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In the classical susceptible-infected-susceptible (SIS) model, a disease or infection spreads over a given,
mostly fixed graph. However, in many real complex networks, the topology of the underlying graph can change
due to the influence of the dynamical process. In this paper, besides the spreading process, the network adaptively
changes its topology based on the states of the nodes in the network. An entire class of link-breaking and
link-creation mechanisms, which we name Generalized Adaptive SIS (G-ASIS), is presented and analyzed. For
each instance of G-ASIS using the complete graph as initial network, the relation between the epidemic threshold
and the effective link-breaking rate is determined to be linear, constant, or unknown. Additionally, we show that
there exist link-breaking and link-creation mechanisms for which the metastable state does not exist. We confirm
our theoretical results with several numerical simulations.

DOI: 10.1103/PhysRevE.101.052302

I. INTRODUCTION

Complex networks have been studied in many fields vary-
ing from biology, ecology, and infrastructure to social net-
works, in which information spreads. One of the simplest,
nontrivial dynamical processes on networks is the susceptible-
infected-susceptible (SIS) model [1]. Epidemic models like
the SIS model describe a wide variety of diffusive processes,
including epidemics [2,3], opinion spreading [4], computer
viruses [5], brain data transfers [6], fake news spreading
[7], failure propagation [8], and internet packet routing [9].
Most studies have either addressed the dynamics of the net-
work or the dynamics on the network. However, in many
networks the dynamics (function/process) and the structure
(graph/topology) coevolve. These networks are referred to
as coevolutionary or adaptive networks [10]. In an adaptive
spreading network, the graph adapts to the spreading process
(e.g., contact with infected neighbors is avoided) and, in turn,
the spreading process is constrained by the modified graph.

Many networks can be modeled as adaptive networks. For
example, the brain connectome is a highly adaptive network
[11]. Opinion networks, in which opinions are transferred
between people, also adapt over time as people commonly
prefer to contact people with similar opinions [12].

Even though adaptive networks are ubiquitous, their anal-
ysis has proven difficult. Nevertheless, disease spreading pro-
cesses have been successfully modeled using adaptive net-
works. The seminal work by Gross et al. [13] introduced an
adaptive susceptible-infected-susceptible (SIS) model, where
a rewiring mechanism was introduced. In Gross’s model, a
susceptible node can be infected by neighboring infectious
nodes with probability p. Infected nodes recover indepen-
dently of the contagion process with probability r. In addition

*Corresponding author: M.A.Achterberg@tudelft.nl

to this classical contagion process, the link between suscep-
tible and infected nodes can be rewired with probability w.
When a link is rewired, the link between the susceptible node
and infected node is broken, and the susceptible node connects
to a randomly chosen susceptible node in the network. The
rewiring process is based on social distancing, a concept from
social studies, indicating the tendency of healthy people to
avoid infected people [14]. An extensive analysis of Gross’s
model was performed by Marceau et al. [15]. Several exten-
sions of Gross’s model have been investigated with different
link-adaption rules [16,17], and Gross’s model was applied to
an SIR model [18] and on growing networks [19].

Although Gross et al. [13] have had a large impact on
the field, their approach is based on a mean-field average
and ignores higher-order correlations. Guo et al. [20] intro-
duced a similar but slightly different approach, called the
Adaptive SIS (ASIS) model, where links between susceptible
and infected nodes are not rewired but temporarily broken.
Independently, the link can be restored between two suscep-
tible nodes. Hence, the network evolves according to two
processes: a link-breaking and a link-recreation mechanism.
For a complete initial network, an exact, implicit relationship
for the number of infected nodes and the network structure
was obtained. It was shown that the epidemic threshold
scales linearly in the effective link-breaking rate. Aside from
epidemiology, the methodology was successfully applied to
model the spread of information propagation in the Adaptive
Information Diffusion (AID) model [21].

To gain understanding of how the link dynamics affect the
overall dynamics of adaptive networks, we propose a Gen-
eralized Adaptive SIS model (G-ASIS for short). The novel,
versatile G-ASIS model comprises the Adaptive SIS (ASIS)
and Adaptive Information Diffusion (AID) models by incor-
porating all possible link-breaking and link-creation mecha-
nisms. Each mechanism adapts the topology of the network
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based on the infection state of the end nodes of a link. We
show that six unique updating rules are available for each
mechanism, leading to 36 instances in the G-ASIS model.
All 36 instances are parametrized in G-ASIS and we derive
a general expression for the lower bound of the epidemic
threshold. Numerical simulations corroborate to our analytical
estimates. For each of the 36 instances, the epidemic threshold
is shown to (a) depend linearly on the effective link-breaking
rate, (b) be independent of the effective link-breaking rate,
or (c) the relation between the epidemic threshold and the
effective link-breaking rate cannot be determined.

This paper is structured as follows. In Sec. II, we derive and
explain the G-ASIS model and discuss the possible updating
rules for the link dynamics. In Sec. III, we demonstrate that
each of the instances of G-ASIS has an explicit epidemic
threshold that is bounded from below. An implicit relation
for the epidemic threshold is also derived. Next, we present
simulation results in Sec. IV, and finally, we summarize and
discuss our findings in Sec. V.

II. GENERALIZED ADAPTIVE SIS MODEL

A. Model description

We consider the spreading of diseases over a graph
G(N ,L), where N is the set of N nodes and L is the set of
L links. Every node i represents an individual which can be in
two states: infected or healthy. The state of node i is modeled
using a Bernoulli random variable, where Xi(t ) = 1 indicates
that node i is infected at time t and Xi(t ) = 0 indicates that
node i is healthy but susceptible to the disease. Infected nodes
can infect a neighboring susceptible node, which is modeled
as a Poisson process with rate β. Independently, an infected
node cures with Poisson rate δ. The adjacency matrix ai j (t )
indicates whether nodes i and j are linked [ai j (t ) = 1] in the
network at time t or not [ai j (t ) = 0]. The state Xi(t ) of node i
changes as follows:

d E[Xi(t )]

dt
= E

[
−δXi(t ) + β[1 − Xi(t )]

N∑
j=1

Xj (t )ai j (t )

]
.

(1)
The right-hand side of Eq. (1) consists of two parts: an
infected node i cures with rate δ and a susceptible node i
can be infected by each of its neighboring infected nodes with
rate β.

Besides the dynamic spreading process, the graph evolves
over time as well. The link ai j between node i and j is
modeled as a Bernoulli random variable. A link between two
nodes can be broken and re-created based on the state of the
end nodes of the link. These link-breaking and link-creation
mechanisms make the network adaptive. Here we present the
Generalized Adaptive SIS model (G-ASIS for short) which
includes all possible updating rules for the link-breaking and
link-creation mechanisms. The following assumptions have
been made. The topology only changes based on two inde-
pendent processes: (a) a link-creation process fcr with Poisson
rate ξ and (b) a link-breaking process fbr with Poisson rate
ζ . For each of these mechanisms, the link changes based
on the state of the end nodes of the link. The interaction of
a link ai j (t ) depending on node i and j is assumed to be

i j

i j

i j

i j

FIG. 1. Schematic overview of two connected nodes. Gray nodes
are infected nodes, white nodes are healthy nodes. The decision to
break or create the link between node i and j depends on the viral
states Xi and Xj . In this example, the link is broken when Xi = Xj = 1
which corresponds to link-breaking rule fbr = XiXj .

symmetric. Hence, the adjacency matrix A(t ) with elements
ai j (t ) is symmetric at all times. These assumptions determine
the governing equations of the link ai j as

d E[ai j (t )]

dt
= ai j (0)E

[− ζai j (t ) fbr{Xi(t ), Xj (t )}
+ ξ (1 − ai j (t )) fcr{Xi(t ), Xj (t )}], (2)

where fbr and fcr are specific choices for the link-breaking
and link-creation mechanism, respectively. The initial link
existence ai j (0) indicates that only links in the initial network
can be broken and recreated, whereas links in the complement
of the initial graph are never created (nor broken). We assume
that the initial network A(0) is connected, however, the con-
nectivity constraint can be circumvented by investigating each
connected component separately.

B. Derivation of the updating rules

The link-breaking mechanism fbr and link-creation mech-
anism fcr in G-ASIS depend on the state of the nodes Xi(t )
and Xj (t ), but not on ai j (t ) nor explicitly on the time t . We
next determine all possible updating rules for fbr and fcr. For
convenience, a rule is denoted by f and applies to fbr as well
as to fcr. Each rule f of a link between node i and j has
Bernoulli random variables Xi and Xj as input. Each rule f
is a linear or quadratic function of Xi and Xj that evaluates to
zero or one, similar to a logical gate.

We classify the updating rules according to the number of
possible inputs that give f = 1. Consider for example the rule
f = XiXj . Then, f = 1 only for Xi = Xj = 1. Any other input
for Xi and Xj yields f = 0. This rule is visualized in Fig. 1. In
the same way, three other rules can be derived where f = 1 for
one combination of Xi and Xj . The number of permutations of
this type can be computed as follows. There are four possible
inputs (combinations of Xi and Xj) and one positive outcome:(4

1

) = 4. All complying rules are:

XiXj, (1 − Xi )Xj,

(1 − Xi )(1 − Xj ), Xi(1 − Xj ).

There are rules for which two combinations of Xi and Xj yield
f = 1. As an example, consider the rule f = (Xi − Xj )2. Then
f = 1 if Xi is not equal to Xj . There are six rules of this type,
because there are four inputs and two combinations;

(4
2

) = 6.
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These six rules are:

(Xi − Xj )2, Xi, Xj,

1 − (Xi − Xj )2, (1 − Xi ), (1 − Xj ).

Third, there are rules for which three combinations of Xi and
Xj yield f = 1. For example, consider f = 1 − XiXj . The
function’s result is one if Xi = 0 or Xj = 0. The only situation
to find f = 0 occurs when Xi = Xj = 1. All four rules of this
type, namely,

(4
3

) = 4, are:

1 − XiXj, 1 − (1 − Xi )Xj,

1 − (1 − Xi )(1 − Xj ), 1 − Xi(1 − Xj ).

Two trivial rules have not yet been specified. The trivial rules
f = 1 (which occurs in

(4
4

) = 1 case) and f = 0 (
(4

0

) = 1) are
independent of the state of nodes Xi and Xj . Including the
trivial rules, the total number of possible rules is

∑4
k=0

(4
k

) =
24 = 16.

Each of the 16 possibilities for the function f can be
rewritten, using the binomial property that E[X 2

i ] = E[Xi], in
the following parametrized form:

f (Xi, Xj ) = a + bXi + b̃Xj + cXiXj, (3)

where the parameters a, b, b̃, c ∈ Z. Since the assumed net-
work is undirected, the function f is symmetric in Xi and
Xj , which implies that b̃ = b in Eq. (3). This removes eight
asymmetric updating rules from the original derivation and
simplifies Eq. (3) to

f (Xi, Xj ) = a + b(Xi + Xj ) + cXiXj, (4)

where the parameters a, b, c ∈ Z.
The trivial updating rules f = 0 and f = 1 are not partic-

ularly relevant. Choosing the updating rule f = 0 for either
the link-breaking or link-creation mechanism removes the
mechanism entirely from the governing equation (2). Hence,
there is an exponentially fast convergence to the steady-state
topology, without any dependence on the SIS process. The
updating rule f = 1 is also a nonadaptive rule which is
independent of the infection state of Xi and Xj . Moreover, for
our analysis of the epidemic threshold in the G-ASIS model,
the nonadaptive rules are not incorporated since they barely
provide any further insight.

After the removal of the nonadaptive and nonsymmetric
rules for the function f , only six updating rules remain.
Therefore, the link-breaking mechanism fbr and link-creation
mechanism fcr each have six updating rules in the G-ASIS
model. Since the link-breaking mechanism fbr and the link-
creation mechanism fcr can be chosen independently, and
for each of them six updating rules are available, in total
36 Markov processes for topology updating are contained in
G-ASIS. Each instance of G-ASIS contains two mechanisms:
a link-breaking mechanism fbr and a link-creation mechanism

TABLE I. All updating rules for the link-breaking and the link-
creation mechanism in the G-ASIS model. The rules for the link-
breaking and link-creation mechanisms are structured. The inverse
of any rule f is 1 − f . Also, taking the multiplication of two rules is
equivalent to taking the intersection between the number of times a
positive result for the rules is found.

Rule f a b c Gate

XiXj 0 0 1 AND
1 − XiXj 1 0 −1 NAND

(1 − Xi )(1 − Xj ) 1 −1 1 NOR
1 − (1 − Xi )(1 − Xj ) 0 1 −1 OR

(Xi − Xj )2 0 1 −2 XOR
1 − (Xi − Xj )2 1 −1 2 XNOR

fcr, which are given in general form by Eq. (4). An overview
of all updating rules is presented in Table I [22].

As an example, we consider the Adaptive SIS model,
where the link between a susceptible node and an infected
node is broken to prevent the spreading of the disease. Hence,
the link-breaking mechanism fbr is equal to the updating rule
fbr = (Xi − Xj )2 and the corresponding parameters in Eq. (4)
are (abr, bbr, cbr) = (0, 1,−2). When both end nodes of a link
are susceptible, the link between the nodes is restored. The
link-creation mechanism is therefore fcr = (1 − Xi )(1 − Xj )
with parameters (acr, bcr, ccr ) = (1,−1, 1).

III. THEORETICAL RESULTS

For analytic feasibility only, we mainly confine ourselves
in this paper to the complete initial graph, but we expect that
the conclusions and insights also hold for any other graph.
One of the main concepts in epidemiology is the epidemic
threshold τc. The epidemic threshold τc in a finite graph spec-
ifies a small interval for the effective infection rate τ = β/δ

in which the process quickly changes from the disease-free
phase to the endemic phase [1]. The epidemic threshold τc can
be defined as the largest value of the effective infection rate τ

for which the prevalence y exponentially decays to zero over
sufficiently large time [23]. Finding an analytical expression
for the epidemic threshold is generally infeasible due to the
complexity of the process. It is, however, possible to derive
lower and upper bounds for the epidemic threshold for the
complete initial network.

A. Lower bound on the epidemic threshold

Following Ogura and Preciado [24], the epidemic threshold
τc can be bounded from below. This methodology was also
successfully applied to the static SIS model by Van Mieghem
[25, Theorem 17.3.1]. The static SIS model is obtained from
the G-ASIS model by setting ζ = ξ = 0. We state one of our
main results in the following theorem.

Theorem III.1. The epidemic threshold τc for the G-ASIS model is bounded from below by

τc �
1

ρ

[
1 + ω(1{abr=0,bbr=1,cbr=−1}) − (1{acr=1,bcr=0,ccr=−1}∪{acr=0,bcr=1,ccr=−2})

(1 − 1{acr=1,bcr=−1,ccr=1}) + δ/ξ

]
, (5)
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where ρ is the spectral radius (the largest eigenvalue of the
adjacency matrix) of the initial graph, ω = ζ/ξ is the effective
link-breaking rate and 1x is the indicator function which is one
if condition x is satisfied, and zero otherwise.

Proof. See Appendix B. �
Theorem III.1 states that the epidemic threshold τc can

be reduced by introducing adaptive link-breaking and link-
creation mechanisms because the second term in Eq. (5)
can be negative and τc � 1

ρ
holds for the SIS model in

a static graph [26]. If the link-breaking coefficients satisfy
abr = 0, bbr = 1, cbr = −1 [corresponding to link-breaking
rule fbr = 1 − (1 − Xi )(1 − Xj )], then the epidemic threshold
τc in Eq. (5) has a nonzero dependence on the effective
link-breaking rate ω. The link-creation rule can be chosen
freely. Hence, for 1×6 = 6 out of the 36 instances of G-ASIS,
the epidemic threshold τc increases at least linearly with the
effective link-breaking rate ω. For the remaining 30 instances
in G-ASIS, satisfying fbr �= 1 − (1 − Xi )(1 − Xj ), the lower
bound in Eq. (5) is independent of the effective link-breaking
rate ω and is similar to the lower bound of the classical SIS
epidemic threshold [26,27]. In epidemiology, a high epidemic
threshold is preferable, because the disease only develops
into an endemic for higher infection rates. Other areas of
application, such as information spreading and human brain
interactions, benefit from a low epidemic threshold as fast
communication is advantageous for these phenomena.

B. Upper bound on the epidemic threshold

We denote the fraction of infected nodes by Z =
1
N

∑N
i=1 Xi. Above the epidemic threshold τc, the process is

in the metastable state, where stochastic variables are denoted
by an asterisk (*) [28]. We denote by y = E[Z∗] the average
metastable fraction of infected nodes, commonly known as
the prevalence, and by di the degree of node i. Combining
Eqs. (1) and (2), an analytic, implicit quadratic relationship for
the prevalence y can be obtained, similarly as in Refs. [20,21].

Theorem III.2. The metastable prevalence y for a complete
initial network satisfies the quadratic equation

y2 +
[

2bcrNτ − (2bcr + ccr)τ + cbrω + ccr

ccrNτ

]
y

+
{

(N − 1)acr

ccrN
− abrω + acr

ccrN2
E

[
N∑

i=1

d∗
i

]
+ Var(Z∗)

− (2bbr + cbr)ω + 2bcr + ccr

ccrN2
E

[
N∑

i=1

d∗
i X ∗

i

]}
= 0. (6)

Proof. See Appendix C. �
The quadratic formula Eq. (6) for the prevalence y leads to

an exact, implicit expression for the epidemic threshold τc:
Theorem III.3. The epidemic threshold τc in the G-ASIS

model for a complete initial network is implicitly given by

τc =
cbr

ccr
ω + 1

2
bcr

ccr
(1 − N ) + 1 − Nh(ω, ξ )

, (7)

where h(ω, ξ ) is defined in Eq. (D8) in Appendix D. More-
over, for 27 instances of G-ASIS, the epidemic threshold τc

is bounded by a linear function in ω and for 9 instances, the
epidemic threshold is bounded by a constant.

Proof. See Appendix D. �
Theorems III.1 and III.3 enable us to classify the instances

of G-ASIS: one type has a linear relation between the epi-
demic threshold τc and the effective link-breaking rate ω =
ζ/ξ and for the other type, the epidemic threshold τc is in-
dependent of the effective link-breaking rate ω. The Adaptive
Information Diffusion (AID) model is one example of a model
with a constant τc and the ASIS model is an example where
τc is linear in ω. Comparing the results of Theorems III.1 and
III.3, two striking differences appear. First, the lower bound
for the epidemic threshold τc in Eq. (5) is explicit, whereas
Eq. (7) depends implicitly on the function h(ω, ξ ). Second,
the lower bound in Eq. (5) concludes that six instances have
a linear relation between the epidemic threshold τc and the
effective link-breaking rate ω, which contrasts the upper
bound in Theorem III.3, which has 27 linear-scaling instances.
Subsequently, 27 − 6 = 21 instances have an undetermined
relation: their lower bound is constant in ω, whereas their
upper bound scales linearly in ω. In Sec. IV, simulation results
indicate that undetermined relations can exhibit both linear
and constant behavior. So far, the actual relation between the
epidemic threshold τc and the effective link-breaking rate ω is
still unknown. The relation between the epidemic threshold τc

and the effective link-breaking rate ω can be summarized as
follows:

6 instances: linear in ω,

9 instances: constant in ω,

21 instances: undetermined.

C. Nonexistent metastable states

The quadratic relationship Eq. (6) for the prevalence y
always has the all-healthy state y = 0 as a solution. Above
the epidemic threshold τc, we conjecture that some instances
of G-ASIS do not possess a metastable state. Then Eq. (6)
does not possess a unique, real-valued, nonzero solution for
the prevalence y.

Conjecture III.1. The metastable state in the G-ASIS
model for a complete initial network does not exist when all
of the following three conditions hold:

ccr < 0, cbr > 0, ω > − ccr

cbr
. (8)

Sketch of the proof. See Ref. [29]. �
If the metastable state does not exist, then simulations show

a nonempty region of τ -values above the epidemic threshold
τc in which oscillatory behavior is observed for the prevalence
y. One example of an instance of G-ASIS showing oscillatory
behavior is the AID model in Fig. 2(c) in Sec. IV.

IV. NUMERICAL SIMULATIONS

The time in the governing equations (1) and (2) of the G-
ASIS Markov process can be rescaled by curing rate δ; hence,
we always take δ = 1 and thus measure the time in units of the
average curing time. All figures in this section are simulations
of the G-ASIS Markov process. As initial condition, we
used a complete graph as initial network and all nodes
are initially infected. The continuous-time Markov process
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FIG. 2. The relation between the effective infection rate τ and prevalence y for various instances of the G-ASIS model. We have taken
N = 40, δ = 1, ε = 0.001 and a complete initial network for all models. For (a), (b), (d), (f), we have taken ζ = ξ = 1, for (c) ζ = 0.5, ξ =
0.1 and for (e) ζ = ξ = 0.1.

has been approximated by a sampled-time Markov chain [25]
with a sufficiently small time step 
t , which is taken to be

t = 0.05. Each simulation has been performed using 106

time units, measured in units of the average curing time.

A. Phase transitions

The relation between the prevalence y and the effective
infection rate τ shows a phase transition from the all-healthy
state to the endemic state. Such phase transitions are shown
for various instances of the G-ASIS model in Fig. 2. The
simulations have been performed using the ε-SIS approach
described by Van Mieghem and Cator [30], where a small
nodal self-infection rate ε < δ

N is introduced to exclude an
absorbing state. The ε-SIS model allows for the numerical
estimation of the metastable state.

The numerical results for the prevalence y in the ASIS
model are presented in Fig. 2(a). Below the epidemic thresh-
old τc ≈ 0.05, the prevalence is zero. For effective infection
rates τ > τc the prevalence y increases rapidly. The growth
saturates as the effective infection rate τ increases and the
prevalence y asymptotically increases to 1 as τ → ∞.

The Adaptive Contagious SIS (ACSIS) model is a variation
on the ASIS model, where links are not only broken between
susceptible and infected nodes, but also between two infected
nodes. Two people suffering from the same disease are more
likely to stay at home, effectively breaking links with each
other. The phase transition of ASIS [Fig. 2(a)] and ACSIS
[Fig. 2(b)] and the epidemic threshold are nearly equivalent,
although the prevalence y is generally lower in the ACSIS
model. Due to the extra link-breaking rule in the ACSIS
model, the disease is able to spread less quickly, causing the
prevalence to decrease.

In contrast to the ASIS and ACSIS model, the Adaptive
Information Diffusion (AID) model describes the spreading

of information. In the AID model, nodes represent people
and links their social interactions. The link between two sus-
ceptible nodes is broken, because the nodes have no interest
in one another as both do not have the information. The link
between susceptible and infected nodes is created to enhance
the propagation of information. Conjecture III.1 states that
the metastable state does not exist in the AID model, which is
illustrated in Fig. 2(c). Just above the epidemic threshold τc,
the process highly fluctuates, indicating that the metastable
state does not exist. The process does not collapse to the
all-healthy state either, but instead oscillates for effective
infection rates τ ∈ [0.16, 0.18]. Under these conditions, the
AID model has no prevalence y and the model can only
predict the average effectiveness of information spreading
throughout the network for small or large τ .

The Adaptive Brain Network (ABN) model is also con-
tained in the G-ASIS model. In the ABN model, nodes are
parts of the human brain and links connect the different parts.
Nodes can be active (infected) or inactive (healthy) at any
time. Active nodes cure and infect their inactive neighbors
as usual. The ABN topology updating rules are derived from
the homeostatic structural plasticity in the brain, where a new
link is created between two inactive nodes and existing links
are removed when both nodes are active. When one node is
infected and one is healthy, the link between the nodes is
preserved. The phase transition in Fig. 2(d) is comparable to
the ASIS model, although the epidemic threshold is smaller
and the ascent of the prevalence y is steeper around the
epidemic threshold τc.

Another model in the G-ASIS model is the Scientific
Collaboration Model (SCM), where nodes represent re-
searchers who either have interest or not in a particu-
lar research area. Links represent collaborations between
researchers. Researchers can spread their interest to collabo-
rating, connected researchers. Independently, researchers can
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FIG. 3. The epidemic threshold τc as a function of the effective link-breaking rate ω for four instances of the G-ASIS model. The data points
are obtained from simulations and the solid line represents the lower bound from Theorem III.1. The theory predicts a constant relationship
(b) or it is undetermined (a), (c), (d). We have taken N = 40, δ = ξ = 1, ε = 0.001 and a complete initial network.

lose, forget or do not pay attention to the research area. Be-
sides these processes, the network is adaptive in the following
way. Researchers break their link if both are not interested
in the research area. Since there is a potential collaboration
between susceptible and infected researchers, their link per-
sists. Finally, the link is created between two researchers who
share interests. Different from most instances of G-ASIS,
the numerical estimation of the prevalence y for the SCM
model sensitively depends on the initial conditions. The phase
diagram in Fig. 2(e) is comparable to the ABN model in
Fig. 2(d); however, the ascent of the prevalence y is very steep
around the epidemic threshold τc.

The Adaptive Fake News Diffusion (AFND) model was
introduced in Ref. [31] to model the spread of fake news in
a healthy network. The nodes in the AFND model represent
people who are either under the influence of a fake news
item, or do not believe the item. People are connected to
other people (and possible other sources) over adaptive links.
Infected nodes try to persuade healthy, neighboring nodes to
believe the fake news item. At the same time, infected nodes
‘cure’ from the fake news as well. Links in the AFND model
can be broken between susceptible and infected nodes based
on social awareness against fake news. Simultaneously, two
healthy nodes have no interest in keeping in touch and their
link can be broken. Additionally, links are created between
healthy and susceptible nodes since fake news items are

mostly sensational: the fake news directly appeals to the
human’s emotions. Hence, the spreading of fake news causes
links between susceptible and infected nodes to be created and
broken simultaneously. The behavior for the AFND model
shown in Fig. 2(f) is similar to that of the ASIS and ACSIS
model in Figs. 2(a) and 2(b), respectively.

B. Relation between epidemic threshold and effective
link-breaking rate

Although the epidemic threshold was shown for various
models in Fig. 2, the effect of the link-updating mechanisms
on the spreading of the disease remains unclear. Therefore,
the dependence of the epidemic threshold τc on the effective
link-breaking rate ω is shown for various models in Fig. 3.
The dots represent numerical simulations whereas the solid
line represents the lower bound from Theorem III.1. The
result from Theorem III.3 is not shown in Fig. 3 because
Eq. (7) is merely an implicit relation for the epidemic thresh-
old τc. The AID model in Fig. 3(b) shows nearly constant
behavior, which is in agreement with Theorem III.3. The
ASIS, SCM and ABN models are considered in Figs. 3(a),
3(c), and 3(d), respectively. The theory was not conclusive
about the relation between the epidemic threshold τc and the
effective link-breaking rate ω. Figure 3(a) shows a clear linear
relationship and Fig. 3(d) depicts a nearly constant relation-
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FIG. 4. The relation between the effective infection rate τ and the average fraction of links E[L]/[ 1
2 N (N − 1)] for two instances of the

G-ASIS model. We have taken N = 40, δ = 1, ε = 0.001 and a complete initial network for all models. Subfigure (a) shows the ASIS model
with ζ = ξ = 1 and (b) illustrates the AID model with ζ = 0.5, ξ = 0.1.

ship. In contrast, the slope in Fig. 3(c) appears to be constant,
but the relatively small slope indicates a weak relationship
between the effective link-breaking rate ω and the epidemic
threshold τc.

C. The metastable topology

In the G-ASIS model, the topology of the underlying
graph is constantly changing over time. The metastable graph,
though still changing around a fixed number of links, allows
for the estimation of any graph metric in the metastable
state. When the effective infection rate τ is smaller than the
epidemic threshold τc, the prevalence y is zero and the average
number of links is equal to

E[L] = acr

abrω + acr

1

2
N (N − 1), for τ < τc, (9)

which directly follows from (6) in Theorem III.2 by substitut-
ing an all-healthy population y = 0. However, the number of
metastable links in the endemic state τ > τc can be computed
from neither Eq. (6) nor Eq. (7) in closed form.

Figure 4 illustrates the behavior for two instances of G-
ASIS below and above the epidemic threshold τc. The ASIS
model in Fig. 4(a) starts with a completely connected graph
at τ = 0, because the prevalence is zero and the link-breaking
mechanism has not been activated yet. If the effective infec-
tion rate τ is larger than the epidemic threshold τc, then the
prevalence y is nonzero [see Fig. 2(a)] and the link-breaking
mechanism reduces the fraction of links. As the effective
infection rate τ increases up to infinity, the prevalence y
increases to 1 and the link-creation mechanism between two
susceptible nodes is rarely activated. Hence, the fraction of
links decreases to zero. For the AID model in Fig. 4(b), we
observe opposite behavior. If the effective infection rate τ is

TABLE II. A selected set of instances from the G-ASIS model and their properties. The table assumes δ = 1.

Model name and Metastable state Lower bound on Upper bound on
appearance in Updating rules always exists epidemic epidemic
literature link-breaking link-creation (conjecture) threshold τc threshold τc

ASIS model [4,20,21] (Xi − Xj )2 (1 − Xi )(1 − Xj ) Yes
1

ρ
Linear

ACSIS model [31] 1 − (1 − Xi )(1 − Xj ) (1 − Xi )(1 − Xj ) Yes
1

ρ

(
1 + ωξ

)
Linear

AID model [21] (1 − Xi )(1 − Xj ) (Xi − Xj )2 No
1

ρ

( 1

1 + ξ

)
Constant

ABN model XiXj (1 − Xi )(1 − Xj ) Yes
1

ρ
Linear

SCM model (1 − Xi )(1 − Xj ) XiXj Yes
1

ρ
Linear

AFND model [31] 1 − XiXj (Xi − Xj )2 Yes
1

ρ

( 1

1 + ξ

)
Linear
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smaller than the epidemic threshold τc, then the prevalence
y is zero. In the AID model, links are broken between sus-
ceptible nodes and created between susceptible-infected pairs.
Therefore, the fraction of links is zero as well. In the endemic
state τ > τc, the prevalence y increases, which enables the
creation of links in the network. As the effective infection rate
τ approaches infinity, the prevalence increases to 1. Then the
fraction of links also converges to 1 because the link-breaking
rule between susceptible nodes is rarely used as there are
hardly any susceptible nodes.

D. Summary

We summarize all results in Table II. For the ACSIS model
the epidemic threshold τc is a linear function of the effective
link-breaking rate ω and the metastable state always exists.
The AID model, which has a constant relation between the
epidemic threshold τc and the effective link-breaking rate ω,
does not possess a metastable state for sufficiently large ω.
Unfortunately, the relation between τc and ω in the ASIS,
AFND, ABN, and SCM models could not be determined. The
simulations support the hypothesis that the lower bound is
strict for the ABN model and the linear bound is correct for the
ASIS, AFND, and SCM models, indicating that undetermined
models may show different behavior. All 36 instances of
G-ASIS are listed in Table III in Appendix E.

V. CONCLUSION

In this paper, the Generalized Adaptive SIS model is in-
troduced. The G-ASIS model consists of two adaptive mech-
anisms: links between nodes can be broken and created. We
have shown that for each mechanism, six updating rules are
available. Hence, the G-ASIS model contains 36 adaptive
processes. Out of these 36 instances, 9 are likely to have
a nonexistent metastable state for sufficiently large effective
link-breaking rates ω. If the metastable state is nonexistent
and the effective infection rate τ is larger than the epidemic
threshold τc, then the Markov process shows large fluctua-
tions, indicating that the process is unstable. We have also
shown that the relation between the epidemic threshold τc

and the effective link-breaking rate ω is linear for 6 instances,
constant for 9 instances and undetermined for 21 instances.

The G-ASIS model can be extended by allowing for het-
erogeneous curing, infection, link-breaking and link-creation
rates. Heterogeneous parameters are required for modeling
processes with nonuniform nodes or links. For example, in
epidemics, people from different age groups are likely to react
differently to a disease, and for information propagation, some

people are more influential (have a larger infection parameter)
than others.

In the G-ASIS model, the link-breaking and link-creation
mechanisms depend on the viral state of the nodes i and j.
The general formulation of any rule f , which is determined
in Eq. (4), can be generalized by allowing the parameters a,
b and c to have any nonnegative value. Using this approach,
more focus can be laid on a particular link-creation or link-
breaking process. For example, suppose that the link between
two susceptible nodes can be broken with rate abr and the
link can be broken between two infected nodes with rate
3abr, then link-breaking is more likely to happen between
two infected nodes. By allowing a, b and c to have any
nonnegative value, the G-ASIS model includes an infinitely
large class of adaptive processes and is capable of modeling
more real-world spreading phenomena.

Another promising area of research is the investigation of
the mean-field approximation of the governing equations (1)
and (2) and the subsequent derivation of constraints on the
epidemic threshold. Achterberg [31] has derived a cubic equa-
tion for the steady state of the first-order mean-field equations
for the G-ASIS model using Eq. (4). The steady state of the
mean-field equations appears to show poor agreement with the
metastable state from the G-ASIS model, which is in contrast
to the static SIS model [32]. Nevertheless, the mean-field
estimate can be relevant to determine the epidemic thresh-
old. In particular, in the classical SIS model the correlation
between two adjacent nodes is always positive [33]. Then
the mean-field estimate for the epidemic threshold is always
a lower bound of the true epidemic threshold. As far as we
know, nodal correlations have not been analyzed for adaptive
processes.

Finally, the G-ASIS model can be extended to “simplicial
contagion” [34]. Besides infection spreading over 1-simplices
(links), simplicial contagion considers higher-order simplices
to enhance the spreading of the disease. For example, the
2-simplex considers the interaction between three nodes (a
full triangle). In addition to extending the governing equa-
tion (1), the topology updating rule (4) can also be generalized
to link-breaking and link-creation mechanisms between D-
dimensional simplices.

APPENDIX A: GENERAL REMARKS

Throughout the Appendices, the explicit time-dependence
of each stochastic variable Xi(t ) is omitted for readability: We
write Xi instead of Xi(t ).

APPENDIX B: PROOF OF THEOREM III.1

We follow the method of Ogura and Preciado [24]. The change over time of the term E[ai jXi] can be computed analogous to
Eqs. (1) and (2), and it is found that

d E[ai jXi]

dt
= ai j (0)

{
(acr + bcr)ξE[Xi] − (abrζ + bbrζ + acrξ + bcrξ + δ)E[ai jXi]

+ (bcr + ccr)ξE[(1 − ai j )XiXj] − (bbr + cbr)ζE[ai jXiXj] + βE

[
(1 − Xi )ai j

N∑
k=1

aikXk

]}
. (B1)
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In this proof, the governing equations of E[Xi] from Eq. (1) and E[ai jXi] from Eq. (B1) are used. The governing equations (1)
and (B1) are rewritten in terms of E[Xi] and E[ai jXi], and the remaining terms are denoted by W . Our goal is to define W such
that it is negative. For Eq. (B1), we rewrite the infection term with coefficient β as

βE

[
(1 − Xi )ai j

N∑
k=1

aikXk

]
= β

N∑
k=1

E[aikXk − XiaikXkai j − (1 − ai j )aikXk].

Then Eq. (B1) can be rewritten as

d E[ai jXi]

dt
= ai j (0)

{
(acr + bcr)ξE[Xi] − (abrζ + bbrζ + acrξ + bcrξ + δ)E[ai jXi] + βE

[
N∑

k=1

aikXk

]
+ WA

}
, (B2)

where the remaining terms of the network WA are

WA = (bcr + ccr)ξE[(1 − ai j )XiXj] − (bbr + cbr)ζE[ai jXiXj] − β

N∑
k=1

E[XiXkaikai j + (1 − ai j )aikXk].

Similarly for E[Xi],

d E[Xi]

dt
= −δE[Xi] + β

N∑
k=1

E[aikXk] + WX , (B3)

where the remaining terms for the nodes WX are

WX = −β

N∑
k=1

E[XiaikXj].

The remaining term WX is always negative, whereas WA is only negative in some cases. Each positive term in WA is merged with
other terms to ensure that WA is negative. The term WA is surely negative when each of the individual components is negative. The
term with infection rate β is negative. For the link-breaking rate ζ , the case bbr + cbr = −1 is a potential problem. By applying
bbr + cbr = −1, Table I illustrates that abr + bbr = 1. Then we combine terms from Eq. (B2) with WA in the following way:

−(abr + bbr)ζE[ai jXi] − (bbr + cbr)ζE[ai jXiXj] = −ζE[ai jXi(1 − Xj )], if bbr + cbr = −1.

Therefore, we propose the following changes to ensure that WA is negative for the link-breaking coefficients ζ :

In Eq. (B2): − (abr + bbr)ζE[ai jXi] → −ζ1{abr=0,bbr=1,cbr=−1}E[ai jXi]

In WA : −(bbr + cbr)ζE[ai jXiXj] → −ζ (1{abr=0,bbr=0,cbr=1} + 1{abr=1,bbr=−1,cbr=2})E[ai jXiXj]

−ζ (1{abr=1,bbr=0,cbr=−1} + 1{abr=0,bbr=1,cbr=−2})E[ai jXi(1 − Xj )],

where 1 f is the indicator function, which is 1 if the link-breaking rule fbr satisfies f and is zero otherwise. We repeat the
procedure for the link-creation term ξ , except that we apply an extra trick: we add zero to Eq. (B2), where ε > 0 is small:

−εE[Xi(1 − ai j )] + εE[Xi] − εE[ai jXi] = 0,

such that

In Eq. (B2): (acr + bcr)ξE[Xi] → {ξ (1 − 1{acr=1,bcr=−1,ccr=1}) + ε}E[Xi]

In WA : (bcr + ccr)ξE[(1 − ai j )XiXj] → −ξ (1{acr=1,bcr=0,ccr=−1} + 1{acr=0,bcr=1,ccr=−2})E[(1 − ai j )XiXj]

−ξ (1{acr=0,bcr=0,ccr=1} + 1{acr=1,bcr=−1,ccr=2})E[ai jXiXj] − ξ (1{acr=0,bcr=0,ccr=1} + 1{acr=1,bcr=−1,ccr=2})E[Xi(1 − Xj )]

−εE[Xi(1 − ai j )]

In WA : 0 · E[ai jXi] → −εE[ai jXi].

The differential equations (B2) and (B3) can be written in matrix notation. Given a sequence of matrices A1, . . . , An, define
A = ⊕n

i=1Ai to be the block diagonal matrix with Ai on its block diagonals; Ai does not necessarily have to be square. The matrix
A can be visualized as

A =

⎛
⎜⎜⎝

A1 0 0 . . .

0 A2 0 . . .
...

. . .
. . .

. . .
. . . 0 0 An

⎞
⎟⎟⎠.

Define the vectors qi = col j : ai j (0)=1 (E[ai jXi]) and q = col1�i�N (qi ). Moreover, we define Ti as the row vector satisfying

Tiq =
∑

k : aik (0)=1

E[akiXk].
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Here Ti is a Boolean row vector containing ones when an initial link is present between node i and node j (where j is the jth
element of Ti) and zero otherwise. The dimension of Ti is therefore 1×2L0 where L0 is the number of links in the initial network.
Then define the matrix T = col1�i�N (Ti ). Also define the matrix J = ⊕n

i=11di where di is the number of degrees of node i in
the initial network. Finally, define the matrix S = col1�i�N (1di ⊗ Ti ) where ⊗ is the Kronecker product. To summarize, the
following parameters have been defined:

qi = col
j : ai j (0)=1

(E[ai jXi]),

q = col
1�i�N

(qi ),

Tiq =
∑

k : aik (0)=1

E[akiXk],

T = col
1�i�N

(Ti ),

J = ⊕n
i=11di ,

S = col
1�i�N

(1di ⊗ Ti ).

The differential equations (B2) and (B3) can be formulated as a system in the following way:

d

dt

(
E[Xi]

E[ai jXi]

)
= M

(
E[Xi]

E[ai jXi]

)
+
(

WX

WA

)
, (B4)

where

M =
( −δI βT

{ξ (1 − 1{acr=1,bcr=−1,ccr=1}) + ε}J βS − (ζ1{abr=0,bbr=1,cbr=−1} + acrξ + bcrξ + δ + ε)I

)
. (B5)

Since the remaining terms WX and WA are negative by construction, it follows that

d

dt

(
E[Xi]

E[ai jXi]

)
� M

(
E[Xi]

E[ai jXi]

)
. (B6)

In case the eigenvalues of the matrix M are smaller than zero, the solution is bounded by an exponentially decaying function.
This implies the solution dies out over sufficiently large time. The point where one of the eigenvalues becomes zero, changes the
solution from an exponentially decaying function to an exponentially growing function. This bifurcation point is commonly
known as the epidemic threshold. To derive a bound for the epidemic threshold, the eigenvalues of M are investigated.
Specifically, the largest (real) eigenvalue is of interest and can be determined by using the Perron-Fröbenius theory.

Lemma B.1. Given a positive eigenvector x of M, its corresponding eigenvalue is the largest eigenvalue of M.
Proof. The initial network was taken to be connected. Since the network is undirected, it is also strongly connected. Ogura

and Preciado (2016) proved that the matrix M is irreducible when the initial network is strongly connected [24, Appendix A].
Then, by Perron-Fröbenius theory for irreducible matrices, the statement follows [35, Theorem 8.4.4]. �

Based on Lemma B.1, our approach is to construct a positive eigenvector for the matrix M. Using the positive eigenvector, a
lower bound for the epidemic threshold is computed.

Proof of Theorem III.1. First a positive eigenvector is constructed for the matrix M. Since the initial network is strongly
connected, there exists a positive eigenvector v corresponding to eigenvalue ρ (the spectral radius) [24]. We define the vector
w = col1�i�N (vi1di ). Using the definition of Ti, it follows that

Tiw =
∑

k : aik (0)=1

wki =
∑

k : aik (0)=1

vk = (Av)i = ρvi. (B7)

So T w = ρv. Equivalently, it follows that Sw = ρw and Jv = w.

Define the vector x = (zv
w

)
where z ∈ R, which is an eigenvector of M. Indeed,

M

(
zv
w

)
=
( −δI βT

{ξ (1 − 1{acr=1,bcr=−1,ccr=1}) + ε}J βS − (1{abr=0,bbr=1,cbr=−1}ζ + acrξ + bcrξ + δ)I

)(
zv
w

)

=
(

(βρ − zδ)v
{ξ (1 − 1{acr=1,bcr=−1,ccr=1}) + ε}z + βρ − (1{abr=0,bbr=1,cbr=−1}ζ + acrξ + bcrξ + δ))w

)

= λ

(
zv
w

)
,
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where the eigenvalue λ corresponds to the eigenvector x. Since v and w are positive, the eigenvector x is positive if and only if
z > 0. To conclude z > 0, a system of equations for z and λ is obtained:

zλ = βρ − zδ, (B8a)

λ = {ξ (1 − 1{acr=1,bcr=−1,ccr=1}) + ε}z + βρ − (1{abr=0,bbr=1,cbr=−1}ζ + acrξ + bcrξ + δ + ε). (B8b)

Define X = ξ (1 − 1{acr=1,bcr=−1,ccr=1}) + ε and Y = −βρ + 1{abr=0,bbr=1,cbr=−1}ζ + (acr + bcr)ξ + δ + ε and notice that X > 0.
Then Eqs. (B8a) and (B8b) simplify to

z(λ + δ) = βρ, (B9a)

λ = zX − Y. (B9b)

Inserting Eqs. (B9a) into (B9b), we find a quadratic equation for z:

Xz2 + (δ − Y )z − βρ = 0. (B10)

Based on Eq. (B10), we find that z1 < 0, z2 > 0. The corresponding values for λ can be obtained using Eq. (B9a), which can be
rewritten as

λ = βρ

z
− δ.

Since β, δ, ρ > 0, for z1 < 0 it follows that λ1 < 0. For z2 > 0, the sign of λ cannot be determined. However, we require z2 > 0
to have a positive eigenvector and we require λ2 < 0 for stability. From the system given by Eqs. (B9a) and (B9b), the quadratic
equation for λ can be derived:

λ2 + (δ + Y )λ + (δY − βρX )︸ ︷︷ ︸
constant term

= 0.

We have concluded earlier that λ1 < 0. The eigenvalues of M are required to be negative, hence λ2 < 0. When λ1, λ2 are negative,
the constant term of the quadratic equation is positive. This leads to the condition

δY − βρX > 0.

Substitution of the definition of X and Y and rewriting yields

β

δ
<

1{abr=0,bbr=1,cbr=−1}ζ + acrξ + bcrξ + δ + ε

ρ[ξ (1 − 1{acr=1,bcr=−1,ccr=1}) + δ + ε]
,

such that the final form becomes

τ <
1

ρ

[
1 + 1{abr=0,bbr=1,cbr=−1}ω − (1{acr=1,bcr=0,ccr=−1}∪{acr=0,bcr=1,ccr=−2})

(1 − 1{acr=1,bcr=−1,ccr=1}) + δ/ξ + ε/ξ

]
. (B11)

Since we did not assume any value for ε, we take limε→0. Eq. (B11) is a required condition for the process to exponentially
decay to zero over sufficiently large time. Therefore, the epidemic threshold τc needs to be larger than those τ -values, which
proves Theorem III.1. �

APPENDIX C: PROOF OF THEOREM III.2

We follow the method of Guo et al. [20]. Using Eq. (2) and the general formulation of any updating rule of the G-ASIS model
in Eq. (4), we find

d E[ai j]

dt
= ai j (0)E[−ζai j (abr + bbr(Xi + Xj ) + cbrXiXj ) + ξ (1 − ai j )(acr + bcr(Xi + Xj ) + ccrXiXj )].

By using that we have a complete initial network, i.e., ai j (0) = 1 for all i �= j, we obtain

d E[ai j]

dt
= acrξ + bcrξE[Xi] + bcrξE[Xj] − (abrζ + acrξ )E[ai j] + ccrξE[XiXj]

− (bbrζ + bcrξ )E[ai jXi] − (bbrζ + bcrξ )E[ai jXj] − (cbrζ + ccrξ )E[ai jXiXj].
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Taking the sum over all j �= i and using the degree di = ∑N
j=1, j �=i ai j and aii = 0, we obtain

d E[di]

dt
= acrξ (N − 1) + bcrξ (N − 1)E[Xi] + bcrξ

N∑
j=1, j �=i

E[Xj] − (abrζ + acrξ )E[di]

+ ccrξE

⎡
⎣Xi

N∑
j=1, j �=i

Xj

⎤
⎦− (bbrζ + bcrξ )E[diXi] − (bbrζ + bcrξ )E

⎡
⎣ N∑

j=1

ai jXj

⎤
⎦− (cbrζ + ccrξ )E

⎡
⎣ N∑

j=1

ai jXiXj

⎤
⎦.

Two terms need to be investigated in more detail. The following relations hold:

(N − 1)E[Xi] +
N∑

j=1, j �=i

E[Xj] = ((N − 2))E[Xi] +
N∑

j=1

E[Xj],

E

⎡
⎣Xi

N∑
j=1, j �=i

Xj

⎤
⎦ = E

⎡
⎣Xi

⎛
⎝ N∑

j=1

Xj − Xi

⎞
⎠
⎤
⎦ = E

⎡
⎣Xi

N∑
j=1

Xj

⎤
⎦− E[Xi],

where in the last equation, for the last equality, we used the Bernoulli property. Reinserting these yields

d E[di]

dt
= acrξ (N − 1) + (bcrξ (N − 2) − ccrξ )E[Xi] + bcrξ

N∑
j=1

E[Xj] − (abrζ + acrξ )E[di]

+ ccrξE

⎡
⎣Xi

N∑
j=1

Xj

⎤
⎦− (bbrζ + bcrξ )E[diXi] − (bbrζ + bcrξ )E

⎡
⎣ N∑

j=1

ai jXj

⎤
⎦− (cbrζ + ccrξ )E

⎡
⎣ N∑

j=1

ai jXiXj

⎤
⎦.

Up to now only the network equations from Eq. (2) have been used. We intend to use the epidemic equations in Eq. (1) to remove
the largest correlation term. Hence, we rewrite Eq. (1) as

E

⎡
⎣ N∑

j=1

ai jXiXj

⎤
⎦ = − 1

β

d E[Xi]

dt
− 1

τ
E[Xi] + E

⎡
⎣ N∑

j=1

ai jXj

⎤
⎦,

where τ = β/δ is the effective infection rate. Inserting this back into the previous result gives

d E[di]

dt
= acrξ (N − 1) + (bcrξ (N − 2) − ccrξ )E[Xi] + bcrξ

N∑
j=1

E[Xj] − (abrζ + acrξ )E[di]

+ ccrξE

⎡
⎣Xi

N∑
j=1

Xj

⎤
⎦− (bbrζ + bcrξ )E[diXi] − (bbrζ + bcrξ )E

⎡
⎣ N∑

j=1

ai jXj

⎤
⎦

− (cbrζ + ccrξ )

⎧⎨
⎩− 1

β

d E[Xi]

dt
− 1

τ
E[Xi] + E

⎡
⎣ N∑

j=1

ai jXj

⎤
⎦
⎫⎬
⎭.

Taking all time-derivatives to the left and dividing every term by ζ , we obtain

d

dt
E

[
di

ζ
− cbr + ccrω

−1

β
Xi

]
= acrω

−1(N − 1) +
[

bcrω
−1(N − 2) − ccrω

−1 + cbr + ccrω
−1

τ

]
E[Xi]

+ bcrω
−1

N∑
j=1

E[Xj] − (abr + acrω
−1)E[di] + ccrω

−1E

⎡
⎣Xi

N∑
j=1

Xj

⎤
⎦

− (bbr + bcrω
−1)E[diXi] − (bbr + bcrω

−1 + cbr + ccrω
−1)E

⎡
⎣ N∑

j=1

ai jXj

⎤
⎦.
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Using 2L = ∑N
i=1 di where L is the number of links, we sum over all 1 � i � N to find

d

dt
E

[
2L

ζ
− cbr + ccrω

−1

β

N∑
i=1

Xi

]
= acrω

−1N (N − 1) +
(

bcrω
−1(N − 2) − ccrω

−1 + cbr + ccrω
−1

τ

) N∑
i=1

E[Xi]

+ bcrω
−1N

N∑
j=1

E[Xj] − (abr + acrω
−1)E

[
N∑

i=1

di

]
+ ccrω

−1E

⎡
⎣ N∑

i=1

Xi

N∑
j=1

Xj

⎤
⎦

− (bbr + bcrω
−1)

N∑
i=1

E[diXi] − (bbr + bcrω
−1 + cbr + ccrω

−1)E

⎡
⎣ N∑

j=1

d jXj

⎤
⎦.

Using the fraction of infected nodes Z = 1
N

∑N
i=1 Xi, we can simplify this to

d

dt
E

[
2L

ζ
− cbrN + ccrω

−1N

β
Z

]
= acrω

−1N (N − 1) +
(

bcrω
−1N (N − 2) − ccrNω−1 + cbrN + ccrω

−1N

τ

)
E[Z]

+ bcrω
−1N2E[Z] − (abr + acrω

−1)E

[
N∑

i=1

di

]
+ ccrω

−1N2E[Z2]

− (bbr + bcrω
−1 + bbr + bcrω

−1 + cbr + ccrω
−1)E

⎡
⎣ N∑

j=1

d jXj

⎤
⎦.

When the derivative on the left-hand side vanishes (in the metastable state, which we denote by as asterisk ∗) we have

acrω
−1N (N − 1)+

[
bcrω

−1N (N − 1) − bcrNω−1 + bcrω
−1N2 − ccrNω−1 + cbrN + ccrω

−1N

τ

]
E[Z∗]

− (abr + acrω
−1)E

[
N∑

i=1

d∗
i

]
+ ccrω

−1N2E[(Z∗)2] − (2bbr + 2bcrω
−1 + cbr + ccrω

−1)E

⎡
⎣ N∑

j=1

d∗
j X ∗

j

⎤
⎦ = 0.

Using Var[Z∗] = E[(Z∗)2] − E[Z∗]2 and the prevalence y = E[Z∗], we finally find

ccrω
−1N2y2+

[
2bcrω

−1N (N − 1) − ccrNω−1 + cbrN + ccrω
−1N

τ

]
y + acrω

−1N (N − 1) − (abr + acrω
−1)E

[
N∑

i=1

d∗
i

]

+ ccrω
−1N2Var[Z∗] − (2bbr + 2bcrω

−1 + cbr + ccrω
−1)E

[
N∑

i=1

d∗
i X ∗

i

]
= 0,

which is a quadratic equation in y. Since ccr is never zero, every term can be multiplied by ω
ccrN2 , which proves

Theorem III.2. �

APPENDIX D: PROOF OF THEOREM III.3

The quadratic equation for the prevalence y from Eq. (6) can be rewritten in more compact form by defining

V = −
(

2bcrNτ − (2bcr + ccr)τ + cbrω + ccr

2ccrNτ

)
, (D1)

H =
{

(N − 1)acr

ccrN
− abrω + acr

ccrN2
E

[
N∑

i=1

d∗
i

]
+ Var[Z∗] − (2bbr + cbr)ω + 2bcr + ccr

ccrN2
E

[
N∑

i=1

d∗
i X ∗

i

]}
, (D2)

such that Eq. (6) can be written as

y2 − 2V y + H = 0. (D3)

The two possible solutions are

y = V ±
√

V 2 − H . (D4)
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The quadratic equation (D3) for the prevalence y can be rewritten as

V = 1

2

(
H

y
+ y

)
. (D5)

Using the definition of V from Eq. (D1), Eq. (D5) can be rewritten as

−bcr

ccr
+ (2bcr + ccr)

2ccrN
− cbrω + ccr

2ccrNτ
= 1

2

(
H

y
+ y

)
,

which can be rearranged to

τ = cbrω + ccr

2ccrN
[
− bcr

ccr
+ (2bcr+ccr )

2ccrN
− 1

2

(
H
y + y

)] . (D6)

Taking the limit y → 0 [36], we find an implicit relationship for the epidemic threshold;

τc =
cbr

ccr
ω + 1

2
bcr

ccr
(1 − N ) + 1 − N limy↓0

H
y

. (D7)

Since cbr, ccr �= 0, Eq. (D7) is an explicit relation between the epidemic threshold τc and the effective link-breaking rate ω. The
function H defined in Eq. (D2) depends on ω, ξ and τ and H = 0 zero if y = 0. Since we have taken limy↓0, we have H (ω, τc, ξ ).
This makes Eq. (D7) an implicit relation for the epidemic threshold τc. Our main effort will be to show the dependence of the
epidemic threshold τc on the effective link-breaking rate ω by bounding H (ω, τc, ξ ). Due to the continuity of H , we may define

lim
y↓0

H

y
= h(ω, ξ ), (D8)

such that the epidemic threshold τc becomes

τc =
cbr

ccr
ω + 1

2
bcr

ccr
(1 − N ) + 1 − Nh(ω, ξ )

, (D9)

which proves the first part of Theorem III.3. Next the function h(ω, ξ ) must be bounded. In Ref. [29, Lemma S1.1], it is shown
that all but the first term of H , given in Eq. (D2), are positive and the first term is nonnegative whenever acr

ccr
� 0. Therefore, the

proof of Theorem III.3 is split up into two parts. The first part is covered by Lemma D.1.
Lemma D.1. Let τc be the epidemic threshold from Eq. (D9) and assume H � 0. Then τc is bounded by a linear function in

ω or by a constant.
Proof. The only instances of G-ASIS which do not satisfy H � 0, are instances satisfying acr

ccr
< 0 and correspond to the

link-creation rule fcr = 1 − XiXj . These instances are not included in this lemma, but are taken care of by Lemma D.2. This
means 30 out of 36 instances of G-ASIS are treated in this lemma. We follow the approach of Ref. [21].

Step 1. The prevalence y is real.
The solutions of the quadratic equation (D3) for the prevalence y need to have a positive discriminant to be real solutions.

From Eq. (D4), it is required that H � V 2. Since H � 0, it is sufficient to show that
√

H � V . Inserting the definition of V from
Eq. (D1) brings

−
√

H � 2bcrNτ − (2bcr + ccr)τ + cbrω + ccr

2ccrNτ
,

which can be rearranged as

cbrω + ccr

2ccrτN
�

2 bcr
ccr

+ 1

2N
− bcr

ccr
−

√
H . (D10)

In the metastable state, the right-hand side of Eq. (D10) is positive, such that

τ �

cbr

ccr
ω + 1

2
bcr

ccr
(1 − N ) + 1 − 2N

√
H

.
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This holds for the metastable state, i.e., for all τ � τc. Hence,
cbr

ccr
ω + 1

2
bcr

ccr
(1 − N ) + 1 − Nh(ω, ξ )

= τc � τ ∗ =
cbr

ccr
ω + 1

2
bcr

ccr
(1 − N ) + 1 − 2N

√
H

. (D11)

We conclude that

0 � 2
√

H � h(ω, ξ ).

Furthermore, since τc is bounded for cbr
ccr

ω + 1 > 0, the denominator of Eq. (D9) should be nonzero. In other words,

0 � 2
√

H � h(ω, ξ ) <
bcr

ccr

1 − N

N
+ 1

2N
for

cbr

ccr
ω + 1 > 0. (D12)

In Eq. (D12), the function h(ω, ξ ) is bounded for some ω values, but not all. The remaining ω values are taken care of by Step 2.
Step 2. Bounding h(ω, ξ ) for the other ω values.
Step 2A. Case cbr

ccr
< 0. (ASIS, AID)

Out of the 30 instances considered in this lemma, 15 are part of this case.
For the limit of ω ↑ − ccr

cbr
, the epidemic threshold τc given in Eq. (D9) should still be nonnegative, or at least not suddenly

become zero. This can only be assured when the denominator in Eq. (D9) becomes zero as well. This continuity argument shows
that equality holds for Eq. (D12), which is

lim
ω↑− ccr

cbr

h(ω, ξ ) = bcr

ccr

1 − N

N
+ 1

2N
.

For ω > − ccr
cbr

, the epidemic threshold τc in Eq. (D9) should be positive as well, so using Eq. (D11) one finds

h(ω, ξ ) >
bcr

ccr

1 − N

N
+ 1

2N
for ω > − ccr

cbr
.

We now consider the situation where the effective link-breaking rate ω increases up to infinity. Suppose a node i is infected.
The link between node i and its neighbors j is removed (as ω is high) when the link-breaking rule allows for that. The link
can be recreated only when (I) the link-creation rule fcr creates the link between node i and j when either i or j is infected
[these updating rules are fcr = 1 − XiXj, fcr = 1 − (1 − Xi )(1 − Xj ) and fcr = (Xi − Xj )2] and (II) the link-breaking rule fbr

does not break the link between susceptible and infected nodes [these updating rules are fbr = XiXj , fbr = (1 − Xi )(1 − Xj ) and
fbr = 1 − (Xi − Xj )2]. Only when (I) and (II) are satisfied, spreading in the network continues despite the link-breaking rate ω

increasing up to infinity. This allows for a split-up into two classes: Class A and B.
(Class A) (AID). The epidemic threshold remains constant.
The only eligible instances for this class have been listed above. Some of these are still invalid, because they do not obey

H � 0 (e.g., the link-creation rule fcr = 1 − XiXj) or do not obey cbr
ccr

� 0 (which is Step 2B). These constraints yield six instances
having any combination of the following link-breaking rules: fbr = XiXj , fbr = (1 − Xi )(1 − Xj ) and fbr = 1 − (Xi − Xj )2

and for the link-creation rules: fcr = 1 − (1 − Xi )(1 − Xj ) and fcr = (Xi − Xj )2. These instances have in common that, while
increasing ω, the epidemic threshold τc barely increases. In other words, the limit of ω → ∞ of τc is finite. So define

lim
ω→∞ τc(ω, ξ ) = C1 > 0.

We continue to prove that h(ω, ξ ) is linear in ω for large ω. The epidemic threshold can be rewritten in terms of h:

h(ω, ξ ) = 2
bcr

ccr

1 − N

N
+ 1

N
−

cbr

ccr
ω + 1

Nτc(ω, ξ )
. (D13)

Then we may compute the following:

1

NC1
= 1

N limω→∞ τc(ω, ξ )
= lim

ω→∞
1

Nτc(ω, ξ )
def.= lim

ω→∞
−h(ω, ξ ) + 1

N + 2 bcr
ccr

1−N
N

cbr
ccr

ω + 1

l’hôpital= − ccr

cbr

∂h

∂ω

∣∣∣∣
ω→∞

= C2.

Since C1 > 0, we conclude C2 > 0. Hence, h(ω, ξ ) is a linear function in ω for all instances in Class A.
(Class B) (ASIS). The epidemic threshold scales linearly in ω.
The remaining 15 − 6 = 9 instances not belonging to Class A are part of this class. For each instance in this class, the

link-breaking rule is dominant in the sense that spreading between susceptible and infected nodes cannot take place (for ω → ∞
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and fixed τ, ξ ) because the link between susceptible and infected nodes is removed immediately. Hence, the epidemic threshold
τc must increase along ω to keep spreading the disease (in the limit of ω → ∞). This proves that the epidemic threshold scales
linearly in ω.

Step 2B. Case
cbr

ccr
� 0.

(Class C) (ABN). The remaining 30 − 15 = 15 instances of G-ASIS follow this constraint. Table I shows that the ratio cbr
ccr

is
strictly positive. Therefore the relation in Eq. (D12) holds for all ω � 0. So h(ω, ξ ) is strictly bounded by a constant, also in the
limit of ω → ∞. Then the epidemic threshold τc scales linearly in ω, which proves the lemma. �

All instances of G-ASIS have been classified except for instances having the link-creation rule fcr = 1 − XiXj . These instances
are covered by the next lemma.

Lemma D.2. Let τc be the epidemic threshold from Eq. (D9) and assume H < 0. Then h(ω, ξ ) is bounded by a linear function
in ω or by a constant.

Proof. The only instances of G-ASIS satisfying H < 0 are instances which have link-creation rule fcr = 1 − XiXj . Therefore
we substitute acr = 1, bcr = 0, ccr = −1 in Eq. (D2) to find

H = 1

N
− 1 + abrω + 1

N2
E

[
N∑

i=1

d∗
i

]
+ Var[Z∗] + (2bbr + cbr)ω − 1

N2
E

[
N∑

i=1

d∗
i X ∗

i

]
.

We have derived that y = V ± √
V 2 − H . Since H < 0, the prevalence y has two solutions: y1 > 0 and y2 < 0. Our focus lies on

the physical solution y1.
Step 1. The prevalence y1 is bounded by 1.
This provides the constraint

V +
√

V 2 − H � 1. (D14)

The sign of V is not determined. The equation above can be rewritten, so

V 2 − H � 1 − 2V + V 2.

Removing V 2 and inserting the definition for V from Eq. (D1), we find

−H � 1 − 2

(
1

2N
+ cbrω − 1

2Nτ

)
,

where the values of acr, bcr and ccr have been substituted already. The last equation can be rewritten as
1 − cbrω

1 − Nh(ω, ξ )
= τc � τ ∗ = 1 − cbrω

1 − N − NH
. (D15)

The denominator is positive, so this constraint is confining for cbr < 0 and for (cbr > 0 and ω < 1
cbr

). In either case, we conclude
that

0 � 1 + H � h(ω, ξ ) <
1

N
. (D16)

implying that h(ω, ξ ) is always positive.
Step 2. Bounding h(ω, ξ ) for all other ω-values. This step is analogous to step 2 from Lemma D.1.
Step 2A. Case cbr > 0. Since τc is positive for ω < 1

cbr
, by taking limω↑ 1

cbr
, the limit must be finite and nonzero. This implies

lim
ω↑ 1

cbr

h(ω, ξ ) = 1

N
.

For the relation in Eq. (D15) to be meaningful (τc should be nonnegative) for ω > 1
cbr

, it is required that

h(ω, ξ ) >
1

N
, for ω >

1

cbr
.

It remains to analyze the behavior of h(ω, ξ ) when the effective link-breaking rate ω approaches infinity. For increasing ω and
fixed τ , the link-breaking process occurs almost immediately. Nodes become isolated and cure without having any links. There
is, however, another possibility. The link-creation mechanism is here fcr = 1 − XiXj , which implies a link is created between a
susceptible and an infected node. In case the link-breaking process does not include the updating rule where the link is broken
between a susceptible and an infected node, the spreading continues despite ω → ∞. There are two possibilities.

(Class D). The epidemic threshold remains constant.
The link-creation process is fcr = 1 − XiXj and as link-breaking rule, we require either fbr = XiXj, fbr = (1 − Xi )(1 − Xj ) or

fbr = 1 − (Xi − Xj )2. These updating rules have in common that, whilst increasing ω, the epidemic threshold barely increases.
In other words, the following limit holds:

lim
ω→∞ τc(ω, ξ ) = C1 > 0.
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Then h(ω, ξ ) scales linearly with ω in a way analogous to Lemma D.1, Step 2A, Class A.
(Class E). The epidemic threshold is constant.
No updating rules belong to this class, as the only eligible do not comply with cbr > 0.
Step 2B. Case cbr < 0.
(Class F). In this case the relationship Eq. (D16) holds for all ω. So h(ω, ξ ) is bounded by a constant for all ω. This implies

τc scales linearly in ω, which proves the lemma. �
Combining the result of Lemma D.1 and D.2 proves Theorem III.3. �

APPENDIX E: ALL INSTANCES OF G-ASIS

All instances of G-ASIS and their properties are shown in Table III.

TABLE III. All instances from the G-ASIS model and their properties. The existence of the metastable state is merely a conjecture. The
table assumes δ = 1.

Model name and Metastable state Lower bound Upper bound
Updating rules appearance in always exists on epidemic on epidemic

link-breaking link-creation
in literature (conjecture) threshold τc threshold τc

XiXj XiXj Yes
1

ρ
Linear

XiXj 1 − XiXj No
1

ρ

(
1

1 + ξ

)
Constant

XiXj (1 − Xi )(1 − Xj ) ABN model Yes
1

ρ
Linear

XiXj 1 − (1 − Xi )(1 − Xj ) No
1

ρ
Constant

XiXj (Xi − Xj )2 No
1

ρ

(
1

1 + ξ

)
Constant

XiXj 1 − (Xi − Xj )2 Yes
1

ρ
Linear

1 − XiXj XiXj Yes
1

ρ
Linear

1 − XiXj 1 − XiXj Yes
1

ρ

(
1

1 + ξ

)
Linear

1 − XiXj (1 − Xi )(1 − Xj ) Yes
1

ρ
Linear

1 − XiXj 1 − (1 − Xi )(1 − Xj ) Yes
1

ρ
Linear

1 − XiXj (Xi − Xj )2 AFND model [31] Yes
1

ρ

(
1

1 + ξ

)
Linear

1 − XiXj 1 − (Xi − Xj )2 Yes
1

ρ
Linear

(1 − Xi )(1 − Xj ) XiXj SCM model Yes
1

ρ
Linear

(1 − Xi )(1 − Xj ) 1 − XiXj No
1

ρ

(
1

1 + ξ

)
Constant

(1 − Xi )(1 − Xj ) (1 − Xi )(1 − Xj ) Yes
1

ρ
Linear

(1 − Xi )(1 − Xj ) 1 − (1 − Xi )(1 − Xj ) No
1

ρ
Constant

(1 − Xi )(1 − Xj ) (Xi − Xj )2 AID model [21] No
1

ρ

(
1

1 + ξ

)
Constant

(1 − Xi )(1 − Xj ) 1 − (Xi − Xj )2 Yes
1

ρ
Linear
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TABLE III. (Continued.)

Model name and Metastable state Lower bound Upper bound
Updating rules appearance in always exists on epidemic on epidemic

link-breaking link-creation
in literature (conjecture) threshold τc threshold τc

1 − (1 − Xi )(1 − Xj ) XiXj Yes
1

ρ

(
1 + ω

1 + 1/ξ

)
Linear

1 − (1 − Xi )(1 − Xj ) 1 − XiXj Yes
1

ρ

(
1 + ω − 1

1 + 1/ξ

)
Linear

1 − (1 − Xi )(1 − Xj ) (1 − Xi )(1 − Xj ) ACSIS model [31] Yes
1

ρ
(1 + ωξ ) Linear

1 − (1 − Xi )(1 − Xj ) 1 − (1 − Xi )(1 − Xj ) Yes
1

ρ

(
1 + ω

1 + 1/ξ

)
Linear

1 − (1 − Xi )(1 − Xj ) (Xi − Xj )2 Yes
1

ρ

(
1 + ω − 1

1 + 1/ξ

)
Linear

1 − (1 − Xi )(1 − Xj ) 1 − (Xi − Xj )2 Yes
1

ρ

(
1 + ω

1 + 1/ξ

)
Linear

(Xi − Xj )2 XiXj Yes
1

ρ
Linear

(Xi − Xj )2 1 − XiXj Yes
1

ρ

(
1

1 + ξ

)
Linear

(Xi − Xj )2 (1 − Xi )(1 − Xj ) ASIS model [4,20,21] Yes
1

ρ
Linear

(Xi − Xj )2 1 − (1 − Xi )(1 − Xj ) Yes
1

ρ
Linear

(Xi − Xj )2 (Xi − Xj )2 Yes
1

ρ

(
1

1 + ξ

)
Linear

(Xi − Xj )2 1 − (Xi − Xj )2 Yes
1

ρ
Linear

1 − (Xi − Xj )2 XiXj Yes
1

ρ
Linear

1 − (Xi − Xj )2 1 − XiXj No
1

ρ

(
1

1 + ξ

)
Constant

1 − (Xi − Xj )2 (1 − Xi )(1 − Xj ) Yes
1

ρ
Linear

1 − (Xi − Xj )2 1 − (1 − Xi )(1 − Xj ) No
1

ρ
Constant

1 − (Xi − Xj )2 (Xi − Xj )2 No
1

ρ

(
1

1 + ξ

)
Constant

1 − (Xi − Xj )2 1 − (Xi − Xj )2 Yes
1

ρ
Linear
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