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Isotropic-nematic phase equilibria of hard-sphere chain fluids—Pure
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The isotropic-nematic phase equilibria of linear hard-sphere chains and binary mixtures of them
are obtained from Monte Carlo simulations. In addition, the infinite dilution solubility of hard
spheres in the coexisting isotropic and nematic phases is determined. Phase equilibria calculations
are performed in an expanded formulation of the Gibbs ensemble. This method allows us to carry out
an extensive simulation study on the phase equilibria of pure linear chains with a length of 7 to 20
beads (7-mer to 20-mer), and binary mixtures of an 8-mer with a 14-, a 16-, and a 19-mer. The effect
of molecular flexibility on the isotropic-nematic phase equilibria is assessed on the 8-mer+19-mer
mixture by allowing one and two fully flexible beads at the end of the longest molecule. Results for
binary mixtures are compared with the theoretical predictions of van Westen et al. [J. Chem. Phys.
140, 034504 (2014)]. Excellent agreement between theory and simulations is observed. The infinite
dilution solubility of hard spheres in the hard-sphere fluids is obtained by the Widom test-particle
insertion method. As in our previous work, on pure linear hard-sphere chains [B. Oyarzún, T.
van Westen, and T. J. H. Vlugt, J. Chem. Phys. 138, 204905 (2013)], a linear relationship between
relative infinite dilution solubility (relative to that of hard spheres in a hard-sphere fluid) and packing
fraction is found. It is observed that binary mixtures greatly increase the solubility difference between
coexisting isotropic and nematic phases compared to pure components. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4907639]

I. INTRODUCTION

Liquid crystals are elongated molecules characterized by
fluid phases with some degree of molecular order. In
the isotropic, nematic, and smectic phases, molecules are
arranged, respectively, with no positional and no orientational
order, with no positional but orientational order, and with
positional and orientational order. It has been observed that
a certain degree of molecular anisotropy is necessary for
the formation of liquid crystal phases.1,2 This condition was
demonstrated first theoretically by Onsager3 for infinitely thin
hard rods, and generalized recently by Franco-Melgar et al.4

for molecules with different anisotropic shapes. Liquid crystal
phases have been observed in molecular simulation studies of
anisotropic hard molecules with diverse shapes.5–17 From all
possible anisotropic systems, tangent hard-sphere chains18–21

are the most simple segment-based model of liquid crystals.
We are interested in segment-based molecules due to their
relevance in the development of physically based perturbation
theories describing the behavior of liquid crystals.22,23 In this
work, we use partially flexible hard-sphere chains formed by a
linear part and a fully flexible part for studying the properties
of liquid crystal fluids. Partial flexibility is introduced to
reproduce the experimental observation that a certain degree
of flexibility is required for the stability of liquid crystal phases
over the crystal state.2,24 Here, flexibility is introduced to study

a)Electronic mail: t.j.h.vlugt@tudelft.nl

its effect on the isotropic-nematic phase transition. Molecular
simulation results for these systems are, in our knowledge,
scarce, principally due to the difficulties on performing phase
equilibria calculations of non-simple fluids with classical
simulation techniques. In this work, we carry out an extended
molecular simulation study on the isotropic-nematic phase
equilibria of hard-sphere chain fluids. Furthermore, simulation
results are compared with the theoretical predictions obtained
from an equation of state recently developed by us.22,23,25

In molecular simulations, phase equilibria can be directly
obtained from Gibbs ensemble simulations as proposed by
Panagiotopoulos et al.26–28 In the traditional implementation
of this method, chemical potential equilibrium is achieved by
transfer of whole molecules between thermally and mechani-
cally equilibrated phases. Molecular transfer between phases
is often the rate limiting step in Gibbs ensemble simulations.
While transfer of whole molecules between phases is effective
only for short and simple molecules, highly anisotropic or
complex molecules have a very low probability of transfer
acceptance.27,29,30 This condition results in poor ergodic
sampling within reasonable simulation time. Advanced tech-
niques have been developed to overcome this difficulty.
Configurational-bias sampling31,32 was implemented in the
Gibbs ensemble for improving the simulation of vapor-liquid
equilibria of non-simple fluids.33–37 Although configurational-
bias Monte Carlo shows an improved molecular transfer
efficiency over the traditional Gibbs ensemble scheme, it is
computational expensive and its efficiency is decreased as
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molecular complexity increases.38–40 Even improvements of
configurational-bias Monte Carlo as the recoil growth method
show to be inefficient for dense systems.41,42

Either in the traditional or in the configurational-bias
implementation of the Gibbs ensemble, molecular transfers
are attempted by insertion/deletion of whole molecules.
Intuitively, molecular transfer efficiency can be improved by
attempting at every step the transfer of molecular segments
rather than of whole molecules. Expanded ensemble tech-
niques are based on this principle.43–45 In these methods,
the ensemble of a system of whole molecules is expanded
into a series of sub-ensembles covering for one fractional
molecule, the range between a “ghost” molecule (a molecule
without any intermolecular interactions) and a fully coupled
molecule (a molecule where all intermolecular interactions are
present). In expanded Gibbs ensemble simulations, molecular
transfer between phases is achieved by gradually coupling
a fractional molecule in one phase while, at the same time,
a complementary fractional molecule is decoupled from
the other.46,47 Gradual coupling/decoupling is performed by
a random walk over sub-ensembles. Each one of them
corresponding to a defined fractional state that determines the
degree of intermolecular coupling of the fractional molecules.
In the traditional Metropolis sampling scheme,48 a random
walk over fractional states results in an uneven distribution
of the relative probability of visiting fractional states. This
condition restricts molecular transfer between phases, limiting
the efficiency of the method. A smooth transition between all
fractional states is desired, striving ideally to the same relative
probability for visiting any fractional state. For this aim,
the partition function of the expanded ensemble is modified
by a weight function for each fractional state, changing the
Boltzmann statistics of the original system.49–51 Numerical
values for these weight functions are not known a priori and
an iterative method for determining them is required.43–45

This paper is organized as follows. In Sec. II, we introduce
the expanded Gibbs ensemble simulation method. In Sec. III,
simulation results are presented for the isotropic-nematic
phase equilibria of pure linear hard-sphere chains (Sec. III
A), binary mixtures of linear hard-sphere chains (Sec. III B),
binary mixtures of a linear and a partially flexible hard-sphere
chains (Sec. III C), and for the infinite dilution solubility of
hard spheres in the studied binary mixtures (Sec. III D). Our
results are summarized in Sec. IV.

II. SIMULATION METHODS

Simulations are performed in an expanded version of the
Gibbs ensemble.52 The method is based on the gradual ex-
change of molecules by the coordinated coupling/decoupling
of segments of a fractional molecule between phases. There
is one fractional molecule present in each phase for each
component. Molecules are represented as chain molecules
of homonuclear segments made of a linear part and a fully
flexible part (only for partially flexible molecules). The
fractional molecules are subjected to all Monte Carlo trial
moves independent of their fractional state. The simulation
method is based on the ideas of Lyubartsev et al.43,53,54 on
expanded ensembles and is similar in spirit to the continuous

fractional component Monte Carlo method of Maginn and co-
workers.47,55,56 Instead of the continuous insertion presented
in their work, here we propose a segment-wise insertion of
chain molecules. Similarly, Escobedo and de Pablo developed
the expanded ensemble ideas for the calculation of phase
equilibria of polymer molecules.45,46,57 In their method,
fractional molecules in their end-states are counted as whole
molecules, and configurational-bias is used for stepwise
insertion/deletion of molecular segments.45 In the method
presented here, the total number of whole molecules remains
constant, independent of the fractional state, facilitating the
implementation of the method. Furthermore, segments of frac-
tional molecules are sequentially coupled/decoupled avoiding
the expensive configurational-bias insertion of segments. In
this section, general features of the method are presented,
while a detailed description of the coupling parameter trial
moves and acceptance rules is presented in the Appendix. The
equations shown in this section are general for interacting
systems, independent of the specific case of hard-chain fluids
studied in this work.

Constant volume expanded Gibbs ensemble simulations
are used for determining the phase equilibria of pure compo-
nents. A constant pressure formulation of the expanded Gibbs
ensemble is used for the calculation of the phase equilibria of
binary mixtures. Here, we present, for a matter of simplicity,
the partition function for systems at constant volume. In
the Appendix, the partition function for constant pressure
simulations (Eq. (A1)) is shown. The partition function for
a multicomponent system made of n components with a total
number of N whole molecules and one fractional molecule
per component in each subsystem, a and b, for a constant total
volume V = Va + Vb, at constant temperature T , is given by

QNVT =
1

Λ3(N+2n)V

n
i=1

1
Ni!

Ni
Na
i
=0

mi
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in which Λ is the de Broglie wavelength and kB is the
Boltzmann factor. Ni = Na

i + Nb
i is the total number of whole

molecules of component i, and Na =
n

i Na
i and Nb =

n
i Na

i

are the total number of whole molecules in subsystem a and
b, respectively. A molecule is defined by a chain of interacting
segments with a total length mi for a molecule of component
i. The dimensionless coordinates sNa

a and sNb

b
describe the

positions of all beads of the Na and Nb whole molecules. The
dimensionless coordinates sna and sn

b
describe the positions

of all beads of the n fractional molecules in subsystem
a and b, respectively. Each subsystem has one fractional
molecule per component with fractional states defined by the
coupling parameter λi. The coupling parameter determines
the fractional state (number of interacting segments) of
the fractional molecules in both subsystems simultaneously,
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i.e., λi coupled segments in subsystem a and (mi − λi)
in subsystem b. Therefore, λi = 0 defines an ideal chain
molecule in subsystem a (a molecule where only bonded
interactions are present) and a fractional molecule identical
(but not equal) to a whole molecule in subsystem b. Here,
we consider discrete values of the coupling parameter in
the range of λi = [0, . . . ,mi], leading to a total of mi + 1
possible fractional states. Note that only whole molecules of
a specific component are indistinguishable from each other
and can be permuted between subsystems. This explains the
factors 1/Ni! and Ni!/Na

i !Nb
i ! expressed in terms of the

number of whole molecules. The weight functions wi(λi)
are introduced to modify the Boltzmann statistics of the
system in order to improve the sampling efficiency of all
fractional states. We consider the weight functions of each
component to be independent of each other, which is exact
in the thermodynamic limit. Weight functions are determined
iteratively using the Wang-Landau sampling method58,59 as
explained below. The total energy of a subsystem Ua (the
same for subsystem b) is the sum of the bonded interactions
Ua,bond for all molecules in the subsystem, plus the inter-
molecular Ua,inter(sNa

a , sna, λ1, . . . , λn) and intramolecular
interactions Ua,intra(sNa

a , sna, λ1, . . . , λn) for the Na whole and
n fractional molecules in the subsystem, Ua = Ua,non−bonded

+Ua,bonded = Ua,inter +Ua,intra +Ua,bond. Only non-bonded
interactions (intermolecular and intramolecular) are a function
of the fractional state. Bonded interactions do not depend
on the fractional state and are equivalent to those of whole
molecules.

During a simulation, the following trial moves are at-
tempted: displacements, rotations, reptation, configurational-
bias partial regrowths (only for partially flexible molecules),60

volume changes, identity exchanges61,62 (only for mixtures
of linear chains), and coupling parameter changes. They are
selected randomly but with a fixed probability proportional
to the ratio 100:100:10:100:1:100:1000, respectively. Volume
changes are performed isotropically in the logarithm of the
volume (in simulations at constant pressure, volume changes
are performed in one subsystem at a time). Simulation boxes
for a starting isotropic configuration are defined cubic. A rect-
angular box with edge lengths with a ratio of 1:1.1:1.2 is used
for initial nematic configurations. Periodic boundary condi-
tions are used in all simulation boxes. Maximum displacement,
rotation, volume, and coupling parameter changes are adjusted
for a maximum acceptance ratio of 20%. A Monte Carlo cycle
is defined by a number of trial moves equal to the number of
molecules in the system, typically in the order of 1 × 103. The
number of Monte Carlo cycles required was typically 5 × 106

for equilibration and 2 × 106 cycles for production. Isotropic
and nematic phases are identified by the order parameter
S2 defined by the second-order Legendre polynomial S2
= 1

N
⟨N

i=1 P2(cos θi)⟩ = 1
N
⟨N

i=1( 3
2 cos2θi − 1

2 )⟩, where θi is
the angle between the molecular axis of molecule i and the
nematic director.6,21 For partially flexible molecules, the
molecular axis is defined as the eigenvector corresponding
to the smallest eigenvalue of the molecule’s moment of inertia
tensor.19 A value of S2 close to 0 identifies the isotropic phase
and a value close to 1 is related to the nematic phase. A Markov
chain in the space of fractional states can be organized by

random changes in the coupling parameter, ∆λi. Two different
cases can be identified: changes without molecule transfer
and changes with molecule transfer. A coupling parameter
change without molecule transfer will occur when the new
fractional state λnew

i = λold
i + ∆λi has a value within the range

[0, . . . , mi] and a change with molecule transfer takes place
when λnew

i is outside this range. The end-states, λi = 0 and
λi = mi, deserve special attention. A fractional molecule with
coupling parameter λi = mi is fully coupled to the system;
however, this molecule will become equal to a whole one
only when a further change in the fractional state takes place
(see Fig. 1). A molecule transfer is therefore defined as the
state transition λi = mi → 0 from the old to a new randomly
inserted fractional molecule. Strictly, only configurations with
fractional molecules in their end-states have a clear physical
meaning equivalent to those of a system without fractional
molecules. However, sampling only when an end-state is
visited has the inconvenience of observables averaged over
a reduced number of samples. For a pure component system,
this is not truly a limitation, but for multicomponent systems,
the probability of visiting an end-state for all components at the
same time is reduced to the joint probability of visiting those
states. Nevertheless, in the thermodynamic limit, the fractional
state does not affect the properties of the system. Moreover, for
the finite size systems studied here, we observed that results
obtained from end-state sampling do not differ significantly
from those obtained from sampling regardless the fractional
state. Therefore, we calculate all thermodynamic properties
based on the number of whole molecules present in the system
independent of the fractional state.

A. Iterative method for determining the weight
functions w (λ)

Ideally, an equal probability of visiting any fractional state
is desired. For this aim, a weight function for every fractional
state wi(λi) is introduced in the partition function (Eq. (1)) to
bias the statistics of the system. It is clear that in the modified
system, the magnitude of the weight functions has to be
inversely proportional to the density of states of the fractional
state of the non-modified system. However, the magnitude
of these weight functions cannot be known a priori and an
iterative method is required for their determination. Wang

FIG. 1. Schematic representation of changes in the coupling parameter space
λ for component i. When a change in λi reaches the end-state mi, the
fractional molecule has the same interactions as a whole molecule but it is
still not considered as a whole one. A new whole molecule is transferred to
the subsystem, Ni+1, only when a further change in the coupling parameter
reaches a state beyond the full fractional state mi.
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and Landau proposed an iterative algorithm for estimating
the density of states of systems in energy space.58,59 Similarly,
this algorithm can be used for estimating the density of states
in any other parameter space. We use it here for estimating the
density of states in the coupling parameter space and therefore
determining the values of the weight functions. The method is
based on modifying the density of states of the system every
time a fractional state is visited to produce a flat histogram.
The density of states is changed through the weight function
wi(λi) by a modification factor ν that reduces the weight of
a fractional state each time it is visited, wi(λi) → wi(λi) − ν.
When a flat histogram is obtained, the value of the modification
factor ν is reduced, ν → 0.5 × ν, and the histograms are
reseted. A complete flat histogram is not possible and we
consider here a flat histogram when the difference between
the largest and smallest frequencies is smaller than 10% of the
largest frequency. Changing the density of states at each step
alters the Markovian chain and only a modification factor as
small as the number precision of the computing machine will
strictly obey detailed balance.63 This condition is practically
impossible and the iteration proceeds until the modification
factor is reduced to a very small value. A final value of 1 × 10−9

is considered satisfactory in this work. A starting value of
1 × 10−5 was sufficient for reaching fast convergence avoiding
large oscillations in the value of the weight functions.

B. Infinite dilution solubility of hard spheres

Infinity dilution solubility of gases is usually expressed
in terms of Henry’s law constants Hk. Here, we introduce, for
convenience, a dimensionless Henry’s law constant defined
by H∗

k
= Hk/ρkBT , with ρ the number density of molecules.

Dimensionless Henry’s law constants are related to the infinite
dilution residual chemical potential µRes,∞

k
of a gas in a solvent

by64

ln H∗k =
µRes,∞
k

kBT
. (2)

The infinite dilution residual chemical potential can be
obtained by the Widom test-particle insertion method.65 For
simulations at constant pressure, the chemical potential of hard
spheres in a hard-sphere fluid can be calculated by66

µRes,∞
k

kBT
= − ln

⟨V p⟩
⟨V ⟩ . (3)

The parameter p has a value of either 1 for a random
test-particle insertion without overlaps or 0 for an insertion
with overlap. In this way, infinite dilution solubility is
measured by determining the residual chemical potential of
hard spheres in both, the isotropic and the nematic phases
at equilibrium. Equilibrium configurations are sampled every
1 × 103 Monte Carlo cycles and a total of 100 test-particle
insertions are attempted for each sample. To identify the effect
of connectivity and molecular anisotropy on solubility, we
define relative Henry’s law constants by the ratio between
Henry’s law constants for the solubility of hard spheres in a
hard-sphere chain fluid HHC

k
to the solubility of hard spheres

in a hard-sphere fluid HHS
k

,

HHC
k

HHS
k

= exp *
,

µRes,∞
k,HC

kBT
−

µRes,∞
k,HS

kBT
+
-
. (4)

The chemical potential of hard spheres in a hard-sphere fluid
is calculated from the Boublik-Mansoori-Carnahan-Starling-
Leland equation of state.67

III. SIMULATION RESULTS

Here, we present simulation results for the isotropic-
nematic phase equilibria of pure linear hard-sphere chains,
binary mixtures of them, and binary mixtures of a linear and a
partially flexible hard-sphere chains. Results for the infinite
dilution solubility of hard spheres in all studied systems
are also reported. Hard-sphere chains are made of segments
(beads) of equal diameter σ = 1. All magnitudes are expressed
in terms of reduced units with the diameter of a segment
σ as basis for length. Simulations start with initial isotropic
and nematic configurations. Initial configurations are obtained
from independent constant pressure simulations (NPT) that
approximate the volume of each phase at equilibrium. In the
case of pure components, initial estimations of the packing
fractions are taken from our previous work.21 For the case
of mixtures, initial packing fractions, mole fractions, and
equilibrium pressures are approximated from the theoretical
work of van Westen et al.22 The initial size of the simulation
boxes is dependent on chain length. The initial edge lengths of
both simulation boxes are defined with a value that has to be
larger than the length of the longest molecule in the system.
Small systems sizes result in simulation boxes with at least
one edge length close to the length of the molecule, inducing
the formation of smectic phases due to restricted positional
order perpendicular to the molecular length. An initial cubic
box (isotropic phase) with a size of 25 was sufficient for all
studied systems. For the rectangular box (nematic phase), an
initial edge length of 25 (the shorter edge) for systems with
molecules shorter than 17 beads, and a length of 27 for longer
molecules was observed to be sufficient.

A. Linear hard-sphere chain fluids

The isotropic and nematic phase behaviors of linear
hard-sphere chain fluids of different lengths were reported
in our previous work.21 There, the isotropic and nematic
packing fractions at equilibrium were approximated from one-
phase constant pressure NPT simulations. Here, we obtain the
isotropic and nematic packing fractions at equilibrium directly
from two-phase simulations. In Table I, the isotropic and
nematic packing fractions at equilibrium for linear hard-sphere
chains with lengths ranging from 7 to 20 beads are reported.
Packing fraction is defined as η = Nmvm/V , where Nm is the
total number of beads in all whole molecules (m times N for
pure fluids), vm = πσ3/6 the volume of a single bead, and V
the volume of the simulation box. It can be noticed that a
maximum in the packing fraction difference exists for the 14-
mer. However, due to numerical uncertainties, this maximum
can be located between the 13-mer and the 17-mer. In our
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TABLE I. Packing fraction of the isotropic phase η I and nematic phase
ηN , and packing fraction differences ∆ηN−I at equilibrium for linear chain
molecules with a length m of 7 to 20 beads. Mean values and standard
deviations σ are obtained from at least 10 independent simulation runs.

m η I σ I ηN σN ∆ηN−I σN−I

7 0.2945 0.0014 0.3033 0.0010 0.0088 0.0014
8 0.2548 0.0011 0.2650 0.0010 0.0102 0.0011
9 0.2274 0.0016 0.2391 0.0009 0.0118 0.0016
10 0.2066 0.0009 0.2228 0.0007 0.0162 0.0009
11 0.1859 0.0010 0.2000 0.0008 0.0141 0.0010
12 0.1722 0.0008 0.1903 0.0006 0.0181 0.0008
13 0.1636 0.0007 0.1859 0.0006 0.0223 0.0007
14 0.1530 0.0009 0.1766 0.0009 0.0236 0.0009
15 0.1426 0.0011 0.1657 0.0011 0.0231 0.0011
16 0.1344 0.0008 0.1574 0.0013 0.0230 0.0013
17 0.1268 0.0005 0.1497 0.0009 0.0230 0.0009
18 0.1192 0.0004 0.1401 0.0006 0.0209 0.0006
19 0.1121 0.0005 0.1311 0.0008 0.0190 0.0008
20 0.1072 0.0008 0.1229 0.0010 0.0157 0.0010

previous work,21 we located this maximum for a 15-mer but
without data for the 16-mer to the 19-mer. A large difference
in the packing fraction between the isotropic and the nematic
phases is relevant for the solubility difference of hard spheres
between both phases, as shown in Sec. III D.

B. Binary mixtures of linear hard-sphere chain fluids

In this section, we present results for the isotropic-nematic
phase equilibria of binary mixtures of linear hard-sphere
chains. Figs. 2, 3, and 4 show the reduced pressure P∗ and
packing fraction η vs. mole fraction of the largest component
x2 for mixtures of an 8-mer with a 14-, a 16-, and a 19-mer,
respectively. We use the plus sign to refer to a mixture, e.g., 8-
mer+ 14-mer indicates a binary mixture of an 8-mer with a 14-
mer. Reduced pressures are defined relative to the molecular
volume of the shortest component (in all cases, the 8-mer)
by P∗ = P v8−mer/kBT , where P is the pressure of the system,
and v8−mer is the molecular volume of an 8-mer. Simulation
results are compared to theoretical predictions obtained from a
Vega-Lago rescaled Onsager theory by van Westen et al.23 For
the larger part of the phase diagrams, excellent agreement
between theory and simulations is obtained; however, for
systems very rich in the short component (x2 ≈ 0), a small

overestimation of pressure by the theory is observed. The
offset is a consequence of approximations of higher virial
coefficients (which are treated by a Vega-Lago rescaling
procedure). For smaller chain lengths, the phase transition
is shifted to higher packing fractions. Therefore, any errors
introduced by the approximate treatment of the higher virial
coefficients become apparent, leading to somewhat larger
deviations between theory and simulations.22,23 To the best
of our knowledge, the only available simulation data for the
phase equilibria of mixtures of linear hard-sphere chains are
those of Escobedo and de Pablo.68 In Fig. 3, the simulation
results of Escobedo and de Pablo are compared with ours
and with the theoretical predictions of van Westen et al.23

All results are in good agreement with each other, validating
previous results and our own simulation technique.

For all systems studied, a phase split into an isotropic and
a nematic phase is observed. This phase split is accompanied
by a fractionation of the mixture into an isotropic phase
richer in the short component and a nematic phase richer
in the long component. Phase split and fractionation occur
as a consequence of maximizing the total entropy of the
system, balancing orientational, translational, and mixing
entropy. In hard systems, this entropy maximum is associated
to a maximization of the free volume or equivalently to a
minimization of the excluded volume.69,70 For a mixture with
a specific concentration, at pressures below the isotropic-
nematic region, orientational and mixing entropies dominate
and a one-phase isotropic system is observed. At higher
pressures, the translational entropy of the isotropic phase is
reduced, and a further gain in total entropy is reached by
phase split of the system into a nematic and an isotropic
phase. The loss in orientational entropy due to the phase
split and the loss of mixing entropy by the accompanying
fractionation are more than compensated by the gain in
translational entropy. Phase split from an isotropic to a nematic
phase increases the translational entropy as a consequence
of a reduced excluded volume in the nematic phase when
chains lay fairly parallel.3,4,71 Fractionation occurs due to
a larger tendency to align of the long chains compared to
the short chains.72,73 This tendency is a consequence of a
larger excluded volume difference between the isotropic and
nematic phases for the long chains than for the short chains.74

This excluded volume difference increases with chain length,
broadening the fractionation of the system into a nematic
phase richer in long chains and an isotropic phase more

FIG. 2. Isotropic-nematic phase equi-
libria for the binary mixture 8-mer
+ 14-mer. (a) Reduced pressure P∗ vs.
mole fraction of the largest component
x2, (b) packing fraction η vs. mole frac-
tion of the largest component x2. Black
(•) and empty (◦) dots are simulation re-
sults for the isotropic phase and nematic
phase, respectively. Broken lines are
constant pressure tie-lines. Solid lines
are theoretical results obtained from a
rescaled Onsager theory by van Westen
et al.23
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FIG. 3. Isotropic-nematic phase equi-
libria for the binary mixture 8-mer
+ 16-mer. (a) Reduced pressure P∗ vs.
mole fraction of the largest component
x2, (b) packing fraction η vs. mole frac-
tion of the largest component x2. Sym-
bols and lines as in Fig. 2. Crosses (×)
are simulation results from Escobedo
and de Pablo.68

depleted of them. Increasing fractionation with the difference
in molecular length was reported in previous studies23,75,76 and
is also observed in our results. Figs. 2–4(a) show a broader
isotropic-nematic region, in binary mixtures, as the length
of the long chain (14-, 16-, 19-mer) increases for a constant
length of the short chain (8-mer). The behavior of packing
fraction with mole fraction of the largest component is shown
in Figs. 2–4(b). It can be observed that the packing fraction of
the isotropic phase at equilibrium decreases rapidly with mole
fraction. This decrement is caused by the alignment potential
that long chains introduce in the fluid, facilitating the forma-
tion of the nematic phase at lower equilibrium pressures. In the
nematic phase, at low concentrations of the long chains, the
packing fraction remains fairly constant (Fig. 2) or increases
with mole fraction (Figs. 3 and 4), although the coexistence
pressure decreases. This behavior is a consequence of the
“higher packing” introduced by the connectivity of spheres in
the long chain. At larger concentrations, the lower isotropic-
nematic equilibrium pressures effectively reduce the packing
fraction of the nematic phase. A maximum in the packing
fraction difference between the isotropic and nematic phases
is observed for all systems, which increases with the difference
in chain length between the long and the short chains.

In the theoretical study of van Westen et al., a nematic-
nematic region was detected for binary mixtures at high
reduced pressures. Specifically, it was shown that for the
mixture 8-mer + 19-mer, a nematic-nematic region follows
the isotropic-nematic equilibria after a triple point at a
reduced pressure of 2.234.23 Here, we perform phase equilibria
simulations for the 8-mer + 19-mer mixture at high pressures
to try to disclose the existence of the nematic-nematic region.

Simulations at a reduced pressure of 2.4 show phase equi-
librium between a nematic phase, concentrated in the short
chains, and a smectic-A phase, concentrated in the long
chains. The smectic phase is formed by a layer of short chain
molecules without clear positional order between two layers of
long chain molecules with defined positional order. At a higher
pressure of 3.0, the nematic phase is turned into a phase where
long chains are locally clustered with a defined orientation
and position surrounded by short chains oriented towards the
nematic director but with no clear positional order. At this
pressure, the smectic-A phase is clearly defined arranging a
layer of short chains, formed by two consecutive layers of short
chains, between two layers of long chains. We consider these
results as preliminary since the systems and corresponding box
sizes are too small to accommodate smectic phases without any
influence of the periodic boundary conditions on the positional
order of the system. Nevertheless, the theoretical existence of
nematic and smectic phases in equilibrium at high pressures
has been reported for the case of hard-spherocylinders.77–79

And, although, the theoretical results of van Westen et al. do
not consider the formation of smectic phases, Cinacchi et al.80

showed that a metastable nematic-nematic region can precede
the formation of stable nematic-smectic equilibria.

C. Binary mixtures of a linear and a partially flexible
hard-sphere chain fluids

Partially flexible molecules are introduced to study the
effect of molecular flexibility on the isotropic-nematic phase
equilibria. A partially flexible molecule is defined as a hard-
sphere chain molecule with a linear part and a fully flexible

FIG. 4. Isotropic-nematic phase equi-
libria for the binary mixture 8-mer
+ 19-mer. (a) Reduced pressure P∗ vs.
mole fraction of the largest component
x2, (b) packing fraction η vs. mole frac-
tion of the largest component x2. Sym-
bols and lines as in Fig. 2.
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FIG. 5. Isotropic-nematic phase equi-
libria for the binary mixture of a linear
8-mer with the partially flexible 19-18-
mer. (a) Reduced pressure P∗ vs. mole
fraction of the largest component x2, (b)
packing fraction η vs. mole fraction of
the largest component x2. Symbols and
lines as in Fig. 2.

part. We employ the notation 19-18-mer for a chain molecule
with a total length of 19 beads formed by a linear part of 18
beads and a fully flexible part of 1 bead. The fully flexible
part is freely to move around the geometrical center of the
previous segment, avoiding overlaps with other molecules
and with the molecule itself. In this work, we investigate
the effect of flexibility in two binary mixtures: a linear 8-
mer with a 19-18-mer and a linear 8-mer with a 19-17-mer.
Figs. 5 and 6 show the results for the isotropic-nematic phase
equilibria in these systems. Comparing these results with
the fully linear case, Fig. 4, it is observed that flexibility
has the effect of, first, increasing the pressure at which the
two-phase region starts to appear, and second, reducing the
degree of fractionation between coexisting phases. Flexibility
decreases the anisotropy of the chain, diminishing the gain in
translational entropy that can be obtained from a phase split
into a nematic phase. Therefore, a closer packing is needed
for the nematic phase to start to form, increasing the pressure
at which the isotropic-nematic equilibria take place. The
reduced fractionation is explained by a lower excluded volume
difference between the isotropic and the nematic phases (lower
tendency to align) for the partially flexible chain compared to
the linear case, as shown for the pair excluded volume of two
partially flexible molecules by van Westen et al.81

D. Infinite dilution solubility of hard spheres

In our previous work for pure components,21 we showed
that a linear relationship exists between relative infinite
dilution solubility, defined as Eq. (4), and packing fraction.
It was found that this relationship is practically independent
of chain length for chains of 10 beads and longer. Moreover,

it was demonstrated that this relationship does not depend on
the liquid crystal state of the fluid, either isotropic or nematic,
being only a function of packing fraction. In principle, the
independence of relative solubility on chain length for long
chains (longer than 10 beads) can be explained from pair
excluded volume interactions. van Westen et al.81 derived
an expression for the dimensionless pair excluded volume
between two linear chains of different length V ∗ex = Vex/Vm̄,
where Vex is the pair excluded volume and Vm̄ is the volume of a
chain of m̄ hard spheres. Here, m̄ = (m1 + m2) /2, with m1 and
m2 as the lengths of the two linear chains. If one of the chains
is considered just as a hard sphere, that expression reduces to
V ∗ex = (11m̄ − 3) /m̄. It can be observed that as m̄ increases, the
value of the excluded volume approaches a limiting value. For
chains of 10 beads and longer, changes in the relative excluded
volume are progressively smaller, explaining in principle the
unnoticeable effect of chain length on solubility reported in
our previous work. It is remarkable that this argument taken
from pair molecular interactions also holds for high packing
fractions where multi-body interactions start to be relevant.

Fig. 7 shows the relative infinite dilution solubility of hard
spheres in binary mixtures of linear, and linear with partially
flexible hard-sphere chains vs. packing fraction. It can be
observed that, as for the pure component case (Ref. 21), a
linear relationship of relative solubility with packing fraction
independent of the mixture type is also obtained. Fig. 7
includes a linear regression for all reported data. The slope and
intercept of this regression are, respectively, −2.674 ± 0.086
and 1.065 ± 0.015, which are equivalent to the ones reported
in our previous work. This result is coherent with the
results of solubility in pure components, where for relatively
long enough chains, solubility seems to be independent of

FIG. 6. Isotropic-nematic phase equi-
libria for the binary mixture of a linear
8-mer with the partially flexible 19-17-
mer. (a) Reduced pressure P∗ vs. mole
fraction of the largest component x2, (b)
packing fraction η vs. mole fraction of
the largest component x2. Symbols and
lines as in Fig. 2.
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FIG. 7. Relative infinite dilution solubility HHC
k

/HHS
k

vs. packing fraction η
for hard spheres in binary mixtures of linear and partially flexible hard-sphere
chains in the isotropic and nematic phases at equilibrium. (+) 8-mer + 14-mer,
(×) 8-mer + 16-mer, (�) 8-mer + 19-mer, (N) 8-mer + 19-18-mer, and (◦)
8-mer + 19-17-mer. The solid line is a linear regression calculated from all
data.

chain length. It has to be noticed that similarly to the pure
component case, this linear relationship would eventually not
be independent on chain length if one of the components
forming the mixture becomes very small.

Finally, Fig. 8 shows dimensionless Henry’s law con-
stants, defined by Eq. (2), vs. mole fraction of long chains
for the solubility of hard spheres in a mixture of linear
chains, 8-mer + 16-mer, at the isotropic-nematic coexistence.
It can be observed that the solubility of hard spheres in
the isotropic phase increases with mole fraction (indicated
by a decrease in Henry’s law constants), showing a rapid
increment at mole fractions close to the pure short chain
fluid. The solubility in the nematic phase is fairly decreased
at low values of the mole fraction showing a minimum after
which it increases monotonically. This behavior is analogous
to the changes in packing fraction observed in Fig. 3. A
maximum in the solubility difference between the isotropic
and the nematic phases is detected at a mole fraction of

FIG. 8. Dimensionless Henry’s law constants lnH ∗
k

vs. mole fraction of the
longest component x2 for the binary mixture 8-mer + 16-mer in the isotropic
and nematic phases at equilibrium. Symbols and lines as in Fig. 2.

around 0.5, corresponding to the maximum in the packing
fraction difference between both phases observed at the same
concentration.

IV. CONCLUSIONS

The isotropic-nematic phase equilibria of pure compo-
nents and binary mixtures of linear and partially flexible hard-
sphere chains were directly calculated from expanded Gibbs
ensemble simulations. For pure components, the packing
fractions of the isotropic and nematic phases at equilibrium
were obtained for linear chains with a length of 7 to 20
beads. These results show a maximum in the packing fraction
difference between both phases for a chain length between
the 13-mer and the 17-mer. For binary mixtures, the packing
fraction and mole fraction of the coexisting isotropic and
nematic phases were obtained for mixtures of a linear 8-mer
with a 14-, 16-, and 19-mer. Phase split, between an isotropic
and a nematic phases, and fractionation, between an isotropic
phase richer in the short component and a nematic phase richer
in the large component, are observed for all binary mixtures.
The degree of fractionation between both phases increases
with the chain length of the largest component for a constant
length of the short chain. The effect of molecular flexibility
was studied in binary mixtures of an 8-mer with a partially
flexible 19-18-mer and a 19-17-mer. Flexibility increases the
isotropic-nematic equilibrium pressure and reduces the degree
of fractionation between both phases. The relative infinite
dilution solubility of hard spheres in the isotropic and nematic
phases at equilibrium was obtained for all studied binary
mixtures. A linear relationship between relative solubility
and packing fraction is found. This linear relationship is
equivalent to the one obtained in our previous work for
pure linear hard-sphere chains.21 Binary mixtures show a
larger packing fraction difference and, therefore, a larger
hard sphere solubility difference between the isotropic and
the nematic phases than the constituent pure components.
This result shows that mixtures of liquid crystals have the
potential of largely increasing the solubility difference of
gases between the isotropic and the nematic phases. A large
solubility difference is relevant for the use of liquid crystals
as solvents for gas separation applications. Recently, de Loos
et al. showed experimentally that liquid crystals can be used
as new solvents for CO2 capture.82–84 In line with the findings
obtained in this work, experimental results show that binary
mixtures of liquid crystals can provide a larger CO2 solubility
difference between the isotropic and the nematic phases than
the pure components.84
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APPENDIX: SIMULATION DETAILS
1. Partition function NPT simulations

The partition function for constant pressure NPT expanded
Gibbs ensemble simulations is given by (see Ref. 85 for
constant pressure Gibbs ensemble)

QNPT =

(
P

kBT

)2 1
Λ3(N+2n)

n
i=1

1
Ni!

Ni
Na
i
=0

mi
λi=0

Ni!
Na
i !Nb

i !

× exp [wi(λi)]
 ∞

0
dVa exp

(
− PVa

kBT

)
(Va)(Na+n)

×
 ∞

0
dVb exp

(
− PVb

kBT

)
(Vb)(Nb+n)

×


dsN
a

a dsna exp
(
−

Ua(sNa

a ,sna, λ1, . . . , λn)
kBT

)
×


dsN
b

b dsnb exp *.
,
−

Ub(sNb

b
,sn

b
, λ1, . . . , λn)

kBT
+/
-
,

(A1)

symbols are described in the main part of the text. The con-
stant value (P/kBT)2 is introduced to keep the partition func-
tion dimensionless.60

2. Coupling parameter trial change

In this section, we provide an extended description and
derivation of the acceptance rules for changes in the coupling
parameter. The notation used in deriving the acceptance
rules is taken from the work of Rull et al.86 Changes in
the coupling parameter are performed for one component,
chosen randomly, at a time. After the component is selected,
the subsystem, where an increase in the fractional state is
attempted, is selected randomly with same probability for both
subsystems. After this, a coupling parameter change for the
selected component ∆λi is chosen randomly from the mi + 1
possible fractional states. As shown below, the probability of
accepting a change in the coupling parameter is different for
the case that a change with or without molecular transfer is
attempted. If for component i, the subsystem does not have
any whole molecules, a coupling parameter change for this
component is automatically rejected if a fractional change with
molecular transfer is attempted. Every attempt of changing
the configuration of the system from α to β has to satisfy the
condition of microscopic reversibility, i.e., the probability of
the forward Pαβ and backwards Pβα steps has to be equal

Pαβ = Pβα. (A2)

Here, we develop the condition of microscopic revers-
ibility for a change in the coupling parameter of component i
with and without molecular transfer.

a. Coupling parameter change without molecular
transfer

For a change in the coupling parameter without molec-
ular transfer λnew

i = λold
i + ∆λi, the condition of microscopic

reversibility (Eq. (A2)) is given by

Pα Pbox,a Pcomp, i Pacc
αβ = Pβ Pbox,b Pcomp, i Pacc

βα,

where

Pα : probability of the system to be in configuration
α

Pbox,a : probability of selecting subsystem a for an
increase in the fractional state

Pcomp, i : probability of selecting component i for a
coupling parameter change

Pacc
αβ : acceptance probability for a configurational

change from α to β.

The probability Pα for the system to be in configuration α
is proportional to the pseudo-Boltzmann factor given by (see
Eq. (1))

Pα ∝ exp


n
i=1

*
,
ln *
,

Ni!
Na
i !Nb

i !
+
-
+ wi(λi)+

-
+ (Na + n) ln Va + (Nb + n) ln Vb

−
Ua(sNa

a ,sna, λ1, . . . , λn)
kBT

−
Ub(sNb

b
,sn

b
, λ1, . . . , λn)

kBT


.

The probability of selecting any of both subsystems for
an increase in the fractional state is defined as Pbox,a = Pbox,b

= 1/2. The probability of selecting component i for a coupling
parameter change Pcomp, i is independent of the configuration
of the system. Therefore, the criterion for a reversible change
in λi without molecular transfer is given by

P∆λi =
Pacc
αβ

Pacc
βα

=
Pβ

Pα

= exp

wi(λnew

i ) − wi(λold
i )

− *
,

Ua(sNa

a ,sna, λ
′new
i )

kBT
−

Ua(sNa

a ,sna, λ
′old
i )

kBT
+
-

− *.
,

Ua(sNb

b
,sn

b
, λ
′new
i )

kBT
−

Ub(sNb

b
,sn

b
, λ
′old
i )

kBT
+/
-


,

where λ
′new
i and λ

′old
i indicate that only the coupling parameter

of component i is changed. A new configuration β is accepted
with a probability given by min(1,P∆λi).

b. Coupling parameter change with molecular transfer

For a change in the configuration of the system from α
to β by a change in the coupling parameter for component i
with molecular transfer, from subsystem a to b, the condition
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of microscopic reversibility is given by

Na
i ! Nb

i !Pα Pbox,a Pcomp, i Pmolecule,a
α Pacc

αβ

= (Na
i − 1)! (Nb

i + 1)!Pβ Pbox,b Pcomp, i Pmolecule,b
β Pacc

βα,

where

Pα : probability of the system to be in configuration
α

Pbox,a : probability of selecting subsystem a for an
increase in the fractional state

Pcomp,i : probability of selecting component i for a
coupling parameter change

Pacc
αβ : acceptance probability for a configurational

change from α to β

Pmolecule,a
α : probability of choosing a molecule in

subsystem a as the new fractional molecule,
1/Na

i

Pmolecule,b
β : probability of choosing a molecule in

subsystem b as the new fractional molecule,
1/(Nb

i + 1).
The factors Na

i ! Nb
i and (Na

i − 1)! (Nb
i + 1)! represent all

possible permutations of selecting a molecule of component i
in the system before and after molecular transfer takes place.
In this case, the probability that the system is in configuration
β, with a molecule of component i transferred from a to b, is
proportional to

Pβ ∝ exp


n
j,i

*
,
ln *
,

Nj!

Na
j !Nb

j !
+
-
+ w j(λ j)+

-

+ ln *
,
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(Na

i − 1)!(Nb
i + 1)!

+
-
+ wi(λi)

+ (Na + n − 1) ln Va + (Nb + n + 1) ln Vb

−
Ua(sNa−1

a ,sna, λ1, . . . , λn)
kBT

−
Ub(sNb+1

b
,sn

b
, λ1, . . . , λn)

kBT


.

Therefore, the criterion of a reversible change in λi with
molecular transfer for component i is given by

P∆λitr =
Pacc
αβ

Pacc
βα

=
(Na

i − 1)!(Nb
i + 1)!

Na
i !Nb

i !

Pmolecule,b
β

Pmolecule,a
α

Pβ

Pα

= exp

ln *
,

Na
i

Nb
i + 1

Vb

Va

+
-
+ wi(λnew

i ) − wi(λold
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kBT
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b

,sna, λ
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i )
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kBT
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,

where the new fractional state is equal to λnew
i = λold

i + ∆λi

− (mi + 1). Here, again λ
′new
i and λ

′old
i indicate that only

the coupling parameter of component i is changed. A new

configuration β is accepted with a probability given by
min(1,P∆λitr ).
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