

Delft University of Technology

Conceptualising Resources-aware Higher Education DigitalInfrastructure through Self-
hosting: a Multi-disciplinary View

Angeli, Lorenzo ; Okur, Ö.; Corradini, Carlo; Stolin, Marcel ; Huang, Yilin; Brazier, F.M.; Marchese, Maurizio

Publication date
2022
Document Version
Final published version
Published in
Eighth Workshop on Computing within Limits

Citation (APA)
Angeli, L., Okur, Ö., Corradini, C., Stolin, M., Huang, Y., Brazier, F. M., & Marchese, M. (2022).
Conceptualising Resources-aware Higher Education DigitalInfrastructure through Self-hosting: a Multi-
disciplinary View. In Eighth Workshop on Computing within Limits
https://computingwithinlimits.org/2022/papers/limits22-final-Angeli.pdf
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://computingwithinlimits.org/2022/papers/limits22-final-Angeli.pdf

Conceptualising Resources-aware Higher Education Digital
Infrastructure through Self-hosting: a Multi-disciplinary View

Lorenzo Angeli∗
University of Trento

Trento, Italy
lorenzo.angeli@unitn.it

Özge Okur∗
Delft University of Technology

Delft, The Netherlands
o.okur-1@tudelft.nl

Carlo Corradini∗
University of Trento

Trento, Italy
carlo.corradini@studenti.unitn.it

Marcel Stolin∗
University of Trento

Trento, Italy
marcelpascal.stolin@studenti.unitn.it

Yilin Huang∗
Delft University of Technology

Delft, The Netherlands
y.huang@tudelft.nl

Frances Brazier∗
Delft University of Technology

Delft, The Netherlands
f.m.brazier@tudelft.nl

Maurizio Marchese∗
University of Trento

Trento, Italy
maurizio.marchese@unitn.it

ABSTRACT
As higher education digitalises, institutions increasingly outsource
the development and management of their digital infrastructure in-
cluding server hardware and services such as email, shared storage,
and video conferencing, to private companies. This outsourcing
trend is a change in paradigm, since universities have historically
been pioneers in deploying andmaintaining their own digital infras-
tructure, a practice also known as self-hosting. Digital infrastruc-
ture has a key role in all of a university’s functions: administration,
research, and education. While outsourcing infrastructure has ben-
efits in the form of convenience and lower costs, it also erodes
institutional independence, centralises points of failure, and dele-
gates highly relevant value choices about privacy, data ownership
and environmental impact to external actors.

In this article, we provide a first quantification of a potential
return to self-hosting, emphasising its effect in energy reduction
and avoided e-waste. We then outline some policy actions that
could enable higher education institutions to re-take control over
their digital infrastructure by building local services. This mode of
operation reduces waste, and has the added benefit of increased
resilience to scenarios of resource scarcity and collapse of external
infrastructure. As an example of what could be achieved leveraging
these policies, we detail the architecture of a low-impact data centre
made of upcycled hardware and resource-aware software. By ex-
ploring our main structural choices we aim to showcase how, even
starting from a generally heavy-weight software stack such as Ku-
bernetes, there is significant space to reduce digital infrastructure’s
overall resource footprint.

∗All authors contributed equally to the paper.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LIMITS ’22, June 21–22, 2022, Online
© 2022 Copyright held by the owner/author(s).

KEYWORDS
digital infrastructure, self-hosting, reappropriation, resource reduc-
tion

1 INTRODUCTION
Higher education digitalisation has been happening for several
decades. Over the last years, however, a growing number of voices
is starting to express concern over the speed at which digitalisation
is happening. This critical wave discusses in particular the field
of education technologies, with structural critiques such as those
of Watters [1], to platforms such as those by Selwyn [2], or more
broadly to “digital capitalism” [3]. While these critical voices do
exist, they are a minority in a landscape dominated by a general
optimism and hype around (education) digitalisation1.

In 2020, the COVID pandemic prompted schools and higher ed-
ucation institutions to adapt their educational offering to online
teaching, which introduced further digital artefacts in education.
In parallel, universities in Europe and US continued a trend of out-
sourcing digital infrastructure and services to “cloud” providers.
The net effect of this trend has been a centralisation of both in-
frastructure and service providers, often towards private, for-profit
actors (prominently “big tech” companies) in what Williamson calls
new power networks [4].

As universities privatise their services and infrastructure, they
achieve lower costs and increased convenience by trading off in-
stitutional autonomy, political power, and the ability to directly
control their systems’ embedded values. Indeed, by taking a view
inspired by Actor-Network Theory, we can argue that, when univer-
sities use infrastructure provided by cloud providers, they indirectly
adopt those providers’ value systems.

In this article, we highlight two value categories that are af-
fected by this change: a technical and an environmental dimension.
Technically, digital infrastructure outsourcing creates a centralised

1Readers can look at the overwhelming number of articles discussing technological
solutions in education conferences to get a first impression.

LIMITS ’22, June 21–22, 2022, Online Lorenzo Angeli, Özge Okur, Carlo Corradini, Marcel Stolin, Yilin Huang, Frances Brazier, and Maurizio Marchese

landscape where many institutions depend on few actors. Envi-
ronmentally, this intermediation makes it harder to measure the
infrastructure’s resource footprint. making comparisons between
hosting solutions harder, and limiting the ability of institutions to
independently gather data and set their own environmental agendas
and goals.

Through the article, we aim to state that this problem, that is
largely political in nature, can be solved if looked at systemically,
and if institutions are empowered to create lasting organisational
change. We do so by proposing an agenda of digital infrastructure
reappropriation through a form of “limits-aware” self-hosting. Our
hope is that, with a broad and multi-disciplinary approach, we
can show the many potentials for future work and of stimulate a
systemic debate.

Existing work that addresses the issues discussed so far can range
from highly conceptual [5] to quantitative [6] with, however, lim-
ited explorations on the intersections between the many disciplines
working on this field. Furthermore, relevant initiatives, virtuous ex-
amples or experiments such as the LowTechMagazine website2 [7],
CoopCloud3, commercial initiatives such as Ungleich’s Data Center
Light4, or the many reflections and examples on the field of “perma-
computing” [8] are anecdotally regarded, in institutional discourse,
as fringe experiences that cannot be replicated, or applied at scale
within institutional boundaries.

The present work is a first attempt at bridging this gap by work-
ing in two directions: on the one hand, we wish to present some
policy actions that can support universities in reappropriating their
digital infrastructure through self-hosting; on the other hand, we
present a proof-of-concept for a low impact, “limits-aware”, data
centre, aiming to show what could be achieved with the policy
actions we propose.

The combination of policy and technical actions are supported
by an energy analysis of a prominent outsourced service, video
conferencing, highlighting how infrastructural reappropriation is
aligned to the energy and environmental sustainability agendas that
many national and sovra-national organisations wish to pursue.

From a policy perspective, we provide three simple actions that
can work, in a reappropriation logic, as institutional enablers. Tech-
nically, we propose a combination of software and hardware de-
signed around resource reduction. Our proposal is designed to be
adopted by institutional actors and, as such, it takes some trade-offs
in terms of simplicity and, potentially, future-proofing, striving
instead to reduce the infrastructural reappropriation barrier.

This multi-disciplinary perspective aims to showcase how higher
education institutions can take a proactive role in building digital
infrastructure that is more interoperable, extensible, and simpler
to deploy (as per Chen’s suggestion [9]) while also minimising
resource waste. Fundamentally, the last three years have showed a
global landscape where issues such as pandemics, wars and climate
crises are a reality for the whole planet, including the global North.
Infrastructure, as a consequence, needs to be redesigned so that it
can thrive in situations of scarcity, both hypothetically future or
indisputably present. In this sense, we see our contribution as a
very literal exercise in pre- and post-apocalyptic computing [10],
2See https://solar.lowtechmagazine.com/
3See https://coopcloud.tech/
4See https://datacenterlight.ch/

putting questions of resilience and resource minimisation at the
forefront.

We start in Section 2 by giving an overview of the problem, and
positioning it more precisely within the LIMITS discourse. We then
discuss the causes and impacts of this outsourcing. We dedicate
Section 3 to discussing how self-hosting could reduce resource
consumption, addressing both the software and hardware dimen-
sions, using video conferencing as a case study. In Section 4, we
outline some policy interventions that could aid in creating lasting
organisational change to empower institutions (in our case, uni-
versities) to once again host their own infrastructure. We dedicate
a majority of the article (Section 5) to accompanying these policy
reflections with a proof-of-concept of what could be achieved were
those policies to be implemented, describing the architecture for a
low-impact data centre. Lastly, in Section 6, we engage in a brief
self-critique of our work, highlighting the many next steps and
opportunities for further work that we discovered in the process of
writing this contribution.

2 STATE OF AFFAIRS
2.1 General problematisation
Digitalisation — prominently in the Global North — is an accel-
erating process, and the recent COVID pandemic has often been
mentioned as a catalyst. Digitalisation, however, is a complex phe-
nomenon made of a number of macro-trends, including among
many the centralisation of digital infrastructure, and of the actors
running it.

Higher education has not been immune from infrastructural cen-
tralisation. Fiebig et al. [11] claim that, while they could not observe
a clear “pandemic effect” accelerating the universities’ reliance on
cloud infrastructure, the general trend is on the rise. It should also
be noted that many of these providers are private for-profit entities,
and often so-called “Big Tech” companies, offering their own pro-
prietary software solutions. A particularly emblematic case is that
of video conferencing software, with the consolidation of most in-
stitutions towards proprietary solutions including Zoom, Microsoft
Teams, Google Meet, or Cisco Webex.

While most institutions adopted these solutions in what Teräs
et al. called a “seller’s market” [12], alternatives — in the form
of Free/Libre Open Source Software (FLOSS) — have also been
flourishing in parallel. Remarkably, many proprietary solutions are
powered, at an infrastructural or dependency level, by FLOSS5. The
2010s have also seen a fast development of virtualisation technolo-
gies that are nowadays at the basis of many data centres, most
prominently containerisation6. Virtualisation technologies have
had significant development contributions by “big tech” compa-
nies7, and could represent an interesting avenue for higher educa-
tion institutions to reverse the current outsourcing trend.

5For some examples, see https://discord.com/licenses, https://explore.zoom.us/en/
opensource/, https://3rdpartysource.microsoft.com/
6For example Docker, the most popular container software suite, was launched in
2013.
7See, for example, Google’s Kubernetes, and Microsoft, Facebook and Google’s many
contributions to Docker.

https://solar.lowtechmagazine.com/
https://coopcloud.tech/
https://datacenterlight.ch/
https://discord.com/licenses
https://explore.zoom.us/en/opensource/
https://explore.zoom.us/en/opensource/
https://3rdpartysource.microsoft.com/

Conceptualising Resources-aware Higher Education Digital Infrastructure through Self-hosting: a Multi-disciplinary View LIMITS ’22, June 21–22, 2022, Online

In parallel, the global production of computing hardware is ever
increasing8, as is the computing power of each device, thanks to
Moore’s law [13, 14]. These hardware advancements, however, are
offset by increasing system requirements by software9, contributing
to an overall shortening of devices’ life cycle [15] that has room for
significant improvement only in cases of proactive tackling of the
issue [16].

Summarising, the digitalisation of higher education gives rise to
many challenges, including:

(1) Accelerating speed of digital infrastructure building.
(2) An outsourcing trend, with centralisation toward proprietary

software providers.
(3) Increasing software system requirements.
(4) Shorter life span of computing hardware.

These challenges have political, technical, and environmental
consequences, and have clear relationships in terms of what Nardi
et al. defined in 2018 as the three key principles of computing within
limits [17] of questioning growth, considering scarcity and reducing
resource consumption.

Politically, the outsourcing trend creates ties between higher
education institutions and companies that maximise growth, seek
abundance, and only consider resource reduction as a means to re-
duce operational costs, disempowering universities from working
“within limits”. Externalising infrastructure also hinders institu-
tional ability to set infrastructural R&D agendas, with procurement
autonomy (by itself, a potentially virtuous feature) making it harder
for institutions to achieve critical mass to demand change.

Technically, outsourcing opacises the technological stack, and
while this simplifies the institutions’ work, institutions consequently
have limited ability to adapt and change technologies. The consol-
idation towards few providers also centralises points of failure,
creates vendor lock-ins, and limits the ability to react or adapt to
situations of crisis or of scarcity, such as universities operating in
locations where bandwidth is limited or heavily bottlenecked.

Environmentally, shifting operations to centralised data centres
implies longer travel distances for data, and thus increased electrical
and bandwidth usage. Abstracting the data centre also reduces the
institutional ability to monitor their resource use. Thus, matters
of efficiency are fully delegated to service providers and removed
from the institutions’ space of operations.

2.2 Socio-economic causes of outsourcing
We can contextualise the current outsourcing trend as a reversal
of a previous historical model. Higher education institutions have
been, in the 1900s, pioneer organisations in developing digital in-
frastructure, from mainframe computers to the internet [18], with
many protocols being born in university labs10.

8See various figures, for example, at https://www.statista.com/markets/418/topic/482/
hardware/
9See for example how Windows 11 quadruples the minimum required RAM compared
to Windows 10
https://www.microsoft.com/en-us/windows/windows-10-specifications
https://www.microsoft.com/en-us/windows/windows-11-specifications
10See for example IRC, a once-popular chat application, and its origins at the University
of Oulu https://daniel.haxx.se/irchistory.html

A university’s digital infrastructure includes general services
such as email, calendars, data storage, learning management sys-
tems and video conferencing, large sets of administrative tools, and
specific tools such as high-performance computing, networking
virtual labs, and more. Many such services can be — and are being
— outsourced to private actors. Fiebig’s work [11] gives once again
an idea of the size of the outsourcing phenomenon.

Outsourcing is a widespread practice in the business world, in-
cluding in the computing industry. Many of the reasons behind
the use of outsourcing in business can apply to higher education.
By outsourcing, system administrators are spared the many re-
sponsibilities that maintaining reliable infrastructures implies. The
involvement of an external actor also creates a layer for plausible
deniability in case of malfunctions or disservices.

Most importantly, outsourcing is motivated by economic reasons.
Externalising services and infrastructure reduces costs both in terms
of the infrastructure itself (in the form, here, of servers, bandwidth,
energy, etc.) and human resources, as externalising staff can help
achieve cost savings by economies of scale. A part of the cost savings
however also comes from relocating staff to places with lower
wages, and places of widespread resource exploitation.

Public procurement procedures are also to be kept into account.
As the “Public Money, Public Code” initiative of the Free Software
Foundation of Europe11 points out, ill-designed regulation can
implicitly favour the public procurement of proprietary software.
When software providers further push for “cloud” versions of their
software over locally-hosted versions (for example by reducing
costs) institutions have fewer and fewer arguments to maintain
infrastructural independence.

2.3 Ethical implications
Outsourcing digital education infrastructures to private compa-
nies may come at the expense of institutional autonomy, academic
freedom and political power. In other words, by outsourcing, insti-
tutions lose control over how their digital education infrastructure
is designed and how it can be used.

Widespread privatisation of services, recently in the case of
video conferencing with Zoom, Microsoft Teams and Google Meet,
has also raised many concerns about data privacy [19–22]. Service
providers may collect personal data such as names, email addresses,
phone numbers, physical addresses and IP addresses as part of their
business model, and may store them in locations subject to different
laws than the one the institution is based on. Also, as decisions
about what services to adopt are normally taken at a university
management level, end-users (including students have in the case
of the COVID pandemic) are left with two choices: using these
platforms and having their personal information collected by these
private companies, or being excluded by activities (in the case of
students, lectures — again, see [11]).

3 RESOURCE REDUCTION THROUGH
SELF-HOSTING

As we discussed in the previous sections, outsourcing digital infras-
tructure detaches institutions from their technological choices by
creating an intermediary layer that is outside of their control. A
11https://publiccode.eu/

https://www.statista.com/markets/418/topic/482/hardware/
https://www.statista.com/markets/418/topic/482/hardware/
https://www.microsoft.com/en-us/windows/windows-10-specifications
https://www.microsoft.com/en-us/windows/windows-11-specifications
https://daniel.haxx.se/irchistory.html
https://publiccode.eu/

LIMITS ’22, June 21–22, 2022, Online Lorenzo Angeli, Özge Okur, Carlo Corradini, Marcel Stolin, Yilin Huang, Frances Brazier, and Maurizio Marchese

space where this lack of control is particularly evident is that of
resource consumption. In this section, we wish to provide a first
quantification of how there is substantial room to reduce the re-
source footprint of digital infrastructure — both from a hardware
and a software standpoint — by creating an environment that is
more conducive to self-hosting.

We will illustrate these benefits by discussing a case that has
been under substantial public scrutiny: video conferencing. Video
conferencing is used in all of a university’s functions: research,
administration, and teaching. Video conferencing also involves
transferring large data volumes, and requires substantial computa-
tional power both on the server side (if present) and on the devices
of all end users, making it prone to high resource usage.

What seems to be a purely software matter, however, also has
impacts in terms of hardware: when institutions choose a video
conferencing platform, they delegate the choice of user hardware re-
quirements. The more institutions are detached from these choices
— most prominently, when adopting a proprietary solution — the
more they are letting service providers choose what devices their
users should have. Beyond OS compatibility, if a provider pushes
an update that significantly increases system requirements, devices
may be rendered obsolete, shortening their life cycles.

The impacts are therefore broader than they initially appear. In
this section wewill analyse this problem from both the software and
hardware perspectives. We quantify how self-hosting might reduce
energy consumption on the software side, and electronic-waste (e-
waste) on the hardware side, creating digital infrastructure that is
less wasteful and more suitable to scenarios of resource scarcity.

3.1 Software: an energy analysis of video
conferencing

In the literature, in-person and online meetings/conferences are
compared in terms of their energy consumption and carbon foot-
print. Findings from [23] show that having an online meeting con-
sumes at most 7% of the energy consumed for an in-person meeting.
In a more recent study, [24] finds that transitioning from in-person
to online conferencing can lessen the carbon footprint by 94% and
energy use by 90%. Based on these studies, online meetings may be
seen as an effective strategy to reduce greenhouse gas emissions
and thus mitigate climate change.

Despite emitting less greenhouse gases compared to in-person
meetings, however, an online meeting/conference consumes a con-
siderable amount of energy in three elements: (1) electricity re-
quired for the participants’ devices; (2) electricity required for the
network infrastructure; and (3) electricity required for servers.

Several studies estimated the electricity consumption of a virtual
conference: [25] calculated the energy consumption of a virtual
conference of five days with 1777 participants, which took place on
Zoom. The results from this paper indicate that the total electrical
energy consumption is as follows: (a) 1173 kWh from user laptops,
(b) 1263 kWh from the network, and (c) 15 kWh from the servers.
Similarly, the authors in [26] estimate electricity consumption of an
online academic conference on Zoom, as well as its carbon footprint.

The papers mentioned focus on the energy consumption of video-
calling via external companies like Zoom. However, self-hosting

the software required for an online meeting/conference may signifi-
cantly reduce the physical distance between users and servers, thus
reducing the energy consumption required for the network, i.e.,
data moving across the routers. This is an especially likely scenario
for online classes, since students and teachers are more likely to be
in physical proximity of each other.

To the best of our knowledge, a comprehensive energy analysis
of self-hosting online meetings has not been carried out. [25] how-
ever, places network energy consumption in the bracket of 50% of
total energy consumed for online video conferencing. It should also
be noted that the geographical situation discussed in the article is
almost ideal, as data centres tend to be positioned in geographically
central places, leading to close to optimal routing in the case of a
global conference. In the case of online classes, however, routing
data through a data centre might imply substantially longer dis-
tances, and therefore an even more skewed energy consumption
balance toward the network12.

As a promising first step, Suga [27] compared three video con-
ferencing systems in terms of bandwidth consumption: two propri-
etary solutions using their own data centre (Zoom and MS Teams),
and an open source, self-hosted system (BigBlueButton). Suga’s
results show a significantly lower bandwidth consumption for Big-
BlueButton (approximately 40% lower compared to Teams and 15%
lower compared to Zoom). Combined with reduced network dis-
tances, self-hosting appears to be a promising avenue to greatly
reduce the energy footprint of video conferencing.

3.2 Hardware: rethinking institutional e-waste
In addition to reducing energy consumption through software, self-
hosting can contribute to reducing e-waste in higher education
institutions. As we will discuss in Section 5.1, advancements in
virtualisation technologies open the opportunity to reduce the need
for dedicated server hardware, running the server software on suit-
ably re-purposed unused general hardware that would otherwise
constitute e-waste.

E-waste is one of the fastest-growing global waste streams, owing
to high consumer demand and a parallel issue of shortening lifespan
of electronic devices. In 2016, the total amount of e-waste generated
globally was 44.7 million metric tonnes [28]. Higher education
anecdotally has significant amounts of unused hardware in the
form of desktop and laptop computers, tablets, smartphones, etc,
which can be seen as a form of e-waste. While the amount of unused
and not recycled hardware at higher education institutes has not
been studied to provide concrete numbers, some articles survey
how higher education institutions implement a waste management
plan that should includes e-waste [29, 30].

Studies in [31] and [32] surveying education institutes in Aus-
tralia and in the US, respectively studied institutional awareness
regarding e-waste materials, and their impact on the environment.
The results of the surveys suggest that there is a lack of awareness
in the e-waste management among university students and staff.

12For example, as of the time of writing, the University of Trento hosts its online
lectures via Zoom, through a data centre in Germany. If students and teachers were
to be in the vicinity of Trento, all of their data would need to be routed from Italy to
Germany and back — a substantial increase in distance.

Conceptualising Resources-aware Higher Education Digital Infrastructure through Self-hosting: a Multi-disciplinary View LIMITS ’22, June 21–22, 2022, Online

In light of these, upcycling unused hardware at university for self-
hosting services can be a promising avenue to manage e-waste at
higher education institutes in a more effective manner.

4 POLICY ACTIONS
In the previous sections, we outlined the ethical implications of
outsourcing, as well as how energy and e-waste reduction can be
achieved through self-hosting. In this section, we propose several
policy recommendations which can support universities in reappro-
priating and strengthening their digital education infrastructures
through self-hosting.

4.1 FLOSS funds in universities
Self-hosting digital education infrastructures may provide a viable
solution to deal with the privacy and autonomy concerns which are
pointed out in Section 2.3. Higher education institutions can fur-
ther use Free/Libre Open Source Software (FLOSS) to have higher
transparency in the software they use, compounding the effects of
self-hosting to get additional benefits such as service interoperabil-
ity13.

Because universities can contribute to FLOSS, they can be en-
abled to solve issues with the software (especially related to gov-
ernance). This, combined with a good self-hosting backbone, can
reduce the need for external companies. Nonetheless, it should be
noted that universities can still achieve significant benefits by self-
hosting proprietary solutions, especially if they had strong internal
capacity to contributing to the (FLOSS) technologies that serve as
the back-end of many data centres (see also Section 2.1).

FLOSS-based digital infrastructure can be considered as a com-
mons, where communities work collectively tomanage the software
for shared benefits [33]. Education institutions, with their high ca-
pacity for R&D, are well-positioned actors to use FLOSS as a way
to create a concrete and lasting benefit for their community, rather
than providing gains for individual organisations.

A first policy recommendation that we propose for infrastruc-
tural reappropriation is to establish a permanent fund for FLOSS
development at universities. That is to say, universities should re-
ceive (or at least allocate) a dedicated budget to hire developers
that contribute as part of their job to the development of selected
FLOSS. To maximise internal synergy, this FLOSS should be of high
value to the institution contributing to it, and the staff hired in this
way should be also in charge of running the selected FLOSS within
their university and providing user support.

This model is gaining in popularity in the technology industry,
where companies hire high contributors to FLOSS that is powering
their solutions, so that they can benefit from increased internal ca-
pacity. Further synergies can be achieved by making use of research
capacity to improve software in dimensions such as UI/UX.

4.2 Circular procurement
As mentioned previously, hardware for self-hosting can be run on
re-purposed devices. Institutions, however, need to have strong
circular procurement policies in place. The purpose of circular
procurement is to ensure that acquired goods can be effectively re-
purposed at the end of their originally-intended use. In the context
13See also https://joinup.ec.europa.eu/

of electronic devices at universities, this implies reusing devices for
new applications, repairing them, and disposing them only when
they can no longer be used for other purposes.

A number of strategies can be employed at universities to realise
this:
• Keeping a detailed inventory of unused hardware
• Arranging effective communication between staff in charge
of waste management and procurement, or between users
and waste management so that leftover products can be
linked with a person who plans to use this specific product
• Running surveys to ask employees about the state of their
hardware

These strategies might be more likely to be adopted, or might
already being implemented, by universities that aim to be more
sustainable14. Achieving as much circularity as possible in device
procurement procedures can have major impacts in achieving car-
bon neutrality at institutional scale.

Universities should keep detailed inventories of unused (or even
broken) hardware, to identify where circularity can be improved.
For example, laptops with broken screens or underperforming bat-
teries that are deemed uneconomical to be repaired might still be
perfectly workable as platforms for running server software upon.

4.3 Aggregating demand and staff sharing
A counterargument for hiring staff to self-host digital infrastructure
is that this might be economically unsound. This is compounded
by the fact that support staff workload tends to be uneven, with
significant peaks (e.g., times where classes start) and downtimes.

A way to overcome this is to use university consortiation as a
way to aggregate digital infrastructure management. Institutions
participating in project consortia and requiring same classes of
service can hire shared staff to work on support and contribute to
selected FLOSS (see Section 4.1) projects.

In many ways, this again replicates practices from the business
sector. Companies under the same management might delegate to
specific spin-offs the running of niche functions, or complex organ-
isations might create divisions to internally create enough critical
mass to justify the running of a service. Similarly, universities can
share staff to achieve some level of economies of scale, and have
enough critical mass to hire staff that can meaningfully contribute
to upstream FLOSS.

5 PROOF OF CONCEPT — THE “RECLUSTER”
The policy actions we described in Section 4 aim to be enablers for
institutional reappropriation of digital infrastructure. As a counter-
part to these, we wish to present here the a proof-of-concept for a
technological artefact that showcases what could exist, were those
policies implemented.

We present here the “reCluster”, a data centre and computing
platform inspired by the Right to Repair movement15 values of
reducing, reusing, repairing, and recycling computing resources.
The reCluster is an architecture for a data centre that actively
reduces its impact and minimises its resource utilisation.

14For instance, TU Delft has the target to become carbon neutral by 2030 [34]
15https://www.repair.org/

https://joinup.ec.europa.eu/
https://www.repair.org/

LIMITS ’22, June 21–22, 2022, Online Lorenzo Angeli, Özge Okur, Carlo Corradini, Marcel Stolin, Yilin Huang, Frances Brazier, and Maurizio Marchese

Most commercial or university-controlled data centres are de-
signed to maximise performance, responsiveness, and uptime. In-
deed, a main point of competition between hosting providers is
the uptime metric, expressed in their Service-Level Agreements
(SLAs)16. There might be, however, a trade-off and diminishing
returns effect between maximising uptime, i.e., a resource’s avail-
ability, and its resource utilisation17 [18]. The industry-standard
requirement of fast responsiveness further means that data centres
need to provision computing resources based on load peaks, which
may result in wasted resources in the average case.

In this section, we propose an alternative to this model. The
reCluster revisits many trade-offs taken in the running of a data
centre, attempting to prioritise the reduction of resources as much
as possible, even (potentially) at the cost of performance. Our design
of the reCluster attempts to identify all high-level decision points
where we can reasonably perform technological choices to reduce
resource utilisation and provide some ways to tackle these issues.

5.1 General Architecture
The reCluster is made of multiple “nodes”. Each node is a physical
machine (hardware), and a software stack. The general architecture
of a node is summarised in Figure 1.

K8S Monitoring

Operating System

Hardware

Figure 1: A block diagram describing the main architectural
components of a node in the reCluster. The figure highlights
where choosing the appropriate component can help reduce
resource consumption.

All reCluster nodes are made of “upcycled” hardware, in the
form of unused institutional property. This includes devices that
have been shelved, discarded as unusable, uneconomical to repair
(e.g., broken screens or degraded batteries), formerly in use by staff
that has since changed jobs, or any otherwise unused device.

The software stack includes an Operating System (OS), which is
always a Linux distribution selected to be as simple, durable, and
resource-aware as possible. On top of the OS, we run monitoring
suites that assess the state of each node and the whole cluster,
and tailored Kubernetes (K8S) software, either in a “worker” or
a “control plane” configuration. For Kubernetes, we start from a
“vanilla” distribution, since this gives us maximum ability to adjust
(and minimise) its internal workings.

16See, for example, SLAs from the “big three” providers such as
Amazon Web Services (https://aws.amazon.com/eks/sla),
Microsoft Azure (https://azure.microsoft.com/support/legal/sla/kubernetes-service)
and Google Cloud Platform (https://cloud.google.com/kubernetes-engine/sla)
17See also how Low-Techmagazine achieved various uptime percentages at the expense
of increased energy and resource requirements (https://solar.lowtechmagazine.com/
2020/01/how-sustainable-is-a-solar-powered-website.html)

5.2 Hardware
While we do not yet have hard data on the amount of unused devices
typically accumulated within universities, and we are not aware
of any studies doing such estimation, large stockpiles of unused
devices are an anecdotally significant occurrence in universities.

At this stage, we see six primary devices classes that could make
nodes for the reCluster:

(1) Laptop computers
(2) Desktop computers
(3) Server hardware
(4) Board computers
(5) Android-native mobile devices
(6) iOS-native mobile devices

The first three categories are normally powered by x86-based
CPUs, that perform well and natively run most server software.
The latter three, instead, use various 32- and 64-bits ARM CPU
architectures, that may not run natively common server software.
Interestingly for our work, ARM architectures are known to have
significantly lower power draws at equivalent performance lev-
els [35], though best-in-class ARM-based devices struggle to reach
the performance of best-in-class x86-based devices [35, 36]. As the
reCluster aims to reduce energy draw as much as possible, ARM
devices should be prioritised whenever peak performance is not
critical.

Different devices also have — sometimes radically — different
life cycles, with ARM devices (smartphones and tablets) generally
having a shorter lifespan [15]. Different device classes may also
have different “energy balances” with respect to their embedded
energy [37], with some devices being discarded before they have
used (and hopefully performed useful work) even a fraction of
the energy used in that device’s manufacturing. This suggests a
simple goal for hardware used in the reCluster architecture: to
maximise the useful life of each device before it is discarded, and to
aim for each device to perform at least as much useful work
(in the form of energy used in software tasks) as it took to
manufacture it before it is discarded.

5.3 Software
Each node is composed of several software components, represented
as blocks in the Figures. To choose the overall best fitting software
component for a specific task, we separated them in two categories.

A first category, represented by blocks with a red background in
the figures, groups software components where customising the
existing implementation may achieve significant resource savings.

The second category, represented by blocks with a blue back-
ground, groups components where multiple softwares can be cho-
sen in the same role, and there is space to reduce resources by
selecting the lowest-footprint implementation. The evaluation of
what implementation to choose happens along three main criteria:

(1) License — require software to be FLOSS.
(2) Performance — favour software that consumes less resources

and, when possible, runs faster.
(3) Simplicity — favour software that is as simple as possible.

https://aws.amazon.com/eks/sla
https://azure.microsoft.com/support/legal/sla/kubernetes-service
https://cloud.google.com/kubernetes-engine/sla
https://solar.lowtechmagazine.com/2020/01/how-sustainable-is-a-solar-powered-website.html
https://solar.lowtechmagazine.com/2020/01/how-sustainable-is-a-solar-powered-website.html

Conceptualising Resources-aware Higher Education Digital Infrastructure through Self-hosting: a Multi-disciplinary View LIMITS ’22, June 21–22, 2022, Online

Where we do not have research results to guide us, we assess
performance and simplicity “by proxy”. For the performance crite-
rion, we refer to documentation and benchmarks when available
or, when this is not available, we base our choice on implementa-
tion language, as some languages tend to have significantly lower
resource consumption [38]. For the simplicity criterion, we look at
the size of binaries and number of external dependencies.

Many additional software components in the reCluster architec-
ture are, in the figures and this section, omitted. These omissions
might include ancillary services such as remote access (e.g., SSH)
or core parts of the Kubernetes architecture (e.g., control web inter-
faces andCLI tools).We omit them because, from our understanding,
no significant energy savings can be achieved by applying our two
strategies of customisation or implementation selection.

All nodes (see Figure 1) include an OS and monitoring software.
For OSs, we investigated K3OS, Fedora CoreOS, and Alpine Linux.
K3OS is a minimal OS designed specifically to run k3s, a “light-

weight” Kubernetes distribution18, developed by Rancher and part
of its ecosystem. There is therefore a risk that choosing this OS
might contribute to a vendor lock-in of reCluster to the Rancher
ecosystem. Furthermore, K3OS is bound exclusively to the usage of
k3s, and overall designed to remove many aspects of the OS, like
the ability to install OS packages19.

Fedora CoreOS promotes itself as a minimal, immutable, and
container-native OS. It comes from a long legacy as an independent
Linux distribution that was eventually adopted within the Red Hat
product portfolio. Much of what applies to K3OS applies to CoreOS.
In addition, CoreOS features an immutable filesystem and, as a
container-native OS, it forces any software execution in containers,
hindering node benchmarking.

Alpine Linux has been chosen as the OS for all nodes. Alpine is
general-purpose, designed to be lightweight, and proven to run on
low-performance devices20.

Monitoring via real-timemetrics can help detect when the cluster
is in a sub-optimal scaling position (i.e., too many or too few active
nodes), so that actions can be taken to improve performance. To
achieve this we need amonitoring system that periodically observes
the cluster. Critically, our cluster needs to observe and analyse
containers and node hardware.

Prometheus is the de-facto Open Source standard for collecting
metrics, and is the central point of the monitoring stack. It saves all
metrics as time-series data in its own database, and it scrapes met-
rics from components called exporters. Container Advisor (cAdvisor)
is one such exporter, analysing and exposing container resource
and performance metrics. cAdvisor supports the Prometheus format
out of the box, and is already integrated into Kubernetes. For node
observation, we rely on Node Exporter, an exporter for hardware
and OS kernel metrics (specifically *NIX kernels). As part of the
Prometheus project, it supports its formats natively.

5.3.1 Worker nodes. In a Kubernetes-managed cluster, workloads
are executed on worker nodes. Each worker node runs the kubelet
component, that communicates with the control plane to register
18See https://k3s.io/
19This will become relevant when we initialise worker nodes in Algorithm 1, as we
need to install packages in order to gather performance and energy benchmarks.
20See the Alpine Linux system requirements at https://wiki.alpinelinux.org/wiki/
Requirements.

the node as a worker in the cluster. Figure 2 shows the high-level
architecture of a worker node. Assigned workloads are executed in
containers, and bundled as single units called Pods. To run contain-
ers, worker nodes additionally need (i) an Open Container Initiaitve
runtime (OCI)21 and (ii) a Container Runtime Interface22 (CRI).

Pod Pod ...

Container Runtime Interface

Open Container Initiative

Runtime

Figure 2: A diagram of the high-level architecture of the
Kubernetes component within a “worker” node that can be
selected to reduce resources.

The OCI runtime is the low-level software responsible for manag-
ing the lifecycle of a container. It starts, stops, and deletes containers,
as well as executing commands within containers. Overall, it ab-
stracts the usage of Linux primitives, like cgroups (for specifiying
container resources) and Namespaces (isolation of containers).

Multiple OCI runtimes exist, using different programming lan-
guages and features. runc23 is an OCI runtime written in Go, that
was developed byDocker, specifically for theDocker engine. Youki24
is another OCI runtime written in Rust. Because of its different im-
plementation language, and according to performance benchmarks
on its website24, it is supposed to be lighter and faster than runc.
crun25, finally, is an OCI runtime written in C, mainly maintained
by Red Hat. Because of the choice of C, and according to available
benchmarks24, crun provides the best overall performance while
using less resources of all three OCI runtimes.

The CRI, instead provides additional functionality on top of the
OCI runtime, like managing container persistent storage, container
image management, and container networks.

There are two CRIs suitable for reCluster, namely containerd
and CRI-O. containerd26 was developed as the CRI for the Docker
engine using the Go programming language. containerd’s default
OCI runtime is runc, but it can leverage other OCI runtimes, like
Youki or crun. CRI-O27 instead is a CRI specifically designed for
Kubernetes as a lightweight alternative for containerd. It is written
in Go as well, and mainly maintained by Red Hat. Most importantly,
CRI-O is compatible with all OCI runtimes.

Both Espe et al. [39] and our own previously-mentioned evalua-
tion criteria suggest the usage of CRI-O. In combination with crun,

21https://github.com/opencontainers/runtime-spec/blob/v1.0.2/spec.md
22https://kubernetes.io/docs/concepts/architecture/cri/
23https://github.com/opencontainers/runc
24https://github.com/containers/youki
25https://github.com/containers/crun
26https://containerd.io/
27https://cri-o.io/

https://k3s.io/
https://wiki.alpinelinux.org/wiki/Requirements
https://wiki.alpinelinux.org/wiki/Requirements
https://github.com/opencontainers/runtime-spec/blob/v1.0.2/spec.md
https://kubernetes.io/docs/concepts/architecture/cri/
https://github.com/opencontainers/runc
https://github.com/containers/youki
https://github.com/containers/crun
https://containerd.io/
https://cri-o.io/

LIMITS ’22, June 21–22, 2022, Online Lorenzo Angeli, Özge Okur, Carlo Corradini, Marcel Stolin, Yilin Huang, Frances Brazier, and Maurizio Marchese

the best overall choice for reCluster, as the two components are the
lightest and provide the best overall performance.

Worker nodes within reCluster are intrinsically heterogeneous,
with different hardware, performance, capabilities, and resource
consumption. Therefore, when adding a node to reCluster, we need
to profile it, gathering relevant data and performance metrics.

To do so, we have implemented a bootstrap procedure, sum-
marised in Algorithm 1, that lets us perform all the necessary steps
to add a new worker node. At a high level, it consists of two steps:
node initialisation (in the main function) and, if the node is be-
ing added to reCluster for the first time, node registration (in the
node_registration function).

The initialisation phase simply starts the worker’s baseline ser-
vices (SSH, monitoring software, and Kubernetes worker set) and
notifies the control plane that the worker is ready.

The registration phase handles the profiling of each worker, stor-
ing it in what we call node facts. Node facts include system informa-
tion such as CPU, RAM, and GPU. Most importantly, they include
a variety of performance and energy consumption benchmarks.

The registration starts by acquiring basic information on the
node’s hardware and its capabilities. Then, the procedure performs
benchmarks on all resources. We illustrate, on Algorithm 1’s lines
24–30, how one such benchmark might work.

Hardware resources are benchmarked at various load levels, and
for each load level, the component’s performance and the system’s
power draw are gathered and stored in the node facts. This is done
because the power consumption might not be linearly correlated
with the resource load. For example, devices might include energy-
saving features that allow it to operate most efficiently below a
certain utilisation threshold28, or devices might be degraded, lead-
ing to disproportionately high energy draw at high loads.

Tested resources include the system’s CPU, RAM,GPU (if present),
I/O (including storage and networking), and the system’s wake-up
time. Energy draw readings can be gathered either using on-board
software or via external power meters.

Gathering such rich data is a crucial step in achieving a system
that is able to conserve resources. Indeed, this knowledge is later
used by the control plane to make decisions about which worker
nodes should be switched on or off.

5.3.2 Control Plane nodes. Control plane nodes are responsible
for managing all nodes in a Kubernetes cluster. The control plane
keeps a record of all information about cluster nodes in a database,
and schedules new Pods on available workers using controllers29.

There are various database backends that could store the clus-
ter’s information. Using vanilla Kubernetes, etcd30 a distributed
key-value pair database is the only option. SQLite31, a very small
relational database, however, would be the ideal initial choice for
reCluster, and could be used through either the Kine32 or k8s-
dqlite33 plugins. Another solution is to use k3s instead of vanilla
Kubernetes, as it supports SQLite by default. We have discussed

28See, for example, ARM’s big.LITTLE (https://www.arm.com/technologies/big-little)
that combines high-performance and high-efficiency cores in the same CPU.
29https://github.com/kubernetes/autoscaler
30https://etcd.io/
31https://sqlite.org/
32https://github.com/k3s-io/kine
33https://github.com/canonical/k8s-dqlite

Pseudocode:
1 Function main():
2 if 𝑛𝑜𝑑𝑒 not registered then
3 node_registration()
4 end

5 init_services(𝑆𝑆𝐻 ,𝑀𝑂𝑁𝐼𝑇𝑂𝑅𝐼𝑁𝐺 , 𝐾8𝑆)

6 recluster_node_ready()
7 end

8 Function node_registration():
9 𝑛𝑜𝑑𝑒_𝑓 𝑎𝑐𝑡𝑠 ← {}

// Info(s)

10 𝑛𝑜𝑑𝑒_𝑓 𝑎𝑐𝑡𝑠 += read_sys_info()
11 𝑛𝑜𝑑𝑒_𝑓 𝑎𝑐𝑡𝑠 += read_cpu_info()
12 if 𝑛𝑜𝑑𝑒 has gpu then
13 𝑛𝑜𝑑𝑒_𝑓 𝑎𝑐𝑡𝑠 += read_gpu_info()
14 end

// Benchmark(s)

15 𝑛𝑜𝑑𝑒_𝑓 𝑎𝑐𝑡𝑠 += read_cpu_bench()
16 if 𝑛𝑜𝑑𝑒 has gpu then
17 𝑛𝑜𝑑𝑒_𝑓 𝑎𝑐𝑡𝑠 += read_gpu_bench()
18 end
19 𝑛𝑜𝑑𝑒_𝑓 𝑎𝑐𝑡𝑠 += read_ram_bench()
20 𝑛𝑜𝑑𝑒_𝑓 𝑎𝑐𝑡𝑠 += read_io_bench()
21 𝑛𝑜𝑑𝑒_𝑓 𝑎𝑐𝑡𝑠 += read_waketime_bench()

22 recluster_node_add(𝑛𝑜𝑑𝑒_𝑓 𝑎𝑐𝑡𝑠)
23 end

24 Function read_cpu_bench():
25 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 , 𝑝𝑜𝑤𝑒𝑟_𝑑𝑟𝑎𝑤 ← 0, 0

26 for 𝑝𝑐𝑡 ← 0 to 100 by 25 do
27 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 , 𝑝𝑜𝑤𝑒𝑟_𝑑𝑟𝑎𝑤 += cpu_bench(𝑝𝑐𝑡)
28 end

29 return𝑚𝑒𝑎𝑠𝑢𝑟𝑒 , 𝑝𝑜𝑤𝑒𝑟_𝑑𝑟𝑎𝑤
30 end

Algorithm 1:Worker node initialization and registration

already, however, why we deem this choice not to be viable. SQLite
might eventually be insufficient on a larger deployment, at which
point further analysis should be conducted if the goal is to maintain
a relational database, including implementations such as MySQL,
PostgreSQL and MariaDB.

The control plane uses “controllers”, control loops that observe
and change the state of the Kubernetes cluster, to keep it able
to optimally fulfil incoming requests. There are three different
controllers that are responsible to scale, either the cluster or Pods,
to match the performance demand: the Horizontal Pod Autoscaler
alters computing resources assigned to each Pod, while the Vertical
Pod Autoscaler scales the number of containers in a Pod. Most
importantly for resource reduction purposes, the Cluster Autoscaler
increases or reduces the number of worker nodes in a cluster.

https://www.arm.com/technologies/big-little
https://github.com/kubernetes/autoscaler
https://etcd.io/
https://sqlite.org/
https://github.com/k3s-io/kine
https://github.com/canonical/k8s-dqlite

Conceptualising Resources-aware Higher Education Digital Infrastructure through Self-hosting: a Multi-disciplinary View LIMITS ’22, June 21–22, 2022, Online

The implementation of the Cluster Autoscaler is, in Kubernetes,
left to each individual provider. Cloud providers such as AWS or Mi-
crosoft Azure implement their own Cluster Autoscaler components,
that can be inspected in the upstream Kubernetes repository34. Sim-
ilarly, the reCluster should implement its own Cluster Autoscaler.
Since in our case adding or removing nodes results in turning on
or off physical machines, this is a highly critical component, and
represents our only “red” block in Figure 3.

Container Manager

Database Cluster

AutoScaler

Figure 3: A block diagram of the high-level architecture of
the Kubernetes component within a “control plane” node
that can be adapted to reduce resources.

As per the official Kubernetes documentation35, [the] Cluster
Autoscaler automatically adjusts the size of the Kubernetes cluster
when one of the following conditions [verifies]:

(1) [Pods] failed to run in the cluster due to insufficient resources.
(2) [Nodes] in the cluster have been underutilized for an extended

period of time, and their pods can be placed on other nodes.

In reCluster, we propose a strategy where, if we need to switch
on additional nodes (scenario 1), the decision always falls on nodes
that use the least energy possible. reCluster’s Autoscaler selects
by default the node that draws the least energy. This behaviour
is maintained even when the administrator requires a minimum
amount of resources (such as CPU, RAM, or wake time).

We give a high-level overview of our Autoscaler in Algorithm 2.
The procedure shows the selection of a worker node that matches
a set of requirements.

The scaling procedure starts by initialising a list of worker nodes
that are not already active, named candidates. This variable will
ultimately hold, in its first position, the node to be switched on.

If there are no requirements, we sort the list by power consump-
tion in ascending order, thus selecting the node that draws the least
power. Otherwise, the procedure continues by filtering candidates
by the given requirements. The filter functions gradually remove
workers from the candidates list, removing nodes that do not fulfil
each individual requirement.

At the end of the procedure, we check that there is at least one
candidate available. If not, an error is returned and the procedure
exits without switching on additional nodes. This might happen
under the following conditions:
• WORKER_NODES is empty (i.e., no registered worker nodes).
• All worker nodes are already switched on.
• No worker node fulfils the given requirements.

34https://github.com/kubernetes/kubernetes
35https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler

Pseudocode:
// Start from inactive worker nodes

1 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← filter_by_availability(𝑊𝑂𝑅𝐾𝐸𝑅_𝑁𝑂𝐷𝐸𝑆)
2 if 𝑟𝑒𝑞𝑠 is empty then
3 sort_by_power_consumption(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 , 𝐴𝑆𝐶𝐸𝑁𝐷𝐼𝑁𝐺)
4 else
5 if 𝐶𝑃𝑈 in 𝑟𝑒𝑞𝑠 then
6 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← filter_by_cpu(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 , 𝑐𝑝𝑢_𝑡ℎ𝑟)
7 end
8 if 𝐺𝑃𝑈 in 𝑟𝑒𝑞𝑠 then
9 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← filter_by_gpu(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 , 𝑔𝑝𝑢_𝑡ℎ𝑟)

10 end
11 if 𝑅𝐴𝑀 in 𝑟𝑒𝑞𝑠 then
12 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← filter_by_ram(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 , 𝑟𝑎𝑚_𝑡ℎ𝑟)
13 end
14 if𝑊𝐴𝐾𝐸𝑇𝐼𝑀𝐸 in 𝑟𝑒𝑞𝑠 then
15 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ←

filter_by_waketime(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ,𝑤𝑎𝑘𝑒𝑡𝑖𝑚𝑒_𝑡ℎ𝑟)
16 end

17 sort_by_power_consumption(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 , 𝐴𝑆𝐶𝐸𝑁𝐷𝐼𝑁𝐺)
18 end
19 if 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 is empty then
20 return "ERROR: No suitable worker node found"
21 else

// Selected node is the first in 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠

22 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑛𝑜𝑑𝑒 ← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠[0]
23 return 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑛𝑜𝑑𝑒
24 end

Input:
• reqs: Pairs composed by required resource(s) and a
minimum threshold value for that resource.
• WORKER_NODES: List of all available worker nodes.

Output: A worker node fulfilling the given requirements.

Algorithm 2: Cluster Autoscaler upscaling strategy

If the procedure ends successfully, the reCluster’s Autoscaler will
consistently select nodes that have minimal resource consumption,
going towards our goal of creating a more resource-aware self-
hosting platform.

6 DISCUSSION, CONCLUSIONS AND FUTURE
WORK

As we said in the introduction, the ultimate goal of this work is to
enable actionable and lasting change within the organisations we
operate in, namely universities. With our analyses and the reCluster
proof of concept, we wished to showcase how a systemic approach
to infrastructural reappropriation can bring this target within reach
in a relatively short time frame.

The policy actions we proposed aim to show that outsourcing is
not the only solution, nor it is inevitable. Furthermore, we wanted

https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler

LIMITS ’22, June 21–22, 2022, Online Lorenzo Angeli, Özge Okur, Carlo Corradini, Marcel Stolin, Yilin Huang, Frances Brazier, and Maurizio Marchese

to highlight how policies and coordinated action can be powerful
enablers for universities to retake control of their infrastructure,
institutionalising problems, such as contrasting increasing system
requirements, that are normally relegated to individuals.

The actions we proposed are intentionally broad and high-level:
they need to be further segmented in smaller elements so that the
desired goals can be achieved incrementally. A powerful avenue to
do so in the authors’ operational context is to leverage university
collaboration frameworks that aim to distil and push bottom-up
“best practices”.

The reCluster, if and when implemented, could represent such a
practice. This type of architecture is particularly relevant in con-
texts of resource scarcity, where bootstrapping infrastructure from
locally-sourced hardware can be an advantage. In this sense, the
reCluster could also be seen as a “crisis response technology”, fol-
lowing up on Chen’s invitation to look for technologies that are
“easily deployable, self-sustainable, extensible, and compatible with ex-
isting infrastructure” [9]. A particularly promising avenue for future
work in this sense is to investigate the use of Android-native de-
vices, since they are compact, rich in hardware, and easy to relocate
if/when needed.

A key bottleneck in such a scarcity scenario, however, is software
fragility. The choice of Kubernetes requires special self-critique, as
Kubernetes relies on many design choices that are not fully aligned
with the values we have sought throughout this article. Promi-
nently, Kubernetes is a complex software system (understanding
its structure and workings is a non-trivial task even for trained
computer scientists), and has substantial external dependencies.
The underlying containerisation technologies also rely on frequent
updates and the existence of other infrastructure such as container
registries.

At the same time, Kubernetes is extremely complete, having
strategies in place for redundancy, scheduling, and many other use-
ful features. The present article hopefully showed how Kubernetes
can be leveraged in a short time frame to make a significant first
step towards a limits-aware infrastructural reappropriation, show-
ing how many of the obstacles that originally brought institutions
away from self-hosting can be nowadays circumvented, paving the
way for further action.

Future work will reflect on how to bootstrap the software stack
and distribute container images without relying as heavily on the
internet, and eventually aims to replace Kubernetes with a different,
more minimal, software stack.

The methodology we are adopting is to identify what compo-
nents in the Kubernetes stack can be removed or replaced by simpler
software. Indeed, software optimisation has been described even as
“a replacement for Moore’s law” [40]. As an an example of simpli-
fiable components, much of Kubernetes’ internal communication
happens through web APIs. Using HTTP seems to be excessive, and
introduces significant overhead in the main use case that we fore-
see for reCluster-like systems, where all nodes would be physically
proximal, and located in the same LAN.

It should also be noted that, while Kubernetes is open source, it
started as a Google project. We find the idea of basing our work
on technology built by Google to be stimulating: on the one hand,
one could claim that by using Kubernetes, we are embedding in our
system the very source of the problem we wish to address, namely

Google’s “big tech” value system; on the other hand, this decision
can be seen as a first step towards technological reappropriation
that starts by leveraging the work of large technology companies
as tools for common good.

The authors are well-aware of this trade-off, and decided to
take it to showcase that there is significant margin for action and
improvement by taking problematic actors in the status quo and
enrolling them to a limits-aware value system.

Because of its use of computing resources that are normally
already considered “end-of-life”, the reCluster also has a number
of potential uses that go beyond self-hosting services, and could
co-exist together with existing infrastructure. The reCluster could
be used as security testing infrastructure, a distributed computing
platform, an infrastructure-as-a-service testbed, or for continuous
integration/continuous deployment. The reCluster, where potential
mistakes are less costly (since they would be done on containers
running over discarded hardware) has also substantial educational
use.

As a last remark, we wish to highlight how much the multi-
disciplinary approach that we took while writing this article shed
light on many research gaps and avenues for future work. Many
of the issues discussed here are ill-quantified, and would benefit
from conducting literature reviews and more precise surveying.
Amongmany, we especially foresee the need to systematise issues of
software energy consumption, providing simple means to quantify
and benchmark different solutions. Future work will also go in
the direction of exploring further the implications of the policy
proposals we have outlined here: reversing outsourcing, indeed,
would have wide-reaching consequences from a management, HR,
and operations point of view. Our immediate next step, however,
will go in the direction of creating a way for institutions to survey
and monitor the state of unused institutional hardware.

At the end of this article, we are left with the impression that the
ambition of having more “limits-aware” digital infrastructure is not
only a technical challenge, but is primarily social and political in
nature. Many technological enablers are already present, placing the
bottleneck at a non-technical level. With this contribution, we tried
to make an argument for this process to have a strong contribution
by universities. In a context that is as resource-intensive as the
global North, it might just be that we already have all the necessary
resources to substantially challenge the status quo.

ACKNOWLEDGMENTS
Part of this article has been written in the context of the Erasmus+
“C-FLEX” project, awarded with grant number 2021-1-IT02-KA220-
HED-000032115. This project has been funded with support from
the European Commission. This publication reflects the views only
of the authors, and the Commission cannot be held responsible for
any use which may be made of the information contained therein.

The authors also wish to thank the reviewers for their encourag-
ing and insightful comments.

All links have been accessed 2022-03-31.

REFERENCES
[1] A. Watters, Teaching Machines: The History of Personalized Learning. Cambridge,

MA, USA: MIT Press, Aug. 2021.

Conceptualising Resources-aware Higher Education Digital Infrastructure through Self-hosting: a Multi-disciplinary View LIMITS ’22, June 21–22, 2022, Online

[2] N. Selwyn, T. Hillman, R. Eynon, G. Ferreira, J. Knox, F. Macgilchrist, and J. M.
Sancho-Gil, “What’s next for Ed-Tech? Critical hopes and concerns for the 2020s,”
Learning, Media and Technology, vol. 45, no. 1, pp. 1–6, Jan. 2020.

[3] J. de Rivera, “A Guide to Understanding and Combatting Digital Capitalism,”
tripleC: Communication, Capitalism & Critique. Open Access Journal for a Global
Sustainable Information Society, pp. 725–743, Nov. 2020.

[4] B. Williamson, “New Pandemic Edtech Power Networks,” TECHLASH, vol. 01, p.
17.26, Jun. 2020.

[5] N. Selwyn, “Ed-TechWithin Limits: Anticipating educational technology in times
of environmental crisis,” E-Learning and Digital Media, p. 204275302110229, Jun.
2021.

[6] J. Switzer, R. McGuinness, P. Pannuto, G. Porter, A. Schulman, and B. Ragha-
van, “TerraWatt: Sustaining Sustainable Computing of Containers in Containers,”
arXiv:2102.06614 [cs], Feb. 2021.

[7] R. R. Abbing, “‘This is a solar-powered website, which means it sometimes
goes offline’: A design inquiry into degrowth and ICT,” in LIMITS Workshop on
Computing within Limits, Online, Jun. 2021.

[8] M. de Valk, “A pluriverse of local worlds: A review of Computing within Limits
related terminology and practices,” LIMITS Workshop on Computing within Limits,
Jun. 2021.

[9] J. Chen, “A strategy for limits-aware computing,” in Proceedings of the Second
Workshop on Computing within Limits. Irvine California: ACM, Jun. 2016, pp.
1–6.

[10] M. S. Silberman and B. Tomlinson, “Precarious infrastructure and postapocalyptic
computing,” in CHI ’10: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. Atlanta, Georgia, USA: ACM, Apr. 2010, p. 3.

[11] T. Fiebig, S. Gürses, C. H. Gañán, E. Kotkamp, F. Kuipers, M. Lindorfer, M. Prisse,
and T. Sari, “Heads in the Clouds: Measuring the Implications of Universities
Migrating to Public Clouds,” Jul. 2021.

[12] M. Teräs, J. Suoranta, H. Teräs, and M. Curcher, “Post-Covid-19 Education and
Education Technology ‘Solutionism’: A Seller’s Market,” Postdigital Science and
Education, Jul. 2020.

[13] R. Schaller, “Moore’s law: Past, present and future,” IEEE Spectrum, vol. 34, no. 6,
pp. 52–59, Jun. 1997.

[14] E. Mollick, “Establishing Moore’s Law,” IEEE Annals of the History of Computing,
vol. 28, no. 3, pp. 62–75, Jul. 2006.

[15] V. Forti, C. P. Baldé, R. Kuehr, and G. Bel, “The Global E-waste Monitor 2020:
Quantities, flows and the circular economy potential,” United Nations Uni-
versity (UNU)/United Nations Institute for Training and Research (UNITAR),
Bonn/Geneva/Rotterdam, Tech. Rep., 2020.

[16] K. Parajuly, R. Kuehr, A. Kumar Awasthi, C. Fitzpatrick, J. Lepawski, E. Smith,
R. Widmer, and X. Zeng, “Future E-Waste Scenarios,” The StEP Initiative, UNU
ViE-SCYCLE, and UNEP IETC, Bonn/Bonn/Osaka, Tech. Rep., 2019.

[17] B. Nardi, B. Tomlinson, D. J. Patterson, J. Chen, D. Pargman, B. Raghavan, and
B. Penzenstadler, “Computing within limits,” Communications of the ACM, vol. 61,
no. 10, pp. 86–93, Sep. 2018.

[18] R. Balodis and I. Opmane, “History of Data Centre Development,” in Reflections
on the History of Computing, A. Tatnall, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, vol. 387, pp. 180–203.

[19] Chaim Gartenberg, “Google Meet, Microsoft Teams, and WebEx are
collecting more customer data than they appear to be - the verge,”
https://www.theverge.com/2020/5/1/21244058/google-meet-microsoft-teams-
webex-personal-data-collection-privacy-policy-concerns. Last accessed online:
01-03-2022.

[20] Matthew Finnegan, “Zoom hit by investor lawsuit as security, privacy con-
cerns mount,” https://www.computerworld.com/article/3537193/zoom-hit-by-
investor-lawsuit-as-security-privacy-concerns-mount.html. Last accessed on-
line: 01-03-2022.

[21] A. Aiken, “Zooming in on privacy concerns: Video app zoom is surging in
popularity. in our rush to stay connected, we need to make security checks and
not reveal more than we think,” Index on Censorship, vol. 49, no. 2, pp. 24–27,
2020.

[22] D. Kagan, G. F. Alpert, and M. Fire, “Zooming into video conferencing privacy
and security threats,” arXiv preprint arXiv:2007.01059, 2020.

[23] D. Ong, T. Moors, and V. Sivaraman, “Comparison of the energy, carbon and time
costs of videoconferencing and in-person meetings,” Computer communications,
vol. 50, pp. 86–94, 2014.

[24] Y. Tao, D. Steckel, J. J. Klemeš, and F. You, “Trend towards virtual and hybrid
conferences may be an effective climate change mitigation strategy,” Nature
communications, vol. 12, no. 1, pp. 1–14, 2021.

[25] L. Burtscher, D. Barret, A. P. Borkar, V. Grinberg, K. Jahnke, S. Kendrew, G. Maffey,
and M. J. McCaughrean, “The carbon footprint of large astronomy meetings,”
Nature Astronomy, vol. 4, no. 9, pp. 823–825, 2020.

[26] S. Jäckle, “The carbon footprint of travelling to international academic confer-
ences and options to minimise it,” in Academic Flying and the Means of Commu-
nication. Palgrave Macmillan, Singapore, 2022, pp. 19–52.

[27] H. Suga, “A comparison of bandwidth consumption between proprietary web con-
ference services and bigbluebutton, an open source webinar system,” Bioresource

Science Reports, vol. 13, pp. 1–11, 2021.
[28] C. P. Baldé, V. Forti, V. Gray, R. Kuehr, and P. Stegmann, The global e-waste monitor

2017: Quantities, flows and resources. United Nations University, International
Telecommunication Union, and International Solid Waste Association (ISWA),
Bonn/Geneva/Vienna, 2017.

[29] C. E. Saldaña-Durán and S. R. Messina-Fernández, “E-waste recycling assessment
at university campus: a strategy toward sustainability,” Environment, Development
and Sustainability, vol. 23, no. 2, pp. 2493–2502, 2021.

[30] A. Disterheft, S. S. F. da Silva Caeiro, M. R. Ramos, and U. M. de Miranda Azeiteiro,
“Environmental management systems (ems) implementation processes and prac-
tices in european higher education institutions–top-down versus participatory
approaches,” Journal of Cleaner Production, vol. 31, pp. 80–90, 2012.

[31] M. T. Islam, P. Dias, and N. Huda, “Young consumers’e-waste awareness, con-
sumption, disposal, and recycling behavior: A case study of university students
in Sydney, Australia,” Journal of Cleaner Production, vol. 282, p. 124490, 2021.

[32] A. Arain, R. Pummill, J. Adu-Brimpong, S. Becker, M. Green, M. Ilardi, E. Van Dam,
and R. Neitzel, “Analysis of e-waste recycling behavior based on survey at a
Midwestern US university,” Waste Management, vol. 105, pp. 119–127, 2020.

[33] C. M. Schweik and R. English, “Tragedy of the FOSS commons? Investigating
the institutional designs of free/libre and open source software projects,” First
Monday, Feb. 2007.

[34] Delft University of Technology, “Sustainability at TU Delft,” https://www.tudelft.
nl/en/sustainability. Last accessed online: 02-03-2022.

[35] R. V. Aroca and L. M. G. Gonçalves, “Towards green data centers: A comparison of
x86 and ARM architectures power efficiency,” Journal of Parallel and Distributed
Computing, vol. 72, no. 12, pp. 1770–1780, Dec. 2012.

[36] M. Yuan, “Performance Analysis for Arm vs x86 CPUs in the Cloud,”
https://www.infoq.com/articles/arm-vs-x86-cloud-performance/, Jan. 2021.

[37] J. F. Ordoñez Duran, J. M. Chimenos, M. Segarra, P. A. de Antonio Boada, and
J. C. E. Ferreira, “Analysis of embodied energy and product lifespan: The potential
embodied power sustainability indicator,” Clean Technologies and Environmental
Policy, vol. 22, no. 5, pp. 1055–1068, Jul. 2020.

[38] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J. a. P. Fernandes, and J. a.
Saraiva, “Energy efficiency across programming languages: How do energy,
time, and memory relate?” in Proceedings of the 10th ACM SIGPLAN International
Conference on Software Language Engineering, ser. SLE 2017. New York,
NY, USA: Association for Computing Machinery, 2017, p. 256–267. [Online].
Available: https://doi.org/10.1145/3136014.3136031

[39] L. Espe, A. Jindal, V. Podolskiy, and M. Gerndt, “Performance Evaluation of
Container Runtimes:,” in Proceedings of the 10th International Conference on Cloud
Computing and Services Science. Prague, Czech Republic: SCITEPRESS - Science
and Technology Publications, 2020, pp. 273–281.

[40] C. E. Leiserson, N. C. Thompson, J. S. Emer, B. C. Kuszmaul, B. W. Lampson,
D. Sanchez, and T. B. Schardl, “There’s plenty of room at the Top: What will
drive computer performance after Moore’s law?” Science, vol. 368, no. 6495, p.
eaam9744, Jun. 2020.

https://www.theverge.com/2020/5/1/21244058/google-meet-microsoft-teams-webex-personal-data-collection-privacy-policy-concerns
https://www.theverge.com/2020/5/1/21244058/google-meet-microsoft-teams-webex-personal-data-collection-privacy-policy-concerns
https://www.computerworld.com/article/3537193/zoom-hit-by-investor-lawsuit-as-security-privacy-concerns-mount.html
https://www.computerworld.com/article/3537193/zoom-hit-by-investor-lawsuit-as-security-privacy-concerns-mount.html
https://www.tudelft.nl/en/sustainability
https://www.tudelft.nl/en/sustainability
https://doi.org/10.1145/3136014.3136031

	Abstract
	1 Introduction
	2 State of affairs
	2.1 General problematisation
	2.2 Socio-economic causes of outsourcing
	2.3 Ethical implications

	3 Resource reduction through self-hosting
	3.1 Software: an energy analysis of video conferencing
	3.2 Hardware: rethinking institutional e-waste

	4 Policy Actions
	4.1 FLOSS funds in universities
	4.2 Circular procurement
	4.3 Aggregating demand and staff sharing

	5 Proof of Concept — the ``reCluster''
	5.1 General Architecture
	5.2 Hardware
	5.3 Software

	6 Discussion, conclusions and future work
	Acknowledgments
	References

