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We consider a large class of spatially-embedded random graphs that in-
cludes among others long-range percolation, continuum scale-free percola-
tion and the age-dependent random connection model. We assume that the
model is supercritical: there is an infinite component. We identify the stretch-
exponent ¢ € (0, 1) of the decay of the cluster-size distribution. That is, with
|C(0)| denoting the number of vertices in the component of the vertex at
0eR?, we prove

P(k < |C(0)| < 00) =exp(—O (k%)) as k — oo.

The value of ¢ undergoes several phase transitions with respect to three main
model parameters: the Euclidean dimension d, the power-law tail exponent t
of the degree distribution and a long-range parameter & governing the pres-
ence of long edges in Euclidean space.

In this paper we present the proof for the region in the phase diagram
where the model is a generalization of continuum scale-free percolation
and/or hyperbolic random graphs: ¢ in this regime depends both on 7, «.
We also prove that the second-largest component in a box of volume # is of
size O((log n)1/¢) with high probability. We develop a deterministic algo-
rithm, the cover expansion, as new methodology. This algorithm enables us
to prevent too large components that may be de-localized or locally dense in

space.
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1. Introduction. Consider nearest-neighbor Bernoulli percolation on Z¢ [12] (NNP),
and write |C(0)| for the number of vertices in the connected component containing the ori-
gin. Assume that the model is supercritical, that is, let p > p.(Z¢)—the critical percolation
probability on 74 Tt is a result of a sequence of works [2, 4, 13, 28, 41, 46] that

(1.1) logP(k < |[C(0)| < 00) = —O(Kk*) with £ = (d — 1)/d.

Thus, the cluster-size decay in this model is stretched exponential with stretch-exponent (d —
1)/d. This decay rate emanates from surface tension: all the Q (k‘?~1D/) edges on the outer
boundary of a cluster C with |C| > k need to be absent. More recently, these results have been
extended to Bernoulli percolation on general classes of transitive graphs [16, 34].

The present paper and our related works [38, 39] consider P(k < |C(0)| < co) for a large
class of supercritical inhomogeneous percolation models where the degree distribution and/or
the edge-length distribution have heavy tails. Our goal is to

Determine how high-degree vertices and long-range edges

Goal . . . .
( ) change the surface-tension driven behavior of cluster-size decay.

We show that the cluster-size decay in (1.1) remains stretched exponential in inhomogeneous
models, but with a new exponent ¢ that depends both on the decay of the edge-length and
the decay of the degree distribution. The new value of ¢ reflects the structure of the infi-
nite/largest component in the graph induced by a volume-n box: it describes the most likely
way that a box is isolated, and represents the scale and structure of a “backbone”, that is,
a skeleton holding the largest component C\" together. These topological descriptions un-
cover an intimate connection between the cluster-size decay, the size of the second-largest
component C'?, and the lower tail of large deviations for the size of C!". We develop gen-
eral methods to move between these quantities. This paper and [39] focus on the cluster-size
decay and |C'?|, while [38] treats large deviations of |C"| in more detail.

Results for a special case. We identify the formula for ¢, and prove matching lower and
upper bounds for logP(k < |C(0)| < 0o) and |C?| for supercritical continuum scale-free per-
colation (CSFP) [18, 20], (in)finite geometric inhomogeneous random graphs (GIRG) [11],
and hyperbolic random graphs (HRG) [45]. We focus on a region of the parameter space
where these models are robust under percolation. These three models can all be parametrized
so that the vertex set is generated by a Poisson point process on R?, and each vertex u (with
spatial location x,,) has an independent and identically distributed (i.i.d.) random vertex mark
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w, from a Pareto distribution P(W > x) oc x~ =D With a A b := min(a, b), each pair of
vertices u, v is conditionally independently connected by an edge with probability

Wy Wy o
(1.2) Bl ol ). (o) = p (1A 2200 )
[0 — x|
Here o > 1 is called the long-range parameter and p € (0, 1]. When 7 € (2, 3), the models
are supercritical for all p € (0, 1] [18, 20, 45]. We state our main result applied to these
models. Let P° be the Palm measure of having a vertex at location 0 € R? with a random
vertex mark.

THEOREM 1.1 (Special case of main result). Consider continuum scale-free percolation,
(finite and infinite) geometric inhomogeneous random graphs, and hyperbolic random graphs
with parametrization as in (1.2) and © € (2,3). When {grg = 3 —1)/2 — (t — 1)/a) >
max(2 — o, (d — 1)/d), then

logP’(k < |C(0)| < 00) = —@ (k*CIRG), IC?|/(logn)'/56RG s right,
(1.3)
CV1/n —> PO o00),  logP(ICP| < pn) Z —Q (nfoma)

for all p > 0. A matching upper bound on (%) is proven in [38] for any p < P°(0 < 00).

Theorem 1.1 exemplifies that sufficiently many high-degree vertices (t € (2,3)) can
change the surface-tension driven behavior of the cluster-size decay compared to (1.1). It
has been folklore in the community that the models CSFP, GIRG, HRG in their robust phase
T € (2, 3) qualitatively behave like their “nonspatial” analogues, namely rank-one inhomo-
geneous random graphs such as the Chung—Lu or Norros—Reittu model [15, 52]. This is true
with respect to graph distances, first-passage percolation, and the metastable density of the
contact process [10, 44, 49]. In contrast, the underlying geometry affects cluster-size decay,
as {arg € (%, 1) depends on the long-range parameter o and dimension d; while the distri-
bution of nongiant components in nonspatial models decays exponentially, that is, { = 1.

Instead of treating CSFP, GIRG, and HRG only, we work with a general model that
we call kernel-based spatial random graph (KSRG), which is a hidden-variable model
that incorporates the three models of Theorem 1.1, and also includes other models: long-
range percolation (LRP) [58], the (soft) Poisson—Boolean model [23, 29] (SPBM), the
age- and weight-dependent random connection models (ARCM) [24, 26], and the scale-
free Gilbert graph [32]. The KSRG model allows for interpolation between these models,
which gives rise to a rich phase diagram for the exponent ¢. We obtain partial proofs of
(1.1) for these other models and for parameter settings complementary to Theorem 1.1 with
Coirg < max(2 — «, (d — 1)/d). The techniques we develop here from the main technical
tools for proving (1.1) for these models for other values ¢ > % in [38, 39], constructing the
backbone in [38] with renormalization techniques, and using combinatorial methods in [39].

New methodology. The setting in Theorem 1.1 presents the greatest challenge when it comes
to controlling the size of finite or nonlargest clusters in KSRGs. In SPBM and ARCM high-
mark vertices tend to be connected by an edge to vertices of lower mark only, while in CSFP,
GIRG, HRG high-mark vertices tend to have edges to even higher-mark vertices. So, if a
partially-revealed finite cluster contains some “fairly”” high-mark vertices then the probability
of the cluster being isolated is small. However, a finite cluster may be present on vertices of
only low marks and be spatially spread out as well, that is, we cannot guarantee a typical
mark distribution. To still obtain the stretched-exponential decay with exponent {grg, We
need to show that any partially-revealed finite cluster has many “backbone” vertices relatively
close, where “relatively close” depends on the particular model in question. In CSFP, GIRG,
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and HRG, sufficiently many backbone vertices need to be “essentially” O (1) distance away
from the set C for all partially-revealed clusters C. For atypically dense clusters, we cannot
guarantee the O (1)-distance bound. In LRP, SPBM, and ARCM, the much weaker distance-
estimate O (k'/) suffices to obtain (1.1) [38].

The cover expansion is our main novel methodology that overcomes this problem. The
cover expansion algorithm takes as input a cluster C in a partially revealed graph. Making
use of “dense areas” of vertices in C, it allocates a sufficiently large spatial area X(C) to
C, with the property that backbone vertices located in XC(C) connect by an edge to the set
of vertices C with constant probability, regardless of the mark distribution in C. As a result,
any partially-revealed cluster C stays isolated with probability exp(— (kGIRG)). The cover-
expansion algorithm is robustly applicable and adaptable to other spatial models.

For all supercritical models in the KSRG class, we unfold the general relation between
the cluster-size decay and the size of the second-largest component. This is an elaborate
truncation and sequential boxing argument, and is our main tool in proving upper bounds
for (1.1) for other KSRG models in [38, 39]. The present paper proves lower bounds on
P°(k < |C(0)| < 00) and |C| for all supercritical KSRG models up to the the existence of
a linear-sized component in a typical box, which is generally not known for supercritical
KSRGs as SPBM and ARCM. These lower bounds give the formula for ¢ for all KSRGs at
once as the solution of a variational problem that describes the most likely way that a box is
isolated from its complement. Before the explanation of this variational problem, we give the
definition of the general model encompassing the above inhomogeneous percolation models.

DEFINITION 1.2 (Kernel-based spatial random graphs (KSRG)). Fix a dimensiond > 1.
Let the vertex set V be either Z¢ or a homogeneous Poisson point process (PPP) on R?. Given
V, we equip each vertex u € V with an independent positive mark following distribution Fyy .
Letk : R%r — R4 be a symmetric function, called the kernel function. Let o : R4 — [0, 1] be
a nondecreasing function, called the profile function, let 8 > 0 be the edge-density parameter,
and let p € (0, 1] be the edge-percolation parameter. Conditionally on the marked vertex set
V= {(xu, W) ey C RY x R, each pair {u, v} is independently present in the edge-set £
with probability

(1.4) p(u, v) :=P(u connected by an edge to v|V) = p - Q(ﬂ M)

llxu — xv”d

We denote the obtained infinite graph by G = (V, £). We write A, :=[—n'/4/2, n'/4 /214 for
a box of volume n centered at the origin, and denote by G, = (V,, &,) the graph induced by
vertices with spatial location in A,. We write C\’ for the ith largest component of G,, and
C, (0) for the component containing a vertex at the origin in G,,, and C(0) or Co(0) for the
component containing this vertex in G. We write P* for the Palm-measure when the vertex set
of a homogeneous Poisson point process is conditioned to contain a vertex at location x € R¢
with unknown mark.

Definition 1.2 allows for general kernels, profile functions, and mark distributions, and
generalizes the setup above Theorem 1.1. In the rest of the paper we restrict to settings that
are commonly used, and which cover the specific models in the Introduction [11, 18, 24, 29,
32, 45, 58]. For any a, b € R we write a A b for min(a, b), and a Vv b for max(a, b).

ASSUMPTION 1.3. The mark distribution Fyy is either constant, that is, W,, = 1 for all v,
or follows a Pareto distribution with parameter T > 2, that is,

(1.5) l— Fyw):=P(W,>w)=w "D w>1.
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The profile function p is either threshold or polynomial: for a constant o > 1, g is either

(1.6) 0a(s) == (L A5)* or ome(s) = Lis>1)-

We assume that the kernel « is one of the following for some parameter o > 0:
1/d 1/d\d
(A7) ko(wiw) = (wi Vw)wi Awn)®, o kaum(wi, w2) = (w)! +wy/*).

When the vertex set is a homogeneous Poisson point process, w.l.0.g. we assume unit inten-
sity. When the vertex set is Z¢, we assume that p A 8 < 1 so that the graph is not connected
a.s.

When W, =1 for all v € V we say that T = 00; when @ = Qs We say that @ = co. As
K0 < Ksum < 2%k, the qualitative behavior of models with kg and xgup, is the same. Therefore,
when k = kg We say that o = 0. Assumption 1.3 ensures that the model is parametrized
so that the expected degree of a vertex is proportional to its mark iff t > o 4+ 1 [50]. The
restrictions T > 2 and o > 1 ensure that the graph is locally finite. Increasing v and/or «
leads to less inhomogeneity, that is, lighter-tailed degrees and fewer long edges, respectively.
The parameter o allows us to continuously interpolate between well-known models that are
special cases. Therefore, we call «x, the interpolation kernel. Independently of our work,
ko appeared recently in [50] and was used in [60]. This kernel generalizes commonly used
kernels in the literature: trivial, strong, product and preferential attachment (PA) kernels, the
last one mimicking the spatial preferential attachment model [1, 35]. With T > 2 as in (1.5),

Kiv(x, y) =1, Kstrong(x, y)=xVy,
(1.8) .
Kprod (X, y) = Xy, Kpa(X,y) = (x Vy)(x Ay) ~~.

These kernel parametrizations all ensure that the degree distribution decays as a power law
with exponent 7 [26]. Any KSRG model with kernel «y has the same connection probability
as models with «¢ and marks identical to 1. Thus, in this case we set k = kg and T :=00. A
slightly more general version of «, is the following: let o1 > 0 and 07 € R, and define

(1.9) Kop,oy (X, y) 1= (x V 3)7H(x A y)?2.

Contrary to k., the kernel k4, o, includes kyeak (X, ¥) := (x A y)* by setting 01 =0, 02 = 1.
However, models with oy = 0 can still be approximated with «, [37]. Moreover, any KSRG
with kernel k4, », and o1 > 0 can be re-parametrized to have o1 = 1 by changing 7 in (1.5).
The parameter o can also be interpreted as an assortativity parameter: in a natural cou-
pling of these models using common edge-variables, edges incident to at least one low-mark
vertex are barely affected by changing o. However, edges between two high-mark vertices
are created rapidly if o increases. In the next section we explain how the parameters affect
the stretch exponent ¢ of the cluster-size decay, inspired by the proof of the lower bound.

1.1. Downward vertex-boundary and the phase diagram of ¢. One possible way for the
event {k < |C(0)| < oo} to occur is the following: in Gk, the induced subgraph in the box A
of volume K = ®(k), the origin is in a (localized) component Ciocq(0) of size larger than
k, and there are also no edges from Cjpcq(0) to A[}( = R4 \ Ak in G. The probability that
this event occurs is of the same order as the probability that there are no crossing edges from
inside Ak to outside Ak, provided that we show that {|Cioca1(0)| > k} occurs with constant
probability given this isolation event. This event {Ag ~ A%} is rare, and the likeliest way it
occurs is when there are no “high-mark” vertices in A g, no high-mark vertices close to Ag,
and no crossing edges between lower-mark vertices. The threshold for being of high-mark
must balance the expected number of high-mark vertices and that of crossing edges between
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lower-mark vertices so that they are both of order ® (k¢ ).! The isolation event then occurs
with probability exp(—®(k%)). By symmetry, it suffices to only count lower-mark vertices
inside A g with downward edges to A[}{: we say that the edge {u, v} = {(xy, wy), (xy, wy)}
is a “downward edge” from u if w, > w,. We write u \| A% if u has a downward edge to a
vertex in A(}(. In our proof we show that for all KSRGs

(1.10) logP(Ag ~ AY) = —Q(E[|{u € Ak :u~\ AL}|]) = —Q(k™),
where we define ¢, as

logE Ag N AL
(1.11) o= lim og E[[{u € Akt u™\ k}|].
k=00 logk

The absence of a mark restriction on the vertices u# in (1.10) indicates that the expected
number of high-mark vertices in Ak is of smaller order than the total expected size of the
downward vertex boundary. The restriction to downward edges (in place of just “edges”)
avoids counting upward edges to a few high-mark vertices outside A g that are not present on
the isolation event. This restriction is necessary for kernel and profile pairs when “high—low
connections” dominate the expectation in (1.12) below, but is unnecessary otherwise.

In nearest-neighbor percolation on Z¢ all edges are downward edges and short, giving
the surface-tension exponent ¢, = (d — 1)/d. When the profile is long-range and/or «, is
nontrivial, there are long edges, and we will show that {, = max({jong, (d — 1)/d), where

log E[[{u € Ago:u™\ A;E}I])
logk

(1.12) Clong := kl_i)n;O(O \Y,

describes the number of vertices incident to long downwards edges, that is, of length Q (k'/9).
We will never use {jong When it equals 0. The maximum with 0 avoids unnecessary computa-
tions when the the second term is negative. Both ¢, and {jong are explicitly computable given
the profile, kernel, and vertex-mark distribution; see Claim 1.4 below. We now give their
potential values based on back-of-the-envelope calculations for KSRGs satisfying Assump-
tion 1.3. We distinguish four types of connections in the downward vertex boundary, and call
the type producing the largest contribution to (1.11) dominant.

Nearest-neighbor edges are dominant if the main contribution to (1.11) is coming from
edges of constant length: there are roughly © (k“~1/4) vertices incident to such edges in
Ak, giving the “surface-tension” exponent

(1.13) Sshort == (d — 1)/d.

Next, we count vertices with edges of length ® (k'/) crossing the boundary of A, and thus
also contributing to {jong in (1.12).

Low-low edges are dominant if the main contribution to (1.11) is coming from constant
(low-mark) vertices in Ay, connected to low-mark vertices A,E. The expected number of
such connected pairs is ® (k - k - k~%). Abbreviating “low-mark to low-mark” by 11, we obtain

(1.14) o =2—a.

Models with dominantly low—low type connectivity behave similar to long-range percolation.
The remaining connectivity types describe “high-mark™ vertices in A/ incident to long-
edges. Model-dependently, we call a vertex high-mark if its mark is at least khigh | where

(1.15)  ¥high := min{y >0: I}CmianEOH{edges between 0 and A,E}H(O, k") eV] > 0}.
—00

10n phase boundaries of ¢,, polylogarithmic correction factors are required here and in (1.10); see Remark 7.9.
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Then, a constant proportion of vertices of mark at least k" ish inside Ay /> contributes to the
vertex boundary. By the Pareto mark-distribution in (1.5), there are O (k' —ign(r—1)y many
high-mark vertices inside Ag/2. The values 7, o, o in (1.5)=(1.7) determine the value of
Vhigh-

High—low edges are dominant if a high-mark vertex in A/ is typically connected to
low (constant) mark vertices outside Ax. There are ® (k) constant-mark vertices at distance
O (k1/4)y. Using the connection probability (1.4) with k, or kgyy from (1.7), for y > 0, the
expected number of edges between vertex (0, k) and constant-mark vertices outside Ay is
roughly k(1 A (k¥ /k))*. As required in (1.15), this expression is of constant order when

(1.16) y=m:=1—1/a, and ¢y:=1—mE -1 =(C—-1)/a—(t—2).

High—low connectivity is dominant in (regions of parameters of) models with small o, for ex-
ample in the age-dependent random connection model and the soft Poisson—Boolean model.
Since the value of o barely affects the presence of edges incident to at least one constant-mark
vertex, ¢ does not depend on o, as opposed to the next type.

High—high edges are dominant if a high-mark vertex in Ay is typically connected to
another high-mark vertex outside Ay. There are O (k'=7 =Dy vertices of mark Q (k?) at dis-
tance @ (k'/4) from 0. Using the connection probability (1.4), the expected number of edges
between (0, k¥) and these vertices is roughly k' =¥ @=D (1 A (k7©+D /k))*. This expression
tends to zero for all y > 0 when t > o + 2, but satisfies (1.15) when t <o + 2 and

1-1/a .
I I ift <o +2and a < o0,
(1.17) y=mm={7F17 DM
ift>04+2o0ra=o00,
o+1
which in turn gives
9
+(;+( Tl)/ ift <o +2and o < o0,
o —(t—-1)/ax
(1.18) Shh:=1—yhn(t — 1) =
o+2—1 .
_ ift>04+2o0ra=o0.
o+1

When t > o + 2, &y, is negative and some other connectivity type is dominant. The definition
of yhnh when t > o + 2 is purely technical, giving continuity and monotonicity in the parame-
ters. The high—high type connectivity is the only type that depends on o, and is dominant (for
some parameters) in models with large o: the product-kernel models in Theorem 1.1 have
o =1, and {grg = ¢hn When T < 3. The next claim shows that these are the only connectivity
types. The proof follows directly from Lemma 7.7 below.

CLAIM 1.4 (Dominant connections). Consider a KSRG model satisfying Assumption 1.3
with parameters a € (1,00], T € (2,00], 0 > 0, and d € N. With {,, {iong from (1.11), (1.12),

(1.19) Ce = max(é‘long’ Cshort) and Clong = max (&1, ¢ht, Shn, 0),

where for models with threshold profiles (« = 00) and/or lighter-tailed vertex-marks (T = 00)
one has to take the corresponding limit in the formulas (1.14), (1.16), and (1.18).

We visualize the changes of the dominant type of ¢, as a function of the parameter space
in Figure la for models using Kprods Kpas Kmaxs Ksum- For these kernels, at most one of the
regimes “high—low” and “high—high” appears on the diagrams; see also Table 1. In Figure 1b
we vary o and t while keeping « and d fixed.
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‘ Models using #proa: CSFP, GIRG, and HRG ‘ ‘ Models using kpa O Fggrong : ARCM and SGM ‘

d=1 ‘ ‘ d>1 ‘

1

Cn [ ] subecrit.

(a) Phase-diagrams of { = ¢(t, &) for models with kernels kprod, and ksum, Kpa OF Kstrong, plotted as a
function of 1/(r — 1) and 1/«. The y-axis (i.e., 1/(tr — 1) = 0) also describes the phase diagram of
(continuum) long-range percolation that has kernel «;y, while the models on the x-axis (1/a = 0)
coincide with models using a threshold profile function in (1.6). When 1/ > lor 1/(z — 1) > 1,
then G, is connected and each vertex has infinite degree almost surely [31]. A white color within the
square means that the model is subcritical for each value p, 8 in (1.4) [27].
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1
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(b) Phase-diagrams of ¢ = ¢ (o, 7) for fixed values of « in (1.6), plotted as a function of 1/(z — 1) on
the x-axis and o/(t — 1) on the y-axis. The identity line y = x corresponds to models using kernel
Kprod = K1, the x-axis to models using kstrong = k0, and the cross-diagonal x + y = 1 to models using
Kpa = k¢—2. The origin captures models with iy = K. Observe that ¢y (blue) is never dominant
above the diagonal y > x (equivalently, o > 1), while ¢y, (red) is never dominant below the
cross-diagonal x + y = 1 (equivalently, o0 < 7 — 2). In the quadrant x + y > 1, y < x all four
exponents “compete” for dominance.

FIG. 1. Phase diagrams of the (conjectured) cluster-size decay for kernel-based spatial random graphs. Theo-
rem 2.1 proves the upper bound in the red regions, and the lower bounds above the x + y > 1 line on Figure 1b,
for all four colors simultaneously, with logarithmic correction terms on phase boundary lines.

A general conjecture. 'The connection to the downward vertex boundary gives the method
to prove lower bounds. However, upper bounds do not follow from this intuition, and the
challenge there is to handle components that are delocalized in space. Relating back to (Goal),
we state our conjecture for KSRGs in Definition 1.2 in general.
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TABLE 1
Models belonging to the KSRG framework, their vertex sets, kernels, profiles, and their value .. Empty
horizontal lines separate models with different kernels

Model % Kernel Profile Cx
Bond-percolation on 74 [30] 74 Ktriv Othr Cshort
Random geometric graph [54] PPP Othr Cshort
Long-range percolation [58] 74 Ou max (&1, Eshort)
Continuum long-range percolation [3] PPP Ou max ({1, Lshort)
Scale-free percolation [18] zd Kprods K1 Qu max (&hh, Sl Sshort)
Continuum scale-free percolation [20] PPP Ou max(&hh, C11> Sshort)
Geometric inhomogeneous random graph [11] PPP Oa> Othr max (&hh, S11s Sshort)
Hyperbolic random graph [45] PPP Othr Chh
Age-dependent random connection model [24] PPP Kpas Kz —2 Ouw Othr max(¢hi, 411, Cshort)
Poisson—Boolean model [23] PPP Ksum Othr Cshort
Soft Poisson-Boolean model [26] PPP Ou max(&his &it» Cshort)
Scale-free Gilbert graph [32] PPP Kstrong» K1 Othr Cshort

Qu max(n1s &11s Sshort)
Ultra-small scale-free geometric network [62] 74 Kweaks K0, 7 Othr max(&hh, Cshort)
Interpolating KSRG PPP s Qu> Othr  Max(&i, Shis $hhs Sshort)

CONJECTURE 1.5. Consider a supercritical KSRG. Let ¢, be as in (1.11) and assume
that the parameters are such that ¢, > 0. Then,

—logP°(k < |C(0)| < 00) = ké+EoD,
P((logn)'/47°W < |c?] < (logn) /&My — 1.

Moreover, —10g P°(IC"| < pn) = n®*°W for any p < P°(0 < o).

Proving this conjecture would achieve (Goal): since ¢, = max((d — 1)/d, {iong), high-
degree vertices and long-range edges change the surface-tension behavior of the cluster-size
decay only when the downward vertex boundary is dominated by vertices incident to long
edges. This paper and [38] study this region of the parameter space to prove the conjecture for
KSRGs on Poisson-point processes satisfying Assumption 1.3 whenever ¢, > (d — 1)/d and
T > 0 + 1. Here and in [38, 39], we obtain partial results when (d — 1)/d > max(&, ¢n1, Chn)
and for KSRGs on Z?. The next section presents the detailed results of this paper that prove
the conjecture for the red regions in Figure 1, of which Theorem 1.1 is a special case.

2. Main results. Recall £j1, ¢hi, ¢hh, and Sgport from (1.14), (1.16), (1.18), and (1.13),
and that ¢, = max({y, ¢ul, ¢hhs Sshore) by Claim 1.4. Our following results assume parameters
where high—high connections are present, that is, {pn > 0. This is equivalentto T € (2,24 0),
and includes kprod = k1 When t € (2, 3), as in Theorem 1.1. Whenever ¢y > 0, the model
is supercritical for all p, 8 > 0 in (1.4) and « > 1, that is, there exists a unique infinite
component C{; see Proposition 5.14 below. We denote the number of dominant connectivity

types by
(2.1 my = Tie=eny + Ligo=gm} + Ligo=cm} + Liti=tsnon}-
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THEOREM 2.1 (Cluster-size decay). Consider a KSRG in dimension d > 1 satisfying
Assumption 1.3 with parameters such that {nn > 0, that is,« € (1,00],0 > 0,and t € 2,2+
0). There exists a constant A > 0 such that, for all k > 1, the following hold.

(i) Foralln € (Ak, oo],
(22) ]P)()(|Cn (O)| >k,0 ¢ Cr(ll)) > exp(—Akg* (log k)m*—l).

(ii) 1f, additionally, T > o + 1 and the vertex set is formed by a homogeneous Poisson
point process, then for all n € (k, o],

(2.3) P(|C,(0)] > k.0 ¢ C") < exp(—(1/A)k™),

(iil) while if T < o + 1 and the vertex set is formed by a homogeneous Poisson point
process, then for all n € (k, 0o],

(2.4) P°(|C.(0)| > k,0 ¢ CV) < exp(—(1/A)k!/@HI=(t=D/a)),

The next theorem is the analogue of Theorem 2.1 for the size of the second-largest com-
ponent. The following intuition applies: the maximum value of » i.i.d. random variables X;
with P(X; > x) = exp(—O(x?)) is of order ®((logn)'/¢). Although the nonlargest cluster
sizes (|C, (v)l)v¢c’(11) are not i.i.d., Theorem 2.1 suggests a cluster in G,, of this order.

THEOREM 2.2 (Second-largest component). Consider a KSRG under the same assump-
tions as in Theorem 2.1.

(1) There exist constants A, &, ng > 0, such that, for all n € [ng, 00),
(2.5) P(|C?| > (1/A)(logn)/% /(loglogn) ™~ 1/6) > 1 —n=3,

(1) If T = o + 1 and the vertex set is formed by a homogeneous Poisson point process,
then for all § > O there exists A > 0 such that for all n € [1, 00),

(2.6) P(|C?| < A(logn)'/%h) > 1 —n 0.

(iii) If T < o + 1 and the vertex set is formed by a homogeneous Poisson point process,
then for all § > 0, there exists A > 0 such that for all n € [1, 00),

(2.7) P(|C?| < A(logn)° T1=F=D/®) > | =3,

Let us make a few remarks. We believe that the lower bounds in part (i) of both theorems
are sharp. They give rise to Conjecture 1.5. Part (ii) matches part (i) when ¢pp is the unique
maximum (this case includes o < 1 such as kprod, since we assume t > 2). When the max-
imum is nonunique, we conjecture the lower bound to be sharp. Part (iii) never matches the
lower bound of part (i), which is due to (nonnegligible) technicalities in our proofs, relating
to the degree distributions having a heavier tail exponent than 7 — 1 [50]. We expect that parts
(ii) and (iii) extend to KSRGs with Z? as a vertex set, but we leave the technicalities out of
this paper to benefit from independence properties of Poisson point processes.

The upper bound of Theorem 2.1 leads to the weak law of large numbers for the size of
the largest component, which was already known for hyperbolic random graphs [22], but not
for geometric inhomogeneous random graphs and continuum scale-free percolation.

COROLLARY 2.3 (Law of large numbers for the giant). Consider a KSRG under the
same assumptions as in Theorem 2.1, with vertex set formed by a homogeneous Poisson point
process. Then,

IC"|/n LN P°(0 <> 00) asn — oo.
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The next theorem shows that ¢, also governs the lower tail of large deviations of |C\"|. It
also holds when ¢p, < 0, contrary to Theorems 2.1-2.2.

THEOREM 2.4 (Speed of the lower tail of large deviations of the giant). Consider a KSRG
in dimension d > 1 satisfying Assumption 1.3, that is, o € (1,00], 0 > 0, and t € (2, 00].
There is a constant A > 0 such that, for all p > 0 andn > 1,

2.8) P(IC}"| < pn) = exp(—(A/p) - n®* (logm)™ ).

2.1. Discussion and related literature. The event {k < |C(0)| < 0o} is nonmonotone un-
der edge-addition, which makes it challenging to control the geometry of the “outer bound-
ary” of small clusters and the infinite component. Peierls’ argument and Grimmett—Marstrand
dynamic renormalization are popular tools to control the outer boundary in models where
surface tension governs cluster-size decay, such as Bernoulli percolation on Z¢ [28], and the
Poisson—Boolean model [19]. The recent work [16] combines a static renormalization method
with hypercontractive inequalities to prove surface-tension driven behavior for Bernoulli per-
colation on transitive graphs of polynomial ball growth (when the number of vertices at dis-
tance r from a vertex grows polynomially in r).

We consider here inhomogeneous percolation models on the complete graph of the vertex
set, with correlated edge probabilities dependent on vertex-marks and spatial distance. In this
setting, the vertex boundary of finite boxes is either governed by short edges (surface tension),
or by long edges. Long edges can be one of three “types” depending on the typical degrees or
marks of the end-vertices. The decay exponent ¢, is determined by the dominant edge type.
We focus on parameter settings where the long edges dominate the vertex boundary of finite
boxes, and the ball growth is superpolynomial even after percolation [6, 10, 18, 25, 43]. Due
to these long edges, surface tension is no longer the relevant quantity and the methods above
for graphs with polynomial growth do not give sufficiently strong bounds. Instead, long edges
make connections to a “backbone” of the giant component possible, so the relevant quantity
to control is the “effective” distance from this backbone. We guarantee good distance bounds
by a new method, the cover expansion; see page 1540 above.

Another example where competing phenomena in the boundary lead to phase transitions,
is the growth of long-range first passage percolation on Z? [14] and that of first-passage
percolation on SFP, GIRG, and HRG [44]. In the former, phase transitions occur at « = 2 and
a =2+ 1/d, and in the latter, phase transitions occur at T = 3 and o = 2. For the cluster-
size decay, the phase transition in long-range percolation occurs at « = 1 4 1/d; in SFP,
GIRG, and HRG transitions occurat e =7 — 1, =1+ 1/d, and when d(e — 1)(t — 1) =
200 — (t — 1). Whereas our exponent ¢, is determined by the “bulk™ of the vertex boundary,
the transitions in [14, 44] are determined by the presence of “exceptional” edges on the edge
boundary, causing different transition points. Analogously, the phase transitions for graph
distances in KSRGs also differ from those of ¢, of the cluster-size decay [6, 10, 18, 25, 43].

The second-largest component. The study of the second-largest component C{ ties in with
the percolation duality for nonspatial random graphs (Erd6s-Rényi random graphs, inhomo-
geneous random graphs [8, 9]), for which P(k < |C(0)| < oco) decays exponentially in k and
|C?| is logarithmic in n. For models with underlying geometry, |C'?| was studied for random
geometric graphs, long-range percolation, and hyperbolic random graphs [17, 42, 48, 54, 55].
By introducing the interpolation kernel x, (see also [50, 60]), this paper uncovers the intricate
connection between |C?| and the cluster-size decay in inhomogeneous percolation models in
the KSRG class in general, and enables us to prove analogues of Theorems 2.1-2.2 for other
parameters in the follow-up works [38, 39].

Both threshold and soft hyperbolic random graphs (HRG) in [45] are a special case of
Theorems 2.1-2.2: there is an isomorphism between an HRG and a 1-dimensional KSRG
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with a product kernel, that is, 0 = 1, t € (2, 3), with threshold HRGs having o« = oo and soft
HRGs having o < 0o; see [11] or [44], Section 9. So, for threshold HRGs the exponent equals
CHRG := (3 — 7)/2. Theorem 2.2 thus includes the known bound |C?| = @p((logn)?/ =)
in threshold hyperbolic random graphs from [42]. Due to the threshold profile and the under-
lying one-dimensional space, in these graphs all small components are localized. In contrast,
Theorem 2.2 of this paper allows for any @ € (1, oo] and any dimension d € N. When o < oo
or d > 1, de-localized small components may be present, and different proof methods are
required for both the lower bound (variational problem; see Section 1.1) and the upper bound
(cover expansion; preventing small-to-large merging; see page 1550 below).

Large deviations for the giant. The lower tail of large deviations for the size of the largest
cluster in supercritical Bernoulli percolation on Z? and random geometric graphs has been
studied in [56, 57], proving P(|C"|/n < p) = exp(—@ (k¥=D/d)) for any p < 6 :=P(0 <>
o0). For models with long edges, the works [6, 7] prove—for sufficiently small p > 0—the
upper bounds P(IC"|/n < p) < exp(—O(k*)) with { =2 — a — o(1) for long-range perco-
lation [6] and ¢ = ¢prc = (3 — 1) /2 for hyperbolic random graphs [7] using renormalization
techniques. Theorem 2.4 here gives the lower bound for the same event for models in the
kernel-based spatial random graph class in general, complementing these previous results,
and making use of the connection to the cluster-size decay. In the follow-up paper [38],
we combine the methods here with renormalization techniques to prove the upper bound
P(IC"|/n < p) < exp(—O(n*)) for any p < 6 for KSRGs with {jong > 0. This gives match-
ing upper and lower bounds outside the phase transition boundaries of ¢,, that is, whenever
m, = 1 in (2.8). The upper tail of large deviations behaves differently: for p € (6, 1), [38]
proves that P(|C\"| > pn) decays polynomially when 7 < oo and exponentially when 7 = co.

2.2. Organization of the paper. In Section 3 we give an elaborate overview of the proofs.
Section 4 introduces the cover expansion, our main novel technical contribution, required for
the upper bound on |C| in Section 5. Only Section 5 restricts to models with {pp > 0.
Section 6 connects the finite-volume bounds (|C\?|) with the cluster-size decay in the infinite
model, leading to the LLN of |C\"| (Corollary 2.3). Section 7 proves the lower bounds on
|C?| and on the cluster-size decay, and Theorem 2.4. Sections 5-7 start with a proposition
each. Together, these imply Theorems 2.1 and 2.2, as verified in Section 8.

We only give proofs for KSRGs using the kernel «, in (1.7) with o > 0: we restrict to

(w1 Vw2)(wp Aw)?\* |
p<1/\,3 TR > if @ < oo,
(29) p((xl,u wu), (xlh wv)) = (wl V wg)zwl /(lwz)g
p]l{ﬁ TR 21} if o =o0.

The proofs for kg,m can be directly obtained by using the bound k¢ < xgym in lower bound
estimates and kqum < 2%k in upper bound estimates. Further, we only give proofs for models
with a Poisson point process as vertex set. The extension to Z¢, when applicable, follows gen-
erally from replacing concentration bounds for Poisson random variables by concentration for
sums of independent Bernoulli random variables, and by replacing integrals by summations.
When more adaptations are required, we comment on those.

Notation. We write write |S| for the size of a discrete set S. We write Vol(K) for the
Lebesgue measure of a set K € R¢, 9K for its boundary, and Kb :=Rd \ K for its comple-
ment. We denote the complement of an event A by —.4. Formally we define a vertex v by a
pair of location and mark, that is, v := (x,, wy), but we will sometimes write v € K if x,, € IC.
For two vertices u, v, we write u ~ v if u is connected by an edge to v in the graph under
consideration (typically G,), and u ~ v otherwise. We also write {u, v} for the same (undi-
rected) edge. For a set of vertices S, we write u ~ S if there exists v € S such that u ~ v. We
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write X = Y if the random variable X stochastically dominates the random variable Y, that is,
P(X > x) > P(Y > x) for all x € R. A random graph G; = (V1, &) stochastically dominates
a random graph G, = (V», &) if there exists a coupling such that P(V, C V1, & C &) = 1.
For x e R? and s > 0, and Q C R?, a < b, we introduce notation for boxes of volume s
centered at x, and vertex sets restricted to locations in @ with mark in [a, b):

Ax, )= Ag(x) i=x 4 [—s/2Y 5219 Ag = AL(0),
Vola,b) .=V N(Q x [a, b)), Vsla, b) :=Vp,la,b).
Last, we define

(2.11) Gula, b) := the subgraph of G induced by vertices in V,[a, b).

(2.10)

3. Methodology. We first sketch the strategy for upper bound on the size of the second-
largest component, then we explain how to obtain the cluster-size decay from it, and last we
sketch the lower bound. Throughout the outline we assume that (n/k)'/¢ € N.

3.1. Second-largest component. We aim to show an upper bound of the form
(3.1) P(|CP| > k) < (n/k) exp(—ck™) =: err, «

for arbitrary values of n > k and some constant ¢ > 0. Such a bound yields (2.6) when sub-
stituting k = A(logn)!/¢ for a sufficiently large constant A = A(8) > 0. The proof consists
of four revealment stages, illustrated in Figure 2.

Step 1. Building a backbone. We set wp := © (k¥hh) with y4 > 0 from (1.17). We partition
the volume-n box A, into n/k smaller sub-boxes of volume k. In this first revealment step
we only reveal the location and edges between vertices in V,, [wpn, 2wy ), obtaining the graph
Gn.1 := Gulwnn, 2wpp). We show that G, 1 contains a connected component Cpp that contains
© (k%) many vertices in each subbox, that we call backbone vertices. We show that this
event—say App,—has probability at least 1 — err, . We do this by ordering the subboxes so
that subboxes with consecutive indices share a (d — 1)-dimensional face, and by iteratively
connecting © (khh) many vertices in the next subbox to the component we already built,
combined with a union bound over all subboxes. The event Ay, ensures us to show that
independently for all v € V,[2wnn, 00), regardless of their locations,

(3.2) P(v ~ Cpb|Abb, v € Vy[2whh, 00)) > 1/2.

We call vertices in V,[2wnn, 00) connector vertices. If o < 0o, not all connector vertices will
connect to the backbone, that is, the 1/2 in (3.2) cannot be improved to 1.

‘ Step 1 and 2 ‘ ‘ Step 3 ‘ ‘ Step 4 ‘

2wpp

OO OQO OO
e | [T o<k mdcge

a» O

‘ ;;/\ C:|C| >k, andC g C* ‘ ‘ A unsure-connector

‘ QO sure-connector

FIG. 2. Upper bound. The y-axis represents marks, the x-axis represents space. After Steps 1 and 2 there is
a component C* containing the backbone that is connected to some small components from Gu[1, why). After
Step 3, the unsure-connectors are revealed: there is small-to-large merging; some unsure-connectors connect to
the backbone. After Step 4, each component of size at least k merged with the largest component via a sure-
connector; unmerged small components and unsure-connectors outside Cﬁll) remain all of size at most k.
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Step 2: Revealing low-mark vertices. 'We now also reveal all vertices with mark in [1, wpp),
and all their incident edges to G, 1 and towards each other, that is, the graph G, » :=

Gnll, 2wpp) 2 gn,1~

Step 3: Pre-sampling randomness to avoid merging of smaller components. To show (3.1),
in the fourth revealment stage below we must avoid small-to-large merging: when the edges
to/from some v € V,[2wnp, 00) are revealed, a set of small components, each of size at most
k, could merge into a component of size at least k without connecting to the giant compo-
nent. If we simply revealed V, [2wyy, 00) after Step 2, (3.2) would not be sufficient to show
that small-to-large merging occurs with probability at most 1 — err, x. So, we pre-sample
randomness: we split V,,[2wpp, 00) into two PPPs:

Vu[2whh, 00) = V" [2whn, 00) U V™[ 2wph, 00),

where V" [2whh, 00), V"™ [2wpy, 00) are independent PPPs with equal intensity: using
(3.2) and helping random variables that encode the presence of edges, we pre-sample whether
a connector vertex connects for sure to Cpp, by at least one edge; forming V" [2wpp, 00). Ver-
tices in V""" [2wpp, 00) might still connect to Cpyp, since 1/2 is only a lower bound in (3.2),
but we ignore that information. We crucially use the property that thinning a PPP yields two
independent PPPs. The adaptation of our technique to lattices as vertex set seems nontrivial
due to this step. We reveal now V™" [2wpp, 00). Let G,.3 2 G, 2 be the graph induced on
the vertex set

(3.3) V.3 := Vull, 2wpn) U V"™ [ 2wpp, 00).

Step 4: Cover expansion, a volume-based argument. We now reveal V"™ [2wpy, 00) and
merge all components of size at least k with the largest component in G, 3 with probability at
least 1 — err, ;. Small-to-large merging cannot happen since vertices in V"™ [2wpp, 00) all
connect to Cpp,. We argue how to obtain (3.1).

Step 4a: Not too dense components via proper cover. For a component C C G, 3, the proper
cover K, (C) C A, is the union of volume-1 boxes centered at the vertices of C (the formal
definition below is slightly different). Fixing a constant § > 0, we call C not too dense if

(3.4) Vol(IC, (C)) = 8|C].

Using the connectivity function p in (2.9), each pair of vertices within constant distance is
connected by an edge with constant probability. Since wpy = ® (k¥), there exists kg such
that, for any k > ko and any pair of vertices u € V, 3 in (3.3) and v € V" [2wpp, 00) within
the same volume-1 box,

(3.5 p(u,v) = p/2.

Using this bound and that V" [2wpp, 00) is a PPP, when |C| > k, with probability at least
1 — erry , at least © (khh) many vertices of V'™ [2wpp, 0o) fall inside &, (C) and at least
one of them connects to C by an edge. Since these vertices belong to V" [2wpy, 00), they
connect to Cypp, by construction, merging C with the component containing Cy,.

Step 4b: Too dense components via cover expansion. We still need to handle compo-
nents C C G, 3 with |C| > k that do not satisfy (3.4). These may exist (outside the com-
ponent of Cyp) since the PPP V), contains dense areas, for example, volume-one balls with
O((logn)/loglogn) vertices. We introduce a deterministic algorithm which works for any
vertex set provided that there are no “large” areas containing atypically many vertices. The
definition of “large” depends on wy, = whn (o, T); a homogeneous Poisson point process sat-
isfies this property with probability at least 1 —err, x as longas Tt >0 + 1. Whent <o + 1,
it is at this step that we obtain a slightly worse error bound.



CLUSTER-SIZE DECAY IN SUPERCRITICAL KSRGS 1551

The cover-expansion algorithm outputs for any (deterministic) set £ of at least k vertices a
set K*P(L£) c RY, called the cover-expansion of L, that satisfies bounds similar to (3.4) and
(3.5). In the design of the set K*P(L) we quantify how far a connector vertex may fall from
a too dense subset £’ C £, while still ensuring connection probability at least p/2 to the set
L’. We apply this algorithm with £ = C for components of size at least k of G, 3 that do not
satisfy (3.4) and do not contain Cy},. The remainder of the proof is identical to Step 4a. Steps
4a, 4b, and a union bound over all components of size at least k in G, 3 yield (3.1).

3.2. Subexponential decay, upper bound. Consider k fixed. We obtain the cluster-size
decay (2.3) for any n € [k, ny] with ny = exp(© (k%)) by substituting ny into (3.1). To extend
it to larger n, we first identify the lowest mark w(n) such that all vertices with mark at least
w(n) belong to the giant component C\"” C G, with sufficiently high probability (in n). Then
we embed A,, in A, and show that

P°(|ICh(0)| > k,0 ¢ C")

3.6
G0 <P(|C2| > k) +P(C\) £C") +P°(|C.(0)] > k, 0 ¢ C",

Cn, (0)] < k).

The first term on the right-hand side has the right error bound by (3.1). We relate the second
term to the event that for some 72 € (ng, n] there is no polynomially-sized largest component
or the second-largest component is too large. The event in the third term implies that one of
the at most k vertices in C,, (0) has an edge of length Q2 (n,i/ d / k), which will have probability

at most ert,, x, since these vertices have mark at most w(ny).

3.3. Lower bound. For the subexponential decay, we compute the probability of a spe-
cific event satisfying k < |C(0)| < co. We draw a ball B of volume ® (k) around the origin,
and compute an optimally suppressed mark-profile: the PPP V must fall below a (d + 1)-
dimensional mark-surface M := {(x, f(x)),x € R?}, that is, w, < f (xy) must hold for all
(xy, wy) € V. We write {V < M} for this event. The value of f(x) is increasing in ||x — dB||
since high-mark vertices close to 8 are most likely to have edges crossing 5. M is op-
timized so that P(V < M) ~ P(B » BBIV < M), where {B = BB} is the event that there is
no edge present between vertices in B and those in its complement. Both events occur with
probability exp(—®(k®+)), (up to logarithmic correction factors in the exponent on phase
boundaries of ¢,). We then find an isolated component of size at least k inside B using a tech-
nique that works when ¢{pn > 0. We use a boxing scheme to extend this argument to the lower
bound on |C|, similar to [42]. We use another boxing argument to bound P(|C"| < pn)
from below.

4. The cover-expansion algorithm. The goal of this section is to develop the cover-
expansion technique in Step 4b of Section 3.1. The statements apply also to KSRGs on vertex
sets other than a PPP. First we define a desired property for a set of vertices based on their
spatial locations. Recall the definition Ag(x) = A(x, s) from (2.10). Throughout this section,
we often identify vertices with their locations and ignore their marks. Slightly abusing no-
tation, when L is a set of location of vertices we write v ~ L for v having an edge to the
corresponding set of vertices.

DEFINITION 4.1 (s-expandable point-set). Let S C R? be a discrete set of points in R?,
and s > 0. We call S s-expandable if for all x € 74 and all s’ > s,

SN Ay (x)|/s" <e.
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A discrete set S C RY is s-expandable if there are no large boxes with too high ratio
of number of vertices in S in the box compared to its volume. In particular, the definition
enforces |[SN A, | < en. Moreover, if S is s-expandable, then any subset of S is s-expandable;
last, if S is s-expandable, then S is also §-expandable for any § > 5. The next proposition
solves the problem of too dense components in space; cf. (3.4).

PROPOSITION 4.2 (Covers and expansions for s-expandable sets). Consider a KSRG
in dimension d > 1 satisfying Assumption 1.3 on a (arbitrary) marked vertex set V =
{(xy, wy) }yey. For a given w > (2ddd/2/,3 Vv 1), define s(w) > 0 as

@.1) s(w) = (24pw) V.

Given n, assume that s(w) < n, and L C Ay, is the set of locations of any s(w)-expandable
set of vertices. Then there is a set IC,,(L) C A, with

1
such that any v € K, (L) x [w, 00) connects by an edge to {(x,, w,) : x, € L} independently
with probability at least p/2, that is,

4.3) P(v ~ LI{(xy, wy) s xy, € L} U{v} S V) > p/2.

The independence here means that the connection to £ of any set of vertices in K, (L) x
[w, 00) dominates independent Bernoulli random variables with success probability p/2,
regardless of the marks of vertices in £, and the exact location and mark of v, as long as
it belongs to the set /C,,(£) x [w, 00). We use two constructions for the set K, (£). If L is
not too dense (see (3.4)), we will use a proper cover (see Definition 4.6 below). If, however,
the points of £ are densely concentrated in small areas, we will use a new (deterministic)
algorithm, the cover-expansion algorithm, producing an expanded cover (see Definition 4.7
below) that still satisfies the connection probability in (4.3). This will prove Proposition 4.2.
We start with some preliminaries.

DEFINITION 4.3 (Cells in a volume-n box). Let EZ be a box of volume 1 centered around
z € Z¢. For any two neighboring boxes EZ, Ez/, allocate the shared boundary 8§Z N 8§Z/
to precisely one of the boxes (in an arbitrary but fixed way). For each u € Z? such that
u ¢ A, but E’u NA,# D, let z(u) :=argminf|lu —z||: z€ Ay N 7%}, and then define for
each z € Z4 N A, the cell of z as

B,:=(B,NA,U ( U @&n A,,)).

ueZd:z(u)=z

In words, boxes that have their center inside A, but are not fully contained in A, are
truncated, while boxes that have their centers outside A, but intersect A, are merged with the
closest box with center inside A,. At every point of A, at most 2¢ cells are merged together,
and only 1/2 of the radius in each coordinate can be truncated. Thus, for each cell B,

(4.4) sup{llx —yll:x,y€ B} <2/d; and 27 <Vol(B,) <2
DEFINITION 4.4 (Notation for cells containing vertices). Let £ C A, be (a subset of)

the locations of the vertex realization V. Let {B;, };":/ | be the cells with £ N B, # . Let
Li:=LNB,, t;:=|Liland L:=|L| =Y, €.
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We will distinguish two cases for the arrangement of the vertices among the cells: either
the number of cells is linear in the number of vertices, or there is a positive fraction of all
cells that all contain “many” vertices. The next combinatorial claim makes this precise.

CLAIM 4.5 (Pigeon-hole principle for cells). Let s € (0,1), v>1,and €y,...,£¢, > 1
integers such that 3 ;_,,, €; = L. If m" < L(1 — 8) /v then

(4.5) AL c[m']:Viel:t;>v, and » € >5L.
i€l
PROOF. Assume by contradiction that §, v, ¢y, ..., £, are such that m’ < L(1 — §)/v

holds but (4.5) does not hold. Let 7 :={j : £; < v} C [m’] and let gt = [m'1\J. Then
Vi e jE :£; > v and hence Zjejg £j < 3L, as we assumed the opposite of (4.5). Since the
total sum is L, this implies that Zjej £; > (1 —8)L. Moreover, since £; < v for j € 7, it
must hold that m" > | 7| > (1 — §)L /v, which then contradicts that m" < L(1 —§)/v. O

We define the first possibility for the set KC,,(£), which is inspired by Claim 4.5 with
v=ed??23 and § = 1/2.

DEFINITION 4.6 (Proper cover). We say that £ admits a proper cover if m’ >
|£|/(2ed?/?23?) in Definition 4.4, and we define the cover of £ as
1
KPP (L) := ) B satisfying Vol(KP™*P) > ————|L].

= Jd/2a04d+1
ielm’]

By (4.4), v =ed?/?23¢ and § = 1/2, hence, we obtain the desired volume bound on the
right-hand side above, establishing (4.2) for sets admitting a proper cover. Moreover, consider
now (xy, wy) € (B;; NL) x[1, 00) and u := (x,, wy) € B;; X [w, 00) with B, C KPP Then
X, — xu ]l < 2+/d by (4.4). Since we assumed w > (2¢d?/?/B v 1) above (4.1), using (2.9)
and (1.7),

(4.6) p(u,v) = p(1 A (Bro(w. )/@Vd)))* = p(1 A (274 /B v 1)B/2Vd)?))* = p.

This shows (4.3) for sets admitting a proper cover. The argument for o« = 0o is similar.

In what follows we treat sets £ that do not admit a proper cover, that is, when £ is con-
tained in too few cells. We define an “expanded” cover, which we obtain after applying a
suitable volume-increasing procedure—the cover expansion algorithm—to ;) Bz; that
we explain at the end of the section.

4.1. Cover expansion. In this section we assume that £ does not admit a proper cover. By
Claim 4.5, and re-indexing cells in Definition 4.4, without loss of generality we may assume
that Z = [m] C [m'] satisfies (4.5) with v = ed?/?23? and § = 1/2. We use A(x, s) in (2.10)
here for the box of volume s centered at x € R¢.

DEFINITION 4.7 (Cover expansion). Let £ be a set of vertex locations that does not
admit a proper cover as in Definitions 4.4 and 4.6. Let [m] :={j : {; > ed?/?234) C [m']
satisfy (4.5) with v = ed?/223¢ and § = 1/2. The cover allocation is defined as a subset of
labels 7 C [m] and corresponding boxes (B;.*)) jeg» C R4, centered at (z j) jeg® . together

with an allocation 5> of the cells B, : i < m to these boxes, with
. . * p®
4.7 Cells? := (J{i : B, > B},
i<m

satisfying the following properties:
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(disj.) the boxes (B;.*)) jegw are pairwise disjoint sets in R,
(vol.) forall j € 7®; we have

1
w0 _ , , )
(4.8) Bj _A(ZJ’—edd/ZZM E E,), Vol(B ) dd/223d E L
ieCeus;*) zeCeus;*)

(near) foreachi e [m];i € Cells(*)

(4.9) lzi — zj11* < d**Vol(BY").

We call B;.*) the expanded boxes, and define the cover expansion of L as

(4.10) ,q:xm(ﬁ) =A,N ( U B}”).

jeg®

We make a few comments about Definition 4.7: (disj) and (vol) together ensure that the
total volume of the expanded cover is proportional to |£|. Further, (vol) ensures that Vol(B;*))

is proportional to the number of vertices that are in cells allocated to B'”. Finally, (near)
ensures that the center z; of each cell B;; is relatively close to the center of the box to which
it is allocated. The distance between the center of the allocated cells and the center of B}*) is

at most +/d times the side-length of the box B}*) . In particular if B}*) contains many vertices

of £ and it is thus large, this distance can be also large.

PROPOSITION 4.8 (Every set has either a proper cover or a cover expansion). Assume L
does not admit a proper cover defined in Definition 4.6. Then there exists a cover expansion
of L in the sense of Definition 4.7. Further, if L is n-expandable then the total volume of the
cover expansion of L is linear in | L], that is,

(4.11) Vol(KC5™ (L)) = yaariggan Ll

We defer the proof of existence of Ky (£) to the end of the section. Assuming that a
cover expansion exists, we show now a few important properties. After that, we show how
Proposition 4.2 follows from Proposition 4.8.

OBSERVATION 4.9 (Cover-expansion properties). Consider the cover expansion of a set
L that does not admit a proper cover according to Definition 4.6.

(i) Every expanded box has volume at least 1, that is, for all j € J®, Vol(B;-')) > 1.
(ii) For any cell with B, P> B;*),
sup{[lx, — x|l : x € Li. x, € BY'} < 4v/d Vol (BY) VY.
(iii) For every box B, there exists a box B;. centered at zj such that
d/2~3d *

(4.12) Vol(B}) =d?/*2*' Vol(BY"), and |L N Bj|=eVol(B)).

(iv) If L is (additionally) s-expandable for some s < n, then for all j € J*
(4.13) Vol (BY) < d—/2p3dg,

(v) If L is n-expandable, then the total volume of a cover expansion is linear in |L|, that
is, (4.11) holds.
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PROOF. Part (i) is a consequence of Definition 4.7: every cell with label at most m has
¢; > ed?/?23 50 by (vol), that is, (4.8), Observation (i) follows.

For part (ii) we apply the triangle inequality: since x, € £;, x, is in B, and so by
4.4), %, — zill <2+/d; and by (4.9) ||zi — zj|| < V/d Vol(B{)!/4; hence |x, — zjIl <
2/d +N/dVol(B{)!/4. Also, for any x, € B, ||zj — xu]| < (v/d/2) Vol(B}")!/ by (4.8).
Combining these bounds and using Vol(B;.*))l/ 4 > 1 yields

lxu — x|l < 28/d + (3v/d/2) Vol(BY) ¢ < (7/d /2) Vol (B) /4 < 4/d Vol (B®) /¢,
J J J
and part (ii) follows. For part (iii), note that part (ii) applied to u € £; C B;; and z;, yields

sup {llxy — 25l - xu € L5} < 4V/d Vol (BY) /4.
ieCells!”

Consequently, the box B} centered at z; of volume Vol(B}) = /2234 Vol(B;.*)) contains all
uel; withie Cells(j*). Hence, using (4.8), we obtain

(4.14) ILABj|= Y & =ed!?2*Vol(B}") =eVol(B}),
ieCells’")

and part (iii) follows. For part (iv), by combining (4.14) with Definition 4.1 we see that £ can
only be s-expandable if VOI(B}) <. Rearrangement of the first part of (4.12) yields (4.13).

Part (v). Since £ is n-expandable, Definition 4.1 implies that |£| < en. By choice of
the boxes in (4.8), B;*) has volume at most n. Therefore, by an argument similar to (4.4),
Vol(B}*) NA,) =274 Vol(B}*)) for all j € J®. Since all boxes of the cover expansion are
disjoint, and each cell is allocated once, (4.8) and (4.10) imply that

Vol(KS™ (L)) = D~ Vol(BY NA,) =27 " Vol(BY)
jej(*) jfj(*)
1 1 |
jeT® iecensy i<m

L],

where the last bound follows by the assumption in Definition 4.7 that £; > ed9/?23 fori < m,
and the initial assumption that (4.5) in Claim 4.5 holds for [m] withd =1/2. U

PROOF OF PROPOSITION 4.2 ASSUMING PROPOSITION 4.8. For sets £ that admit a
proper cover, we recall the reasoning below Definition 4.6 (in particular (4.6)) which im-
plies both bounds (4.2) and (4.3) in Proposition 4.2. Let £ be an s-expandable set that
does not admit a proper cover. Let /™ be a cover-expansion of £ given by the boxes
(B;.*) )jegms I ® C [m] and an allocation > of the initial cells (B:,)ic[m)] to these boxes.
The existence of this cover expansion is guaranteed by Proposition 4.8. The volume bound
(4.2) follows from (4.11) in Proposition 4.8. Hence, it only remains to verify (4.3).

Let u = (x,, wy) € K™ x [w, 00). By (disj), and (4.10), there exists j € J* such that
X, € B;'). Recall from (4.7) that Cells(j*) are the cells allocated to B;') , and from Definition 4.4
that £; = LN B;,. Let now L',(;) =U

ability from (2.9).

w L;i. Recall the formula of the connection prob-

ieCellsj
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Case (1): « < 0co. By Observation 4.9(ii) for any v = (x,, wy) € E(;) X [1, 00), and any

(X, wy) € B}*) X [w, 00), using the lower bounds for the marks, we obtain using (2.9) that

Ko (Wy, wy) \* Bw *
=pl1Ap V7 1 =7
p(u. v) p( A'gllxv—qud) 2”( A(ﬁk/ﬁ)"Vol(B}”)) :

By (4.8), [L}| = ziGCeHS?) ¢ =ed¥/?23 Vol(B"). Hence, we have

P((xy, wy) L‘(j')

{Ocus wy) 1 xy € LYU U} CV)

d/293d Q)
< (1 _r)ed 2 Vol(Bj )

< exp(—ped /2 (Vol(B{Y) A B*w* (4/d) ¢ Vol(B}")' ™).

Take now s = s(w) = (Zdﬂw)l/(l_l/“). Since o > 1, and L is s-expandable, we can use the
upper bound in (4.13) on Vol(B;.*)) to bound the second term in the minimum on the right-

hand side of the last row, and we use Vol(Bj-”) > 1 by Observation 4.9(i) to bound the first
term. We obtain '

P((xy, wy) E;f)
< exp(—pe(dd/223d A a’d/223d,3awa @Va)y~dst= (d_d/22_3d)l_a))
= exp(—pe - ((@"72%) A ((278)"w"s'™®))) <exp(—ep) < 1 — p/2,

{Ocus wy) 1 xy € LYU {0} CV)

where we used in the last row that d%/223¢ > 1, the definition of s and also that the bound on
w in (4.1) ensures that the second term inside the minimum is at least 1, and that exp(—ep) <
1 — p/2 for p € [0, 1]. This concludes the proposition for o < co.

Case (2): « = oo. Using the same bounds as for « < co on the distance, mark, and vol-
ume of boxes, but now (2.9) for ¢ = oo, for any u = (x,, wy,) € B;.*) X [w, 0c0) and any
v = (xy, wy) € LY x [1, 00) that

P((u wa). (. wy)) = pL{Bw = @Vd)? Vol(B{”)} = pL{pw > (v/d)d~1273s)

=pl{w=>2"9s}=p> p/2,

where in the one-but-last step we used (4.1), finishing the proof of « = co0. [

The case a = oo does not use of the size of £, and only requires a single vertex in it,
which is intuitive considering the threshold nature of p in (2.9). It remains to prove Proposi-
tion 4.8, which is the content of the following subsection.

4.2. The cover-expansion algorithm. Now we give the algorithm producing the cover
expansion of a set £ without a proper cover, thence, proving Proposition 4.8.

Setup for the algorithm. Recall the notation from Definitions 4.4 and 4.7. Throughout,
we will assume that £ does not admit a proper cover in Definition 4.6 and that (B, : i € [m])
are the cells satisfying (4.5). Contrary to Definition 4.7, which allocates the initial cells B,
to boxes B;.*), the algorithm allocates the labels i, i < m of the initial cells B;, towards each

other in discrete rounds r € N. We write i +> J to indicate that label i is allocated to label j
in the allocation of round . We also write

= {G ) i o Cells? := [ J{i :i > Jj}, J" = 1{j:Cells] # a}.

i<m
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In each round r > 0, the boxes { B;")} jeg®, and the centers of these boxes are completely

determined by > by the formula

r 1 . r
(4.15) B})::A(zj,W > zi> for je J”,

ieCells(/.r)

where A (x, 5) is a box of volume s centered at x € R¥; see (2.10). Since label j corresponds
. . . . . . r (r)
to center z; across different rounds, by slightly abusing notation we also write B, — B j

if and only if i > j. We say that +> satisfies one (or more) conditions in Definition 4.7 if
(B;.’)) jeg® with allocation > satisfies the condition(s).

. . . . L .0 : :
The algorithm starts with the identity as initial allocation — that induces possibly over-

lapping boxes Bio), ..., BY; we will show that 2 already satisfies (near) and (vol.) of

Definition 4.7. In each stage the algorithm attempts to remove an overlap—a nonempty
intersection—between a pair of boxes by re-allocating a few cell labels, while maintaining

properties (near) and (vol.); we achieve (disj) in the last round r*. The last round * < oo
corresponds to the final output, by setting 7* = J"; B;-*) = B}’*) and defining B, > B}”
i s .

The cover-expansion algorithm.
(input) (B;,)icim) and £; = L N By, satisfying (4.5) with v = ed?/?234 and § = 1/2.

(init.) Set r := 0, and allocate j RN j forall j <m.
(while) If (B;.")) jeg in (4.15) are all pairwise disjoint, set r* := r; and return 7 := J M,
B}*) = B;’*) and B> :=t—>.

Otherwise, let ji(r) € J be the label corresponding to the largest box B!

(r)
with an overlap with some other box in round r, and let j,(r) be the label otj 1'[I;e

largest box that overlaps with B;’l)(r) (using an arbitrary tie-breaking rule). Define

, . n \1/d
@i I = Cellsg)(r) N{i:llzi —zj,nll < x/EVol(B;.l)(r)) / Vi
Iy = Cells\},, \ I}

(r)

Then we define 1> by only re-allocating labels in Cells () 88 follows:

(1) fori € If’) we allocate i r|i>1 j1(r), that is, the labels of cells that are suffi-
ciently close to the center of B}:)(r) in order to satisfy (4.9) are re-allocated to j(r);

(i) fori e Ig) we allocate i r|i>1 i, that is, the labels of cells in Cellsz)(r) that are
potentially too far away from the center of B;’IJE;; are re-allocated back to themselves;
(iii) for i € [m] \ (Cells)), we set i 'k if and only if i > k (ie., 15 agrees
. r . . r)
with — outside labels in Cells i (r)).
Increase r by one and repeat (while).
We make an immediate observation.

OBSERVATION 4.10. [In each iteration of (while), IY) in (4.16) is always nonempty.
Moreover,

(4.17) Vol(Bj () — Vol(B{ ) = 1.
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PROOF. It can be shown inductively that j > j holds for all j € 7. Since the boxes
B ) and B}’z)(r) overlap, the distance of their centers ||z ,() — 2, () || is at most the diameter

Ji(r
which is \/EVOI(B;?(r))I/d. Hence, ja(r) € Il(r) and so we re-allocate j,(r) to ji ()

of By,
in round r + 1. Since each cell contains £; > ed%/>23¢ many vertices by the assumption in
(input), we obtain by (4.15)

) > the

(r+1) (r)
Vol(BY*1) — Vol (B —ina 21 2

J1(r) J1(r)

PROOF OF PROPOSITION 4.8. Once having shown that a cover expansion of £ exists,
the bound on its volume (4.11) holds by Observation 4.9(v). So it remains to show that the
algorithm produces in finitely many rounds an output satisfying all conditions of a cover
expansion in Definition 4.7.

The algorithm stops in finitely many rounds. We argue using a monotonicity argument. We
say that a vector a = (ay, ..., an) € R" is nonincreasing if a; > a; 1 forall i <m — 1. We
use the lexicographic ordering for nonincreasing vectors a, b € R™: let a >, b if there exists
a coordinate j <m such that a; = by forall £ < j and ay > by for £ = j.

Forallr e N, 7 C[m], and hence, m" := |J"| <m. Let a” € R™ be the nonincreas-
ing vector of the re-ordered (Vol(B(f))) jegn appended with (m — m)-many zeroes. By
Observation 4.10, the entry corresponding to Vol(B(r) ») in @ increases in a" "V by at least

(r)

1. Moreover, the entry corresponding to Vol(B ) increases the entry Vol(B(”(r)) and the

rest of its volume “crumbles” into smaller Volumes since labels in I ") will be re-allocated to
themselves. Since by definition, jj(r) corresponds to the largest box among (B;- ) jegt that

has an overlap with some other box, so also Vol(B(’) )) < Vol(B(”(r)) and the allocation of

labels except those in Cells?’ Jn(r) Temains unchanged these together imply that a”™" >, a.
Finally, for any r and any j € 7, Vol(B(’)) <|L]/(ed?/?23?) =: b by (4.8), implying that
forall r, (b,...,b) > a”. So, (a”),>¢ is an increasing bounded sequence with respect to

>, with an increase of at least 1 per step by (4.17). Hence, (a”),>( converges and attains
its limit after finitely many rounds, that is, »* < co.

The output corresponds to a cover expansion. We now prove that the output 7, > and
the corresponding boxes in (4.15) satisfy the conditions of Definition 4.7. By the stopping
condition in step (while) of the algorithm, (B;.*)) jegw satisfy (disj.), and by their definition
in (4.15), also (vol.). We need to still verify (near). We show this by induction: initially,
for (B<°)) jeg O, '£> (near) holds, since in (init.) all labels are allocated to themselves, so
Cells( ) = {j}, and thus the left-hand side in (4.9) is 0. Assume then r > 0. We prove that

(near) holds for |—>1, assuming that it holds for +> . Recall from (while) that j (7) is the label of
the largest box that has an overlap; j»(r) is the label of the largest box overlapping with B’

i)
by (4.16), Z;” is the set of labels in Cells),, re-allocated to ji (r), and Zy” = Cells}) ) \ Z;”
is the set labels allocated in round r to j>(r), and in round r 4 1 to themselves. We distinguish

between four cases for the proof of the inductive step:

e Assume i ¢ (Cells(r)(r)

Cells}g“) = Cellsg), so by the induction hypothesis, (4.9) holds for fusy

e Assume i € Cells(j’f(r). By (4.17), B;’l )(r) B(’J(rr]; as the volume increases by at least one

while the centers of the boxes agree. Since |z; — z],(r)ll < d¥? Vi ol(B(’( )) by the in-

U Cells“) S )) and let k be such that i k By (while) part (iii),
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duction hypothesis, it follows that ||z; — zj, -+l < d¥/* Vol(B{ (), implying (4.9) for

r+1
.

e Assumei € Ceus}’;(r) NZ{". The definition of Z" in (4.16) forces that [|z; —zj, () || satisfies
(4.9).

o Assumei €Z) = Cells(jrz) \Ii’): (4.9) holds for the same reason as for the base case, that

1s, since i (hs i, |lzi — zi|l = O trivially satisfies (4.9).

Having all possible cases covered, this finishes the proof of the induction. Since r* < oo, this
finishes the proof of Proposition 4.8. [

4.3. Poisson point processes are expandable. We end this section by showing that
a Poisson point process is typically s-expandable for s sufficiently large. Recall A, =
[_nl/d/z’ nl/d/z]d‘

LEMMA 4.11 (PPPs are expandable). Let I be a Poisson point process on R? equipped
with an absolutely continuous intensity measure w such that pu(dx) < Leb(dx). Then there
exists a constant Cq4.11 > 0 such that, for any s > 4/(e — 2),

P(I" N Ay, is not s-expandable) < C4.11nexp(—s/3).

PROOF. Using stochastic domination of point processes, without loss of generality we
can assume that I" has intensity measure Leb(dx). Let us define R(s) :={§ e N: 5 > s5}. We
first show that when s > 4(e — 2),

(4.18) {I' N A, is s-expandable} C {Vx € 78N A, 5 €R(s): T N Az(x)| <25}
Indeed, if the bound on the right-hand side holds for all § € R(s), then for any s’ € (5,5 + 1),
]I‘ N Asf(x)] < ]F N A§+1(x)\ <2(54+1)<2(s"+2) <es

whenever s > 4/(e — 2). We consider the complements of the events in (4.18). By a union
bound over the at most n possible centers of the boxes in A, and by translation invariance
of Leb, we thus obtain

P(I' N A, is not s-expandable) = P(3x € 74N A,, 35 €R(s) : [T N Az(x)| > 25)

(4.19) <n > P(IT'NA;z|=25).

SER(s)
Since the intensity of I" is equal to one, each summand on the right-hand side is at most
exp(—(2log2 — 1)§) < exp(—5/3) by Lemma A.1. We obtain for the summation in (4.19)
for some constant C4. 11 > 0,

P(I" N A, is not s-expandable) <n Z exp(—s5/3) < Cqpinexp(—s/3).

SeEN:s>s

5. Upper bound: Second-largest component. The main goal of this section is to prove
the following proposition for general values of n and k, which readily implies Theorem 2.2(ii-
iii), that is, (2.6) and (2.7). Recall ¢&ny = 1 — ypn(t — 1) from (1.18). We restrict ourselves to
the parameter setting of Theorem 2.1, which assumes ¢py > 0, and corresponds to 7 € (2,2 +
o). Moreover, below we will use independence properties of Poisson point processes, and
therefore restrict to such vertex sets: we generate the marked vertex set V = {(xy, wy)}vev
from Definition 1.2 with i.i.d. marks following distribution Fy in (1.5) in Assumption 1.3 as
a marked Poisson point process on R? x [1, 0o) with intensity measure

5.1 we(dx x dw) :=Leb® Fy(dw) =dx x (t — Dw ™" dw.
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We use this construction throughout the paper and in particular in parts of this section. Some
subresults in this section also hold for KSRGs with vertex set on Z¢ and can be obtained by
replacing concentration inequalities for Poisson random variables by Chernoff bounds. We
leave these adaptations to the reader but include them in the statements.

PROPOSITION 5.1.  Consider a KSRG under the same assumptions as in Theorem 2.1,
with vertex set formed by a homogeneous Poisson point process. For T > o + 1, there exists
a constant cs1 > 0 such that, for alln > k > 1,

(5.2) P(|C?| > k) < nexp(—cs k).
For t < o + 1, the inequality holds with exponent 1/(c + 1 — (v — 1)/a) in place of ¢nn-

We follow the steps of the methodology from Section 3.1. The bulk of the work is to
establish Steps 1 and 3 there, since we already developed the cover expansion of Step 4 in
Section 4. We first introduce some notation. We aim to partition the box A, into disjoint
subboxes of (roughly) volume k. Define

(5.3) n =kl (n/k)"4]"

The box A,s C A, is the largest box inside A, that can be partitioned into n’/k disjoint
subboxes of volume exactly k (boundaries are allocated uniquely, as in Definition 4.3). Let
the boxes of this partitioning of A, be Q1, ..., Q/x, labeled so that Q; shares a boundary
(i.e., a (d — 1)-dimensional face) with Q; | for all i < n’/k. Define for each u = (x,, w,) €
Vn € Ay,

(5.4) Q(u) := argmin ||x, — Qi
Qi
with the convention that ||x, — ;|| =0 if x,, € O;, and take the box with the smallest index
if the minimum is nonunique. Similar to (4.4), we observe that for any pointu € V, C A,
(5.5) sup |lxy — y|l <24/dk'/9.
yeQu)

5.1. Step 1. Construction of the backbone. Recall the definition of G, [a, b) from (2.11).
We first show that, for some whp = whh(k), the graph G, 1 := G, [whn, 2whn) contains a so-
called backbone, a connected component Cpyp that contains at least sy = © (k®hh) vertices in
every subbox. For A > 1, let g, be the survival probability of a Bienaymé—Galton—Watson
branching process with Poi(1) offspring distribution. Then let 1, (1/2) be the mean offspring
when @;,(1/2) = 1/2. Using B from Definition 1.2 and o > 1 from Assumption 1.3, define
the (small) constant C to be the solution of the equation

(5.6) (p/16)p*2~*dg—d/2c (1= _ nax(log 2, 4.(1/2))  if & < o0,
(5.7) pey D g=d/2y=d=20 _ | ify =0
We set, with yy, from (1.17),

Whh = whp(k) := Cl_l/(T_l)k”‘h,

(5.8)
sk = (C1/16)k M=) = (€1 /16)k = kwy, "V /16.

To avoid cumbersome notation, we often assume that s; € N. Let us define k; as the smallest
nonnegative number satisfying

(59) (1= pCR™/16 — (1 = py% <172,
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Recall the notation Vgla, b) from (2.10). Let
Gn.1 contains a connected component Cpp (7, k) s.t.

(5.10) App := App(n, k) := . ,
foralli < (n /k) : |VQi [whh, 2whh) N Cbb‘ > Sk

On App, let Cpp := Cpp(n, k), the backbone, be the largest component in G, [wnp, 2wpy) that
satisfies the event Apyp. In the following lemma we obtain a lower bound on the probability
that there exists a backbone.

LEMMA 5.2 (Backbone construction). Consider a KSRG under the same assumptions as
in Theorem 2.1, in particular T € (2,2 4 o), with vertex set either formed by a homogeneous
Poisson point process or Z4. There exist constants ¢, = cs2(p, B,d,a,t,0) > 0 such that,
for k > ki and all n satisfying n > k,

(5.11) P(=Apb (1, k)) < 3(n/k) exp(—cs2kh).

PROOF. Towards proving (5.11), we reveal V,[wnn, 2wnn), that is, only the vertex set of
Gn.1, and define
(5.12) Apoi = {Vi <n'/k: |VQ,'[whhs thh)| > 4Sk}.

On Ay, every box contains enough vertices in G, 1. Reveal now the edges of G, | only within
the box Qi: let H be the induced subgraph of G, 1 on Vg, [whn, 2whp), and define

(5.13) Ainit := {’H contains a connected component Cipj; With |Cipi¢| > sk}.
Then
(5.14) P(=App) < P(=Apoi) + P(—=Ainit| Apoi) + P(=Apb | Ainit N Apoi)-

We first bound P(—.Apoi) from above. The distribution of [V, [wnn, 2wnp)| is Poisson with
mean kwy, V(1 = 270Dy = 16(1 — 2=~V > 8s; by (5.1), (5.8) and since T > 2.
Lemma A.1 yields

P(|Vg, [whh, 2whn)| < 4sk) < P(Poi(8sk) < 4sx) < exp(—4sk(1 — (log2))).
Since 1 — (log2) > 1/4, by a union bound over the at most n’/k < n/k subboxes we get
(5.15) P(=Apoi) < (n/k) exp(—sk).

We will next show an upper bound on the third term on the right-hand side in (5.14). For this,
we iteratively “construct” a backbone. The subboxes Qy, ..., @,/ are ordered so that Q;
and Q; 1 share a boundary for all i. On Ajyi¢, we know that # inside Q; contains a connected
component Cipi¢ with at least s many vertices. We now reveal edges between O and Q», and
bound the probability that there are at least s; many vertices in Q; that are connected by an
edge to Cini¢: denote this set of vertices by 172. Next, we apply the same bound to show that at
least s many vertices in Q3 connect by an edge to ]72, and so on. Hence, for i > 1, we need
to analyze the probability that a vertex in Q;;1 connects to a vertex in Vi, conditionally on
|1~/i| > sk. Since by assumption t < 2 4 o, by definition of pyy in (1.17) for all T <2+ o and
a < 00,

(5.16) 1—-(14+d)yyn >0, and 240 —1>0.

The Euclidean distance between vertices in neighboring boxes is at most 2+/dk!/¢ (twice the
diameter of a single box), and all considered vertices have mark at least wy,. When o = oo,
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we use that ypn = 1/(140) (see (1.17)) and so w7k = C; TPV by (5.8). We obtain
using Cy from (5.7), p in (2.9), that for any u = (x,, w,) € Vg, [Whh, 2whn),

P(( )~ VilIVil = ks Apoi) = 1 (1 11{ By >1}>Sk
Xu, Wy ) ~ VillVil = Sk, oi) = 1 — - . =
o PR adayik

=1-(-p*=1/2

(5.17)

for all k > k1 by (5.9). When o < 0o, using p in (2.9) for u € Q41 with w, > wy, either the

minimum is at 1 below in (5.18) (in which case the right-hand side of (5.17) remains valid)
or, the minimum in p is attained at the second term below: then we substitute s; from (5.8),

P((xuv wy) ~ ]7l||]7£| = Sk, -Apoi)
>1—(1—p(1ABVd) wlFok)*)%*
(5.18) —(r-1)
= 1= (1 = pp @V g ) om0
> 1 —exp(—(p/16) 8% (2vd) " w{ t* T Dyl-e),

By choice of wyp, and yh, in (5.8), and (1.17), respectively, factors containing k cancel, and
using the formula for C; in (5.6) we arrive at

]P)(u ~ f}l||]7l| > Sk, Apoi) >1-— eXp(_(p/16)Ich(zﬁ)—adcll—(l-i-c)ot/(f—l))
> 1/2.

(5.19)

Combining (5.19) with (5.17), we obtain a lower bound of 1/2 for all @ > 1 for any u €
Vo, . [Whh, 2whn). On Ape; (see (5.12)) there are at least 4s; vertices in Vg, [whh, 2Whh).
Each of these vertices connects conditionally independently by an edge to vertices in V; with
probability at least 1/2, so forall i > 1,

P(Vis1] = sel Vil = sk, Apoi) = P(Bin(4sy, 1/2) > si) > 1 — exp(—si/4),

where the last bound follows by Chernoff’s bound; see, for example, [36], Theorem 2.1. By
a union bound over the at most n’/ k subboxes, we obtain

(5.20) P(—Apb | Ainit N Apoi) < (n'/ k) exp(—si/4) < (n/k) exp(—si/4).

We will use this for the last term in (5.14), and (5.15) to bound the first term. It remains to
bound the second term, P(—=Aini¢| Apoi), With Ainic from (5.13). For this we show that the
graph H; induced on Vg, [whh, 2wnn) stochastically dominates a supercritical Erd6s—Rényi
random graph with mean degree at least A,(1/2). We write ER(m, ¢) for an Erd6s—Rényi
random graph on m vertices with connection probability g. Indeed, on the event A;; there
are at least 4s; vertices in Vg, [whn, 2wnn). Arbitrarily pick 4s; of them. Any two of those
vertices, say (x,, wy) and (x,, wy), are within distance Jdk'/?  the diameter of Q;.So when
o = 00, the same calculation as in (5.17) shows that they are connected with probability p,
so the graph on Vo, [whn, 2whn) dominates ER (4sy, p). Using (2.9), for a < oo,

p((xus wy), (Xy, wv)) = p(l A (ﬂw}i}j—a (dd/zk)))a'

If the minimum is at the first term, then again the graph on Vg, [whn, 2wpn) dominates
ER(4sg, p). Otherwise, if the minimum is at the second term, we compute the mean degree
using (5.8):

4d—0{d/2sk . p,Bawf(lL—Hy)ak_a — (p/4)’BOld—Cld/2kl—OlwI(IL-FO')Cl_(T—I)

— (p/4)ﬂad—otd/ZCl_((l+U)a_(T_1))/(7_1) > )\‘*(1/2),
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by the definition of C; in (5.6), since the powers of k cancelled each other. Hence, H =
ER(4sy), Ax(1/2)/(4sr)) = ER,, and the size of the largest connected component in H, de-
noted by C" below, stochastically dominates the size of the largest component in ER,. We
apply a large-deviation principle for the size of the giant component in ERRGs obtained by
O’Connell [53], see also [5]. Denote by CV (m, A /m) the largest component of ER(m, A /m),
and recall that p, is the survival probability of a Bienaymé-Galton—Watson branching pro-
cess with Poi()) offspring. By [53], Theorem 3.1, for every A > 1 and & > 0, there exists a
constant ¢, > 0 such that, for each m > 1,

P(|ICV(m, x/m)| < (1 — &)osm) < exp(—cm).

Now, recall that by definition of A, (1/2), the survival probability of the branching process is
1/2. Applying the previous inequality with & = 1/2 to C'", we obtain that

(\c<”(4sk, he(1/2)] < Q/\*(I/Z)(4Sk)> =P(IC" (4sk. 2+ (1/2)) | = 5x)
< exp(—ca, (1/2)45k)-
Since the number of boxes is n'/k = L(n/k)l/djd > 1 whenever n > k, we get
P(—=Ainit| Apoi) < P(CV (4sk, 1u(1/2)) < skl Apoi) < exp(—ca,1/2)4sk).

When combined with (5.14), (5.15), and (5.20), and that s; = k%" (C; /16) in (5.8), this yields
the statement of the lemma in (5.11). O

We will end Step 1 with a claim that shows (3.2). We start by introducing a notation for
the construction of the graph G, that facilitates later steps. We recall the definition of KSRG
from Definition 1.2. Given the vertex set )V, it is standard practice to use independent uniform
random variables to facilitate couplings with the edge set. This definition here is more general
and allows for other auxiliary random variables as well, leading to different distributions on
graphs. This will be useful later.

DEFINITION 5.3 (Graph encoding). Let V C R? x [1, 00) be a discrete set and assume
that Wy = {@,.» : @uv €10, 1], {u, v} € ( )} is a collection of random variables given V. For a
given connectivity function p : (R? x [1, oo))2 — [0, 1] we call G’ = (V', £’) the (sub)graph
encoded by (V, Wy, p) if V' =V and for all {u, v} € ( ), with u = (x,, wy), v = (xy, wy),

(5.21) {{u, v} € 5/} — {(pu,v = p((xua Wy), (Xy, wv))}-

Given V in (5.1), and p from (2.9), let Wy, be a collection of independent Unif[0, 1] random
variables given V. G, in Definition 1.2 is then the graph encoded by (V, Wy, p). Writing
Wyla, b) i= {gu € Wy : {u, v} € ("&P)} and W, := W, [1,00), G, in (2.11) is then the
graph encoded by (V,, V,, p).

An immediate corollary is the following.

COROLLARY 5.4. Assume G, G are two random graphs encoded respectively by
(V U ,p), and (V v .p) for 1 respective poznt processes V,Von R x[1, 00) using the same
connectivity function p. If WV, V) and (V, \P) have the same law then the encoded graphs G
and ff also have the same law.
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The collection of (conditionally) independent uniform variables ¥, = {¢, , : {u, v} € (Vz")}
and the connectivity function p determine the presence of edges in G,. By (5.21), if ¢, , <
r < p(u, v) for some r > 0, then {u ~ v}. Writing Q(u) for the box containing or closest
tou €V, (see (5.4)), let v,(1),v,(2),...,v,(s%), ... denote the vertices in Q(u) N Cpp, in
decreasing order with respect to their marks. Let

(5.22) S@) = {v, (1), ..., vu(sp)}.

CLAIM 5.5 (Connections to the backbone). Consider a KSRG under the same assump-
tions as in Theorem 2.1, with vertex set either a homogeneous Poisson point process or
Z4. Fix n > k for any k > ki in (5.9) and assume G, | satisfies the event App(n,k).
Let WV, = {gy : {u,v} € (Vz")} be a collection of i.i.d. Unif[0, 1] random variables and
ri =1 =271 Then, for all u € V,[2wny (k), 00) and v € S(u), p(u, v) > ry and

(523) P(NVveSW):@up > rilGn1, Avw) =P(Fv € S) : u,p < rklGn,1, App) = 1/2.

PROOF. On the event Ay, Cop € Gy, 1 satisfies (5.10) and in particular S(u) in (5.22) is
well-defined and has size si. Since {¢, ,} is a collection of i.i.d. Unif[0, 1] random variables
(cf. Definition 5.3), one must set ry := 1 — 2~ 1/% for (5.23) to hold. Hence, it only remains
to show p(u, v) > ry in the statement. We show this somewhat implicitly, using calculations
we did around (5.17)—(5.19).

With Q(u) and S(u) from (5.4) and (5.22), respectively, by (5.5), every u € V,[2whp, 00)
is at distance at most 24/dk'/¢ from any vertex in v € S(u). Since w, > 2wpp > Whp, and
|S ()| = sk, the computations (5.17)—(5.19) carry word-by-word through with Vi replaced by
S(u), obtaining

P(u ~S@)|Gn,1. Vo, Ap) =1— [] (1 =p.v))=1—(1—z)%* >=1/2,
veS(u)

with zj either equaling p in the right-hand side of (5.17) or the appropriate expression in the
right-hand side of (5.18), that bounds individually each p(u, v) from below. Following now
the calculations towards (5.19) ensures that in both cases zx > 1 — 27 1/%_ The assumption
k > k1 in (5.9) is needed when z; = p, and it implies that r; < p; see around (5.17). [

5.2. Step 2. Revealing low-mark vertices. Having established that G, 1 contains a back-
bone with the right error probability, we define G, 2 := G,[1, 2whn) 2 G.1-

5.3. Step 3. Presampling the vertices connecting to the backbone. We make Step 3 of
Section 3.1 precise now. Step 3 ensures that during Step 4 below no small-to-large merging
occurs when revealing the connector vertices of V,[2wyy, 00). That is, components of size
smaller than k do not merge into a larger component via edges to a vertex v € V,[2wpp, 00)
that is not connected to the backbone Cpp, (Cpp Will be contained in the giant component of
Gn). So, we partially pre-sample some randomness that encodes the presence of some edges.

For a pair n, k, we now present the alternative graph-encoding Gy of KSRGs (cf. Def-
initions 1.2 and 5.3) and verify that én and G,, in Definition 1.2 have the same law. The
difference between the encoding in Definition 5.3 and the construction of g} is that in the
latter the edge-variables ¢, , are no longer independent Unif[0, 1] random variables, but are
sampled from a suitable (conditional) joint distribution, whenever u € V,[2wnpp (k), 00) and
v € S(u) from (5.22). Recall ry = 1 — 271/% from Claim 5.5, with wph (k) := whp and si
defined in (5.8).
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DEFINITION 5.6 (Alternative graph construction). Fix n and k. Consider the subgraph
Gn.2 = Gull, 2wpn(k)) of G, from Definition 1.2, on a vertex set formed by a homoge-
neous Poisson point process. Assume G, 2 is encoded by (V,[1,2wnn), W,[1, 2whn), p).
Let V(“"*“‘e)[2whh, 00) and V“‘“e) [2wpp, 00) be two independent Poisson point processes on
Ay X [2wpp, 00), each with intensity (1/2)Leb ® Fy (dw), with Fy as in (5.1). Define

(5.24) Va[2whh, 00) 1= V™ [ 201, 00) U VO [2up, 00).

Let £, := {Uy.y < tt € Vy[2whh, 00), v € Vu[1, 2wpn) U Yy [2whn, 00)} be a collection of i.i.d.
Unif[0, 1] random variables (conditionally on these PPPs).

() If Gu.1 = Gnlwnn, 2whn) < Gy, 2 does not satisfy the event App in (5.10), then set U, =
W, (1, 2wnp) U X, in Definition 5.3 to construct 6,, D Gp2 on Vy[l, 2wyy) U 17,1 [2whh, 00),
that is,

G := (Vull, 2wpn) UV, [2whh, 00), W, 1, 2wpn) U E,, p).

(i) If G,.1 C Gy 2 satisfies /t\he event App, then we construct Q}, D Gy.2 conditionally on
Gn.2 as follows. For each u € V,[2wpp, 00) in (5.24), the set of vertices S(u) € V,[1, 2whn)
is a deterministic function of G, 1 € G, 2, given by (5.22). Let

Qe — g7, € PO 2y, 00),
v € VO [24ppn, 00) U V[ 1, 2wnn) \ Su) ),
(5.25) Widsue) . — 177, o u € VO 2wy, 00),
v € VO [ 20, 00) U V,[1, 2wnn) \ S()),
Qlidbo) . — (7w € VO 2wy, 00), v € VIS [2up, 00) )

be disjoint subsets of ¥, and write \If(“d) = \IJ““’ unsure) | J lIJ(“d sure) | J lIJ(“d o) for the union.
Conditionally on V“‘“g“m) [2wpn, 00), V“”re) [2whh, oo) and gn[l 2whn), deﬁne also the collec-
tions of random variables

(5.26) \IJ(C"“d ) = QU € V(”m”‘e) [2whh, 00), v € S(u)},
(5.27) \IJ(C""d S =Py p iU € V(S‘”e) [2whn, 00), v € S(u)},

so that for different vertices uy,u; € Vn[thh,oo), the collections {@,, v}vesw,) and
{@ur.v'}v'eSwy) are independent. The joint distribution of {@, v}vesw) for a single u €
VU [2wpp, 00) is as follows: for any sequence (zy,v)vesw) € [0, 11% of length si, and
with r = 1 —271/%,
(5.28) P(Vv eSu): au,v =< Zu,vlu € ]7y(,unsure)[2whh, OO))

. =PNMveSw): Uy < zup|Vv € SW) : Uy y > 1%).

Similarly we define the joint distribution of {@, v }vesw) for a single u € 17,2“““3) [2whp, 00) as
follows: for any sequence (zu,»)vesw) € [0, 11° of length si,

5.29) P(Yv € S) : Puv < Zuvlu € V" [2whh, 00))
=PNMVMveSw): Uyy <zyo|FveSw) : Uyy <r1i).
We define @l as the graph encoded by (9,1, \TJ,,, p), where
V= V,ll, 2wpn) U 17,(,““5““) [2whh, 00) U 17,(fure) [2whh, 00),

(530) I R A(iid) T (cond,unsure) T (cond, sure)
W,y 1= W,[1, 2wpp) U U0 U B¢ U .



1566 J. JORRITSMA, J. KOMJATHY AND D. MITSCHE
An immediate corollary is the following statement.

COROLLARY 5.7.  Consider a KSRG Gn Jfrom Definition 5.6 for some n, k. On the event
Apb (1, k), every vertex in V““re) [2whh, 00) is connected by an edge to Cpp(n, k) in Go.

PROOF. The conditioning in (5.29) guarantees that for each u € 9,(1““‘3) [2whp, 00) at
least one ¢, , < ry occurs among the edge-variables {@, , : v € S(u)}, where S(u) C Cpp;
see (5.22). Then since @u.v < rr <p(u,v) holds by Claim 5.5, this ensures that {u, v} is in
the edge set of G, by the graph-encoding in Definition 5.3. [

PROPOSITION 5.8. Fix a connectivity function p. The law of the random graph Gn in
Definition 5.6 is identical to the law of the random graph G, in Definition 1.2.

PrROOF. By Corollary 5.4 it is sufficient to show that (?n, \Tln) defined in (5.30) has
the same distribution as (V,, ¥,) from Deﬁnitions 1.2 and 5.3. By (5.30) in Definition 5.6,
the graph G, » spanned on V,[1, 2wnn) € V), is determined by W, [1, 2wpp) = {@u.v 1 u, v €
Vul1, 2wpp)} in Definition 5.3. Thus G, 2 has the same distribution both in Definition 5.3 and
in Definition 5.6.

(1) If now W, [1, 2wpp) is such that the graph G, » does not satisfy the event App, by (i)
of Definition 5.6, the statement holds since both {¢, ,} and {U,,} are i.i.d. uniforms when-
ever u € Vn [2wpp, 00), that is, W), \ W, [1, 2wyy) = X, and W, \ ¥, [1, 2wyy) have the same
distribution.

(ii) If W, [1, 2wpp) is such that the graph G, » does satisfy the event Ay, then we work con-
ditionally on a realization of the graph G, » = (V,[1, 2wpp), W, [1, 2wpp), p), and also on the
coupled realization of the PPPs V, [2wpy, 00) = 17,[ [2whh, 00). Let us define the conditional
probability measure (of the edges) under the coupling by

(5.31) P*(-) 1= P(-|Gn,2, Va[2whn, 00)) = P(-|Gy 2, unlabeled V, [2whh, 00)),

where in the conditioning we do not reveal to which sub- PPP (either V(“”e) [2whh 00) or
V““S“‘e) [2whn, 00)) a vertex in Y, [2whn, 00) belongs to. Using U, from (5. 30) and \IJ(“‘D cx,

from (5.25) (containing independent copies U, , of Unif[0, 1] random variables, hke W in
Definition 5.3), we see that variables in W, \ W,[1, 2wny) and lI! \ Wnll, 2whh) also share
the same (joint) law of i.i.d. Unif[0, 1] whenever u and v are such u € V [2whh,0) and that
v ¢ S(u). Moreover, in (5.26)—(5.27), the collections {@u,v}vesw) are independent across

u for different vertices u € V,, [2whph, 00). So for g,, = gn it remains to show that for any
u € V,[2whh, o0) =V, [2wnph, 00), under the measure P*,

(5.32) {ou, v,veS(u)} {Guv,veSw)}.

We first analyze the distribution of the left-hand side, that is, ¢, , being i.i.d. from Defini-
tion 5.3. Let (24, v)vesw) € [0, 11° be any sequence of length si. By Claim 5.5, and the law
of total probability

P*(Yv € Su) : 0up < Zuv)
(5.33) = (1/2)P*(Yv € S(u) : Qu,v < Zu,vIYV € S(U) : @up > 1%)
+ (1/2)P*(Yv € S(u) : @up < Zu,p|F0 € S) : @up < 1)

We now analyze the right-hand side in (5.32). By the construction in (5.24), )7,1 [2whh, 00)
is the union of two 1.i.d. sub-PPPs. Under P* in (5.31) we did not reveal to which sub-PPP
vertices belong to. Hence, for each u € V,[2wpy, 00), independently of each other

P* (1 € V" 2wy, 00) |1 € Vo [2whh, 00))

=P*(u € V" [2wpn, 00)|u € V, [2wph, 00)) = 1/2.
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Thus, by the law of total probability, and using the distributions of (@, v)vesw) given
by (5.28), (5.29),

P*(Yv € S) : Pup < Zuw) = 1/DP* (Y € SW) : By < Zuwlu € V™ [2wpn, 00))
+ (1/2)P*(Yv € SM) : Pup < Zu,vlt € VI [2whn, 00))
= (1/2)P*(Yv € S(u) : Uyp < Zu.v|Yv € S(u) : Uy y > rg)
+ (1/2)P*(Vv € S(u) : U,y < zu,v|Fv € S() : Uy < 1%).

(5.34)

Note that {Uy, y}u,» and {@, v }u v are both sets of independent Unif[0, 1] random variables by
Definitions 5.6 and 5.3, respectively. Hence, (5.32) follows by combining (5.33) and (5.34).
O

For the remainder of this section, we construct G,, following Definition 5.6 and write
Va[2whh, 00) 1= V" [2wph, 00) U VI [2why, 00)

as the union of two independent PPPs of equal intensity, such that if G, » = G[1, 2wpp) satis-
fies App in (5.10), each vertex in V& [2wpp, 00) connects by an edge to Cpp, by Corollary 5.7.
To finish Step 3, on the event Ay, we define G, 3 := (Vy.3, V,.3, p), With

Vi3 1= Vall, 2wpn) U V™[ 21, 00),

(5.33) { Giid.unsure) | | {3y (cond,unsure)
\Ijn’3 :: \Ijn[l, ZU)hh) U \Ijnll ,unsure U \IJnCOH ,unsure ,

that is, the graph spanned on V), 3. We call the vertices in V" [2wpp, 00) sure-connector
vertices. If the event Ay}, does not hold then we say that the construction failed and we leave
Gy.3 undefined.

5.4. Step 4. Cover expansion. In this step, we ensure that all components of size at least
k of G, 3 merge with the giant component of G, via edges towards sure-connector vertices,
with error probability err, x from (3.1). The next lemma proves this using the cover-expansion
technique of Section 4. The notion of expandability is from Definition 4.1, and recall s(w)
from (4.1) that describes the necessary “expandability parameter” in Proposition 4.2, and wpp
from (5.8). Define k, as

(5.36) ky :=min{k € N : 2wy (k) =27 /T Vi = (2944218 v 1))

so that the function s(-) is defined at 2wyy. Slightly abusing notation, we say that a vertex set
V is s-expandable if the set of locations (x,),cy is s-expandable. Define

(5.37) Aexp 1= Aexp(n, k) := {Vy 3 is s(2wpn)-expandable}.
Recall that k£ > ky in (5.9) is necessary to build the backbone in Lemma 5.2.
LEMMA 5.9 (Cover-expansion). Consider a KSRG under the same assumptions as in

Theorem 2.1, with vertex set a homogeneous Poisson point process. If k > ky, then with s(-)
from (4.1), for some constant cs59 > 0,

(538)  P(—Aexp)) < Carinexp(—sQunn)/3) < Ca11nexp(—csgk!/H1=(F=D/e),

Moreover, conditionally on any realization of G, 3 satisfying App N Aexp, for all k > (k1 V ko)
in (5.9), (5.36), and any connected component C of G, 3 with |C| > k,

(5.39) P(C e V,(lsure)[2whh, OO)|gn’3, -Abb N .Aexp) < exp(—C5_9kChh).
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PROOF. The statement (5.38) follows directly from Lemma 4.11, by computing s (2wnn)
using (4.1) and (5.8), and yyp, from (1.17):

s(Qwpp) = (2d+1Igcl—l/(f—l))1/(1—1/a)kyhh/(1—1/a) < c5.9k1/(d+1—(r—l)/a)'

We proceed to the proof of (5.39). In Proposition 4.2, for a given mark w, the function s(w)
in (4.1) describes the necessary “expandability parameter”, such that all vertices with mark at
least w in X, (£) connect to any s(w)-expandable set £ of vertices with probability at least
p/2. We shall take w := 2wpn(k), the lowest possible mark in V& . If k > k, in (5.36), w
satisfies the required lower bound in the statement of Proposition 4.2.

On the event .Aexp, V, 3 is thus s(2wpn)-expandable. Since expandability carries through
for subsets of V, 3 (see below Definition 4.1), any subset of V, 3 is s(2wnh)-expandable.
Hence, Proposition 4.2 is applicable for any set £ € V), 3 and w := 2wnp, and guarantees the
existence of a set /C,, (L) C A, satisfying (4.2) and (4.3).

Consider an arbitrary connected component C of G, 3 that satisfies |C| > k. With I, (C)
from Proposition 4.2, we define the set of sure-connector vertices with location in /C,(C)
connected by an edge to C as

(5.40) He = {v € Kp(C) N V" 2wy, 00)) 1 v ~ C}.

Since V"™ [2wp, 00) is a Poisson process, its cardinality in C,,(C) follows a Poisson distri-
bution. Since each of these vertices connects by an edge independently to C with probability
at least p/2 by (4.3), and an independent thinning of a PPP is another PPP, we obtain using
the intensity measure in Definition 5.6 and the volume bound (4.2) on /C,,(C) for |C| > k and
c:=(p/4)2~Gd+hp—=Dyg=d/2 /e 5 (),

P(|Hc| = 01Gn.3, Abb N Aexp)
< P(Poi((p/2) - (1/2) - Vol (K (©)) - Qup)~"~P) =0)

< exp(—(p/4) Vol (K, (C)) Qwnn) "~ 1))

<exp(—c- kwt;l(rfl)) = exp(—16c - s¢),

where we used s; from (5.8) in the last step. Since {|H¢| > 0} in (5.40) implies that {C ~
VS [ 2w, 00)}, this finishes the proof of (5.39) for some constant ¢59 > 0. O

Combining everything: Preventing too large components.

PROOF OF PROPOSITION 5.1. Assume that k > ky V kp and n > k holds. We construct
Gn 2 Gy 3 following Definition 5.6, where G, 3 from (5.35) is the subgraph of G, induced
on V3 = Vull, 2wpp) U VI [2wpp, 00). The events Ay in (5.10) and Aexp in (5.37) are
measurable with respect to G, 3. So, by the law of total probability (taking expectation over
realizations of G, 3), we obtain

P(IC7| > k) < E[L{awpnacp)P(IC;7| > k1Gn.3. Aexp N Abb)]
+ IP)(_‘~Abb) + IP)(_‘-Aexp)~

Lemma 5.2 applies since k > ki, n > k, so P(—=App) < 3(n/k) exp(—cs2k*™). The bound
(5.38) in Lemma 5.9 applies to the third term since k > k1 V k. Using (1.18), one may verify
that 1/(0c +1 — (t — 1)/a) > ¢pp if and only if T > o + 1. Thus, for some cexp > 0,

(542)  P(=Aexp) < Ca11nexp(—Cexp (k™ Lirzop1) + Lir<oppk!/CH=E-D/@)),

We proceed to bounding the first term in (5.41). The not-yet-revealed vertices after Step 3 are
Vi \ V.3 = V[ 2wpp, 00), and by Corollary 5.7 each vertex in V" [2wpp, 00) connects

(5.41)
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by an edge to Cpp. Thus each component C 2 Cop of G, 3 either remains the same in G, or
it merges with the component containing Cpp, by connecting to a vertex in V \ V, 3. If all
components of size at least k in G, 3 merge with the backbone, then there is at most one
component above size k, and so the second-largest component is not larger than k. Hence,
if the second-largest component has size larger than k, there must be at least one connected
component C of size larger than & in G, 3 that does not connect by an edge to V,(f‘”e) [2whh, 00).
Formally, conditionally on Ay, and G, 3, we have

(5.43)  {|C?]| > k} < {3 acomponent C of G, 3 with |C| > k : C » V"™ [2wpp, 00) }.

By a union bound over the at most |V, 3|/ k components of size at least k, (5.39) of Lemma 5.9
yields

E[H{AbbmAexp}P(|Cl(12)| > k|gn,3» -Aexp N Abb)]

< E[1{agnAexp) (V0,317 k) exp(—c5.0k™) ] < (n/ k) exp(—cs.0k"™),

since V,; 3 € V, by construction, and E[|V,|] = n by (5.1). Substituting this bound into (5.41),
and using Lemma 5.2 and (5.42) to bound the second and the third term yields that for £ >
kivVkyandn >k whent >0 +1,

(5.44) P(IC?| > k) < (Ca11n + 3n/k + n/k) exp(—min(cs 9, ¢52, Cexp)k°™h).

This finishes the proof of Proposition 5.1 for t > o + 1, k > k1 V k2, and n > k. For k <
k1 V ka, (5.2) is trivially satisfied for ¢s.;1 > O sufficiently small. Finally, for T < o + 1, the
only change is that the bound on P(—Aexp) in (5.42) becomes the leading order error term in
(5.41), which is of order nexp(—© (k!/(+1+=D/xyy O

The backbone: Intermediate results. We state two corollaries of the proof of Proposi-
tion 5.1, and two propositions based on the backbone constructions for later use. We start
with a corollary of the proof of Proposition 5.1.

COROLLARY 5.10 (Backbone becoming part of the giant). Consider a KSRG under the
same assumptions as in Theorem 2.1, with vertex set formed by a homogeneous Poisson point
process. Assume that n > Ak>~%n for some constant A = A(o, T, a, d, B). Then conditionally
on the graph G, » = G,[1, 2wnn) satisfying App(n, k) in (5.10), if t >0 + 1,

(5.45) P(Cob(n, k) € C"|Gn 2, Avb(n, k)) < (n/k) exp(—cs.1k).
For © <o + 1, the inequality holds with exponent 1/(c + 1 — (t — 1)/a) in place of {hp.

PROOF. Lemma 5.2 constructs the backbone Cyy,, with size at least sgn/(2k) > k by def-
inition of s; = O (k%) in (5.8) and by the lower bound 1 > Ak?~%h. Using the complement
of the event on the right-hand side of (5.43), if all components of size above k of G, 3 merge
with the backbone, then there is at most one component above size k, which is the component
containing the backbone. The right-hand side of (5.44) exactly bounds this event. [

The next corollary follows from Lemma 5.2. It is not sharp but it yields a useful estimate.

COROLLARY 5.11 (Lower bound on largest component). Consider a KSRG under the
same assumptions as in Theorem 2.1, with vertex set either formed by a homogeneous Pois-
son point process or Z2. For each 8 > 0, there exists a constant A > 0 such that for all n
sufficiently large

P(|C] < n(Alogn)!=1/%mh) <=9,
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PROOF. If App(n, ky,) holds for some k,, then the largest component C\’ must have
at least the size of the backbone Cpy(n, ky,). Setting k = k, = (Alogn)!/%h in (5.11), the
backbone exists with probability at least 1 —n~% for A = A(8) sufficiently large, since
sk = sk, = (C1/16)Alogn by (5.8). Then its size is at least (n'/k)s; = © (n(Alogn)! ~1/5m)
by definition of n’ in (5.3), finishing the proof. [

The next proposition identifies the mark-threshold w so that (with polynomially small
error probability) all vertices with mark above w belong to the largest component C'".

PROPOSITION 5.12 (Controlling marks of nongiant vertices). Consider a KSRG under
the same assumptions as in Theorem 2.1, in particular t € (2,2 + o), with vertex set formed
by a homogeneous Poisson point process. When t > o + 1, for all § > 0, there exists M5 > 0
such that, for w(n, 8) = (Mg logn)1 = ¥hh)/ &

(5.46) P(Eu € Vulw(n, 8),00) :u ¢ CV) <n™°,
When t < o + 1, the same bound holds with W(n, 8) = (Mslogn)(1—ovm(@+1=(t=D/a),

PROOF SKETCH. We give the detailed proof in the Appendix on page 1591, and here
a sketch when 7 > o + 1. We consider k as a free parameter, so using Lemma 5.2 with
k =k, = ©((logn)'/éh), a backbone Cyp (1, ky) exists and satisfies Cop (12, k) S C", with
probability at least 1 —n~% by Corollary 5.10 and Lemma 5.2 (the same calculation as the
proof of Corollary 5.11). We choose w = w(n, &) to be the lowest possible value so that a
vertex u with mark w, > w(n, §) connects by an edge to each backbone-vertex in its own
subbox with probability at least p in (2.9). Recall also sx = (C1/16)k! =" (=D For 4 to not
be contained in C\", these s, = © (logn) many edges must be all absent, which happens with
probability (1 — p)% = o(n=%=1). A union bound over the O (n) such vertices finishes the
proof. [

REMARK 5.13. Combined with the proof of the lower bound of Theorem 2.2 below in
Section 7, one may show that Proposition 5.12 is sharp up to a constant factor when t > o 41,
that is, there exist constants &, m,, > 0 such that, for all n sufficiently large,

P(Fv € V,[(my, logn) 1 =omm/8hn o) 1y ¢ CP) > 1 —n 9,

Let C,(0)[1, w) be the component containing 0 in G,[1, w) C G,, by setting C, (0)[1, w)
to be the empty set if wgp > w. Then C,(0)[1, 2wpp(k)) is the component of 0 in G, 2.
In the next proposition, we show that this component has linear size with strictly posi-
tive probability when the truncation is at 2wpy(k,) = © ((logn)¥h/%h)  equivalently, when
k, = ©((logn)!/&hy,

PROPOSITION 5.14 (Existence of a large component). Consider a KSRG under the same
assumptions as in Theorem 2.1, with vertex set either formed by a homogeneous Poisson
point process or 7.2 . Then there exists a unique infinite component in G. Moreover, there exist
constants p, m > 0 such that, for all n sufficiently large, when k, = m(logn)'/¢n,

(547) P(|Ca ()1, 2w (k)| = pn) = p,  and PO <> 00) = p.

PROOF SKETCH. We build a connected backbone in A, on vertices with mark in the
interval [wnyh(ky), 2wnn (ky,;)) using Lemma 5.2. Then we use a second-moment method to
show that the origin and linearly many other vertices are connected to this backbone via paths
along which the vertex marks are increasing, giving the first inequality in (5.47). The second
inequality follows similarly, forming an infinite path along which the marks are increasing.
The detailed proof can be found in Section 2 in the Supplementary Material [40]. [
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6. Upper bound: Cluster-size decay. In this section we prove Theorem 2.1(ii)—(iii).
We carry out the plan in Section 3.2 in detail. Instead of restricting to KSRGs with parame-
decay. Then we show that Propositions 5.1 and 5.12 imply these conditions. Recall from Def-
inition 1.2 that P* denotes the conditional measure that V contains a vertex at location x, with
an unknown mark from distribution Fy . All results of this section hold for KSRGs on Z¢.

PROPOSITION 6.1 (Prerequisites for cluster-size decay). Consider a KSRG satisfying As-
sumption 1.3 with parameters o > 1, T > 2,0 >0, and d € N. Assume that there exist ¢y > 0
andi¢,n,cr,c3, M > 0, and a function ng(k) = O (k€1 such that, for all k sufficiently large,
and whenever n € [no(k), 00), with w(n) := M (logn)",

(6.1) P*(|C?| > k) < n®2exp(—c3k?),
(6.2) P(|C| < n®) <n~17¢,
(6.3) P*(Fv € Vy[w(n), 00) :v ¢ C) <n~ .

Then there exists a constant A > O such that, for all k sufficiently large constant and n satis-
fying n € [no(k), ocl,

(6.4) P°(|C1(0)| > k,0 ¢ C") < exp(—(1/A)k°).

Further, the weak Law of large numbers holds:
(6.5) ICV| /1 —> Y0 <> 00) as n — oo.

Observe that (6.4) does not follow from a naive application of (6.1), since the polynomial
prefactor on the right-hand side of (6.1) vanished in (6.4), and n = oo is also allowed in (6.4).
The inequalities (6.1)—(6.3) are satisfied when 7 € (2,2 4+ o) and T > o + 1 by Propositions
5.1 and 5.12 and Corollary 5.11 (we leave it to the reader to verify that the results hold also
for the Palm-version P* of P). Thus, Theorem 2.1(ii)—(iii) follow immediately after we prove
Proposition 6.1. We prove an intermediate claim that we need for Proposition 6.1. We work
under the Palm measure, that is, }V contains a vertex u at location x with unknown mark. We
write C 8 for the largest component in the graph induced on vertices in a set Q C R¢.

CLAIM 6.2 (Leaving the giant). Consider a KSRG satisfying Assumption 1.3 with pa-
rameters o > 1, T > 2, 0 > 0, and d € N. Assume that (6.1)—(6.3) hold. Then there exists
8 > 0 such that, for n sufficiently large, and all N € [n, 00], it holds for u := (x, w,) and any
box Q,, of volume n inside Ay that

(6.6) PueCq ug¢Cy)=<n.
PROOF. We will first prove the following bound that holds generally for a sequence of in-
creasing (nested) graphs G, € G,41 < ..., whose largest and second-largest components we

denote by C{" and C?, respectively. Let (k,),>0 and (K,),>0 be two nonnegative sequences
such that k| < K, for all n > 0. Then, forall 0 <n < N < oo,

N
(6.7) PueCy ug¢Cy) <> (P(C| < Ki) +P(IC| > ki)).

We verify the bound using an inductive argument. We define for 72 > n the events

A@) =[] = Kz} N {|C24] < ki ).
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Since by assumption k; | < Kj;, the event A(72) ensures that |Cg)| is already larger than
ICI%Z_)F 1| Thus, A(7) implies that C ,51') ccC ;l'jrl. Iteratively applying this argument yields that
Niepn.n—17A@R) implies that {C” € C}}. We combine this with the observation that u € Q,,

implies that {u € C", u ¢ Cy'} S {C" ¢ C'}. This yields
PlueCl,ugCy)<P(CZCy)

N—-1

N—1
» - P({c;,“ zcin N A<ﬁ>) £ PAG)

=0+ Y (PG| < Kz) + P(IC| > ka)),

showing (6.7). We move on to (6.6) for which we have to define the increasing sequence of
graphs. Consider any sequence of boxes (Qj)i>, suchthat x € Q, € Q9,41 C--- C Oy :=
Ay and Vol(Qj;) = i1, and let Gj; denote the induced subgraph of G on Qj; for n € [n, N1].
We use the translation invariance of KSRGs, and the assumed lower bound on |C,(~ll)| in (6.2),
and we set Kj; :=n“3. We also use the assumed upper bound on |C;2)| in (6.1). Then if we set
ki == (Alogii)!/¢ for a sufficiently large A, then for all sufficiently large n and 2 > n,

P(lcol < Ki)<a~<7', P(CG| > ki) <A

Clearly k; 11 < Kj; for all > n, so that substituting the bounds into (6.8) and summing over
n > n yields the assertion (6.6) for any § < ¢ and n sufficiently large. [J

We continue to prove Proposition 6.1, starting with some notation. For some ¢ €
(0, min(1, « — 1, T — 2)), and using ¢, c3, 1, {, M, and w(n) from Proposition 6.1, let

N = exp(kCC3/(202)), ng:= N,
(6.9) c3 \" Vd
ka = E(Nk) =M(k§)n<2—> y tk = }’lk/ /(2k)

2

Note that Ny, ny = exp(® (k°)). For n < Ny, the statement (6.4) follows directly from (6.1),
since when n = N, the right-hand side of (6.1) becomes exp(—k®c3/2), so we may choose
any A such that 1/A < ¢3/2 in (6.4). In the remainder of the section we focus on n > Ny. We
write Ca (x,n) (1) for the component of vertex u := (x, w,) € V in the graph G restricted to
A(x, n). Define for x € R? the two events

-Alow—edge (x, ng, Nk, wn,)

(6.10)
. ICA e )| <k, i, v2 € Vo, Np (L, Wy sit.
V1 € CAGran) (), 1Xo; — Xuyll = 12, and vy ~ vy |
Along—edge (x, ng, Ng, ka)
6.11)

= {Fv1 € Va@ap 1, W), Iz € V\ Va(e,np)» V1 ~ v2}
The next lemma relates the probability of the event {|C,(u)| > k,u ¢ C\"} to the events

Alow-edge and Ajong-edge using the assumed bounds in Proposition 6.1.

LEMMA 6.3 (Extending the box-sizes). Consider a KSRG satisfying Assumption 1.3 with
parameters o > 1, T > 2, 0 > 0, and d € N. Assume that (6.1)—(6.3) hold. Consider any
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x € Ay with ||x — oA, = Nkl/d/2, and u = (x, wy). Then there exists A’ > 0 such that, for
all n with n € [Ny, o0],

6.1 P (|Cp(w)| > k,u ¢ CL") < exp(—(1/A")k") + P°(Alow-edge (0, 1k, Ni, W)
+ IP)0(~Along—edge (0, ng, Nk, ka))-

PROOF. Let nn € [1,n], and denote by CX)(xﬁ) the largest connected component in the
induced subgraph of G, inside the box A(x,n) C A,. For a vertex u = (x, wy) € V define
(6.13) Aleave—giant(xv n) = {M € Cj\l)(xﬁ)v ug 61(1])}’

(614) .Amark-giant(x» Ng, ka) = {VU € VA(X,Nk) [ka’ 00):vE CE\I)(X,Nk)}'

The first event relates to (6.6) in Claim 6.2, while the second one to (6.3) of Proposition 6.1.

The values of ny < Ny <n from (6.9) and the assumption ||x — dA,| > Nkl/d/Z ensure that
A(x,ng) € A(x, N) € A,. Then we bound

{ICh(u)| > k,u ¢ C}
< {|C”(M)| > k’ u ¢ C(I)’ u ¢ CE\I)(x,nk)’ }CX)(x,nk)| > k}

n
6.15) U €l 4 £}
U{[Caw)| > k,u ¢ C",u ¢ CX)(x,nk)’

C(Ii)(x,nk) ‘ = k}
= {}CE\Z)(x,nk)| > k} U -Aleave-giant(xa ng)

U{1Ca )| > e ¢ Cu & C (s

CA(x,nk)(u)‘ = k}

Applying probabilities on both sides we obtain the inequality stated in (3.6) for x = (0. We
introduce a shorthand notation for the third event on the right-hand side of (6.15), that is,

-Agoal = ch(u)| >k,u ¢ Cy(;l)v ug CE\I)(x,nk)’ CA(x,nk)(u)} =< k}

Define the auxiliary events

»Abecomes-large = {|CA(x,nk)(u)| <k, Cn(”)| > k}’
Aout—of—giant(nk’ n):= {u ¢ Cr(zl)v u ¢ Cx)(x,nk)}’

and observe that Agoal = Abecomes-large M Aout-of-giant (k. 7). In order to bound P(Agpar), we
distinguish whether u enters the giant at the intermediate box of size Ny € (ng, n) or not:

Agoat € {u € Cii v 1 £C)
(6.17) U{ICa ()] >k, u ¢ C e iy # & Co ey [CA G ()] < K}

= Aleave—giant ()C Ny U (-Abecomes—large N Aout—of—giant (”k , N k)) ’

with Ajeave-giant (¥, 77) defined in (6.14). We observe that Apecomes-large in (6.16) implies that at
least one of the at most k vertices in Cx (x,»,) (1) has an incident edge crossing the boundary of
A(x,ny), and so there must exist a “fairly”” long edge either inside the cluster Cx (x ;) (u) or
between a vertex in Ca (x,n;)(#) and a vertex in Cy, (u) \ Ca (x,n,)(#). More precisely, recalling

i =n,'? /(2k), define

(6.16)

(6.18) Aedge = {|CA(x,nk)(”)| <k,3Jv € CA(x,nk)(”)a vy eV v~y vy —v2l > tk}-

We argue that Apecomes-large S Aedge- Arguing by contradiction, if all edges incident to all
vertices in Ca (x,n,) (1) were shorter than #, the furthest point that could be reached from x
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with at most k — 1 edges has Euclidean norm at most (k — 1)#; < n,lc/ d /2, and thus its location
would be inside A(x, ny), contradicting the definition of Apecomes-large in (6.16). Returning
to (6.17), we obtain that

Agoal C Aleave—giant(xv Ni) U (Aedge N Aout-of—giant(nkv Nk))
- Aleave—giant(x’ Ni) U (-Aedge N {u # CX)(X,Nk) })

In order to bound the probability of the existence of long edges, we put restrictions on the
marks: we distinguish whether all vertices in Vx,n;) \ CX)(X n,) have mark at most wy, or
not—this is the event Amark-giant (X, Nk, Wy, ) in (6.14). We obtain

»Agoal - -Aleave—giant (x, Np) U (_'Amark—giant (x, Ni, W N, ))

(6.19)
) (Aedge N {I,t ¢ CX)(x,Nk)} N Amark—giant(x, Ny, ka))-

The intersection with {u ¢ CX)(X’ Nk)} N Amark-giant (X, Nk, Wy, ) in the last event ensures that
all vertices in the cluster of u with location in A(x, Ny) 2 A(x, ng) have mark at most
wy, . We make another case distinction, with respect to the locations of the vertices of the
edge e~ of length at least #; that exists on the event Aeqge in (6.18). Namely, e, either
has both endpoints in Ay, or it has one endpoint inside A, and the other one outside
A, . For the first event, we obtain the event Alow_edge(x, ni, Ni, wy, ), and for the latter
Along-edge (X, ng, Nk, Wy, ), respectively (defined in (6.10)—(6.11)). Hence,

Aedge N {u ¢ CE\I)()C,N/()} N -Amark—giant(x7 Ny, wy,)

- Alow—cdge (x, ng, Ng, wp, )Y -Along—edge (x, ng, Nk, Wn,).
Using this in (6.19), then substituting (6.19) back into (6.15), and then taking probabilities
yields
P(|Ch(u)| > k,u ¢ C")
=< PX(|CX)(X’,”()| > k) + P (_'Amark-giant(xa Ni, ka))

+ Z P (-Aleave-giant(x ) ﬁ))
ne{ng, Ni}
+P (-Alow—edge (x,ng, Ng, ka)) + P (-Along-edge (x, 1k, Ni, wN;))-
The event Ajeave-giant (X, 1) = {u € CX)( wiyp U E C."} considers the graph in the box A, (which
is centered at the origin) and therefore does not necessarily have the same probability for all
x € A,. The four other events consider the graph in boxes centered at x. Hence, we translate
those events (and the Palm measure P*) by —x to obtain

P*(|Co(u)| > k,u ¢ C")
= PO(|CI(12/:| z k) + IP)O(_'-Amark—giant(0, Nk, ka)) + Z Px(u S CX)(x,ﬁ)’ u¢ Cr(ll))
ne{ng, Ni}

+ PO (Alow—edge (0» ni, Ni, EN/()) + PO (-Along—edge (Os ni, Ni, ka))-

The first two terms can be bounded by substituting the definitions ny, Ny = exp(® (k%))
in (6.9) into the assumed bounds on the probabilities in Proposition 6.1. The sum is bounded
from above by 2n,:5 = exp(—® (k%)) by Claim 6.2. This finishes the proof of (6.12). [J

We move on to bounding ]P’O(Alow-edge) on the right-hand side of (6.12) in Lemma 6.3,
with Ajgw-edge from (6.10). To do so, we need an auxiliary claim that controls the probability



CLUSTER-SIZE DECAY IN SUPERCRITICAL KSRGS 1575

that for every point in Vy,[1, wy,) there are not “too many” vertices at distance at least #,
with t, = n,i/d/(Zk). We define first for i > 1, and u = (x,, wy) € V,, [0, w) the annuli

(6.20) Ri(x) = (A(xu (270)) \ Axu. (277 '1%)9)) x [1, 00).

With the measure w, from (5.1), we then define the bad events

(6.21)  Adense (1) = {3i = Lou € Vy [1, W) : [V, NRi ()| > 2+ e (Ri (1)) -

In the following auxiliary claim we give an upper bound on P(Agense). Its proof is standard,

based on Palm theory and Chernoff bounds; see Section 3 of the Supplementary Material [40].

CLAIM 6.4. Consider a KSRG with a homogeneous Poisson point process as vertex set.
For all ¢, 8 > 0 there exists nq such that P°(Agense (nr)) < n; € for all ny > (ng v K43y,

We can now analyze IP’O(.Alow_edge) in Lemma 6.3. The next claim also applies for KSRGs
on Z%. Recall ng, Ng, wy,, and f from (6.9).

CLAIM 6.5 (No low-mark edge from a small component). Consider a KSRG satisfying
Assumption 1.3 with parameters o« > 1, T > 2,0 >0, and d € N. For any ¢ € (0, min(1, o —
1,7 —2)) in (6.9), there exists a constant A’ > 0 such that, for k sufficiently large,

exp(—(1/A")k) ifa < oo,
0

(6.22) IED()(-/‘llow-edge(o» ng, Ni, w) |_‘Adense(nk)) = .
if o = o0.

PROOF. Assume first o = oo. The event Ajow-edge (0, 7k, Nk, Wy, ) is by definition in
(6.10) restricted to vertices of mark at most wy, = w(Ny) in (6.9). By definition of # and
wy, in (6.9), for k sufficiently large

ti = exp((e/d)(c3/(2c2))k6) /(2Kk) = BTN = BM' 7 ((c3/(2e2))k)" 7D,

Hence, the indicator in p(u, v) is then 0 by (2.9), so a connection between u, v can not occur.
Assume then o < oo. To obtain an upper bound on the left-hand side of (6.22), we condi-
tion on the full realization } containing 0 and satisfying the event = Agense:

P (-Alow—edge (0, ng, Ni, w) |_‘-Adense)

(6.23) e "~
=K [IP) (Alow—edge(oy ni, Ni, ka)|V7 _'-Adense)]-

We denote the subgraph of G,, with all edges of length at most #x =n }C/ d /(2k) by Gp, (< 1)
and write Cy, (0, < ) for the component in this graph containing the origin. Clearly,

{|an(0)| <k,3vi, v € Vy,[1,wp,) s.t. }
V1 € Cyi (0), [Ixy; — X, | > 1, and vy ~ v2

c {|an(0, <t)| <k, Jvi, vz € Vy,[1,Wy,) s.t. ]

Ul € Cﬂk(ov S tk)v “xl}] - xUz” Z tkv and vl ~ v2

where the first event is the definition of Ajow.edge in (6.10). Conditionally on V, all edges of
length at least #; are present independently of edges shorter than #;. We obtain by a union
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bound over all vertices in Vy, [1, wy,) €V,
P° (Alow-edge (0, ng, Nk, ka)n}’ _‘Adense)
< Y P(yeC,=

V] Evnk [l’ka)

X > p(vi, v2).

VEVN, [1,WnN,):
H'xvl 7XU2 ”Z[k

= tk)| =< k|V7 _‘Adense)

nk

(6.24)

=T (vy)

Using the definitions of p in (2.9), x5 from (1.7), the upper bound on [R;(x,)| in Adense
in (6.21), mark bounds wy,, w,, < Wy, and the distance bound ||x,, — Xy, || > 20=Dg when
Xy, € Ri(xy,) in (6.20), the following bound holds uniformly for all vi € Vv, [1, wy,):

T(v) < Z Z p(Brs (W, ka)z_(i_l)dtk_d)a

i>1 UZGVNk[lszk)
v €R;(v1)

(6.25) <23 1121 p(Bro (W, Wh )2~ T )
i>1
— d+1 ﬁa—a(a-f'l) (1— W)dzz (@=1)(i-1)d
i>1

Since o > 1 by assumption in Theorem 2.1, the sum on the right-hand side is finite. This
gives a bound on T (v1) in (6.24) that does not depend on vi. Hence, returning to (6.24),

> P(v) €Cy (0, <

U1 GVnk [l’ka)

| J—

= k|V _‘Adense)

ny

= E0|::[].{|an 0,<tp)|<k} Z I]'{vlecnk 0,<1)} |V, _lAdel'lSB] < k’

V1 €V [1, W)

since on realizations of the graph satisfying {C,, (0, < fx) < k}, the sum that follows is at most
k. We substitute this with (6.25) into (6.24) and then into (6.23). Thus, for some constant
C >0,

(-Alow edge(o ny, Ni, ka)|_‘Adense) < Ck—a(a+1) lgl oe)d

We substitute the definitions #;, = n k / (2k), and ny = exp(e(c3/(2¢2))k®) from (6.9), which
yields (6.22) for any & > O (using that wy, is polynomial in k). [

The last claim bounds Ajong-edge in (6.12) in Lemma 6.3. Recall Ajong-edge from (6.11).

CLAIM 6.6 (No long edge from a small component). Consider a KSRG satisfying As-
sumption 1.3 with parameters a« > 1, T > 2, 0 >0, and d € N. Assume N > n > 1, and
w > 1 such that

(6.26) (N4 —nV) 2> (Van'1 v (pw' o)V v N1)4).
There exists a constant Cg ¢ > 0 such that
IP’O(Eh)l e Vw1, W), Jv, e V\ Vy v ~12)

6.27) | |
< Coew®nN~mn@=LT=2 (] L 1., _. 5 logN).
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In particular, for ni, Ny, Wy, as in (6.9), if § =6(M,n) € (0,min( — 1, 7 — 2, 1)) is suffi-
ciently small, then for all k > 1, with Ajong-cdge defined in (6.11),

(6-28) PO(Along-edge(Oa ng, Nk, ka)) = exp(_gk{hh)-

PROOF. We defer the proof of (6.27) (based on a first-moment method) to Section 3 in the
Supplementary Material [40]. The bound (6.28) follows directly from (6.27) by substituting
ni, Ni, and wy, from (6.9) to (6.27), then using that wy, and log Ny are polynomial in k and
of much smaller order than n; and N,. [

Having bounded all terms on the right-hand side in (6.12), we prove Proposition 6.1.

PROOF OF PROPOSITION 6.1. For n < Ng, using that Ny = exp((c3/(2¢2))k%), (6.4) in
Proposition 6.1 follows directly from (6.1), since

P°(|C,(0)] > k,0 ¢ C") <P°(|ICP| > k) < N2 exp(—c3k®) = exp(—(c3/2)k%).
We now consider n > Nj. Recall the values of ng, wy,, and # from (6.9). Lemma 6.3 and
Claims 6.4-6.6 directly imply (6.4) in Proposition 6.1.

We now prove the law of large numbers (6.5). In [61] it is shown that finite KSRGs
Gn = Vy, &) rooted at a vertex at the origin (see Definition 1.2) converge locally to their
infinite rooted version (G0, 0) as n — o0o. We refer to [59] and its references for an introduc-
tion to local limits. We use the concept of local limits as a black box and verify a necessary
and sufficient condition for the law of large numbers for the size of the giant component for
graphs that have a local limit by Van der Hofstad [33], Theorem 2.2, of which we state an
adaptation. Let (G, 0,)n>1 be a sequence of rooted graphs that converges locally in proba-
bility to (Goo, @) (Theorem 2.2 in [33] demands additionally |V,| = n, but its proof extends
to cases in which |V, | ~ Poi(n); we omit details here). Define

T = Z {|Cn(u)|2kaCn(U)|Zk,C(u)7éC(v)}j|'

u,veV,

[IV 2
Then,

(6.29) lim limsup T, =0 = C1/ V] L P@ o o0) asn— oco.

k—00 n—oo

For a pair of vertices u, v, the indicator in 7, x can only occur if at least one of the vertices is
not in the largest component. More precisely, we can bound

1
Tnk = E[Wnp XG:V Licaozrugesy T 1{|cn<v>|zk,v¢c,$“}}
u,veV,

1
:E[W - Z 2L e, ) 2k g } E[P(ICa(Un)| = k, Un ¢ C;"11Va))],
n

where U, is a unlformly selected vertex in V,,. We now restrict to the setting of KSRGs in
the box A,. Given the size |V,|, the location X, of U, is uniform in A,, while its mark
Wy, is random, sampled from W. Integrating over the location X, = x € A, having density
Leb(-)/n, we obtain that

E[P(|Ca(Un)| = k, Uy ¢ C." |1 Va)]
/2)

1
+ _EU e W =k
n X€ML |x—0AL||=N, l/d/2 <| ”(( Un))|

(x, Wo,) € C[Val, (x, Wo,) € V) dx]

<P(|X, — 0A,] < N
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We apply Fubini’s theorem to the second term:
E[P(|Ca (Un)| = k, Un & CV11Val)]

/2)

1/d
<P(|X, — 0A,] <N,/

1
— P*(|Cu((x, W >k,
i’l-/xeA,,:llx—aAn||>Nkl/d/2 (} n((x Un))| =

(x, Wo,) ¢ | (x, W) € V) .

The first term tends to zero as n — oco. We recognise that we may apply Lemma 6.3
and Claims 6.4-6.6 to the probability in the integral inside the second term, which is
exp(— (k%)) uniformly over the domain of the integration. Thus,

lim limsup 7, x = lim exp(—Q(k%)) =0.

k—>00 n—o0 k—o00
This proves the condition on the left-hand side in (6.29). The law of large numbers (6.5)
follows as |V, |/n tends to 1 in probability. [

7. Lower bounds. The main goal of this section is to prove a Proposition 7.1 below
that implies the lower bounds in Theorems 2.1-2.2. Informally, we show that if the graph
Gnl1, polylog(n)) induced on vertices with at most poly-logarithmically large marks in n
contains a linear-sized component with constant probability, then lower bounds as in Theo-
rems 2.1-2.2 follow. This general phrasing allows to derive lower bounds on |C!”| and on the
cluster-size decay for KSRGs more generally, that is, also without the assumption ¢pp > O of
Theorems 2.1-2.2. We re-use this proposition in both [38, 39] after having established there
its condition via renormalization techniques.

In our proof below, we formalize the variational problem described in Section 1.1, and re-
late its solution to the size of the downward vertex boundary defined above (1.11). In partic-
ular, Lemma 7.7 below implies Claim 1.4 which states that ¢, = max(&y, ¢hi, &hn, (d — 1)/d).
At the end of the section we also prove Theorem 2.4 on the lower tail of large deviations of
the largest component, which relies on the same methods as Proposition 7.1.

We introduce some notation to state Proposition 7.1. Recall m, from (2.1), counting the
multiplicity of the maximum in {&, ¢h1, ¢hh, (d — 1)/d}. If the values {j1, Cni, ¢hn are all
negative and the dimension d = 1, implying m, =1 and ¢, = (d — 1)/d = 0 by Claim 1.4,
then the model is always subcritical as shown by Gracar, Liichtrath, and Ménch [27]. For all
other parameter settings, we define for some small ¢ > 0 to be specified later

(e(logn)/(log logn)m*_l)l/g* if ¢, >0,
(7.1) ko= 1/(m,—1) e
exp((elogn) ) if ¢, =0, and m, > 1.

For dimension d > 2, ¢, > (d — 1)/d is positive. Thus, only in dimension d =1, k, ., can
increase significantly faster than a polylog of n. More precisely, for d =1, k, , equals n® if
exactly one out of {{11, &n1, ¢hn} 1s zero, and the others are negative (so m, =2 and 1/(m, —
1) = 1); it increases stretched exponential in the logarithm if at least two elements out of
{c1, ¢nl, ¢hn} are zero, and none of them is positive. We recall from above Proposition 5.14
that C,,(0)[1, w) is the component of the origin in the induced subgraph G,[1, w) if wg < w,
and is the empty set if wo > w.

PROPOSITION 7.1 (Lower bound holds when linear-sized giant on truncated marks exists).
Consider a KSRG satisfying Assumption 1.3 with parametersa > 1,7 > 2,0 > 0,and d € N.
Assume that there exist constants 1, p > 0 such that, for all n sufficiently large,

(7.2) P(|Ca()[1, log" n)| = pn) = p.
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FIG. 3. A visualization of the y -suppressed profile M, . The horizontal axis represents space, the vertical axis
represents marks. {V < My} demands no vertices in the yellow region. -Ano-edge(l/) demands that there is no
edge between vertices in the inner blue and vertices in the outer blue regions, Acomponents requires that the two
red areas contain large components; Aregular(n) ensures that V is “close to typical” in the red areas Riy and
Rout-

Then there exists A > 0 such that, for all n € [Ak, 0o], with L., m, from (1.11) and (2.1),
(7.3) P°(|C,(0)| > k,0 ¢ CV) > exp(— Ak (logk)™ ).
Moreover, there exist 8, & > 0, such that, for all n sufficiently large, with k, ¢ from (7.1),

(7.4) P(|Cc? 8

an,s)zl_ni .

By Proposition 5.14, Condition (7.2) is satisfied when ¢y > 0, implying Theorem 2.1(1).
We give a detailed proof of Proposition 7.1 for KSRGs with vertex set given by a PPP. We
leave adaptations of proofs of most subresults to vertex set Z¢ to the reader (replacing concen-
tration bounds for Poisson random variables to concentration bounds on sums of independent
Bernoulli random variables). At the end of the section we explain the nontrivial adaptations.

7.1. Strategy to find a localized component. To bound P(|C,(0)| > k,0 ¢ C'") from be-
low, we find a subevent that we can write as the intersection of “almost independent” events,
for which we introduce some notation now. See Figure 3 for a visualization.

Two components. We aim to find an isolated and localized component of at least k vertices
that is not the giant. For this, we take p from (7.2), and we encompass the box Ay, in a
larger ball so that the distance of the ball from the box is half the radius of the ball. Formally,
define

(15)  re=Kk/p)ViNVd,  Bni={xeRy: x| <n),  Mn:=d"?/p,

SO r,f = Mi,k. These definitions imply that Ay, C Bij,. We now constrain C, (0) to the ball
Bin, and aim to find a component outside B, that is larger than |C, (0)|. We “construct” these
two components on vertices in two (hyper)rectangles. Recall that A (x, s) = As(x) denotes a
box of volume s centered at x; see (2.10). Let My := 2442y and define for n>0

Ain = A0, k/p), Rin := Ain X [1, 2ﬂ°g21°g"(k/pﬂ),
79 log, log" (kM.
Aout = A(xout, (kMOUt/IO))7 Rout = Aout X [1’ Z[ng og( out/p)])’

where xqu := (xf“t, 0,...,0) € R? is defined as any solution of [|d Aoy — dBinll 1= r¢/2
satisfying Aqy N Bin = @. We assume that the constant A in Proposition 7.1 is sufficiently
large so that Ajy, U Ague € A, We abbreviate Cin(0) := Ci/,(0)[1,log"(k/p)). Since Rin S
Bin x [1, 00), it is immediate that C;,(0) € Vg, . Let Cé,{l)t be the largest component in the

subgraph of G, induced on vertices in Ry. Define the events

(k . k) . D
‘Agi)ant-in = HCIH(O)} = k}’ ‘A;;iant-out = {|C(()ut| > kMou — 1}’
7.7) ®) ®) (k) k)
‘Asmall—in = {|VBin| = k MOUt/ 2}’ Acomponents = ’Agiant—in N Agiant—out‘
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Isolation. On Aggmpmems, Cn(0) or Cin(0) could still be part of the largest/infinite compo-
nent. To prevent this, we will ban edges that cross the boundary of Bj,. We first define a
suppressed mark-profile that is parametrized by y > 0. Below, we optimize its shape to ob-
tain the “optimally-suppressed mark-profile”. Set Cg := (2p8)"/4, and define for x € R¢ with
lx — 8Bl = |llx|| — r¢| =: z the y-suppressed profile by

1 if z < Cg,
(7.8) fy (@ = {(z/Cp)"? if z € (Cg, i,
(z/Cp) (1) Cp) ™) if 2 > 1y,
(7.9) My = {(xo, f, ([Ix0ll = 7¢])) 2 xp € RY).

We say that v is below, on, or above M,, if w, is at most, equal to, or strictly larger than
Sy Ullxyll — rxl), respectively. We split the PPP V into four independent PPPs, depending on
whether points fall below or above M,,, and inside or outside Bij;:

isnMy = {(xu, wy) €V :xy € Bip, wy < fy(|||xu|| _rk| ,

)}
;u;\/ly = {(xv’ wy) € Vi xy ¢ Bin, wy < fy(|||xv” _rk|)}s
(7.10) )}

2y, o= { Qs wi) €V xy € Biny wu > fy ([ lxull = i)},
P, = (o, wo) €V 1 x0  Biny wy > fy ([Ilxoll = re])}.

For A, B €V we denote by |£(A, B)| the number of edges between vertices in A and B.
Define

V< My) = (Ve UV =00,
Ag‘é-edge(y) = {[&( isnf\/ly’ %u.t/\/ty)} =0}.

On {¥V = M,}InN Aifo)_edge(y), the vertices in Bj, are not connected to the unique infinite

component when n = oo, and are isolated from the rest of G, when n < oo. Combined with
the events from (7.7) and using that |C, (0)| > |Cin(0)| we obtain
{1Ca(O)] > k,0 ¢ C"} 2 (1Y < My} NAR g ¥) N {[Cin(0)] > K}

no-edge

(7.11)

(7.12) "
N {|C0ut| > kMOllt - 1} n {|VBin| = kMout/z})'

We comment on the profile function f,, in (7.8): the event {V < M, } demands no vertices
within distance Cg from 0B;,, since f, (|l|x|| — rx|) =1 for ||x — 9Bjy|l < Cp, and vertex
marks are above 1. The function f, is continuous and increasing in z: the closer a point is
to the boundary of Bj,, the stronger the mark restriction. This is natural since vertices with
higher mark close to d13;, are more likely to have an edge crossing this boundary, which we
want to prevent. While {V < M,,} becomes less likely when y is small, Ag‘())_edge(y) becomes
more likely. This leads to a variational problem, that we set up after a technicality.

Ensuring almost independence. The events Ag‘g_edge(y) and {|Cin(0)| > k} in (7.12) are neg-
atively correlated. Indeed, {|Cin(0)| > k} from (7.7) may push up the number of high-mark
vertices in Ry, making A;k(;_edge(y) less likely. To overcome the dependence, we introduce
two auxiliary events that ensure regularity of the vertex marks in the hyperrectangles Rip,

Rout from (7.6). Let cin := 1/p, cout := Mout/p, and define for loc € {in, out}, n > 0,
(7.13) Jive :=[logylog"(keioe) ], I7*:=[2/71.27) for1<j<jh.

so that the upper bounds of the largest weight intervals agree with the upper boundaries of the
hyperrectangles Ri, and Ry defined in (7.6). Using Ajp, Aoyt in (7.6), the intensity measure
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wr of Vin (5.1), and Vloc(l}"“‘) for the vertices in V N (Ajoc X I}"C), consider the following
events for loc € {in, out}:

i’églﬁ?ar(n) { J= jl:)c : |Vloc (I}‘OC)| <2 (Aloc X I}OC)}7
(k) _ (k in) (k,out)
regular(n) regular(n) N Aregular(n)'

Finally, fix a realization of the induced subgraphs Gr, U Gr., = (Vr,.E(Gr,,)) U

(VRow» €(GRroy)) so that the vertex set Vg, U Vg, satisfies the event Ag:gular(n) for some

(7.14)

n > 0, and the two induced subgraphs on vertices in Ri, and on Ry satisfy Aggmponems
defined in (7.7). We define the conditional probability measure and expectation by

ED() = P( IQRm U gRout, Aiﬁ)gular(ﬁ), A(clgmponents)’
IE[] = E[|ng U gRout’ ‘Ag:gular(n)’ Aggmponents]'

In the conditioning we reveal both the vertex and edge sets within the disjoint boxes Ry,

Rout- The event .A;]:gu]ar(n) checks the number of vertices in hyperrectangles inside Ry,

(7.15)

Rout While Aggmponems depends on the edges spanned on R, and spanned on Ry, hence
both Ag:gular(n), A(g;)mponems are measurable with respect to Gr, , Gr,.-

7.2. Isolation via a variational problem. In this section we analyze the events {}V < M, }
and Agz_edge in (7.11) under the conditional probability measure in (7.15).

LEMMA 7.2 (Lower bound for isolation). Consider a KSRG satisfying Assumption 1.3
with parameters « > 1,7 > 2,0 >0, and d € N. There exists y, € (0, 1/(c + 1)] such that,
for any constant n > 0 in (7.14) there exists A > 0 such that for any realization of Gr,, UGR,,,
satisfying Aregular(n),

(7.16) P((V < My, ) NAY 1. (%) = exp(— Ak (logkh)™ ).

no-edge

The same bound holds for the Palm-version P of P.

The events {V < M, } and Ano edge A€ independent of each other under Pin (7.15), since

having no points above M, is independent of the conditioning in P (since each point in
Rin U Rout is below M,, if k is sufficiently large), and Ano edge only depends on points of V
below M, with endpoints on different sides of d5;,. Hence, for any y > 0,

(7.17) PV s My} N AR 40e () =BV < My) - P(AD L40c (1)

no-edge no-edge

We show below that the two factors decay exponentially fast respectively in the expected
number of vertices above M, (which is nonincreasing in y), and the expected number of
edges between vertices below M, crossing dB;, (which is nondecreasing in y ). We compute
these in the following two lemmas, then balance them to get the optimal y. Recall f,, M.
from (7.8), (7.9), and the PPPs in (7.10). Let V> rq,, 1= ;"My U ;“j\/ly.

LEMMA 7.3 (Vertices above M,). Consider a KSRG satisfying Assumption 1.3 with
parameters a > 1,1t >2,0 >0, and d € N. For each y > 0, there exists a constant C73 > 0
such that, for all k > 1,

(7.18) E[[Vom, ] < C 3 kMU= @=D. 5T | (1gg ) L=y G=D=F)
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For readability, we need to introduce a few more “exponents”, then we state the other
lemma that bounds the expected number of edges between V1 M, and Vi“/‘\/ly. Let

&n =0, bnii=a—(t—1), éph := (0 + Da —2(7 — 1),

8 = {&u, &n1, &nn}, &, ;= max(&), Miong := Z Lig,=¢)-

E€E

(7.19)

LEMMA 7.4 (Edges crossing dBi, below M,,). Consider a KSRG under the conditions
of Lemma 7.2 with a < 0o. For each y > 0 there exists a constant C74 = C7.4(p) > 0 such
that, for all k > 1 and any realization of Vg, U Vg, that satisfies Aregular(n) in (7.14) for
some n > 0,

E i d-1
BIE (020, Vi ] = Crakse-etventsh

(7.20) - =
- (log k)(mlongil)ﬂ{27a+y€*>%}+mlong1{27a+)/5*=dd;l}.

Assume now y € [0,1/(o + 1)]. For any KSRG under the conditions of Lemma 7.2 with
vertex set formed by a homogeneous Poisson point process, for any o € (1, oo], we have for

out

anyueVL"My,veV<My

Y
(7.21) p(u, v) < ifa <oo,
0 if ¢ = 00.

REMARK 7.5. One can prove that the right-hand side of (7.20) is the correct order for the
expectation for all y € [0, 1] whenever & < £* in (7.19), by computing a matching lower
bound up to constant factor. When &py = &,, then the right-hand side of (7.20) is the correct
order when y € [0, 1/(c 4+ 1)]. When &y, = &* and y > 1/(0 + 1), the right-hand side of
(7.20) is not a sharp upper bound, but it suffices for the purposes of the proofs below.

PROOF SKETCH OF LEMMAS 7.3 AND 7.4. Since the quantities we compute are func-
tions of Poisson variables, the proof is an integration and case-distinction exercise over
the domains of the underlying Poisson processes and connection probability. We defer the
(lengthy) integrals to Section 4 of the Supplementary Material [40], and give intuition.
We omit among others technicalities caused by the conditioning in PP in (7.15). Define
the hyperrectangle Rt := [—2r¢, 2r¢]? x [(1 V (rx/Cp)??), 00) and Ag := {x € RY, ||x]|| €
[rk —Cg, e+ Cgl} x[1, 00), an annulus in R times all mark-coordinates. Then by definition
of f, in (7.8), the set (RT UAg) is above M, and u; (RTUAg) = @ (k! 777D 4 fd=D/d)
by the definition of the Poisson intensity . in (5.1). Integration shows that the Poisson in-
tensity u, of the larger space-mark area above M, (the left-hand side of (7.20)) is of the
same orderif 1 —y(r —1)# (d —1)/d. When 1 — y(t — 1) = (d — 1)/d we get an extra
log k factor.

We explain now the exponents of k in (7.20) in Lemma 7.4. The expected number of
edges between vertices of constant mark within constant distance of 3B;, is © (k@~D/4)_ Let

out

0 < yn <yy <y.Using u; in (5.1), the expected number of vertex pairs Vifn M, and Vf M,
within distance ® (r) from 9B;,, and marks wy, = @ (k"V), wa = O (k) is

E[Pairs(yv, J//\)] — @(kl—)’v(f—l) . kl—w(f—l)) — @(kz_(}’v"'y/\)(f_l)).

The typical Euclidean distance between such vertices is O (ry) = O (k'/?). Therefore, by
the connection probability p in (2.9), a pair of such vertices are connected with probability
roughly O (k*vtova=hy when yv +0yn <1 and a < co. Thus, there are

E[Edges(yv. y2)] := E[Pairs(y, y0)] - © (k¥ Fora=D)

(7.22)
— @Kt (e (=) Fyau—(r=1))
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such edges in expectation. The proof in Section 4 of the Supplementary Material [40] reveals
that the expectation of |€ (Vis" M,y %”j\/ly)l is either © (k(@—1/d) (coming from the constant-
distance edges) or its order is the maximal value of the right-hand side in (7.22), when max-
imized with respect to 0 < y, <y, < y. Logarithmic factors arise when there are multiple
maximizers. The exponent of k is linear in both 1, and y.. When computing the maximizing

pair in the interval [0, y'], with &, &1, &nn from (7.19), we arrive at

(y,0) ifbotha >7— 1,00 <7 —1 (< & > max(&n, &nn)),
(v, v)=1(y,y) ifbotha>1t—1,00>7—1 (< &n > max(&n, &nn)),
0,0) if 0 =&y > max(énl, &hn)-

The last case summarizes the outcome of the cases remaining after the first two rows. The
maximum of {&p, &n1, Enn} is nonunique if at least one of « =t — 1 and oo = 7 — 1 holds.
In this case any convex combination of the maximizing vectors among {(0, 0), (v, 0), (v, ¥)}
gives the maximal value on the right-hand side of (7.22). This leads to a polylogarithmic
correction factor, where the exponent is the dimension of the simplex formed by the maxi-
mizers, that is, mjong — 1. When the exponent of the maximum equals (d — 1)/d, edges of
all lengths between constant order and ® (k'/?) contribute to the number of edges, leading to
an extra factor log k in (7.20). We obtain (7.20) by substituting (y.5, ) into (7.22) and com-
bining this with the © (k“~1/4) many short edges crossing the boundary. The maximizer(s)
tell(s) us if the dominant contribution of long edges comes from edges between vertices with
constant mark when (¥, y¥) = (0, 0), from edges between one high-mark vertex and one
low-mark vertex when (yJ, yX) = (y,0), or from edges between two high-mark vertices
when (¥, v¥) = (v, y). These edge types are the dominant types of connectivity described
in Section 1.1.

We prove (7.21) in Lemma 7.4 by showing that Bk, (w,,, wy)/ ||Xy — Xy
u, v are below M, and on different sides of 98;,. [

|4 < 1/2 whenever

We aim to balance the expectations in (7.18) and (7.20). Thus, we say that y is optimal
if the exponents of & in the first two cases of (7.18) (nonincreasing in y) and (7.20) (nonde-
creasing in y) are equal. Define when o < 0o

oa—1
max(&n, Ent, Enn) +7 — 1

(7.23) Vong :=min{y : 1 —y(t — 1) <2 —a+y&} =

Setting yjong as the smallest exponent y such that the expected number of vertices with mark
Q (k) is at most the expected number of edges between lower-mark vertices, supports the
definition of ypigh in (1.15) as the smallest exponent y such that a vertex of mark © (k")
is incident to constantly many edges of length €2 (k'/?) in expectation. The values Viong and
Yhigh agree when high—high or high-low connections are dominant. To use (7.21) below when
bounding P(Ag‘g_edge(y)) from below, we truncate y1ong and set

_|min(piong, 1/(0 + 1)) if @ < oo,

7.24 e =
(7.24) "o+ if o = 00

for the optimally suppressed mark profile. The following two lemmas relate the exponents
of k and logk in (7.1~8) and (7.20) to the exponent ¢, defined in (1.11), which appears in
the lower bound on P(A;kg_edge(y*)) in (7.16). Recall &1, ¢ny, and ¢hy from (1.14), (1.16),

and (1.18), respectively, and m,, Mjong, and &, from (2.1) and (7.19).
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LEMMA 7.6 (Exponents of the optimally-suppressed mark-profile). Consider a KSRG
under the conditions of Lemma 7.2. When a < 00,

2—a+ &y <max(l —y(r —1),(d —1)/d)

(7.25)
= max(&u, ¢hl Shhs (d — 1)/d),
and
m, — 1 = (Myong — 1)1{2—a+§*y*>%} + m10ng]l{2_a+$*y*:%}
(7.26)

=Ly o=ty

When a = oo, max(l — y(r — 1), (d — 1)/d) = max(&y, ¢his Chh, (d — 1)/d), and m, — 1 =
Ly, c—1=@@-1)/d}-

The proof is based on rearrangements of the formulas of ¢y, ¢hi, ¢hh, and &np, and we
postpone it to the Appendix on Page 1592. The following lemma connects (7.25) to ¢, defined
in (1.11) and implies Claim 1.4. We recall that we write u \ A,E if the vertex u = (x,, wy,) €

Aj x [1, 00) has an edge to a vertex v = (xy, wy) € A,E X [1, wy].
LEMMA 7.7 (Exponents of the downward vertex boundary). Consider a KSRG under the

conditions of Lemma 7.2. There exists a constant C > 0 such that, for all k,

log Ef[{u € A :u\  Ab}[]
logk

(7.27) (o= lim = max(¢un, Snl, Lu, (d — 1)/d) < 1.

Moreover, if max(¢nn, Shis §1) > 0, then

log El[{u € Mgy :u ™\ A1
logk

(7.28) Clong = klgl(;o = max(Snh, Cht, C11)-

If max(&nn, Cnl, 1) < 0, then the lim sup of the expression on the left-hand side is negative.

The proof is similar to the proof of Lemma 7.4, so we give a sketch in Section 4 of the
Supplementary Material [40]. We state an immediate corollary of Lemmas 7.3-7.7.

COROLLARY 7.8 (Optimized expectations). Consider a KSRG under the conditions of
Lemma 7.2. There exists a constant C7g > 0 such that for any realization of Vg, U Vg, that
satisfies Aregular(17) in (7.14) for some n > 0,

E[|Vou,, 1]

- , < C7.8k%* (loghk)™ !

E[lE(VEm,,» Vi, )]

PROOF. When a < oo, the exponents of r; and (logry) in Lemmas 7.3 and 7.4 are at

most ¢, and m, — 1 by Lemmas 7.6 and 7.7 when y = y,. When a = oo, the bound on the

expected number of vertices above M, follows analogously. The expected number of edges
below M,, is 0 by (7.21) while the right-hand site is nonnegative. [J

REMARK 7.9. When the maximum in {¢hh, Chi, ¢n, (d — 1)/d} is nonunique, the log-
correction factors in the expectations in (7.27) and (7.28) might differ from those in Corol-
lary 7.8, but these disappear in the limit of the logarithms in (7.27) and (7.28). These different
polylog factors are due to the fact that on phase-transition boundaries the expected number
of downward edges from high-mark vertices is no longer of constant order.
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We are ready to prove Lemma 7.2. We first assume that the vertex set is formed by a
Poisson point process, and then explain the adaptations when the vertex set is Z<.

PROOF OF LEMMA 7.2 ON POISSON POINT PROCESS. We set y =y, < 1/(0 + 1) de-
fined in (7.24). We recall from (7.17) that

(7.29) PV < My} NAY (7)) =PV < M,,) - P(AY . (7).

no-edge no-edge
We analyze the two probabilities separately. For the first factor we use the above indepen-
dence and that the vertex set is formed by a Poisson point process. By Corollary 7.8,
PV < M,) =P(1Vorr, | =0) = exp(—E[|Vou,, [])

(7.30) N
> exp(—C7.8k™ (logk)™ 1),

)
no-edge

We now turn to the second factor in (7.29). By definition of .A
conditional independence of edges,

(7.31) P(Af eage () = E[ I (1 —pu, v))].

in out
“esty,, ’UGVSM;/*

in (7.11), and using the

We will now use that y, < 1/(o 4 1) by (7.24), which enables us to use (7.21). When « = oo,
p(u, v) = 0 for each factor. So, P(Agz_edge(y*)) = 1, which finishes the proof of (7.16) when
o = 00 when combining (7.29) with (7.30). Assume now « < co. By (7.21), 1 — p(u, v) >
1 —27% for all (u,v) € Vis" M, X V"S”/‘\Ay*. Hence, there exists a constant ¢ > 0, such that
1 —p(u, v) > exp(—c - p(u, v)) for all such (u, v). Using this in (7.31) and that s — exp(—s)
is a convex function, Jensen’s inequality gives a lower bound in terms of the expected number
of edges between vertices below M,, , that is,

@(Affé.edge(W)ﬂNE[exp(—c > P(M,v))]ZeXp<—cI~E[ 3 p(u,v)D

ueyin , ueyin ,
(7.32) pea o
veVSMV* “esty,

= exp(—cE[|E(V2py,, . VEM,)I])-
We invoke Corollary 7.8 and obtain combined with (7.30) and (7.29) that
P({V < My} NAY 4 (1)) = exp(—Crg(c + Dk (logk)™ 1),

no-edge

proving Lemma 7.2 when the vertex set is formed by a Poisson point process. [l

PROOF OF LEMMA 7.2 FOR KSRGS ON Z?. We explain how to adjust the proof to
KSRGs on Z¢ using the assumption (p A B) < 1 in Lemma 7.2 by Assumption 1.3. Since
the vertex locations are given by Z¢, the event {V < M, } as defined in (7.9) would never
hold, since Z¢ does have points within distance Cg from 9Bj, in case Cg = (2/3)1/ d>1 (see
fy in (7.8) and the reasoning below (7.11)). Thus, if Cg > 1, we must adjust the definition
of f, within distance Cg of 0, to be a constant ¢ = c(p, B, o, 0) > 1 close to 1 to restrict
vertex marks of vertices that are present close to d53;,. With that change, the upper bound
27% on p(u, v) in (7.21) for vertices within distance Cg from 9B;, should be replaced by
another constant ¢’ = ¢/(p, B, «, o) smaller than 1, as these nearby vertices are connected
with an edge with positive probability strictly bounded away from one. This affects constant
prefactors in (7.32) when o < oco. When o = 0o, the expected number of potential edges
between vertices below M., is O (kd-D/d)y by similar calculations as in Lemma 7.4. To
bound P(Apo-edge (¥4)) from below the same reasoning applies as in (7.32) when o < oo.



1586 J. JORRITSMA, J. KOMJATHY AND D. MITSCHE

The proofs of Lemmas 7.3 and 7.4 remain valid by replacing concentration bounds for
Poisson random variables by concentration bounds for sums of independent Bernoulli ran-
dom variables, and replacing integrals over R¢ by summations over Z?. The proofs of Lem-
mas 7.6-7.7 remain verbatim valid. [J

7.3. Second-largest component and cluster-size decay. We are ready to prove Proposi-
tion 7.1. Recall P from (7.15), and the intersection of events in (7.12).

PROOF OF PROPOSITION 7.1. We first show (7.3). Recall the events Aggmponems,
A® - from (7.7), and A% (1) from (7.14). Set

small-in regular
(7.33) A;iz)lanon ={V = My, } N Ano-edge (Vs)-

The intersection of all these four events implies the event {|C,(0)| > k,0 ¢ C\"}, since
|C,, (0)] = |Cin(0)] > k, and Alsolatlon ensures that C, (0) is fully contained in Bi,. Hence, the
events {|C,(0)| < |Vg,,| < kMou/2} and {|Cout| > kMou — 1} ensure that C,(0) is not the
largest component of G,,. So, by the law of total probability

P°(|C, (0)] > k, 0 ¢ C.")

> P (Acomponents N Aigotation N Asmat-in 1 Aregutar (1)
(7.34) > P (Aggmponents N ’Alsolatlon g;)gular(n)) P()(_'Agl)wll-in)
= P*(Acomponents N Aregutar (M) P (Aigotation|Alomponents N Aregutar (1)
PO(_'Agglal]-in)'
Recall AY . = {|[Vg,| < kMow/2} from (7.7), and Moy = 2¢t2M;, above (7.6). The

box with side-length 2r; = 2(kMiy) 4 (by definition in (7.5)) centered at the origin is
the smallest box that contains Bi,. Using the intensity measure p, from (5.1), and writing
Bii = {(x, wy) € R i x € Bin; (x, wy) < M, }, we have

e (B) < 29k Miy = 272k Min /4 = kMg /4.

By a standard concentration inequality for Poisson random variables (see Lemma A.1 for
x = 2), there exist ¢/, ¢ > 0 such that, since r; = O (k!/?),

(7.35) P (=AY ) <exp(—crd) = exp(—ck).

small-in

Returning to (7.34), the event A% (1) = A%™ () N A%L™ (1), defined in (7.14), holds

- N . regular regular regular ] " .
with probability tending to 1 as k — oo, again by concentration inequalities for Poisson

random variables (see Lemma A.1 for x = 2). Hence,

P (‘A(Ck(:mponems ;]t(:)gular (77)) > P’ (Aggmponents) — P (- ('Al(’?gula: (n) )
=P (A(clgmponents) — ok (1).

We recall from (7.7) that Aomponents = {|Cin(0)| > k} N {|Coutl > kMout — 1}. Translate the

hyperrectangle Roy¢ in (7.6) containing Cf,lu)t to the origin of RY:

(7.37) R 1= A0, kMou/ p) x [1,10g" (kMou/ ),

(7.36)

and write C"" out'» Cour (0) for the largest component and for the component containing (0, wo)
in the subgraph of G, induced by vertices in R ,,. As before, we may ignore the conditioning
(0, wo) € V in Definition 1.2 in our computations. We use translation invariance of the prob-
ability measure and that the events {|Ci,(0)| > k} and {|C(()1u>t| > Moyk — 1} are independent
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because they are induced subgraphs of the disjoint hyperrectangles Ri, and Roy in (7.6).
Hence,

IFDO(-'ngzkczmponents) = IP)O(}Cin(o)| > k) (|C(()lu)t/| > Motk — 1)
> P°(|Cin(0)| > k)P°(|Cour (0)| > Mouik).

The bound P°(|C,(0)[1,log" n)| > pn) > p in (7.2) in Proposition 7.1 holds for all n suffi-
ciently large by assumption. In particular, since Cin(0) = Cx/,(0)[1, log" (k/p)) by definition
of Rin in (7.6), and Coyy (0) = Ci Moy /p,n(0) by definition of R}, in (7.37), we obtain for k
sufficiently large

PO( (c]gmponents) = IP)0(|C/</p O)[1, log” (k/p))| > k)
PO(|CkM0ul/P(O)[1’ logn (kMOllt/p))| > Moutk) Z 1029

implying that P* (A% mponents N Afegutar (1) = 0% — 0k (1) > 3p? /4 in (7.36). Since the event

regular

(7.38)

Aggmpmems N A;’;)gul (1) 1s measurable with respect to the o-algebra generated by the sub-
graph Gr, U Gg,,. we take expectation over all possible realizations of the latter satisfying

A® (n), and recalling the definition of the measure P from (7.15), we obtain by the defi-

regular

nition of P in (7.15)
P° (Ai]:)latlon | Ac(:kc;mponents i?gular(n))
=E [PO (Afls%latlon | gRin U gRout’ A(Ck(;mponents ’ ;];)gular(n))]
= B[P (A agion) )

We apply Lemma 7.2 on the right-hand side, and substitute the bound 3p?/4 below (7.38)
into (7.36) and then in turn into (7.34) and (7.35), to obtain for k sufficiently large

P° (Aggmponents A;I;z)ldtlon ‘Ag;;all—in ;l;)guldr(n))
(7.39) > (0%/2) exp(—Ak® (logk)™ 1) — exp(—ck)
(7.40) > (p?/2) exp(—A'K* (log )™ ).

We obtained the second row by substituting ry = (kM) 4in (7.5) and setting A" := Aan* /2
that also compensates for the constants from the log-correction term. Since ¢, < 1 by
Lemma 7.7, the second term in (7.39) is of smaller order than the first term in (7.39).
By (7.34), this finishes the proof of (7.3). We turn to the proof of (7.4).

Lower bound on second-largest component. We generalize an argument from [42]. We
have to bound P(|C}”| < k,, ) from above for a suitably chosen ¢ in the definition of &, ,
in (7.1). To do so, we fix ¥ € (0, 1) to be specified later, and assume for simplicity that
n1=9/d ¢ N. We then partition A, into m, = nl=? many subboxes Ag), e Ag""), centered
respectively at xi, ..., X, , each of volume 7 := n”. By disjointness, the induced subgraphs
Qg” s Gp ) in these boxes are independent realizations of Gj, translated to x1, ..., X, . We
write g~,;” g<m"> for the induced subgraphs, translated back to the origin; V("’ " for the
vertex set in G g  that is below M,, and inside Bj, after the translation (see (7.10)); and write

V('" ) for the same vertex set before the translation. For the translated subgraphs (Gg))iimn,
we deﬁne for k =k, . the same events as in (7.7), (7.33), (7.14),

i) . (kn,s)’i (lin )i (Iin,s)»i (kn el
A T Acomponents N A NA L NA

good 1solat10n small-in regular( )
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where now in the definition of these events we replace C;(0) with the component containing
the point of V closest to the origin 0 € R? for O € {in, 7i}. We also assume that 7# = n? is
sufficiently large compared to k,, , in (7.1) so that the spatial projection of the box Ry still

fits within Aj. This can be ensured even if k, , = ®(n?) is maximal in (7.1) by choosing

e<v. If .Ag(),od holds for some i < m,, then the induced graph gg” in subbox Ag) contains

a component C(~’> in V("‘ ’) (which we call a “candidate” second-largest component of G,)

ky e that is, not the largest component in its own box, and all vertices in A}’
are below M,, (x;), that is, M, shifted to x;.
Since the event .A(g())od is restricted to the induced subgraph G ;l’), on .Ag())od there might still

with size at least k

be an edge from a candidate second-largest component C;; “ to a vertex in a different box Af{).
We exclude such edges in another event: we demand that the whole vertex set V(‘" ’) has no

edge to any other box, so that the component C; ) is isolated also in G, and has size at least
k, .- Taking complements we obtain that

(O] <ky o S {3 <my:VEG ~V\ VU ( N (ﬂA;'éod))-
i<my
By translation invariance, a union bound, and the independence of (G ,({ )) i<mp»

(741 P(CP[ <ky o) <maP(VEy ~ Vi \ Vi) + (1 = P(Agooq)™ =: T1 + T2.

good
By the definitions in (7.10) and (7.5), each u € V"‘M has |[x,| < rk with k =k, ., and
mark w, < f,,(rk .)s (f« = fy, 1s from below (7. 24)) As a result, <M, S Vo, Hall,

ferre ) S Vg, whenever (2rk ) =k, Min2d < n”, which holds Whenever e <9 by(7.1).

=n,&

Hence we can bound 7; as

Tl 5 mnP(V(zrkn a)d[l’ f*(l’kn,g)) ~ Vn \ Vﬁ)
We can directly apply Claim 6.6 to the right-hand side, that is, setting there N := 7 = n?
and n := (2ry, )* =k, . Min2? (by (7.5)) and W := f, (%, ). The profile f, = f,, is defined
below (7.24), using (7.8) with exponent y, and rx = (Mink)'/? in (7.5), and finally k,, , from

(7.1) we obtain

d

W= fulr, )= Cy " = " Ml

n —=n,e"*

Condition (6.26) holds whenever ¢ < ¥, since N = @ (n”) while kye= O (nf) and we trun-

cated y, in (7.24) at 1/(o + 1), so also w® ! = @ (k1" TP) = O (n®). Then Claim 6.6 yields
for some C > 0
Ty <muCes fu(ri, )00 (kyy o Min29)n ™7 M@ LT=20 (1 4 111y log(n”))

< C(logn) .krll::%cm 1Y min(@.r—1)

Since kn,e in (7.1) is at most n®, as long as 1 — ¥ min(x, T — 1) < 0, we can choose ¢ > 0 in
(7.1) small such that, for any é € (0, ¥ min(e, T — 1) — 1), for all n sufficiently large,

(7.42) Ty <n?.

We turn to bound 75 in (7.41) using (1 — x)™ < exp(—myx), where we apply (7.40) on
x=PAY 4) to obtain a lower bound on the exponent

200!
nP(Afood) = (0°/2)n" " exp(— Ak (logk, )™ ")

= (0%/2) exp((1 — #)(logn) — A’k (logk, )™ ).



CLUSTER-SIZE DECAY IN SUPERCRITICAL KSRGS 1589

In order to show T» < n~% in (7.41), it is much stronger to show that with m, — 1 =m/’,
(7.43) V&' >0, there exists &1 > 0 s.t. forall e <ey: A/Igfl*’g(loglgn’g)m/ < ¢'logn.
We recall the definition of k, . in (7.1) and formally check the two cases.

Case 1. ¢, > 0. We substitute k,, , in the first row of (7.1) to (7.43)

/ 1 1 1/(* m,
AKS ok, g™ = Ao OB (1oL L) T
’ ’ (loglogn)™ (loglogn)™

The last factor is at most ¢ m’ (loglog n)m/, and (7.43) follows whenever ¢ < ¢’ ;;“/ /A

Case 2. ¢, =0. We substitute k,, , in the second row of (7.1) to (7.43)

A’kﬁfe(logkn’g)m/ = A’(log(exp[ (¢ log n)l/m/]))m, = A'glogn,

and (7.43) again follows. Choose now any ¢ € (1/ min(e, T — 1), 1)—which is possible since
« > 1, 7 > 2—and then combine (7.42) with 7> < n—® to bound (7.41). This finishes the
proof of (7.4) and hence Proposition 7.1 subject to Lemma 7.2. [

7.4. Lower tail of large deviations. We finish this section with the proof of Theorem 2.4,
which is based on Lemma 7.2.

PROOF OF THEOREM 2.4. For p > 1 the statement is trivial. There exists a constant
C > 0 such that, for any p € (0, 1) and n > 1, a box of volume 7 is contained in the union of
[C/p] (partially overlapping) balls of volume np/2. We use balls instead of boxes to reuse
the optimally-suppressed mark profile from (7.8) which is defined for a ball; this is a minor
technical detail. Fix p € (0, 1), and write V% for the vertices in the ith ball of such a cover
of balls of volume np/2. Recall that |[E(A, B)| denotes the number of edges between the sets
A, B. Then

@44 el <on}2 () (IEVO VAV =0} A (V9] < pn).
i<[C/p]

Indeed, on the event on the right-hand side, each connected component of G, is fully con-
tained in some ball (or the intersection of some balls) with at most pn vertices. We apply an
FKG inequality to bound the probability of intersection from below.

We give a (natural) definition of increasing events, using the collection ¥ from Def-
inition 5.3 that encodes the presence of edges using a set of uniform random variables
Wy = {@,.v:u, v €V} We say that a function f(V, ¥y) defined on the marked vertex set V
and edge-variable set Wy, is increasing if it is nondecreasing in } with respect to set inclusion
(formally, if V' 2V, W)y D Wy, then f(V', W) > f(V, Wy) holds), as well as coordinate-
wise nonincreasing with respect to the edge variables (formally, if W}, satisfies Puv < Pu

for all u,v € (g), then f(V,W},) > f(V, Wy) holds). Intuitively this means that more ver-
tices and edges increase the value of f. Similarly to [21], we obtain that for two increasing
functions fi, f2,

E[ AV, W) - oV, W) =E[E[fi(V, W) - oV, ¥y)[V]]
[E[A1(V, ¥)|V]-E[ 2V, W) |[V]]
AW, 9] -E[2(V, ¥y)],

by applying FKG to the random graph conditioned to have V as its vertex set for the first in-
equality using that f; and f> are increasing in the edge-set, and then FKG for point processes

=

B &=

=
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for the second inequality [47], Theorem 20.4. We say that an event A is decreasing iff the
function —1 4 is increasing. It follows that for decreasing events A, A’

PANA) =E[(-14V, ¥y)) - (14 (V, ¥y))]
(7.45) > E[14(V, W) |- E[1a4(V, Wy)]
=P(A) -P(A).

Observe that the events on the right-hand side in (7.44) are all decreasing (adding ver-
tices/edges make the events less likely to occur) so that (7.45) applies. Hence,

(7.46) P(C | <pn)>= [] PIEV?,V\V?)|=0)-P(V?| < pn).
i<[C/p]

Since each ball has volume np/2, the event {|V”| < pn} holds with probability at least 1/2 by
concentration inequalities for Poisson random variables (Lemma A.1 for x = 2). To bound
PEWVD,V \ V)| = 0), we consider the optimally-suppressed mark profile translated to
the center of the ith ball, with kMj, replaced by np/2. We restrict V' to be below the mark
profile, and to have no edges between V@ and V\ V. We apply Lemma 7.2, integrate over all
realizations of Gin, Gour satisfying Aregular, and use that the event Ayegylar in the conditioning
in P in (7.15) holds with high probability by Poisson concentration (Lemma A.1 for x = 2);
see the argument below (7.35). We obtain that for all i < [C/p],

P(lE(VD, Y\ VD) =0) - P(V?| < pn) > exp(—O(n* (logn)™ 1)) /2,
which proves (2.8) when taking the product over [C/p] balls in (7.46). O

8. Proofs of main results. We conclude the paper by formally verifying the statements
in Sections 1 and 2, starting with the main results.

PROOFS OF THEOREMS 2.1-2.2(i). Proposition 7.1 proves the lower bounds in Theo-
rems 2.1-2.2: its condition (7.2) on having a large enough component on restricted marks
occurs with positive probability by Proposition 5.14 when ¢y, > 0. The assumption 7 > 2 is
necessary to have a locally finite graph with multiple components. [J

PROOFS OF THEOREMS 2.1-2.2(ii-iii), AND COROLLARY 2.3. Proposition 5.1 proves
the upper bounds (part ii-iii) in Theorem 2.2. Substituting k = k,, = (Alogn)'/ for a suf-
ficiently large constant A = A($) yields part (ii), which uses T > o 4 1. For part (iii), that
is, when 7 < o + 1, we substitute k = (A logn)"“_(r_l)/“ instead. The condition ¢y > 0
is required to construct a backbone of high-mark vertices (Lemma 5.2), and to merge com-
ponents of size at least k with the backbone via a high-mark vertex in (5.43). The distinction
between T > o 4+ 1 and 7 < o + 1 arises from the cover—expansion step in Lemma 5.9.
sites (6.1)—(6.3) of Proposition 6 1. Let £ = ¢hn when T Z oc+land¢=1/(c +1— (v —
1)/a) when T <o + 1. Set c; =0, c» =1, and let ¢3 > 0 be a sufficiently small constant.
Then (6.1) is implied by Proposition 5.1, (6.2) by Corollary 5.11, and (6.3) by Proposi-
tion 5.12 (we leave it to the reader to verify that these statements hold for the Palm-version
P% of P as well). O

We continue with the statements in Section 1.

PROOF OF THEOREM 1.1. For continuum scale-free percolation, geometric inhomoge-
neous random graphs, and hyperbolic random graphs we have o = 1. When 1 € (2, 3), then
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t>o0+1,and {gIrg = B3 —1)/(2 — (t — 1) /&) agrees with &y, from (1.18). The statement
assumes that {Glrg > max(2 — «, (d — 1)/d) = max(Zy, Lshort) by (1.14) and (1.13). This
implies that & > 7 — 1, and also that {girg > (= (t — 1)/a — (t —2) when o > 7 — 1. As
aresult, m, in (2.1) is equal to 1 and there are no polylog factors in Theorems 2.1-2.2(i), and
¢« = {GIrRg by Lemma 7.7. The statements in (1.3) now follow from Theorems 2.1-2.2(i-ii),
2.4, and Corollary 2.3. We mention that hyperbolic random graphs are generally defined with
exactly n vertices on an n-dependent hyperbolic space, giving an n-dependent vertex-mark
distribution and an n-dependent connection probability function. However, these converge
(fast) to their limiting distribution and connection probabilities, and can be bounded from
above and from below by connection probabilities satisfying Assumption 1.3, respectively;
see [44], below equation (9.8); and equations (9.16) (9.17). So, one can build the same struc-
tures as we did here and use these upper bounding connection probabilities in upper bounds
and the lower bounding connection probabilities in lower bound estimates to arrive to the
same result for HRGs. The results generally extend to models where the number of vertices
is exactly n, and where vertex locations are independent uniform random variables on A,
by conditioning on a Poisson(n) variable to be exactly n. We leave this technical extension
to the reader: one needs to replace concentration bounds for Poisson random variables with
Chernoff bounds, and one also needs to add extra events that control the number of vertices
in certain space-mark areas. [J

PROOF OF CLAIM 1.4. The statement is implied by Lemma 7.7. [

APPENDIX: AUXILIARY PROOFS

PROOF OF PROPOSITION 5.12.  We give the detailed proof for t > o + 1. At the end
of the proof we explain the adjustments for T < o + 1. We will first derive a bound on
P(3v € V,[w, 00) : v ¢ C\V) for arbitrary w > 1. We make use of the backbone construction
from Section 5: we will show that vertices with mark at least w are likely to connect by an
edge to the backbone Cyp, which will be a subset of the giant component. Observe that the
event in (5.46) allows us to choose the size of the boxes when we build the backbone, that
is, the value of k is not yet defined with respect to w. We define k = k(w) implicitly by
W =: A1k!~"h where A is a large enough constant to be determined later. We aim to show
that for some A, > 0, and n >k,

(A.1) P(—=Amark-giant (1, W)) :=P(Fv € V,[w, 00) :v ¢ C\) <n exp(—Azk(w)Q’h).
If this bound holds, then substituting w = w, = (M, log n) (1= vhn)/ Ehn yields the value
k(wn) — Al_l/(l_ayhh)wrll/(lfdyhh) — Al_l/(l_(f}’hh)(Mw logn)l/fhh.

When we substitute this back to (A.1) we obtain that for M,, sufficiently large the right-hand
side is at most n 2, as required in (5.46). We now prove (A.1).

Recall App(n, k) and Cpp(n, k) from (5.10). Distinguishing two cases depending on
whether App (12, k) holds for G, » = G,[1, 2wpp) or not (with wyh (k) in (5.8)), by Lemma 5.2,

HJ)(_‘~/4mark—giant(’/ls w)) < P(—=App) + E[R{Abb}P(_'-Amark—giant(”, w)lgl’l,27 Abb)]
(A.2) < 3nexp(—csok5h)

+ E[H{Abb}P(_'Amark—giant(n, w) |gn,2s Abb)]-

On the event App, there is a backbone Cyy. This backbone is either not part of the giant
component, or if it is, then a vertex with mark at least w outside the giant has no connection
to any of the vertices in the backbone. Hence, conditionally on the event Ay,

—Amark-giant (1, W) € {Cop € C\"} U {Fv € VY, [W, 00) : v % Cpp, Cop € C\}-
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By a union bound and Corollary 5.10, this implies that
(A3) P(_'Amark—giant(na w)|gn,27 -Abb)
' < (n/k)exp(—cs.1k) + P(3v € V[T, 00) : v % Cop |G 2. Abp)-

Recall that G, > is the graph spanned on vertices with mark in [1, 2wyp); see Definition 5.6.
With C; from (5.6)—(5.7), we may assume A| > 2C;1/(171). Since wpp, = C;l/(rfl)kyhh
defined in (5.8), and since 1 — (1 4+ o) ynn > 0 (see (5.16)), this implies that

W= Ak =0 > 2y =20 /O Vo,

Hence, vertices of mark at least w are part of V,[2wpy, 00) and are not revealed in G, ». Con-
ditioning on the number of vertices |V,[w, 00)|, the location of each vertex is independent
and uniform in A,. Taking a union bound over these vertices in V, [w, 00), yields

P(3v € Vu[w, 00) : v % Cbb|Gn,2, Abb)

<E[WVu|w,00)[]- sup P(v»CpblGn,2, Abb)
(A4) [ ] UGVH[%”OO) bb1Yn,2, Abb

<n sup P(vCpblGn2, Abb).
veV, [w,o0)
Now we use that the backbone is spatially “everywhere”. Let Q(v) be the box of v as in
(5.4). Conditionally on App, Q(v) contains at least s, = ® (k%) vertices in Cpp, with mark in
[whh, 2whp), where wyy is defined in (5.8), yielding the set of vertices S(v) in (5.22). We use
the distance bound in (5.5), and p, x, defined in (2.9), and (1.7), respectively, and the value
w in (A.4), to obtain that for any v € V,,[w, 00) and u € S(v), when o < o0,

p(u,v) = p(1 A (Bo (whn, A1k' 77 2v/d) =k "))"
= p(1 A (BCT/ T Vgomn Ak =ome 2/d) k1Y) = p,

whenever A > (Zﬂ)dCf/ =D /B, since the exponent of k in the second term of the min-
imum is 0. The same bound holds when o = co. Since v connects by an edge to each of
the s; = ® (k%) many backbone vertices in S(v) with probability at least p, conditionally
independently of each other, we bound (A.4) by

P(3v € Vu[W, 00) : v % Cob|Gn.2, Abb) < n(1 — p)**.

Since s; = @ (kM) in (5.8), combining this with (A.2) and (A.3) yields (A.1) for A, suffi-
ciently small. As argued below (A.1), this yields (5.46) when t > o + 1. When 7t <o + 1,
the exponent &y, in the exponential on the right-hand side in (A.1) and in the first term on the
right-hand side in (A.2) and (A.3) change to 1/(o +1 — (t — 1)/a) due to Corollary 5.10.
Setting W, = (M, logn)=omn)©@+1=@=1) proves (5.46) when t <o + 1. O

It remains to prove Lemma 7.6.

PROOF OF LEMMA 7.6. We start with three helping statements to prove the bounds for
o < oo. First, we prove the implication

I — Yiong(r — 1), I — Yiong(r — 1)
(=1 max 1l —p(r—1), >0 = =l-p@-1
2—Ol+)/*§* =2—05+)/*5*
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Since Y, = min(Yiong, 1/(0 + 1)) by definition in (7.24), the second term in the maximum
is at least the first term. Since yjong is the smallest y such that 1 —y(t — 1) <2 —a + y&,
by (7.23), the second term in the maximum is at least the third term. Thus the left-hand side
is equivalent to 1 — y,(t — 1) > 0. By the same definitions, the right-hand side only fails
to be true if Yjong # V&, Which is when piong > v% = 1/(0 + 1). Thus, (=) is equivalent to
showing

(A.S) l—p(t—=1D)>0 = Ying=<1/(c+1).

If Yiong = V&, the implication holds since y, < 1/(0 + 1) by definition. If y1ong > ¥4, then
¥« = 1/(0 + 1) and the left-hand side is equivalent to T — 1 < o + 1. We substitute yiong
from (7.23) with &, from (7.19) to see that y1ong < 1/(0 + 1) is equivalent to

max(t — Lo, (0 + Do —(t — 1)) = (@ — )(o + 1).

The third term in the maximum is at least (@ — 1)(c + 1) if T — 1 <o + 1, proving (A.5)
which is equivalent to (= ).

We now state and prove another, second implication. Recall {hh = 1 — ypn(t — 1), &n =
2—a,and gy =1— (1 —1/a)(r — 1) from (1.18), (1.14), and (1.16), and &y, = (0 + D —
2(t —1),&1=0,and &, = o — (r — 1) from (7.19). We prove now

(=2) Conh < 0 <max(fn, ¢n) == &nn < max(&n, &n).

By (1.18), ¢hh < O if and only if o + 1 < t — 1, while max({y;, ¢hi) > 0 implies by elementary
operations that « < max(2, (t — 1)/(t —2)). On the one hand, if « <2 ando +1 <7 —1,
(=) follows immediately since

éh <2(t — 1) =2z — 1) =0=4.
If on the other hand ¢ < (r — 1)/(t —2)and 0 + 1 < 7 — 1, then

o
=6+ o — (= D =g+ (0 - D=2~ 1) <gu.
which finishes the proof of (=7). Next, we prove a third implication

(=3) max (&, ¢hts $hn) =0 == 1 — Yiong(t — 1) = max(&u, ¢hi, Shn)-

Recalling the definitionsof {y =2 — o, tn=1— (¢ —1)(r — 1)/, and &pp = 1 — ynn(z — 1)
from (1.14), (1.16), and (1.18), as well as yiong from (7.23), the right-hand side is equivalent
to showing
(A6) o | in(( = 1)/(x = 1), (@ — 1)/at, y)

. = min((o — t—1),(a—1)/a, .

max(t — Lo, (o + Da — (z — 1)) Vi

If T <2+ o, the definition of ypy = (1 — 1/a)/(c +1 — (r — 1)/a) in (1.17) proves the
equality in this case. If T > 2 4 o, then {hn < 0 by definition in (1.18), and we need to show
1 = Yiong (T — 1) = max(&u, &h)-

If max(&y, ¢n) > 0 > ¢nn, (=2) implies (by subtracting T — 1 from each of the £ values)
that the maximum in the denominator on the left-hand side in (A.6) is never attained at the
third term in (A.6). Hence, 1 — yiong(t — 1) = max(¢y, {ni) follows since formally clearly

1 min(@— D/ - 1), @ — 1))

max(t — 1, o)

holds. Using similar rearrangements and the definitions, the reader may verify that

(=4) max({i, &nis ¢hh) <0 = 1 — Yiong(r — 1) <O0.
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We prove now (7.25). By definition of y1ong and y, in (7.23) and (7.24), 2 — o + yuéx <
1 — y.(r — 1), leaving to verify the equality in (7.25). First assume max(¢y, ¢hi, ¢hn) < 0, so
that 1 — p1ong(t — 1) < 0 by (=>4). Then (=) implies that also 1 — y,(t — 1) < 0, otherwise
they would be equal and all nonnegative. So, (7.25) holds in this case since (d — 1)/d > 0
for all d > 1. Finally we assume max({y1, ni, ¢hn) = 0. Then, (=3) and (=) imply that then
max ({1, ¢nl, ¢hh) = 1 — Yo (r — 1). Thus, (7.25) follows again.

To prove (7.26), we introduce some general notation in which we count the multiplicity of

the maximum. Let for a list (with potentially repeated elements) } = {y1, ..., y¢} C R,
(A.7) mQ) :=mO1, .. y0) = Y Liy—max))-
iele]

Define sign: R+ {—, 0, 4} as sign(x) = — for x < 0, sign(x) = + for x > 0, and sign(0) =
0. Consider now two lists of numbers {yy, ..., y¢} and {z1, ..., z¢} of length £. We claim that

(A.8) (sign(y; —yj)=sign(zi —zj)) Vi#j) = m(yi,...,y0) =m(zi,...,20).

Indeed, the index of a maximal element in both lists can be identified in a list if all sign
differences are equal to 0 or 4, and the multiplicity can be computed by counting how often
the sign difference with the other elements equals 0. We will use this observation to prove

(=s) max(&i, ¢ht, hn) =0 == m(&u, ¢nis ¢hn) = M(&1, Eht, Ehh) = Miong.

We claim that m(&y, &n) = m(&y, ny): using the definitions of &y =0 and &y = o — (7 —
1) from (7.19), and ¢y =2 —a and ¢y =1 — (1 — 1/a)(r — 1) in (1.14) and (1.16), it is
elementary to compute that sign(&y — &p) = sign(&y — &n)-

Assume now that ¢hn < 0 < max (i, ¢h)s $0 M, Shis hh) = M(C1, Sh) = m(&n, &nn).
By (=2), also &nn < max(&y, &nr), so m(&n, &n) = m(&u, &nl, &nn). Thus, (=5) follows when
¢hn < 0 by definition of mygng in (7.19).

Assume next that &y =1 — ppp(t — 1) > 0. Using yph = (@0 — 1) /((0 + Do — (r — 1))
and & = (0 + Do — 2(7 — 1), we leave it to the reader to verify that also sign(& — &nn) =
sign(¢y — ¢hn) and sign(&n — &nn) = sign(¢nr — ¢hn)- This proves (= 5) in all cases.

We now analyze the left-hand side in (7.26), and note that m, = m({y1, &nl, &hn, (d — 1) /d)
by definition in (2.1). Thus,

m, — 1= (m(&u, Snls Shn) — 1)1{maX(§u,§m,g‘hb)>%} + m(&u, Shi, ghh)]l{maX(éu,chl,thh)=%}’

as m(&i, &nls Shn, (d —1)/d) —1 = 0if max (¢, ¢ni, $hn) < (d—1)/d. Since (d—1)/d > 0, we
can replace the multiplicities on the right-hand side by mjong using (=5). By (=) and (=3)
we can replace the maximum inside the indicators by 2 — o + y,&,. Thus,

m,—1= (mlong - 1)]1{2_0{+V*§*>dd;1} + mlongl{Z—tx—l-y*S*:dd;l}'

This proves the equality in (7.26). We turn to the inequality in (7.26). If the right-hand side
of (7.26) is zero, the bound holds trivially since m, > 1. If the right-hand side of (7.26) is
one, thatis, 1 —y,(t —1) = dd;l, then by (=1) and (=3) also max({y, ¢nl, ¢hn) = (d — 1) /d,
and m, > 2, proving (7.26).

Finally, we prove the statements for & = co. We compute limy—, o {] =2 — @ = —00 and
limy— 00 ¢h1 = (r — 1) /oo — (t —2) = — (7 — 2). Hence, max(¢y, ¢h) < (d —1)/d. By (7.24),
Vo=1/(c+1),and eyjn=1—(t — 1)/(o + 1) by (1.18). So, 1 — y,(t — 1) = &hp, proving
max(l — y(t — 1), (d — 1)/d) = max(&u, ¢nl, ¢hns (d — 1) /d). By the same argumentation

m, — 1 =m(Z, Sats Shns (d — 1)/d) — 1
=m(¢nh, (d — D /d) = 1= 11—y, (c—)=(d—1)/d}- 0

Lastly, we state a Poisson concentration bound (without proof) that we often rely on in the
paper.
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LEMMA A.1 (Poisson bound [51]). Forx > 1,
P(Poi(1) > xA) <exp(—A(1 4+ xlogx — x)),
and for x <1,

P(Poi(x) < xA) <exp(—A(l —x — x(log 1/x)).
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SUPPLEMENTARY MATERIAL

Supplement to ‘““Cluster-size decay in supercritical kernel-based spatial random
graphs” (DOI: 10.1214/24-A0OP1742SUPP; .pdf). This supplement presents the remaining
proofs: it contains the proof of Proposition 5.14 that the origin is with positive probability
in in a linear-sized component inside the graph whose marks are restricted, and presents the
proofs of Claims 6.4 and 6.6 for the upper bound on subexponential decay (both based on
the computation of first moments), and contains the computations of the integrals that prove
Lemmas 7.3 and 7.4 for the lower bounds, and a sketch of Lemma 7.7.
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