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Abstract
This work investigates the impact of action sam-
pling strategies on the performance of Sampled
MuZero, a reinforcement learning algorithm de-
signed for continuous control settings like robotics.
In contrast to discrete domains, continuous action
spaces require sampling from a proposal distribu-
tion β during Monte Carlo Tree Search (MCTS),
a process that is underexplored despite being cen-
tral to the algorithm’s effectiveness. We system-
atically study how performance is influenced by
(1) the choice of β distribution and (2) the use
of progressive widening, an MCTS augmentation
that samples additional actions for frequently vis-
ited search tree nodes. Our JAX-based implementa-
tion1 of Sampled MuZero is evaluated on the Brax
HalfCheetah environment, testing β as either a uni-
form distribution or the agent’s policy distribution.
Additionally, we examine how different progres-
sive widening parameters affect planning depth and
computational efficiency. Results show that while
temperature modulation provides marginal bene-
fits under specific conditions, progressive widening
with properly calibrated parameters can improve
planning depth and episode returns.

1 Introduction
Model-based reinforcement learning has garnered consider-
able interest due to its ability to significantly enhance sample
efficiency by enabling an agent to internalize a representation
of its environment. Such internal models empower agents to
plan multiple steps into the future, reasoning through poten-
tial outcomes of their actions without relying on immediate
external feedback. This is exemplified by the success of mod-
els like AlphaZero [30] in games such as chess and Go, which
use Monte Carlo Tree Search (MCTS) [5] to plan by simulat-
ing possible action trajectories. However, building such trees
requires knowledge of the environment’s dynamics, limiting
generality. MuZero [26] addresses this by learning the en-
vironment’s rules jointly with policies and value functions,
while still achieving state-of-the-art results.

However, in many challenging real-world tasks, the actions
an agent can take are not discrete (such as moving a chess
piece to a square) but instead are real-valued and multidimen-
sional—for example, selecting torques to apply to each of a
robot’s joints. In such continuous control domains, MuZero’s
standard approach of treating each action as a separate node
in the search tree becomes intractable.

Sampled MuZero [17] addresses this limitation by intro-
ducing action sampling during tree search. Instead of ex-
haustively representing all possible actions, it samples a fixed
number K of actions from the action space according to a
proposal distribution β at each node expansion. Together
with other modifications to the MCTS algorithm, this en-
ables computation of an unbiased estimate of the improved
policy even in continuous action spaces. While the algorithm

1Repository: gitlab.tudelft.nl/jinkehe/bachelor-research-project

supports arbitrary β distributions, the Sampled MuZero paper
does not investigate how the choice of β impacts learning and
performance in practice, which could leave performance on
the table. Furthermore, we propose to enhance the algorithm
by making the number of sampled actions adaptive with pro-
gressive widening [4], which samples additional actions for
frequently visited MCTS nodes. This paper aims to answer
two key questions:

1. How does the choice of the proposal distribution β affect
learning and performance of Sampled MuZero?

2. Can progressive widening lead to greater depth of explo-
ration and better performance?

To answer these, we implement Sampled MuZero in JAX
[10], a high-performance numerical computing library, and
evaluate it on continuous control robotics tasks using the
JAX-based Brax [9] simulation library. We systematically
test various formulations of β. We try sampling actions from
either a uniform distribution or from the agent’s policy dis-
tribution, possibly temperature-modulated to promote addi-
tional exploration. Furthermore, we compare agents trained
with and without progressive widening. Our goal is to iden-
tify sampling strategies that maximize cumulative reward.

Figure 1: Illustration of progressive widening in MCTS. Each
node starts with C children and as the number of visits to a node in-
creases (darker red), additional actions are sampled from a proposal
distribution β(a|s), expanding the search space adaptively.

The paper proceeds as follows. Section 2 provides back-
ground on the reinforcement learning setting and the Sampled
MuZero algorithm. Section 3 reviews related work in con-
tinuous control. Section 4 motivates and describes the cho-
sen action sampling strategies, including progressive widen-
ing. Section 5 outlines the experimental setup, and Section 6
presents and discusses the results of our experiments. Sec-
tion 7 describes the work’s limitations and future research di-
rections. Finally, Section 8 discusses the reproducibility and
ethical considerations of our work.

2 Background
This section reviews how continuous control differs from dis-
crete reinforcement learning setups and explains how Sam-
pled MuZero extends the base MuZero algorithm.

2.1 RL for Continuous Control
Sampled MuZero [17] considers a standard reinforcement
learning setup where an environment is modeled as a Markov
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Decision Process (MDP) with action space A, state space
S, and reward function r : S × A → R. We define the
return of a state as the sum of discounted future rewards:
Gt =

∑∞
i=0 γ

ir(st+i, at+i) where γ ∈ [0, 1] is the discount
factor. The return is conditioned on the agent’s policy func-
tion π : S → P(A), which assigns higher probabilities to ac-
tions the agent believes are favorable in a given state, thereby
determining the robot’s behavior. The goal of the agent is to
learn a policy that maximizes the expected return. The MDP
can be either fully observable, in which case the agent’s state
contains all necessary information to make optimal decisions,
or partially observable, where the agent must act based on
imperfect information.

In the context of robotics continuous control environments,
an action corresponds to selecting torque forces to apply to
each of the robot’s n joints, so that a ∈ Rn. We can give the
agent access to a set of features about its internal state, such
as joint velocities or distance from the ground (fully observ-
able setting), or make the agent observe only pixels (partially
observable). MuZero was shown to handle both cases, so we
focus on the fully observable case, which in practice requires
less computational resources [17]. The reward an agent re-
ceives depends on the task we are trying to learn. When learn-
ing to walk, for instance, we can provide positive reward for
moving in the correct direction and negative reward for ap-
plying large forces to the joints to promote saving of energy.

In discrete action spaces, the policy function can simply
be a categorical distribution, which is easily represented by
a neural network having a number of output neurons equal
to the number of actions and applying a softmax over their
outputs. For high-dimensional continuous actions, however,
this approach is not feasible. In practice, two approaches are
taken based on factorization.

First, we can parameterize the policy by selecting a fam-
ily of distributions (usually Gaussian) and making the neural
network’s outputs correspond to the distribution’s parameters
(mean µ and standard deviation σ). In higher dimensions, we
avoid having to predict the entire covariance matrix by fac-
toring the policy—learning a distribution for each dimension
independently and obtaining the joint probability as

π(a|s) =
n∏

i=1

πi(ai|s) =
n∏

i=1

Ni(ai;µ(s), σ(s)) (1)

where πi(ai|s) represents the marginal policy for the i-th
action dimension. The second factored policy approach, pro-
posed by [32], involves discretizing the policy into discrete
bins, which avoids the restrictions of selecting a family of
distributions (e.g., the limitation on the number of distribu-
tion modes, which is restricted to one in the Gaussian setting).
Both approaches were shown to work with Sampled MuZero
[17], but we chose the parameterized Gaussian policy for im-
plementation simplicity.

2.2 Base MuZero
The most common framework for learning a policy is called
policy iteration, which consists of repeatedly applying two
steps. Firstly, we perform policy evaluation — learning a

value function that estimates the expected return of following
the current policy from a state. Secondly, we use the value
function for policy improvement — learning better policies
by increasing the probabilities of actions that lead to higher
values. It is useful to think of MuZero as doing policy itera-
tion both during MCTS planning and during the outer loop of
acting in the environment.

In MuZero, MCTS is used at each decision step to simulate
future trajectories within a learned model of the environment,
given by a dynamics function g. Which nodes are expanded
is guided by the probabilistic upper confidence tree (PUCT)
[29] formula (Equation 2), which balances the prior probabil-
ities from the policy network P (s, a) = π(s, a) and the value
estimates Q(s, a) from simulated rollouts. This process ef-
fectively serves as policy evaluation, estimating the expected
return of actions by planning through the model rather than
relying on the more costly rollouts in the real environment.

argmax
a

Q(s, a) + c(s) · P (s, a)

√∑
b N(s, b)

1 +N(s, a)
(2)

The perhaps surprising aspect is that after several simula-
tion steps, we obtain a distribution of visit counts at the root
node, which forms a more informed policy distribution than
the raw policy network. This improved policy, Iπ, is then
also used to select actions in the real environment. The im-
proved policy, along with the resulting rewards, is stored in
a replay buffer. The optimizer samples from this buffer and
trains the networks by minimizing the loss:

L(ut, rθ) + λ1L(Iπt, πθ) + λ2L(zt, vθ) (3)
Here, ut is the reward from the environment, and zt =∑k−1
i=0 γiut+i + γkvt+k is the bootstrapped value target. The

quantities r, v, and π are outputs of a prediction neural net-
work with trainable weights θ. The dynamics function gθ is
learned as a byproduct of minimizing this loss, even though
it is never explicitly supervised to match environment transi-
tions.

2.3 Sampled MuZero
Sampled MuZero [17] extends the base MuZero algorithm
with several modifications that allow it to perform unbiased
policy iteration and planning in continuous action spaces,
even when only a sample of actions is explored.

MCTS Node Expansion. When a node is expanded, instead
of considering all N = |A| actions, we sample a fixed K ≪
N actions from a proposal distribution β. In principle, any
distribution β can be used. The authors use β = π, which
has the effect of sampling actions that are more likely under
the current policy. In the experimental section, we test the
performance of the algorithm using other distributions.

PUCT Formula. In the original MuZero, the decision of
which node to expand is guided by the PUCT formula, using
prior probabilities P (s, a) = π(s, a), where π is the output
of the policy network. However, the authors show that to ob-
tain an unbiased estimate Îπ of the improved policy Iπ —

2



as if all actions had been considered — the search must use
adjusted prior:

P (s, a) =
β̂(s, a)π(s, a)

β(s, a)
(4)

Here, β̂(s, a) = 1
K

∑
i δ(a − ai) is the empirical distri-

bution over the K sampled actions, and is non-zero only for
actions that were actually sampled. This correction ensures
that the improved policy estimate remains unbiased despite
sampling only a subset of the continuous action space.

Policy Improvement.
From MCTS, we obtain Îπ, a categorical distribution over

the K sampled actions, while πθ denotes a continuous, pa-
rameterized policy. To perform policy improvement, we min-
imize the cross-entropy between the true improved policy Iπ
and πθ, which we approximate as:

L(Iπt, πθ) = Ea∼Iπ [− log πθ(a)] ≈ −
K∑
i=1

Îπ(ai) log πθ(ai)

Since we cannot sample directly from Iπ, we estimate this
expectation by reweighting the target policy probabilities out-
put by MCTS using Sampling Importance Resampling (SIR)
[25]. Each sampled action {ai}Ki=1 ∼ β is assigned a weight
π(ai)
β(ai)

, which is then normalized to form the empirical im-

proved policy Îπ used in the summation above.

3 Related Work
Although this work focuses on comparing variants of Sam-
pled MuZero [17], model-free methods remain important
baselines—especially in continuous control domains where
learning an accurate model is challenging. These approaches
learn policies directly from environment interactions without
modeling dynamics, often trading off sample efficiency for
simplicity and broad applicability. DDPG [20] exploits the
fact that in fully continuous action spaces, the action-value
function Q(s, a) is differentiable with respect to the action a,
allowing efficient computation of deterministic policy gradi-
ents. SAC [11] improves upon this by using a stochastic pol-
icy and entropy maximization to encourage exploration and
robustness. PPO [28], an on-policy method, stabilizes up-
dates via a clipped surrogate objective and is widely used for
its reliability and ease of tuning. MPO [1] and AWR [24]
adopt a supervised learning perspective on policy improve-
ment, using KL constraints and advantage-weighted updates
to ensure stable and efficient learning.

Before Sampled MuZero, several model-based approaches
attempted to adapt MCTS-style planning to continuous con-
trol [22; 12]. While they demonstrated feasibility in princi-
ple, these methods only outperformed model-free baselines
on low-dimensional tasks such as the 1D inverted pendulum.
The authors of Sampled MuZero compare their method to the
Dreamer family of models [13; 14], which, instead of using
tree search, rely on a recurrent world model to simulate fu-
ture trajectories entirely in latent space and apply policy gra-
dients to maximize expected return. Because Dreamer avoids

explicit search over actions, it handles continuous and high-
dimensional action spaces particularly well. However, its lim-
itations compared to Sampled MuZero include greater sensi-
tivity to model errors, limited interpretability, and currently
lower performance than recent MuZero variants [33]. Sam-
pled MuZero itself is one of several extensions of the orig-
inal algorithm, each targeting a specific limitation—for ex-
ample, MuZero Unplugged [27] for offline RL, EfficientZero
[35] for improved sample efficiency, and Gumbel MuZero [6]
for removing reliance on UCB heuristics in MCTS. Although
in principle higher performance could be achieved by com-
bining ideas from these variants, we use the base Sampled
MuZero to focus purely on relative performance differences.

Sparse sampling algorithms, such as the one introduced by
[19], aim to efficiently plan in large Markov Decision Pro-
cesses (MDPs) by sampling a limited number of trajectories.
While effective in complex discrete settings, these methods
require evaluating all possible actions from each state, mak-
ing them impractical for continuous action spaces.

Continuous Upper Confidence Trees [3] introduced pro-
gressive widening, a technique that gradually increases the
number of actions considered at each MCTS node based on
its visit counts. Progressive widening has been used in some
MuZero-based algorithms such as [31], which applies a vari-
ant of progressive widening that tries to consider a more
diverse set of actions by merging similar actions using a
Voronoi-based abstraction [21]. Another related method, Be-
taZero [23], uses progressive widening in belief-state plan-
ning and demonstrates its effectiveness in stochastic, partially
observable environments. However, none of these approaches
systematically benchmark progressive widening in continu-
ous action spaces, leaving open questions about its interaction
with action sampling in Sampled MuZero.

4 Action Sampling Strategies

While the original Sampled MuZero paper proposes a general
framework for adapting MuZero to continuous action spaces,
it leaves largely unexplored the core mechanism that differ-
entiates it from the discrete version: the sampling of actions
from a continuous space. Specifically, two interesting design
questions remain open: (1) how actions should be sampled
(i.e., from what distribution) and (2) how many should be
sampled at each node during tree search.

For the first question, the original paper only investigates a
single strategy, setting the sampling distribution β equal to the
current policy π. In this work, we explore alternative formu-
lations for β, aiming to test whether other distributions might
yield better performance.

For the second question, the original paper evaluates fixed
values of K, i.e., a constant number of actions sampled per
node. In contrast, we examine whether progressive widening
[4], a technique that allows the number of sampled actions
to grow dynamically with node visitation, can lead to more
effective planning in continuous domains.

This section introduces the conceptual background behind
these strategies and describes our methodology for imple-
menting them. We benchmark the strategies in Section 6.
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4.1 Proposal Distributions β
The Sampled MuZero framework is built for an arbitrary ac-
tion proposal distribution β, but [17] exclusively uses β = π
without testing other options.

Uniform Distribution. First, we propose setting β =
U(−1, 1), meaning sampling the action space uniformly.
With a probability density function of β(a) = 1/K, this can-
cels out with β̂ in the prior in the PUCT formula (Equation 2),
which simplifies to P = π. This is the same prior used in the
base MuZero. With this setting, the bias towards exploration
of promising actions according to the current policy would
not happen during sampling but during MCTS.

Temperature-modulated Policy Distribution. Secondly,
the authors mention the possibility of setting β = π1/τ , i.e.,
temperature-modulating the policy with temperature hyper-
parameter τ . The prior in the PUCT can then be written as
P = β̂π1−1/τ . If τ = 1, then β = π, equaling the setup
used in the original paper [17] and resulting in a uniform prior
P = β̂. This means the sampling of actions is guided by π,
but then the policy does not play a role in determining which
actions to search first in MCTS—the reverse of the case when
β is a uniform distribution.

We experiment with different values for τ . Since we chose
to use a factored Gaussian policy, we temperature-modulate
the parameters of the policy distribution as

π
1/τ
θ =

n∏
i=1

Ni(µθ,
√
τ · σθ) (5)

If τ > 1, the MCTS search will evaluate more diverse sam-
ples but is guided by more peaked probabilities β̂π1−1/τ . If
τ < 1, the opposite is true.

A motivation for why temperature modulation could be
promising is that it could be a substitute for the Dirichlet
noise, which in the base Muzero [26] is added to the prob-
abilities of the root actions to promote additional exploration.
We can’t apply noise to π in Sampled MuZero because of
the PUCT prior formula, where π and, therefore, the applied
noise too, can cancel out with the logits β when using β = π.

4.2 Progressive Widening
Progressive widening [4] is an augmentation for MCTS that
allows the tree to dynamically adjust the number of node chil-
dren considered, enabling it to grow arbitrarily wide. Dur-
ing the selection step in default MCTS, we descend the tree
starting at the root node by recursively performing action se-
lection, i.e., choosing among the K node children with the
PUCT formula. In MCTS with progressive widening, instead
of selecting among K actions, the number of actions we con-
sider depends on the number of visits the parent node has
received, as illustrated in Figure 1. This aims to provide a
more nuanced exploration of promising tree paths. More con-
cretely, we show the modified action selection procedure in
Algorithm 1. On line 6, we see that when the algorithm sam-
ples additional actions and widens the tree is controlled by

hyperparameters C and α. C corresponds to the base num-
ber of actions we consider during the first node visit. The
higher the parameter α, the fewer node visits it takes to sam-
ple additional actions, widening the tree faster. To illustrate
how these parameters influence the progressive widening al-
gorithm, Figure 3 plots the number of child nodes considered
as the node’s visit count increases. In the extremes, when
α = 1, we sample additional actions every time a node is vis-
ited, and when α = 0, no additional actions beyond C can be
sampled, corresponding to default MCTS. This is shown for
various α values, which are later used in our experiments.

Algorithm 1 MCTS with Progressive Widening

1: procedure SELECT ACTION(s)
2: if LEAF NODE(s) then
3: return s
4: end if
5: t← num visits[s]
6: if num children[s] < Ctα then
7: a′ ∼ β(s)
8: s′ ← gθ(s, a

′)
9: children[s].add(s′)

10: end if
11: SELECT ACTION(argmaxs′∈children[s] PUCT(s′))
12: end procedure

Figure 2: Effect of C and α parameters on progressive widening.
C corresponds to the base number of actions we consider. Higher
α values mean the algorithm requires fewer node visits to sample
additional actions and making the MCTS tree branch wider.

We chose to try progressive widening following our ob-
servation that the search trees built by Sampled MuZero are
relatively shallow. This likely occurs because when β = π
(as in the original Sampled MuZero paper), the prior P be-
comes uniform. Therefore, there is no prior knowledge to
guide MCTS in ignoring poor actions early and instead allo-
cating the simulation budget to more promising actions for
deeper exploration. Since progressive widening does not ex-
pand all K actions at once, the algorithm has fewer choices at
each level, which may enable deeper tree construction. Sub-
sequently, it can widen these levels for the most relevant ac-
tions using the refined Q values in the PUCT formula.
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5 Experimental Setup
The following section details the specific settings used for our
training environment and the Sampled MuZero agent, which
serve as a common base throughout all experiments.

5.1 Training Envrionment
Several popular physics engines are available for testing con-
tinuous control agents [18]. We chose Brax [9] as our frame-
work, primarily because it is the only physics engine written
in JAX. This choice complements our Sampled MuZero im-
plementation, which is also in JAX, allowing for greater com-
putational performance. The completely JAX-based setup
proved highly efficient, enabling us to run 128 environments
in parallel and significantly accelerating training.

However, computational constraints limited our experi-
ments. Training was restricted to university cluster DAIC
[8], which prioritizes jobs by time allocation. Since continu-
ous control requires orders of magnitude more steps than dis-
crete benchmarks like Atari, and while the original Sampled
MuZero allows up to 20 million steps, we limited training to
1 million steps (approximately 15 hours), resulting in longer
resource queues.

Given these constraints, we needed an environment show-
ing learning progress within this shorter duration. We se-
lected HalfCheetah [34], featuring a two-legged robot with
9 links and 6 controllable joints. The objective is to apply
torque for maximum forward speed, with rewards for forward
distance and penalties for backward movement. We used the
fully observable variant for faster learning [17], providing the
agent a 17-dimensional observation vector (link angles, cen-
ter of mass locations, joint velocities) to output 6-dimensional
actions.

Figure 3: HalfCheetah training envrionment. We train our agent
to control a 2D bipedal robot, receiving positive rewards for forward
movement while minimizing energy consumption.

5.2 Agent Architecture
As a starting point, we were provided with a repository im-
plementing base MuZero for Atari, which uses DeepMind’s
mctx library [7] to perform MCTS search. We extended the
mctx library to handle multidimensional actions and imple-
mented new policy and action selection functions according
to the Sampled MuZero paper [17]. Following the Sampled
MuZero paper specifications, we implemented additional net-
work architectures and modified the code to work with vector
inputs rather than just images used in Atari, allowing users to

switch between input types. This work provides the first scal-
able open-source JAX implementation of Sampled MuZero,
representing another contribution of our research.

Following Sampled MuZero, the representation and dy-
namics functions are processed by a ResNet v2 [15] style
pre-activation residual tower, with each block containing two
fully connected layers with leaky ReLU activations and layer
normalization [2]. We used a smaller network with 4 blocks
and a hidden dimension of 512.

The policy network uses a factored Gaussian distribution.
To keep sampled actions within the action bounds (-1, 1),
we initially tried clipping, which accumulates density near
the cutoff points and results in incorrect log probabilities and
poor performance. In the end, we used the tanh function to
squash the actions and used the change of variable formula
to compute action log likelihood following [11]. To improve
stability, we use entropy regularization in the policy loss with
a coefficient of 5 · 10−3.

We train with K = 10 sampled actions and a search budget
of 50 simulations per move, as the authors found that perfor-
mance gains become minimal beyond this point in practice.
We use the Adam optimizer with a batch size of 256, initial
learning rate of 0.003, and weight decay of 2 · 10−5. We em-
ploy n-step bootstrapping with n=5 and a discount factor of
0.99, following [16]. Like MuZero, we use a categorical rep-
resentation of reward and value predictions with 51 bins. All
hyperparameter settings for the agent and the environment are
listed in Appendix A.

6 Results
In this section, we describe our experimental design, present
our results and discuss their implications.

6.1 Comparison of Proposal Distributions β
Firstly, we compare the performance measured by the
agent’s mean episode return across the different sampling
distributions. As explained in Section 4.1, we choose
to test β = U(−1, 1), which makes MCTS use a prior
from the base MuZero. Furthermore, we tested using
temperature-modulated policy π1/τ as β. We test τ ∈
{0.7, 0.85, 1.15, 1.3} and compare it with τ = 1, which is
the setting from the Sampled MuZero paper that provides no
additional exploration. τ > 1 should promote exploration
during action sampling and τ < 1 should reduce it.

Figure 5 shows the effect the temperature parameter has
on the entropy of the policy predicted by the agent’s network.
As expected, for τ > 1, the policy entropy increases, meaning
we give a chance to a wider range of actions. Interestingly, the
temperature does not seem to just scale the standard deviation
but rather change the overall trend of how the policy evolves
over time. For τ < 1, it seems to promote faster policy con-
vergence by assigning high probabilities to a smaller range
of actions. When we sample actions uniformly, the entropy
of the policy appears to stay constant, which could mean the
uniformly selected actions might not provide enough learning
signal for the policy to change. This would also explain this
strategy’s poor performance, as discussed later.
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Figure 4: Performance of different proposal distributions β. We compare uniform sampling and temperature-modulated sampling, with
τ = 1 corresponding to baseline. Only moderate temperature adjustment (τ = 0.85) matches baseline performance. Results show the mean
and standard error of 5 seeds per experiment.

Figure 5: Policy network entropy across β distributions. Higher
temperatures (τ > 1) maintain elevated entropy throughout train-
ing, promoting exploration of diverse actions. Lower temperatures
(τ < 1) lead to rapid entropy decay, indicating faster convergence
to peaked action distributions. Uniform sampling maintains constant
entropy. Shaded regions show standard error over 5 seeds.

In Figure 4, we plot the achieved episode return during
evaluation for each β option. We can see that no distribu-
tion clearly beats the baseline on the first million environmen-
tal steps. Only τ = 0.85, which reduces exploration during
sampling and increases it during MCTS, matched the base-
line performance. This is consistent with [26], which also in-
creases exploration during MCTS but through adding Dirich-
let noise to the root priors. However, we can see that τ > 1
settings have much larger variance than others, so clearer re-
sults might need more computational resources. We can also
see that moving further in either direction from τ = 1 (from
1.15 to 1.3 or from 0.85 to 0.7) worsens the results, showing
that too much added noise prevents the algorithm from learn-
ing. The results for the uniform distribution show it does
not learn at all, proving the need for the modified Sampled
MuZero we introduced.

We then tested two additional ideas for making the tem-
perature modulation work better, but they did not result in

improvement. Firstly, it is possible that different tempera-
tures might be needed at different points in training. For in-
stance, when using π = β, at the start of training, the policy
might be poor and overly narrow—failing to explore poten-
tially useful actions. Introducing noise early might reduce
reliance on the initial policy’s quality, but later in training, it
might have a negative effect. To test this, we tried creating
a time-dependent schedule, starting at high noise of τ = 1.3
at the start and lowering the temperature by 0.08 after 125K
steps. Secondly, we applied temperature modulation to the β
probabilities not only at the root of the MCTS tree (as is done
with Dirichlet noise in standard MuZero), but to all actions
throughout the tree. Neither of the modifications managed to
beat their respective baseline. We included the plotted results
in Appendix B.

In summary, this section demonstrates that while β = π1/τ

shows some promise, particularly with τ = 0.85, which re-
duces action sampling exploration, the benefits are marginal
and come with increased variance. The experiments reveal
that excessive modulation in either direction harms perfor-
mance, and that the uniform distribution completely fails
to learn, validating the necessity of the modified Sampled
MuZero approach.

6.2 Effect of Progressive Widening
In Section 4.2, we explained how progressive widening
has the potential to improve performance by making the
search tree deeper when necessary. To evaluate our progres-
sive widening approach, we test configurations with α ∈
{0, 0.25, 0.5, 0.75, 1}. After experimenting with different
settings for the base number of children C we set it to 3, al-
though the performance impact of this parameter was small
(we plot these results in Appendix C). We also limit the max-
imum number of children per node to 20 for every experi-
ment. As a baseline, we include an agent that can search all
actions from the start (i.e., it uses no progressive widening
with K = 20).

Figure 6 partially validates our hypothesis that lower α val-
ues result in deeper search trees on average. However, the
difference becomes negligible for α values above 0.25, where
the depth approaches that of the baseline.
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Figure 6: Average MCTS tree depth across different α settings.
Progressive widening with lower α values produces deeper trees by
restricting initial action width, while higher α values converge to
depths similar to the no progressive widening baseline. The effect
becomes negligible for α ≥ 0.5

Figure 7 shows the episode returns achieved during evalu-
ation. At the extreme values (α = 0 and α = 1), progressive
widening performs the worst. For α = 0, this is likely due
to MCTS being stuck with evaluating just C = 3 actions at
each level, which as experiments in [17] indicate is too nar-
row of an action selection to choose good actions from. The
best results are achieved with α = 0.5, which, as illustrated
in Figure 3, samples a new action approximately every two
node visits. This seems to strike a good balance, not making
the width too narrow or adding new nodes too quickly with-
out having the time to evaluate them. This configuration also
narrowly outperforms the baseline after the first million envi-
ronmental steps, providing evidence that progressive widen-
ing could improve Sampled MuZero’s performance.

We further attempted to improve performance in two ways.
The above experiments used a fixed budget of 50 MCTS sim-
ulations, following the original Sampled MuZero implemen-
tation (where a new node is added during each simulation).
We tested performance with 100 simulations to determine
whether progressive widening’s increased flexibility could
better utilize the larger simulation budget. We found that pro-
gressive widening offered no improvement beyond what the
increased simulation budget alone provided.

Second, we hypothesized that the lack of depth increase
resulted from Sampled MuZero exploring actions too uni-
formly, failing to focus on any single branch and exploit pro-
gressive widening’s benefits. Therefore, we combined pro-
gressive widening with temperature modulation using τ > 1,
which should result in more peaked probabilities of promis-
ing actions during MCTS. However, this approach worsened
performance. Detailed results are presented in Appendix C.

Finally, we argue that progressive widening could improve
training efficiency. When expanding a node in Sampled
MuZero, all K actions (typically 5-20) must be sampled, even
if the node or its children are never revisited, which is com-
putationally wasteful. Figure 8 shows that while progres-
sive widening did not yield dramatic performance improve-

Figure 7: Episode return across different α settings. Shaded re-
gions show standard error over 5 random seeds. The dotted line
shows the baseline without progressive widening (K = 20). Pro-
gressive widening with α = 0.5 achieves the best performance, out-
performing both extreme values and the baseline.

ments in episode return, it requires MCTS to sample signif-
icantly fewer actions than even the minimal baseline setting
of K = 5. For instance, MCTS with α = 0.25 performs 30%
fewer action samplings.

All in all, these experiments demonstrate that progressive
widening can improve Sampled MuZero’s performance when
properly configured. The results show that α = 0.5 strikes
a good balance between search depth and breadth, outper-
forming both extreme values and the baseline. While the per-
formance improvements are modest, the computational effi-
ciency gains suggest that progressive widening is a promising
technique, though benefits are sensitive to parameterization.

7 Conclusion, Limitations and Future Work
This work addressed a research gap in Sampled MuZero’s
core action-sampling algorithm. We motivated and tested
variations in (1) the proposal distribution β from which ac-
tions are sampled and (2) the MCTS algorithm, allowing flex-
ible action sampling during node expansion with progres-
sive widening. For the proposal distribution, we found that
adding noise through temperature-modulated policies does
not improve performance. For progressive widening, we nar-
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Figure 8: Action sampling reduction with progressive widening.
Lower α values result in fewer sampled actions during MCTS com-
pared to the baseline without progressive widening (K = 5).

rowly outperformed the baseline with proper α parameteriza-
tion and showed potential for increased training efficiency.
Additionally, an important contribution is our open-source
JAX-based implementation—the first of its kind for this al-
gorithm—which complements simulation libraries like Brax.

Limitations. Our conclusions are limited by experimental
constraints. We tested performance only during the first mil-
lion environmental steps, potentially before algorithm con-
vergence. More random seeds would reduce variance and
strengthen conclusions. We tested only a single, simple envi-
ronment, limiting generalizability to higher-dimensional ac-
tion spaces like Humanoid or Spot. We also cannot rule out
that better performance could be achieved by further tuning
the hyperparameters (e.g., initial number of node children C
or temperature τ ).

Future Work. Future work could explore several directions.
First, investigating temperature modulation effects on alter-
native policy representations, such as the discretized policy
[32]. Second, progressive widening could be analysed more
extensively by for instance, studying the distribution of indi-
vidual branch depths and how it evolves instead of just look-
ing at the average tree depth. Third, Voronoi abstraction could
be used to improve progressive widening by avoiding sam-
pling similar actions as in [21]. Lastly, the double progres-
sive widening [4] could be used to extend Sampled MuZero
to stochastic settings.

8 Responsible Research
Reproducibility. We believe we provide all the necessary in-
formation to reproduce the research in its entirety and validate
it. We have published the codebase in a publicly accessible
repository. A description of the used architecture in Section 5
further aids in reproducing the research. We also include a
complete list of all parameters used during experimentation
in Appendix A. For each hyperparameter setting in an exper-
iment, we run several seeds with randomized initial weights
to ensure the generalizability of our conclusions, and we plot

the standard error to reflect the variance in results. We are also
transparent about the limitations of our research in Section 7,
which allows future work to build on our findings. Further-
more, to the best of our knowledge, we conducted a thorough
review of related literature, properly citing all sources and
avoiding any misrepresentation of prior work.

Ethics. The field of continuous control and robotics warrants
consideration of the broader ethical and societal impacts of
this technology, such as safety or job automation. However,
we believe this work does not pose any tangible impact in this
regard, as we are adapting existing experimental setups, test-
ing agents only in simulation, and conducting experiments
at a relatively small scale. The limited scope of our exper-
iments—with GPU training times under a day—also mini-
mizes the environmental impact of our research.

Use of Generative AI. During the writing of this paper, we
used the Claude Sonnet 4 model to help with proofreading
and correcting of grammar. Additionally, we used it to help
with generating code for plotting our experimental data using
Python’s matplotlib library.
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A Hyperparameters for HalfCheetah Environment

Table 1: Key Hyperparameters Used in Sampled MuZero Training. The architecture, optimizer and MCTS settings are taken from [17].

Category Hyperparameter Setting
Training Total environment steps: 1,000,000

Learn per update step: 1
Evaluation frequency: every 1250 updates
Save model every 25,000 updates
Random seeds: 0, 42, 123, 1, 43

Environment Environment: Brax HalfCheetah
Episode length: 1000 steps
Training envs: 64 (async), Eval envs: 32 (async)

Action Sampling Action sample size: 10
MCTS (Training) Simulations: 50

Temperature schedule: annealed over 4 phases
Dirichlet noise: α = 0.3, fraction = 0.25
PUCT constants: cinit = 1.25, cbase = 19652

Network Architecture ResNet blocks: 4 per module
Hidden units per layer: 512
Value transformation: 51 bins over [-150, 150]

Optimization Optimizer: AdamW
Learning rate: 0.003, weight decay: 0.0002
Batch size: 256, max grad norm: 10.0
Warmup ratio: 10%

Replay Buffer Size: 524,288, Min size to learn: 8192
Prioritized replay: α = 0.6, β ∈ [0.4, 1.0]

Loss Weights Reward loss coef: 1.0
Policy loss coef: 1.0, Entropy: 0.005
Value loss coef: 0.25, TD steps: 5
Unroll steps: 5

B Additional Experiments for Temperature Modulated Policy β

(a) Noise Applied to Root vs to All Actions. Episode returns from
5 random seeds comparing temperature modulation applied only to
β probabilities of root actions versus applying it to all actions in the
entire MCTS tree. The minimal improvement observed is likely due
to increased variance from introducing additional noise throughout
the search.

(b) Time-dependent Temperature Modulation. Episode returns
from 5 random seeds comparing a time-dependent temperature
schedule (τ = 1.3 (max noise) to 1.0 (no noise), -0.08 every 125K
steps) against baseline. The schedule degrades performance and in-
creases variance, likely due to fine-tuning difficulties and policy in-
stability from frequent temperature changes.

10



C Additional Experiments for Progressive Widening

(a) Progressive widening and simulation budget. Comparison
of progressive widening performance with MCTS simulation bud-
gets of 50 (baseline) and 100 (3 seeds each). Increasing the sim-
ulation budget with progressive widening yields identical perfor-
mance gains as without progressive widening, indicating progres-
sive widening does not improve utilization of additional simulations.

(b) Effect of initial width C on progressive widening perfor-
mance. Results averaged across 3 seeds show performance peaks
at C = 3, with larger initial widths providing no additional benefit.

(c) Combination of progressive widening with temperature-
modulated policy β. We hypothesized that using τ > 1 to create
more peaked action probabilities would guide MCTS to focus explo-
ration on promising branches, thereby increasing search tree depth
and improving performance. However, results demonstrate that this
combination of progressive widening with temperature modulation
actually worsened performance compared to baseline approaches.
Shaded regions represent standard error across 5 random seeds.
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