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A finite volume parallel adaptive mesh refinement method for 
solid-liquid phase change

Bouke Johannes Kaaks , Martin Rohde, Jan-Leen Kloosterman, and  
Danny Lathouwers 

Department of Radiation Science and Technology, Delft University of Technology, Delft, Netherlands 

ABSTRACT 
We present a finite volume adaptive mesh refinement method for solid- 
liquid phase change problems with convection. The refinement criterion 
consisted of three different error estimators for the solid-liquid interface, 
the flow field, and the temperature field respectively. For the solid-liquid 
interface, the cells undergoing phase change were refined based on the 
maximum difference in the liquid fraction over the cell faces. For the flow 
field and the temperature field, an error indicator was used based on the 
cell residual method. To maintain a high parallelization efficiency, a 
dynamic load balancing procedure was used. The adaptive mesh refine-
ment strategy was verified through three different test cases, these are the 
gallium melting in both 2D and 3D cavities, and the molten salt reactor 
freeze valve. For all three cases, very good agreement was obtained 
between the adaptive mesh results and the reference solutions. In add-
ition, more accurate results were obtained with the adaptive meshes com-
pared to static meshes with a similar amount of mesh cells. This illustrated 
the potential of the current approach for developing computationally effi-
cient numerical methods for solid-liquid phase change problems.
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1. Introduction

Solid-liquid phase change problems are encountered in many practical applications, such as 
metallurgy [1], latent heat storage [2, 3], electronics cooling [4, 5], and the design of the Molten 
Salt Reactor (MSR) [6–11]. Over the last few decades, many numerical methods have been devel-
oped for solving solid-liquid phase change problems, which can be divided into two main fami-
lies: multi-domain methods and single-domain methods [12, 13].

In multi-domain methods the liquid and solid phases are clearly separated and the interface 
movement is being governed by the Stefan condition. Multi-domain methods may be broadly 
separated into four categories: moving grid methods [14], where the mesh is deformed to follow 
the interface during its displacement, transformed grid methods [15, 16], where a mapping func-
tion is used to immobilize the moving interface on a uniform and fixed grid, front fixing methods 
[17], where an adaptable time step is used in order to have the interface always lie on a mesh 
point and front-tracking methods, where the interface position is explicitly tracked through a set 
of marker particles [18–20]. Multi-domain methods are also considered sharp interface methods, 
due to their ability to apply the solid and the liquid phase boundary conditions at the exact 
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location of the interface. As such, they are generally more accurate than single-domain methods, 
where the interface is inevitably smeared out over a finite width (i.e. mushy zone, diffuse interface 
method). However, the drawback of these methods is that they are generally difficult to imple-
ment (especially as a general framework which is also suitable for solving complex multi-dimen-
sional problems), due to the requirement of remeshing, coordinate transformation, or the explicit 
tracking of the interface.

In single-domain methods, the liquid and solid phases are described by a single set of partial 
differential equations (PDE), which are solved on the entire domain. Two different classes of sin-
gle-domain methods can be distinguished: front-capturing methods and enthalpy methods. In 
front-capturing methods, the interface is implicitly followed by solving a separate PDE for the 
phase-field variable (i.e. phase-field methods [21, 22]) or the distance function (i.e. level set meth-
ods [23–25]). Front capturing methods allow a microscopic description of the interface, and are 
therefore typically applied for microscale phase change problems such as dendritic solidification 
or crystal growth. On the other hand, in enthalpy methods, no additional equation is solved for 
the solid-liquid interface. Instead, the solid-liquid phase change is accounted for by including the 
latent heat into the enthalpy-temperature coupling, resulting in a non-linear energy equation. 

Nomenclature 

Acronyms 
AMR adaptive mesh refinement 
DLB dynamic load balancing 
MSR Molten Salt Reactor 
PDE partial differential equation  

Computational parameter 
c generalized diffusion coefficient (m2 s–1) 
L characteristic length scale (m) 
T characteristic time scale (s) 
d distance from the cell center to the neigh-

boring cell center (m) 
d vector pointing from the cell center to the 

neighboring cell center (m) 
s outward-pointing face area vector (m2) 
x position vector (m) 
L matrix coefficient corresponding to the 

linear component of the source term 
x damping parameter 
/ generalized variable 
/l liquid fraction 
b small parameter to prevent division by 

zero 
C Darcy Constant (kg m–3 s–1) 
er estimated numerical discretization error 
Fnorm normalization factor 
rP cell residual 
res residual 
tol tolerance 
VP cell volume (m3) 

Other symbols 
D incremental difference 
H, W height, width (m) 
x, y, z cartesian coordinate system (m) 

Physical quantity 
g gravitational acceleration (m s–2) 
H volumetric enthalpy (J m–3) 
p pressure (Pa) 
t time (s) 
T temperature (K) 
u velocity (m s–1) 
X�s relative total solid fraction 

Sub- and superscripts 
� normalized 
i internal / at iteration ‘i’ 
n at time step ‘n’ 
X over the computational domain 
f at the cell face 
l liquid 
m at the melting point 
P at the cell center 
s solid 
0 initial 
L left 
rel relative 
R right 

Thermophysical property 
b thermal expansion coefficient (K–1) 
k thermal conductivity (W m–1 K) 
l dynamic viscosity (Pa s) 
q density (kg m–3) 
cp specific heat (J kg–1 K–1) 
L latent heat of fusion (kJ kg–1)   
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Special treatment is required for solving the non-linear energy equation, and currently three 
approaches are available. In the apparent heat capacity method [26–28], the heat capacity is 
modified around the melting point, in order to add the release of the latent heat to the energy 
balance. In the source-based enthalpy approach [29–31] the latent heat release is captured 
through a source term. Finally, in the ‘linearized enthalpy approach’ [32–35], the enthalpy is line-
arized around the latest temperature values, and the energy equation is iterated until convergence 
has been reached. Compared to the apparent heat capacity method and the source-based enthalpy 
approach, the ’linearized enthalpy approach has been shown to have superior performance in 
terms of a fast and accurate iterative procedure and inherent conservation of thermal energy 
[32–35]. Enthalpy methods are applied to macroscale phase change problems only, although 
recently a mesoscopic phase change model was proposed coupling a phase change model for cal-
culating the solid microstructure with an enthalpy method for calculating the macroscale solid- 
liquid interface evolution [36].

In the present work, a single-domain enthalpy method was used based on the linearized 
enthalpy approach [35]. Compared to multi-domain approaches, single-domain approaches have 
the advantage of solving the same set of equations in the solid and the liquid phases, therefore 
not requiring coordinate transformations, grid generation, or the tracking of the interface. In add-
ition, unlike the phase-field method or the level set method, these methods do not rely on com-
plex thermodynamic derivations or the calculation of interface curvatures. Therefore, enthalpy 
methods are simpler to implement, require less human or computational efforts, and are appli-
cable to a wide range of solid-liquid phase problems [12, 13, 15]. For this reason, enthalpy meth-
ods have been the most popular choice for modeling macroscale phase change phenomena in 
industrial applications. However, the drawback of these methods is their overall lower accuracy, 
especially compared to the multi-domain approaches. Therefore, a very fine mesh resolution may 
be required locally to properly resolve the recirculation zones in the fluid region (as a result of 
natural convection where the fluid flows up along a hot wall and down along the solid-liquid 
interface) and accurately capture the solid-liquid interface [37]. This will result in a considerable 
increase of computational time when using a uniform mesh, even for 2D cases.

To overcome these difficulties, recent investigations have explored the use of discontinuous 
Galerkin finite element methods (DG-FEM) [35, 38, 39], the use of an extended finite element 
approach [40–42] or the use of adaptive mesh refinement (AMR) [43, 44]. DG-FEM was explored 
due to the ability to easily implement high-order schemes that give high accuracy even on coarse 
meshes. However, it was found that even high-order schemes yielded a mesh convergence rate of 
O(h) due to their inability to resolve the discontinuity in the enthalpy field at the solid-liquid 
interface [35]. Whilst qualitatively similar results on a significantly coarser mesh were obtained 
for the gallium melting in a rectangular cavity problem using DG-FEM-based numerical methods 
as compared to the finite volume-based reference solution [35, 39], this was believed to be due to 
a more accurate resolution of the multicellular flow region (i.e. a natural convection driven flow 
containing multiple convection cells) rather than a more accurate capturing of the solid-liquid 
interface [35]. On the other hand, adaptive meshing methods can increase the overall accuracy of 
the results by locally and dynamically increasing the resolution in areas of interest, such as the 
solid-liquid interface and the recirculation zones in the fluid region.

Adaptive meshing strategies have successfully been developed for a variety of applications, 
such as large eddy simulations of turbulent flow [45, 46], vortex-dominated flows [47, 48], multi-
phase flow [49, 50], and ship hydrodynamics [51, 52]. However, for solid-liquid phase change 
problems with convection, few contributions are reported in the literature. Palle et al [53] pre-
sented a finite element method with adaptive mesh refinement for melting and solidification 
problems using the Zienkiewicz and Zhu error estimator [54]. Lan et al [55] developed an adap-
tive mesh refinement algorithm for solidification problems using the finite volume method, 
employing the normalized gradient or an estimate for the normalized truncation error as the 
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refinement criterion. However, it was difficult to establish a universal rule for a cost-effective 
refinement procedure using the aforementioned approach, since further refinement (applying a 
stricter tolerance for the chosen error estimator) did not always result in a further decrease of the 
error. Using a similar gradient-based error estimation approach, Mencinger et al [56] presented 
an r-adaptive finite volume method for the numerical simulation of melting in a 2D cavity. A 
simple moving finite element mesh technique was presented in Tenchev et al [57], which concen-
trates nodes in the vicinity of the phase change front. In addition, several finite element remesh-
ing methods have been developed based on an equidistribution of the edge interpolation error, 
using an estimation of the Hessian [43, 58, 59] or a gradient recovery approach [44] as the basis 
for the error estimate and the construction of the metric tensor used to modify the mesh. 
Compared to adaptive mesh refinement, adaptive remeshing can lead to a more optimal distribu-
tion of the error (and therefore requiring less elements). However, the grid generation and the 
projection of variables unto the new mesh also present a more significant computational overhead 
compared to the adaptive mesh refinement (and coarsening) procedure.

In the present work, we present an adaptive finite volume mesh refinement algorithm for 
melting and solidification problems using OpenFOAM. The cell residual error estimate of Jasak 
et al [60, 61] is used for estimating the error in the solution for the flow field and the tempera-
ture field, which has proven to be a more accurate error estimate compared to the traditional 
truncation-based error estimates for the finite volume method. In addition, the elements in the 
vicinity of the solid-liquid interface are refined based on the maximum difference in the liquid 
fraction over the cell faces. With these refinement criteria, we expect to obtain a locally high reso-
lution in both the solid-liquid interface and the critical flow and heat transfer regions, hereby 
achieving a high numerical accuracy at an affordable computational cost. To ensure a high paral-
lelization efficiency of our code, changes to the mesh are followed by a dynamic load balancing 
step, using the dynamic mesh library of Rettenmeier et al [62]. The performance of the proposed 
adaptive mesh refinement algorithm was demonstrated for three test cases: Gallium melting in a 
2D cavity, Gallium melting in a 3D cavity, and an MSR freezeplug design. This is the first time 
that the cell residual error estimate of Jasak et al has been used as a refinement criterion for 
solid-liquid phase change simulations, and that an adaptive mesh refinement strategy for solid- 
liquid phase change problems has been applied to a more complex problem involving both solid- 
liquid phase change and conjugate heat transfer. The remainder of this paper is organized as fol-
lows: in Section 2 we describe our mathematical model for modeling melting and solidification. 
In Section 3 we describe our numerical discretization and matrix solution procedure, the adaptive 
mesh refinement implementation in OpenFOAM, and our refinement criterion. In Section 4 we 
demonstrate the performance of our adaptive mesh refinement against 3 cases: gallium melting in 
a 2D cavity, gallium melting in a 3D cavity, and the MSR freezeplug. Finally, in Section 5 we pre-
sent our conclusions.

2. Governing equations

The coupled energy and momentum equations are solved numerically using the finite volume 
method. Here, the energy transport equation is written as:

@H
@t
þr � uHð Þ ¼ r � krTð Þ, (1) 

where H is the volumetric enthalpy, t is the time, u is the velocity, k is the thermal conductivity, 
and T is the temperature. The energy transport equation contains two unknowns, the volumetric 
enthalpy in the accumulation and the convection terms and the temperature in the diffusion 
term, coupled through the enthalpy-temperature relationship. For most heat transfer problems, 
the enthalpy-temperature relationship is smooth and the enthalpy-temperature gradient is defined 
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throughout the domain, allowing one of the unknowns (enthalpy or temperature) to be elimi-
nated from the equation. However, for solid-liquid phase change the enthalpy-temperature rela-
tionship is non-smooth as a result of the latent heat release at the melting point. Assuming 
isothermal phase change and constant thermophysical properties in each phase, the resulting 
non-linear enthalpy-temperature coupling is written as

TðHÞ ¼

H
qscp, s

, H � qscp, sTm

Tm, qscp, sTm < H < qscp, sTm þ ql=sL

Tm þ
H − ðqscp, sTm þ ql=sLÞ

qlcp, l
, H � qscp, sTm þ ql=sL:

8
>>>>><

>>>>>:

(2) 

where qs is the density of the solid and ql of the liquid phase, cp, s is the heat capacity of the solid 
and cp, l of the liquid phase, Tm is the melting point, and L is the latent heat of the solid-liquid 
phase change. Here, following the approach of Galione et al [63], the latent heat release is scaled 
with the solid or liquid density depending on whether the material is melting or freezing.

Solving the non-linear energy equation is challenging because the enthalpy-temperature deriva-
tive is undefined at the melting point [see Eq. (2)]. Therefore, a special numerical solution pro-
cedure is required. In this work, the ‘linearized enthalpy approach’ was used [35]. Unlike the 
source-based enthalpy approach, where the total enthalpy is split into a latent and a sensible con-
tribution of which the latter is included in the energy equation as a source term, the ‘linearized 
enthalpy approach directly solves for the total enthalpy [31, 34, 35]. In the ‘linearized enthalpy 
approach’, the total volumetric enthalpy is linearized around the latest known temperature value:

Hnþ1, iþ1 ¼ Hnþ1, i þ
dH
dT

Tnþ1, iþ1=2 − Tnþ1, ið Þ, (3) 

where nþ 1 refers to the latest time step, iþ 1 refers to the newest iteration, i indicates the previ-
ous iteration, and iþ 1=2 denotes the use of an intermediate value, calculated from the solution 
of the ‘linearized enthalpy equation’ [see Eq. (6)]. Here, the following form for the enthalpy-tem-
perature derivative is used:

dH
dT
�

ð1 − /lÞqscp, s þ /lqlcp, l, T 6¼ Tm
qlL
2�

, T ¼ Tm

8
<

:
(4) 

where � is a small parameter and /l is the liquid fraction:

/l ¼
0, T � Tm
1, T > Tm:

�

(5) 

The enthalpy-temperature derivative is exact, except at the melting point where the dirac delta 
due to the release of latent heat is approximated by a large value. The use of an approximation is 
justified since it has been shown previously that this does not affect the accuracy of the iterative 
solution procedure [33].

Performing the second-order accurate BDF2 time integration and substituting the linearized 
enthalpy yields the ‘linearized enthalpy equation’

dH
dT

3Tnþ1, iþ1=2

2Dt
þr � uTnþ1, iþ1=2ð Þ

� �

−r � krTnþ1, iþ1=2ð Þ

¼
dH
dT

3Tnþ1, i

2Dt

� �

−
3Hnþ1, i − 4Hn þHn−1

2Dt
:

(6) 

Here, the ‘sensible enthalpy only’ formulation was used for the heat convection term ([64]).
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The ‘linearized enthalpy equation’ is iterated until convergence. At each iteration, the volumet-
ric enthalpy at the cell centers is updated and the temperature is recalculated according to the 
enthalpy-temperature relationship [see Eq. (2)]:

Hnþ1, iþ1 ¼ Hnþ1, i þ x
dH
dT

Tnþ1, iþ1=2 − Tnþ1, ið Þ (7a) 

Tnþ1, iþ1 ¼ TðHnþ1, iþ1Þ, (7b) 

where x � 1 is a damping parameter to ensure stability.
The non-linear enthalpy-temperature iterations are terminated when the following convergence 

criterion is reached:

max res, maxval Tnþ1, iþ1 − Tnþ1, ið Þ
� �

< tol: (8) 

In this work, tol ¼ 10−6, which was found to be a good compromise between accuracy and 
speed of computation [35]. Here, res is the scaled residual of the original formulation of the 
transport equation [see Eq. (1)] which is calculated using the known solution values after each 
iteration:

res ¼

Ð

X
ð @H

@t þr � uHð Þ −r � krTð Þ
� �

dV
Ð

X
H
Dt dV

: (9) 

As such, res! 0 is a measure of the thermal energy conservation. In addition, for ðTnþ1, iþ1 − 
Tnþ1, iÞ ! 0, the linearization terms cancel out and the ’linearized enthalpy’ equation is equal to 
the energy equation in its conservative form [35]. Therefore, the solution to the ‘linearized 
enthalpy equation’ approaches the solution to the original enthalpy transport equation in conser-
vative form upon convergence.

For the momentum equation, we consider incompressible flow and a Newtonian fluid with 
constant viscosity. The Darcy source term approach is used for modeling the velocity attenuation 
at the solid-liquid interface. This approach is most commonly used and has demonstrated better 
performance compared to other approaches such as the switch-off technique which is prone to 
numerical instabilities or the variable viscosity technique which lacks physical basis [13, 30, 31]. 
Natural convection is treated through the Boussinesq approximation. As such, the momentum 
equation reads

@ qluð Þ

@t
þr � u� qluð Þð Þ ¼ r � l ruþ ruð Þ

T
� �h i

−rp þ qlgbðT − TmÞ − C
1 − /lð Þ

2

/3
l þ b

u: (10) 

Here, C is a large parameter (106 in this work) and b is a small parameter to avoid division by 
zero (10−3 in this work);1 l is the dynamic viscosity, p is the pressure, g is the gravitational accel-
eration, and b is the thermal expansion coefficient.

On a final note, we would like to mention that our modeling approach makes use of the fol-
lowing assumptions:

1. Incompressible flow with a Newtonian viscosity behavior.
2. Constant and isotropic thermophysical properties in each phase.
3. Volume change occurring during solid-liquid phase change is considered in the solution of 

the energy equation only, and not for the solution of the momentum equation (approach of 
Galione et al, [63]).

4. Validity of the Boussinesq approximation for modeling solid-liquid phase change.
5. No air bubbles or impurities were present.
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3. Numerical methodology

3.1. Adaptive mesh refinement

An h-adaptive refinement approach was used to dynamically obtain high mesh resolution only in 
the regions where the estimated numerical error exceeds a certain threshold. To this end, a cus-
tom-built OpenFOAM solver for solid-liquid phase change simulations was coupled to the adap-
tive mesh refinement library developed by Rettenmeier et al [62], of which an OpenFOAM v9 
port is available in the blastFOAM project [65]. This library presents a major enhancement of the 
standard AMR functionality present in OpenFOAM, introducing AMR for arbitrary polyhedral 
cell shapes and 2D and 2.5D (i.e. axisymmetric) cases, whereas the standard version of 
OpenFOAM only supports AMR for hexahedral cells in 3D. In addition, the AMR library of 
Rettenmeier et al features dynamic load balancing, maintaining a high parallelization efficiency 
during adaptive mesh refinement and therefore greatly enhancing the computational efficiency.

When solving a transient problem using parallel computing, AMR will change the load on the 
processors. The processor with the largest load becomes a bottleneck, which may significantly 
reduce the parallelization efficiency [62]. Using the dynamic load balancing (DLB) implementa-
tion of Rettenmeier et al [62], the cells were redistributed among the processors following a 
refinement step, based on a user-prescribed maximum imbalance. To ensure that refined sibling 
cells remain on the same sub-domain, the refinement history was imposed as constraint during 
both the initial decomposition and during the redistribution. Rettenmeier et al previously showed 
that simulation times were halved for 125 processors when using DLB compared to a non-bal-
anced simulation for a dam-break benchmark case using AMR [62]. It can be argued that for 
solid-liquid phase change simulations, where the region of interest (i.e. the solid-liquid interface) 
migrates throughout the entire domain, the gain in parallelization efficiency obtained through 
DLB is even higher than for the dam-break case.

The AMR library in OpenFOAM consists of three classes, these are the refinement engine 
(which contains the permanent mesh data, the functions to create the connectivity structures of 
the mesh, and the functions to select the candidates for refinement or coarsening), the mesh cut-
ter (which splits the parent cells into 8 or 4 child cells for 3D or 2D cases respectively), and the 
refinement tree containing the history of refinement (following an octree and quadtree approach 
for the 3D and 2D cases respectively) [46]. Here, cell level ¼ 0 corresponds to the original cells, 
cell level ¼ 1 corresponds to the first level of refinement etcetera. See Figure 1 for a schematic of 
the adaptive mesh refinement. After each refinement step, the solution needs to be mapped 
between the parent and the child cells. OpenFOAM adopts a pseudo-staggered approach where 
variables (e.g. velocity and pressure) are stored as volume fields and defined at the cell centers, 

Figure 1. Schematic of adapive mesh refinement (in 2D, following the quadtree approach). The variables are stored as volume 
fields at the cell centers (red dots) and the fluxes are stored as surface fields at the face centers (blue dots).
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whereas the convective flux is defined as a surface field and stored at the face centers [62]. The 
mapping of the cell-centered volume fields is straightforward: for each refinement step, the child- 
cells receive the cell-centered value of the parent cell whereas for a coarsening step, the volume 
average of the child cells’ cell-centered values is set on the parent cell centers [62]. The mapping 
of the convective flux is more complicated however, since new faces internal to the parent cell 
are not related to any master face. A good approximation of the convective flux on those fields is 
obtained from an arithmetical averaging of the face-centred velocity field uf of the four adjacent 
neighboring faces (which receive their values from the master face) [49, 62]. Due to the non-con-
servative mapping of the surface fields, a pressure correction step is introduced after each AMR 
step to ensure a divergence free mass flux field.

3.2. Refinement criterion

In this work, a refinement criterion consisting of a combination of three different sub-criteria is 
proposed. These are based on the variation in liquid fraction (to refine the solid-liquid interface), 
and the numerical discretization errors of the velocity and temperature fields (to accurately cap-
ture the recirculation regions and the temperature gradients near the solid wall in case of conju-
gate heat transfer).

To obtain a sharp solid-liquid interface, the cells undergoing a rapid variation of the liquid 
fraction are flagged for refinement. This is done based on the maximum difference of the liquid 
fraction over the cell faces. Subsequently, the cells are refined up to the maximum refinement 
level. The refinement criterion for the solid-liquid interface is thus expressed as:

if maxð /l½ �½ �f Þ > 0:01 Ù cell level < maximum cell level
� �

refine

if maxð /l½ �½ �f Þ < 0:001 Ù cell level >¼ 1
� �

coarsen

8
><

>:
(11) 

Here, ½½���f is the jump operator, defined as the face value of the cell minus the face value of 
the adjacent neighboring cell.

To accurately resolve the flow field and the temperature field, the numerical discretization 
errors are estimated based on the cell residual error estimate developed by Jasak et al [60, 61, 
66], which has proven to be a more accurate error estimator compared to the traditional trunca-
tion based error estimates for the finite volume method. The cell residual, similar to the residual 
error estimate for the finite element method, uses the inconsistency between the face interpolated 
values and the cell volume integration of the finite volume method as a measure of the numerical 
discretization error (see Figure 2 for a graphical representation of this inconsistency).

Figure 2. Inconsistency between the face interpolation and the cell volume integration, taken from [61]. here, P is the Center of 
the control volume, N is the center of the neighboring cell and f is the face between cell P and neighbor N. The face interpol-
ation (the dashed line, assuming a linear variation between P and N) and the cell volume integration (solid line, assuming a lin-
ear variation over the control volume) predict a different value of the generic variable / at an arbitrary point a inside the cell.
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For the steady-state transport equation of a generic conserved quantity / (scalar or vector), 
the cell residual is calculated as [60]:

rP, steadyð/Þ ¼
Ð

VP
r � ðu/Þ −rðcr/Þ − S − L/P½ �dV

¼
P

f s uf /f − cf r/ð Þf

h i
− SVP − L/PVP

� � (12) 

Here, c is the diffusion coefficient and Sð/Þ ¼ S þ L/ represents the linear decomposition of 
the source term. The subscript ’P’ denotes the center of the control volume. To obtain the cell 
residual, the face values are calculated assuming a linear variation of / over the control volume 
(instead of through a linear interpolation between the cell center values /P and /N as is the case 
in standard finite volume discretization, see Figure 2):

/f ¼ /P þ ðxf − xPÞ � r/P, r/ð Þf ¼ r/P: (13) 

Here, x is the position vector.
In transient calculations, the numerical discretization accuracy is determined through both the 

temporal and spatial discretization. Decisions on the mesh refinement will be based on the esti-
mate of the spatial error only, whilst the temporal error estimate can be used for the purpose of 
automatic time step control [66]. In this work, automatic time step control is based on the max-
imum value of the Courant number, to ensure stability of the simulation. No sub-cycling strategy 
is employed, therefore a single-time step is used across all the levels. The time step is therefore 
typically determined by the smallest cells. Taking the transient term into account, the cell residual 
for the transient transport equation is calculated as [66]:

rP, transientð/Þ ¼

ð

VP

@/

@t
dV þ rP, sð/Þ: (14) 

Since rP, t has the dimensions of ½/�½L�
3

½T� , with L the characteristic length scale and T the charac-
teristic time scale, an appropriate normalization is needed to obtain the magnitude of the error 
[60]. The normalization is based on the characteristic convection and diffusion transport for the 
control volume. The normalization factor is calculated as Fnorm ¼ Fconv þ Fdiff þ L, where Fdiff ¼

1
VP

P
f jsj

cf
jdj

h i
(i.e. approximation of the total diffusion transport coefficient) and Fconv ¼

1
VP

P
f maxðuf � s, 0Þ (i.e. estimation of the convective transport coefficient). Here, s is the out-

ward-pointing face area vector and d is the vector pointing from the cell center to the neighbor-
ing cell center. Since the error contribution from the linear part of the source term (L/P) scales 
with the error in /P, the matrix coefficient corresponding to the linear part of the source (L) 
should be included into the normalization. The residual error estimate (REE) now becomes:

erð/Þ ¼
rP, tð/Þ

VPFnorm
: (15) 

The above form of the residual error estimate gives the absolute error estimate. However, for 
transient solid-liquid phase change simulations, the natural convection loop can strengthen (or 
weaken) over time and therefore it is difficult to specify an appropriate absolute error as a refine-
ment criterion for the flow field. Instead, the absolute error in the flow field is normalized using 
the maximum absolute velocity value in the domain (maxðjujÞ). To avoid attributing too much 
importance to very low-velocity values in the early stages of the simulation, the normalization 
factor’s lower bound is set at the absolute velocity value for which Pe¼ 1, i.e. a

L with a the ther-
mal diffusivity and L the characteristic length scale. Please note that the cell residual for the vel-
ocity is a vector, whereas OpenFOAM only supports scalar refinement criteria. As such, the 
Euclidean norm of the cell residual is used. The final form of the relative residual error estimate 
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for the flow field is:

er, relðjujÞ ¼
jrP, tðuÞj

VP � Fnorm �max maxðjujÞ, a=Lð Þ
: (16) 

The estimated absolute numerical discretization error in the temperature field is normalized 
using the temperature difference over the domain:

er, relðTÞ ¼
jrP, tðTÞj

VP � Fnorm � maxðTÞ-minðTÞð Þ
: (17) 

If the estimated error exceeds the tolerance level, the cells are refined until the maximum 
refinement level is reached. Vice versa, the cell is coarsened once the estimated error is smaller 
than one fifth of the error tolerance:

if er, relðjuj, TÞ > tol Ù cell level < maximum cell levelð Þ refine
if er, relðjuj, TÞ < 1=5 tol Ù cell level >¼ 1ð Þ coarsen

�

(18) 

The three adaptive mesh refinement criteria for the solid-liquid interface [see Eq. (11)], the 
velocity field and the temperature field [see Eq. (18)] are evaluated simultaneously. For a cell to 
be refined, either one of the refinement criteria needs to be true. For a cell to be coarsened, both 
the coarsening criteria need to be true. In general, since the velocity in the solid-liquid interface 
is equal to zero, the refinement criteria take effect in different parts of the domain.

3.3. Numerical solution procedure

The coupled energy and momentum equations were implemented in OpenFOAM v9 and solved 
using the finite volume method. The diffusive term was discretized using the second-order linear 
differencing scheme, and the convective terms were discretized using OpenFOAM’s second-order 
linearUpwind scheme (which obtains second-order accuracy by applying an explicit gradient- 
based correction to the standard upwind scheme). The time derivatives were discretized using the 
second-order BDF2 formulation. To reduce the computational overhead from the adaptive mesh 
refinement, the mesh update was performed once per every five time steps. To ensure a smooth 
transition between the different refinement levels and reduce the numerical discretization error 
due to mesh skewness, four buffer layers were used between each refinement level based on the 
recommendation of Rettenmeier et al, who suggested the use of at least two buffer layers [62]. 
Please note that a minimum of one buffer layer is automatically enforced by the refinement 
engine which restricts the refinement level difference to neighboring cells to one, based on the 
one-irregularity constraint.

The resulting matrix equations are solved using GAMG (with Gauss-Seidel smoother) for the 
pressure equation and the stabilized bi-conjugate gradient matrix solver (PBiCGStab) (with DILU 
preconditioner) for the momentum and energy equations. The matrix tolerances are set to 10−8 

for the pressure and pressure correction equations, (with an additional relative tolerance of 0.05 
for solving the initial pressure correction steps), 10−12 for the momentum equation and 10−10 for 
the energy equation. To solve the velocity-pressure coupling, 5 PISO steps are used. Finally, three 
outer corrector steps are used to solve the coupling between the energy and the momentum 
equations.

The full solution algorithm can be summarized by the following steps (Figure 3) :

1. Evaluate the refinement criterion, update the mesh and perform the pressure correction to 
compensate for the non-conservative mapping of the surface fields, ensuring a divergence 
free mass flux field (once per every five time steps).

2. Solve the momentum equation to obtain the velocity predictor.

10 B. J. KAAKS ET AL.



3. Solve the energy equation through a series of non-linear enthalpy-temperature iterations until 
convergence is reached.

4. Solve the pressure equation and perform the velocity correction steps (in this work, 5 velocity 
corrector steps are used).

5. Repeat steps 2-4 until the total number of outer iterations has been reached (in this work, 3 
outer correctors are used).

4. Results and discussion

4.1. Melting of gallium in a 2D cavity

The first test case is the melting of gallium in a 2D rectangular enclosure of L�H ¼
88:9 mm� 63:5 mm: The initial temperature is T0 ¼ 301:3 K and at t ¼ 0 s, the left wall is 
suddenly heated to TL ¼ 311:0 K with the right wall being kept at TR ¼ 301:3 K: The bottom 
and top walls are considered to be adiabatic. Due to the multicellular flow pattern, this problem 
is known to be sensitive to the mesh size, requiring a high spatial resolution to correctly predict 
the number of flow cells at each given time step [37]. For this reason, the melting of gallium in a 
2D rectangular cavity is a challenging first test case for the adaptive mesh refinement technique 
presented in this paper.

Results are presented at five different times (i.e. 20 s, 32 s, 42 s, 85 s, 120 s), using both a uni-
form mesh of 1120� 800 quadrilateral cells (i.e. the reference mesh) and an adaptive mesh. The 

Figure 3. Flowchart of the solution algorithm, including the adaptive mesh refinement step, non-linear temperature-enthalpy 
iterations and the coupling of the energy and the momentum equations.
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adaptive mesh consists of a 70� 50 coarse mesh at cell level 0 with a maximum local refinement 
level of 4. At the highest cell level, the resolution therefore corresponds to that of the uniform 
reference mesh. The tolerance level for the estimated numerical discretization error in the flow 
field was set to er, relðjujÞ < 0:0025: No refinement criterion was imposed for the numerical dis-
cretization error in the temperature field. Simulations were performed for four progressively 
coarser uniform meshes (with 560� 400, 280� 200, 140� 100, and 70� 50 elements respect-
ively), in order to better quantify the performance of the adaptive mesh. For all cases, adaptive 
time stepping was used based on a maximum Courant number of Co¼ 3, with the maximum 
time step size set to Dt ¼ 0:025 s. The thermophysical properties of gallium are given in Table 1.

Figure 4 shows the solution for the normalized absolute velocity juj� ¼ juj
maxðjujÞ , obtained with 

the uniform mesh of 1120� 800 hexahedral elements. Here, maxðjujÞ corresponds to the max-
imum absolute velocity. At all times, both the number and the position of the convection cells 
correspond to those predicted by Hannoun et al [37] for the chosen simulation times (i.e. 20 s, 
32 s, 42 s, 85 s). As such, the current numerical solution is in good agreement with the reference 
solution. Figure 5 shows the estimated relative numerical discretization error in the flow field, 
obtained using the element residual error estimate of Jasak et al [60]. Consistent with expecta-
tions, the largest errors were observed near the left boundary, the solid-liquid interface, and 
around the boundaries of the flow cells (where the highest vorticity is to be expected). Please 
note that these errors correspond to the estimated discretization error at each given time step, 
and not to the total accumulated numerical discretization error throughout the numerical simula-
tion (to obtain the latter, one would have to solve the error transport equation).

Figure 6 shows the solution for the normalized absolute velocity juj�, obtained with the adap-
tive mesh. A very good agreement was observed between the results with the (significantly 
smaller) adaptive mesh and the results on the uniform mesh of 1120� 800 elements, demonstrat-
ing the potential of the proposed adaptive mesh refinement approach. Figure 7 shows the cell 
level for the adaptive mesh. The highest degree of refinement was found near the left boundary, 

Table 1. Thermophysical properties of gallium [37].

Property Solid Liquid

Density [kg m−3] 6093 6093
Specific heat capacity [J kg−1] 381.5 381.5
Thermal conductivity [W m−1 K−1] 32 32
Latent heat [J kg−1] 80160
Melting Temperature [K] 302.78
Thermal expansion coefficient [1/K] 1:2 � 10−4

Dynamic viscosity [Pas] 1:81 � 10−3

Figure 4. Normalized absolute velocity contour plots of gallium melting in a 2D cavity. Results were obtained using the uniform 
reference grid of 1120 x 800 elements.
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the solid-liquid interface, and around the boundaries of the vortices. The pattern of refinement 
qualitatively matches the adapted meshes obtained by Belhamadia et al [44] who used a finite 
element higher-order reconstruction approach for a posteriori error estimation, indicating the 
element residual error estimate for the finite volume method predicts a similar distribution of the 
numerical error. Table 2 shows the total number of cells for each time, as well as the cell distri-
bution (both as a fraction of the total number of cells and as a fraction of the total volume). 

Figure 5. Estimated relative error in the absolute velocity for gallium melting in a 2D cavity. Results were obtained using the 
uniform reference grid of 1120 x 800 elements.

Figure 6. Normalized absolute velocity contour plots of gallium melting in a 2D cavity. Results were obtained using the adaptive 
mesh grid.

Figure 7. Cell levels of adaptive mesh grid for gallium melting in a 2D cavity.
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These results show that whilst the mesh refinement occurs in only a small part of the domain 
(i.e. where the gallium is melting), the refined cells are dominated by the two finest levels (with 
level 1 and level 2 predominantly used as buffer cells between the parent cells and the two finest 
levels). This was attributed to the use of a relative coarse background mesh, whilst resolving the 
multicellular flow patterns requires a very fine mesh, as was shown by Hannoun et al [37].

Table 3 shows the L2 relative difference (against the reference solution) for the 5 different times, 
evaluated for the absolute velocity field and calculated for five different meshes, i.e. the adaptive mesh 
and four different uniform meshes of progressively decreasing resolution. In addition, the number of 
cells for the adaptive mesh at each evaluated time step is given. The finest uniform mesh of size 
1120� 800 elements is used as the reference solution. The L2 relative difference is given by:

Ð

V juj
� − juj�ref

h i2
dV

Ð

V juj
�
ref

h i2
dV

0

B
B
@

1

C
C
A

1=2

(19) 

To calculate the L2 relative difference, the solution data from the adaptive mesh or one of the uni-
form coarser meshes was interpolated onto the reference mesh using a cubic 2D interpolant, such that 
the locations of the data points matched. Subsequently, the integrals were numerically approximated 
using the trapezium method. The L2 relative differences between the adaptive solution and the uniform 
reference solution are below 5% for all times. The number of cells for the adaptive mesh are between 
50000 and 70000, which is a similar mesh size as the uniform 280� 200 mesh. Compared to the 
280� 200 uniform mesh, the relative difference between the adaptive mesh and the reference solution 
is much smaller for all times. For the coarsest uniform meshes of 140� 100 and 70� 50 elements, very 
large differences were obtained, due to the inability of the coarsest meshes to properly resolve the multi-
cellular flow patterns, leading to an incorrect prediction of the number of convective cells. As such, the 
analysis of the L2 relative differences demonstrates that our adaptive mesh refinement approach can 
lead to similar numerical accuracy (as the uniform 1120� 800 mesh) at significantly lower computa-
tional cost (4 h and 40 min to simulate 280s with AMR and DLB on 12 cores as opposed to 47h and 
17.3 min for the uniformly refined mesh, therefore resulting in a speed-up of one order of magnitude).

4.2. Melting of gallium in a 3D cavity

The melting of gallium in a 3D cuboid enclosure of L�H �W ¼ 88:9 mm� 63:5 mm�
38:1 mm was selected for the second benchmark case. To reduce the computational cost, a 

Table 2. Total number of cells and distribution of the different cell levels (% cells/% volume) for the 2D gallium melting case.

Time Total number of cells Level 0 Level 1 Level 2 Level 3 Level 4

20 s 50,681 6.4%/92.9 % 0.2%/0.8% 0.8%/0.7% 2.6%/0.6% 90.0%/5.1%
32 s 55,901 5.6%/91.4% 0.3%/1.1% 0.6%/0.6% 5.5%/1.4% 87.9%/5.5%
42 s 50,498 6.2%/90.1% 0.4%/1.4% 0.8%/0.7% 15.1%/3.4% 77.5%/4.4%
85 s 65,141 4.7%/87.1% 0.2%/1.0% 0.8%/0.8% 19.0%/5.5% 75.3%/5.5%
120 s 69,254 4.3%/84.4% 0.2%/1.2% 1.1%/1.4% 25.0%/7.7% 69.4%/5.4%

Table 3. L2 Relative difference of the adaptive mesh and four progressively coarser uniform grids (with 560� 280, 280� 200, 
140� 100 and 70� 50 elements respectively) against the reference solution (with a uniform grid of 1120� 560).

Time L2
juj (AMR) L2

juj (560� 400) L2
juj (280� 200) L2

juj (140� 100) L2
juj (70� 50)

20 s 0.0100 0.0254 0.0827 0.2367 0.4529
32 s 0.0398 0.0343 0.1401 0.3631 0.4757
42 s 0.0357 0.0596 0.5769 0.6502 0.6976
85 s 0.0500 0.0743 0.2040 0.7140 0.7074
120 s 0.0469 0.1030 0.1101 0.3330 0.7777
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half-sized computational domain of L�H �W ¼ 88:9 mm� 63:5 mm� 19:05 mm was used, 
where a symmetry condition was applied at the center plane, at z¼ 0. The initial temperature is 
T0 ¼ 301:3 K and at t¼ 0 s, the left wall is suddenly heated to TL ¼ 311:0 K with the right wall 
being kept at TR ¼ 301:3 K. All other walls are considered to be adiabatic. The flow structure of 
the gallium melting in a 3D cavity case is known to differ significantly from that of the 2D case, 
due to the wall effect in the third dimension [14]. For this reason, the gallium melting in a 3D 
case is a suitable benchmark case for demonstrating the performance of our adaptive mesh 
method in three dimensions. The adaptive mesh consisted of a uniform background mesh of 
70� 50� 10 elements, with a maximum cell refinement level of 3 and an error threshold of 
er, relðjUjÞ < 0:01:2. Compared to the 2D case, less strict refinement criteria were imposed due to 
the high computational cost associated with performing a solid-liquid phase change simulation in 
three dimensions. Again, adaptive time stepping was used based on a maximum Courant number 
of Co¼ 3, with the maximum time step size set to Dt ¼ 0:025 s.

Figures 8 and 9 show the normalized absolute velocity and the corresponding cell levels after 
120s, 360s and 600s. The flow features differed significantly between the 3D and the 2D case. 
Due to the suppression of the flow by the wall in the third dimension, the vortical structure in 
the melt is not as strong as in the 2D case. In addition, the multicellular flow patterns observed 
in the 2D simulations were absent in the 3D simulations, possibly due to the onset of a 3D 
instability destroying the formation of any ’long-lived’ multi-vortex structures [67]. The flow in 

Figure 9. Cell level of the adaptive mesh for gallium melting in a 3D cavity, at z¼ 0 (Central plane).

Figure 8. Normalized absolute velocity contour plots of gallium melting in a 3D cavity, at z¼ 0 (Central plane). Results were 
obtained using the adaptive mesh grid.
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the melt is refined quite uniformly, with the strongest refinement found near the solid-liquid 
interface and the left and top walls.

Table 4 shows the total number of cells at different times as well as the distribution of the differ-
ent cell levels. Please note that for the gallium melting in a 3D cavity case, no uniform reference 
solution was generated due to the very high computational costs involved. Even with adaptive mesh 
refinement, the total number of elements used is still very high (though significantly less than when 
uniformly applying the maximum refinement level, which would result in a mesh size of 560�
400� 80 ¼ 17, 920, 000 elements). Whilst in the early stages most of the cells were refined up to the 
highest level (similar to the 2D Gallium case), after 480 s the most significant part of the domain was 
refined up to the second level. However, the third refinement level continued to dominate the over-
all cell count, at over 80%, due to the cells being 8 times as small compared to the second level. As 
mentioned before, isotropic mesh refinement was used in this work. Possibly, an anisotropic refine-
ment strategy could yield similarly accurate results with even smaller mesh sizes, in particular for 
the 3D case, by refining cells only in the direction where needed. However, as of yet anisotropic 
mesh refinement has not been implemented in OpenFOAM.

Figure 10 shows the solid-liquid interface position at different times. The results from the present 
numerical campaign were compared with those of Kumar et al [14], and the experimental results of 
Gau et al [1]. Overall, a good agreement was observed between the results from the current numer-
ical campaign and those of Kumar et al. Compared to the experimental measurements, both the cur-
rent numerical campaign and the one of Kumar et al slightly over-predict the melting rate at the 
earlier times (until approximately t¼ 600 s). On the other hand, at later times the results from the 
present numerical campaign under-predict the melting rate. A possible cause for the discrepancies 
between the numerical results and the experimental measurements is the thermal inertia of the 
experiment during the startup phase, the use of the intrusive measurement techniques, and the over-
all lack of thermal insulation during the experiment [1]. However, the discrepancy could also be a 
consequence of modeling assumptions such as the use of the Boussinesq approximation or imposing 
adiabatic boundary conditions on the bottom, top, front, and back walls. Compared to the arbitrary 
Lagrangian-Eulerian formulation of Kumar et al [14], the results from the present numerical cam-
paign predict an overall lower melting rate. This discrepancy may be caused by factors such as the 
mesh resolution, the time resolution, and a difference in solid-liquid phase change modeling 
approach. Please note that the present formulation guarantees the conservation of the thermal 
energy through the convergence criterium [see Eq. (8)].

4.3. The Molten Salt Reactor freeze plug

For the third and final test case, the Molten Salt Reactor (MSR) freeze valve was considered. The 
freeze valve is a key safety component of the MSR, which is designed to melt in case of an acci-
dent scenario.3. Recent work on the freeze valve includes a preliminary numerical investigation 
into both a single- and multi-plug configuration [6], a numerical investigation of a freeze valve 
design for a small modular molten salt reactor [10], a numerical benchmark study designed after 

Table 4. Total number of cells and distribution of the different cell levels (% cells/% volume) for the 3D gallium melting case.

Time Total number of cells Level 0 Level 1 Level 2 Level 3

120 s 1,574,517 1.9%/85.4% 0.2%/1.0% 8.1%/5.7% 89.9%/7.9%
180 s 1,904,714 1.5%/82.1% 0.2%/1.2% 8.4%/7.1% 89.9%/9.6%
360 s 2,586,220 1.0%/73.5% 0.2%/1.6% 10.5%/12.1% 88.3%/12.7%
480 s 2,989,777 0.8%/67.7% 0.2%/2.0% 11.8%/15.7% 87.2%/14.6%
600 s 3,225,292 0.7%/62.1% 0.3%/3.1% 13.5%/19.4% 85.6%/15.4%
750 s 3,554,208 0.5%/55.0% 0.3%/4.4% 15.1%/24.0% 84.0%/16.7%
900 s 3,831,464 0.4%/48.2% 0.5%/6.3% 16.3%/27.8% 82.8%/17.7%
1020s 4,086,880 0.4%/42.7% 0.5%/7.9% 16.8%/30.6% 82.3%/18.8%
1140s 4,187,673 0.3%/37.3% 0.7%/10.4% 17.8%/33.3% 81.2%/19.0%
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the MSR freeze valve [11] and enhancing the heat transfer through the addition of fins [68] or by 
changing the inclination angle of the freeze valve [69]. For a recent and comprehensive overview 
of the different freeze valve designs and their development, please refer to Chisholm et al [9]. The 
MSR freeze valve was chosen as the final test case in order to demonstrate the applicability of 
our adaptive mesh refinement method to problems of industrial significance.

Figure 11 shows the geometry of the freeze-plug and its boundary conditions. For this test 
case, the single plug design was selected, with a recess depth of 0.1 m. This design was chosen 
due to its relative simplicity compared to other freeze-plug designs, making it a suitable demon-
stration case for the proposed adaptive mesh refinement strategy. The freeze valve consists of a 

Figure 10. Solid-liquid interface position for the gallium melting in a 3D cavity, at z¼ 0 (Central plane). The results from the cur-
rent numerical campaign are compared with the experimental results of gau et al [1], and the results from the numerical cam-
paign of kumar et al [14].results are shown for 120 s, 180 s, 360 s, 480s, 600, 750, 900, 1020 and 1140 s.

Figure 11. Geometry and boundary conditions of the MSR freeze-plug (single plug, decay heat design), for both the steady and 
the transient case.

NUMERICAL HEAT TRANSFER, PART B: FUNDAMENTALS 17



cylinder of salt with a radius of R¼ 0.1 m and a height of H¼ 0.3 m, surrounded by a metal wall 
with a thickness of d¼ 1 cm, of which the bottom 0.2 m consists of copper and the top 0.1 m 
consists of hastelloy. The thermophysical properties of the salt, the copper, and the hastelloy are 
given in Table 5. Due to the axisymmetrical nature of the problem, the 3D geometry is approxi-
mated by a 5� wedge with a thickness of one cell, and OpenFOAM’s wedge boundary condition4

is applied to the front and back face of the wedge. A segregated approach was adopted for the 
conjugate heat transfer modeling. Thus, separate matrix equations were solved for each region, 
and the temperature at the region interfaces was calculated through harmonic averaging:

TIF ¼
Ta � ka=dað Þ þ Tb � kb=db

� �

ka=da þ kb=db

: (20) 

Here, a and b refer to the neighboring cells at each side of the interface, and d refers to the 
distance from the cell-centroid to the interface.

The initial mesh consists of a uniform 110� 300 quadrilateral mesh, and a maximum time 
step size of 0.25 s was used throughout the simulations, with a maximum Co number of Co¼ 3. 
For this case, conductive heat transfer through the metal walls played a significant role in deter-
mining the heat transfer rate. As such, a refinement criterion based on the solid-liquid interface 
and the numerical discretization error in the flow field alone was not deemed sufficient, as 
opposed to the previous two cases. Therefore, the estimated relative numerical discretization error 

Figure 12. Numerical solution for the steady state freeze-plug case (which is the initial condition for the transient solution) for 
the absolute velocity (a), the liquid fraction (b) and the cell level (c), obtained with the adoptive mesh. The light and dark grey 
regions in the velocity and liquid fraction solutions refer to the hastelloy and the copper regions respectively, where these fields 
are not being calculated.

Table 5. Thermophysical properties of the salt, copper and hastelloy [6, 70, 71].

Property LiF-ThF4 Hastelloy-N Copper

Solid Liquid
Thermal conductivity [W m−1 K−1] 1.5 1.5 23.6 401
Density [kg m−3] 4502 4390 8860 8960
Specific heat capacity [J kg−1 K−1] 815 1000 578 377
Latent heat [J kg−1] 1:59 � 105 – –
Melting temperature [K] 841 – –
Thermal expansion coefficient [K−1] 2:5 � 10−4 – –
Dynamic Viscosity [Pa s] 7:5 � 10−3 – –
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in the temperature field was included in the refinement criterion. The numerical solution was 
found to be more sensitive to small errors in the numerical discretization of the temperature field 
than of the flow field. A maximum refinement level was set of 2, an error threshold of 
er, relðjUjÞ < 0:01 was set for the flow field and an error threshold of er, relðTÞ < 0:0001 was set for 
the temperature field.

In order to simulate the melting of the freeze-plug, first a steady-state solution of the freeze- 
plug needs to be obtained. For the steady-state simulation, the top temperature was set to 923 K 
and the temperature of the right copper boundary was set to 831 K. Adiabatic boundary condi-
tions were imposed at the bottom boundaries and at the right hastelloy wall. The simulation was 
run for 25000 s in order to reach the steady-state solution. Subsequently, the steady-state freeze- 
plug solution is used as the initial condition for the transient melting of the freeze-plug case.

Figure 12 shows the results for the steady-state freeze-plug, the absolute velocity, the liquid 
fraction, and the cell level. Compared to the freeze-plug shape obtained by Tiberga et al [6], the 
present simulations predict a smaller curvature of the solid-liquid interface. This is believed to be 
due to the effect of natural convection (which was not considered by Tiberga et al). Indeed, a 
recirculation zones was present near the solid-liquid interface. Near the cold copper wall, the salt 
flows down along the freeze front toward the center of the domain (bottom leg of the recircula-
tion zone). Subsequently, the salt is recirculated back toward the hastelloy wall (top leg of the 
recirculation zone). Hereby, the mixing within the salt is enhanced, resulting in an overall flatter 
steady-state freeze-plug shape compared to a conduction-only simulation. The cells are most sig-
nificantly refined close to the hastelloy wall and the solid-liquid interface, where the largest veloc-
ities are reached. The predicted numerical discretization error in the temperature field for the 
copper and hastelloy regions was very small, resulting in no refinement within these regions.

To start the transient simulation, the top boundary condition was changed from T¼ 923 K to 
TðtÞ ¼ −0:0001t2 þ 0:5244t þ 923 K, representing the average temperature increase as a result of 
the decay heat following a reactor shutdown [6]. In addition, a zero-gradient condition was 
imposed at the right copper boundary, since the cooling system has now been switched off. 
Figures 13, 14, and 15 show the results for the transient case for the absolute velocity, the liquid 
fraction, and the cell level, evaluated after 500 s, 1000 s, 1500 s, and 2000 s. Since the hastelloy has 
a higher thermal conductivity than the salt, the heat from the top penetrates further into the has-
telloy wall compared to the salt, resulting in higher temperatures in the vicinity of the hastelloy 
wall compared to the center of the domain. As a result, the salt starts to flow up along the hastel-
loy wall, enhancing the mixing in the liquid salt layer above the freeze-plug. When the freeze- 
plug starts to melt, an additional recirculation zone appears between the solid-liquid interface and 
the copper wall, increasing the melting rate at the top of the freeze-plug (but decreasing the melt-
ing rate at the sides, thus prolonging the opening time as shown by Kaaks, Pater et al [11] and 
Aji [69]). The cells are most significantly refined close to the hastelloy wall, the solid-liquid inter-
face and at the top of the domain, where most of the recirculation takes place. Few cells are 
refined in the copper and the hastelloy walls, indicating that the largest numerical discretization 
errors are present in the salt. As the salt melts, a gap starts to appear between the freeze-plug and 
the copper wall in which recirculation of the salt takes place, effectively shifting the heat transfer 
from the copper wall to the top of the freeze plug. Close to the copper wall, a thin layer of cells 
in the frozen layer of salt (located below the solid-liquid interface position) was also refined, attri-
buted to the importance of the heat transfer through the copper wall during the melting of the 
freeze valve.

Figure 16 shows the relative total solid fraction of the freeze-plug at the metal wall for the 
adaptive mesh and three uniform meshes consisting of 440� 1200, 220� 600, and 110� 300 ele-
ments. The total solid fraction of the freeze-plug at the metal wall (at x¼ 0.1 m) was calculated 
for each mesh at a time interval of 25 s by approximating the integral of /sjx¼0:1 m ¼ 1 − 
/ljx¼0:1 m over the height (y) using the trapezium rule. The relative total solid fraction was 
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Figure 13. Numerical solution for the transient freeze-plug case for the absolute velocity, obtained with an adaptive mesh. The 
light and dark grey regions refer to the hastelloy and the copper respectively.

Figure 14. Numerical solution for the transient freeze-plug case for the liquid fraction, obtained with an adaptive mesh. The 
light and dark grey regions refer to the hastelloy and the copper respectively.

Figure 15. Cell level of the adaptive mesh for the MSR freeze-valve.
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obtained by normalizing the total solid fractions with the reference solid fraction, evaluated for 
the 440� 1200 mesh at t¼ 0:

X�s ¼
Ð y¼0:3 m

0 1 − /lðtÞjx¼0:1m
� �

dy
Ð y¼0:3 m

0 1 − /
ref
l ðt ¼ 0 sÞjx¼0:1 m

� �

dy
(21) 

The relative total solid fraction at the copper wall is the quantity of interest for the melting of the 
MSR freeze valve, since the freeze valve is expected to fall into the drainage tank below once it has 
become detached from the solid wall. As such, X�s ¼ 0 corresponds to the opening time of the freeze 
valve. The opening time is much longer than the 715 s predicted by Tiberga et al [6]. Therefore, includ-
ing the role of natural convection appears to result in a prolonged opening time of the freeze plug.

A very good agreement was obtained between the adaptive mesh and the reference mesh with 
440� 1200 elements. On the other hand, the coarser meshes over-predicted the opening time, 
with a difference of more than 200 s in the predicted opening time between the coarsest mesh of 
110� 300 elements and the finest mesh of 440� 1200 elements. At all times, the number of ele-
ments of the adaptive mesh was smaller than the 220� 600 uniform mesh (see Table 6). As such, 
it is evident that the adaptive mesh yields similarly accurate results compared to the uniform 
mesh with 440� 1200 elements, at a much lower computational cost.

5. Conclusions

This work present a finite volume adaptive mesh refinement method for solid-liquid phase change prob-
lems. The refinement criteriion consisted of a combination of three different sub-criteria, based on the vari-
ation in liquid fraction (to refine the solid-liquid interface) and the numerical discretization errors of the 
velocity and temperature fields. For the solid-liquid interface, the cells undergoing the phase transition 

Figure 16. Relative solid fraction of the freeze-plug at the metal wall (R¼ 0.1 m), showing the melt trajectory of the plug. 
Results from the adaptive mesh were compared to the solutions of three progressively coarser uniform meshes.

Table 6. Total number of cells of the adaptive mesh at different 
simulation times for the MSR freeze valve melting case.

Time Number of cells (AMR)

0 s 47,583
500 s 73,260
1000s 83,427
1500s 98,280
2000s 84,030
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were flagged based on the maximum face jump in the liquid fraction and refined up to a user-specified 
refinement level. For the flow field and the temperature field, the cell residual method of Jasak et al [60] 
was used to estimate the numerical discretization error, and the cells which exceeded the user-specified 
error tolerance were refined until the maximum refinement level was reached. To maintain a high parallel-
ization efficiency during the adaptive mesh refinement, a dynamic load balancing procedure was used.

The adaptive mesh refinement strategy was verified for three different test cases, these are the gal-
lium melting in a 2D rectangular cavity case, the gallium melting in a 3D cuboid cavity case and the 
MSR freeze-plug. For the gallium melting in a 2D cavity case, a very good agreement was obtained 
between the adaptive mesh and the uniform reference mesh, with L2 relative differences of 5% or 
lower for all evaluated times. The uniform reference mesh was more than 10 times larger than the 
adaptive mesh, demonstrating the potential of the proposed adaptive mesh refinement approach to 
locally achieve a high resolution (and therefore an accurate solution) with limited computational 
cost. Indeed, a speed-up of an order of magnitude was achieved for the 2D gallium melting case 
when using the presented adaptive mesh refinement approach. For the gallium melting in a 3D case, 
we demonstrated very good agreement between the solution with the adaptive mesh and the numer-
ical and experimental reference solutions. Whilst the results with the AMR mesh were shown to be 
accurate, the overall mesh size was still very large, reaching over 4,000,000 cells toward the end of 
the simulation. Possibly, similar accuracy could be achieved with even smaller meshes using an 
anisotropic mesh refinement approach, where cells are only defined in the direction where needed 
(instead of being refined isotropically using a quadtree or octtree hierarchical refinement tree 
approach). The results for the MSR freeze valve demonstrated the applicability of our adaptive mesh 
refinement strategy to more complex solid-liquid phase change problems which also involved conju-
gate heat transfer, with a very good agreement obtained between the predicted opening time with 
the uniform reference mesh and the more than five times smaller adaptive mesh.

A possible area of future research could be the use of an anisotropic adaptive mesh refinement 
strategy, which would be the next step in the development of computationally efficient finite vol-
ume methods for solving solid-liquid phase change problems. Whilst the refinement criterium 
presented in this work appears to be promising, it is not applicable to anisotropic AMR (since 
the refinement criterium is a scalar instead of a tensor) and some trial and error was still needed 
for selecting the optimal value for the tolerance, which proved to be problem dependent. As 
such, further research could be additionally dedicated toward the development of universal and 
robust error estimators for finite volume methods with (anisotropic) adaptive mesh refinement, 
which can be applied to solid-liquid phase change problems.

Notes

1. In our case, we are dealing with isothermal phase change and the value of the mushy zone parameters 
therefore have limited effect on the results as long as ‘C’ is large enough to ensure sufficient attenuation of 
the velocity at the solid-liquid interface [31]. However, a too large value of ‘C’ may result in numerical 
instabilities, similar to the velocity cutoff technique. In our experience, a value of C ¼ 106 was the best 
compromise between achieving sufficient attenuation and avoiding spurious oscillations at the solid-liquid 
interface.

2. Again, no refinement criterion was imposed for the numerical discretization error in the temperature field.
3. To prevent structural damage to the reactor, the freeze-plug needs to melt within 1000s [6].
4. The wedge boundary condition features an axisymmetrical boundary condition using a rotational 

transformation to map between a cartesian and cylindrical/spherical coordinate system.
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