
A Java/JNI/C/Fortran makefile project for a Java plug-in and related
Android app in Eclipse ADT bundle: A side-by-side comparison

R. de Beer and D. van Ormondt
Applied Physics, TU Delft, NL

E-mail: r.debeer@tudelft.nl

Abstract—We have developed a Java/Fortran based applica-
tion, called MonteCarlo, that enables the users can carry out
Monte Carlo studies in the field of in vivo MRS. The application
is supposed to be used as a tool for the jMRUI platform, being
the in vivo MRS software system of the TRANSACT European
Union project. The MonteCarlo application can be launched
either as a jMRUI custom plug-in (on Windows/Linux computers)
or as a standalone Android app (on mobile Android devices).
Both the plug-in and Android app version were developed as a
Java/JNI/C/Fortran makefile project. This could be done by using
one and the same version of Eclipse (in Eclipse ADT bundle),
the main difference between the plug-in and Android app being
the code, required for creating the GUI.

Index Terms—Java/JNI/C/Fortran makefile project, Java plug-
in, Android app, Eclipse ADT bundle, Java Swing vs Android
user-interface model, In vivo MRS quantification, jMRUI soft-
ware system, Monte Carlo modeling, Windows/Linux/Android
OS, mobile devices

I. INTRODUCTION

The purpose of this work was to investigate, whether a Java/Fortran
based software application, created for computers with the Win-
dows/Linux operating system, can be adapted for being used on
mobile devices equipped with Android. We have done this on the
hand of an example in the field of in vivo MRS [1]. It concerns an
application, called MonteCarlo, that we have developed for perform-
ing Monte Carlo modeling [2].

We have created two versions of the MonteCarlo application, one
being a Java custom plug-in for the jMRUI platform [3] (the in
vivo MRS software system, supported as part of the TRANSACT
European Union project [4]) and the other being a standalone Android
app.

II. METHODS

A. Design goals for the MonteCarlo application
We adopted the following design goals for the MonteCarlo applica-
tion:

1) The application must be able to generate a large number of
“in vivo MRS related” signals, all being obtained by adding to
the “same noiseless simulated” MRS signal a different noise
realization with the same standard deviation.

2) The noiseless simulated MRS signal must have been quantified
by the jMRUI QUEST [3] quantification method, in this way
yielding a QUEST-based ∗.results file that can act as input file
for the MonteCarlo application.

3) The application must deliver a table with the Monte Carlo
results of all noised signals.

4) The numerical computational part of the MonteCarlo appli-
cation should be written in Fortran, since this programming
language can handle double-precision complex numbers in a
natural way (the MRS signals are complex-valued).

(a)

(b)

Figure 1: Conceptual design diagram of the main building blocks
of the MonteCarlo (a) jMRUI plug-in and (b) Android app.

A consequence of design goal 2) is, that the MonteCarlo computer
code must have a link to the jMRUI code. This means, since the
core of jMRUI has been written in Java, that also the MonteCarlo
application must have a Java part. Combined with design goal 4) we
have chosen to use the Java/JNI approach. Since Fortran cannot be
accessed directly from Java using JNI, we have applied ANSI C as
intermediate language. That is to say, we have chosen to deal with a
Java/JNI/C/Fortran project.

The design goals have resulted into conceptional diagrams pre-
sented in Figure 1 . In these diagrams the cyan blocks represent
standard Java classes. The magenta blocks also represent Java classes,
this time, however, with specific Android user-interface properties via
the mechanism of being a subclass of the Android Activity class
[5]. The yellow and pink block represent the ANSI C intermediate
code and Fortran code, respectively, as being accessed from Java via
the JNI mechanism. Finally, the magenta ovals depict the Android
Intent class, which represent pieces of information, that can be
sent among Android activities or other major building blocks [5].

-17-

1) File->New->Java Project->project
name->Finish
for starting a new Java project.

2) project name∗->New->Convert to a C/C++
Project->C Project->Makefile Project
for adding C/C++ nature to the project and for choosing
the Makefile approach to build the MonteCarlo JNI native
library.

3) project name∗->New->Folder->folder
name->Finish
for adding a jni and lib folder to the project folder
structure.

4) src∗->New->Class->Package->package
name->Name->class name
for adding the project Java source code files to the
project src folder. All should have the same chosen Java
package name.

5) Project->Properties->Java Build
Path->Libraries->Add JARs...
for adding the desired Java JAR libraries to the project’s
Java build path. To that end the desired JARs first have to
copied from outside into the project lib folder. In this
context the mrui.jar file, containing the Java classes
of the jMRUI software package, is the most important
one.

6) Create and develop/edit in the project jni folder
the callNativeC.c and callfortran.f90 source
code files and the GNU makefile.

(a)

1) File->New->Other...->Android->Android
Application Project->Next->Application
Name->Project Name->Package Name->
..... ->Next->Create Activity->
Activity Name->Layout Name->Finish
for starting a new Android app project. This sequence
of steps delivers, amongst other things, a template file
for the MainActivity.java Java source code (in the
project src folder) and templates for other specific files
of the Android app project.

2) Same as 2a.
3) Same as 3a.
4) Same as 4a. However, the first Java source code filename

was already chosen in step 1b, as well as the related
project Java package name.

5) Same as 5a.
6) Create and develop/edit in the project jni folder the

callNativeC.c and the callfortran.f90 source
codes. Furthermore, add/edit the Android.mk and
Application.mk Android makefile’s and copy
from outside the libfftw.so and liblapack.so
Android-suited libraries. The latter two were obtained by
compiling the fftw C-codes with the Android NDK C-
compiler and the LAPACK (with BLAS) Fortran-codes
with our Android gfortran compiler.

7) Project->Properties->C/C++ Build∗->
Build Command->ndk-build
for using the Android NDK build script.

8) Project->Properties->C/C++ General->
Paths and Symbols->Includes
for adding the required C/C++ include-directories of the
android-ndk-r9 Android NDK.

(b)

Figure 2: Essential Eclipse setup steps for the (a) jMRUI plug-in and (b) Android app. Note that ∗ indicates “right-click on”.

B. Choosing an Integrated Development Environment (IDE)

When developing a Java-based application we considered it a good
choice of using Eclipse as our Java IDE. An important additional
aspect of choosing Eclipse Java IDE was, that it can be combined with
C/C++ support. Given the fact, that we also needed the Android Soft-
ware Development Kit (SDK) [5] [6] for developing the MonteCarlo
Android app version, we finally arrived at working with the Eclipse
ADT bundle [6] combined with the Android Native Development
Kit (NDK) [7]. The Eclipse ADT bundle includes a version of
Eclipse Java IDE together with all essential Android development
components/tools. The Android NDK is required for providing C/C++
support for the development of the MonteCarlo Android app version.

The above-mentioned means, that we could develop the Monte-
Carlo plug-in and Android app by using one and the same Eclipse
Java IDE. Furthermore, C/C++/Fortran support was realized by using
either the C/C++/Fortran software installed on Windows/Linux or by
using the Android NDK. Concerning the latter, since the official
Android NDK does not come with a gfortran compiler we
additionally had to compile a gcc Fortran cross-compiler for Android
[8].

In order to realize the Linux-suited plug-in version and the
Android app version of the MonteCarlo application, we worked
on the Linux Ubuntu 12.04 platform. In that case we used the
adt-bundle-linux-86-20131030 Eclipse ADT bundle [6]
combined with the android-ndk-r9 Android NDK (with an
ndk-r9-fortran-patch, at the time of our work only tested
on Ubuntu 12.04 [8]).

The Windows-suited version of the MonteCarlo plug-in was de-
veloped on the Microsoft Windows 7 platform. We then worked with
the adt-bundle-windows-86-20140702 Eclipse ADT bundle
[6]. For getting C/C++/Fortran support under Windows 7 we installed
MinGW (Minimalist GNU for Windows) [9].

C. Setting up Eclipse in Eclipse ADT bundle

When working with Eclipse to develop a specific (Java/JNI
based) project, one get easily overwhelmed by the numerous fea-
tures/choices/options, that one can select from in Eclipse in order
to arrive at a certain result. In this report we will restrict ourselves
to mentioning only the essential Eclipse setup steps, used for real-
izing the MonteCarlo application. In Figure 2 these setup steps are
presented for both the plug-in and Android app version.

D. Details of the MonteCarlo Source codes
1) The MonteCarlo GUI: The Graphical User Interface (GUI)

of the MonteCarlo plug-in version was realized in the same way as
the jMRUI Desktop, that is to say, in a programmatic way by writing
specific Java code including the user-interface components of the Java
Swing package [10]. The GUI of the Android app version, however,
was created in a mixed way by using a declarative approach (via
XML) combined the programmatic approach using Java. Concerning
the Java part, this was not written by using Java Swing (not sup-
ported in the Android platform), but by using Android’s own user-
interface (widget) package [5] (Android’s own user-interface model
is claimed to be better suited for mobile devices).

2 -18-

package mrui.custom.montecarlo;
import javax.swing.*;
//.....
public class Gui extends JInternalFrame {
//.....
private JButton quit;
//.....
public Gui(MruiImpl mrui) {
//.....

}
private JPanel getDisplay() {
//.....
quit = new JButton("Quit");
quit.setForeground(Color.red);
quit.setBackground(Color.yellow);
quit.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent evt) {

quitActionPerformed (evt);
}

}
);
//.....
southpanel.add(quit);
//.....
mainpanel.add(southpanel, BorderLayout.SOUTH);
//.....
return mainpanel;

}
//.....
private void quitActionPerformed (ActionEvent evt) {
dispose();

}
//.....

}

(a)

<RelativeLayout xmlns:android=
"http://schemas.android.com/apk/res/android"
......
<LinearLayout
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginTop="270dp"
android:layout_marginLeft="5dp" >
<Button
android:id="@+id/button_quit"
android:layout_width="wrap_content"
android:layout_height="30dp"
android:background="#ffd398"
android:textColor="#ff0000"
android:text="Quit" />

</LinearLayout>
.....

</RelativeLayout>

package mrui.custom.montecarlo;
import android.widget.Button;
//.....
public class MainActivity extends Activity {
//.....
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
//.....
Button quit = (Button)findViewById(R.id.button_quit);
quit.setOnClickListener(
new Button.OnClickListener() {
public void onClick(View v) {
finish();

}
}

);
}
//.....

}

(b)

Figure 3: User-interface models for (a) the MonteCarlo plug-in (file Gui.java) and (b) the MonteCarlo Android app (files
activity_main.xml and MainActivity.java). Shown are pieces of Java and XML code, used for realizing the Quit button
of the MonteCarlo GUI (see also Figure 4).

To illustrate the two user-interface approaches, just mentioned,
we present in Figure 3 pieces of Java and XML code, required for
realizing a Quit button in the GUI of the plug-in and Android app
version (see also Figure 4). Note, that the positioning of the button
component in the Android app GUI is completely determined by the
declarations in the XML code (via the Layout’s and Margin’s).
Also its size, colors and text is determined in that way. This separation
into XML and related Android Java gives freedom to change the
presentation of an Android app GUI without disrupting its underlying
functionality.

2) The MonteCarlo makefiles: When considering the steps 2
and 6 of Figure 2 (a) and (b), it becomes clear that we have chosen to
build the MonteCarlo native libraries (libmontecarlo.dll/.so
for Windows/Linux and libmontecarlo.so for Android) via the
Makefile approach [11]. Since the contents of a makefile is essential
for creating the proper native library, we display, as an example, in
Figure 5 the makefile for the Windows plug-in and the Android app.

When comparing the two makefiles, we like to remark:

For Windows

1) The Windows path’s to Java, jMRUI and MinGW, installed
on the local Windows computer, are explicitly present in the
makefile.

2) Note the \’s in the Windows path’s, but also the /’s in the
target rules.

3) Note the presence of -Wl,--add-stdcall-alias, re-

quired to overcome undefined symbols during the building of
the library.

4) The required Java/JNI-related include file
mrui_custom_montecarlo_Gui.h is generated via the
makefile.

5) The Windows-suited Fortran libraries
liblapack.dll and libblas.dll should be present in
the MonteCarlo-project jni folder.

For Android
1) The only path information is about LOCAL_PATH, which in

our case refers to the MonteCarlo-project jni folder.
2) In the jni folder two prebuilt Android-suited libraries should

be present, called libfftw.so and liblapack.so (see
also Figure 2 6) (b)).

3) The required Java/JNI-related include file
mrui_custom_montecarlo_MainActivity.h is not
realized via the makefile, but was generated outside the Eclipse
MonteCarlo project (with the Java executable javah, using
the Java class, concerned, and the proper Java Package Naming
approach).

III. BUILDING, INSTALLING AND RUNNING THE
MONTECARLO APPLICATION

A. Building MonteCarlo
In order to arrive at the moment of installing the MonteCarlo

application as a jMRUI plug-in on Windows/Linux or as an Android

3 -19-

(a) (b)

Figure 4: (a) GUI of the MonteCarlo jMRUI plug-in, as displayed via Ubuntu 12.04. (b) GUI of the MonteCarlo Android app, as displayed
via Android 4.1.2 on a Samsung GALAXY Note 8.0 tablet. Also displayed, in (a), is a selected jMRUI QUEST ∗.results file for getting
input-values.

PATH_JAVA = C:\Program Files (x86)\Java\jdk1.6.0_27

PATH_JMRUI = C:\Users\beer\Documents\jmrui_5.0_matlab\
jMrui_v5.0_build_219_matlab\lib

all: libmontecarlo.dll copylib

libmontecarlo.dll: callfortran.dll mrui_custom_
montecarlo_Gui.h
"C:\MinGW\bin\mingw32-gcc" -Wl,--add-stdcall-alias
-I "$(PATH_JAVA)\include" -I "$(PATH_JAVA)\include\win32"
-shared -lgcc -lm callfortran.dll -o libmontecarlo.dll
callNativeC.c

callfortran.dll:
"C:\MinGW\bin\mingw32-gfortran" -shared liblapack.dll
libblas.dll -lm -lgfortran -o callfortran.dll
callfortran.f90

mrui_custom_montecarlo_Gui.h: ../bin/mrui/custom/
montecarlo/Gui.class
"C:\Program Files (x86)\Java\jdk1.6.0_27\bin\javah"
-jni -classpath ../bin mrui.custom.montecarlo.Gui

copylib:
cp liblapack.dll libblas.dll callfortran.dll
libmontecarlo.dll $(PATH_JMRUI)

(a)

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := fftw-prebuilt
LOCAL_SRC_FILES := libfftw.so
LOCAL_EXPORT_C_INCLUDES := $(LOCAL_PATH)/include

include $(PREBUILT_SHARED_LIBRARY)

include $(CLEAR_VARS)

LOCAL_MODULE := lapack-prebuilt
LOCAL_SRC_FILES := liblapack.so

include $(PREBUILT_SHARED_LIBRARY)

include $(CLEAR_VARS)

LOCAL_MODULE := montecarlo
LOCAL_SRC_FILES := callNativeC.c callfortran.f90
LOCAL_C_INCLUDES := $(LOCAL_PATH)/include
LOCAL_LDLIBS := -llog -lgfortran
LOCAL_SHARED_LIBRARIES := fftw-prebuilt
LOCAL_SHARED_LIBRARIES := lapack-prebuilt

include $(BUILD_SHARED_LIBRARY)

(b)

Figure 5: Makefiles of the MonteCarlo application. (a) For the Windows plug-in version (called makefile). (b) For the Android app
version (called Android.mk).

app on Android, one first has to build the MonteCarlo application,
that is to say, to compile its ∗.java source code files and to generate
its MonteCarlo native library. Building the Java classes in Eclipse
is the easy part, because by default Eclipse is in the auto-build
mode (taking care of compiling the ∗.java files automatically every
time you change a Java code).

Generating the MonteCarlo native library means running one of
the MonteCarlo makefiles (shown in Figure 5). Within Eclipse this is
accomplished by carrying out the steps makefile name∗->Make
Targets->Build->select Target->Build . For the plug-
in the selected target is called all (see Figure 5 (a)) with a corre-
ponding build command make and for the Android app the target
is called montecarlo (see Figure 5 (b)) with a build command
ndk-build.

B. Installing MonteCarlo
Installing the MonteCarlo plug-in on Windows/Linux or the app on

Android is different in the sense that on Windows/Linux the plug-in
is added as a new feature to the already existing jMRUI application,
whereas on Android the app is added as a new standalone application.
This difference becomes clear, when considering the two installation
procedures, as is shown in Figure 6.

C. Running MonteCarlo
The MonteCarlo plug-in version is launched via the Desktop

Custom menu of the jMRUI system. Furthermore, launching the
standalone Android app is accomplished by clicking its icon on the
screen of the mobile device (but see also Figure 6 5) (b)). When
running the application, there are differences between the plug-in
and the Android app. They are related to the lack of the Java Swing

4 -20-

1) Copy the native library libmontecarlo.dll/.so to the
jMRUI lib folder on the local computer. This is realized at
the end of the Windows/Linux makefile (see Figure 5 (a) for
the Windows example).

2) Copy a MonteCarloPlugin.jar file to the jMRUI
plugins folder. This is accomplished by performing the steps
File->Export...->Java->JAR file
->Next->select resources->
path-to-jmrui-plugins-folder\
MonteCarloPlugin.jar->Finish. The JAR file con-
tains the MonteCarlo Java classes, as well as the required
montecarloplugin.properties resource.

(a)
1) Enable in the mobile Android device, you want to install the

MonteCarlo app on, the setting Settings->
Developer options->USB debugging.

2) Connect the mobile device (via USB) to the development
computer (in our case with Ubuntu 12.04).

3) Install the app on the device by selecting Run->Run from the
Eclipse menu bar.

4) If you run the app for the first time as an Android
Application, the Android ADT will create a run configu-
ration with an automatic target mode for device selection.

5) When performing step 3), a device chooser is presented
showing the name of the device. After selecting the device,
the app is installed and “run upon it”.

(b)

Figure 6: Installing with Eclipse the MonteCarlo application on (a)
a Windows/Linux computer (as a jMRUI plug-in) and (b) a mobile
Android device (as an Android app).

package support on the Android platform (see again subsubsection
II-D1). Because of this lack of support the contents of the jMRUI
∗.results files can not be viewed in the GUI of the Android app.
The various steps for running the two versions of the MonteCarlo
application are presented in Figure 7.

IV. EXAMPLE OF A MONTE CARLO RESULT

An example of the results of a Monte Carlo study with the
MonteCarlo application concerns a simulated in vivo MRS signal,
with metabolite amplitudes (concentrations) related to the human
brain [12]). The number of noised Monte Carlo signals, used in this
study, was 1000. The purpose of the Monte Carlo study was to find
out, whether or not denoising of the noised signals (with a wavelet
approach [13]) may help to improve the quantification results (see
Figure 8).

V. BRIEF DISCUSSION

A. Java Swing vs Android user interface
When searching on the Internet with key words like “java swing

vs android user interface”, one finds numerous links to webpages
about comparing Java Swing and the Android user-interface model
and about “how to modify” Java Swing applications for using on
Android devices (see for instance [14], [15] and [16]). As far as we
know, the conclusions in most articles/blogs usually come down to
“rewriting the whole GUI-part”, which in case of the jMRUI software
system (with many Java-Swing based codes) is an almost impossible
task. For the Android app version of our MonteCarlo application it
meant, that we had to exclude using all graphical-presentation related
code of the jMRUI QUEST ∗.results file.

Seen in the light of the existence of many important Java Swing
applications, we agree with others, that the Android developers should
consider to add full Java Swing support to the Android platform.

1) “Before” launching the jMRUI plug-in for the first time,
a desired working directory should be set by selecting the
Options->Setup options->Working Dir via the
jMRUI Desktop menu bar.

2) The first step, to be done in the MonteCarlo GUI, is
to click the QUEST Results For Noiseless Input
Signal button. After that, select the desired QUEST-based
∗.results file.

3) Minimize the ∗.results file. Note, that the GUI now shows the
contents of the previous MonteCarlo session.

4) After changing/keeping the various GUI input fields, one can
choose to click the Generate New Noised Signals
Using GUI Input button. Note now, however, that the
GUI is also enabled for clicking the QUEST Results For
Previous Noised Signals button.

(a)
1) “After” launching the Android app for the first time, a de-

sired working directory should be set via clicking the app
Settings button.

2) The first step, to be done in the MonteCarlo GUI, is to select
the desired QUEST-based input ∗.results file via clicking in a
directory list.

3) Details of the selected ∗.results file are shown in a standard
output window. Return to the main MonteCarlo GUI by
clicking the Return button. Note, that the GUI now shows
the contents of the previous MonteCarlo session.

4) After changing/keeping the various GUI input fields, one can
click the Run button.

(b)

Figure 7: The various steps, required for running the MonteCarlo
(a) plug-in and (b) Android app.

B. Checking Maximum Likelihood
When a Monte Carlo study with the MonteCarlo application

is done, while obeying the “parametric” condition, it means that
some Maximum Likelihood properties can be checked. Specifically,
whether the estimated parameters are “unbiased” and whether their
variances are “somewhat larger” than their related Cramér-Rao
bounds (CRBs) [17].

VI. SUMMARIZING CONCLUSIONS

Summarizing we like to make the following concluding remarks:
1) We have developed a Java/Fortran based application, called

MonteCarlo, that enables the users to perform Monte Carlo
studies in the field of in vivo MRS.

2) The MonteCarlo application is intended to be used as a tool
for the jMRUI software package [3]. This can be done either
as a jMRUI custom plug-in (on Windows/Linux computers) or
as a standalone Android app (on mobile Android devices).

3) The MonteCarlo application could be developed as a
Java/JNI/C/Fortran makefile project, using one and the same
Eclipse Java IDE (in Eclipse ADT bundle [6]) for both the
jMRUI plug-in and Android app.

4) When creating the MonteCarlo GUI, we worked with the
“standard” Java Swing user-interface components [10] for the
plug-in. For the Android app, however, we had to work with
Android’s own user-interface components [5] (due to the lack
of Java Swing support on Android).

5) Seen in the light of item 4), porting large Java-Swing based
software packages like jMRUI to Android seems to be an
almost impossible task.

6) The MonteCarlo application offers the opportunity of investi-
gating topics like “parametric vs semi-parametric”, “Maximum
Likelihood” properties and “bias-variance trade-off” [12] [17]
[18].

5 -21-

values
0.45 0.53 0.61

counts

0

25

50

75

100

(a)

values
0.45 0.55 0.64

counts

0

25

50

75

100

(b)

Figure 8: Monte Carlo study of a simulated in vivo MRS signal,
related to the human brain. Histogram of the Monte Carlo amplitudes
of the myo-inositol metabolite (a) before denoising and (b) after
denoising (with a wavelet approach). The green vertical line indicates
the “true” amplitude value. Moreover, the blue vertical lines indicate
the “true” value ± CRB. Note the bias in case (b), indicating “semi-
parametric” estimation.

ACKNOWLEDGEMENT

This work was done in the context of FP7 - PEOPLE Marie
Curie Initial Training Network Project PITN-GA-2012-316679-
TRANSACT [4].

REFERENCES

[1] WikipediA, the free encyclopedia, “In vivo MRS,”
http://en.wikipedia.org/wiki/In vivo magnetic resonance spectroscopy,
2014, In vivo (that is ’in the living organism’) magnetic resonance
spectroscopy (MRS) is a specialised technique associated with magnetic
resonance imaging (MRI). 1

[2] ——, “Monte Carlo method,”
http://en.wikipedia.org/wiki/Monte Carlo method, 2014, Monte Carlo
methods are a broad class of computational algorithms that rely on
repeated random sampling to obtain numerical results. 1

[3] D. Stefan, F. D. Cesare, A. Andrasescu, E. Popa, A. Lazariev,
E. Vescovo, O. Strbak, S. Williams, Z. Starcuk, M. Cabanas, D. van
Ormondt, and D. Graveron-Demilly, “Quantitation of magnetic reso-
nance spectroscopy signals: the jMRUI software package,” Meas. Sci.
Technol., vol. 20, p. 104035 (9pp), 2009. 1, 5

[4] TRANSACT European Union project, “Welcome to Transact!”
http://www.transact-itn.eu/, 2013. 1, 6

[5] developer.android.com, “Introduction to Android,”
http://developer.android.com/guide/index.html, 2014, Android provides
a rich application framework that allows you to build innovative apps
and games for mobile devices in a Java language environment. 1, 2, 5

[6] ——, “Get the Android SDK,”
http://developer.android.com/sdk/index.html, 2014, . 2, 5

[7] ——, “Android NDK,”
https://developer.android.com/tools/sdk/ndk/index.html, 2014, The NDK
is a toolset that allows you to implement parts of your app using native-
code languages such as C and C++. 2

[8] Danilo Giulianelli, “Danilo’s Tech Blog,”
http://danilogiulianelli.blogspot.nl/2013/02/
how-to-build-gcc-fortran-cross-compiler.html, 2013, How to build
the gcc Fortran cross-compiler for Android (ARM and x86) . 2

[9] MinGW.org, “MinGW,”
http://www.mingw.org/, 2014, MinGW, a contraction of ”Minimalist
GNU for Windows”, is a minimalist development environment for native
Microsoft Windows applications) . 2

[10] WikipediA, the free encyclopedia, “Swing (Java),”
http://en.wikipedia.org/wiki/Swing (Java), 2014, Swing is the primary
Java GUI widget toolkit. 2, 5

[11] ——, “Makefile,”
http://en.wikipedia.org/wiki/Makefile, 2014, A Makefile is executed with
the make command. 3

[12] D. van Ormondt, R. de Beer, J.W.C. van der Veen, D.M. Sima and
D. Graveron-Demilly, “Error-Bars in Semi-Parametric Estimation,” in
Proceedings ICT.OPEN 2013. Van der Valk Hotel Eindhoven, The
Netherlands: NWO/STW, 27-28 November 2013, pp. 15–20. 5

[13] Unpublished results. 5
[14] WikipediA, the free encyclopedia, “Comparison of Java and Android

API,”
http://en.wikipedia.org/wiki/Comparison of Java and Android API,
2014, This article compares the Java and Android API and virtual
machines. 5

[15] Patrick Decker, “Writing and Styling Android Applications Coming
from Swing,”
http://www.centigrade.de/en/blog/article/
writing-and-styling-android-applications-coming-from-swing/, 2010, A
Java developer who is used to developing GUIs with Swing and who
is now trying to get into Android might be surprised: Java is not the
same on Android. 5

[16] Stack Overflow, “Swing-Library for Android?”
http://stackoverflow.com/questions/16383173/swing-library-for-android,
2013, Stack Overflow is a question and answer site for professional
and enthusiast programmers. It’s 100% free, no registration required. 5

[17] WikipediA, the free encyclopedia, “Estimation theory,”
http://en.wikipedia.org/wiki/Estimation theory, 2014, Estimation theory
is a branch of statistics that deals with estimating the values of param-
eters based on measured/empirical data that has a random component.
5

[18] D. van Ormondt, R. de Beer, J.W.C. van der Veen, D.M. Sima, and
D. Graveron-Demilly, “Bias-Variance Trade-Off in In Vivo Metabolite
Quantitation,” in Proceedings ICT.OPEN 2012. WTC Rotterdam, The
Netherlands: NWO/STW, 22-23 Qctober 2012. 5

6 -22-

http://en.wikipedia.org/wiki/In_vivo_magnetic_resonance_spectroscopy
http://en.wikipedia.org/wiki/Monte_Carlo_method
http://www.transact-itn.eu/
http://developer.android.com/guide/index.html
http://developer.android.com/sdk/index.html
https://developer.android.com/tools/sdk/ndk/index.html
http://danilogiulianelli.blogspot.nl/2013/02/how-to-build-gcc-fortran-cross-compiler.html
http://danilogiulianelli.blogspot.nl/2013/02/how-to-build-gcc-fortran-cross-compiler.html
http://www.mingw.org/
http://en.wikipedia.org/wiki/Swing_(Java)
http://en.wikipedia.org/wiki/Makefile
http://en.wikipedia.org/wiki/Comparison_of_Java_and_Android_API
http://www.centigrade.de/en/blog/article/writing-and-styling-android-applications-coming-from-swing/
http://www.centigrade.de/en/blog/article/writing-and-styling-android-applications-coming-from-swing/
http://stackoverflow.com/questions/16383173/swing-library-for-android
http://en.wikipedia.org/wiki/Estimation_theory

	Introduction
	Methods
	Design goals for the MonteCarlo application
	Choosing an Integrated Development Environment (IDE)
	Setting up Eclipse in Eclipse ADT bundle
	Details of the MonteCarlo Source codes
	The MonteCarlo GUI
	The MonteCarlo makefiles

	Building, installing and running the MonteCarlo application
	Building MonteCarlo
	Installing MonteCarlo
	Running MonteCarlo

	Example of a Monte Carlo result
	Brief discussion
	Java Swing vs Android user interface
	Checking Maximum Likelihood

	Summarizing conclusions
	References

 HistoryItem_V1
 AddNumbers

 Range: From page 1 to page 6
 Font: Helvetica 10.0 point
 Origin: bottom centre
 Offset: horizontal 17.01 points, vertical 17.01 points
 Prefix text: '-'
 Suffix text: '-'
 Use registration colour: no

 1
 1
 -
 BC
 -
 1
 17
 H
 1
 0
 771
 182
 0
 1
 10.0000

 Both
 1
 SubDoc
 6

 CurrentAVDoc

 [Sys:ComputerName]
 17.0079
 17.0079

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 0
 6
 5
 6

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 289.96, 9.81 Width 25.53 Height 18.98 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 289.9649 9.8147 25.5274 18.9819

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 3
 6
 3
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 295.20, 11.12 Width 17.02 Height 17.67 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 295.2013 11.1238 17.0183 17.6728

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 3
 6
 3
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 295.86, 8.51 Width 18.33 Height 19.64 points
 Origin: bottom left

 1
 0
 BL

 Both
 AllDoc

 CurrentAVDoc

 295.8559 8.5056 18.3273 19.6364

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 3
 6
 5
 6

 1

 HistoryList_V1
 qi2base

