

Implications of undersampling in system identification

González, Rodrigo A.; van Haren, Max; Oomen, T.A.E.; Rojas, Cristian R.

Publication date

2025

Document Version

Final published version

Published in

Book of Abstracts 44th Benelux Meeting on Systems and Control

Citation (APA)

González, R. A., van Haren, M., Oomen, T. A. E., & Rojas, C. R. (2025). Implications of undersampling in system identification. In R. Carloni, J. Alonso-Mora, J. Dasdemir, & E. Lefeber (Eds.), *Book of Abstracts 44th Benelux Meeting on Systems and Control* (pp. 209-209). Rijksuniversiteit Groningen.

Important note

To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

44th Benelux Meeting
on
Systems and Control

March 18 – 20, 2025
Egmond aan Zee, The Netherlands

Book of Abstracts

The 44th Benelux Meeting on Systems and Control is sponsored by

Raffaella Carloni, Javier Alonso-Mora, Janset Dasdemir, and Erjen Lefeber (Eds.)
Book of Abstracts - 44th Benelux Meeting on Systems and Control

University of Groningen
PO Box 72
9700 AB Groningen
The Netherlands

ISBN (PDF without DRM): 978-94-034-3117-8

Implications of undersampling in system identification

Rodrigo A. González^{i,*}, Max van Harenⁱ, Tom Oomen^{i,ii} and Cristian R. Rojasⁱⁱⁱ ¹

1 Background

The exact reconstruction of continuous-time signals based on their samples is crucial when designing system identification methods. Undersampling may lead to information loss, limiting the applicability of identification methods without additional assumptions [1].

2 Problem Formulation

Consider a single-input single-output, linear time-invariant, continuous-time system

$$\begin{aligned} x(t) &= G_0(p)u(t) \\ y(kh) &= x(kh) + v(kh), \quad k = 1, \dots, N, \end{aligned}$$

where $v(kh)$ is white noise, and the input $u(t)$ is a known continuous-time multisine of ordered frequencies $\omega_0 < \omega_1 < \dots < \omega_M$ ($\omega_0 = 0$). Importantly, the sampling period h does not satisfy the Nyquist-Shannon criterion for exact input reconstructability, i.e., $h > \pi/\omega_M$.

Our goal is to obtain explicit conditions for the identifiability of $G_0(p)$ and the consistency of identification methods for this sampling regime.

3 Nonparametric and parametric estimators

We analyze the statistical properties of nonparametric and parametric identification methods when undersampling occurs. To this end, the least-squares estimator of $\{G_0(\pm i\omega_\ell)\}_{\ell=0}^M$ requires the input frequencies to satisfy the non-overlapping condition [2]

$$\begin{cases} \omega_\ell \pm \omega_\tau \neq \frac{2n\pi}{h} & \text{for all } \ell, \tau = 1, \dots, M; \ell \neq \tau; n \in \mathbb{Z}, \\ \omega_\ell \neq \frac{n\pi}{h} & \text{for all } \ell = 1, \dots, M; n \in \mathbb{Z}. \end{cases}$$

Assuming that Nh is a multiple of the least common multiple of $\{2\pi/\omega_\ell\}_{\ell=1}^M$ and non-overlapping holds, we show that the least-squares estimator of the frequency response for each input frequency is given by

$$\hat{G}^f = \begin{bmatrix} Y[1] & Y[e^{-i\omega_1 h}] & Y[e^{i\omega_1 h}] & \dots & Y[e^{-i\omega_M h}] & Y[e^{i\omega_M h}] \end{bmatrix}^\top$$

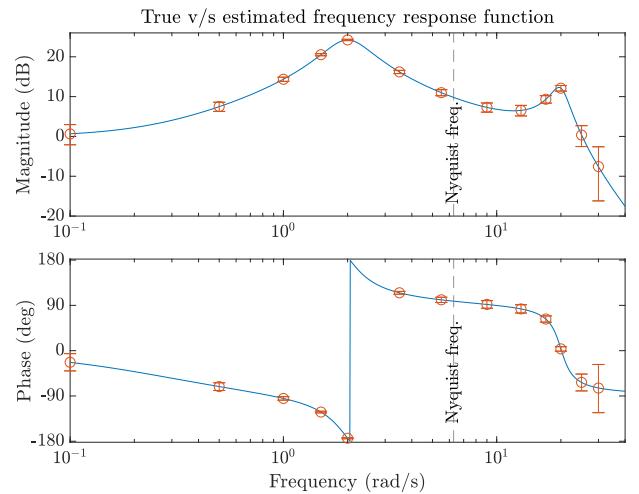
where $U[e^{i\omega h}]$, $Y[e^{i\omega h}]$ are the DTFTs of $u(kh)$, $y(kh)$, respectively. The frequency response estimates are mutually uncorrelated and unbiased for any $N \geq 2M + 1$.

¹This work was partly supported by the Swedish Research Council under contract number 2023-05170, and by the ECSEL Joint Undertaking under grant agreement 101007311.

ⁱEindhoven University of Technology, The Netherlands. ⁱⁱDelft University of Technology, The Netherlands. ⁱⁱⁱKTH Royal Institute of Technology, Sweden. *Email: r.a.gonzalez@tue.nl.

Moreover, in stationary state with Gaussian noise, the parametric maximum likelihood estimator is obtained by minimizing either of the following cost functions:

$$V_f(\boldsymbol{\theta}) = (\mathbf{G}^f(\boldsymbol{\theta}) - \hat{\mathbf{G}}^f)^H [\text{Cov}\{\hat{\mathbf{G}}^f\}]^{-1} (\mathbf{G}^f(\boldsymbol{\theta}) - \hat{\mathbf{G}}^f), \quad (1)$$


$$V_t(\boldsymbol{\theta}) = \sum_{k=1}^N (y(kh) - \hat{y}(kh, \boldsymbol{\theta}))^2, \quad (2)$$

where $\hat{y}(kh, \boldsymbol{\theta})$ is the one-step-ahead predictor of $y(kh)$.

When input frequencies do not overlap after aliasing, $\dim(\boldsymbol{\theta}) \leq 2M + 1$ ensures identifiability for standard parametrizations and consistency of the prediction error method. If frequency overlap occurs, consistency holds if $\dim(\boldsymbol{\theta})$ does not exceed the number of unique non-overlapping input frequency lines.

4 Simulation example

With a sampling frequency 100 times smaller than the standard sampling frequency for this system, the nonparametric estimator exhibits no noticeable bias at any frequency. In conclusion, provided the input frequencies do not overlap, the proposed method enables accurate identification beyond the Nyquist frequency.

Figure 1: Bode plot of the system (blue), and the mean of the estimated frequency response via least-squares, with its 95% confidence interval (red).

References

- [1] M. van Haren, L. Mirkin, L. Blanken and T. Oomen. "Beyond Nyquist in frequency response function identification: Applied to slow-sampled systems." *IEEE Control Systems Letters* 7 (2023): 2131-2136.
- [2] R.A. González, M. van Haren, T. Oomen and C.R. Rojas. "Sampling in Parametric and Nonparametric System Identification: Aliasing, Input Conditions, and Consistency", *IEEE Control Systems Letters* 8 (2024): 2415-2420.