
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2009

MSc THESIS

Scalable Multi-core Architectures for Data
Mining Applications

Madhavan Manivannan

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2009-32

Over the past few decades we have witnessed an exponential growth
in the amount of data being used in virtually all domains. Extracting
useful information from massive amounts of data is crucial and hence
lot of data mining applications employing complex algorithms have
been developed to aid in this task. As these data mining applications
are gaining prominence it is very important to understand and ad-
dress these application needs and translate them into design choices
to have efficient and scalable processor architectures. This thesis is
a step in this direction and involves investigating architecture alter-
natives that offer maximum scalability for data mining applications.
For investigation we choose the Minebench benchmark suite from the
data mining application domain and specifically worked with clus-
tering and classification benchmarks. For evaluating the different ar-
chitectural alternatives, we employ the SESC simulator. We identify
the different architectural alternatives to be used for exploration by
carrying out performance analysis experiments and identifying char-
acteristics common to all the applications in this domain. Based on
these observations, we select Asymmetric Chip Multi-Processor and
Heterogeneous Multi-core Processor as candidate architectures and
evaluate them by comparing them to a baseline Homogeneous Chip

Multi-Processor. The evaluation shows that Asymmetric Chip Multi-Processor architectures provide bet-
ter performance scalability than Homogeneous Chip Multi-Processor architectures for all the benchmarks
considered. For Heterogeneous Multi-core Processor architectures we use two different scheduling strategies
and observe large differences in performance results. Based on the results we conclude that Asymmetric
Chip Multi-Processors consistently perform better than Heterogeneous Multi-core Processors.

Scalable Multi-core Architectures for Data Mining
Applications

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Madhavan Manivannan
born in Mumbai, India

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Scalable Multi-core Architectures for Data Mining
Applications

by Madhavan Manivannan

Abstract

O
ver the past few decades we have witnessed an exponential growth in the amount of data
being used in virtually all domains. Extracting useful information from massive amounts
of data is crucial and hence lot of data mining applications employing complex algorithms

have been developed to aid in this task. As these data mining applications are gaining prominence
it is very important to understand and address these application needs and translate them into
design choices to have efficient and scalable processor architectures. This thesis is a step in this
direction and involves investigating architecture alternatives that offer maximum scalability for
data mining applications. For investigation we choose the Minebench benchmark suite from the
data mining application domain and specifically worked with clustering and classification bench-
marks. For evaluating the different architectural alternatives, we employ the SESC simulator. We
identify the different architectural alternatives to be used for exploration by carrying out perfor-
mance analysis experiments and identifying characteristics common to all the applications in this
domain. Based on these observations, we select Asymmetric Chip Multi-Processor and Hetero-
geneous Multi-core Processor as candidate architectures and evaluate them by comparing them
to a baseline Homogeneous Chip Multi-Processor. The evaluation shows that Asymmetric Chip
Multi-Processor architectures provide better performance scalability than Homogeneous Chip
Multi-Processor architectures for all the benchmarks considered. For Heterogeneous Multi-core
Processor architectures we use two different scheduling strategies and observe large differences in
performance results. Based on the results we conclude that Asymmetric Chip Multi-Processors
consistently perform better than Heterogeneous Multi-core Processors.

Laboratory : Computer Engineering
Codenumber : CE-MS-2009-32

Committee Members :

Advisor: Ben Juurlink, CE, TU Delft

Chairperson: Kees Goossens, CE, TU Delft

Member: Zaid Al-Ars, CE, TU Delft

Member: Henk Sips, PDS, TU Delft

i

ii

iii

iv

Contents

List of Figures vii

List of Tables ix

Acknowledgements xi

1 Introduction 1
1.1 Trends in Architecture Design . 1
1.2 Architectures for Data Mining Applications 3
1.3 Thesis Objective and Contribution . 5
1.4 Thesis Overview . 5

2 Architecture Simulation and Benchmarking 7
2.1 Computer Architecture Simulation - An Overview 7
2.2 Classification of Simulators . 8

2.2.1 Full System and Architecture Simulators 8
2.2.2 Functional and Performance Simulators 9
2.2.3 Execution/Event Driven and Trace Driven Simulators 9

2.3 Simulation Challenges . 10
2.3.1 Simulation Speed . 10
2.3.2 Simulation Accuracy . 10

2.4 Simulator Requirements . 10
2.5 Overview of Existing Simulators . 11

2.5.1 SimpleScalar . 11
2.5.2 RSIM . 12
2.5.3 SIMICS . 12
2.5.4 SESC . 14

2.6 Benchmark Selection . 14
2.7 Conclusion . 16

3 Software Considerations and Workload Characterization 17
3.1 Programming Model and Threading Libraries 17
3.2 Workload Evaluation . 18

3.2.1 Evaluation Platform . 18
3.2.2 Evaluation Metrics . 18
3.2.3 Evaluation Issues . 19

3.3 Workload Characterization Results . 20
3.3.1 HOP . 20
3.3.2 SCALPARC . 23
3.3.3 KMEANS . 26

v

3.3.4 FUZZYMEANS . 28
3.3.5 Conclusion . 31

4 Scalable Multi-core Architectures for Data Mining Applications 33
4.1 Data Mining Workload Model . 33
4.2 Exploring Architectural Alternatives for Scalability 35

4.2.1 Homogeneous Chip Multi-Processor 35
4.2.2 Asymmetric Chip Multi-Processor 36
4.2.3 Heterogeneous Multi-Core Processor 36

4.3 Experimental Setup . 37
4.4 Baseline CMP Scalability . 38
4.5 Conclusion . 39

5 Evaluation and Results 41
5.1 Architectural Specifications . 41

5.1.1 ACMP Architecture Configuration 41
5.1.2 HMCP Architecture Configuration 42

5.2 R12K- vs R12K vs R12K+ . 42
5.3 ACMP Performance Analysis . 43
5.4 HMCP Performance Analysis . 47
5.5 Conclusion . 50

6 Conclusions and Future Work 53
6.1 Conclusions . 53
6.2 Future Work . 54

Bibliography 58

A SGI Altix Architecture 59

vi

List of Figures

1.1 Trends in Architecture Design as a consequence of Moore’s Law (taken
from Hofstee [23]) . 2

1.2 Tradeoffs across different optimization approaches (taken from Pisharath
et al. [14] . 4

2.1 Classification of Existing Simulators . 8
2.2 Region Of Interest. 15
2.3 Classification of Benchmark Suites based on Architectural Characteristics

(taken from Berkin et al. [36].) . 15

3.1 HOP Analysis. 21
3.2 SCALPARC Analysis. 24
3.3 KMEANS Analysis. 27
3.4 FUZZYMEANS Analysis. 30

4.1 Data Mining Workload Model . 34
4.2 Architectural Enhancements Classification 35
4.3 Scalable Multi-core Architectures for Data Mining Applications 36
4.4 Simulated CMP Scalability . 38

5.1 R12K+ vs R12K . 43
5.2 Single Thread Performance on R12K, R12K-, R12K+ cores 44
5.3 ACMP vs CMP (for 8 CMP equivalent threads) 44
5.4 ACMP vs CMP (for 16 CMP equivalent threads) 45
5.5 Amdahl’s Law - ACMP vs CMP (for 16 CMP equivalent threads) 47
5.6 HMCP vs CMP (for 8 CMP equivalent threads) 48
5.7 HMCP vs CMP (for 16 CMP equivalent threads) 49
5.8 HMCP vs CMP (for 16 CMP equivalent threads with resource aware

scheduling) . 50

A.1 42U SGI Rack (taken from [1]) . 59
A.2 SGI Blade Architecture (taken from [1]) 60
A.3 SGI NUMAflex DSM architecture (taken from [1]) 61

vii

viii

List of Tables

4.1 Baseline CMP Configuration. 38

5.1 Core Configuration Table - R12K- ,R12K, R12K+. 41
5.2 CMP, ACMP and HMCP Configurations 42

ix

x

Acknowledgements

First of all I would like to thank Prof. Ben Juurlink for his guidance and support
throughout the length of this thesis work. His suggestions on improving the content
and his critical remarks on my writing helped me enormously in compiling this thesis.

I would also like to thank Cor and Sebastian for their valuable suggestions and
help. I would also like to thank Judit Gimenez, Mauricio Alvarez from Barcelona
Supercomputing Center for helping me with the tools.

I would also like to thank Prof. Henk Sips and Prof. Zaid Al-Ars for accepting
to serve on my thesis defense committee. I would also like to thank Prof. Georgi
Gaydadjiev for his support and motivation.

Finally I would like to thank my parents, my brother and all my friends for their
encouragement and support.

Madhavan Manivannan
Delft, The Netherlands
November 30, 2009

xi

xii

Introduction 1
1.1 Trends in Architecture Design

Processor performance has made massive advancements in the past few decades. We
have advanced to an age where we use notebooks priced at a few hundred euros, which
can deliver performance at many orders of magnitude higher than that provided by
massive supercomputers of the past. This leap in performance was evident when the
petaflop barrier was first surpassed by the Road Runner Supercomputer at LANL [4].
This machine employs hundreds of thousands of high performance processors each
capable of delivering performance of the order of few hundreds GFLOPS. Experts
believe that if this burgeoning industry advances at the current rate exaflop barrier
would be achievable within a decade’s time [2].

This growth attributed to the technological and architectural advances, is also
starting to pose myriad design challenges. For instance, the current rate of doubling of
transistor count every 24 months in accordance with Moore’s Law is causing enormous
pressures on processor architects to make use of this resource efficiently as they are
running out of design options. Consider the case of the MIPS R12000 processor which
has been introduced more than a decade ago. It bears many architectural enhancements
and was able to deliver very high performance. It had features like speculation, wide
issue, out of order execution etc to name a few. It was considered as a complex
architecture with features that delivered massive improvement in performance over the
previous generation processors. The overall design utilized around 7 million gates and
was manufactured in 0.18 µm process technology [20]. In retrospection, looking at the
current state of the art processors, it is clear that there have not been much architectural
advancement from a design perspective. We still retain most of the same architectural
features inspite of having 2 billion transistors to design modern day processors (this
translates to a staggering 250 fold improvement in the number of resources merely in
terms of transistor count). Although we have made few advances like SMT, trace cache,
ISA extensions etc., the fundamental improvement in uniprocessor design has remained
almost the same leading to design stagnation. Sparking enhancements are rarely seen
(except the growth in cache size for each generation) and this trend is bound to continue.

To cope with the performance requirements and also to ensure efficient utilization
of resources, the industry as well as academia have diverged from the uni-processor
framework and have adopted the multi-core paradigm. Although there is still some
focus on uniprocessor design (as this is the fundamental building block of the modern
microprocessor), most of the community has started to focus its attention on issues
surrounding design of multi-core processors. Multi-core architectures come in two

1

2 CHAPTER 1. INTRODUCTION

variants, homogeneous CMP and heterogeneous CMP. A Homogeneous multi-core is a
design variant in which a single core is replicated to achieve a multi-core configuration.
Most multi-core architectures which are currently on the market, barring a few models
like the Cell, basically belong to this category. The primary motivation for the industry
to stick to this model is to ease programmability, compiler design, OS complexity and
resource management related issues [19]. Homogeneous multi-cores help in achieving
performance scalability through parallel execution of threaded workloads but it is still
inferior in terms of performance offered at a per thread basis when compared to its
heterogeneous counterpart [31].

Heterogeneous multi-core is being worked upon by researchers in academia as it has
better potential and this is largely because of the improved power-performance ratio
[29], that it offers. Its impact on future processors has been outlined in [28], but a lot
of general issues need to be sorted out before it is adopted. Many interesting proposals
along the line of heterogeneous CMP’s have also been made viz. an asymmetric
multi-core processor [35], Conjoined Core Chip Multi-Processor [30], Core-Fused
Architecture [24] etc.

Figure 1.1: Trends in Architecture Design as a consequence of Moore’s Law (taken from
Hofstee [23])

Another promising paradigm involves specializing the design of multi-core processors
to efficiently support the execution of certain class of applications, also known as
’multi-core specialization’. This specialization could range from simple architecture
optimization that helps achieve scalable workload execution to application specific ISA
extensions and even using hardware accelerators. The adoption of this paradigm could
be mainly triggered by its enormous potential for power/performance improvement.
To support this claim, let us consider the graph presented in Figure 1.1, taken from
Hofstee [23]. The graph shows the general trend that designers have and will adopt in
the coming years to address the issues related to power and performance. The graph

1.2. ARCHITECTURES FOR DATA MINING APPLICATIONS 3

indicates that although the transistor budget keeps increasing, multi-core designers
cannot have many operational transistors/cores if they want to stay under the power
envelope. Under such a scenario core-customization would be the most convenient way
to design architecture for future microprocessors [15].

In addition, advancements in application domain are also bound to have an impact
on the design of future architectural platforms. Data Mining is one such application
domain that is predicted to dominate the workload spectrum [12] and so it is crucial
to explore systems architecture in view of efficient execution of these workloads. This
offers a multitude of research challenges and opportunities and has got the attention of
microprocessor vendors like Intel.

1.2 Architectures for Data Mining Applications

Data Mining essentially is the process of discovering Knowledge from large datasets
and it has become an indispensable part in business and research alike. Its application
ranges from identifying buyer patterns in supermarkets to genome sequencing. Many
data mining techniques have been extensively applied in pattern recognition and in
scientific applications in the HPC domain, which involve large scale data processing.

The growth of data mining is further fueled by Kryder’s Law which in essence is
very similar to Moore’s Law and makes a prediction that the amount of bits that can
be crammed on to storage devices would double annually [3]. In accordance with this
law, storage capacity in scientific research institutes, business intelligence solutions and
even desktop computers have seen an exponential growth having surpassed tera/peta
bytes limits. This necessitates the design of algorithms to process large datasets
efficiently to extract meaningful data and hence creating a need for faster execution of
these workloads. This growth brings along ample opportunities for investigating vari-
ous algorithmic and architectural optimizations for efficient execution of these workloads.

Current literature on accelerating mining workloads are classified into two broad
categories: One that focuses on optimizations in the system architecture to considerably
enhance performance, and the other that focuses on optimizing mining algorithms at
large for faster execution on high performance microprocessors. For instance a few
algorithms have been proposed recently, that have optimizations for achieving scalable
performance on multi-core architectures. These include Cache-conscious prefix trees
proposed by Ghoting et al. in [18] in which the tree structure proposed helps in improv-
ing benefits rendered by pre-fetching and a novel data structure that helps to achieve
high temporal locality resulting in a speed up of 3.2 over current implementations.
Buherer et al. in [11] proposed a parallel graph mining technique especially for CMP
architectures that can adapt based on the runtime state of the system (a mechanism
to vary memory consumption based on availability) and have found their approach to
yield very good speedups of around 27 for a machine with 32 processors. This listing
though not exhaustive, offers insights into some of the techniques adopted for workload

4 CHAPTER 1. INTRODUCTION

acceleration on emerging multi-core processor architectures by modifying the algorithm
to take advantage of the architecture.

Prior works on optimizing systems architecture for data mining workloads mostly
address the Cache/Memory Hierarchy and are based on the data access patterns of
these applications. For instance, Ghoting et al. in [17] concluded that data mining
applications exhibit poor temporal locality, Jaleel et al. in [25] identified that for some
applications temporal locality across threads could potentially be exploited to improve
cache hit rates by using shared last level caches as it helps increase the total storage
capacity and Yi et al. in [13] used cache sensitivity analysis to show that cache hit rates
can be improved by creating large lower level caches that can hold huge working sets and
also proposed the use of technologies like 3D stacking to achieve large cache sizes. They
conclude that exploiting spatial locality via hardware pre-fetching enables performance
improvements for some applications. Kelly in [39], used architectural independent
analysis of workloads to reconcile the discrepancy between Ghoting’s, Yi’s and Jaleel’s
work and showed that although temporal locality exists in these applications, most
data experience very short periods of use separated by very long idle periods, i.e. while
repeated use of data over the lifetime may encourage the use of large on chip caches to
store complete working sets, the relatively short periods of activity requires carefully
reconsideration of the proposal.

Figure 1.2: Tradeoffs across different optimization approaches (taken from Pisharath et
al. [14]

In addition to Cache/Memory Hierarchy enhancements, Srinivasan et al. in [18]
have proposed that SMT architectures are suited for some data mining applications
because of the inherent data sharing nature that exists among the different threads.
Recent work by Pisharath et al. in [14] presents the current approaches that have
been adopted to accelerate data mining workloads. It also shows that there is lot

1.3. THESIS OBJECTIVE AND CONTRIBUTION 5

of research in direction of building custom designs and using reconfigurable logic for
mining workloads. The graph presented in Figure 1.2 taken from the paper, clearly
classifies the tradeoffs between the different optimization techniques. The authors
clearly indicates that hardware based optimizations, although complex in terms of
design, offer the best scope for performance improvements. This thesis explores a few
architectural alternatives and investigates its potential for performance improvement.

1.3 Thesis Objective and Contribution

There is ongoing effort to improve the performance of data mining workloads on
emerging processors, but a lot of possibilities and avenues remain to be completely
explored. The objective of this work is to investigate architecture alternatives that
offer maximum scalability during execution for majority of the applications in the
data mining domain. This involves selecting candidate benchmarks, understanding
architectural simulation platform, porting applications to use different threading
libraries, investigating application scalability issues, identifying generic application
characteristics, proposing alternatives to improve workload scalability on the basis of
these characteristics and finally investigating the benefits of each of the architectural
alternatives. Through this work, we have identified that the threading library used to
parallelize data mining workloads plays significant impact in determining performance
for communication intensive workloads. We have derived generic characteristics
that are common across clustering and classification applications in the data mining
domain. Also, we have evaluated architectural alternatives like Asymmetric Chip
Multi-Processors and Heterogeneous Chip Multi-Processors for scalable execution of
data mining applications and have found that Asymmetric Chip Multi-Processors
performs consistently better than Heterogeneous Chip Multi-Processors.

1.4 Thesis Overview

Chapter 2 discusses about the issues pertaining to simulation and describes the various
considerations that motivated the selection of a particular simulator. It also provides
details on workload selection and its importance in the context of simulation and
architecture evaluation. In Chapter 3, we discuss the impact of threading libraries
on application scalability. Also, the scalability analysis results obtained by running
these benchmarks on a SMP machine are presented. Based on these experiments we
identify generic characteristics that are common across all the applications considered.
Chapter 4 discusses the different architectural alternatives that are to be evaluated for
improving application scalability and also present the simulation results of the baseline
homogeneous configuration. In Chapter 5 we present the results of the architectural
enhancements and also study the impact on the performance in comparison to the
baseline homogeneous configuration. Chapter 6 concludes the thesis and outlines future
work that can be carried out in this direction.

6 CHAPTER 1. INTRODUCTION

Architecture Simulation and
Benchmarking 2
In this chapter we discusses the issues pertaining to simulation and benchmark selec-
tion for evaluating architectures. In Section 2.1, we provide an overview of architecture
simulation. In Section 2.2, we discuss the classification of simulators based on evalua-
tion capability. Then in Section 2.3, we discuss the challenges pertaining to computer
architecture evaluation by using simulation. In Section 2.4, we highlight the simulation
requirements for this work and in Section 2.5 we compare a few simulators to ascertain
the best simulator that suits our requirement. Finally in Section 2.6, we discuss about
the importance of benchmark selection and the choices we have made in this direction.

2.1 Computer Architecture Simulation - An Overview

The definition of simulation as termed in the dictionary is as follows: ”The representa-
tion of the behavior or characteristics of one system through the use of another system,
esp. a computer program designed for the purpose”. The idea of building simulation
model using computers is as old as the computer itself. Computer architects have always
relied on simulation to make important design decisions. In today’s microprocessor
design cycle, the simulation phase plays a key role in determining the features that
each successive processor generation must accommodate. With the current rate in
proliferation of process technology, architecture with hundreds/thousands of cores will
become a reality in a few years time. Having a fast simulation infrastructure to explore
this vast design space in a reasonable amount of time is crucial.

Simulators are tools that assist the designers by allowing them to evaluate a multitude
of design choices in a very short span of time under a single infrastructure, without having
to make circuit level design and evaluation of every single feature. This improvement in
turn around time for evaluating design choices has proved to be vital in current designs
employing billions of gates which would otherwise have taken years to evaluate and also
be severely cost prohibitive. For all the aforementioned reasons architecture researchers
have increasingly relied on simulators to evaluate architectural enhancements. Lilja et
al. in [44] have shown the trend followed for performance analysis by authors submitting
their wok to ISCA to higlight the importance of simulation. Their results indicate that
the use of simulation technique in papers (for evaluating architectural proposals) has
grown from a modest 7.1% in the inaugural year this to around 90%. This clearly
indicates the trust that architects have bestowed upon simulators and their role in the
processor design cycle.

7

8 CHAPTER 2. ARCHITECTURE SIMULATION AND BENCHMARKING

2.2 Classification of Simulators

The existing simulation ecosystem for architecture evaluation is explicated in this
section. To help better understand the differences, a classification of the existing
simulators is presented as shown in Figure 2.1. Before the discussion on classification,
the difference between functional and timing fidelity needs to be understood. Functional
fidelity refers to getting the execution correct whereas timing fidelity refers to modeling
the execution time correctly. Mostly, simulators have this separated out in order to ease
the task of development, as indicated in [5]. Simulators can be categorized as follows:

Figure 2.1: Classification of Existing Simulators

2.2.1 Full System and Architecture Simulators

A full-system simulator is generally able to model realistic workloads as it can support
the design and debugging of hardware and software in the simulation framework.
Operating System, database, device drivers etc. come under the category of software
that the simulation infrastructure can support. This is generally used to evaluate
software for new hardware platforms. To enable micro-architectural simulation, tim-
ing simulator models are generally integrated to the default functional simulation models.

An architecture simulator on the other hand, can model the architecture at
great/abstract detail i.e. also at the level of instruction in a pipeline and also model
speculative execution. These simulators can capture statistics of complex processor
structures, but generally does not support Operating Systems. This is mainly because

2.2. CLASSIFICATION OF SIMULATORS 9

the simulator has been designed with a focus on simulating individual processor compo-
nents to collect statistics.

2.2.2 Functional and Performance Simulators

Functional simulators are faster as they only emulate the execution of an instruction.
As a consequence they are less accurate and are hence generally not used to perform
micro-architecture analysis. Typically, such simulation is performed to ensure software
correctness and to also verify that applications, and computer programs that were
designed for older, outdated hardware are properly executed on modern hardware.
Performance simulators on the other hand allow to evaluate the time it takes for a
system to execute the instructions of a given application. Performance simulators
can further be classified into two distinct categories viz cycle accurate simulators and
instruction schedulers.

A Cycle accurate simulator tracks the complete state of the micro-architecture every
cycle. This methodology allows many instructions to co-exist in a single state/stage
in a pipeline and modeling this aspect is required to establish accurate simulation of
micro-architecture behavior. An Instruction Scheduler on the other hand is simpler to
implement/modify as it is less detailed. As a consequence of its lack of detail it can
schedule instruction based on resource availability generally in an inorder sequene.

2.2.3 Execution/Event Driven and Trace Driven Simulators

Simulators can be also classified as trace driven, execution driven or execution/event
driven. Trace driven simulation works with instruction traces or memory references as
input and is obtained by executing the simulated application. Traces are pre-recorded
streams of instructions which allows for deterministic simulation each time and are
commonly used for simulating memory hierarchies.

Execution driven simulator refers to the model in which functions are called to
simulate the complete processor every cycle. Execution driven simulation is considered
much more accurate than its trace driven counterpart because the former lets dynamic
effects like synchronization and contention influence the simulated application’s execu-
tion path and also models side-effects of the operating system. Execution/Event driven
simulation is also a possible option in which functions are called to simulate some part
of execution whereas the rest are modeled using event driven callbacks, i.e., a function
call with parameters is scheduled, to occur at some time in the future.

Execution driven simulator can be either based on direct-execution or an interpreter
model. In direct execution the application is directly executed on the host machine where
the simulation runs. Since there is no simulated processor it can only be used in studies
where there is no need for the processor to be modeled accurately. Few techniques to
incorporate a processor model in order to improve timing accuracy have been proposed.
Consequently, an Interpreter model is used when it is required to have a detailed model of

10 CHAPTER 2. ARCHITECTURE SIMULATION AND BENCHMARKING

the architecture. In this model the simulator has to resort to interpreting the application
executable thereby causing a considerable slowdown.

2.3 Simulation Challenges

2.3.1 Simulation Speed

Simulators have always been plagued by issues concerning the speed of simulation. Since
simulators are seen as a representative model for real systems they are expected to run
the same workloads as the actual system under consideration. But the speeds of current
simulators are many orders of magnitude slower than the actual silicon. This mismatch
in speed actually causes full sized benchmark programs to run for months together,
a task which hardly takes seconds on a real machine. As a consequence architects
have now realized that simulating benchmark programs for complete execution is a task
that is virtually impossible. To remedy this issue, they have devised several innovative
techniques which include typically simulating a sub-set of benchmarks, using reduced
working sets or simulating a representative set of intervals from the program also known
as sampling [44]. Among the aforementioned techniques sampling is found to be the most
suitable in terms of simulation speed and accuracy as it effectively captures application
behavior for a given input set using a smaller fraction of instructions.

2.3.2 Simulation Accuracy

The other aspect that influences every decision of the architect is the accuracy of the sim-
ulator. It is determined by how well the different parameters and their inter-relationships
are modeled and how change in one parameter influences a change in another. Overall
the accuracy is determined by the simulation methodology adopted, the representative-
ness of the benchmarks and the simulation technique adopted. As the design complexity
grows, accuracy becomes all the more important because a small lapse in the part of the
simulator might result in missing out on essential architectural enhancements.

2.4 Simulator Requirements

In addition to the general issues discussed in Section 2.3 that each simulator needs to
address, there are additional requirements specific to the project that greatly influences
the selection of a particular simulator. As there is a gamut of simulators available, the
requirements have to be clearly laid down in order to help decide on the right platform
for simulation. The following are some of the requirements that have been identified
considering the scope of this project.

a) Multi-threading support: This is a very important requirement considering the
scope of the evaluation to be carried out. Although there are lots of freely available
simulators, most of them do not provide support for handling multi-threaded workloads.
It must also be ensured that these multi-threaded simulators support the existing

2.5. OVERVIEW OF EXISTING SIMULATORS 11

threading libraries so as to enable rapid porting of application on the simulator.

b) Micro-architectural Simulation/Emulation Support: As the project involves
investigating architectural optimizations it is crucial to have a simulator that can model
micro-architectural parameters in great detail. In addition, the capability to model
speculative execution at a uni-processor level is quintessential for accurate simulation,
as indicated in [37]. Also, emulation support (instruction fast forwarding) greatly
helps in reducing simulation time as it makes it possible to skip initialization and other
un interesting sections in the application.

c)Portability/Support Issues: Many existing simulators were compiled for tool chains
that are outdated and cannot be directly used with currently available tools. In some
cases issues with respect to porting applications using the existing/modern tool chain can
turn out to be difficult . Therefore tool chain support is quite important for a simulator.
Also, attributes like developer support for a simulator, community mailing lists etc. can
become quite important incase of working on simulators with potential bugs.

2.5 Overview of Existing Simulators

Although several simulator models exist in literature, this section only contains details
on simulators that are widely accepted in the community and also discusses their appli-
cability for this project.

2.5.1 SimpleScalar

The SimpleScalar tool-set is used for performance analysis studies, detailed micro-
architectural modeling and hardware-software co-verification [5]. It includes several
sample models suitable for performing a variety of architectural analysis. The sim-
ulators in the tool-set range from sim-safe, a minimal simulator that only emulates
the instruction set, to simoutorder, a detailed micro-architectural model with dynamic
scheduling, aggressive speculative execution and a multi-level memory system.

SimpleScalar is an execution driven simulator which requires the inclusion of an
instruction-set emulator and an I/O emulation module. The instruction set emulator
interprets each instruction directing the hardware models activities through interfaces
that it provides. The I/O emulation module provides simulated programs with access to
external input and output facilities. At the center of each model is the simulator core
code which defines the hardware model organization and instrumentation. The simulator
core defines the simulators main loop which executes one iteration for each instruction
until they eventually complete. The performance core is comprised of baseline modules
that make up the software architecture. These modules export functions ranging from
statistical analysis, event handlers and command line processing to implementations of
modeling components such as branch predictors, caches and instruction queues. Al-
though SimpleScalar is useful for evaluating uniprocesors, it does not support simulation
of multi-threaded workloads.

12 CHAPTER 2. ARCHITECTURE SIMULATION AND BENCHMARKING

2.5.2 RSIM

RSIM is a publicly available tool for simulating shared-memory systems built from
processors that utilize ILP features [37]. The authors have identified that modeling
ILP features in a multiprocessor environment is important for applications that exhibit
parallelism among read misses as it greatly helps in improving simulation accuracy.
RSIM consists of several interchangeable modules to model a range of architecture.
RSIM models processors that can exploit ILP by modeling processors with features
like single-instruction issue, in-order instruction scheduling, multiple issue, out of order
execution and non blocking memory operations. Also it provides a large list of user
configurable parameters like issue width, window size, number of functional units etc.

RSIM provides a two-level cache hierarchy with separate L1 data and instruction
cache and a unified L2 cache. It can be used to simulate several hardware variations,
cache coherence NUMA architecture. Further details on modeling a multi-processor
system with cache hierarchies and coherence mechanisms can be referred from [37].
The main drawback with RSIM is that it does not support CMP simulation. Also, the
simulator is highly complex in terms of the effort required to understand and modify.
The other factors which also don’t favor RSIM include simulation speed and accuracy,
i.e. RSIM is very slow for modeling out of order processors and the results have not been
formally validated as well.

2.5.3 SIMICS

SIMICS [33] provides a full system simulation platform that is designed to run
unmodified Operating Systems, real workloads, database benchmarks and other inter-
active applications. It can be used to model embedded system, desktop and even a
multiprocessor system. In addition to this flexibility, it can also support a broad range
of tasks throughout the product development cycle including microprocessor design,
operating systems development, fault injection studies and hardware design verification.
It currently supports models for UltraSparc, Alpha, x86, x86-64, PowerPC, MIPS
and ARM. SIMICS includes an cache and IO timing model, allowing for a first order
approximation of the memory operations and this can then be used as a platform for
generating traces for the cycle accurate simulators. Also SIMICS processor models have
been incorporated with features to support out-of-order processing but in a rudimentary
way. Detailed micro-architectural studies can be carried out based on an arrangement
that SIMICS would provide the functional model required for investigation and the
user has to extend it with timing model. A number of timing simulators have been
proposed and they can be used extend SIMICS to perform accurate micro-architecture
simulation. Few interesting proposals based on extending SIMICS simulator for
performing micro-architecture analysis are presented below.

a)GEMS: GEMS [34] leverages the existing simulation infrastructure and builds
a set of timing simulator modules for modeling the timing of memory system and
microprocessors. This approach led to reduced development time as a pre-existing full
system simulator was used as a foundation on which only the timing modules had to be

2.5. OVERVIEW OF EXISTING SIMULATORS 13

dynamically loaded. This approach follows the timing first simulation model in which
the functionality and timing aspects remain decoupled and the timing model interacts
with the functional model to indicate when an instruction has to complete execution
even though the execution is carried out by the functional simulator. At the core of
GEMS is the RUBY memory simulator. If timing evaluation needs to be carried out
using a simple inorder processor model provided by SIMICS, all loads and stores would
would be forwarded to RUBY which would simulate the first level cache and then return
if it is a hit, thereby enabling SIMICS to continue with the execution. In case of a miss,
RUBY stalls SIMICS and then simulates a cache miss. For capturing the timing effects
in dynamic superscalar processors it makes use of a processor model called OPAL which
is based on timing first simulation model. This model works as follows: OPAL models
the processor and determines when the instruction has to retire, it makes this decision
when an instruction has reached the retire stage and instructs SIMICS to advance by
one clock cycle. The state of the OPAL and SIMICS are then compared to check if the
instruction has executed correctly.

b)SIMFLEX: SIMFLEX [21] presents a framework to arrive at fast and accurate
simulation results for multiprocessor platforms by integrating the SMARTS methodol-
ogy for representational simulation sampling. It uses a novel implementation technique
for eliminating the runtime overheads that arise from component based software
construction. SMARTS is a technique that can be used to accelerate simulation by only
taking into account a subset of the benchmark. This subset is derived by a prescribed
statistical procedure for configuring a systematic sampling simulation run to achieve a
required confidence in the estimates. SMARTS assumes support for detailed simulation
as well as functional simulation. In detailed mode all the relevant micro-architectural
states are updated every cycle and in the functional mode only the correct state is
maintained. SMARTS uses these two modes to sample at regular intervals, performing
detailed simulation for sampled instructions and functional simulation for the rest.
SIMFLEX succeeds in successfully applying this technique in a multi-processor context
which comprises multiple instruction streams with asynchrony and non-determinism
among them.

Both GEMS and SIMFLEX provide lot of leverage for multi-threaded simulation as
demanded in the context of the project but were not chosen due to the characteristics
of the underlying simulation framework. Although they can perform micro-architectural
simulation at an acceptable level of accuracy, both these approaches also consider the
OS overhead as part of the workload and incorporate this in the timing behaviour. Also
extracting the timing profile for workload excluding the intervention of the operating
system is also not feasible. This does not sync well with our initial goal of optimizing
architecture purely considering the workload behaviour. The non-deterministic nature
of the OS tasks could make it more challenging forcing to miss out on enhancements
that can have potential impact on the performance.

14 CHAPTER 2. ARCHITECTURE SIMULATION AND BENCHMARKING

2.5.4 SESC

SESC [38] is a micro-architectural simulator that is capable of modeling variety of
architectures like uni-processors, Chip Multi-Processors and Processor In Memory. It
can model an out of order pipeline with branch prediction, caches, buses and other
components necessary to completly model a modern processor accurately. SESC is an
event driven simulator built from the [42] emulator. The functional core of the simulator
is execution driven whereas many required functions are called as and when needed, using
events. Since SESC does not provide an Operating system, it traps system calls and
performs them on behalf of the application. Every standard system call is transformed
into a MINT function and is simulated by MINT. libapp is the application interface that
SESC provides to emulate Pthreads and is also responsible for implementing locking
API. SESC is preferred over all the previously discusses simulators because it can model
CMP architecture by running muli-threaded workloads and supports micro-architectural
simulation/emulation support without incurring the overhead of OS. Moreover SESC is
very fast and is easily extensible to be able to test architectural enhancements. Although
SESC has never been formally validated [16], it has been widely used as a tool to
simulate multi-processor and CMP architectures. In addition, there have been numerous
publications in top-tier conferences using this simulator.

2.6 Benchmark Selection

The first step in choosing the right set of benchmarks lies in identifying a proper
benchmark suite. From the myriad benchmark suites available, one can either choose a
benchmark suite that is not specific to any particular application domain like SPEC,
PARSEC etc. or choose a suite which is oriented towards a particular domain like
Alpbench, Mediabench, Minebench etc. As this work involves investigating architectural
optimizations for data mining workloads we choose the Minebench suite [36]. The
reasons that mainly motivate the selection of Minebench are as follows.

a)Multi-threaded Support: Multi-core architectures have become ubiquitous. Evalu-
ating these architectures with a view of optimizing them for power/performance requires
multi-threaded workloads that can investigate scalability issues and identify potential
bottlenecks in architecture. Minebench provides a set of data mining benchmarks,
comprising of application from Clustering, Classification and Association Rule Mining
fields. These benchmarks have unique algorithmic features and is widely used in
industry and research. The benchmarks in this suite also provides multi-threaded
support (parallelized using OpenMP).

b)Workload Diversity: The benchmarks should exhibit diverse characteristics with
respect to scalability and the computations involved. We are not into investigating
applications that are either massively parallel or serial in nature (as they would provide
very little scope for improvement), but are interested in application whose scalability
lies in between these two regions, where optimization can greatly benefit application
scalability, as depicted in Figure 2.2. As for computations involved in the benchmarks

2.6. BENCHMARK SELECTION 15

Figure 2.2: Region Of Interest.

(Minebench suite), Berkin et al. in [36] have show that the combination of high
compute and memory intensity results in a clustering algorithm distinguishing data
mining applications from existing benchmark suites. The results they have obtained
(shown in Figure 2.3) indicate that these benchmarks are diverse (as they belong to
different clusters). These results were obtained by performing statistical analysis on
19 architectural characteristics like branch prediction, L1 and L2 cache access etc. for
each of the benchmarks and then clustering benchmarks with similar characteristics.
The applications that we have chosen as candidates for evaluation (HOP, SCALPARC,
KMEANS, FUZZYMEANS) fall under three different clusters.

Figure 2.3: Classification of Benchmark Suites based on Architectural Characteristics
(taken from Berkin et al. [36].)

There were many issues which prevented us from considering all the benchmarks in
Minebench, for evaluation. For instance few of the benchmarks in the suite were serial
(BIRCH, BAYSEIAN). A few others had limitations on the extent to which it could be
parallelized (Apriori and Utility could not support more than 8 threads). A few others
demanded the use of vendor specific libraries which were not available under open source
license.

16 CHAPTER 2. ARCHITECTURE SIMULATION AND BENCHMARKING

2.7 Conclusion

In this chapter, we first discussed the importance of choosing an appropriate simulation
infrastructure. We analyzed a few existing simulators and we determined that SESC
would be used for performing evaluation as it satisfied all the simulation requirements.
Next, we discussed the impact of benchmarks on the overall performance results and also
presented justification for using benchmarks from the Minebench suite.

Software Considerations and
Workload Characterization 3
In this chapter we present the performance analysis results of the data mining workloads,
discuss the impact of threading libraries on performance scalability and also identify
generic characteristics that are common to all the applications. In Section 3.1 we first
discuss the importance of threading libraries. Then in Section 3.2, we discuss the the
issues involved in workload evaluation and we specifically consider evaluation platform,
evaluation metrics and the evaluation tools . Following this, in Section 3.3 we discuss
the performance analysis results of the workloads obtained by running the application
on the candidate platform. Finally in Section 3.4 we list the observations that we have
made regarding generic characteristics of the applications in data mining domain based
on the performance analysis results and also conclude the chapter.

3.1 Programming Model and Threading Libraries

Although the architecture largely determines the performance of an application, the
programming model also plays an equally important role in utilizing this performance
by providing abstractions to represent the parallelism inherent in an application and in
a manner that also matches the architectural model. While numerous models have been
proposed, a few have gone on to become widely accepted (albeit with their own set of
drawbacks). Among them are distributed memory/message passing programming model
where each task is encapsulated with its own local data and with the ability to send
and receive messages to and from other tasks, and shared memory programming model
where all task/thread share a common address space to which they can read and write.
The former is widely used in HPC domain and the latter in shared memory architectures
(chip multi-processor and SMPs). The library specifications (e.g. MPI for distributed
memory systems and Pthreads/OpenMP for shared memory systems) for implementing
applications using these programming models also impacts performance as they provide
the programmer with necessary abstractions for representing parallelism. Research is
being carried out to address the shortcomings of current library specifications. For
instance OpenMP is not well suited for handling irregular parallelism in applications
and proposals like OpenMP tasking have been adopted to address this issue [6].

Furthermore, as indicated in the previous chapter we are going to make use of the
SESC simulator and this provides a set of APIs that acts as a wrapper for the hosts
Pthreads library. These APIs provided by SESC are only a subset of the Pthread library
APIs. Since the application used OpenMP, the first task was to rewrite the applications
to use Pthreads and then further modify it to use the SESC APIs as mentioned above.
Also care was taken while porting, to ensure that the application only uses the available
subset of SESC APIs.

17

18 CHAPTER 3. SOFTWARE CONSIDERATIONS AND WORKLOAD
CHARACTERIZATION

This translation (OpenMP to Pthreads) motivated us to study the impact of thread-
ing libraries on application performance. The two implementations (one using OpenMP
and the other using Pthreads) are compared to analyze the differences in scalability be-
havior when using different libraries . To carry out this analysis we use a shared memory
system and the details of the evaluation platform are presented in Section 3.2.1.

3.2 Workload Evaluation

A concrete understanding of the application (workload) behavior is essential for identify-
ing the various demands placed on the system architecture. Prior analysis of Minebench
workloads has been restrictive on the number of threads used (analysis beyond eight
threads has not been carried out) and the choice of threading libraries (only OpenMP)
[36]. This evaluation addresses this by considering upto 32 threads for evaluation and by
using different threading libraries (Pthreads/OpenMP). As a first step the application
is profiled to identify its behavior. This involves identifying kernel sections, computing
instruction mix and performing execution time profiling for the kernels. This is followed
by scalability behavior analysis which explicates how the application behaves when it
is scaled to run on multiple processors both using OpenMP and Pthreads. We start
this section by first describing the evaluation platform, the metrics used for performing
evaluation and some important issues with performance evaluation. After this we discuss
about each application in detail in the following section.

3.2.1 Evaluation Platform

The hardware used for performing evaluation is a SGI Altix 4700 with a total of 128
Intel Itanium2 Montecito processors (at Barcelona Supercomputing Center). The SGI
Altix machine is a distributed shared memory machine with a ccNUMA architecture.
Each cpu has 2 cores working at 1.6Ghz supporting a 8MB L3 cache. It also had a
16KB instruction, data L1 cache and a 1MB instruction L2, 256KB data L2 cache per
core respectively. The chapter presents the data obtained by running the applications
(with upto 32 cores) with a view of understanding the computational phases and the
overall behavior of the application when executed in a parallel environment. A detailed
description of the architecture can be found in Appendix A. MPItrace [9] and OMPItrace
[10] were used for source instrumentation, PAPI [43] for extracting performance counter
values and Paraver [8] for visualization and analysis tool of parallel execution behavior.
Although we needed to perform this scalability analysis on a multi-core processor, such
a processor (with 32-cores) was not available at our disposal. So we had to in turn
resort to performing this analysis on a SMP machine. Since both operate on the shared
memory principle, we can assume the behavior of threads to remain the same.

3.2.2 Evaluation Metrics

The metrics utilized for measuring parallel performance are critical and they play a very
important role in understanding application behavior. A lot of metrics have evolved over

3.2. WORKLOAD EVALUATION 19

the years to help determine the suitability of an architecture for efficiently executing a
particular application. We make use of execution time, speedup and serial fractions to
explain the execution behavior of applications on the architectural platform described
in Section 3.2.1.

Speedup is a measure of how fast a parallel program is when compared to its serial
counterpart. Speedup (S) for a machine with p processors/cores is defined by

S =
Ts

Tp

where Tp is the parallel execution time (on p processors/cores) and Ts is the execution
time obtained by running the application on a single processor/core.

Based on the measured speedup values, the serial fraction (Sfrac) is derived. This
metric was proposed in [27], to reason out the potential causes for scalability bottlenecks
in applications. We use this metric to perform similar analysis for the applications that
we are considering.

The serial fraction is computed as follows,

Sfrac =
1
S −

1
p

1− 1
p

Intuitively, the serial fraction in any application should remain the same even if it
scaled to many processors. This is because the serial fraction function assumes perfect
load balancing and does not consider synchronization effects. Any irregularity in the
derived serial fraction values indicate the influence of load-balancing effects, synchro-
nization effects or architectural constraints on application scalability.

3.2.3 Evaluation Issues

The choice of the instrumentation method (source-based instrumentation, compile time
instrumentation, etc.) and measurement technique (tracing, profiling, etc.) can have a
large influence on the performance analysis results. We use source-based instrumentation
method and it involves inserting manual instrumentation calls in the source code. The
tool supports tracing which thoroughly captures and represents the occurrence of each
event during the entire period of program execution. Since instrumentation can add lot of
overhead to the measurement data (for instance, introducing a manual instrumentation
event inside a loop body running for many iterations can have a significant influence on
the application execution time), care has been taken inorder to avoid large perturbations.
We accomplish this by first measuring the execution time without instrumenting the
applications. Then we check if the overhead of instrumentation is under 5% . If this
condition is satisfied we consider the experiment valid. In addition, we observed small
variation in results when applications are executed multiple times, due to repeatability
effects which arise when workloads are run on real machines, with real operating systems.
The causes and effects of this variation are discussed in [40]. To compensate for this
variance the results presented here are averaged out over multiple runs.

20 CHAPTER 3. SOFTWARE CONSIDERATIONS AND WORKLOAD
CHARACTERIZATION

3.3 Workload Characterization Results

3.3.1 HOP

HOP [32] suggests a methodology for identifying groups of particles in N-body simula-
tions. The application has various phases and the first phase involves assigning densities
to each particle based on their neighbors. The application starts by constructing a
KDtree for the particles and this is implemented by the parakdBuildTree kernel. Af-
ter the tree construction step, smSmooth kernel is used to compute the density for each
particle by considering Ndens nearest neighbours of the particle, implemented using a
priority queue. This in turn makes use of smBallSearch and smDensitySym kernel to
calculate densities for each particle. Then the particles are grouped/associated to the
highest density neighbor. The smBallGather kernel traverses the priority queue list
and assigns to each particle the address of the neighbour with the greatest density in
a certain radius. This continues until the particle is its own densest neighbor and this
scheme is assured to converge. To enhance the clustering quality, additional operations
like merging and pruning are performed based on pre-defined threshold values and it
also uses the smBallGather kernel. This phase determines the final group membership
outcome for each particle.

Execution time profile and instruction mix Figure 3.1 (a) and 3.1(b) lists the
execution time profile and the instruction mix configuration for the kernels in HOP. We
can observe that smSmooth in the Density Computation Phase and smBallGather kernel
in grouping and consume around 90%. of the overall execution time. Also from the
instruction mix configuration chart, it is evident that the instruction mix constituting
HOP is diverse. Unlike KMEANS and FUZZYMEANS (which are discussed below), the
performance of the branch predictor is critical because this application does not have
kernels that execute repeatedly.

Scalability Analysis Figure 3.1 (c) depicts how HOP scales with increasing number
of threads/cores. In this figure, each line has a label that indicates both the dataset size
and the threading library used. For instance the line labeled ‘Medium-omp’ depicts the
speedup as a function of the number of cores for the OpenMP implementation using
medium sized dataset and the line labelled ‘Medium-ptr’ depicts the speedup for the
Pthreads implementation using medium sized dataset.

The scalability analysis results presented here are obtained by running the appli-
cation on the evaluation platform specified in Section 3.2.1. From the graph we can
observe that the application scales until 4 threads, then marginally scales for up to 16
threads and does not scale beyond. Since the application is comprised of several kernels
and each of them have varied behavior and we characterize them in detail to understand
their impact on the overall scalability of the application.

The scalability results of the individual kernels that make up the application are
presented in Figure 3.1 (d). To better understand the impact of threading libraries,

3.3. WORKLOAD CHARACTERIZATION RESULTS 21

Figure 3.1: HOP Analysis.

22 CHAPTER 3. SOFTWARE CONSIDERATIONS AND WORKLOAD
CHARACTERIZATION

we look at how individual kernels in the application behave and we specifically
consider the ‘Medium-ptr’ and ‘Medium-omp’ to illustrate this. In Figure 3.1 (d)
each bar indicates the scalability of the kernel when using particular number of
processors. First, we compare the scalability results of the individual kernels to see
if the use of different threading libraries can alter the scalability behaviour of the kernels.

From the graph (see Figure 3.1 (d)) we can observe that smBAllGather which makes
up the largest kernel scales ideally even when parallelized with 32 threads (for Pthreads
as well as OpenMP). We find that smSmooth kernel implemented in Pthreads scales well
beyond 4 threads unlike with OpenMP where it only shows marginal scalability. The
poor performance of OpenMP version is attributed to runtime overhead associated with
handling significant amount of communication over large number of threads.

For parakdBuildTree kernel and the other serial kernel (not indicated in this figure)
the use of Pthreads does not resolve any issue. parakdBuildTree does not scale well
with more threads because of the excess overhead computations associated with parallel
tree construction. The serial portion of the application also involves collecting the
density values computed by individual threads in local array inorder to compute and
update the global structure. The overhead involved with the serial function also keeps
increasing with the number of threads.

Based on the scalability results, we compute the serial fraction values (for ’Medium-
ptr’) to help better understand the behaviour of the application and also reason out for
the inconsistencies observed in speedup beyond 8 threads. The computed serial fraction
values for HOP considering Pthreads implementation for medium dataset is shown in
the Figure 3.1 (e). We can observe that the serial fraction is steadily increasing as
the number of processor increases and this indicates the presence of parallel overhead.
This overhead could be time spent on communication, synchronization or due to an
architectural constraint. Next we perform analysis to identify the cause for this overhead.

We start by checking if the dataset size used for evaluation is leading to this scalability
behavior. We compare the results with two different data sets (medium and large) to
analyze the influence of the cache (see Figure 3.1 (c)). Since medium datasets have much
smaller working set in memory when compared to lager datasets, they should have much
lesser impact on performance (improved misrates). In this case however, we observe no
noticeable difference in scalability for application using different dataset sizes which is
an indication that the overheads observed not primarily due to cache capacity. Next, the
miss rates for all these kernels on the last level of the cache hierarchy are derived and this
is assumed to match memory bandwidth requirements, for checking if this is the cause
of overhead. The last level miss rates have been computed from performance counter
values which are used to monitor last level cache access. From the results in Figure
3.1 (f) we find that parakdBuildTree kernel has the highest miss rate (3 Misses for
every hundred accesses). This is followed by smSmooth which has a miss rate of almost
1 for every hundred accesses. Also we monitor the invalidation transactions issued by
a processor and the total snooping time to derive a ratio. The ratio computed for the

3.3. WORKLOAD CHARACTERIZATION RESULTS 23

different kernels in the application are given in Figure 3.1 (g). From this data we can
conclude that the kernels that make up majority of the application scales well. The
scalability overhead is hence attributed to parakdBuildTree kernel and the other serial
phases in the applications.

3.3.2 SCALPARC

SCALPARC [26] is used for formulation of decision trees in parallel from large datasets.
In decision tree based classification all the attribute lists that are to be evaluated are
first sorted once at the beginning. This is performed by distributing the number of lists
equally among all the available threads in the VRCompare parallel kernel. Then a tree
is constructed for class attributes based on other attributes in the dataset with a goal
of having all the elements in a leaf belong to one class. The tree construction process
involves two phases namely, the split determining phase and the splitting phase.

In the split determining phase each attribute is evaluated based on certain criteria
(Giniindex) to determine the optimal split point. The Giniindex kernel used for this
purpose is the most compute intensive and this is also implemented by distributing lists
across the threads. This is followed by a serial phase which involves collecting the local
optimal splitting information computed across the different threads and using them to
determine the globally optimal split. Once the splitting point is identified the records
have to split based on the decision. The splitting phase is constituted by two steps one
which involves splitting split attribute lists and the other which involves splitting other
non-split attribute lists. The process of splitting the split attribute and filling the hash
table are carried out serially. This is again followed by a parallel phase which involves
splitting the non-split attribute lists. The serial and parallel phases described above
constitute the Parclassify kernel. Once the splitting process is finished we iterate
again until we have all elements in each leaf node belonging to a specific class.

Execution time profile and instruction mix Figure 3.2 (a) and 3.2(b) lists the ex-
ecution time profile and the instruction mix configuration for the kernels in SCALPARC.
From the table it is clear that most of the computations are constituted by the three
kernels (approximately 96 %). Also, it can seen that the around half of the instructions
involve memory access either in form of loads/Stores. This indicates that the application
is memory intensive.

Scalability Analysis The graph in Figure 3.2 (c) shows application scalability
behavior when executed with increasing number of threads. In this figure, each line has
a label that indicates both the dataset size and the threading library used. For instance
the line labeled ‘Medium-omp’ depicts the speedup as a function of the number of
cores for the OpenMP implementation using medium sized dataset and the line labelled
‘Medium-ptr’ depicts the speedup for the Pthreads implementation using medium sized
dataset. From the graph we can observe that the application scales marginally only
until 4 threads, beyond which it does not scale. Scalability results of the kernels that

24 CHAPTER 3. SOFTWARE CONSIDERATIONS AND WORKLOAD
CHARACTERIZATION

Figure 3.2: SCALPARC Analysis.

3.3. WORKLOAD CHARACTERIZATION RESULTS 25

constitute the application are discussed.

The scalability results of the individual kernels are presented in Figure 3.2 (d). We
look at how individual kernels in the application behave and we specifically consider
the ‘Medium-ptr’ and ‘Medium-omp’ to illustrate the impact of threading libraries.
In Figure 3.2 (d) each bar indicates the scalability of the kernel when using particu-
lar number of processors. First, we compare the scalability results of the individual
kernels to see if the use of different threading libraries can alter the scalability behaviour.

From the graph (see Figure 3.2 (d)), we can observe that VRCompare kernel scales
almost linearly and this is because each thread can sort the lists assigned to it in
parallel independent of other threads. The parallel split determing phase, which uses
the Giniindex kernel shows marginal scaling for upto four threads and does not scale
beyond four threads. The serial portion of the application (splitting attribute lists) does
not show any improvement because of additional threads. The part of the parclasify
kernel that is responsible for nonsplit attribute lists scales marginally. From the graph
in Figure 3.2 (d) we can observe that for most of the kernels the scalability behaviour
is very similar upto a point (8 threads) beyond which Pthreads marginally outperforms
OpenMP.

Based on the scalability results (for ’Medium-ptr’), we can observe that the serial
fraction is steadily increasing as the number of processor increases and this indicates
the presence of parallel overhead. The computed serial fraction values for SCALPARC
considering Pthreads implementation for medium dataset is shown in the Figure 3.2 (e).
This could be time spent on communication, synchronization or due to an architectural
constraint.

We first analyze if the dataset size used for evaluation is leading to this scalability
behaviour. Also, two different data sets (medium and large) are compared to observe
the influence of the cache (see Figure 3.2 (c)). For SCALPARC we dont observe any
noticeable difference in scalability because the working setsize is considerably larger
than the last level cache size even for medium datasets.

The miss rates for all the kernels in SCALPARC on the last level of the cache hierar-
chy are computed (see Figure 3.2 (f)) . These results have been obtained with the help of
performance counters which are used to monitor last level cache access and misses. From
the results we find that SplitDeterming phase (which makes use of GiniIndex Kernel)
has the highest miss rate (around 90 Misses for every hundred accesses). Also, the
number of accesses made in the last level cache are considerably high. Because the size
of the attribute list that we evaluate at each phase reduces in size as we proceed to the
following level this miss rate value also improves (reduces to around 40 %. at the leaves).
Although the miss rate at the last level is considerably high we can find that the kernel
scales marginally for upto 4 threads. As memory bandwidth utilization details cannot be
exactly obtained, one plausible reason for inverse scalability (increased execution time
with increase in the number of threads) beyond 4 threads could be due to the architecture

26 CHAPTER 3. SOFTWARE CONSIDERATIONS AND WORKLOAD
CHARACTERIZATION

of the SGI Altix4700 blade because it only has two sockets each capable of supporting
a dual core Itanium connected to a local memory bank. Additional threads can fetch
data from global address space only through the Interconnection network by accessing
the remote memory banks. In addition, we monitor the invalidation transactions issued
by a processor and the total snooping time to derive a ratio. We use this to analyse
the influence of cache coherence and find that Splitting phase (parclassify kernel) has
the largest ratio as shown in Figure 3.2 (g). The poor performance of this application
can hence be attributed to the memory intensive nature of the kernels employed in the
application.

3.3.3 KMEANS

KMEANS [36] is among the most widely used algorithms for clustering datasets. Clus-
tering is the process of grouping similar particles such that there is very high correlation
among the different elements within a cluster and low correlation across the different
clusters. KMEANS works by computing the cluster membership for each particle based
on Euclidean distance. This is the most compute intensive kernel in the application
and it is used to compute the distance between the element and the respective center.
The algorithm first chooses random points as cluster centers. The next step involves
associating each point to its closest center. findnearest kernel uses the computed dis-
tance values to find the closest center. Cluster Kernel makes up the serial part as
it is involves collecting membership information from all the threads and performing
a reduction operation on them to compute the new cluster centres. After this locally
computed densities and center information is used to recalculate and identify new cen-
ters. This process is iterated until a user defined threshold is attained. Euclidean and
findnearest together constitute the nearestcenter kernel phase and Cluster alone
makes up the updatecenter kernel phase.

Execution time profile and instruction mix Figure 3.3 (a) and 3.3(b) lists the
execution time profile and the instruction mix configuration for the kernels in KMEANS.
From the table we can observe that the kernels constitute the major portion of the
application (approximately 96 %). Although the instruction mix profile indicates a high
percentage of branch instructions, the performance of the branch predictor performance
overshadows this. It can be attributed to the fact that KMEANS repeatedly executes
kernels which consist of loops that iterate over large indexes.

Scalability Analysis The scalability behavior of KMEANS is presented in Figure
3.3 (c). In this figure, each line has a label that indicates both the dataset size and the
threading library used. For instance the line labeled ‘Medium-omp’ depicts the speedup
as a function of the number of cores for the OpenMP implementation using medium
sized dataset and the line labelled ‘Medium-ptr’ depicts the speedup for the Pthreads
implementation using medium sized dataset. From the graph we can observe that the
application scales reasonably for 32 processors.

3.3. WORKLOAD CHARACTERIZATION RESULTS 27

Figure 3.3: KMEANS Analysis.

28 CHAPTER 3. SOFTWARE CONSIDERATIONS AND WORKLOAD
CHARACTERIZATION

Scalability results of the kernels that constitute the application are given in Figure
3.3 (d). To better understand the impact of threading libraries, we look at how individ-
ual kernels in the application behave and we specifically consider the ‘Medium-ptr’ and
‘Medium-omp’ to illustrate this. In Figure 3.3 (d) each bar indicates the scalability of
the kernel when using particular number of processors. From the graphs we can observe
that the nearestcenter phase shows speedup of around 30. This speedup is mainly
because of the scalable nature of distance computation routine as indicated before.
Once this phase is complete it is followed by a serial phase updatecenter, which is
responsible for computing the cumulative center values and also updating the centers
at the end of the current iteration. From the graph (see Figure 3.3 (d)), we can observe
that for the kernels in this application, the scalability behaviour is very similar across
Pthreads and OpenMP.

Based on the speedup values (for ’Medium-ptr’), we compute the serial fractions. We
can observe that the serial fraction varies irregularly thereby suggesting load imbalance,
communication or synchronization overheads. We first analyse the impact of working
set size on the kernels to observe the influence of the large working set on the cache, as
shown in Figure 3.3(e). We find that the larger dataset only causes marginal difference
and this is because the larger dataset though computationally intensive (due to increase
in vector size), has minor impact on the memory performance.

The miss rates observed for all the kernels in last level of the cache hierarchy are
computed. These results (see Figure 3.3 (f)) have been obtained with the help of perfor-
mance counters. From the results we find that updatecenter membership computation
phase has the highest miss rate. Although the miss rate seems high the number of L3
accesses is less when compared to memory intensive algorithm like ScalParC. The inval-
idation to snooping ratio presented see Figure 3.3 (g)), indicates that the effect of cache
coherence is minimal in all the kernels which suggests that the bottleneck cannot be due
to coherence issues across the different threads.

3.3.4 FUZZYMEANS

In FUZZYMEANS clustering, each point has a degree of belonging to clusters, rather
than belonging completely to just one cluster. It is an extension to KMEANS and is a
statistically formalized method whereby a particle can belong to more than one cluster
with a certain computed probability. The application starts off by first computing the
sumdistances of each particle from all the centers and is done as a part of the fuzzysum
kernel, which makes use of the Euclideandistance kernel for computing distance values.
It is implemented by distributing the particles equally among all the threads. This sum
is then used for computing the degree of membership for each particle and updating all
the local centers accordingly. Cluster kernel is responsible for computing the degree
of membership for each centre based on the results obtained from the previous kernel.
The serial portion of the kernel performs reduction of the results across the various
threads and derives new centre values. This clustering process is iterated until a specified
threshold limit is attained.

3.3. WORKLOAD CHARACTERIZATION RESULTS 29

Execution time profile and Instruction Mix Figure 3.4 (a) and 3.4(b) lists
the execution time profile and the instruction mix configuration for the kernels in
FUZZYMEANS. From the table we can observe that the kernels constitute the major
portion of the application (approximately 96 %) as observed in KMEANS. The differ-
ence is that the cluster kernel in FUZZYMEANS is more time consuming than the
Euclideandistance kernel owing to the complexities of computing multiple member-
ships for each particle. Also, we can notice that the application repeatedly executes ker-
nels which consist of loops that iterate over large index values as observed in KMEANS.
The parallel phase in the cluster kernel makes up nearesrcenter and the serial phase
in the cluster is responsible for updatecenter.

Scalability Analysis The scalability behaviour of FUZZYMEANS is presented in
Figure 3.4 (c). In this figure, each line has a label that indicates both the dataset size
and the threading library used. For instance the line labelled ‘Medium-omp’ depicts
the speedup as a function of the number of cores for the OpenMP implementation
using medium sized dataset and the line labelled ‘Medium-ptr’ depicts the speedup
for the Pthreads implementation using medium sized dataset. From the we can make
an observation that FUZZYMEANS scales reasonably for 32 processors and shows a
speedup of around 20.

Scalability results of the kernels that constitute the application are given in Figure
3.4 (d). To better understand the impact of threading libraries, we look at how individ-
ual kernels in the application behave and we specifically consider the ‘Medium-ptr’ and
‘Medium-omp’ to illustrate this. In Figure 3.4 (d) each bar indicates the scalability of
the kernel when using particular number of processors. From the graphs we can observe
that the sumfuzzy kernel which inspite of performing distance computation (scalable
operation), shows a speedup of around 25, the reasoning behind which will be discussed.
It is followed by nearest cluster phase which uses distance information computed to
identify the degree of association with each of the clusters and shows a speedup of
roughly around 18. We compare the threading libraries to see if scalability behavior of
the kernels is influenced. From the results (see Figure 3.4 (d)) we can observe that for
the kernels in FUZZYMEANS the scalability behaviour is very similar across Pthreads
and OpenMP.

Based on the speedup values we compute the serial fraction (see Figure 3.4 (e)). We
can notice that the serial fraction varies irregularly and this suggests load imbalance,
communication or synchronization overheads etc. Also, two different data sets (medium
and large) are compared using the graph in Figure 3.4 (c). The difference in scalability
was found to be marginal (as in KMEANS).

The last level cache miss rates and invalidation to snooping ratio values for the
kernels in FUZZYMEANS are computed with the help of performance counters (see
Figure 3.4 (f)). We draw a comparison across the computation phases in KMEANS
and FUZZYMEANS with the help of these values. Firstly, the sumfuzzy kernel in
FUZZYMEANS has a very similar memory access pattern to nearestcenter cluster in

30 CHAPTER 3. SOFTWARE CONSIDERATIONS AND WORKLOAD
CHARACTERIZATION

Figure 3.4: FUZZYMEANS Analysis.

3.3. WORKLOAD CHARACTERIZATION RESULTS 31

KMEANS and this is evident from the last level cache miss rates (both have similar
values and almost equal number of accesses). We can also observe that the invalidation
to snooping ratio, presented in Figure 3.4 (g) is larger for sumfuzzy and this is because
the kernel updates a shared location after every call to distance routine, as opposed to
nearestcuster kernel where it is updated once for each point. As for the nearestcluster
kernel, the ratio remains the same and there is an improvement in the miss rate which can
be atributed to temporal locality. Updatecluster kernel also has similar values when
compared to KMEANS beacuse of the serial operations involved in updating cluster
centers. Hence we conclude that the serial phase in FUZZYMEANS constitutes the
bottleneck.

3.3.5 Conclusion

In this chapter we carry out performance analysis of applications to better understand the
application behavior and also identify architectural/algorithmic bottlenecks that prevent
the application from scaling to multiple threads. Based on performance measurement
results in the previous section we have made few observations about the characteristics
of data mining application. These are listed below.

1. Data mining applications exhibit data parallelism. Although this was observed
in the benchmarks that we investigated, this cannot be generalized because there
are applications that also exhibit task parallelism (depending on the algorithm
parallelization technique).

2. The serial regions in these applications have varying computation complexities.
For instance, some of the applications have serial phases that only perform the
’reduction’ operation on the datasets, whereas for other applications, they comprise
of large non-parallelizable regions of the kernels.

3. The applications exhibit differences in memory access, communication, synchro-
nization behavior, computation intensity and scalability and this varies across the
different kernels in the application as observed from the results presented in the
previous sections.

4. The threading library used for parallelizing the application also provides some
additional benefits for improving performance when the application is scaled to
large number of threads. Although we observe this effect on the evaluation platform
used for this study, we have to perform similar evaluations on other platforms to
make a generic conclusion regarding the choice of threading library.

32 CHAPTER 3. SOFTWARE CONSIDERATIONS AND WORKLOAD
CHARACTERIZATION

Scalable Multi-core
Architectures for Data Mining
Applications 4
In the previous chapter we presented our observations on the behavior of data mining
applications from the Minebench benchmark suite. Since the diversity and the represen-
tativeness of the candidate benchmarks have already been discussed in Chapter 2, we
can consider these benchmarks to be fairly representative of the domain. In this chap-
ter, we use these observations to formulate architectural design decisions, which can help
improve application scalability. First, in Section 4.1 we present a generic data mining
workload model constructed using the observations made previously. Next in Section 4.2
we explore and identify the architecture alternatives that we will evaluate for scalable
application execution. Section 4.3 describes the evaluation framework in detail, Section
4.4 presents the results obtained from the baseline homogeneous chip multi-processor
that will be used as reference and Section 4.5 concludes the chapter. In Chapter 5, we
will present the impact of these architectural alternatives in comparison to the baseline
architecture.

4.1 Data Mining Workload Model

Based on the application characteristics observed in Chapter 3, we present a general
model of data mining workload in Figure 4.1. This hypothetical workload has two par-
allel regions and three serial regions, which makes up the two kernels. The computation
intensity at each phase is represented by the thickness of the line. This directly relates
to the execution time for that particular phase.

The parallel regions can be categorized into two types. In the first type, tasks
(work) are shared across the threads participating in the parallel region. This is
generally occurs in loops where the iterations (work) are shared across the threads,
either statically or dynamically. This region cannot have any form of synchronization
operations (only an implied barrier at the end). In the second type, all the threads
participating in the parallel execution, are assigned individual tasks (work). Unlike the
former type, the threads in the latter communicate and synchronize among themselves
to achieve coordination during task execution. Kernel 1 represents a parallel region of
the first type and kernel 2 represents a parallel region of the second type. It should also
be pointed out that all the parallel regions present in the workload express data par-
allelism. As a consequence the thickness of the lines in all the parallel regions are uniform.

The serial regions constitutes the phases, where only a single thread can exist.
It is important to execute the serial phases as efficiently as possible because they
play a significant role in the overall performance. The serial phase also have varying

33

34 CHAPTER 4. SCALABLE MULTI-CORE ARCHITECTURES FOR DATA
MINING APPLICATIONS

computational intensities. For instance, Kernel 1 is computationally more intensive
than the serial reduction phase.

KMEANS & FUZZYMEANS uses parallel region with implicit synchronization at
the end, similar to that of kernel 1 and we term these as worksharing applications. HOP
& SCALPARC uses parallel regions with explicit communication and synchronization
and so its behavior is similar to that of kernel 2. We term these as non-worksharing
applications. We use this workload as a representative for identifying plausible archi-
tectural alternatives for exploration and understanding the impact of each architectural
alternative on application scalability.

Figure 4.1: Data Mining Workload Model

4.2. EXPLORING ARCHITECTURAL ALTERNATIVES FOR SCALABILITY 35

4.2 Exploring Architectural Alternatives for Scalability

There are various possible avenues for exploring alternatives that help application scala-
bility and we classify them into three distinct categories: system architecture and orga-
nization, memory system and communication and interconnection network. In this work
we do not address the communication and the interconnection network aspects. Prior
works in Memory subsystem characterization using data mining workloads have revealed
several possible enhancements as indicated in chapter 1, that help improve memory per-
formance. We rather focus our attention on the system architecture and organization
aspects as this is least addressed.

Figure 4.2: Architectural Enhancements Classification

The system architecture and organization avenue ranges from using techniques like
SMT for hiding memory latencies, proposing ISA extensions for better speedups to care-
ful core provisioning and multi-core heterogeneity management for improving overall
system throughput. Figure 4.2 lists several possible architecture enhancements for data
mining applications under system architecture and memory subsystem category. We
restrict our analysis mainly to the system level aspects as it focuses on improving the
applications computational throughput. Hence we investigate the following architectures.

4.2.1 Homogeneous Chip Multi-Processor

We first investigate the performance of these applications on a simulated homogeneous
Chip Multi-Processor (CMP) architecture (see Figure 4.3 A). The size of the single base-
line core used in this can either be small, mediocre or large based on the computational
throughput requirements. Larger cores are preferred for exploiting coarse grain paral-
lelism and smaller cores for fine grained parallelism. The main reason behind investigat-
ing homogeneous CMP can be attributed to the data parallel nature of the applications

36 CHAPTER 4. SCALABLE MULTI-CORE ARCHITECTURES FOR DATA
MINING APPLICATIONS

(i.e. the computations that each thread performs remain the same, the difference lies in
the data that each thread uses). Another reason is that these architectures represent the
current design trend in the microprocessor industry. The performance results derived
using homogeneous architecture for these applications on the simulator are discussed in
Section 4.4 and will be used as a baseline for comparison.

Figure 4.3: Scalable Multi-core Architectures for Data Mining Applications

4.2.2 Asymmetric Chip Multi-Processor

The performance of the modeled workload (as shown in Figure 4.1) can be enhanced
by either accelerating the serial or the parallel computation phases or both. Large
serial phases can easily prevent parallel applications from scaling to multiple threads
(bottleneck) and hence addressing this becomes very crucial. Several architectures
like Asymmetric Chip Multi-Processor (ACMP) and Accelerated Critical Sections
(ACS) [41] have been proposed to address this issue efficiently. The basic idea behind
ACMP/ACS is to have one large core that can efficiently handle the serial phases of the
application and have several homogeneous cores that help in achieving high computa-
tional throughput during parallel execution phase (see Figure 4.3 B). ACS in addition
executes the critical section computations on the larger core to yield better performance
in comparison to ACMP. This requires operating system and architecture support as
the threads executing the critical section have to be moved to the large core for execution.

As indicated in the observations presented in the previous chapter, data mining appli-
cations comprise of several serial phases each with varying computational complexities.
This makes them an ideal candidate for asymmetric architectures. Also, the scheduling
overhead associated with ACMP is minimal (could be simply based on priority). We
investigate how data mining workloads behave on ACMP architecture and discuss the
impact that these architectures have on the application scalability. The details pertaining
to this and the results of these investigations are discussed in Chapter 5.

4.2.3 Heterogeneous Multi-Core Processor

Heterogeneous Multi-Core Processors (HMCP) comprise of cores each with different
execution capability (see Figure 4.3 C). We consider a single ISA heterogeneous
multi-core architecture (i.e., all cores have the same ISA) as the candidate for our
evaluation. This choice of ISA is mainly limited by the capability of the simulator to
simultaneously support multiple cores, each with different a ISA. The benefits of HMCP
have been investigated in [28] and it has been found to offer superior performance

4.3. EXPERIMENTAL SETUP 37

for exploiting both intra and inter thread diversity. This investigation was however
carried out for multi-programmed workloads. In the previous chapter we observed
that data mining applications exhibit varying behavior at different phases in the ap-
plication and hence these workloads can be viewed as a candidate for HMCP architecture.

In Chapter 5, we also investigate the potential for heterogeneous multi-core for scal-
able execution of data mining applications. More importantly we compare the perfor-
mance results of a naive scheduling policy (mapping thread to cores) to a resource aware
scheduling policy and discuss their merits and drawbacks. Also we investigate the impact
of these scheduling strategies on the overall scalability of the application.

4.3 Experimental Setup

We first simulate a 16-core homogeneous CMP, that is used as baseline for compari-
son. As discussed in Chapter 2, we make use of the SESC simulator for this study.
First, we discuss the simulation timing and accuracy issues with the simulator. We
limit simulation time by making appropriate selection of input datasets, reducing
iteration count for iterative algorithms and fast-forwarding instructions (phases) in
the applications which are not essential for each of the benchmarks. Although the
influence of dataset size during execution on a real machine is minimal, it largely
influences the simulation time, when using a simulator. One way to reduce simulation
time is by using reduced input sets, which not only achieves reduced execution time
but is also successful in replicating program behavior comparable to the reference
input data set. The Minebench benchmark suite does not currently provide reduced
input sets to address the simulation time issues. This leaves us with an option of
selecting a particular dataset from the available datasets. Small datasets will cause
variations if the working set can be held in cache, leading to effects like superlinear
speedups. Large data sets on the other hand, can lead to exorbitant simulation
times thereby influencing the extent to which investigation can be carried out. We
use medium dataset to mitigate the effects of having a large/small datasets. For
iterative algorithms we reduce the simulation time by not letting them iterate until
the algorithm reaches convergence (we limit the number of iteration to reduce ex-
ecution time). We also employ simulation fast-forwarding (emulation) wherever possible.

As for accuracy, a detailed study regarding the validity of the SESC simulator has
already been carried out by Weaver et al. in [16]. We use the MIPS R12000 architecture
configuration provided by them as the baseline core (single core) for modeling multi-core
architectures, since this core configuration has already been used for prior validation
studies (reduced modeling effort and improved modeling accuracy). We use a shared
last level cache (L2 cache) to improve memory performance as shown by jaleel et al in
[25] and MESI protocol for cache coherence in the simulated and . The table shows the
configuration of the simulated architecture.

38 CHAPTER 4. SCALABLE MULTI-CORE ARCHITECTURES FOR DATA
MINING APPLICATIONS

Processor Features Configuration
Number of Cores 16
Core feature 300MHz R12000 out-of-order, 4-issue 33 arch registers 64 physical registers
Memory System L1i: 32kB, 2-way, 64B L1d: 32kB, 2-way, 32B L2 : 4MB, 2-way, 128B(Shared)
Branch Predictor 2048 entry 2-bit
Coherence MESI Protocol
Memory Bus 4:1 CPU/BUS ratio

Table 4.1: Baseline CMP Configuration.

4.4 Baseline CMP Scalability

We measure the scalability of these applications on a 16 core simulated homogeneous
CMP. First we report performance of a single thread on the CMP and then scale it up
until the number of thread contexts equals the number of cores in the architecture. We
had to restrict our evaluation to 16 cores because anything beyond this core count led to
several fold increase in simulation time. The scalability results are presented in Figure
4.3. We do not discuss the bottlenecks in detail here as these workloads have already
been evaluated in chapter 3, although on a SMP machine. The main purpose of this
evaluation is to have baseline performance figures that can be used for comparison.

Figure 4.4: Simulated CMP Scalability

We list some key architectural differences between the two platforms that explains
the difference in scalability behavior across the CMP and the SMP results (Chapter 3).

4.5. CONCLUSION 39

First, the communication and synchronization costs associated with CMP architectures
are much lower when compared to a traditional SMP machine. Next, the available
memory bandwidth, memory (cache) size per thread is much higher for SMP when
compared to CMP architecture wherein the core/threads have to share the available
memory bandwidth. Although there are other differences, the variation in application
performance across the two platforms can mainly be attributed to these two aspects.

4.5 Conclusion

In this chapter, we first presented a generic model of the data mining workload con-
structed based on the characteristics identified in the previous chapter. Then we explored
the possible architectural enhancements and identified suitable ones for further investi-
gation. Next, we discussed the experimental issues involved and finally presented the
results from the baseline CMP processor that is to be used as reference for comparison.

40 CHAPTER 4. SCALABLE MULTI-CORE ARCHITECTURES FOR DATA
MINING APPLICATIONS

Evaluation and Results 5
This chapter evaluates the proposed architectural alternatives in order to identify the
most scalable alternative for executing data mining workloads using the benchmarks
described in the previous chapters. In Section 5.1, we look at the architectural specifica-
tions of the Asymmetric Chip Multi-Processor (ACMP) and Heterogeneous Multi-Core
Processor (HMCP), described in the previous chapter. In Section 5.2 and Section 5.3,
we analyze the performance of the ACMP and HMCP configurations, respectively.

5.1 Architectural Specifications

In addition to the baseline MIPS R12000 (R12K) configuration, we use two hypothetical
processor configurations derived out of the R12K. We will refer to these configurations
as R12K- and R12K+. The configuration details are listed below in Table 5.1.

R12K- R12K R12K+
Core 300 MHz,In-order 300 MHz,Out-of-order 300 MHz,Out-of-order

2-Issue 4-Issue 6-Issue
Memory Hierarchy L1:D-16K(2way) L1:D-32K (2way) L1:D-48K (2way)

I-16K I-32K I-48K
Branch Predictor 1024 entry 2-bit 2048 entry 2-bit g-share

Table 5.1: Core Configuration Table - R12K- ,R12K, R12K+.

We use these processor configurations to investigate the performance of the architec-
tural alternatives considered and then compare the different architectural alternatives. It
must be noted that all the architectural alternatives that will be investigated, assuming
an equal area budget, unless specified otherwise. The cost model that we use for area
and performance for each of the derived cores is simple and is similar to the model used
in [22]. We use this to model the R12K+ and R12K- that are to be substituted in place
of R12K cores. Under this model, when x small R12K/R12K- cores are replaced with
one large R12K+/R12K core, the sequential performance of the large core improves by
a factor between x1/2 and x1/3 over the small core.

5.1.1 ACMP Architecture Configuration

ACMP, as indicated in Section 4.2.2, uses one large core in order to speedup the se-
rial phase in the application and several small/mediocre homogeneous cores to improve
the computational throughput of the parallel phases in the application. We model an
ACMP configuration, using two distinct cores, namely R12K and R12K+. Though the
performance of ACMP varies with the configuration of the large core, we restrict our

41

42 CHAPTER 5. EVALUATION AND RESULTS

evaluation to a single configuration (R12K+), which is sufficient to understand the bene-
fits of ACMP. When using the baseline configuration, we employ 16 cores (threads) of the
R12K, while in the ACMP configuration, we replace two R12K cores by one large R12K+
core, and hence, employ 15 cores (threads), though within the same computational area
budget, as indicated in Table 5.2.

CMP(N Cores) ACMP(N-1 Cores) HMCP(N Cores)
16 R12K - baseline 15 (14 R12K, 1 R12K+) 16 (13 R12K, 2 R12K-,1 R12K+)

Table 5.2: CMP, ACMP and HMCP Configurations

5.1.2 HMCP Architecture Configuration

The HMCP architecture comprises of many cores, each with different execution
capabilities. We model an HMCP configuration, using three distinct cores, namely
R12K- (small), R12K (mediocre) and R12K+ (large), as specified in Table 5.1. Though
the number of possible configurations for a given area budget is large, we restrict our
analysis to a single configuration, where we are able to investigate the performance
asymmetry introduced as a result of incorporating small cores in the design. We
modify the ACMP configuration discussed in Section 5.1.1, by replacing a single R12K
with two R12K- cores to achieve a heterogeneous configuration, as indicated in Table 5.2.

It must be noted, that though we restricted the architectural proposals to 16 cores,
this configuration was adequate to investigate the scalability issues. We had to restrict
the number of cores used for simulation because increasing the core count beyond 16 to
32,64 etc. led to several fold increase in simulation time.

5.2 R12K- vs R12K vs R12K+

First, we present the performance of the larger core (R12K+) and the smaller core
(R12K-) in comparison to the mediocre core (R12K) for the serial regions in the
application. This comparison provides an estimate of the execution time improvement
that we can achieve by employing a large core and the difference in the serial region
performance offered by the large and the small core.

In Figure 5.1, the bar labeled R12K+, depicts the serial region execution times on
the R12K+ processor and the bar labeled R12K- depicts the serial region execution
time on the R12K-. All the results are normalized to the R12K. From the graph we
can observe that the large core performs better for all the applications. KMEANS
showed the maximum benefit of around 35% from using the large core and this can be
attributed to the simplicity of the computations in the serial ‘update center kernel’.
FUZZYMEANS also uses an ‘update center kernel’, but in addition has a threshold
computation logic which is computationally intensive when compared to KMEANS and
hence, shows an improvement of around 24%. The serial region in SCALPARC uses the
values computed by the other threads to find the best splitting point and then performs

5.3. ACMP PERFORMANCE ANALYSIS 43

Figure 5.1: R12K+ vs R12K

simple spliiting operations based on the values computed and shows a 29% improvement.
HOP shows the least improvement of 20% among all the benchmarks, since the serial
region in HOP involves lot of memory accesses to update the densities for every
particle. Similarly, using a smaller core to execute the serial regions negatively impacts
performance as shown using R12K- configuration and this is because of the reasons
presented above. Among the benchmarks, HOP shows the maximum slowdown us-
ing R12K- and this is due to the effect of reduced cache size on density update operations.

Next, we measure the performance of the benchmarks using a single thread. The
first bar in the graph (see Figure 5.2) represents the normalized execution time on
a R12K- core and the second bar in the graph represents the normalized execution
time on a R12K+ core. From this graph, we can observe that these two configurations
have varying impact on performance of the benchmarks. The difference in performance
can be attributed to the architectural configuration of the cores used in the design
as indicated in Table 5.1. SCALPARC shows the least difference across the two
configurations and this is because the application is constrained by memory bandwidth
bottleneck. Since equal memory bandwidth is assumed for all cores, having a larger
core does not provide any additional benefit (for memory bandwidth). Moreover, the
improvement in cache size and issue width only affects the performance marginally.
On the other hand, HOP, KMEANS and FUZZYMEANS show good improvement in
performance due to large cache size and improved issue width in the larger configuration.

5.3 ACMP Performance Analysis

In this section, we analyze the gains from using a larger core in the ACMP configuration,
by comparing the performance of the applications on the ACMP configuration to that

44 CHAPTER 5. EVALUATION AND RESULTS

Figure 5.2: Single Thread Performance on R12K, R12K-, R12K+ cores

on the reference CMP configuration.

We investigate the performance of the ACMP proposal against the CMP (baseline)
and analyze how the improvement in the serial region execution time, as discussed in
Section 5.2, impacts performance scalability of the application. We perform this inves-
tigation on a 15-core ACMP configuration specified in Table 5.2, with 7 and 15 threads
respectively (8 and 16 CMP equivalent threads). This provides insights into the appli-
cation behavior when it scaled to multiple threads.

Figure 5.3: ACMP vs CMP (for 8 CMP equivalent threads)

The graph in Figure 5.3 shows the execution times for each application (when
executing 7 threads mapped on ACMP - 6 threads on R12K and 1 thread on R12K+

5.3. ACMP PERFORMANCE ANALYSIS 45

core) on the ACMP architecture normalized to equivalent baseline CMP architecture
(8 CMP threads on R12K cores), with an exception in the case of HOP, where the
implementation only supports thread counts in powers of two. Hence for HOP, we use
a slightly larger configuration for the ACMP (7 threads mapped on R12K and 1 on
R12K+) and normalize the execution times to equal core count CMP. From Figure 5.2
we can observe that for KMEANS the baseline CMP configuration outperforms ACMP
configuration by 6% because the serial portion only constitutes a small portion of the
application. For such throughput intensive applications, the performance improvement
gained by the additional thread in baseline CMP outweighs the enhancement in the
serial portion brought about by ACMP. For FUZZYMEANS, the serial portion is
computationally intensive when compared to KMEANS and the benefit of having a
faster core (ACMP) for computing the serial phase helps in marginally outperforming
the CMP execution time by 3%. SCALPARC on the other hand shows very little
improvement beyond 4 threads and does not scale beyond 8 due to memory bandwidth
limitations. As the parallel region execution time does not show any significant
improvement, improving the serial region execution time helps improve performance
thus resulting in a 9% improvement. For HOP however, the large core helps improve
performance by reducing the miss rates in the serial phases. This coupled with the
performance benefit gained by using an additional thread (8 threads instead of 7
threads) results in an improvement of around 15%).

Figure 5.4: ACMP vs CMP (for 16 CMP equivalent threads)

The graph in Figure 5.4 depicts the impact of ACMP architecture on application
performance when parallelized using 15 threads in a ACMP configuration (14 threads
on R12K and 1 thread on R12K+ core threads). This experiment was performed to
analyze the impact of ACMP when the application is scaled beyond eight threads. For
all these applications we have observed that the computations involved in the serial
region increases with the increase in the number of threads. For instance in KMEANS,

46 CHAPTER 5. EVALUATION AND RESULTS

as the number of threads increases to 16, the computations in the serial phase also
increases. This causes the execution time of KMEANS on ACMP to outperform an
equal area CMP, in spite of being throughput oriented as specified previously. Although
the improvement over CMP is marginal at around 4%, these results clearly indicate
growth in serial computation phases with increase in the number of threads. For
FUZZYMEANS however, the increase in the number of threads does not have a large
impact (around 10%) on performance in spite of the growing serial complexity. This
is mainly because the computational intensive phase in the serial region (threshold
computation) remains the same. The increase in the number of threads impacts the
computations for calculating the ‘updated center values’ and this translates only to
a marginal improvement in speedup. We observed similar trends in performance for
SCALPARC and HOP, wherein a performance improvement of 13% was observed for
the fomer and 21% for the latter.

From the graphs, we can conclude that the inclusion of a larger core in the design
is a good architectural alternative to improve scalability of data mining applications.
Now, we theoretically derive the speedup bounds for ACMP and baseline CMP configu-
rations used previously, using Amdahl’s Law to see if the simulated ACMP performance
improvement matches the theoretical improvement. The speedups for ACMP and CMP
are calculated using the equations given below where pfrac denotes the parallel portion
of the application, saccel represents the improvement in the serial execution time because
of using the large core and n represents the number of cores. We can notice from the
speedup equations that ACMP has one processor less than baseline CMP and this is
because ACMP uses one R12K+ core in place of two R12K cores.

SCMP =
1

1− pfrac + pfrac

n

SACMP =
1

1−pfrac

saccel
+ pfrac

n−1

The graph (see Figure 5.5) shows the speedup of applications on the ACMP
architecture derived using Amdahl’s Laws in comparison to the CMP architecture,
for n = 16. The graph indicates that the theoretical speedup values for ACMP is
lesser than CMP whereas the simulation result indicates otherwise. This difference
in theoretical and observed speedup values can be attributed to assumptions made
my Amdahl’s law. First, the law assumes that the serial fraction is independent of
the number of threads, but for benchmarks we are considering we have pointed out
that it grows with the number of threads. Next it assumes that the parallelization
is free (increasing the number of threads leads to linear increase in speedup of the
parallel region) and does not consider additional overheads like load balancing effects,
architectural resource constraints etc. These assumptions are the potential cause for
the difference in theoretical and simulated performance.

5.4. HMCP PERFORMANCE ANALYSIS 47

Figure 5.5: Amdahl’s Law - ACMP vs CMP (for 16 CMP equivalent threads)

5.4 HMCP Performance Analysis

In this section, we analyze the impact of using a smaller (slower) core in the HMCP
configuration, by comparing the performance of the benchmark applications on HMCP
configuration against the baseline CMP configuration.

We perform this investigation for the configuration specified in Table 5.2 with 8 and
16 threads (CMP equivalent), to understand the impact of heterogeneity on scalability.
As pointed out in the previous chapter, heterogeneous multi-core architecture brings
in the overhead of scheduling threads to the appropriate core. Since the HMCP
architecture that we model comprises of three different cores there are various possible
ways by which threads could be scheduled across all the available cores. First, we
carry out experiments under the assumption that the thread scheduler is unaware
of the resource heterogeneity and it simply assigns the cores to the threads based
on availability (naive scheduling policy). Next, we use a resource aware worksharing
policy for scheduling work to threads and perform similar experiments. The analysis
is carried out using all the applications (worksharing as well as non-worksharing) and
the results obtained are compared to the baseline CMP results. Figure 5.6 shows the
normalized execution time for each application on the HMCP architecture assuming a
naive scheduling policy and using 8 threads.

Each bar has a label with two configurations. The first configuration represents the
core that executes the serial phases in the application and the second represents the
slowest core which executes the parallel phase. For instance, the first bar has the label
R12K-, R12K-. This implies that the serial portion in the application is executed on
the R12K- (small core) and the slowest core which executes the parallel region is also
R12K-. When we compare the performance of baseline CMP and HMCP we can observe
that the baseline CMP outperforms HMCP architecture for all the applications. Also,

48 CHAPTER 5. EVALUATION AND RESULTS

Figure 5.6: HMCP vs CMP (for 8 CMP equivalent threads)

we have to consider that the only difference between ACMP and HMCP configuration is
the presence of two R12K- cores in place of a single R12K core. Hence this difference in
performance (across CMP, ACMP and HMCP) could be attributed to the inclusion of
these two slow cores in the HMCP configuration. We investigate the influence of having
a small core in both non-worksharing as well as worksharing applications.

To better understand this performance slowdown in worksharing and non-
worksharing workloads, we consider the application workload model represented in
Chapter 4 (Figure 4.1). In this model at the end of parallel region there is a implicit
barrier for worksharing apps and an explicit barrier for non-worksharing applications.
This barrier ensures that the processing continues only after all the threads have reached
this point in the control flow. Because the slow core offers least performance it reaches
the barrier last and all the other threads a have to wait for this slow thread to reach the
barrier point so that they can continue; this in spite of the fact that they have finished
executing the tasks assigned to them. This explains the HMCP performance slowdown
in comparison to the other architectural alternatives.

In addition to performance slowdown effects discussed previously, we can also
observe the effects of performance asymmetry on a HMCP configuration. This effect
arises because the serial regions in the application can be mapped to any of the available
cores. In case the serial region is mapped to larger core it accelerates the serial region
execution time (like ACMP) thereby improving application performance. On the
contrary, if the serial region is mapped to the slowest core, this would adversely affect
the application performance. This explains the difference in performance [7] across the
different mapping schedules as indicated by the three labels in Figure 5.6, using a naive
scheduling strategy. The impact of performance asymmetry on application performance
has been studied in [7].

5.4. HMCP PERFORMANCE ANALYSIS 49

Figure 5.7: HMCP vs CMP (for 16 CMP equivalent threads)

Figure 5.7 shows the normalized execution time for each application when paral-
lelized using 16 threads (similar to 8 threads as seen in Figure 5.6) on the HMCP
architecture assuming a naive scheduling policy. This experiment was performed to
analyze the impact of HMCP when the application is scaled up to 16 threads. From
the results we can observe that the increase in the number of threads is leading to
more asymmetry and this is reflected from the results presented in the graph. From
the graphs (for 8 and 16 threads) we can observe that the performance asymmetry
effects (marked by difference in execution time across the different possible scheduling
combinations) are larger at 16 threads than at eight threads. This was constantly
observed across all the applications.

To address this performance asymmetry, we use a resource-aware workload schedul-
ing strategy, that allocates work to cores based on the execution capability of each core
(performance that a core can deliver for a particular application). In other words, this
scheduling strategy statically allots to the different cores, proportional share of the work
that is made available to the system, based on the performance capabilities of those
cores. In order to implement such a resource-aware scheduling, the cores are statically
assigned scheduling weights (priorities) based on their computational area and and work
is appropriately distributed across the cores using their scheduling weight information.
For instance, let us consider a system configuration with 3 cores with computational area
of ’x’ and 1 core with that of ’2x’, the first 3 cores are allotted a weight of 20% each, while
the 4th core is allotted a weight of 40%. This scheme ensures that, 40% of the work is
scheduled to the 4th core, while 20% of the work is scheduled to each of the other 3 cores.
This method assures proportional fairness in scheduling inorder to maximize throughput.

The results obtained by such a scheduling strategy is presented in Figure 5.8. We

50 CHAPTER 5. EVALUATION AND RESULTS

Figure 5.8: HMCP vs CMP (for 16 CMP equivalent threads with resource aware schedul-
ing)

observe the impact of this scheduling strategy on worksharing as well as non-worksharing
applications. The results indicate that worksharing applications perform much better
on HMCP architecture in comparison to CMP architectures if resource aware scheduling
strategy is used. This is observed in KMEANS and FUZZYMEANS. As for non work-
sharing applications, we see that they only show marginal improvement in performance
when adopting a resource-aware schedule. The baseline CMP still outperforms HMCP
architectures with resource aware scheduling for non-worksharing applications. This is
because in case of worksharing applications (KMEANS & FUZZYMEANS) it is required
to partition the work involved in iterations equally across the different threads. Our tech-
nique ensures that the larger core gets more work and the smaller core gets less work
(iterations) thereby ensuring that the larger core waits for a lesser time at the implied
barrier for the smaller core to finish execution. In case of non-worksharing applications
however, there can be explicit communication at the any point in the parallel region.
This causes us to loose the benefit of having a larger core because the thread on the
smaller core always determines the critical path. This can be observed from the results
obtained using HOP & SCALPARC as shown in the graph.

5.5 Conclusion

From the simulation results, we observed that ACMP architectures provided better per-
formance scalability when compared to homogeneous configurations with similar compu-
tational area budgets. We also observed, that HMCP architectures with naive scheduling
strategy offered lesser performance scalability when compared to both ACMP and base-
line homogeneous architectures. However, when resource-aware work scheduling strategy
was employed, for worksharing workloads, better performance scalability was observed.
In case of non-worksharing workloads, the performance of ACMP and CMP clearly out-

5.5. CONCLUSION 51

performed the HMCP strategy. From the results we can arrive at a conclusion that
ACMP architectures consistently perform better than HMCP architectures.

52 CHAPTER 5. EVALUATION AND RESULTS

Conclusions and Future Work 6
In Section 6.1 we summarize the work that has been presented and draw conclusions
from the results we have obtained. In Section 6.2 we make recommendations for future
work.

6.1 Conclusions

The goal of this thesis was to investigate architecture alternatives that offer maximum
scalability for the majority of the applications in a given domain. For this purpose, the
data mining application domain was selected and specific architectural proposals were
suggested based on the characteristics exhibited by applications in that domain. This
work involved selecting candidate benchmarks, understanding architectural simulation
platforms, investigating application scalability issues, identifying generic application
characteristics, proposing alternatives to improve workload scalability on the basis of
these characteristics and finally investigating the benefits of each of the architectural
alternatives.

We choose the Minebench benchmark suite from the data mining application domain
and we specifically worked with clustering and classification benchmarks namely HOP,
SCALPARC, Kmeans and FUZZYMEANS. We then investigated various simulators to
see if they match our simulation requirements. Based on the results of our evaluation we
chose the SESC simulator for performing architectural evaluation. These applications
were then ported to SESC, by translating the application source code (written in
OpenMP) to use Pthreads and then further modified to use the SESC API’s (subset of
Pthread API’S).

To investigate the impact of threading library on scalability, we evaluated the
Pthreads and the OpenMP versions of the application by running them on a SMP (SGI
Altix) machine. Based on the experiments, we determined that for communication in-
tensive tasks, the Pthread library was more scalable than OpenMP. The analysis of these
workloads also helped in identifying characteristics that were common across the appli-
cations considered. We used these characteristics to identify architectural proposals for
improving scalability during execution. Based on these characteristics, we identified that
Asymmetric Chip Multi-Processor (ACMP) and Heterogeneous Multi-Core Processor
(HMCP) architectures would be appropriate for these workloads and we then used the
simulator to model them and also analyze the performance gains offered by each of them.

We observed that for all the applications, ACMP architectures provided better
performance scalability when compared to homogeneous configurations with similar

53

54 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

computational area budgets. We also observed, that HMCP architectures with naive
scheduling strategy offered lesser performance scalability when compared to both
ACMP and baseline homogeneous architectures. However, when resource-aware work
scheduling strategy was employed, for worksharing workloads, better performance
scalability was observed. In case of non-worksharing workloads, the performance of
ACMP and CMP clearly outperformed the HMCP strategy. From the analysis of the
data mining benchmarks carried out on the different architectural alternatives, we can
conclude that ACMP architectures consistently offer better performance scalability than
HMCP architectures.

6.2 Future Work

There are several possible ways for extending this work. One way could be to incorpo-
rate detailed area, power and thermal models and use these merits to explore diverse
architecture configurations. Another way could be to use additional benchmarks from
this domain to identify common characteristics and use them to design and investi-
gate specialized accelerator cores. Another possible extension could be, to incorporate
detailed on-chip interconnection models in the simulation, to analyze the impact of com-
munication delays on application performance and scalability. Studying the influence of
Operating System on application scalability is another interesting subject.

Bibliography

[1] Sgi, 2007, http://techpubs.sgi.com.

[2] Eetimes, 2008, http://www.eetimes.com/news/latest/showArticle.jhtml?
articleID=206901564.

[3] Kryder’s law, 2009, http://www.scientificamerican.com/article.cfm?id=
kryders-law.

[4] Top500, 2009, http://www.top500.org/system/details/9707.

[5] Todd Austin, Simple scalar hackers guide, 2009, http://www.simplescalar.com/
docs/hack_guide_v2.pdf.

[6] Eduard Ayguad, Nawal Copty, Alejandro Duran, Jay Hoeflinger, Yuan Lin, Federico
Massaioli, Xavier Teruel, Priya Unnikrishnan, and Guansong Zhang, The design of
openmp tasks, IEEE Transactions on Parallel and Distributed Systems 20 (2009),
no. 3, 404–418.

[7] Saisanthosh Balakrishnan, Ravi Rajwar, Mike Upton, and Konrad Lai, The impact
of performance asymmetry in emerging multicore architectures, SIGARCH Comput.
Archit. News 33 (2005), no. 2, 506–517.

[8] BSC., Paraver reference manual, May 1999.

[9] BSC., Mpitrace users guide, November 2000.

[10] BSC., Ompitrace users guide, November 2000.

[11] Gregory Buehrer, Scalable mining on emerging architectures, Ph.D. thesis, Colum-
bus, OH, USA, 2008, Adviser-Parthasarathy, Srinivasan.

[12] Y. K. Chen, J. Chhugani, P. Dubey, C. J. Hughes, D. Kim, S. Kumar, V. W. Lee,
A. D. Nguyen, M. Smelyanskiy, and M. Smelyanskiy, Convergence of recognition,
mining, and synthesis workloads and its implications, Proceedings of the IEEE 96
(2008), no. 5, 790–807.

[13] Yu Chen, Wenlong Li, Junmin Lin, Aamer Jaleel, and Zhizhong Tang, Data sharing
analysis of emerging parallel media mining workloads, HiPC, 2008, pp. 87–96.

[14] J. Pisharath et al., Accelerating data mining workloads: Current approaches and
future challenges in system architecture design, Proc. 9th Int’l Workshop on High
Performance and Distributed Mining, in conjunction with 6th Int’l SIAM Conf.
Data Mining, 2006.

[15] Mark Hempstead et al., Navigo: An early-stage model to study power-constrained
architectures and specialization, Modeling, Benchmarking, and Simulation(MOBS
2009), June 2009.

55

56 BIBLIOGRAPHY

[16] Weaver et al., Are cycle accurate simulations a waste of time?, Workshop on Du-
plicating Debunking and Debunking (2008).

[17] Amol Ghoting, Gregory Buehrer, Srinivasan Parthasarathy, Daehyun Kim, An-
thony D. Nguyen, Yen-Kuang Chen, and Pradeep Dubey, A characterization of
data mining workloads on a modern processor, DaMoN, 2005.

[18] Processor Amol Ghoting, Amol Ghoting, Gregory Buehrer, Srinivasan
Parthasarathy, Daehyun Kim, Anthony Nguyen, Yen kuang Chen, and Pradeep
Dubey, Cache-conscious frequent pattern mining on a modern, In Proceedings of
the International Conference on Very Large Data Bases (VLDB, 2005, pp. 577–588.

[19] Chris Gottbrath, Overcoming the challenges of developing applications for the cell
processor, Linux J. 2008 (2008), no. 175, 4.

[20] Tom R. Halfhill, RISC fights back with the Mips R12000 — SGI tweaks its chip with
better bus bandwidth, wider parallelism, and stronger emphasis on FP performance,
Byte Magazine 23 (1998), no. 1, 49–??

[21] Nikolaos Hardavellas, Stephen Somogyi, Thomas F. Wenisch, E. Wunderlich, Shelley
Chen, Jangwoo Kim, Babak Falsafi, James C. Hoe, and Andreas G. Nowatzyk,
Simflex: A fast, accurate, flexible full-system simulation framework for performance
evaluation of server architecture, SIGMETRICS Performance Evaluation Review
(2004).

[22] Mark D. Hill and Michael R. Marty, Amdahl’s law in the multicore era, Computer
41 (2008), no. 7, 33–38.

[23] Peter Hofstee, Heterogeneous computing, hardware and software fundamentals,
the cell broadband engine and its applications, 2008, http://ce.et.tudelft.nl/
cecoll/?id=237.

[24] Engin Ipek, Meyrem Kirman, Nevin Kirman, and Jose F. Martinez, Core fusion:
accommodating software diversity in chip multiprocessors, Proc. 34th International
Symposium on Computer Architecture (34th ISCA’07) (San Diego, California,
USA), ACM SIGARCH, June 2007, pp. 186–197.

[25] Aamer Jaleel, Matthew Mattina, and Bruce L. Jacob, Last level cache (llc) perfor-
mance of data mining workloads on a cmp - a case study of parallel bioinformatics
workloads, HPCA, 2006, pp. 88–98.

[26] Mahesh V. Joshi, George Karypis, and Vipin Kumar, Scalparc: A new scalable
and efficient parallel classification algorithm for mining large datasets, IPPS/SPDP,
1998, pp. 573–579.

[27] Alan H. Karp and Horace P. Flatt, Measuring parallel processor performance, Com-
mun. ACM 33 (1990), no. 5, 539–543.

[28] Rakesh Kumar, Holistic design for multi-core architectures, Ph.D. thesis, UNIVER-
SITY OF CALIFORNIA, SAN DIEGO, 2006.

BIBLIOGRAPHY 57

[29] Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Parthasarathy Ranganathan,
and Dean M. Tullsen, Single-ISA heterogeneous multi-core architectures: The po-
tential for processor power reduction, MICRO, ACM/IEEE, 2003, pp. 81–92.

[30] Rakesh Kumar, Norman P. Jouppi, and Dean M. Tullsen, Conjoined-core chip mul-
tiprocessing, MICRO, IEEE Computer Society, 2004, pp. 195–206.

[31] Rakesh Kumar, Dean M. Tullsen, Parthasarathy Ranganathan, Norman P. Jouppi,
and Keith I. Farkas, Single-ISA heterogeneous multi-core architectures for multi-
threaded workload performance, ACM SIGARCH Computer Architecture News 32
(2004), no. 2, 64–64.

[32] Ying Liu, Wei-keng Liao, and Alok Choudhary, Design and evaluation of a parallel
hop clustering algorithm for cosmological simulation, IPDPS ’03: Proceedings of the
17th International Symposium on Parallel and Distributed Processing (Washington,
DC, USA), IEEE Computer Society, 2003, p. 82.1.

[33] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren, Gus-
tav Hllberg, Johan Hgberg, Fredrik Larsson, Andreas Moestedt, and Bengt Werner,
Simics: A full system simulation platform, Computer 35 (2002), no. 2, 50–58.

[34] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty, Min
Xu, Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and David A. Wood, Multi-
facet’s general execution-driven multiprocessor simulator (gems) toolset, SIGARCH
Comput. Archit. News 33 (2005), no. 4, 92–99.

[35] Tomer Y. Morad, Uri C. Weiser, Avinoam Kolodny, Mateo Valero, and Eduard
Ayguad?, Performance, power efficiency and scalability of asymmetric cluster chip
multiprocessors, IEEE Computer Architecture Letters 5 (2006), no. 1.

[36] Berkin Özisikyilmaz, Ramanathan Narayanan, Joseph Zambreno, Gokhan Memik,
and Alok N. Choudhary, An architectural characterization study of data mining and
bioinformatics workloads, IISWC, 2006, pp. 61–70.

[37] Vijay Pai, Parthasarathy Ranganathan, and Sarita V. Adve, The impact of
instruction-level parallelism on multiprocessor performance and simulation method-
ology, In 3 rd International Symposium on High Performance Computer Architec-
ture, 1997, pp. 72–83.

[38] Paul Sack, Sesc hackers guide, 2009, iacoma.cs.uiuc.edu/~paulsack/sescdoc/.

[39] Kelly Shaw, Understanding the working sets of data mining applications, Eleventh
Workshop on Computer Architecture Evaluation using Commercial Workloads
(CAECW-11), 2008.

[40] D. Skinner and W. Kramer, Understanding the causes of performance variability in
hpc workloads, IEEE Workload Characterization Symposium 0 (2005), 137–149.

58 BIBLIOGRAPHY

[41] M. Aater Suleman, Onur Mutlu, Moinuddin K. Qureshi, and Yale N. Patt, Acceler-
ating critical section execution with asymmetric multi-core architectures, ASPLOS
’09: Proceeding of the 14th international conference on Architectural support for
programming languages and operating systems (New York, NY, USA), ACM, 2009,
pp. 253–264.

[42] University of Rochester Computer Science Department, Mint tutorial and user man-
ual, May 1993.

[43] UTK., Papi users guide, May 1999.

[44] Joshua J. Yi and David J. Lilja, Simulation of computer architectures: Simula-
tors, benchmarks, methodologies, and recommendations, IEEE Trans. Computers
55 (2006), no. 3, 268–280.

SGI Altix Architecture A
The SGI Altix machine is installed in a 42U SGI rack each comprising of 4 Individ-
ual Rack Units (IRU) and each of these IRU’s cab support ten compute/memory and
I/O modules called blades. Each of these blades have ASICS, processors, memory and
I/O chipsets and is mounted on a mechanical carrier. The system architecture for the
Altix 4700 system is a fourth-generation NUMAflex DSM architecture known as NU-
MAlink 4. In the NUMAlink 4 architecture, all processors and memory are tied together
into a single logical system with special crossbar switches (routers). This combination
of processors, memory, and crossbar switches constitute the interconnect fabric called
NUMAlink. There are four router switches in each 10U IRU enclosure. See Figure A.1.

Figure A.1: 42U SGI Rack (taken from [1])

59

60 APPENDIX A. SGI ALTIX ARCHITECTURE

The basic expansion building block for the NUMAlink interconnect is the processor
node; each processor node consists of a Super-Hub (SHub) ASIC and one or two 64-bit
processors with three levels of on-chip secondary caches. The Intel 64-bit processors
are connected to the SHub ASIC via a single high-speed front side bus. This specialized
ASIC acts as a crossbar between the processors, local SDRAM memory, and the network
interface. The SHub ASIC memory interface enables any processor in the system to
access the memory of all processors in the system. Figure A.2 shows a conceptual block
diagram of the blade’s memory, compute and I/O pathways.

Figure A.2: SGI Blade Architecture (taken from [1])

Another component of the NUMAlink 4 architecture is the router ASIC. The router
ASIC is a custom designed 8-port crossbar ASIC. Using the router ASICs with a highly
specialized backplane or NUMAlink 4 cables provides a high-bandwidth, extremely low-
latency interconnect between all processor, I/O, and other option blades within the
system. In the Altix 4700 series server, memory is physically distributed both within
and among the IRU enclosures (compute/memory/I/O blades); however, it is accessible
to and shared by all NUMAlinked devices within the single-system image. This is shown

61

in Figure A.3.
The following are the sub-types of memory within a system:

• If a processor accesses memory that is connected to the same SHub ASIC on a
compute node blade, the memory is referred to as the node’s local memory and
memory latency is lowest for these accesses.

• If processors access memory located in other blade nodes within the IRU, (or other
NUMAlinked IRUs) the memory is referred to as remote memory.

• The total memory within the NUMAlinked system is referred to as global memory.

Figure A.3: SGI NUMAflex DSM architecture (taken from [1])

In DSM systems, memory is physically located at various distances from the proces-
sors. As a result, memory access times (latencies) are different or ”non-uniform.” The
Altix 4700 server series use caches to reduce memory latency and this leads to the cache
coherency issues. Although data exists in local or remote memory, copies of the data
can also exist in various processor caches throughout the system and cache coherency is
required to keep the cached copies consistent. This architecture uses a directory-based
coherence protocol, where each block of memory (128 bytes) has an entry in a table that
is referred to as a directory. Like the blocks of memory that they represent, the directo-
ries are distributed among the compute/memory blade nodes. A block of memory is also

62 APPENDIX A. SGI ALTIX ARCHITECTURE

referred to as a cache line. Each directory entry indicates the state of the memory block
that it represents. For example, when the block is not cached, it is in an unowned state.
When only one processor has a copy of the memory block, it is in an exclusive state.
And when more than one processor has a copy of the block, it is in a shared state; a bit
vector indicates which caches contain a copy. When a processor modifies a block of data,
the processors that have the same block of data in their caches must be notified of the
modification. The Altix uses an invalidation method to maintain cache coherence. The
invalidation method purges all unmodified copies of the block of data, and the processor
that wants to modify the block receives exclusive ownership of the block. The overview
of the system configuration is given below.

• 128 cpus Dual Core Montecito(IA-64).

• Each one of the 256 cores works at 1,6 GHz, with a 8MB L3 cache and 533 MHz
Bus.

• 2.5 TB RAM.

• 2 internal SAS disks of 146 GB at 15000 RPMs

• 12 external SAS disks of 300 GB at 10000 RPMS

