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Abstract

Practice is always the secret to the success of musicians. Many musicians record their rehearsal sessions
and listen back to reflect on their practice. However, the rehearsal sessions are unstructured, messy and
rather long compared to commercial recordings. As a result, musicians may not have the capacity to lis-
ten back to all of their practice recordings comprehensively. Nowadays, Music Information Retrieval (MIR)
techniques have been developed to better manage and filter informative representations from commercial
recordings. However, not much research has been performed focusing on rehearsal sessions. What differen-
tiates rehearsal session recordings from ‘regular’ recordings, is both their length and the unpredictability of
the content within them. Besides, rehearsal recordings will not have labeled ground truth on their content,
and obtaining this would require a massive amount of manual labeling work; thus, it is unrealistic to achieve.
In this thesis, we therefore propose a systematic development and evaluation framework to deal with these
challenges. In detail, we will focus on the segmentation of full rehearsal session recordings into meaningful
repeated fragments that could be used by musicians. To this end, we propose a framework which adopts an
unsupervised segmentation strategy that can be robust to expected variability in ‘meaningful’ repeats. While
well-defined ground truth is absent, by employing an evaluation strategy that synthesizes the ground truth
based on real recordings, we still get insight into the performance of our methods.
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�
Introduction

Practice, the act of repeatedly performing an activity in order to acquire or polish a skill, is an inevitable step
towards mastering a musical instrument. Becoming a master musician requires at least a decade’s worth of
contribution to practice [17]. While there are a massive amount of musicians around the world spending
almost the same amount of time practicing, only a few of them have become masters. The reason is that only
investing many hours is not sufficient; the practice should also be beneficial and smart. In other words, the
quality of the practice is the key to becoming a successful musician.

What is the way to assess the quality of practice? In the conservatory, the performance of the students
can be assessed through a weekly class with music educators. However, the time of this class is limited. In
such a short amount of time, it is not easy to find and correct all the potential problems of a student. As a
potential solution, while the students are practicing, they can record their rehearsals. Listening back to these
recordings can give further insight into points of improvement. However, the rehearsal sessions can take
many hours, and it is, therefore, unrealistic to assume a human can listen back to all of them.

Recently, many kinds of research in the field of Music Information Retrieval (MIR) have been investigated,
aiming for extracting useful music content. For example, research has been conducted into automatically
extracting music structural information by using machine learning and signal processing techniques. Briefly
speaking, music structure analysis, “refers to the process of recovering a description of the sectional form” [18]
and “the structure of a musical piece can be described with segments having a specific time range and a
label” [17]. As a consequence, research in music structure analysis has largely focused on extracting musical
building blocks such as the intro, verse, pre-chorus and chorus (or refrain).

Work in MIR, including music structure analysis, has so far focused on commercial recordings. However,
with musical practice being the act of repeatedly performing an activity in order to refine a musical piece,
rehearsal sessions also have internal structure, although the structure is less defined than in traditional struc-
ture analysis.

More specifically, two types of repetitions exist in the rehearsal recordings. One type of repetitions is due
to the material being repeated in a composition. The other type of repetitions are created due to musicians
revisiting the material more often in a rehearsal. We ultimately are mostly interested in the latter types of
repeats. However, to distinguish between the two, we would need to know upfront what the musicians play.
However, as we would like to contribute a framework that is as generalizable as possible, we want to avoid
that the availability of this knowledge is required before the analysis can be done. Furthermore, repetitions
in the rehearsal recordings are expected to have degrees of variation. They will not be exactly replicated in
time, and may contain errors or experimentations. However, they are expected to still maintain the ordering
of harmonic content.

Contrasting commercial recordings with rehearsal recordings, several further main differences can be
found between the two. Firstly, commercial recordings have well-defined music structures and fewer errors,
but real rehearsal recordings are less structured, fragmented, and include much experimentation that is new
to existing MIR literature. Secondly, while music structure analysis is focusing on longer structural music
patterns, meaningful repeats in rehearsal recordings are expected to be much shorter (usually less than ten
seconds) while they are part of a longer recording than a commercial song would be.

In this thesis, we therefore propose a rehearsal analysis framework that can handle the typical character-
istics of rehearsal data and that allows for systematic evaluation, even when objective ground truth is absent.
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6 1. Introduction

Considering that different types of repeats exist in the rehearsal recordings, we design a synthetic data genera-
tor that can yield fully or partially controllable ground truth to evaluate the performance of rehearsal analysis
framework. The following research questions will be addressed:

1. How can we design a rehearsal analysis framework which can automatically extract informative repre-
sentations from the rehearsal recordings?

2. How can we prepare data to evaluate the performance of the rehearsal analysis system when the ground
truth is missing?

3. How can we evaluate the output of information representations extracted from rehearsal analysis sys-
tem?

Our ultimate goal is to realize the analysis of rehearsal recordings through MIR techniques to assist more
musicians and to evaluate their progress of rehearsal in a comfortable, simple, and fast way. Little work has
been done so far in this area, and the existing work requires more solid evaluation procedures. This work,
and other related themes from MIR, will be discussed in Chapter 2. In Chapter 3, we illustrate a big picture
of the rehearsal analysis approach. After that, we elaborate each part in the following chapters. Chapter 4
gives more details about the music pre-processing step. Chapter 5 describes the rehearsal analysis frame-
work, which transforms rehearsal recordings into meaningful and listenable repetitions. Due to the lacking
ground truth in the real rehearsal recordings, we present a synthetic data generator in Chapter 6, which can
be used to automatically synthesize ground truth. The performance of the rehearsal analysis framework can
be evaluated using several segmentation evaluation methods, which are discussed in Chapter 7. Once we
have introduced all the methodologies we need, the experimental results on our synthetic data are reported
in Chapter 8. Furthermore, we project how our framework can be used on real rehearsal data in Chapter 9. In
the end, we present a conclusion and discuss future work in Chapter 10.



�
Related Work

This chapter introduces the background knowledge in the literature that is related to our research. Section
2.1 in this related work expands our vision on the topic of Music Structure Analysis, which is a common sub-
ject in MIR to extract informative representations in the music. This chapter is organized in the following.
Existing methods that find similar music segments in the recordings are described in Section 2.2. Feature ex-
traction is the essential step to describe the content of the audio which is illustrated in Section 2.3. Rehearsal
analysis systems use to monitor the progress of the musicians in their rehearsal sessions which is presented in
Section 2.4. In the end, several evaluation methods for evaluating informative musical content are described
in Section 2.5.

2.1. Music Structure Analysis
The music is built out of notes, which together form patterns and melodies, and the way these are repeated,
contrasted, and varied constitute structure and actual musical content. Based on that, paper [16] refers to the
music as highly structured content. The structured content can be categorized into repetitions, contrast, vari-
ations, and homogeneity. The methods of finding the combinations among the structure content are called
Music Structure Analysis [16]. Typically, music structure consists of a large number of common patterns that
are known as the repetitions [16]. Repetitions, as one of the most critical concepts indicating the rhythmic
and harmonic patterns as well as variations information behind the music, show periodicity information in
a piece of music [12]. As a consequence, the repetition-based structure analysis approach is mostly used for
detecting the iterated patterns from the music [16].

The music structure can be extracted in a self-similarity based matrix which is used to present mid-level
representations [18] of the music. The row and column in the self-similarity matrix correspond to the seg-
mented frames of a single recording. The value in the matrix is calculated through dissimilarity/similarity
distance between segmented frames. Once the self-similarity matrix has been constructed, the informative
representations in the matrix can be determined. Furthermore, transferring the self-similarity matrix into an
image can help us to distinguish the structured content in the music. While the strips in the image show the
repetitions, the blocks in the image refer to the homogeneity in the music.

2.2. Match Similar Music Segments
Repetitions are the music segments that share levels of similarities. In the field of MIR, three topics are used
to find similar music segments or recordings, namely Music Fingerprinting, Cover Song Detection, and Au-
dio Matching. The Music Fingerprinting invented by Wang et al. in [23] can quickly identify the song in the
database by using only tiny music excerpts recorded through a microphone in the cellphone. Cover Song De-
tection, also known as version identification, can be solved above the tonal or timbre content of the music [2].
The paper [8] written by Liem et al. presents a Cover Song Retrieval(CSR) system which used raw audio as a
query to retrieve a different version of the music in the dataset. The system contains two main components,
namely feature representation and dissimilarity assessment. Feature representation is the process of trans-
ferring an audio signal into feature vectors [8]. Dissimilarity assessment, the other component in her CSR
system, measures dissimilarity value between two feature vectors [8]. The Audio Matching is a MIR topic to
find the similarity among audios. Audio Matching is also called music synchronization in [15], is aimed for

7



8 2. Related Work

aligning music recordings to another recording, music scores or MIDIs. Müller et al. proposed a new audio
matching technique to align two music recordings by using the dot product to calculate dissimilarity value.
After that, two music segments in the audios with the minimum dissimilarity value are considered as the best
match.

2.3. Feature Extraction
Feature extraction is a common step we need to take when describing the content of the audio signals. It
can transfer the low-level audio signal into feature vectors that can be used for further analysis. There are
many feature representations in music, such as dynamics, timbre, chroma, and local tempo variation. The
chroma and timbre features are two of the essential features that are widely used in MIR tasks. Mel-frequency
Cepstral Coefficients (MFCCs) is normally used as timbre feature that has excellent performance in speech
processing task [4]. A potential application of MFCC suggested by Foote is to compute the novelty of the
music [5]. Chroma feature is firstly mentioned in [1]. It shows spectral energy within 12 pitch classes with an
equal-tempered scale. To make chroma more suitable for distance measuring tasks, Müller et al. proposed a
normalized version of chroma feature named Chroma Energy Distribution Normalized Statistics (CENS) [14].
The CENS feature is stabilized to variations when analyzing classical western music that is highly related to
the harmonic progression.

2.4. Rehearsal Analysis System
The rehearsal analysis system is a framework that users can monitor the progress of their rehearsal session by
listening and visualizing repetitions in the user interface.

To the best of our knowledge, only three rehearsal analysis systems have been mentioned in the literature.
The first system is proposed by Xia et al. which can record, organize, retrieve and review the repetitions in
the rehearsal audio [25]. The silent music segments are removed from the rehearsal recordings by using the
Ada-boost classifier before they get into next stage of analysis. The non-silent music segments remains as
independent music segments. The music segments are transferred into CENS feature vectors [15]. Moreover,
the audio matching method proposed by [15] is used to find similar music segments in the recordings. As a
consequence, the users can visualize and evaluate the repetitions in the user interface in the system.

Another rehearsal analysis system proposed by Winter et al. in [24] is named as automatic logging system.
Unlike the silence removal method proposed by Xia et al. [24], a pre-defined threshold is set in the recorder
before the rehearsal session starts. The energy of the input lower than the pre-defined threshold will not be
recorded. After that, the rehearsal recordings are transferred into the CENS feature vector. Unlike in Xia et
al. ’s paper [25] , Winter et al. [24] segmented the feature vectors equally. Once the segmentation have been
done, Dynamic Time Warping (DTW) is used as a distance function to determine whether two feature vectors
are repetitions or not. The rehearsal recordings is aligned with reference recordings that are used as ground
truth to evaluate the repetitions extracted from rehearsal analysis system.

There are both pros and cons in both rehearsal analysis framework. Although silence removal task in Xia
et al. ’s paper [25] have better performance comparing to Winter et al. in paper [24], it requires many manual
works on labeling the silent and non-silent music segments. Moreover, despite Xia et al. ’s system has resulted
longer music segments that are more listenable comparing to Winter et al. ’s system, many false matches are
contained in the repetitions in Xia et al. ’s system.

Recently, rehearsal analysis has been proposed again by The in his thesis [22]. The system uses the same
segmentation and audio matching techniques mentioned by Xia et al. in [25]. The system designed by The
is called rehearsal progress monitoring [22] that can interact with users by visualizing the most frequently
played music segments in the rehearsal recordings. The repetition output is evaluated manually by listen-
ing. We want to emphasize that the user interface in The’s thesis [22] is the first time that user interface has
appeared among all the rehearsal analysis system.

Silence 

Removal

Music 

Segmentation

Feature 

Extraction

Audio 

Matching

Rehearsal

Recordings

Output Of Repetition

Pairs

User

Interface

Rehearsal Analysis FrameworkMusic Pre-processing

Figure 2.1: Rehearsal analysis system in [22, 25].



2.5. Segmentation Evaluation Method 9

2.5. Segmentation Evaluation Method
A rehearsal analysis system is successful when it manages to extract meaningful repetitions; that is, repe-
titions are segmented at an appropriate time resolution. If we attempt to evaluate repetitions, the closest
existing works deal with the evaluation of structural segmentation outcomes, taking a different aspect of the
segmentation into account. The paper [21] comes up with the topic Music Information Retrieval Evalua-
tion eXchange (MIREX) which published common metrics that are mostly used to evaluate the algorithms
in structure segmentation tasks. The first matrix is called as pairwise retrieval matrix. This matrix includes
precision, recall, and f-measure as proposed in [6]. The precision and recall are calculated through dividing
the number of correct segmentation by the total number of the ground truth of segments or by the number of
predicted segmentation, respectively. The score of F-measure is weighted for both. Except for measuring the
number of correct segmentation, the boundary retrieval evaluation calculates the percentage of time over-
lapping between ground truth and predicted repetitions, as described in [21]. Levy et al. [7] uses the concept
of boundary retrieval evaluation to measure the percentage of the missing boundary between predicted seg-
ments and the total ground truth of segments by the length of time. Furthermore, Lukashevich et al. proposed
concept of under-segmentation and over-segmentation conditions for the purpose of quantifying the level of
segmentation.

The evaluation method described in paper [21] requires ground truth of repetitions that we do not have
in our rehearsal data. However, in the future chapter, we will propose a synthetic data generator framework
in which we synthesize rehearsal type of data with such ground truth data. Although the ground truth helps
us to evaluate the repetitions, there exists anonymous (or named as ambiguously) of ground truth that intro-
duces difficulties to explain the correctness of the designed algorithms [21]. In the meanwhile, the paper [19]
illustrates that “the number of patterns found by the algorithms exceeds patterns in human annotations by
several orders of magnitude, with little agreement on what constitutes a pattern.”, which means the ground
truth of common patterns or structure extracted by algorithms is far more different from the ground truth la-
beled by humans. To sum up, the ambiguity of ground truth is one of the biggest difficulties in MIR evaluation
tasks.





�
Rehearsal Analysis Overview

To solve the research questions mentioned in Chapter 1, we firstly proposed a rehearsal analysis framework
utilizes segmenting, clustering, and merging the segments to extract listenable and musically meaningful
repetitions within the rehearsal recordings. As we mentioned in Section 2.5, to tackle the missing ground
truth in rehearsal recordings, synthetic data generator can create synthesize data which contains with ground
truth. In the end, evaluation methods are used to evaluate the performance of rehearsal analysis system by
using synthesize data.

This Chapter is organized as following. Section 3.1 gives the definitions of repetitions in the rehearsal
recordings. The Music pre-processing step in Figure 3.1 will be described in Section 3.2 and Chapter 4. Re-
hearsal analysis framework in Figure 3.1 will be described in Section 3.3 and Chapter 5. Synthetic data gener-
ator in Figure 3.1 will be discussed in Section 3.4 and Chapter 6. Evaluation in Figure 3.1 will be discussed in
Section 3.5 and Chapter 7.

Output Of 

Repetition Pairs

User

Interface
Recordings

Rehearsal 

Analysis Framework

Rehearsal Analysis

Synthetic 

Data Generator
Evaluation

Ground Truth Of

Repetitions
Evaluation Matrix

Synthetic & Evaluation

Music 

Pre-processing

Figure 3.1: This Figure shows two workflows in the rehearsal analysis approach. We proposed the synthetic data generator and evaluation
as it shown in the blue line. Our rehearsal analysis approach contain every elements in this figure except for the user interface. Section
3.2/Chapter 4 for music pre-processing; Section 3.3/Chapter 5 for rehearsal analysis framework; Section 3.4/Chapter 6 for synthetic data
generator; Section 3.5/Chapter 7 for evaluation.

11



12 3. Rehearsal Analysis Overview

3.1. Definition Of Repetitions In Rehearsal Recordings
Repetitions differ in length of time, which have been extracted by using audio matching method proposed
by Müller et al. [15]. The order of harmonic content is not considered as criterion ot determine whether two
music segments are repetitions. As it is shown in Figure 3.2, the music fragment 1 and 2 are both considered
as repetitions in the music by using audio matching method [15], however, we have found that the repetition
pair in music fragment 2 should not be considered as repetitions. Therefore we define the repetitions in the
rehearsal recordings: two music segments have identity or similar order of harmonic content with containing
acceptable variations can be as a repetition pair.

To let readers have clear understanding of what is the variations in the repetition pair, we drew Figure
3.3. In Figure 3.3, the square red box shows music segment that are not repeated over time as well as is
‘small enough’ to be ignored, given that the surrounding context repeats in the same order. As for what is still
‘small enough’, this is where a tolerance level can be defined. Except for the fact that repetitions may contain
different length of variations, it might also vary in time resolution which shows in Figure 3.4.

A B C AB CA B C A B C

Music Fragment 2Music Fragment 1

Repetition PairRepetition Pair

Figure 3.2: The repetition pair in both music fragment 1 and 2 are determined as repetitions by using audio matching technique in [15].
However, we think that the music fragment 2 are not consider as repetitions.

Time(Sec)

A B C DG E A B DC EH

Repetition pair

1 20

Figure 3.3: The large repetition pairs are shown in orange boxes in the rehearsal recordings. In this example, since there are many small
repetitions in the repetition pair, we are only consider the repetition pair with one second long for each segment. The small red square
box in the figure shows the length of variations within the repetition pair and the length may vary.

3.2. Music Pre-Processing
The function of music pre-processing is to remove useless information(here we mean silent music segments)
from the recordings and to transfer low-level music signal into feature vectors which can be used in further
analysis. The music pre-processing step in this thesis is shown in Figure 3.5.
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Figure 3.4: Repetitions with different time resolutions.

3.2.1. Silence removal
The repeating silent music segments are useless in practical applications. The music educators will not expect
silent music segments as informative representatives appearing in the output of rehearsal analysis system.
The way of solving this issue is to remove silent music segments from the music array before it goes into
rehearsal analysis framework.

We are using both ‘Normal’ and real rehearsal recordings in this thesis. The ‘Normal’ recordings is the mu-
sic recordings that strictly followed the written music score without containing error and experimentations.
The silent segments in ‘Normal’ recordings is removed after the music has been recorded. Thus we only have
to remove silent segments in real rehearsal recordings.



14 3. Rehearsal Analysis Overview

Silence 
Removal

Feature 
Extraction

Real 
Rehearsal
Recordings

Feature 
Vectors

Commercial
Recordings

Music Pre-processing

Figure 3.5: Pre-processing step in the rehearsal analysis approach. The box in blue is the pre-processing step.

3.2.2. Feature extraction
Once the silent is removed from the recordings, the recordings array is required to be transferred into useful
feature representatives as an essential step to describe musical content. Since our data is western solo pi-
ano works that are strongly correlated to harmonic progression, chroma feature has representation of those
works. The goal of feature extraction is to transform audio signal into feature vectors that can be used for
measuring the level of similarities between music segments.

3.3. Rehearsal Analysis Framework
Once we obtain feature representations from the rehearsal recordings, we transform feature vectors into lis-
tenable repetitions for the use of musicians which are shown in 3.6. The rehearsal analysis framework consists
of three steps, features windowing, features clustering and small to large segment merging.

Features 
Windowing

Features
Clustering

Small To Large
Segments MergingFeature Vectors Repetitions

Rehearsal Analysis Framework

Figure 3.6: The yellow box is the workflow of the rehearsal analysis framework. The input of the framework is the chroma feature vectors,
it can be fully, semi synthetic feature vectors or feature vectors from real rehearsal recordings.

3.3.1. Features windowing
The feature extraction in the pre-processing step changes audio array into feature vectors. It will lead to a
substantial computational time if each feature vector is used in pairwise distance measurement. Feature
windowing step groups consecutive feature vectors which yields the decreasing of the number of distance
pairs, therefore reduce the computational time.

3.3.2. Features clustering
Extracting repetitions in the music requires grouping feature vectors according to their distance value. The
distance is measured through distance function, and the distance threshold is used to determine whether
two feature vectors belong to same cluster or not.

3.3.3. Small to large segment merging
Once each feature vectors have been clustered, each feature vectors containing with labels are merged into
longer and listenable repetitions by using segment merging algorithms with acceptable variations.
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3.4. Synthetic Data Generator
Regarding evaluating the performance of the rehearsal analysis framework, the ground truth of repetitions is
necessary. However, it has been illustrated in Chapter 1 that labeling repetitions in real rehearsal rehearsal is
an expensive and almost an unapproachable task. In this work, we propose a synthetic data generator which
can generate two types of synthetic data, namely Fully-synthetic and Semi-synthetic data with automati-
cally created ground truth of repetitions. Fully-synthetic data is created by extracting, modifying, and con-
catenating music segments that have fully controllable ground truth. Semi-synthetic data is created through
extracting, modifying the music segments and inserting those segments back into recordings with partially
ground truth.

3.5. Evaluation Of Different Synthetic Data
With the ground truth of repetitions from the Fully-synthetic and Semi-synthetic data, we could evaluate
the performance of rehearsal analysis framework by using synthesize data. We look at evaluation by two
methods. The first evaluation method calculates the percentage of correctly predicted repetition pairs over
either the ground truth of repetitions or the total repetition pairs. The second evaluation method measures
the percentage of the time-overlapping among those corrected prediction of repetitions over the total length
of the ground truth of repetitions.





�
Music Pre-processing

The music pre-processing step removes unnecessary silence music segments from the rehearsal recordings
and transfers the low-level audio array into feature representatives which are the input of rehearsal analysis
framework. Section 4.1 introduces the silence removal method to remove useless silent repetition pairs from
the rehearsal recordings, and Section 4.2 describes the feature extraction methods that transfer the low-level
audio signal to feature representations.

4.1. Silence Removal Method
There are two silence removal methods mention in literature by Xia et al. and Winter el al. . Although the
first approach gives a superior result of silence and non-silence classification, it still requires users to provide
ground truth of silent and non-silent segments in the recordings. This is an expensive and time-consuming
task for long rehearsal recordings. The second method is much easier to implement without any ground truth
of silent segments in the recordings. However, the shortcoming of this approach is that, finding the appropri-
ate threshold to distinguish the silent and non-silent segments requires many experimentation for adapting
different environment. In our music pre-processing task, we decided to apply the heuristic approach used in
The’s thesis [22]. The energy threshold for distinguishing silent and non-silent music segments has been set
to 20db, and it has the best result of separating silent and non-silent music segments.

4.2. Feature Extraction
Musics share with level of similarities. Those similarities can not be easily discovered through one-dimensional
audio array. For the purpose of finding the similarities between musics, useful music feature representatives
are firstly extracted from the recordings.

4.2.1. Chroma Feature
Since our analyzed data is western solo piano works that are strongly correlated with the harmonic progres-
sion, the chroma feature is the most appropriate feature to represent the data and it is widely used in similar-
ity/dissimilarity measurement between two feature vectors. Each chroma feature has twelve different pitch
classes over time. 12 pitch classes stand for the frequency range of the 12 keys in the middle of the piano.

The chroma feature is robust to timbre changes in different instrumentation. The way of getting chroma
feature describes in paper [15]:

1. Changing audio signal into 88 frequency bands related to the musical notes from A0 to C8(pitch level
from p=21 to p=108). A elliptic filter is used with excellent cut-off properties to separate adjacent notes.

2. Calculating the short-time mean-square power (STMSP) in each band through 200ms rectangular win-
dow that has half size of signal overlap.

3. Computing short-time-mean-square in each pitch class and adding up into chroma classes, so that a
12-dimensional feature vector is created for each window.

17
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4. Each energy distribution relative to the 12 chroma classes is calculated via dividing 12 feature vectors
by the sum of energy distribution.

4.2.2. CENS Feature
Due to the sensitivity in articulation and tempo variance of energy distribution in 12 chroma classes, a nor-
malized chroma feature named Chroma Energy Distribution Normalized Statistics (CENS) feature has been
proposed by müller et al. [15]. The CENS feature is build based on the chroma features by adjusting two extra
steps, namely quantization and smoothing. Feature vectors are firstly normalized between zero to one by us-
ing the Manhattan norm (l1 norm). Then the quantization process transforms the intensity value in chroma
feature into integers from zeros to four based on four different levels. Once the chroma vector is quantify,
a Hann window function is used to smooth out the value in those chroma vectors. In the end, the intensity
value in chroma features are downsampled as factor of 10 and normalized by euclidean norm (l1 norm) [15].

Figure 4.1: This is the CENS feature for 31 seconds of the rehearsal recordings. The vertical axis represents twelve pitch classes with pitch
level {C, C#, D, D#, E, F, F#, G, G#, A, A#, B}. Different color refer to the intensity value in different pitch class. For example, pitch-class C
is the sum of all intensity value related to C key in full piano scales.



�
Rehearsal Analysis Framework

We designed a rehearsal analysis framework including feature windowing, clustering and segments merg-
ing steps to automatically extract listenable repetitions from the rehearsal recordings. Section 5.1 describes
the feature windowing step through grouping consecutive feature vectors. Section 5.2 describes the feature
clustering step. Section 5.3 illustrates the segment merging step.

5.1. Feature Windowing
In this thesis, we decided to group consecutive feature vectors to decrease total number of feature vectors in
order to decrease the processing time. The parameter n is the number which is used to group consecutive
feature vectors. For instance, if the frame is length 200ms and n is 5, it means 5 consecutive feature vectors
are grouped into a single feature vector with a duration of 1 second.

5.2. Feature Clustering
Feature clustering is the unsupervised approach of grouping feature vectors based on their distance. The
label is given to each feature vectors. There are two popular ways in unsupervised clustering, either setting
the value of threshold such as hierarchical clustering method or choosing numbers of clusters such as K-
means clustering method.

5.2.1. Distance function used in clustering
The dissimilarity distance between feature vectors is used in clustering step. There are two general ways of
calculating the distance between two feature vectors, namely the cosine distance and euclidean distance. We
choose euclidean distance as our distance function. The reason is shown in Figure 5.1, where it shows that
cosine distance is sensitive to the angle between two feature vector instead of value in the feature vector,
while the euclidean distance is opposite. The function of distance is calculated in Formula 5.1. There exists
two consecutive chroma vector X and Y and the distance feature vector X = (x1, x2, x3,. . . ,xn) and Y = (y1, y2,
y3,. . . ,yn), where x and y is the single feature vector groups with n consecutive feature vectors. xn represents
a CENS feature vector with 12 pitch class. The euclidean distance with normalization between two feature
vector is given by

d(X ,Y ) =
p

(x1 ° y1)2 + (x2 ° y2)2 +·· ·+ (xn ° yn)2
p

12£
p

n

=

qP
n

n=1(xi ° yi )2

p
12£

p
n

(5.1)

5.2.2. K-Means
K-Means clustering is a vector quantization methods. If there exists a observation set (a1, a2, a3,..., an), each
observation is a 2-dimensional feature vector. The K-Means algorithm is to assign n numbers of observation
into K numbers of clusters where the number of K is small and it equals to the total number of observations.
Once the cluster is assigned for each observations, it has to be sure that the sum of square distance within

19
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Cosine Distance = 1-cosθ

Euclidean Distance

X

Y

Θ

Figure 5.1: The red arrow is the feature vector A and blue angle is the feature vector B. The angle between two feature vectors is µ. The
green line is the euclidean distance between two feature vector. The cosine distance is one minus cosine value between two feature

vector.

clusters Si has the minimum value. The square distance within clusters can be calculated by equation 5.2.
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Firstly, randomly chose K number of points from dataset and assign each point into an independent clusters.
Secondly, for the rest of points, do not assign into any of the clusters and calculate the distance with the
points which already have a cluster. Assign the rest of points with the closest distance value with the assigned
clusters iteratively. After every point have already been assigned for a cluster, calculate the average point for
each cluster and update new clusters for all observation until the assignment for the observation does not
change.

The K-Means algorithm is easy and fast to implement, and it can obtain a pretty tight result. However, K-
Means is very sensitive to scaling as the outliers in the dataset may heavily influence the result of the cluster.
The real rehearsal analysis data is messy, unstructured and it contains many experimentation, which makes
it hard to choose the right number of clusters to describe the inner structure of the recordings.

5.2.3. Hierarchical Clustering
Hierarchical clustering is a clustering method which constructs a hierarchy representation of the data. There
are two types of hierarchical clustering methods exists in literature [20], agglomerative and divisive hierarchy
clustering. Agglomerative clustering, one of the hierarchical clustering methods, starts from many single clus-
ters until all of the clusters are merged into one cluster. Divisive clustering is a clustering methods that split
one cluster into many clusters to the bottom of the hierarchy. There are variety of rules to merge the segments
between different observations such as complete, single, and average linkage according to the distance mea-
sured between music segments. The output of those clustering methods has a graphic representation called
dendrogram[20]. In the end, clusters are created by cutting dendrogram with a given threshold value. The
structure information in rehearsal recordings are not clear so that it is hard to choose the appropriate linkage
methods as well as the value of cutting threshold to group meaningful clusters.

5.2.4. Customize Clustering Algorithm
To find groups of meaningful clusters from unstructured and messy rehearsal recordings, we proposed a
customized clustering algorithm which could effectively cluster feature vectors. The first step of the clustering
algorithm is to build a self-similarity metrics. A distance distribution di [n] can be calculated through each
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feature vector with the rest of the feature vectors show in Figure 5.2, where the n represents the index of the
feature vectors.

Once the distance distribution is built for each feature vector, the local minimum points in distance dis-
tribution di [n] are considered as the repetitions [3]. However, it is unrealistic that repetitions are too close
together. The parameter Order is used to control the number of total points on determining whether the local
minimum point in the distance distribution di [n] are repetitions or not. In case many local minimum points
are in the range of Order, only the local minimum with the smallest value will be kept and others will not be
considered as repetitions. The green box with label 1 and 2 in Figure 5.3 and 5.4 show that local minimum
points within the range of order number have been filtered out.

Figure 5.2: The distribution of di [n].

Figure 5.3: The distribution of di [n] and red points mean the local minimum points. The missing points in the green box are the points
being filtered out by order number.

Figure 5.4: The distribution of di [n] and red points mean the local minimum points. The missing points in the green box are the points
being filtered out by order number.

The pseudo-code of customized clustering method is shown in Algorithm 1. Firstly, if both segments
are not assigned into any class, assign both of them with a new cluster. If one segments has been assigned
into class, and the other segments has not, assign both segments into the same class. When both segments
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Algorithm 1: Customize Clustering Algorithm
Input:
Dp : Dictionary with (Key: Time intervals pairs (ti , t j )) and (Value: pairwise distance (dp ))
Output:
Cl : Dictionary with (Key: Time intervals ti , t j , . . . )
and (Value: tuple(clusters label l , best match distance dp ))

1 Initialize Cl with the set of keys in D and value with the cluster label cl , each cl equals to zero
2 for each items in Dp do
3 if Dp [(ti )] == Dp [(t j )] 6= 0 then
4 Cl [(ti )] = Cl [(t j )] = cl

5 Save dp in both Cl [(ti )] and Cl [(t j )]
6 cl = cl + 1
7 break
8 else if Dp [(ti )] == 0 and Dp [(t j )] 6= 0 then
9 Cl [(ti )] = Cl [(t j )]

10 Save dp in Cl [(ti )] and Cl [(t j )]
11 break
12 else if Dp [(t j )] == 0 and Dp [(ti )] 6= 0 then
13 Cl [(t j )] = Cl [(ti )]
14 Save dp in Cl [(ti )] and Cl [(t j )]
15 break
16 else if Dp [(t j )] 6= 0 and Dp [(ti )] 6= 0 then
17 if Dp [(ti )] > Dp [(t j )] then
18 Cl [(t j )] = Cl [(ti )]
19 break
20 else
21 Cl [(ti )] = Cl [(t j )]
22 break
23 end
24 else
25 Pass
26 end
27 end
28 return Cl

have already been assigned into a class, compare the distance of the best match of both feature vectors and
assigned the feature vectors with smaller value of distance.

5.3. Small To Large Segments Merging
The function of small to large segment merging is to merge short repetition pairs into longer repetition pairs
that are listenable in practice.

The segment merging algorithm contains three parts. The first part creates pairwise repetition pairs in
the group of repetitions. The second part connected the consecutive pairwise repetition pairs with same se-
mantic label. The third part merges consecutive repetitions into even longer repetitions if the time difference
between two repetition pairs is smaller than the tolerance.

To connected the consecutive pairwise repetition pairs, we use time-lag format, a type of data structure
that could represent the similarity relationship between two music segments, to speed up the process of
the second part of segment merging algorithm. Figure 5.5 represents the repetition pair into a tuple (t1, t2,
shifting). The shifting of two repetitions are calculated by t3 - t1.

By using the time-lag format, two repetition pairs can be merged into longer repetition pair if:

1. Both repetition pairs have the same number of shifting.

2. The time differences between two time-lag format should be the same.
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Figure 5.5: The blocks show the feature vectors and the different color mean the relationship between features vectors. The blocks with
the same color means the feature vectors are grouped into the same cluster for example repetitions in green box.

3. Repetition pairs should not overlap in the time domain.

Due to the bad structure of real rehearsal data, the result of repetition pairs might still be short and not
listenable. This can be solved by merging with tolerance in the third part of segment merging algorithm. The
merging with tolerance algorithm is shown in Algorithm 3 and a example of segment merging algorithm is
shown in Figure 5.7. There are three cases with different locations of noise. Those noises can appear in both
music segments as shown in case C, or in single music segment as shown in the case A & B in Figure 5.6.

Algorithm 2: Connect continuous identical repetition pairs
Input:
lt : List with the time lag format((t1, t2, S1), (t1, t2, S1), . . .
Output:
lc : List of consecutive repetition pairs in time lag format

1 Sort lt descending
2 for i from 0 to len(lt ) do
3 for j from i to 0 do
4 Sort lt descending order
5 if Shift value in lt [i] is equal to lt [j] and lt [i][1] equals to lt [j][0] then
6 lt [j] = (lt [j][0], lt [i][1], lt [j][2])
7 lt [i] is set to None
8 break
9 else

10 Pass
11 end
12 end
13 end
14 Remove element in lt equal to None
15 return lc
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Figure 5.6: This figure shows the process of merging two short repetition pair into longer repetitions with containing noises among
repetition pairs. The duration of the noises might different.
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Figure 5.7: Segment merging algorithm.
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Algorithm 3: Merging with tolerance algorithm
Input:
Lr p : List with the repetition pairs with time intervals(ti 1, ti 2), (ti 3, ti 4), . . .
T : Number of tolerance to merge two repetition pairs

Output:
Lr p : List with connecting the time lag format

1 Sorting Lr p descending
2 for i From len(Lr p ) To 0 do
3 for j From i To 0 do
4 if ti 1 is not overlap with ti 3 and ti 2 is not overlap with ti 4 then
5 if Lr p [i][0][0] - Lr p [j][0][1] <= T and Lr p [i][1][0] - Lr p [j][1][1]<=T and

Lr p [i][0][1]<=Lr p [j][1][0] then
6 Lr p [j] = ((Lr p [j][0][0], Lr p [i][0][1]), (Lr p [j][1][0], Lr p [i][1][1]))
7 Lr p [i] is set to None
8 Sorting Lr p descending order
9 break

10 else
11 Pass
12 end
13 else if exist one ti 1 overlap with ti 3 then
14 if Lr p [i][1][0] - Lr p [j][1][1]<=T and Lr p [i][0][1]<=Lr p [j][1][0] then
15 Lr p [j] = ((Lr p [j][0][0], Lr p [i][0][1]), (Lr p [j][1][0], Lr p [i][1][1]))
16 Lr p [i] is set to None
17 Sorting Lr p descending order
18 break
19 else
20 Pass
21 end
22 else if exist one ti 2 overlap with ti 4 then
23 if Lr p [i][0][0] - Lr p [j][0][1] <= T and Lr p [i][0][1]<=Lr p [j][1][0] then
24 Lr p [j] = ((Lr p [j][0][0], Lr p [i][0][1]), (Lr p [j][1][0], Lr p [i][1][1]))
25 Lr p [i] is set to None
26 Sorting Lr p descending order
27 break
28 else
29 Pass
30 end
31 else if ti 1 is overlap with ti 3 and ti 2 not overlap with ti 4 and Lr p [i][0][1]<=Lr p [j][1][0] then
32 Lr p [j] = ((Lr p [j][0][0], Lr p [i][0][1]), (Lr p [j][1][0], Lr p [i][1][1]))
33 Lr p [i] is set to None
34 Sorting Lr p descending order
35 break
36 else
37 Pass
38 end
39 end
40 end
41 Remove sub-repetitions
42 Remove element in Lr p equal to None
43 return Lr p
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Synthetic Data Generator

We generate a synthetical group of repetitions which have an identical or similar degree of variations as we ex-
pect in reality and the location of repetitions in the synthetic data can be used as ground truth to evaluate the
performance of rehearsal analysis framework. This chapter dissembles the process of creating such synthetic
data. Section 6.1 introduces the way of managing those musical content into different types of synthetic data.
Section 6.2 introduces the musical content that we are going to repeat in the synthetic data. Section 6.3 in-
troduces how to copy and modify those musical content with variations for creating repetition pair that most
similar to real rehearsal situations. Section 6.4 introduce the ground truth of repetitions in different types of
synthetic data.

6.1. Fully-synthetic & Semi-synthetic Data
The different way of concatenating or inserting copies can create Fully-synthetic and Semi-synthetic data
respectively. We mentioned in the Chapter 3 that Fully-synthetic is created by concatenating the modified
music copies, however, the well-performance of the rehearsal system in the Fully-synthetic audio data does
not mean the system could perform as well as in the real rehearsal audio data. To further test the performance
of the rehearsal analysis system, an intermediate step with testing on Semi-synthetic audio is implemented.
To create Semi-synthetic data, the copies are firstly extracted from the recordings, then those copies are
inserted back to the original recordings. Those inserting copies are considered as ground truth of repetitions
in the Semi-synthetic data, but we do not have prior knowledge of where repetitions are located in the written
music.

6.2. Extracting Feature Vectors
We are going to extract feature vectors from ‘Normal’ recordings which strictly follow the music score with-
out containing any errors and experimentations. Only one feature vector is extracted for each recording in
generating Fully-synthetic data. The reason is that, if more than one feature vectors are extracted from one
recording, those extracted feature vectors might belong to the group of repetitions in the original recordings.
This causes an issue that the repetitions in the original recordings are missing in the automatically generated
ground truth of repetitions. In opposite, for the Semi-synthetic data, we extract several feature vectors from
the same ‘Normal’ recordings without considering any ground truth issue.

Data Fully Synthetic Semi Synthetic Real Rehearsal
Ground Truth Yes Yes but Partially No
Modification Yes Yes No
Controllable Yes Yes but Partially No

Structure Highly Partially unstructured & messy

Table 6.1: This table shows the correspondence relationship between three different types of data with the ground truth, modifications
and controllable characteristic.

27
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Figure 6.1: Two types of data generated by the synthetic data generator are shown in the orange box. The green box is the workflow of cre-
ating fully-synthetic data, and the red box stands for creating the semi-synthetic data. The input of the synthetic data is the commercial
recordings.

6.3. Copying & Modification Feature Vectors
Once the feature vectors are extracted from recordings, the next step is creating repetition pairs by copying
the extracted feature vectors. Increasing the number of consecutive copies will add the ambiguous ground
truth of repetitions. For example, the structure of four copies of feature vectors with semantical label {A} is
{AAAA}. The group of repetition pairs can be represented into two different forms, which are {A, A, A, A} or
{AA, AA}. However, the ground truth of repetitions are created without considering the patterns {A, AAA} or
{AAA, A} that are also considered as repetitions. So that we create two types of Fully-synthetic data, one with
only 2 copies and the other with 10 copies to investigate the relationship between level of ambiguous ground
truth of repetitions and the number of copies.

The goal of the synthetic data generator is to create rehearsal type of repetition pairs which can imitate
the real rehearsal recordings. To figure out how to modify the ‘Normal’ recordings into rehearsal type record-
ings, we deeply analyzed the reason for noises in the rehearsal recordings. The first type of noise is called
‘environmental noise’ which exists in rehearsal recordings and have no relation with the musical content in
the recordings such as human speaking and white noise. Luckily, the feature extraction can get rid of this
type of noise, and it is robustness on environmental variations. Another type of noise is called ‘noise in musi-
cal practice’ caused by different music representations from different musicians, such as the tempo variation
or articulation in the music. The ‘noise in musical practice’ directly influences the characteristic of chroma
features; thus, we should focus on simulating those ‘noises in musical practice’ in synthetic data. From the
literature in [24], Winter et al. defined several kinds of noises, and three of them are related to ‘noise in mu-
sical practice’, including Pause, Wrong Pressing Note and Tempo Variation. Our modification modes are
created based on these three kinds of noises to create a large amount of synthetic data with the automatically
generated ground truth of repetitions. Although modified repetitions in the audio array can maximally resti-
tute the audio data to its original format, it is not able to implement the Wrong pressing note and Tempo
Variation which requires pitch information as input. In contrast, the modifications will be much easier to be
done in the chroma feature. Pause can be created by adding chroma feature vectors with zero intensity val-
ues. Tempo Variance can also be easily created by inserting the average feature vectors between two feature
vectors to imitate the tenuto in the music. Wrong pressing note can be created by relocating the intensity
value in each of the chroma feature vectors.

We have categorized five modification modes into three modification levels into low, medium and high.
The Clean mode is in the lowest and the Mix mode is the highest modification levels, the Pause, Wrong
pressing note and Tempo Variation belong to the medium level of modifications. The following content
starts with the Clean mode.
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Modifications Mode Clean Pause Tempo variance Wrong Pressing note Mix
Modifications Level Low Medium Medium Medium High

Table 6.2: This table shows the level of different modification modes

6.3.1. Clean mode
Clean mode is the most straightforward mode in the synthetic generator. The repetitions in this mode are
created by copying the extracted feature vectors. After that, several copies are concatenated into a long feature
vector for further processing.

6.3.2. Pause mode
Although the silence music segments(or called pause repetitions) are removed in the beginning and the end
of the recordings, there might still exist some pauses within the recordings that will be detected as repetition
pairs. So the function of pause modification mode is to create a pause music feature vector to mimic this
occasion. The pause is the feature vector with all the intensity value equal to zero. Like in Clean mode, those
modified pause feature vectors are concatenated into a long feature vector as synthetic data.

Algorithm 4: Pause generator function
Input:
Fcens : CENS feature vector
Rb : Range of the length of pause vectors
Output:
Fcens : CENS feature with added pause feature vector

1 Generate a random location Rloc 2 [0, len(Fcens )] in the chroma feature vectors
2 Create pause feature vector Fp with range Rb 2 (0,1)
3 Inserting pause feature vector Fp into the Rloc in CENS feature vector Fcens

4 return Fcens
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Figure 6.2: Silence Insertions in feature vectors.
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Figure 6.3: Music segments with pause modifications.
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6.3.3. Wrong pressing note mode
Due to the large amount of experimentation to refine a music piece, it is inevitable to have wrong note in the
rehearsal recordings. To create a wrong note in the feature vectors, we locate the highest intensity value in
the single chroma feature as base note and randomly switch it with other intensity value in that single feature
vector. By doing this, we successfully generate a different harmony in the feature domain.

Algorithm 5: Create wrong note of feature vectors
Input:
x: Music array
Output:
Fcens : CENS features with wrong note modifications

1 Choose a random feature vector Rr am

2 Shuffling the intensity value in feature vector Rr am

3 return Fcens
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Figure 6.4: Change notes in feature vectors.
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Figure 6.5: Wrong note modification.
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6.3.4. Tempo variance mode
The style or representations of music is different from musicians. Those variations are directly shown as the
speed or tempo in the music. The idea of creating a slow tempo in the chroma feature is to randomly select
a feature vector and insert its copies into the adjacent location to mimic the characteristic of hold keys. In
contrast, the way of imitating fast tempo in the chroma feature is to randomly delete feature vectors in the
whole feature vectors.

Algorithm 6: Create tempo variance of feature vectors
Input:
x: Music array
Nop : Number of operations which correspond to add or delete
Output:
Fcens : CENS features with tempo variance modifications

1 for i From 0 To Nop do
2 Choose a random feature vector Fr am

3 Randomize True or False
4 if True then
5 Copy the feature vectors Fr am to its adjacent location
6 else
7 Delete the random feature vector Fr am

8 end
9 end

10 return Fcens
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Figure 6.6: Variant the tempo in feature vectors.



34 6. Synthetic Data Generator

Figure 6.7: Music segments with tempo variance modification.
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6.3.5. Mix mode
The last and highest modification level is the mix mode. As mentioned at the beginning of this chapter, this
mode can create most diverse modification repetitions pair. The way of creating mix mode is to randomly
select modification mode from three different modification mode when creating repetitions.

6.4. Ground Truth Of Repetitions
Two feature vectors are considered as repetition pair if the extracted feature vectors are from the same record-
ing regardless of the modification techniques that are applied to the copies of music segments. The ground
truth of repetitions are created by finding all the pairwise combination of the music segments in the same
group of repetitions. The Figure 6.8 shows the ground truth of repetitions in Fully-synthetic and Semi-
synthetic ground truth of repetitions. As we could seen from the figure, the Fully-synthetic data have fully
controllable ground truth while the Semi-synthetic data only contain partially ground truth and the ground
truth of repetitions in the original recordings (written music) are missing.

Time(Sec)

Original Recordings

Without Ground Truth

Ground Truth Of Repetitions In Semi-Synthetic Data

Ground Truth Of Repetitions In Fully-Synthetic Data

With Only Two Copies For Each Music Segments

Ground Truth Of Repetitions In Fully-Synthetic Data

With Four Copies For Each Music Segments

Figure 6.8: Ground truth of repetitions. The blocks with the same color stand for the group of repetitions. The white box stands for the
feature vector of the original recordings.
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Repetition Evaluation

The repetition evaluation is the way of evaluating the quality of repetition pairs extracted from rehearsal
analysis framework. We proposed three different evaluation methods to evaluate Fully-synthetic and Semi-
synthetic rehearsal data. Section 7.1 introduces the overlapping calculation algorithm for the purpose of
calculating the time overlapping between two music segments. Section 7.2 introduces the evaluation meth-
ods used in Fully-synthetic and Semi-Synthetic data. Section 7.3 introduces the ambiguous ground truth of
repetitions in the synthetic data.

7.1. Overlapping calculation algorithm
Calculating the overlapping of repetitions is a vital task to determine whether the predicted repetitions are
correctly detected as shown in figure 7.1. The algorithm calculates the percentage of overlapping between
two correctly predicted repetition pair. The first part of the algorithm is to check if predicted repetition pair is
overlapped with any of the ground truth repetitions. Once the predicted repetition is correctly detected, the
percentage of time overlapped between both repetition pairs is calculated. The pseudo-code of overlapping
calculation algorithm is shown in 7.

EFGEFG ABCDABCD

Time(Sec)
Overlap  Length A Overlap  Length C

Overlap  Length B
Overlap  Length D

Repetition pair with semantic label 'ABCD' Repetition B with semantic label 'EFG'

Ground Truth 

Of Music Structure

Predicted Repetitions

Ground Truth Of 

Repetitions

Ground Truth Of 

Repetitions

p1 p2

p3 p4

Figure 7.1: The bar on top is the predicted repetitions and the bar on bottom is the ground truth of music structure. There are two
repetition pairs predicted with semantic label ’ABCD’ and ’EFG’ respectively. The block with the same color shows the repetition pairs
in the ground truth of music structure. The music segments in one predicted repetition pair can be considered as repetition pair if they
have more than 60% overlap with repetitions in the ground truth. For example, the blue block in the predicted repetitions overlaps in
time with the orange block in the repetitions in the ground truth.

7.2. Evaluations
The Fully-synthetic and Semi-synthetic data are evaluated through two evaluation methods. The first eval-
uation methods are 7.1, 7.2 and 7.3 in traditional information retrieval task used to evaluate the number of
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Algorithm 7: Overlap Calculation
Input:
(p1, p2): ground truth repetition pair
(p3, p4): prediction repetition pair
/* If both segments between repetition and ground truth are overlap with each other */

1 if |p1 \ p4| != 0 and |p2 \ p4| != 0 then
2 return overlap = |p1 \ p3| + |p2 \ p4|
/* If one of the segments between repetition and ground truth are not overlap with each other, the

overlap will not be calculated and return false */
3 else if |p1 \ p3| == 0 and |p2 \ p4| != 0 then
4 return False
/* Same condition as the previous one */

5 else if |p1 \ p3| != 0 and |p2 \ p4| == 0 then
6 return False
/* Same condition as the previous one */

7 else if |p1 \ p3| == 0 and |p2 \ p4| == 0 then
8 return False
9 else

10 return False
11 end

correctly predicted repetitions. The true positive (TP) means the number of repetitions that are overlapped
with the ground truth of repetitions. The false-negative (FN) represents the number of wrongs detected rep-
etitions that are not overlapped with the ground truth of repetitions or the percentage overlap between pre-
dicted and ground truth repetitions are less than 60 %. The false positive (FP) is the number of the ground
truth of repetition, which does not overlap with any of the predicted repetitions.

pr eci si on = T P

T P +F N
(7.1)

r ecal l = T P

T P +F P
(7.2)

F = 2£pr eci si on £ r ecal l

pr eci si on + r ecal l
(7.3)

Second evaluation in 7.4, 7.5 and 7.6 are called purity evaluation methods on measuring the percentage
of overlapping between correctly predicted repetitions and ground truth of repetitions. The purity evaluation
matrix consists of purity precision (Pp ), purity recall (Rp ) and purity F scores (Fp ). (Sp ) means the predicted
repetitions and (Sg ) is the ground truth of repetitions. |Sp \ Sg | is related to the total length of overlapping
between prediction and ground truth that is measured in seconds. (NP ) in 7.4 corresponds to the number
of predictions. (Rp ) is purity recall that measures the average between the best predicted repetitions with
the total number of predicted repetitions. The (BSp ) in 7.5 is the best predicted repetitions which have the
maximum overlap with the ground truth segments.

Pp =
P |Sp\Sg |

|Sp |

NP

(7.4)

Rp =
X |BSp \Sg |

|Sp |
(7.5)

Fp =
2£Rp £Rp

Rp +Rp

(7.6)
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7.3. Ambiguous Of Ground Truth
We have found that the predicted repetitions of Semi-synthetic data can be categorized into two groups. The
first group of the repetitions belongs to the repetitions that overlaps with ground truth of repetitions. The
second group of repetitions belongs to the repetitions that are not overlapped with the ground truth. We can
not judge the correctness of this type of repetitions because we do not have the information of repetitions in
the original recordings. For the sake of evaluating this type of repetitions, we designed the third evaluation
method to evaluate the correctness of those repetitions which are not overlapped with any ground truth of
repetitions. The problem of inaccurate evaluation score still exists regarding the ambiguity of ground truth of
repetitions in Figure 7.2 that increases the level of difficulties in the evaluations, and this is also mentioned in
Chapter 2.
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Figure 7.2: The example of different repetition options in rehearsal recordings. As we could seen from the figure, there are more than
one repetition pair exist in the recordings and some of them are overlapped. In reality, we can not generate all the repetition pairs from

the recordings thus the incomplete ground truth of repetitions influence our evaluation procedure.





8
Experiments On Fully-synthetic &

Semi-synthetic Music Data

Using our rehearsal analysis framework, tests have been done on Fully-synthetic and Semi-synthetic data.
In this chapter, those experiments are elaborated upon. Section 8.1 introduces the basic experimental setup.
Section 8.2 lists the evaluation results and findings of the two experiments we conduct. In Section 8.3, we
further discuss the findings in our experiments.

8.1. Synthesis Setup
To setup the synthetic data generator, we used the Saarland Music Data (SMD) [13] which consists of West-
ern classical music. The recordings in this dataset are free of copyright and consist of performances that
strictly follow the music score. To allow for the diversity of our synthetic data, we will vary the static tempo of
recordings, modification levels of the variations we allow, and the amount of copies to be made in synthesized
rehearsal sessions that are drawn from this data.

Parameter Parameter Description Value

sr Sample rate 20480Hz
F f Frame Length used in feature extraction 0.2s
lh Hop length used in feature extraction 0.2s

L f v Length of extracted feature vectors from recordings 5sec-10sec
n Consecutive number of feature vectors 5

Lw Length of the wrong pressing note 0.2ms - 1sec
Lp Length of the pause 0.2ms - 1sec
Lt v Length of the tempo variance 0.2ms - 1sec
Tsm Tolerance number in segment merging algorithm 1sec

Table 8.1: Variable used in this experiment.

8.1.1. Static tempo for each recording
In this experiment, we would like to investigate the relationship between music tempo (measure in Beat
Per Minutes (BPM)) and the evaluation result. The static tempi in SMD are calculated using funtionality in
Librosa [9]. However, as listed in Table 8.2, all pieces in SMD have tempo higher than 80 Beat Per Minutes
(BPM), meaning all the pieces of music can be considered as fast. Therefore, to ensure we have music with
slow tempo, we decided to slow down the slower half of the SMD as shown in Table 8.2.

• Grave – slow and solemn (20–40 BPM)

• Lento – slowly (40–45 BPM)

• Largo – broadly (45–50 BPM)

41
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• Adagio – slow and stately (literally, “at ease”) (55–65 BPM)

• Adagietto – rather slow (65–69 BPM)

• Andante – at a walking pace (73–77 BPM)

• Moderato – moderately (86–97 BPM)

• Allegretto – moderately fast (98–109 BPM)

• Allegro – fast, quickly and bright (109–132 BPM)

• Vivace – lively and fast (132–140 BPM)

• Presto – extremely fast (168–177 BPM)

• Prestissimo – even faster than Presto (178 BPM and over)

8.1.2. Level of modifications
We want our rehearsal analysis framework to be robust to variations as introduced in Chapter 6. The following
modifications are chosen:

• Clean: The length of each repetition is chosen between 5 to 10 seconds.

• Pause: The length of the pause is randomly generated to be between 0.2 second to 1 second, with
resolution of 0.2 second.

• Tempo variance: The tempo variation is created by randomly adding or deleting between 1 to 5 chroma
feature vectors (corresponding to 0.2 to 1 second).

• Wrong note: The wrong note is generated by shuffling the location of the intensity value from 1 up to 5
feature vectors (corresponding to 0.2 to 1 second).

• Mix: We randomly choose between three modification modes (Pause, Tempo Variance and Wrong Note
modes).

8.1.3. Synthetic data generator setup
As no ground truth exists in the rehearsal analysis framework, we will generate synthetic rehearsal sessions
including ground truth of repetitions. We generate two types of Fully-synthetic data and one type of Semi-
synthetic data based on the parameter shown in Table 8.3.

8.2. Experiment For Fully-synthetic Data
In our first experiment, we test our rehearsal analysis framework by using two types of Fully-synthetic data
as discussed in the previous section. The experiment is designed to investigate the following three questions:

1. Does the level of ambiguous ground truth increases when more number of copies are created in Fully-
synthetic data?

2. How do the different tempo of recordings influence the evaluation result?

3. How is the performance of our rehearsal analysis framework in modification methods?

To answer the first question, we create the Fully-synthetic data with two levels of ground truth of repe-
titions by controlling the number of copies. Results of the experiment are displayed in 8.1 and 8.3 and the
evaluation scores of Fully-synthetic data with two copies are generally higher than Fully-synthetic data with
ten copies. To conclude, the level of ambiguous of ground truth in 2 copies of Fully-synthetic data is higher
than 10 copies in the Fully-synthetic data.

To answer the second question, we prepare two types of recordings with fast and slow static tempi. The
results of evaluation score are displayed in Figure 8.1 and Figure 8.2. There are not much difference of evalua-
tion score when different static tempo are used as base material in the synthetic data generator. However, we
guess that the appropriate consecutive number n is related to the tempo of the music (which will be discussed
in future work). There are not much difference between the evaluation scores between fast and slow record-
ings. As a conclusion, the consecutive number n is suitable for both fast and slow recordings and different
tempo of recordings do not influence our evaluation result.
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SMD Static tempo Adjusted tempo
Beethoven_Op031No2-02_002_20090916-SMD.mp3 82 41

Brahms_Op005-01_002_20110315-SMD.mp3 88 44
Bach_BWV888-01_008_20110315-SMD.mp3 96 44
Bartok_SZ080-02_002_20110315-SMD.mp3 96 44
Bach_BWV871-01_002_20090916-SMD.mp3 100 50
Bach_BWV849-01_001_20090916-SMD.mp3 104 51

Ravel_ValsesNoblesEtSentimentales_003_20090916-SMD.mp3 109 50
Rachmaninov_Op039No1_002_20090916-SMD.mp3 109 50

Bach_BWV875-01_002_20090916-SMD.mp3 114 52
Bach_BWV871-02_002_20090916-SMD.mp3 114 52
Bach_BWV875-02_002_20090916-SMD.mp3 114 52
Chopin_Op028-17_005_20100611-SMD.mp3 114 52

Beethoven_Op031No2-03_002_20090916-SMD.mp3 114 52
Beethoven_WoO080_001_20081107-SMD.mp3 114 52

Bartok_SZ080-01_002_20110315-SMD.mp3 120 60
Mozart_KV398_002_20110315-SMD.mp3 120 60

Bartok_SZ080-03_002_20110315-SMD.mp3 120 60
Beethoven_Op027No1-01_003_20090916-SMD.mp3 120 60

Skryabin_Op008No8_003_20090916-SMD.mp3 120 60
Chopin_Op028-03_003_20100611-SMD.mp3 120 60

Beethoven_Op027No1-03_003_20090916-SMD.mp3 126 60
Chopin_Op028-04_003_20100611-SMD.mp 126 60
Bach_BWV849-02_001_20090916-SMD.mp3 126 60

Chopin_Op048No1_007_20100611-SMD.mp3 126 60
Chopin_Op028-11_003_20100611-SMD.mp3 126 60

Liszt_KonzertetuedeNo2LaLeggierezza_003_20090916-SMD.mp3 126 63

Haydn_Hob017No4_003_20090916SMD.mp3 133 N/A
Chopin_Op066_006_20100611-SMD.mp3 133 N/A

Chopin_Op026No1_003_20100611-SMD.mp3 133 N/A
Chopin_Op010-03_007_20100611-SMD.mp3 133 N/A

Liszt_AnnesDePelerinage-LectureDante_002_20090916-SMD.mp3 133 N/A
Bach_BWV888-02_008_20110315-SMD.mp3 133 N/A

Rachmaninoff_Op036-01_007_20110315-SMD.mp3 133 N/A
Brahms_Op010No1_003_20090916-SMD.mp3 141 N/A

Mozart_KV265_006_20110315-SMD.mp3 141 N/A
Rachmaninoff_Op036-02_007_20110315-SMD.mp3 141 N/A
Beethoven_Op027No1-02_003_20090916-SMD.mp3 141 N/A
Haydn_HobXVINo52-02_008_20110315-SMD.mp3 141 N/A

Beethoven_Op031No2-01_002_20090916-SMD.mp3 144 N/A
Chopin_Op028-15_006_20100611-SMD.mp3 150 N/A

Brahms_Op010No2_003_20090916-SMD.mp3 150 N/A
Ravel_JeuxDEau_008_20110315-SMD.mp3 150 N/A
Chopin_Op029_004_20100611-SMD.mp3 150 N/A

Chopin_Op010-04_007_20100611-SMD.mp3 150 N/A
Liszt_VariationenBachmotivWeinenKlagenSorgenZagen_001_20090916-SMD.mp3 150 N/A

Rachmaninoff_Op036-03_007_20110315-SMD.mp3 171 N/A
Haydn_HobXVINo52-01_008_20110315-SMD.mp3 171 N/A
Haydn_HobXVINo52-03_008_20110315-SMD.mp3 171 N/A

Table 8.2: Overview of the SMD recordings used in our experiments, indicating adjusted tempo where it is relevant.

To answer the third question, we analysed the evaluation score in different modification modes and lev-
els. We expected to handle the synthetic variations in synthesize rehearsal data by using segment merging



44 8. Experiments On Fully-synthetic & Semi-synthetic Music Data

Data numRec numSegPerRec numCopies Duration numTrial
FullySyn (part1) 26 (fast) or 21 (slow) 1 2 <1hrs 10
FullySyn (part2) 26 (fast) or 21 (slow) 1 10 º 1hrs 10

SemiSyn 3(random selected) 26 10 º 1hrs 10

Table 8.3: This table shows the way of constructing the Fully-synthetic and Semi-synthetic rehearsal data. The numRec means the
number of recordings used in the generator, numSegPerRec refers to the number of music segments extracted for each recording, the

numCopies is the number of copies that are created for each extracted music segment and the Duration is the duration for two different
types of synthetic data. The numTrial is the number of trials in this experiment. (PS: The duration does not count the extra time adding

in pause and tempo variance modification mode.)

algorithm and F-measure should equals to one, however, due to the ambiguous ground truth and labelling
issue in clustering procedure, the F-measure displayed in Figure 8.1 do not reach 1 when testing the Fully-
synthetic data with two copies. Even worse, the score of F-measure in all modification levels which shows in
Figure 8.3 can not reach 0.5 if we increase the number of copies to ten.

In conclusion, the first experiment proved that ambiguous ground truth of repetitions make the rehearsal
analysis become an ill-defined problem, and the way of judging whether two music segments belong to rep-
etitions is entirely rely on users’ preference. Furthermore, the evaluation method is not sufficient to evaluate
the quality of detected repetitions in the condition of ambiguous ground truth of repetitions.
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Figure 8.1: Evaluation results on Fully-synthetic data in fast tempo with two copies.

Figure 8.2: Evaluation results on Fully-synthetic data in slow tempo with two copies.

Figure 8.3: Evaluation results on Fully-synthetic data in fast tempo with ten copies.

Figure 8.4: Evaluation results on Fully-synthetic data in slow tempo with ten copies.
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8.3. Experiment For Semi-synthetic Data
The second experiment is to analysis ground truth conditions between Fully-synthetic and the Semi-synthetic
data. We have seen that the behaviour of evaluation results in first experiment is different from the second
experiment. we compare Figure 8.3 and 8.4 that the precision score is higher than the recall in the first ex-
periment, however in the second experiment, the precision score is lower than the recall. One reason is that,
the missing ground truth in the written music does not in the ground truth Semi-synthetic data. The second
reason is that, the ground truth of Fully-synthetic data is more than the predicted repetitions extracted from
rehearsal analysis system.

Figure 8.5: Evaluation result of the second experiment in fast tempo.

Figure 8.6: Evaluation result of the second experiment in slow tempo.
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8.4. Finding Of Experiment Result
The first important finding in the experiment result is the level of ambiguity of ground truth of repetitions
varies in different synthetic data. As we have known from 3.3.1, the ground truth of repetitions can be created
based on the copies of the music segments. It arises issue that the short repetitions in the ground truth can
be merged into longer repetitions that are not in the group of auto-generated ground truth. For instance,
music recordings have a structure label "ABCABC" where character A, B, and C represent the semantic label
of a single music segment. Based on the structure labels, we found that there exists three kinds of repetitions
with either single or combinations of the structure label. The three repetition pairs exist in the structure label
are {(A, A), (B, B), (C, C)}, {(AB, AB), (BC, BC)} and {(ABC, ABC)}. According to our merging algorithm, only the
longest repetition pairs {(ABC, ABC)} will be detected from the output of our rehearsal analysis framework.
Furthermore, due to the ill-defined definition of repetitions, the {(ABC, AB)} or {(AB, ABC)} can also be con-
sidered as repetition pairs within the tolerance. These two examples show the high ambiguity of ground truth
exists that makes the repetitions evaluation task very difficult than expected.

The second important finding is the different constitution of repetitions in the Fully-synthetic and Semi-
synthetic data. Fully-synthetic data contains two types of repetitions. The first type of repetitions are gener-
ated by synthetic data generator with automatically generated ground truth that can be used in the evalua-
tion. The second type of repetitions exists in each extracted feature vector from the recordings, which is not
in the ground truth of repetitions. The third type of repetitions are the repetitions among the feature vectors
from different recordings. There are four types of repetitions in Semi-synthetic data. The first three types
of repetitions are identical as in Fully-synthetic case. The extra type of repetitions are the repetitions origi-
nally exist in the recording. Unfortunately, only first type of repetitions is generated through synthetic data
generator and can be used in evaluation. We do not have the ground truth of remaining repetitions which ag-
grandize the inaccuracy score in evaluation procedure. The inner relationship between different repetitions
is shown in Figure 8.7.
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Figure 8.7: The construction of repetitions in fully-synthetic and semi-synthetic data.
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Testing Real Rehearsal Data

In this chapter, we present the test of real rehearsal data, including creating and evaluating semi-synthetic
data using real rehearsal recordings. Students and music educators in the conservatory have different de-
mands on utilizing the rehearsal analysis framework. Students would like to have a system which can list all
the repetitions from the rehearsal recordings and match those music segments with their preference com-
mercial recordings. They could quickly compare the most frequently repeated music segments in the re-
hearsal recordings with the audio matches in the reference recordings. The music educators might want to
keep track of the studying progress of their students, by finding the most frequently played music segments
in the rehearsal recordings as the most difficult part students have encountered.

In section 9.1, the Semi-synthetic data is evaluated using rehearsal recordings as resources, and the eval-
uation result is compared with the Semi-synthetic data using real rehearsal recording as audio resources.
Section 9.2 describes the use case in visualizing the rehearsal recordings matched with its reference record-
ings.

49
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9.1. Semi-synthetic Real Rehearsal Recordings
In this thesis, the rehearsal data recorded in the topic of ’Measuring progress in music rehearsals’ by The in
his thesis [22] is used. Those recordings are collected from 5 different students major in piano with different
expertise from Bachelor or Master level. Those pieces are recorded from their solo repertoire that were the
preparations for the final exam at the end of the academic year. The recordings are made with separating
practice session. In this experiment, we are using randomly choose real rehearsal recordings that lasts from
4 to 40 minutes long. We created Semi-synthetic data by using real rehearsal recordings as material and the
parameters in Table 9.1. This is the best we could do to prove that the parameters used in rehearsal analysis
framework are transferable in the real rehearsal recordings.

Data numRec numSegPerRec numCopies Duration numTrial
SemiSyn 20 (4 - 40 mins) 26 10 º 1hrs 10

Table 9.1: This table shows the way of constructing Semi-synthetic rehearsal data by using real rehearsal recordings as base material.
The numRec means the number of recordings used in the generator, numSegPerRec refers to the number of music segments extracted
for each recording, the numCopies is the number of copies that are created for each extracted music segment and the Duration is the
duration for two different types of synthetic data. The numTrial is the number of trials in this experiment. (PS: The duration does not

count the extra time adding in pause and tempo variance modification mode.)

Figure 9.1: Evaluation result of semi-synthetic data generator in real rehearsal recordings.
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9.2. Use Case In Visualizing The Rehearsal Recordings
In The’s thesis [22], he plots the density distribution of most frequently played music segments in the re-
hearsal recordings. The music segments with a high value of density are considered as repetitions in the
rehearsal recordings. However, we do not know the if the repetition belongs to the repetitions in the written
music, or it is because of a musician revisiting the material more often in a rehearsal. In this section, we
would like to propose a novelty method to find out the latter type of repetitions in the rehearsal recordings by
involving its reference recordings in the experiment. The reference recordings are the commercial version of
music recordings that musicians played in their rehearsal recordings.

9.2.1. Visualize repetitions in the rehearsal recordings
One rehearsal recordings named {Ravel, Sonatine first movement} have been used to visualize the repeti-
tions. The repetition pairs in the rehearsal recordings are shown as lines in Figure 9.2. The lines with the
same color mean the music segments that belong to the same group of repetitions. The horizontal and verti-
cal axis correspond to timeline of the rehearsal recordings. Each line in the Figure 9.2 is the repetition pair in
the set of repetition group RPn = {((tx1, tx2), (ty1, ty2)), ((tx3, tx4), (ty3, ty4)) . . . } where (tx1, tx2) shows the music
segment in x-axis while (ty1, ty2) shows the music segment in y-axis.

We invented Smart Query which indicates the key music segments that repeat the most in the rehearsal
recordings. The Smart Query is the projection of each repetition pair related to the x-axis as (tx1, tx2). At the
end, the group of Smart Query with x-axis projection is saved as SQn = {(tx1, tx2), (tx3, tx4) . . . }.

Figure 9.2: Repetitions in the rehearsal audio (also called smart query in this thesis)
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9.2.2. Finding repetition groups among rehearsal recordings
Once the Smart Query are extracted from repetitions, we can use it to match with reference audio to monitor
the similar music segments in the reference recordings. Figure 9.3 shows the matching of smart query with
reference audio. Based on the matching between smart query and the reference audio, a density distribution
graph is built to analysis the most frequently played music segments in the rehearsal audio. From the Figure
9.3, we could deduct that, when the end of one line is connected to the beginning of the next line, it means
there might consist larger music segments pairs.

Figure 9.3: Smart queries in rehearsal recordings with matching of its reference recordings. The horizontal axis shows the timeline of
rehearsal recordings and the vertical axis shows the reference recordings.
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9.2.3. The frequency of repetition distribution in the reference recordings matched with
reference recordings

We have found that two types of repetitions exist in the rehearsal recordings. The first type belongs to the
reference recordings, and the second type is created by musicians to refine their practice. What is more valu-
able for us is the latter repetitions, because it positive correlated to the difficulties that students meet in their
practice or rehearsal session. In The’s thesis [22], the histogram of most frequent played music segments in
the rehearsal recordings are created. The distribution does not recognize the repetitions that belong to the re-
peats in the reference recordings, so we cannot fully distinguish between the types of repeats in the reference
music recordings and the repetitions that musicians revisiting the music content more often in a rehearsal.

To tackling this issue, the most intuitive way to get second type of repetitions is to subtract the distribu-
tion of repetitions in the rehearsal recordings with the distribution of repetitions in the reference recordings.
However, it is unrealistic to get the repetitions in the reference recordings. So we decided to use our rehearsal
analysis framework to extract repetitions in the reference recordings with slightly sacrificing the quality of
repetitions. With the repetitions from the output of reference recordings, we can remove the first type of rep-
etitions from the rehearsal recordings. The density distribution is shown with green color in Figure 9.4. The
second type of repetitions in rehearsal recordings is shown with blue color in Figure 9.4. The distribution
in green color without overlapped with the distribution in blue color is the second type of repetitions in the
rehearsal recordings. As a consequence, the musicians can figure out which music segments are practiced
most frequently in the rehearsal recordings.
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Figure 9.4: Reference recording matches with reference recordings.

Figure 9.5: Frequency distribution with reference to rehearsal recordings and reference to reference recordings.
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Conclusion, Discussion and Future works

10.1. Conclusion
The research objective for answering the first research question is to design a rehearsal analysis framework
which can automatically extract repetitions in the rehearsal recordings. After realizing the difference of rep-
etitions between commercial recordings and rehearsal recordings, we are the first to define the concept of
repetitions in the rehearsal recordings and come up with an unsupervised approach to extract repetitions
from recordings.

The research objective for answering the second research question is to prepare testing data with ground
truth of repetitions. We design a synthetic data generator to synthesize rehearsal type of data with automat-
ically generated ground truth of repetitions. In synthetic data generator, five modifications modes and three
levels of modification have been used to create synthesize data to evaluate the performance of our rehearsal
analysis framework.

The research objective for answering the third research question is to to give a comprehensive evaluation
for the repetitions from the output of rehearsal analysis framework. To evaluate the framework, we proposed
three different evaluation matrices to evaluate Fully-synthetic and Semi-synthetic rehearsal data. The evalu-
ation methods evaluates the number of correct detected evaluation repetitions and the percentage of overlap
between the predicted and ground truth of repetitions. We also found ambiguous ground truth is exist in our
synthetic data from the results of our experiments, as a consequence, it can not be easily evaluated accurately
by using methods in current literature as well as our evaluation methods.

Except for answering those three research questions, we have tested our rehearsal analysis framework by
using real rehearsal recordings and improve use cases in visualizing the density distribution of most played
music segments in the rehearsal recordings described in The’s thesis [22].

10.2. Discussion & Future Works
Although the rehearsal analysis approach provides a novelty approach by creating synthetic data to test and
evaluate the rehearsal recordings, many problems require to be solved in the future.

10.2.1. Silence removal methods
The first extension of this thesis is about the silence removal task in the rehearsal analysis framework. We
assume that when the length of silence within the recordings are less than one second, it can be considered
as acceptable variations in the repetition pairs, and then it will be merged by the segment merging algorithm.
However, if there exists extra noises in the recording that prolong the length of our synthetic variations, the
segment merging algorithm might not work in this case. It is because the length of variations is larger than
the value of tolerance. To help us create longer and better output of repetitions, future work is needed to have
better performance in removing silence from the recordings.

10.2.2. Relationship between consecutive number and different tempo
Theoretically, the smaller number of consecutive number n will have better evaluation result, however, it will
lead to a huge computational expense. It is because the consecutive number n might relates to the static
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tempo of the music. In the future work, the relationship between the music tempo and the number of con-
secutive n should be investigated more deeply.

10.2.3. Trainable synthetic data generator
A rehearsal type of synthetic data is generated in our thesis, however, it is hard to say how similar the synthetic
data is comparing to the real rehearsal recordings. We expect to investigate more in the future work on this
issue, such as designing a synthetic data generator with trainable parameter to create synthetic data that is
much likely as the real rehearsal data. In the meanwhile, we can also involve users in the loop of synthetic
data generator to create data with user-specific preference.

10.2.4. Evaluation methods for repetitions
Except for the ground truth of repetitions that is generated by synthetic data generator, the rehearsal analysis
framework might extract repetitions that exist in the written music and not containing in the ground truth of
repetitions. In the future work, it will be useful to design a evaluation method to evaluate the correctness of
repetitions outside the repetitions that are generated by synthetic data generator.

10.2.5. Discovering the meaning of variations in repetitions
In this thesis, we extracted and evaluated the repetitions from the rehearsal recordings, but we did not link
the variations in the repetitions to the quality of practice. We expect to discover the relationship between
variations in the repetitions and the quality of practice.

10.2.6. Ideas From Software Testing
We have noticed that our rehearsal analysis approach is similar to a concept in software testing which called
fuzzing. This idea of fuzz testing is first proposed by Miller et al. in his paper [10]. It is a testing method
which use its automatic or semi-automated methods to find out the errors or loophole in software, system,
or network. Two main types of fuzzers exist in the literature, namely mutation-based fuzzers and generation-
based fuzzers mention by Miller et al. in his paper [11] in 2007. The mutation-based fuzzer creates new testing
data by modifying the original data such as added or shifted a random bit in the data. This type of fuzzer does
not consider any information of input of data format. Another fuzzer is called generation-based fuzzers, and
it created the test data from scratch according to the characteristic of the input data. It is very similar to
our synthetic data generator which modifies the music copies with different modification modes in feature
representations. The difference is that the data edited by generation-based fuzzer are inserted with the hope
that a program will raise an error or crash, while we want our rehearsal analysis framework accept a certain
degree of tolerance or mistakes. What matches the two approaches between our synthetic data generator and
fuzzing is that we automated synthetic data with automatically generated ground truth which is similar to the
fuzzing testing, and we evaluate the data through those ground truth. Due to the time limitation, we are not
going much deeper into the knowledge of fuzzing but we believe that the ideas of generation-based fuzzers
can help us to create a more reliable rehearsal analysis system in the future.

10.2.7. Prospect
Hence, we sincerely hope that more MIR researchers could follow the current progress of rehearsal analysis
task, make more contribution to music society, and assist musicians by providing them with more comfort-
able, simpler and faster way to reflect on their practice.
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