atan((yt-yp)/zp);
phi2tx = atan((yo-yp)/(zo-zp));
res(l,k) = (sin(philtx)/sin(phi2tx))"2; “ZFOLLOWS 

SNELL’S LAW
’/.RESULT = EPSILON

philrx = atan((yt-yp2)/(zp-zr));
phi2rx = atan((yo-yp2)/(zo-zp));
res(2,k) = (sin(philrx)/sin(phi2rx))''2; ’/.FOLLOWS 

SNELL’S LAW
’/.RESULT = EPSILON
’/.Calculate first term of 7.57 / 7.59
’/.Calculate refraction point with the approximation 

presented
’/.by Bart Scheers in his doctoral thesis.

’/, yl = (yt - yo)/(zo + z_ground)*zo + yo;
’/. y_rp = yo + (1/sqrt(epsilon))*(yl - yo)

Rt_fs = sqrt(z_ground'‘2 + (yp -yt)'’2);
Rr_fs = sqrt((z_ground-zr)~2 + (yp2 -yt)~2);
Rt_ss = sqrt((zo-zp)"2 + (yo-yp)~2);
Rr_ss = sqrt((zo-zp)“2 + (yo-yp2)~2);
Rt = Rt_fs + Rt_ss;
Rr = Rr_fs + Rr_ss;

’/.compensate for time shift [1024 steps = 1. Ole-8 s ] 
td = ((Rt_fs + Rr_fs)/c) + ((Rt_ss +
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Rr_ss) *sqrt (epsilon)/c); 70time-delay in seconds
td_index = round(td/(t (end))*length(t)) ; 70time-delay in 

index

7owe delete as many zeros as possible. This will 
increase the

7o informat ion in the psf (since the size of the psf is 
fixed

td_index = td_index - min_zeros;

h_comp = [zeros(td_index, 1) ; ht] ; 7othe 300 shifts the 
function up to t = 0 and improves the image

7ocreate impulse response of the ground
d = Rt_ss + Rr_ss;
T_ag = 2*cos(philtx)/(cos(philtx) +

sqrt(epsilon)*cos(phi2tx));
T_ga = 2*sqrt(epsilon)*cos(phi2rx)/(cos(philrx) +

sqrt (epsilon)*cos(phi2rx));
trans(l,k)= T_ag;
trans(2,k)= T_ga;

gd = (d*sqrt(mu*epsilon*e_0)*loss_tangent/2)./(pi*((t-
d*sqrt(mu*epsilon*e_0))."2 +
(d*sqrt(mu*epsilon*e_0)*loss_tangent/2)"2));

7ogd = gd/max(gd)//«normalize
/«Shift gd to actual position
7»fs_shift = round( ((Rt_f s +

Rr_fs)/c)/(t(end))*length(t));
7.THE SHIFT WORKS FINE, BUT IT DECREASED 

THE RESULT. THE
7.ERR0R IS LESS, BUT THAT IS BECAUSE THE

LARGER PART OF THE
/.INFORMATION OF THE PSF IS NOW LOST. THE 

IMAGE DETERIORATES.
7«gd = [zeros(l,fs_shift) gd(l:end-fs_shift)J;

7. if k == length(y)/2
7. figure;
7. plot(t,gd) ,title([’Impulse response of the ground,
epsilon = 5 num2str(epsilon) ’, tan(delta) = ’
num2str(loss_tangent)]),xlabel(’t [s]’)
7. end

First_term =
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T_ag*T_ga*gd/(8*pi~2*Rt*Rr*(c/sqrt(epsilon)));

if length(h_comp) > length(t) 
h_comp = h_comp(l:length(t));

else 
h_comp = [h_comp ; zeros(length(t)- 

length(h_comp),1)];
end
A_scan =conv(First_term,h_comp); ’/.calculate A-scan 
A_scan = A_scan(l:length(t));
B_scan(l:length(A_scan),k) =

B_scan(l :length(A_scan) ,k) + A_scan; ’/.form B-scan 
end 
’/.res 
’/.trans;
7. figure;
7. subplot (1,2,1) , plot (y,trans(1,:)) jXlabel(Jscan-line
[m]’),title(’Transmission coefficient for air to ground interface’) 

7. subplot(1,2,2) , plot(y,trans(2,:)) ,xlabel(’scan-line
[m]’),title(’Transmission coefficient for ground to air interface’)

7.shift the point spread function (reverse the left and right side) 
7, temp = B_scan(: , 1 :round(length(y)/2)) ;
7. temp2= B_scan(: ,round(length(y)/2)+l:end);
7. B_scan = [temp2 temp] ;
’/.point
’/.Take frobenius norm of matrix 
B_scan = B_scan/norm(B_scan,2);
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B.2.2 3D implementation
psf 3D.m

"/.function C_scan = psf_3D(z_ground,zr,) 
clear all 
load MPdataSOcm
load 4targets_prepro_Tx525mm

C = Cpro;
dy =dx;
z_ground =.525;
z_Rx = .265
epsilon =3.03

loss_tangent = 0.08;
c = 3e8;
mu = 4*pi*10"-7;
e_0 = l/(c"'2*mu);

B = squeeze(C(:,:,7));
y=dy*(l:length(B(l,:)));
t = dt*(1:length(B(:,1)));

phis=zeros(2);
eps = □ ;
trans = zeros(2,length(y));
res = zeros(2,length(y));
7.
7. figure;
7. plot (channels)
7.get all the maxima of the system vector at the same position, 
because the
"/.time-delay is already compensated for. The maximum of the 
middle loop channel reponse is chosen to be
"/.point on which all the maxima should occur.
[max_center index_m_center] = max(channels(:,7));
for r=l:length(channels(1,:))

[max_loop index_m_loop] = max(channels(:,r));
diff_max = index_m_center - index_m_loop;

if diff_max >= 0 "/.Perform circular shift
channels(:,r) = [channels(end-diff_max:end,r);

channels(l:end-diff_max-l,r)J;
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else
diff_max_comp = length(channels(: ,r)) + diff_max; ’/.make 

the negative shift positive by using the circularity
channels(:,r) = [channels(end-diff_max_comp:end,r);

channels(l:end-diff_max_comp-l,r)] ;
end

end
7o figure;
% plot(channels)

7omake the psf the same size as raw data
B_sCan = zeros(length(t),length(y));
C_scan = zeros(13,length(t).length(y));

7.DATA FDR CALCULATION REFRECTION POINT
zr = .525; 7orefraction point location is on ground
7oObject data (scatterer put in center of grid at depth of 6 cm.) 
depth =0.06;
yo = y(end)/2;
xo = 0
zo = z_ground + depth;
70Tx data
xt = 0;
zt = 0;
7.Rx data
za = zr-. 265; 7oZ_Rx = . 265

70calculate minimum number of added zeros (see compensation
for meaningless
7oZeros further on)
min_td = (z_ground + (z_ground-z_Rx))/c + ;
2*(depth)*sqrt(epsilon)/c;
7»the minimum number of added zeros is when the antenna and 
object are
7odirectly above eachother (y and x are the same) . This is true for 
the
7omiddle loop when the antenna is at half the mechanical scan 
direction
min_zeros = round(min_td/(t(end))*length(t));
norm_of_all = □ ;
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XHere we start the nested loop for creating the A-scans. First 
loop number 
7,1 etc.
for k=l: length (channels (1, : ))7oall loops

7,Rx data varies per loop
if (k == 7)

xa = 0;
else

xa = -0.42 + (k-l)*0.07;
end
7,the system vector varies per loop.
hl = channels(: ,k) ; 7,don’t normalize because excitation 

voltage information is in there as well
h_short = hl(l:2:length(hl)); 7,adapt channel information to 

new situation where sample rate is halved.
ht = [h_short(350:end)J ; 7.C0RRECTI0N IS CONSTANT 

AND PEAKS ALIGN.

7,Here per loop the mechanical scan direction is walked 
through.

7,Resulting in all the A-scans. ’
for 1=1:length(y)

ya = y(l);
yt = y(l);

7,First the refraction point between Tx and the object 
is

7,calculated
’Refraction point between Tx and Object’;
coeff = zeros(l,5);
if (xo == xt) 

xr = xt; 
coeff (1) = epsilon-1; i ;
coeff(2) = 2*yo+2*yt-2*epsilon*yt-2*epsilon*yo; 
coeff (3) = -zo'‘2+2*z_ground*zo-z_ground~2-

yo~2-4*yt*yo-
yt~2+epsilon*(z_ground"'2+yt"2)+4*epsilon*yo*yt+epsilon*yo"
2;

coeff (4) = 2*(zo"'2- 
2*z_ground*zo+z_ground~2+yo"2)*yt+2*yt~2*yo- 
2*epsilon*yo*(z_ground''2+yt~2)-2*epsilon*yo~2*yt;

coeff (5) = epsilon*yo~2*(z_ground~2+yt~2)-(zo~2- 
2*z_ground*zo+z_ground''2+yo''2) *yt~2;

solutions = roots(coeff);
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Xselect the proper solution 
for p=l:length(solutions)

if (abs(imag(solutions(p))) <= 0.001)
if (yo == yt)

if((real(solutions(p))-yo) < 0.001) 
yr = yo;

end
elseif (yo < yt)

if(real(solutions(p)) -yo >= -.00001 && 
real(solutions(p)) -yt <= 0.0001)

yr = real(solutions(p)); 
end

else
if(real(solutions(p)) -yt >= -.00001 && 

real(solutions(p)) -yo <= 0.0001)
yr = real(solutions(p)); 

end
end 

end
end

°k ’antenna position’
7„ [xt yt zt]
% ’object position’
% [xo yo zo]

refr_point_Tx = [xr yr zr];

7oübject and Tx are in the same y-plane 
elseif (yt == yo)

yr=yo;
coeff(1) = epsilon-1;
coeff(2) = 2*xo+2*xt-2*epsilon*xt-2*epsilon*xo;
coeff (3) = -zo'‘2+2*z_ground*zo-z_ground“2- 

xo''2-4*xt*xo-
xt''2+epsilon*(z_ground~2+xt~2)+4*epsilon*xo*xt+epsilon*xo~ 
2;

coeff(4) = 2*(zo~2-
2*z_ground*zo+z_ground~2+xo~2)*xt+2*xt'’2*xo-
2*epsilon*xo*(z_ground"2+xt~2)-2*epsilon*xo"2*xt ;

coeff (5) = epsilon*xo''2*(z_ground~2+xf'2)-(zo~2- 
2*z_ground*zo+z_ground~2+xo~2)*xt~2;

solutions = roots(coeff);
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’/select the proper solution.
for p=l:length(solutions)

if (abs(imag(solutions(p))) <= 0.001) 
if (xo == xt)

if((real(solutions(p))-yo) < 0.001)
xr = xo;

end
elseif (xo < xt)

if(real(solutions(p)) -xo >= -.00001 &&
real(solutions(p)) -xt <= 0.0001)

xr = real(solutions(p));
end

else
if(real(solutions(p)) -xt >= -.00001 &&

real(solutions(p)) - xo <= 0.0001)
xr = real(solutions(p));

end
end

end
end

7o ’antenna position’
7o [xt yt zt]
7o ’object position’
7. [xo yo zo]

refr_point_Tx = [xr yr zr];

else ’/Most general case target not in same x-plane or 
y-plane

7, yr = - (yt-yo) *xr/xo+yt is used to let the 
polynomial

7. have only one variable (xr)
’/»zr = z_ground;

coeff(1) = (l+(yt-yo)~2/xo~2)~3-(l+(yt-
yo) ~2/xo~2') “S+epsilon;

coeff(2) = -2*(l+(yt-yo)"2/xo"2)~2*epsilon*(-xo- 
(yt-yo)~2/xo)+(l+(yt-yo)~2/xo~2)'2*(-2*xo-2*(yt-yo)~2/xo);

coeff(3) = -zr~2*epsilon*(l+(yt-yo)''2/xo"2)''2-
(1+(yt-yo)~2/xo~2)*epsilon*(-xo-(yt-yo)~2/xo)"2+(1+(yt-
yo) ~2/xo~2)~2*((zr-zo)~2+xo"2+(yt-yo)'2);

coeff(4) = -2*zr~2*epsilon*(-xo-(yt-
yo) ~2/xo)*(l+(yt-yo) ~2/xo''2) ;

coeff (5) = -zr~2*epsilon*(-Xo-(yt-yo)"2/xo)''2;
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solutions = roots(coeff);

Xselect the proper solution 
for p=l:length(solutions)

if (abs(imag(solutions(p))) <= 0.001) 
if (xo == xt)

if((real(solutions(p))-yo) < 0.001) 
xr = xo;

end 
elseif (xo < xt)

if(real(solutions(p)) -xo >= -.00001 && 
real(solutions(p)) -xt <= 0.0001)

xr = real(solutions(p)); 
end

else
if(real(solutions(p)) -xt >= -.00001 &&

real(solutions(p)) - xo <= 0.0001) 1
xr = real(solutions(p));

end 
end

end 
end
yr = -(yt-yo)*xr/xo+yt;

% ’antenna position’
X [xt yt zt]
X ’object position’
X [xo yo zo]

refr_point_Tx = [xr yr zr];

end

XNow the refraction point from the object to the
receiving loop

coeff_Rx = zeros(l,5);
’Refraction point between Object and Rx’;

if (xa == xo) XObject in same x-plane as receiving

xa = round(100*xa); °4 This is done to eliminate a
rounding error.

xo = round(100*xo);
xa = xa/100;
xo = xo/100;
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loop (Different implementation than in notebook!) 
xr = xa;

coeff_Rx(l) = 1-epsilon;
coeff_Rx(2) = 2*epsilon*yo+2*epsilon*ya.-2*ya- 

2*yo;
coeff_Rx(3) = -epsilon*yo''2-4*epsilon*yo*ya- 

epsilon* ((za) ~2+ya~2) +ya~2+4*ya*yo+ (zo-zr) ■'2+yo"2;
coeff_Rx(4) =

2*epsilon*yo'‘2*ya+2*epsilon*yo* ((za) ~2+ya~2) -2*ya'‘2*yo-
2*ya* ((zo-zr) ,'2+yo~2);

coeff_Rx(5) = ya"2* ((zo-zr)'‘2+yo''2)-
epsilon*yo~2*((za)"2+ya~2);

solutions_Rx = roots(coeff_Rx);

“Xselect the proper solution 
for p=l:length(solutions_Rx)

if (abs(imag(solutions_Rx(p))) <= 0.001) 
if (yo == ya)

if((real(solutions_Rx(p))-yo) < 0.001) 
yr_Rx = yo;

end 
elseif (yo < ya)

if(real(solutions_Rx(p)) -yo >= -.00001
&& real(solutions_Rx(p)) -ya <= 0.0001) 

yr_Rx = real(solutions_Rx(p)); 
end

else

if(real(solutions_Rx(p)) -ya >= -.00001
&& real(solutions_Rx(p)) -yo <= 0.0001) 

yr_Rx = real(solutions_Rx(p)); 
end

end 
end 

end
7. xr
7o yr_Rx
7o ’antenna position’
“Z [xa ya .265]
7o ’object position’
“Z [xo yo zo]

refr_point_Rx = [xr yr_Rx zr];
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elseif (yo == ya) 7oObject in same y-plane as 
receiving loop 

yr = ya;
"/Different structure in these equations the height 

from
70the antenna to the ground is expressed

coeff_Rx(l) = 1-epsilon;
coeff_Rx(2) = 2*epsilon*xo+2*epsilon*xa-2*xa- 

2*xo;
coeff_Rx(3) = -epsilon*xo~2-4*epsilon*xo*xa- 

epsilon*((za)"2+xa~2)+xa"2+4*xa*xo+(zo-zr)~2+xo~2;
coeff_Rx(4) =

2*epsilon*xo~2*xa+2*epsilon*xo*((za)~2+xa~2)-2*xa''2*xo- 
2*xa*((zo-zr)~2+xo*2);

coeff_Rx(5) = xa'’2*( (zo-zr) ~2+xo~2)- 
epsilon*xo~2*((za)~2+xa~2);

solutions_Rx = roots(coeff_Rx);

"/select the proper solution 
for p=l:length(solutions_Rx)

if (abs(imag(solutions_Rx(p))) <= 0.001) 
if (xo == xa)

if((real(solutions_Rx(p))-xo) < 0.001) 
xr_Rx = xo;

end 
elseif (xo < xa)

if(real(solutions_Rx(p)) -xo >= -.00001 
&& real(solutions_Rx(p)) -xa <= 0.0001)

xr_Rx = real(solutions_Rx(p)); 
end 

else

if(real(solutions_Rx(p)); - xa >= -.00001 
&& real(solutions_Rx(p)) - xo <= 0.0001)

xr_Rx = real(solutions_Rx(p)); 
end 

end 
end 

end 
"/ xr_Rx
"/ yr
7, ’antenna position’
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°/t [xa ya .265]
7, ’object position’
7. [xo yo zo]

refr_point_Rx = [xr_Rx yr zr];

else 7oinost general case. Object and receiving loop 
not in the same plane.

coeff_Rx(l) = (1+(ya-yo)''2/(xa-xo) ~2)~3-(l+(ya- 
yo) "2/(xa-xo)"2)~3*epsilon;

coeff_Rx(2) = -(-2*xa-2*(ya-yo)‘2*xa/(xa- 
xo) ~2)*epsilon*(1+(ya-yo)“2/(xa-xo)~2)~2-2*(1+(ya-yo) ''2/(xa- 
xo) ~2) '"2*epsilon* (-xo+(- (ya-yo) *xa/ (xa-xo )+ya-yo) * (ya- 
yo) / (xa-xo))+2*(-xa-(ya-yo)"2*xa/(xa-xo)"2)*(1+(ya-yo)"2/(xa- 
xo) "2)~2+(1+(ya-yo)"2/(xa-xó)"2)"2*(-2*xo+2*(-(ya- 
yo) *xa/(xa-xo)+ya-yo)*(ya-yo)/(xa-xo));

coeff_Rx(3) = - (xa“2+za~2+(ya-yo) ~2*xa'~2/(xa- 
xo) "2) *epsilon* (1+ (ya-yo) "2/ (xa-xo) '’2) '2-2* (-2*xa-2* (ya- 
yo) “2*xa/(xa-xo)"2)*epsilon*(-xo+(-(ya-yo)*xa/(xa-xo)+ya- 
yo)*(ya-yo)/(xa-xo))*(1+(ya-yo)"2/(xa-xo)"2)-(1+(ya-yo)"2/(xa- 
xo) '‘2) *epsilon* (~xo+ (- (ya-yo) *xa/ (xa-xo) +ya-yo) * (ya-yo) / (xa- 
xo) ) “2+ (-xa- (ya-yo) ~2*xa/ (xa-xo) ''2) '"2* (1+(ya-yo) “2/(xa- 
xo) ~2)+2*(-xa-(ya-yo)~2*xa/(xa-xo)~2)*(1+(ya-yo)"2/(xa- 
xo) ~2)*(-2*xo+2*(-(ya-yo)*xa/(xa-xo)+ya-yo)*(ya-yo)/(xa- 
xo) )+( 1+ (ya-yo)"2/(xa-xo)*2)~2*(xo~2+(zr-zo)~2+(-(ya- 
yo) *xa/ (xa-xo) +ya-yo) '‘2);

coeff_Rx(4) = -2*(xa~2+za~2+(ya-yo)~2*xa~2/(xa- 
xo) '‘2)*epsilon*(-xo+(-(ya-yo)*xa/(xa-xo)+ya-yo)*(ya-yo)/(xa- 
xo) ) * ( 1+ (ya-yo) ~2/ (xa-xo) ~2) - (-2*xa-2* (ya-yo) ‘'2*xa/ (xa- 
xo) ~2)*epsilon*(-xo+(-(ya-yo)*xa/(xa-xo)+ya-yo)*(ya-yo)/(xa- 
xo) ) "2+ (-xa- (ya-yo) ~2*xa/ (xa-xo) '"2) ~2* (-2*xo+2* (-(ya- 
yo) *xa/(xa-xo)+ya-yo)*(ya-yo)/(xa-xo))+2*(-xa-(ya- 
yo) ~2*xa/ (xa-xo) "2) * (1+ (ya-yo) '’2/ (xa-xo) "2) * (xo~2+ (zr- 
zo) “2+(-(ya-yo)*xa/(xa-xo)+ya-yo)"2);

coeff_Rx(5) = (-xa-(ya-yo)~2*xa/(xa- 
xo) ~2)~2*(xo~2+(zr-zo)~2+(-(ya-yo)*xa/(xa-xo)+ya-yo)"2)- 
(xa''2+za~2+ (ya-yo) ~2*xa~2/ (xa-xo) ~2) *epsilon* (-xo+ (- (ya- 
yo )*xa/(xa-Xo)+ya-yo)*(ya-yo)/(xa-xo))'2;

solutions_Rx = roots(coeff_Rx);
7oselect the proper solution 
for p=l:length(solutions_Rx) 

if (abs(imag(solutions_Rx(p))) <= 0.001)
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if (xo == xa)
if((real(solutions_Rx(p)^xo) < 0.001) 

xr_Rx = xo;
end

elseif (xo < xa)
if(real(solutions_Rx(p)) -xo >= -.00001 

&& real(solutions_Rx(p)) -xa <= 0.0001)
xr_Rx = real(solutions_Rx(p));

end 
else

if(real(solutions_Rx(p)) - xa >= -.00001 
&& real(solutions_Rx(p)) - xo <= 0.0001)

xr_Rx = real(solutions_Rx(p));.
end 

end 
end 

end

yr = (ya-yo)*(xr_Rx-xa)/(xa-xo)+ya;

7. ’antenna position’
7o [xa ya .265]
7. ’object position’
7. [xo yo zo]

refr_point_Rx = [xr_Rx yr zr]; 
end

7»Calculation of snells law of refraction point Tx
dist_Tx_object = sqrt((xo-xt)~2 + (yo-yt)"2); 7oOn the 

ground
dist_Rp_object = sqrt((xo-refr_point_Tx(l))~2 + 

(refr_point_Tx(2) - yo)~2);
dist_Tx_Rp = dist_Tx_object - dist_Rp_object;
phis(l,l) = atan(dist_Tx_Rp/zr);
phis(l,2) = atan(dist_Rp_object/(zo-zr)) ;

if (sin(phis(l,1)) == 0 && sin(phis(1,2)) == 0)
’Epsilon from 1st refraction point can not be 

determined from angles, because phil = phi2 = 0 degrees’; 
else

eps = [eps (sin(phis(l,l))/sin(phis(l,2))),'2] ; 
end
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determined from angles, because phil = phi2 = 0 degrees’;

^calculation of snells law of refraction point Rx 
dist_Rx_object = sqrt ((xo-xa)''2 + (yo-ya)~2); 7,on

the ground
dist_Rp_object2 = sqrt((xo-refr_point_Rx(l))"2 +

(refr_point_Rx(2) - yo)~2);
dist_Rx_Rp = dist_Rx_object - dist_Rp_object2;
phis(2,l) = atan(dist_Rx_Rp/(za));
phis(2,2) = atan(dist_Rp_object2/(zo-zr));

if (sin(phis(2,1)) == 0 && sin(phis(2,2)) == 0)
’Epsilon from 2nd refraction point can not be

else
eps = [eps (sin(phis(2,l))/sin(phis(2,2)))"2]; 

end

7oNow the refraction points have been calculated and 
7overified
xpl = refr_point_Tx(l);
xp2 = refr_point_Rx(l);
ypl = refr_point_Tx(2);
yp2 = refr_point_Rx(2);

70calculate distances (again) . This is also done 
70previously but this is done for easy of programming

rest
7oOf psf
Rt_fs = sqrt((xt-xpl)~2 + (yt-ypl)~2 + (z_ground)~2);
Rr_fs = sqrt((xa-xp2)~2 + (ya-yp2)"2 + (za)~2);
Rt_ss = sqrt((xo-xpl)~2 + (yo-ypl)~2 + (depth)~2);
Rr_ss = sqrt((xo-xp2)~2 + (yo-yp2)"2 + (depth)"2);
Rt = Rt_fs + Rt_ss;
Rr = Rr_fs + Rr_ss;

philtx = phis(l,l);
phi2tx = phis(1,2);
philrx = phis(2,1);
phi2rx = phis(2,2);

Zocompensate for time shift [1024 steps = 1. Ole-8 s ], 
td = ((Rt_fs + Rr_fs)/c) + ((Rt_ss +

Rr_ss)*sqrt(epsilon)/c); Ztime-delay in seconds
td_index = round(td/(t (end) ) *length(t) ) ; 7otime-delay
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in index

'/owe delete as many zeros as possible. This will 
increase the

"/«information in the psf (since the size of the psf is 
fixed

td_index = td_index - min_zeros;
h_comp = [zeros(td_index,1) ; ht];

’/calculate transmission coefficients and impulse 
response of the ground

d = Rt_ss + Rr_ss;
T_ag = 2*cos(philtx)/(cos(philtx) + 

sqrt(epsilon)*cos(phi2tx));
T_ga = 2*sqrt(epsilon)*cos(phi2rx)/(cos(philrx) + 

sqrt(epsilon)*cos(phi2rx));
trans(1,1)= T_ag;
trans(2,l)= T_ga;

gd =
(d*sqrt(mu*epsilon*e_0)*loss_tangent/2)./(pi*((t- 
d*sqrt(mu*epsilon*e_0))."2 +
(d*sqrt(mu*epsilon*e_0)*loss_tangent/2)“2));

First_term =
T_ag*T_ga*gd/(8*pi"2*Rt*Rr*(c/sqrt(epsilon)));

if length(h_comp) > length(t) 
h_comp = h_comp(l:length(t));

else
h_comp = [h_comp ; zeros(length(t)- 

length(h_comp),1)];
end
A_scan =conv(First_term,h_comp); ’/calculate A- 

scan
A_scan = A_scan(l:length(t));
B_scan(l:length(A_scan) , 1) = A_scan; ’/form B-scan 

end 
°/norm_of_all = [norm_of_all norm(B_scan,’fro’)] ;
°/B_scan = B_scan/norm(B_scan,’fro’);
C_scan(k,:,:) = B_scan; 

end
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C_scan_diff = zeros(size(C_scan));
C_scan_diff(:,2:end,:) = diff(C_scan,1,2); 
C_scan = C_scan_diff;

7oNow all the B-scans are made. The interpolation needs to be 
done, with a
x_vector = -42:42; ’/.the array has a width of 84 cm and a
resolution of 1 cm is required.
’start of interpolation’
save 13_loops C_scan;
clear all;
load 13_loops

tic;
interp_psf = inter_3D(C_scan);
toe;

manual_norm = sqrt(sum(sum(sum(interp_psf.~2))));
interp_psf = interp_psf/manual_norm;
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deconv perpsf.m

7oTh.is script creates the point spread function for a sub-surface 
scenario
“/«with the following geometry.

7oZ_Tx=O - height of Transmitter (origin of coordinate system)
7oZ_Rx=O.27 m - position of Receiver with respect to Tx
70y - mechanical scan direction, [0, 60] cm

70z_target - .608 m m with respect to Tx
70Time of B-scan = 9.7752e-012s per step. 1024 steps gives
1.0010e-008 total
7ot ime
7oMechanical scan direction 0.0024 m per step. 410 steps gives 
.9840 m
7,THIS FUNCTION CALCULATES THE FILTER RESULT
AND SHIFTS IT ACCORDINGLY IN
7.THE T AND Y DIMENSION.
function si =
deconv_perpsf(C_int,point_spread_function,ER_threshold)

point_spread_function = shiftdim(point_spread_function,1);
7opropabably because of implementation of (i)fft3
C_int = shiftdim(C_int,1);

7.T0 FREQUENCY DOMAIN
f_psf = fft3(point_spread_function);
f_raw = fft3(C_int);

7.I NITIATE ENERGY RATIOS
Energy_ratio = 0;

7oThe energy of the raw data is fixed
norm_raw = sqrt(sum(sum(sum(C_int.~2))));

7.S TART AT MIDDLE, THIS WILL MOST LIKELY HAVE A
RESULT AND THEREFORE A GOOD
7,ESTIMATE FOR THE REGULARIZATION PARAMETER

SNR_db = -27;

’start of WIENER filter’
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7. tic;
"Zwiener filter
SNR = 10"(SNR_db/20);
wif = conj(f_psf)./((conj(f_psf).*f_psf)+ 1/SNR);
f3= wif.*f_raw;
"Zresult back to time domain 
sl=real(ifft3(f3));

"ZCalculate ’Quality parameters’ first Energy_ratio

norm_res = sqrt(sum(sum(sum(sl.~2))));
norm_psf = sqrt(sum(sum(sum(point_spread_function.~2))));

Energy_ratio = norm_res/norm_raw*100;

if (Energy_ratio < ER_th.reshold)

while (Energy_ratio < ER_threshold)
SNR_db = SNR_db +1;
SNR = 10“(SNR_db/20);
wif = conj(f_psf)./((conj(f_psf).*f_psf)+ 1/SNR); 
f3= wif.*f_raw;

“Zresult back to time domain 
sl=real(ifft3(f3));

“ZCalculate ’Quality parameters’ first Energy_ratio 
norm_res = sqrt(sum(sum(sum(sl.“2)))); 
norm_psf =

sqrt(sum(sum(sum(point_spread_function.“2))));

Energy_ratio = norm_res/norm_raw*100; 
end 

else
while (Energy_ratio > ER_threshold)

SNR_db = SNR_db - 1;
SNR = 10“(SNR_db/20);
wif = conj(f_psf)./((conj(f_psf).*f_psf)+ 1/SNR);
f3= wif.*f_raw;

“/result back to time domain 
sl=real(ifft3(f3));

“ZCalculate ’Quality parameters’ first Energy_ratio 
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norm_res = sqrt(sum(sum(sum(sl.“2)))); 
norm_psf =

sqrt (sum(sum(sum(poiiit_spread_fuiiction. ~2))));

Energy_ratio = norm_res/norm_raw*100; 
end 

end
70Now the error. First reconstruct the raw data from the result 
and the 
7«psf.
allData = real(ifft3(f3.*f_psf));
7o Difference between the original and reconstructed data as 
error,
7. calculated for every x
norm_of_difference = sqrt(sum(sum(sum((C_int - allData)."2)))); 
norm_allData = sqrt(sum(sum(sum(allData.''2))));

error = 100*norm_of_difference/(norm_raw + norm_allData); 
7o toe;

SNR_db
Energy_ratio 
error

107



comb deconv.m

°/0Su.perscript that calls calculates all 13 filter results and 
combines them.

clear all;
load test_data_subsurf;

t = dt*(l:length(C(:,1,1))) ;
t_orig = t;
y=dy*(1:length(C(l,:,1))) ;
x=(-42:42);

XCompensate offset CHECKED RAW DATA HAS CORRECT
TIME-SCALE
for loopcounter=l:length(C(1,1,:))

B = squeeze(C(:,:,loopcounter));
offset = Tzero(loopcounter); Xoffset in B-scan 
offset_index = round(offset/t(end)*length(t));
C(.loopcounter) =[B(offset_index:end,:) ;

zeros (of fset_index-l,length(y))] ;70Keep same size 
end

7oNull the first part
C(l:350,:,:) = zeros(350,410,13);

’/interpolate the C-scans
C = shiftdim(shiftdim(C, 1) , 1) ; ’/the same orientation as the 
point-spread function 
C_int = inter_3D(C);
save raw C_int;

ER_threshold = 5;
save ER ER_threshold;

’/Here the 13 deconvolutions are performed.
’/This complicated load, save and clear structure is needed to 
avoid Memory 
’/problems.
’Filter 1/13’
load raw;
load 3Dpsf_minO42;
load ER;
s01= deconv_perpsf(C_int,interp_psf_min042,ER_threshold); 
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save resultl sOl; 
clear all 
’Filter 2/13’ 
load raw;
load 3Dpsf_min035;
load ER;
s02= deconv_perpsf(C_int,interp_psf_min035,ER_threshiold); 
save result2 s02;
clear all 
’Filter 3/13’ 
load raw;
load 3Dpsf_min028;
load ER;
s03= deconv_perpsf(C_int,interp_psf_min028,ER_threshold); 
save results s03;
clear all 
’Filter 4/13’ 
load raw;
load 3Dpsf_minO21;
load ER;
s04= deconv_perpsf(C_int,interp_psf_min021,ER_threshold); 
save result4 s04;
clear all 
’Filter 5/13’ 
load raw;
load 3Dpsf_miii014;
load ER;
s05= deconv_perpsf(C_int,interp_psf_min014,ER_threshold); 
save results s05;
clear all 
’Filter 6/13’ 
load raw;
load 3Dpsf_inin007;
load ER;
s06= deconv_perpsf(C_int,interp_psf_niin007,ER_threshold); 
save result6 s06; 
clear all

’Filter 7/13’ 
load raw;
load 3Dpsf_0;
load ER;
s07= deconv_perpsf(C_int,interp_psf_0,ER_threshold); 
save result7 s07;
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clear all

’Filter 8/13’ 
load raw;
load 3Dpsf_plus007;
load ER;
s08= deconv_perpsf(C_int,interp_psf_plus007,ER_thresh.old); 
save results s08; 
clear all 
’Filter 9/13’ 
load raw;
load 3Dpsf_plusO14;
load ER;
s09= deconv_perpsf(C_int,interp_psf_plus014,ER_tlireshold) ; 
save result9 s09;
clear all 
’Filter 10/13’ 
load raw;
load 3Dpsf_plusO21;
load ER;
sl0= deconv_perpsf(C_int,interp_psf_plus021,ER_threshold) ; 
save result10 slO; 
clear all 
’Filter 11/13’ 
load raw;
load 3Dpsf_plusO28;
load ER;
sll= deconv_perpsf(C_int,interp_psf_plus028,ER_threshold); 
save resultll sll; 
clear all 
’Filter 12/13’ 
load raw;
load 3Dpsf_plus035;
load ER;
sl2= deconv_perpsf(C_int,interp_psf_plus035,ER_threshold); 
save resultl2 sl2;
clear all 
’Filter 13/13’ 
load raw;
load 3Dpsf_plusO42;
load ER;
sl3 = deconv_perpsf (C_int, interp_psf _plus042,ER_tliresh.old); 
save resultlS sl3;
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clear all 

load resultl; 
load result2; 
load results; 
load result4; 
load results; 
load results; 
load result?; 
load results; 
load result9; 
load resultlO; 
load resultll; 
load resultl2; 
load resultlS;

’/.WEIGHTING FACTORS. The results (in signal level) are 
multiplied with the
“/.highest norm and divided by their own norm. The Weaker 
norms will
’/.therefore be compensated.
load all_norms;
min_norms = [manual_norm_min042 manual_norm_min035
manual_norm_min028 manual_norm_min021
manual_norm_min014 manual_norm_min007 manual_norm_0];
plus_norms = [manual_norm_plus042 manual_norm_plus035 
manual_norm_plus028 manual_norm_plus021 
manual_norm_plus014 manual_norm_plus007] ;
max_of_norms = max([min_norms plus_norms]);

sOl = -s01*max_of_norms/manual_norm_min042;
s02 = -s02*max_of_norms/manual_norm_min035;
s03 = -s03*max_of_norms/manual_norm_min028;
s04 = -s04*max_of_norms/manual_norm_min021;
s05 = -s05*max_of_norms/manual_norm_min014;
s06 = -s06*max_of_norms/manual_norm_min007;

s07 = -s07*max_of_norms/manual_norm_0;

s08 = -s08*max_of_norms/manual_norm_plus007;
s09 = -s09*max_of_norms/manual_norm_plus014;
slO = -sl0*max_of_norms/manual_norm_plus021;
sll = -sll*max_of_norms/manual_norm_plus028;
sl2 = -sl2*max_of_norms/manual_norm_plus035;
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sl3 = -sl3*max_of_norms/manual_norin_plus042;

70Perform all necessary shifts. Y_SHIFT = Half the mechanical 
scan direction. The
"/.calculated x_shift and the determined t_shift
7,X_SHIFT
7.calculate shift in x-direction. It seems it has always this
7oform 42 + xo (object location in psf) + 3.5
x_vec = -42:7:42;
x_circ_shift = 42 + x_vec;
7.T_SHIFT
shift_01 = 189-65; 7.189-66; 7.189 is maximum in C, 66 is 2nd
maximum in result sOl & sl2. The shifts are symmetrical
shift_02 = 189-73; 7.189-74;
shift_03 = 189-78; 7.189-79;
shift_04 = 189-83:7.189-84;
shift_05 = 189-86:7.189-87;
shift_06 = 189-88;7.189-89;
shift_07 = 189-89;
shift_08 = 189-88;
shift_09 = 189-86;
shift_10 = 189-82;
shift_ll = 189-77;
shift_12 = 189-70;
shift_13 = 189-62;

/.perform the shifts
sOl = circshift(s01, [shift_01 round(length(s01(l,:,l))/2) 
x_circ_shift(1)+1]);
s02 = circshift(s02,[shift_02 round(length(s01(1,:,1))/2) 
x_circ_shift(2)+l]);
s03 = circshift(s03, [shift_03 round(length(s01(1,:,1))/2) 
x_circ_shift(3)+l]);
s04 = circshift(s04,[shift_04 round(length(s01(l,:,l))/2) 
x_circ_shift(4)+l]);
s05 = circshift(s05,[shift_05 round(length(s01(l,:,l))/2) 
x_circ_shift(5)+l]);
s06 = circshift(s06,[shift_06 round(length(s01(1,:,l))/2) 
x_circ_shift(6)+l]);
s07 = circshift(s07,[shift_07 round(length(s01(1,:,1))/2) 
x_circ_shift(7)+l]);
s08 = circshift(s08,[shift_08 round(length(s01(1,:,1))/2) 
x_circ_shift(8)+1]);
s09 = circshift(s09,[shift_09 round(length(s01(l,:,l))/2) 
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x_circ_sh.ift(9)+l]);
slO = circshift(slO,[shift_10 round(length(s01(1,:,l))/2) 
x_circ_shift(10)+l]);
sll = circshift(sll,[shift_ll round(length(sOl(1,:,1))/2) 
x_circ_shift(ll)+l]);
sl2 = circshift(sl2,[shift_12 round(length(s01(1,:,1))/2) 
x_circ_shift(12)+l]);
sl3 = circshift(sl3,[shift_13 round(length(s01(l,:,l))/2) 
x_circ_shift(13)+l]);
% NOW ALL THE RESULTS ARE PROPERLY WEIGHTED
AND SHIFTED. ALL THAT NEEDS TO
7. BE DONE IS TO COMBINE THE 12 RESULTS TO 1
RESULT.
7.
7.
7o combine all relevant parts of the filter results to one C-scan 
without
7» overlap.
sl_comb = zeros(size(sOl));

sl_comb(:,:; ,1:4) = s01(:,::,1:4);
sl_comb(:,:: ,5:11) = s02(:,::,5:11);
sl_comb(:,::,12:18) = s03(:,::,12:18);
sl_comb(:,::,19:25) = s04(:,::,19:25);
sl_comb(:,::,26:32) = s05(: , ::,26:32);
sl_comb(:,::,33:39) = s06(:,::,33:39) ;
sl_comb(:,::,40:46) = s07( : , ::,40:46);
sl_comb(:,::,47:53) = s08(: , ::,47:53);
sl_comb(:, ::,54:60) = s09 (:, ::,54:60);
sl_comb(:,::,61:67) = slO(:,::,61:67);
sl_comb(:,::,68:74) = sll(:, :,68:74);
sl_comb(:, :,75:81) = sl2(:, :,75:81);
sl_comb(:, :,82:85) = sl3(:, :,82:85);

7. WITH VARIABEL OVERLAP, 1=0 GIVES PRACTICALLY
NO OVERLAP
sl_comb_over = zeros (size (sOl));
i=7;
sl_comb_over(:,:,1:1+i-l) = sl_comb_over(:,:,1:1+i-l) +
sOl(:,:,1:1+i-l);
sl_comb_over(:,:,8-i:8+i-l) = sl_comb_over(:,:,8-i:8+i-l) + 
s02(:,:,8-i:8+i-l) ;
sl_comb_over(:,:,15-i:15+i-l) = sl_comb_over(:,:,15-i:15+i-l) + 
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s03(:,15-i:15+i-l);
sl_comb_ovér(:,:,22-i:22+i-l) = sl_comb_over(:,:,22-i:22+i-l) +
s04(:,:,22-i:22+i-l);
sl_cömb_over(:,:,29-i:29+i-l) = sl_comb_over(:,:,29-i:29+i-l) + 
s05(:,:,29-i:29+i-l);
sl_comb_over(:,:,36-i:36+i-l) = sl_comb_over(:,:,36-i:36+i-l) + 
s06(:,:,36-i:36+i-l);
sl_comb_over(:,:,43-i:43+i-l) = sl_comb_over(:,:,43-i:43+i-l) + 
s07(:,:,43-i:43+i-l);
sl_comb_over(:,:,50-i:50+i-l) = sl_comb_over(:,:,50-i:50+i-l) + 
s08(:,:,50-i:50+i-l);
sl_comb_over(:,:,57-i:57+i-l) = sl_comb_over(:,:,57-i:57+i-l) +
s09(:,:,57-i:57+i-l);
sl_comb_over(:,:,64-i:64+i-l) = sl_comb_over(:,:,64-i:64+i-l) + 
slO(:,:,64-i:64+i-l);
sl_comb_over(:,:,71-i:71+i-l) = sl_comb_over(:,:,71-i:71+i-l) +
sll(:,:,71-i:71+i-l);
sl_comb_over(:,:,78-i:78+i-l) = sl_comb_over(:,:,78-i:78+i-l)
+ sl2(:,:,78-i:78+i-l);
sl_comb_over(:,:,85-i:85) = sl_comb_over(:,:,85-i:85) +
sl3(:,:,85-i:85);

7ofull all three
sl_full = sOl + s02 + s03 +s04 + s05 + s06 + s07 + s08 + s09 + ' 
slO + sll + sl2 + sl3;

“/owindow projection, window size = 50 ‘/„FULL gives no result, 
7oComb_withoverlap gives two targets, side weaker. No overlap 
gives 2
"Ztargets, but side-target has bad shape.
sum_window = zeros(size(squeeze(sl_full(l,:,:))));
sum_window_over = zeros(size(squeeze(sl_full(l,:,:))));
sum_window_full = zeros(size(squeeze(sl_full(1,:,:)))); 
window_size = 23
7,WEP
7o ’wep’
7. for p=l:103
% for q=l:85
7. wind_result = [] ;
7o wind_result_overlap = □ ;
7, wind_result_full = [] ;
7o for slide = window_size+l :512
7o wind_result = [wind_result; sum(sl_comb((slide-
window_size) :slide,p,q) ."'2)] ;
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°k wind_result_overlap = [wind_result_overlap;
sum(sl_comb_over((slide-window_size):slide,p,q)."2)1 ;
7. wind_result_full = [wind_result_full;
suin(sl_full((slide-window_size):slide,p,q)."2)1 ;
7, end;
7, sum_window (p, q) = max (wind_re suit);
7, sum_window_over(p,q) = max(wind_result_overlap);
% sum_window_fuil(p,q) = max(wind_result_full);
7o end;
7. end;

7oASWEP, first is negative, rest is positive 
’aswep’
q_z = ones(l,window_size);
q_z(l:12) = -l*q_z(l:12);
for p=l:103

for q=l:85
wind_result = □ ;
wind_result_overlap = [] ;
wind_result_full = [] ;
for slide = window_size+l:512

7oWind_result = [wind_result; (q_z*sl_comb( (slide- 
window_size):slide-1,p,q)).“2] ;

wind_result = [wind_result; (q_z*sl_comb((slide- 
window_size):slide-1,p,q)).~2];

wind_result_overlap = [wind_result_overlap;
(q_z*sl_comb_over((slide-window_size):slide-1,p,q))."2];
7. wind_result_full =
[wind_result_full;(q_z*sl_full((slide-window_size):slide- 
l,p,q))."2 ];

end;
sum_window(p,q) = max(wind_result);
sum_window_over(p,q) = max(wind_result_overlap);

7o sum_window_full(p,q) = max(wind_result_full) ;
end;

end;

sum_window2 = sum_window;
sum_window2 = medf ilt2(sum_window, [6 6]); 7onot bigger than
6, not smaller than 5
sum_window_over = medfilt2(sum_window_over,[6 6]);

7oconvert to log
sl_full = 20*logl0(abs(sl_full)+0.001);
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sum_win.dow_db = 20*logl0(sum_window2+0.OOI);
sum_window_over_db = 20*logl0(sum_window_over+0.OOI);

7o sum_window_over = 20*logl0(sum_window_over+0.001);
% suiii_window_full = 20*logl0(sum_window_full+0.001);

“/«maxima
max_sum_window = max(max(suiii_window_db)) ;
max_suni_window_over = max(max(suni_wiiidow_over_db) ) ;
% max_sum_window_full = max(max(suin_window_full));

7otoc;
% load data again just to get nice axes
load test_data_subsurf;
t = dt*(1:length(C(:,1,1)));
t_orig = t;
y=dy*(1:length(C(l,:,1)));
x=(-42:42);

% close all; DO NOT USE OVERLAP, USE WINDOW IS 23
WITH ASWEP AND MEDIAN
% FILTERING WITH 6
f igure;imagesc(x,100*y,sum_window_db-max_sum_window,[-
20 0]).colorbar,title(’ASWEP Deconvolution result [dB]’) 
70figure;imagesc(x, 100*y,sum_window_over_db, [max_sum_win 
dow_over-20 max_sum_window_over]),colorbar,title(’Top down 
projected deconvolution result’)
’/«figure; imagesc (sum_window_over_db, [max_sum_window_ov 
er-10 max_sum_window_over]),colorbar
7.
f igure;imagesc(x,100*y,sum_window_full,[max_sum_window_f 
ull-10 max_sum_window_full]),colorbar

figure;imagesc(sl_sum_no_overlap,[sl_sum_no_overlap_max-
10 sl_sum_no_overlap_max]),colorbar
7« 7c figure;imagesc(sl_sum_comb, [sl_sum_comb_max-10 
sl_sum_comb_max]),colorbar
7o 7c figure;imagesc(sl_sum_full, [sl_sum_full_max-10 
sl_sum_full_max]),colorbar
7c figure;imagesc(sum_window, [max_sum_window-10 
max_sum_window]),colorbar
7c figure;imagesc(sum_window_over,[max_sum_window_over-
10 max_sum_window_over]),colorbar
7c figure;imagesc(sum_window_full,[max_sum_window_full-10 
max_sum_window_full]),colorbar
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7, 7t for e=l:30 7oO21 good starting value
% 7.
figure;imagesc(squeeze(sl_comb_over(175+e,[max_sl_com
b_over-10 max_sl_comb_over]),xlabel(’x [cm]’),ylabel(’y
[cm]’).title(’Deconvolution result seperated psfs [dB]’).colorbar; 

7o 7o end;
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inter 3D.m

"Zthis function, interpolates the 13 (synthetic) B-scans of all the 
loops

function C_scan_int = inter_3D(All_B)

7oFor memory reasons the C_scans resolution is reduced.
A11_B =
A11_B(1:2:length(A11_B(11)),1:4:length(All_B(l,1,:)));

Delta_x = 0.01

[xi,yi,zi] =
meshgrid(1:length(A11_B(1,:,1)),1:1/7:13,1:length(A11_B(1,1.:)));
7.
7owe give a resolution of 1/7 between the loops. Corresponding 
to 1 cm.

C_scan_int = interp3(All_B,xi,yi,zi,’linear’); 70the interpolation 
works
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