
Delft Center for Systems and Control

Cooperative Sequential Composition
Control for Compliant Manipulation
An Approach via “Robot Contact Language”

Anuj Shah

M
as

te
ro

fS
cie

nc
e

Th
es

is

Cooperative Sequential Composition
Control for Compliant Manipulation

An Approach via “Robot Contact Language”

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Anuj Shah

August 20, 2015

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright c© Delft Center for Systems and Control (DCSC)
All rights reserved.

Abstract

A convoluted manipulation task involves extensive planning and the use of a supervisory
controller to execute the desired task. One controller specification is generally unsuitable to
perform the complete manipulation task. Manipulation involves contact of the object being
manipulated with robots, surfaces and other objects in the scenario. The dynamics of a
manipulation change when contact amongst these components are made or broken. Using
this paradigm of contact amongst robots, objects and surfaces, the Robot Contact Language
(RCL) is developed.

Using a combinatory logic, the set of all possible contact combinations of the given components
can be generated. Using a few simple rules such as making and breaking contacts, a “contact
map” is then devised. On a symbolic level, a potential manipulation task can already be
planned with the help of this map by traversing from the initial contact combination or
“contact mode” to the goal contact mode. The contact map is enriched with the available
geometric information (robot workspaces, surface geometry, etc.) and spatial relationships
can then be defined amongst these contact modes for manipulations and mode transitions.

Given the initial and final position of an object to be manipulated, planning begins with a
simple graph search on the contact map for the shortest path form the initial to the final
contact mode. The modes present in this path automatically divide the task into various
subtasks. Manipulation planning can then be done “locally” in each of these contact modes
with the aim to proceed further towards the final goal. Each of these sub-tasks can be achieved
with a dedicated controller specification. A supervisory controller is needed to bring all these
set of controllers together and execute them in a hybrid manner. For this purpose, the idea of
sequential composition has been used. By defining the domains of attraction of each controller
and the goal-sets already lying in the overlapping state-spaces, the controllers are executed
sequentially to achieve the overall manipulation task.

As contact involves interaction forces, a study is also done to understand the working of a
spatial spring based impedance controller to achieve compliance in the robotic arm. Simula-
tion have been conducted on Matlab and VREP software to validate the usage and reliability
of manipulation planning based on contact maps as well as the performance and versatility
of the compliant robotic arm.

Master of Science Thesis Anuj Shah

ii

Anuj Shah Master of Science Thesis

Table of Contents

Preface ix

Acknowledgements xi

1 Introduction 1
1-1 Robotic Manipulation . 1

1-1-1 Modelling and Control . 2
1-1-2 Compliance Control . 2
1-1-3 Cooperative Manipulation . 3

1-2 Supervisory Control . 4
1-3 Robot Contact Language . 5
1-4 Summary . 5

2 Theoretical Background 7
2-1 Introduction . 7
2-2 Robotic Manipulation . 7
2-3 Modelling of Robotic Manipulators . 9
2-4 Control of Robotic Manipulators . 10
2-5 Compliance Control . 11
2-6 Cooperative Manipulation . 15
2-7 Sequential Composition . 18
2-8 Summary . 19

3 Robot Contact Language 21
3-1 Introduction . 21
3-2 Nomenclature of Robot Contact Language . 22
3-3 Contact Maps . 25

Master of Science Thesis Anuj Shah

iv Table of Contents

3-4 Manipulation Tasks via Contact Maps . 28
3-5 Contact Maps for Multiple Object Manipulation 31

3-5-1 Obtaining Object Manipulation Sequence 32
3-5-2 Parallel Manipulation . 33
3-5-3 Global Contact Map . 35

3-6 Summary . 39

4 Path-planning and Control 41
4-1 Introduction . 41
4-2 Workspace Path-planning . 42
4-3 Trajectory Planning . 44
4-4 Controller Assignment . 45

4-4-1 Manipulation Controllers . 46
4-4-2 Transition Controllers . 47
4-4-3 Control Synthesis . 48

4-5 Control Execution . 49
4-6 Summary . 52

5 Simulation Results 53
5-1 Introduction . 53
5-2 Virtual Robotics Experimentation Platform . 53
5-3 Compliant Manipulation Task . 54
5-4 Single Object Manipulation Task . 60

5-4-1 Generation of Contact Map . 62
5-4-2 Object Path-planning . 63
5-4-3 Controller Assignment . 66
5-4-4 VREP Simulation Results . 66

5-5 Multiple Object Manipulation Task . 73
5-6 Summary . 74

6 Conclusions and Future Work 75
6-1 Conclusions . 75
6-2 Future Work . 77
6-3 Epilogue . 78

A Glossary 83
List of Acronyms . 83
List of Symbols . 83

Anuj Shah Master of Science Thesis

List of Figures

1-1 Baxter robot folding a t-shirt. 2

2-1 A schematic of peg-in-the-hole task. 11
2-2 A schematic of robotic manipulator control via spatial spring. 12
2-3 A schematic of dual-arm cooperative robotic manipulation of an object. 15
2-4 A block diagram of cooperative robotic manipulation (adapted from [1]). 17
2-5 Cooperative manipulation schematic depicting virtual position “inside” the object. 18
2-6 DoA, goal-sets and hybrid automaton of overlapping controllers. 18
2-7 Inverted pendulum with its DoAs, goal-sets and hybrid automaton. 20

3-1 Object manipulation - picking and placing object from one surface to another. . . 22
3-2 All combinations of contact modes for the manipulation task in Figure 3-1. . . . 24
3-3 Relevant and irrelevant (red) contact modes for the task in Figure 3-1. 25
3-4 Contact map for the task given in Figure 3-1, without spatial relationships. . . . 27
3-5 An illustration of a robot and its workspace. 28
3-6 Contact map for the task in Figure 3-1 with spatial relationships. 29
3-7 Shortest path on the contact map for the task in Figure 3-1. 30
3-8 A schematic describing a manipulation task of stacking three objects. 31
3-9 Multiple object manipulation tasks that could be carried out in parallel. 34
3-10 Shortest path on the respective contact maps for parallel manipulation. 34
3-11 A global contact map for five scene components - O1 O2, R1, R2 and S1. . . . 36
3-12 A schematic describing a manipulation task of stacking object O1 on O2. 36
3-13 Shortest paths on the global contact map. 38
3-14 A task of simultaneous manipulation of two dynamically dependent objects. . . . 38

4-1 Object path-planning using modified Dijkstra’s algorithm. 42

Master of Science Thesis Anuj Shah

vi List of Figures

4-2 Object path-planning using modified Dijkstra’s algorithm for sub-tasks. 44
4-3 Classification of various types of controllers. 46
4-4 Workflow of controller assignment for manipulation tasks and robot transitions. . 49
4-5 A diagram representing sequentially composed controllers. 50
4-6 Control automaton of the manipulation task of Equation 4-8. 51

5-1 Two planar robots and a cubic object in VREP. 54
5-2 Peg-in-the-hole task being executed in VREP. 55
5-3 End-effector forces of stiff robotic arm for peg-in-the-hole task. 56
5-4 End-effector forces of compliant robotic arm for peg-in-the-hole task. 57
5-5 End-effector trajectory tracking of stiff robotic arm for peg-in-the-hole task. . . . 58
5-6 End-effector position errors of stiff robotic arm for peg-in-the-hole task. 59
5-7 End-effector trajectory tracking of compliant robotic arm for peg-in-the-hole task. 59
5-8 End-effector position errors of compliant robotic arm for peg-in-the-hole task. . . 60
5-9 Time-lapse photos of the simulated manipulation task in VREP. 61
5-10 All combinations of contact modes for the task in Figure 5-9. 62
5-11 Contact map for the task in Figure 5-9. 63
5-12 Shortest path on contact map for the task in Figure 5-9. 63
5-13 Object path for contact mode C(O1 : R1,S1) of the task in Figure 5-9. 64
5-14 Object path for contact mode C(O1 : R1,R2) of the task in Figure 5-9. 64
5-15 Object path for the complete manipulation task in Figure 5-9. 65
5-16 Position tracking of R1 for the simulated manipulation task. 67
5-17 Position tracking of R2 for the simulated manipulation task. 67
5-18 Position errors of R1 for the simulated manipulation task. 68
5-19 Position errors of R2 for the simulated manipulation task. 69
5-20 Position and orientation of O1 for the simulated manipulation task. 69
5-21 Actual and desired positions of O1 for the simulated manipulation task. 70
5-22 Velocities of R1 for the simulated manipulation task. 71
5-23 Velocities of R2 for the simulated manipulation task. 71
5-24 End-effector forces of R1 for the simulated manipulation task. 72
5-25 End-effector forces of R2 for the simulated manipulation task. 72

6-1 Aspects involving potential future work in the field of Robot Contact Language. 78

Anuj Shah Master of Science Thesis

List of Tables

3-1 The workspace of each contact mode of the task in Figure 3-1. 28
3-2 Local and global contact modes of the manipulation task in Figure 3-14. 39

5-1 Sequence of object manipulation for varying initial and goal positions of objects. 73

Master of Science Thesis Anuj Shah

viii List of Tables

Anuj Shah Master of Science Thesis

Preface

This book documents my thesis work as an M.Sc. student at Delft University of Technology
in the department of Delft Centre for Systems and Control. With my profound interest in
the field of robotics, I chose to work in the area of robotic manipulation, collaborating with
M.Sc. Esmaeil Najafi, one of my supervisors, in his work on sequential composition, which is
a form of hybrid switching control necessary in any robotic system.

Along the course of work, me along with my supervisors Dr. Gabriel Lopes and Esmaeil came
up with the idea of developing a contact language which would help define a complex robotic
manipulation task at a higher level, easily understood by humans and simple enough for a
robot task planner to decipher the task to be carried out. Most of my later work involved
developing this contact language - the nomenclature, design, usage etc.

Using this newly developed language, various simulations were performed which carried out
task planning, control design and their execution in a hybrid fashion using the ideas of se-
quential composition as well as force controlled and compliant robotic manipulators. The
modelling, planning and control design were carried out in MATLAB. The execution was
done in a software called Visual Robotics Experimentation Platform (VREP) using a couple
of self-designed planar robotic arms.

The book consists of six chapters, each addressing a separate topic. Chapter 1 gives an
introduction to all the subsequent chapters. The main matter starts from Chapter 2 which
deals with the modelling and control of compliant robotic arms. The focus is mainly on
compliance control and cooperative manipulation. It also introduces the idea of sequential
composition along with a detailed theory and its applications. This is followed by Chapter 3
which introduces the concept of Robot Contact Language (RCL) along with its use in robotic
systems.

Chapter 4 brings the worlds of robotic manipulation, sequential compositions and Robot
Contact Language together and describes a complete control synthesis for a complex robotic
manipulation task followed by Chapter 5 which documents various simulation results of the
complete controller synthesis and task execution. The final chapter concludes and summarizes
the work carried out in the thesis and suggests a few ideas concerning future work.

I would like to thank my parents for all the help and support they have provided me through-
out my life and without whom I would have not had this incredible opportunity to move away
from home and explore this wonderful and amazing world.

Master of Science Thesis Anuj Shah

x Preface

Anuj Shah Master of Science Thesis

Acknowledgements

I would like to express my sincere gratitude to my supervisor, dr. G.A.D. Lopes for the
opportunity, guidance and help throughout my M.Sc. thesis. I would also like to thank
E. Najafi for giving me an opportunity to collaborate with his Ph.D. work and guiding me
throughout the thesis.

I am also thankful to all the committee members for taking their valuable time out for my
thesis assessment.

Delft, University of Technology Anuj Shah
August 20, 2015

Master of Science Thesis Anuj Shah

xii Acknowledgements

Anuj Shah Master of Science Thesis

“They took our jobs!!”
— South Park

Chapter 1

Introduction

The use of robotic manipulators has come a long way, from the very early, remote controlled
robots to automated manipulators in the industrial environment for tasks like welding, paint-
ing, assembly, etc. to the current humanoid robots which operate in non-isolated and cluttered
environments to perform complex tasks like folding laundry, serving beverages and such sim-
ilar tasks, which require higher level decision making, along with sophisticated hardware and
software integration and intelligent control algorithms.

A complex and convoluted manipulation task involves decision-making at various stages of
planning and execution of the manipulation. A single controller generally does not suffice
to carry out a complex manipulation task. Take for example, the task where a humanoid
robot (with two robotics arms) is required to pick and place some glassware from a shelf on
to a dining table. This task requires planning and control at several stages. Clearly, the task
involves contact of the robotic arm with various objects being manipulated. The planning
itself is not straightforward. The robot has to first grasp the object safely, manipulate it
while avoiding obstacles and then place it on the correct surface. It needs to perform several
manipulations in a correct sequence to achieve the final goal. If the object being manipulated
is larger, perhaps a wide serving tray, the robot will have to use both its arms to manipulate
one single object, that is, perform a bimanual task. If it has to pick and place several different
objects which are co-dependent on each other, the robot also has to decide the sequence of
object manipulation in order to successfully accomplish the entire task.

On having described a few of the important aspects of the aforementioned manipulation task,
there are several research areas and problems that need to be analysed. A few of them
have been identified and studied in this research work which are explained in the following
subsections followed by a detailed analysis in the subsequent chapters.

1-1 Robotic Manipulation

Robotic manipulation can be defined as the control of a robot in a skilful manner to accomplish
a desired task. There are several aspects to robotic manipulation, as explained in the following.

Master of Science Thesis Anuj Shah

2 Introduction

Figure 1-1: Baxter robot folding a t-shirt. Image taken from Rethink Robotics Youtube chan-
nel [2].

1-1-1 Modelling and Control

In order to control a robot or more specifically, a robotic arm, we require a model of the
system for accurate and precise control. There are generally two types of models available for
a robotic system - the kinematic model and the dynamic model [3, 4]. As the names suggest,
the kinematic model only describes the kinematics (motion) of the robotic arm. On the other
hand, a dynamical model describes the dynamics of the arm which involves masses and forces
along with motion variables. Both these models could be used for controlling the arm.

The control of a robotic arm involves positioning of the robot joints or end-effector in a
certain configuration or maintaining certain force at the end-effector or both. Position control
is considered to be a trivial task as compared to controlling the forces at the end-effector.
The end-effector force control is a special class of control problem, commonly referred to as
compliance control [5, 6].

1-1-2 Compliance Control

The tasks performed by robotic manipulators are broadly divided into two categories, viz.
contact and non-contact tasks [7]. While a non-contact task only involves controlling the
robotic arm in a certain position and orientation, for contact tasks a robotic arm needs to
have a control on the forces exerted by itself on the environment. In formal terms, the robotic
arms need to be force controlled. Non-contact tasks are unconstrained in nature, for example,
spray-painting, glueing, etc. In contrast, a contact based tasks involves interaction of the robot
with the environment and sometimes requires simultaneous control of its position and exerted
forces. Examples of such tasks are grinding, bending, assembling, and many more.

Compliance can be considered as the ability of the robotic arm to react to the interaction forces
(between the robot and the environment). Compliance control techniques can be broadly

Anuj Shah Master of Science Thesis

1-1 Robotic Manipulation 3

divided into two categories [8]:

• Passive compliance: compliance is achieved due to hardware or structural modifica-
tion.

• Active compliance: compliance is achieved via software using force feedback or other
possible control methods.

Active compliance has a huge advantage over passive as it can be easily modified by changing
a piece of software compared to structural modifications needed to change the properties
of passive compliance. In modern robotic platforms, passive compliance is used along with
active compliance to achieve good compliance properties. In this research work, the author’s
focus is mainly on active compliance. This can be achieved through two main categories of
control techniques:

• Hybrid position/force control: both, the desired force and the position are con-
trolled in orthogonal spaces depending on the task [5, 6].

• Impedance control: the robotic arm behaves as a (virtual) spring and the force is
proportional the desired and actual position of the arm [9, 10].

Both the above stated categories of active compliance control techniques were explored. The
technique used in the simulations is based on an impedance control technique and hence, for
brevity, only this particular control technique will be covered in detail.

1-1-3 Cooperative Manipulation

Cooperative (robotic arm) manipulation mainly refers to manipulation of an object with two
or more robotic arms. This domain seems like a trivial and straightforward application of
single arm manipulation extended to multiple arms. However, it poses several challenges as
the multiple arms integrate into one big system and several (kinematic and force) constraints
have to be satisfied simultaneously for a successful manipulation [22, 8, 1].

The focus of the author’s work is mainly on dual-arm systems due to ease of understanding
and its intuitive nature, due to similarities with the human anatomy. The ideas and techniques
can easily be extrapolated to systems with more than two arms.

There are several reasons for studying dual-arm systems some of which are as follows [7]:

• Transferring skills: similarity to the operator in tele-manipulation operations make
them ideal for using them to perform bimanual tasks and transfer the operators’ skills
required by the task.

• Flexibility and stiffness: by using two arms in closed kinematic chain the strength of a
parallel manipulator and the flexibility of a serial chain can be achieved simultaneously.

• Manipulability: by using multiple arms, two parts of a task can be controlled and tasks
which cannot be performed by a single arm can be performed effectively.

Master of Science Thesis Anuj Shah

4 Introduction

• Interaction with the environment: most of the current robots are restricted to industrial
setups, and are unsafe for use in an unstructured environment and in the presence of
living beings. Research is vital in humanoid robotics as a replacement for performing
human-like bi-manual tasks in such unstructured environments.

Many such motivating reasons have led to the development of a large number of dual arm
platforms, like DLR’s Rollin Justin [11], NASA’s Robonaut [12], Rethink Robotics’ Baxter [13]
and many more, but there are still various common challenges that need to be addressed.
Cooperative manipulation requires the need of simultaneous position and force control for
proper object grasping and manipulation and as a result, the robots need some form of
compliance to control its forces. To generate the paths for various robots involved in a
manipulation, there is also a need to generate the path of the object being manipulated first,
along with geometrical information of the object for proper grasping [1].

The research presented here is mainly concerned with bimanual tasks, where there is a physical
interaction of both the arms with the same object. Applications of cooperative manipulation
range from domestic to industrial domain [7]. One of the most studied and researched biman-
ual domestic application is of folding laundry. Attendant care and kitchen support for the
elderly is another application which is being currently researched. In the industrial domain,
cooperative bimanual tasks mainly involve pick and place and assembly of larger objects.

1-2 Supervisory Control

Picking and placing glassware from a shelf onto a table is a complex task. As mentioned earlier,
it involves several different manipulations like approaching the object, grasping the object and
leaving contact with the object. In such a situation, it is evident that one control specification
will not be able to accomplish all these tasks as they all require different conditions to be
satisfied.

This leads to an idea of breaking up a complex task into several sub-tasks and assign specific
controllers that (only) carry out these sub-tasks. If one mixes or composes these controllers
in an intelligent way and executes them in the right sequence, the given complex task can be
achieved with ease. This is the basic idea of sequential composition control (SCC) [14, 15],
which acts as a supervisory controller to this pool of controllers.

SCC is a control system framework that applies a set of local controllers sequentially to reach
a goal that can not be achieved by a single controller. It is not possible in every controlled
system to reach a desired state using just one controller, nor is it necessary that the goal-set is
in the domain of attraction (DoA) of that controller. In such a case, a number of controllers
can be applied sequentially, with overlapping DoAs, reaching the DoA of the controller that
can bring the system to the desired final state, and executing the final controller to actually
reach the desired final states. Sequential compositions have been successfully used with many
systems where there are obstacles between the desired and initial position or one controller
simply cannot perform the desired task. By carefully composing various local controllers, the
desired goal can be achieved [14, 16].

Anuj Shah Master of Science Thesis

1-3 Robot Contact Language 5

1-3 Robot Contact Language

It can be observed that robotic manipulation involves contact of the object being manipulated
with robots, various surfaces and even other objects. When a robot is commanded to place
the glassware from the shelf onto the table, it could be - “Pick up the glass from the shelf and
put it on the dining table.” There are several keywords in this statement that would translate
to the object being in contact with the shelf initially and needs to be in contact with the
dining table (at some specific location). The manipulation task of grasping the glass from the
shelf and placing it onto the table would involve the contact of a robot arm with the glass.

This lead us to the idea of developing a higher level “robot language” which represents the
configuration of the object (being manipulated), at any instance of time, in terms of contact
with one or more components, be it robots, static surfaces or other objects. This is the basic
idea behind Robot Contact Language (RCL). It has been seen that for a given complex task,
a need arises to break down the task into several different sub-tasks and execute them using
different controllers. Representing the manipulation task in RCL already does that to a great
extent.

In a given complex manipulation task, the robot has to pass through various contact phases or
contact modes to reach its final contact mode and consequently, its goal position. Using spatial
relationships amongst the workspaces of robots, surfaces and objects, a contact map can be
generated which involves the combinations of all contact modes in a given manipulations
along with the transition to other contact states based on these spatial relationships.

Given the initial and final position of an object to be manipulated, the feasibility check of the
given task is just a matter of finding a path in the generated contact map from the initial to
the final contact mode. If feasible, the execution of the task is a straightforward assignment
of manipulation controllers for each of these contact states and a transition controller between
them (if needed). Using the idea of SCC, these controllers can be sequentially composed and
executed in a hybrid fashion to achieve the task.

Using RCL and contact maps, a manipulation task can thus be carried out using a few easy
step which include the generation of the robot contact modes and contact map, finding the
shortest path on this map for the given manipulation, path-planning and controller assignment
for each relevant contact mode and execution using sequential compositions.

1-4 Summary

This chapter served as an introduction to the research topics dealt by the author. Starting
with an example of a complex manipulation to provide an easier way of visualization for the
readers, it gave an introduction to robotic manipulation and its primary aspects. The need
of compliance in robotic arms was explained followed by a short introduction to cooperative
manipulation. This chapter also introduced the idea of sequential composition control and
its importance. It concluded with a brief introduction to a new concept of Robot Contact
Language and contact maps which are used to simplify the planning of complex manipulation
task.

Master of Science Thesis Anuj Shah

6 Introduction

Anuj Shah Master of Science Thesis

Chapter 2

Theoretical Background

2-1 Introduction

This chapter talks about the basic theoretical and mathematical background of robotic ma-
nipulation and sequential composition control (SCC). It gives a basic description of robotic
manipulator and the mathematical representation of the various terms related to it, followed
by a basic modelling and position control. As force or compliance control is studied in much
detail in this research, the compliance control method used in the simulations has been ex-
plained in more detail.

The second part of this chapter describes the basics of SCC. The theory is followed by a
simple example and motivation to study sequential compositions. The reader is advised to
look up the citations for a descriptive mathematical background.

2-2 Robotic Manipulation

A robotic manipulator can be considered to be set of rigid links connected via joints which
cause their movement. The joints of a robotic arm can be revolute or prismatic in nature.
Motors attached to each of these joints cause these joints, and consequently, the robot links
to move in space. These joints undoubtedly constrain the movement of the links to a certain
axis. These links can be attached in series, like a chain, or a set of rigid links can be attached
to a common joint from one end. The former type of robotic manipulator is know as an open
chain manipulator and the latter is called a parallel manipulator. In this research study, the
focus is only on open chain manipulators.

The joint angles/positions are commonly know as generalized coordinates or configuration
coordinates. Considering an n-link manipulator, the number joints would also be equal to n.
Let vector q = (q1, q2, ...qn)T represent the set of all joint positions, with q ∈ Q, where Q is
the joint space of the robot.

Master of Science Thesis Anuj Shah

8 Theoretical Background

The end-effector of the robot is basically the end-point of the robot’s nth link, where the
manipulation tool (grasper, welder, sprayer, etc.) is attached. As the primary interest is in
controlling the robot’s end-effector, a representation of its position, velocity and the force
vectors is needed.

It is customary to represent the positions of robot link (or any component in the scene1)
with respect to a common, base frame Ψ0. The base frame is generally chosen as the base
of the robot, but it can be chosen to be anywhere in the Cartesian space. After choosing
an inertial frame of reference, a coordinate frame can be attached to any component in the
scene. As we are interested in the position and orientation of the robot’s end-effector, a
frame Ψn is attached to the end of the nth link (i.e., at the end-effector) and is called the
end-effector frame. This frame is represented by a homogeneous matrix H ∈ R3 × SO(3).
This homogeneous matrix is of the form

H =
(
R p
0 1

)
, (2-1)

where R ∈ SO(3) is a 3× 3 rotation matrix giving the orientation of the frame and p ∈ R3 is
the translational position vector representing the position of the frame, about and along the
x, y and z axes, respectively.

The velocity vector of a frame with respect to an inertial frame is given by the twist vector
T . Twists are basically velocities of rigid bodies in SE(3). Geometrically, they are elements
of Lie algebra se(3) associated to the SE(3) Lie group. Twists are in the following form:

T =
(
w
v

)
, (2-2)

with T ∈ R6. Here w is the angular velocity of the frame with its skew-symmetric form w̃
belonging to so(3) := R3×3 and v ∈ R3 is the translational velocity, again, about and along
the x, y and z axes, respectively.

A force can similarly be represented by a co-vector and is commonly referred to as wrench.
Wrenches are duals of twists and can be considered to be linear operator from twists to Power.
Similar to twists, wrenches can be written as a 6D co-vector of the form:

W =
(
m f

)
, (2-3)

with W ∈ R6. Here, m is the 3D torque co-vector and f is the 3D force co-vector. More
details about twists and wrenches, their coordinate transformation and their other important
properties can be found in [3]. The author assumes that the reader is familiar with these details
from this point onwards. The next section covers the kinematic and dynamic modelling of an
open chain robotic manipulator system.

1A manipulation “scene” refers to the environment where manipulation is taking place. A scene includes
all the robots, objects and surfaces present in the and around the environment relevant in the task.

Anuj Shah Master of Science Thesis

2-3 Modelling of Robotic Manipulators 9

2-3 Modelling of Robotic Manipulators

For precise control of a robotic arm, a model of the system is generally needed. The main
parameters that need to be controlled are the position, orientation, twists and wrenches of
the end-effector. In robotic systems, one can work with two types of models - kinematic
model and dynamic model. A kinematic model only relates the motion parameters of the
joint positions with the end-effector. A dynamic model relates the inertia terms and other
forces acting on the robot as well.

The position of the end-effector with respect the all the joint positions, also know as the direct
kinematics or forward kinematics, is given by the famous Brokett’s Exponential Formula,
which is,

H0
n(q) = e

˜̂
T 0,0

1 q1e
˜̂
T 0,1

2 q2 . . . e
˜̂
T 0,n−1

n qnH0
n(0). (2-4)

In this equation, the end-effector has the nth frame attached to it and the position and
orientation is given in the form of a Homogeneous matrix H0

n(q) as a function of the joint
positions q. ˜̂

T 0,n−1
n represents the skew-symmetric form of the unit twist vector of the nth

frame, with respect to the (n − 1)th frame in the base or zero frame. H0
n(0) represents the

initial position of the end-effector when all joint positions are zero, i.e., q = 0. Equation (2-4)
is a non-linear map from joint positions to end-effector position and orientation.

The joint velocities, on the other hand, transform via a linear map to give the end-effector
twist. This transformation matrix is commonly know the Jacobian matrix and is dependent
on the joint positions. The relationship is given as:

T 0,0
n = J(q)q̇. (2-5)

T 0,0
n is the end-effector twist with respect to the base frame in base frame. q̇ is the joint

velocity vector which transforms via the Jacobian matrix J(q). (2-4) and (2-5) together give
the kinematic model of a given robotic system. The detailed derivation and analysis can be
found in [3, 4].

The dynamic model of a robotic manipulator, as the name suggests, describes the dynamics
of the robotic system. A general form of a manipulator dynamical equation (without friction
and other losses) is given as:

M(q)q̈ +C(q, q̇)q̇ +G(q) = τT + JT (q)W T
ext. (2-6)

This is a non-linear set of differential equations which describes the dynamics of a robot.
M(q) is the manipulator inertia matrix, C(q, q̇) is called the Coriolis matrix and G(q) is
the gravity compensation matrix. τ is the joint torque co-vector and Wext is the external
force acting at the robot end-effector, which transforms to the joints via the transpose of
Jacobian matrix. With some basic transformations, this equation can equivalently be written
in Cartesian space in terms of end-effector positions, twists and wrenches [11].

The dynamical equation is generally used for precise robot control where the non-linear mo-
tions of the robot are not wanted. The next section briefly describes basic robot control.

Master of Science Thesis Anuj Shah

10 Theoretical Background

2-4 Control of Robotic Manipulators

A robotic manipulator can be controlled directly in joint space or in Cartesian space. The
control problem is either regulation or tracking of a desired set-point or trajectory respectively.
This comes under the category of position control. In joint space, the desired positions and
velocities are that of the various joint positions. In Cartesian space control, the end-effector
is required to regulate or track the desired end-effector frame. Cartesian space control is
equivalently know as workspace control as it takes place in the working space of the robot.
When the robot is in contact with an external environment (in most cases, via its end-effector),
its motion is constrained in certain directions. It is desired that the robot end-effector applies
a certain amount of force to the external environment or the forces should not exceed a certain
threshold; the interaction forces need to be controlled. This requires manipulator force control
and the robot to be less stiff or more compliant during interaction.
The next part covers the basic position control methods in joint space and in workspace.
These techniques are found vastly in the literature and thus will be dealt with in brief. The
section following that will discuss compliance control along with a detailed description of
one the impedance control [9] based compliance control methods used by the author in the
research work.
Position control techniques for robotic manipulators range from basic PID based control to
model-based computed torque control. Control is directly in joint space or in the robot
workspace. Most of the workspace control techniques require the use of inverse kinematics
(IK). The following enumerates the important categories of position control techniques, which
can equivalently be applied in joint space and also in workspace via IK methods [4, 8].

• P(I)D control: Refers to the most commonly used control technique in the field of
control engineering. Proportional and derivative gains are chosen to track or regulate
the desired position and velocity in a critically damped manner. Gravity compensation
is added for more accurate control. The robot behaviour is non-linear in both joint
space and the workspace. The control law (in joint space) can be given as:

τT = Kd(q̇d − q̇) +Kp(qd − q) +G(q) (2-7)
where, τ is the input joint torque co-vector,Kd andKp are derivative and proportional
gains respectively and G(q) is the gravity compensation matrix. An integral control
term can be added to further reduce steady-state errors.

• Computed torque control: This is a model based control which cancels out all
the system non-linearities and renders the robot linear (in joint space or workspace,
depending on the method). The control method, most certainly, requires an accurate
robot model as given in (2-6) and also increases the computations. This is because the
model is dependent on joint positions and velocities and hence, the computations have
to be carried out in each step. The control input is given by:

τT = M(q)(q̈d +Kd(q̇d − q̇) +Kp(qd − q)) +C(q, q̇)q̇ +G(q). (2-8)

It can be seen that the model matrices cancel out the system non-linearities and the
robotic arm is linear (in joint space).

Anuj Shah Master of Science Thesis

2-5 Compliance Control 11

2-5 Compliance Control

In a manipulation task where there is interaction of the robot with the an external environ-
ment, perhaps an object or other robots, interaction forces are present. These forces acting
on the external environment need to be controlled to avoid damage to the robot or the envi-
ronment or perhaps, to carry out the task with some desired interaction forces. In such cases,
pure position control will inevitably fail. The motion of the robot’s end-effector in such cases
is either constrained in certain directions, thus imposing the so called kinematic constraints
or the contact task might be characterized by dynamical interaction between the robot and
the environment, for example, a robot pushing a box. Whatever be the case, some form of
force or compliance control is necessary to carry out such tasks.

The motivation behind developing compliance control can be explained by a simple example
of robot inserting a peg-in-the-hole as shown in Figure 2-1 [5, 8]. As long as the planning is
perfect, the peg insertion can be achieved via pure position control. A small position error in
the xy-plane though, will lead to very high interaction forces and cause damage to the robot
and the objects. If on the other hand, the robot has some compliance, the peg insertion would
take place easily without high interaction forces.

𝑥
𝑦

𝑧

Figure 2-1: A schematic of peg-in-the-hole task.

Compliance, by definition, is the property of a material to undergo elastic deformation when
subjected to external force. The term compliance control is broadly and generically used
in the literature to describe a control strategy which involves explicit or implicit control of
interaction forces acting on the robot or its end-effector [8].

The compliance control strategy studied and used in the author’s research is based on the
famous impedance control [9, 10] as described in the following.

Impedance control is one of the most often used compliance control techniques. The name
comes from the electrical engineering term “impedance” which is to impede or resist the flow
of electric current. Analogically, it can be used for the interaction of rigid bodies in motion.
This control strategy makes the end-effector of a robotic manipulator behave like a mass-
spring-damper like system. By varying the stiffness of this “spring” (and other parameters),
the desired compliance (or stiffness) of the end-effector can be achieved depending on the task
it is performing.

To understand the concept of impedance control, we can consider a one degree-of-freedom
spring. Let the rest length of the spring be xd with respect to an inertial frame and let x be
its current position with respect to the same inertial frame. The force acting on the spring
Fspg is proportional to the different between its the current and rest length, that is,

Master of Science Thesis Anuj Shah

12 Theoretical Background

Fspg = Kspg(x− xd) (2-9)

with the stiffness constant beingKspg. This same idea can be extended to a six-dimensional [8]
case for a robotic manipulator and the impedance behaviour of the end-effector can seen in
the form:

Λd ¨̃x+Dd ˙̃x+Kdx̃ = W T
ee (2-10)

where Λd, Dd and Kd are the desired end-effector inertia, damping and stiffness matrices,
Wee is the generated end-effector wrench and x̃ is an infinitesimal twist of the end-effector
given as x̃ ∼ δT = [(δθ)T (δp)T]. Once the end-effector wrench has been calculated, it can be
translated via transpose Jacobian to generate joint torques for control.

This complete form of impedance control requires the computation of inverse Jacobian and
robot model [11, 8]. Thus, many practical implementations of impedance control avoid inertia
shaping in order to avoid IK. One of the implementations of impedance control uses only the
kinematics of the robot to make the robot behave like a spatial or virtual spring. Thus, no
dynamical model is required. This implementation has been described in some detail. Further
reading can be found in [17, 18].

𝜓0

𝜓𝑛

𝑥
𝑦

𝑧
𝜓𝑣

𝐾spg

Figure 2-2: A schematic of robotic manipulator control via spatial spring. Here, Ψn, Ψv and Ψ0
are the end-effector, virtual and base frames respectively and Kspg is the spatial spring constant.

A spatial spring or a virtual spring is a method of defining and generating a behaviour in a
robotic system, similar to an actual mechanical spring. For a robotic manipulator, this spring
is defined between the actual end-effector position and a desired or virtual position. This
virtual position is also called a virtual object. A frame is attached to both, the actual and
virtual positions of the end-effector. The virtual frame Ψv will vary depending on the task.
This spring with varying stiffness parameters between the two frames gives compliance to the
robot.

If there are no external forces acting on the robot, both the frames are aligned. If a force
is acting on the robot, the force at the end-effector is proportional the distance between the
two frame (in SE(3)). An energy function can be defined between these two frames, similar
to the energy in a one dimensional mechanical spring, given as,

Anuj Shah Master of Science Thesis

2-5 Compliance Control 13

Espg = 1
2Kspg(x− xd)2 (2-11)

but, in SE(3). It is trivial to see that the minimum energy of the system will be at the
equilibrium point, where both, the actual and virtual end-effector frames coincide. To stabilize
the end-effector frame at the virtual frame, a virtual damping term is added to dissipate free
energy (similar to that from equation (2-10)).

On setting the two frames, the stiffness matrices for the task are chosen. These correspond
to translational stiffness, Kt, rotational stiffness Kr and coupling stiffness Kc. The coupling
stiffness relates how much a displacement in the translational axes will affect the rotational
axes and vice-versa. The desired stiffness matrix is given as:

Kd =
[
Kr Kc

(Kc)T Kt

]
. (2-12)

With some mathematical manipulation, these matrices are converted in to the corresponding
co-stiffness matrices Gt, Gr and Gc which make the computations easier.

The actual end-effector frame can be defined in terms of a homogeneous matrix as H0
n and

the virtual position frame as H0
v . As seen, both the frames are defined with respect to a

common base frame. The relative position between these two frames can thus given as:

Hv
n = Hv

0H
0
n = (H0

v)−1H0
n. (2-13)

Using the co-stiffness matrices and the relative positions from Equation (2-13), potential
energy functions can be defined for the separate translational, rotational and coupling parts,
similar to Equation (2-11). the end-effector wrench,W n,n = [(mn,n)T (fn,n)T] corresponding
to these potential energies can thus be computed using the following equations:

mn,n = −2 as(GrR
v
n)− as(GtR

n
v p̃

v
np̃

v
nR

v
n)− 2 as(Gcp̃

v
nR

v
n) (2-14)

fn,n = −Rn
v as(Gtp̃

v
n)Rv

n − as(GtR
n
v p̃

v
nR

v
n)− 2 as(GcR

v
n). (2-15)

Here, as() represents the anti-symmetric2 matrix function and p̃v
n represents the skew-symmetric

form of the relative position vector pv
n. W n,n is expressed with respect to the end-effector

frame, but all other values are represented in the base frame or the robot’s inertial frame.
Coordinate conversion of W n,n is thus done as:

W 0,n = (Ad(Hn
0)T (W n,n)T)T (2-16)

2For an arbitrary matrix Q, as(Q) = tr(Q)I −Q, where tr() is the trace of the matrix.

Master of Science Thesis Anuj Shah

14 Theoretical Background

where Ad()T represents the Adjoint3 transpose matrix function and Hn
0 is the homogeneous

matrix of the base frame with respect to the end-effector frame. A damping component is
added to dissipate energy from the spring and the final end-effector wrench is given as:

W 0,n
f = W 0,n − (DcT

0,0
n)T (2-18)

where, Dc is the Cartesian damping matrix and T 0,0
n is the end-effector twist. The last step

is to convert this wrench into joint torques, which is done via the transpose Jacobian. Along
with this, A gravity compensation term is also added to counter the effects of gravity. The
final joint torque co-vector is given as:

τ = JT (q)(W 0,n
f)T + (G(q))T . (2-19)

Now that the spatial spring controller has been defined, the question is, how is compliance
achieved and how can it be varied. The answer to this question is as simple as understanding
a simple mechanical spring. A stiff spring naturally gives less compliance and vice-versa.
Using the spatial spring controller, we have advantage of varying this stiffness by changing
the values of stiffness matrices Kt, Kr and Kc to achieve the appropriate compliance as per
the task being performed. These values can also be manipulated in run time. When the
motion of the end-effector is constrained by some external object, the force acting on it is
proportional to the relative distance between the virtual and actual end-effector position and
the value can be varied by manipulating the values of stiffness matrices and/or changing the
virtual position. This way, one can achieve simultaneous position and force control. It is
important to note that lesser the stiffness, lesser is the position tracking accuracy of the end-
effector (but more the compliance). Thus, there is always a trade-off between force control
and position accuracy.

The pros and cons of this compliance controller is listed as follows:

• Advantages:

– simultaneous position and force control
– dynamical model not required, only requires robot kinematics
– workspace control without inverse kinematics
– behaviour of the end-effector close to spring-like
– robot not unstable when desired position at singularities or outside robot workspace
– not computationally intensive
– does not require force (sensor) readings for force control

• Disadvantages:
3The Adjoint of a Homogeneous matrix is used for coordinates transformations of twists and wrenches.

Twists transform via the Adjoint of the homogeneous matrix whereas wrenches transform via transpose Adjoint.
The Adjoint of1 a homogeneous matrix Hj

i is given by:

Ad
H

j
i

=
[
Rj

i 0
p̃j

iR
j
i Rj

i

]
(2-17)

.

Anuj Shah Master of Science Thesis

2-6 Cooperative Manipulation 15

– no inertial shaping
– choosing stiffness and damping parameter not trivial and task dependent
– indirect force control

The advantages of using this form of compliance control overpower the disadvantages. It is
ideal for use in humanoid robot applications where the position and force accuracies are not
very strict. It would most definitely not work very well in control applications which require
the highest precision like chip fabrication. In the author’s research, the focus was not on high
precision applications and thus, this form of controller was used for further research. The
simulation results for this type of controller can be found in the penultimate chapter.

2-6 Cooperative Manipulation

Cooperative manipulation refers to manipulating objects using two or more robotic arms and
have been a subject of much study in recent years. Started out mainly for manipulating large
objects in the industrial environments, cooperative manipulation has made much advance-
ment in the field of humanoid robotics for manipulating objects in a domestic environment
(apart from industrial). There are various reasons and situations where cooperative manipu-
lation is more useful or necessary. Some tasks may require multiple arms due to larger size
and/or weight of the object being manipulated. Grasping or geometric constraints may favour
cooperative manipulation more than single arm manipulation is some cases. For example, a
serving tray carried using two arms is more stable than carried by a single arm.

𝑂𝑂1 𝑂2

Arm-1 Arm-2

Object

Force vectors

Torque vectors

Figure 2-3: A schematic of dual-arm cooperative robotic manipulation of an object.

It is important to point out that cooperative manipulation does require some form of force
control to maintain the grasping force to keep the object being manipulated from losing the
contact force and slipping. It is also required by the robotic arms to keep the grasping forces
from being too high to avoid damage to the object or the robots. Such forces do not cause
object motion but lead to internal stress and are generally referred to as internal forces [7, 1] in
cooperative manipulation literature. Grasping points should be chosen with careful attention
to the object geometry. If the centre of mass does not lie on the axis of the line joint the

Master of Science Thesis Anuj Shah

16 Theoretical Background

two (or more) grasping points, there may be unwanted moments that might cause unwanted
motions of the objects. These are called external forces. These internal and external forces
can (and have to) be implicitly or explicitly controlled via various cooperative manipulation
techniques, which are generally based of various compliance control techniques extended to
cooperative manipulation [7, 1, 8].

The forces or wrenches exerted by cooperatively manipulating robots onto the object trans-
form into internal and external forces, as stated previously, via the grasp matrix, which is
defined by the geometry of the object. The external force (or wrench) co-vector W o

ext for a
dual-arm cooperative manipulation is given as:

W o
ext = A

[
(W 1

ext)T

(W 2
ext)T

]T

. (2-20)

Here, W 1
ext and W 2

ext are the end-effector wrench of the two arms respectively and A is the
grasp matrix. The internal force co-vector W o

int lies in the null space of the grasp matrix.
The overall equation is given as:

[
(W 1

ext)T

(W 2
ext)T

]
= A†(W o

ext)T +B(W o
int)T (2-21)

where, A† is the pseudo-inverse of the grasp matrix and B spans the null space of A [19, 1].
The internal and external forces acting on any object being cooperatively manipulated could
be analysed using Equations (2-20) and (2-21).

The control methods for cooperative manipulation are modified extensions of the compliance
control techniques, namely the hybrid position and force control or impedance control. Most
of these control strategies are of the centralized form. They are listed as follows:

• Hybrid position/force based cooperative control:

– Symmetric hybrid position/force control Scheme [20, 19]
– Hybrid external controller [19]

• Impedance based cooperative control:

– Cartesian impedance control via spatial springs [21]
– External and internal force control via impedance law [1]

The cooperative control method used in this research work is based on ideas from both of the
listed impedance based cooperative control strategies. More details on these control methods
can be found in the respective citations. A general block diagram [1] describing cooperative
manipulation is shown in Figure 2-4, where To and Tk are the trajectories of the object and
the kth arms respectively. There are two mains points to note from this diagram.

Firstly, cooperative manipulation requires the trajectory of the object being manipulated.
This makes sense as arms cannot move independently in such a case. The trajectories of the

Anuj Shah Master of Science Thesis

2-6 Cooperative Manipulation 17

Object
Trajectory

Closed
Chain

Constraints

Compliant
Robotic

Arms

Compliance
Controllers

𝑞, 𝑞

𝜏𝑇o 𝑇𝑘

Figure 2-4: A block diagram of cooperative robotic manipulation (adapted from [1]).

arms are dependent on the way the object is required to move. The trajectory of the object
should be generated keeping into consideration the kinematic and dynamic limitations of the
robotic arms being used.

The second point to note is the closed chain constraints that come from the same fact that
the robotic arms are not independent. The relative distance between the arms should always
be constant and the velocity zero, to maintain the grasp. These constraints are a consequence
of the grasp geometry. Thus, the desired trajectories of the robotic arms are generated from
the object trajectory via the closed chain constraints. These constraints are as follows:

pk = po +Rop
o
k (2-22)

Rk = Ro (2-23)
ṗk = ṗo + ω̃oRop

o
k (2-24)

ωk = ωo (2-25)

where, pk is the position vector and Rk is the rotation matrix (orientation) of the kth robot,
po is the position vector and Rk is the rotation matrix of the object, ωk and ωo are the
angular velocities and ω̃ is the skew-symmetric (cross-product matrix) form of the object
angular velocity and po

k is the vector joining the kth robot’s grasp point and the centre of
mass of the robot, also know as the virtual stick [22] of the grasp.

Along with these kinematic constraints, some force constraints also need to be met to have
the required gripping forces. Pure position control will lead to very high interaction forces
and this is where compliance control comes into play [1, 8]. The cooperative manipulation
controller used in this research work is based on the previously described spatial springs, but
extended to multiple arms, with each arm having a separate controller.

A spatial spring based compliance controller has the end-effector force proportional to the
distance between the actual and desired position. This idea can be used to achieve the
gripping force needed in a cooperative manipulation grasp by simultaneously satisfying the
kinematic constraints required in the manipulation. If length of the virtual stick is reduced
by some factor, the desired end-effector position will probably lie somewhere “inside” the
object being manipulated, thus constraining its movement, but generating a proportional
grasping force. This is shown in Figure 2-5. By varying this desired position and/or the
spatial spring stiffness, the correct grasping forces can be achieved without damaging the
object [17]. Cooperative manipulation for a dual-arm robot system has been simulated and
the results have been described in a later chapter.

Master of Science Thesis Anuj Shah

18 Theoretical Background

𝑥
𝑦

𝑧

𝜓o 𝜓d2𝜓d1𝑝1
o 𝑝2

o

Arm-1 Arm-2

Figure 2-5: A schematic of cooperative robotic manipulation explaining the concept of virtual
sticks and the desired end-effector position “inside” the object.

2-7 Sequential Composition

Robots today are becoming more complex by the passing days and can accomplish complex
tasks such as folding laundry, cooking, opening a jar and many more. Such complex tasks,
which require several different manipulations, which are perfectly timed, can not be achieved
using a single controller. These robots consist of a hybrid system framework where various
different controllers are used to achieve the goal set of a complex task. One such framework
used is sequential composition control (SCC) [14, 23, 15].

(a) (b)

Figure 2-6: (a) Domain of Attraction (DoA) and goal-set of two overlapping controllers with
their individual trajectories from an initial condition x0. (b) A hybrid automaton of the two
controllers. Images taken from [23].

This framework uses a set of predefined controllers, each of which is active in a particular
subset of the state space, known as its domain of attraction. The goal-set of each controller
lies in the DoA of a “lower” controller, that is, a controllers closer to the final goal-set of
the task. Starting from an initial condition that lies in the DoA of one of these overlapping
controllers and sequentially switching to a “lower” controller, the required goal state can be
achieved successfully which otherwise, is not possible using one single controller. Consider a
dynamical system,

Anuj Shah Master of Science Thesis

2-8 Summary 19

ẋ = f(x,u), (2-26)

where x ∈ X ⊆ Rn is the state vector and u ∈ U ⊆ Rm is the input vector of the system.
Defining the control law Φi : X → U with input u = Φi(x), each control law is active only in
a subset of the system state space which is the DoA, D(Φi) ⊆ X [15, 23]. Every controller
also has a goal set, G(Φi) ∈ X such that:

∀ x0 ∈ D(Φi)⇒ lim
t→∞

x(t) ∈ G(Φi), (2-27)

where x0 is the initial state vector of the system. This can be visualized as given in Figure 2-
6a. This cluster of controllers and their compositions are represented as a finite state machine
which is called the supervisory automaton [15] and is shown in Figure 2-6b. The controller
switching or transition is done based on the relationships among the control policies. SCC is
a supervisory controller and its job is to find a sequence of controllers, as defined above, that
take the system from any given initial state in the workspace to the final goal-set (obviously
assuming that the initial state and the final goal set is in the DoA of one of these controllers).

The idea of SCC can be illustrated using the example of an inverted pendulum [23], as
depicted in Figure 2-7a. Consider three different controllers for this pendulum for stabilizing
at the upward position (Φup), downward position (Φdown) and one for swing-up action (Φswing)
respectively. Each controller has its own DoA and a goal set. This has been shown in Figure
2-7b. Now consider a task of bringing the pendulum from a downward position (θp = π) to
the upward position (θp = 0).

In order to stabilize the controller at the upward position, the up controller Φup needs to be
activated. But, it can be seen that θp = π does not lie in the DoA of Φup. Hence, to reach
the goal set, the swing controllers Φswing needs to be activated to bring the pendulum states
in the DoA of Φup as the goal set of Φswing lies in the DoA of Φup. This action is followed
by swinging the controller to Φup which bring the pendulum to θp = 0, which is its goal set.
The induced hybrid automaton based on sequential composition is depicted in 2-7c.

The above example of an inverted pendulum only gives a simple insight to sequentially com-
posing various controllers. As the system becomes more complex, the number of controllers
also increase. This creates a possibly to achieve tasks which could have been assumed to be
impossible to achieve. Unfortunately, this also increases the complexity of deriving the au-
tomaton. The process of automatically generating sequential compositions, given a complex
task to a system, is a research area which is yet to be studied and exploited.

2-8 Summary

This chapter describes the theoretical and mathematical background of robotic manipulation.
Robot kinematic and dynamic modelling and position control were described in brief. Com-
pliance control was introduced and a spatial spring based impedance controller was described
in detail. The pros and cons of such a controller were discussed and it was seen that pros
outweigh the cons. Cooperative manipulation was explained in some detail along with the
geometry and constraints involved in such manipulation. Kinematic and force constraints

Master of Science Thesis Anuj Shah

20 Theoretical Background

𝜃p 𝑚p

𝑙p

(a)

𝜃p

 𝜃p

(b)

(c)

Figure 2-7: (a) Schematic of an inverted pendulum system. (b) DoA and goal-set of the
controllers of the inverted pendulum system. (c) A hybrid automaton of the three controllers.
Images taken from [23].

that need to be imposed in a cooperative manipulation task were discussed. The concept
of sequential composition control was introduced along with a theoretical description. The
concepts were explained via a simple example of an inverted pendulum. It was seen that
different controllers which are active in separate regions or domains of attractions, could be
composed in a way to reach a goal state unachievable by a single controller when the initial
state and the goal state lie in the domain of attraction of separate controllers.

Anuj Shah Master of Science Thesis

Chapter 3

Robot Contact Language

3-1 Introduction

When a robot is commanded to perform a task, it has to carry out various different manipula-
tions and sub-tasks to complete the given task as it is not possible for a robot to achieve every
single manipulation using one controller (specification). Tasks generally require manipulating
an object, which involves the object being manipulated to have contact with various other
components1 in the manipulation scene like robots, surfaces and other objects. Objects have
to be manipulated while maintaining these contacts. Each of these contact modes can be
represented in the form a language which a robot understands at a symbolic level and subse-
quently, at a geometric level. A given task can thus, be represented in the form of a symbolic
contact language, which will also simplify the task being performed into a simpler control
specification, have a structured way of representing a manipulation task and simultaneously
bridge the gap between user commands in verbal language to a high level robot language
representing a task specification. This is the broad idea behind developing the Robot Contact
Language (RCL).

The notion behind RCL be explained with the example of a simple manipulation task of
picking and placing an object from one surface to another, as shown in Figure 3-1. This task
involves the object initially being in contact with the ground which then makes contact with
the two robots for manipulation, lifted up in the air to lose contact with the ground surface,
contact being made with the other surface while being picked and placed and finally, losing
contact with the two robots after the manipulation is complete. These contact modes can
formally be described as a combination of these given scene components using RCL, as will
be seen in the following section. Using a few simple rules, relationships to traverse from one
contact mode to another can be derived with the help of a contact map.

On having generated this contact map, a complex task can be simplified and is just a matter
of traversing through this contact map to find the correct manipulation sequence and the
contact states it has to go through to achieve the task. Geometrical information related

1A component may refer to any object, robot or surface in a given manipulation scene.

Master of Science Thesis Anuj Shah

22 Robot Contact Language

𝑥 𝑦
𝑧

𝜓0
1

𝜓𝑛
1

𝜓0
2

𝜓𝑛
2

𝑆2
𝑆1

𝑂1𝑅1 𝑅2

Figure 3-1: Object manipulation - picking and placing object O1 from a surface S1 to another
surface S2 using two robots R1 and R2.

to components in the scene is added, which updates the spatial relationships amongst the
contact modes and further simplifying the map and consequently the search on the map. On
having achieved the relevant modes, it is just a matter of carrying out sub-manipulations in
these contact modes, bringing the object closer to the final goal and finally, achieving it.

The nomenclature of RCL is described in the first section. The idea of contact maps is
then proposed, which is based on some basic rules and the geometrical information available.
The following section describes how an object manipulation planning is done using these
contact maps. Thereafter, the use of contact maps is described in case of multiple object
manipulations.

3-2 Nomenclature of Robot Contact Language

If a person has to command the robots to carry out the manipulation task of picking and
placing the object, as shown in Figure 3-1, it would be as following:

“ Pick up the green object from the ground and place it on the table. ”

From the key-words in this command, one can extract a lot of information regarding the
manipulation task. Firstly, the object being manipulated is the green box. The manipulation
involves two surfaces, the ground and the table. Initially, the object is in contact with the
ground so the robots start to look for it there. The final location of the object is on the table.
The information regarding the robotic arms in the scene is certainly available. We thus have
all the components present in the given manipulation task.

The components in RCL are classified in 3 broad categories:

• Objects

• Robots

• Surfaces

Anuj Shah Master of Science Thesis

3-2 Nomenclature of Robot Contact Language 23

Objects

These are all movable entities or components present in the scene. Further, there are two
types of objects - the one that need to be manipulated and the ones that don’t. Every object
has a geometry associated with it which is needed to describe its various aspects like how big
the object is, where are the stable grasp points, what are the stable placement orientations
of the object and where on the object, other objects can be placed (i.e., make contact).

The objects to be manipulated may or may not have a specific position and orientation
associated. In the latter case, algorithms can be devised to place the object in a position
which satisfies the user command specification. All objects have to be in a stable contact
position when not being manipulated (unless specifically commanded).

• An object is represented as Ox in RCL,

where x is the object index varying from 1 to the number of objects in the scene. In this
research, the author assumes all objects are similar and have a cubic geometry.

Robots

These are all the robots in the scene that can manipulate objects. These could be any type of
robots. The author’s research is restricted to robotic manipulators and thus “robots” would
indicate robotic manipulators from here onwards. Every robot is associated with a workspace,
more accurately, a dexterous workspace in which it can position as well orient its end-effector
at any arbitrary point (in SE(3)).

A robot can also be associated with a pool of different controllers or specific controller with
varying parameters (as in the case of this research), which can be set as per the task require-
ment. It can also be associated with the type of end-effector it is attached to it. Generally, in
robotic manipulations, there is a gripper or grasper of some sort, but there are end-effectors
for various other purposes. For the purpose of research, the author assumes a flat surface
with friction. Hence, one robotic arm can not lift an object. It can only push it around when
it is resting on some surface. Hence, cooperative manipulation is required for lifting objects.

• A robot is represented as Rx in RCL.

Surfaces

These represent the surfaces which are static in nature and on which objects can rest in a
stable position. These can be floors, tables, etc. Being static, they can not be manipulated or
moved by robots. There is no hard boundary between classifying surfaces and objects. A table
could also be considered to be an object, rather than a surface. This depends on the capability
of the robots and the way they have been to “taught” to identify it as. Similar to objects and
robots, surfaces too have geometrical information attached it. The most important being the
contact area where other objects can rest in a stable position. Moreover, the volume occupied
by a surface can be seen as an obstacle for manipulation planning.

Master of Science Thesis Anuj Shah

24 Robot Contact Language

𝐂(𝑶𝟏: 𝑺𝟏) 𝐂(𝑶𝟏: 𝑺𝟐)

𝐂(𝑶𝟏: 𝑹𝟏, 𝑺𝟏) 𝐂(𝑶𝟏: 𝑹𝟐, 𝑺𝟏)

𝐂(𝑶𝟏: 𝑹𝟏, 𝑹𝟐)

𝐂(𝑶𝟏: 𝑹𝟏, 𝑺𝟐) 𝐂(𝑶𝟏: 𝑹𝟐, 𝑺𝟐)

𝐂(𝑶𝟏: 𝑹𝟏, 𝑹𝟐, 𝑺𝟏) 𝐂(𝑶𝟏: 𝑹𝟏, 𝑹𝟐, 𝑺𝟐)

𝐂(𝑶𝟏: 𝑺𝟏, 𝑺𝟐)

𝐂(𝑶𝟏: 𝑹𝟏) 𝐂(𝑶𝟏: 𝑹𝟐)

𝐂(𝑶𝟏: 𝑹𝟏, 𝑺𝟏, 𝑺𝟐) 𝐂(𝑶𝟏: 𝑹𝟐, 𝑺𝟏, 𝑺𝟐)𝐂(𝑶𝟏: 𝑹𝟏, 𝑹𝟐, 𝑺𝟏, 𝑺𝟐)

Figure 3-2: 2(nt−1) − 1 combinations of contact modes for the manipulation task in Figure 3-1,
where nt = 5.

• A surface is represented as Sx in RCL.

The idea of RCL is to represent a contact mode of objects being manipulated. Let Om be
the object being manipulated by robots in the scene. A contact mode can be written as:

C(Om : R1,R2 . . .Rns,O1,O2 . . .Ono−1,S1,S2 . . .Sns) (3-1)

where C(Om : . . .) represents the contact of Om with the components it is followed by. The
terms nr, no and ns are the number of robots, objects and surfaces in a given scene. The
set of objects O1,O2 . . .Ono−1 obviously does not include Om. It is not necessary that the
object is in contact with all scene components. The nomenclature of RCL can understood by
the manipulation example of Figure 3-1.

As shown in that figure, the two robots are indexed as R1 and R2, the single green object as
O1 and the two surfaces as S1 and S2. For the given manipulation of putting O1 from S1
to S2, the initial and final contact modes can be given as:

C(O1 : S1) (3-2)
C(O1 : S2). (3-3)

These two contact modes are static in nature. This means, no manipulation can occur when
the object to be manipulated is in this contact mode as there are no robots in contact that
can carry that out. These contact modes are generally the initial and final position of an the
object. An intermediate manipulation contact mode could be:

C(O1 : R1,R2) (3-4)

Anuj Shah Master of Science Thesis

3-3 Contact Maps 25

𝐂(𝑶𝟏: 𝑺𝟏) 𝐂(𝑶𝟏: 𝑺𝟐)

𝐂(𝑶𝟏: 𝑹𝟏, 𝑺𝟏) 𝐂(𝑶𝟏: 𝑹𝟐, 𝑺𝟏)

𝐂(𝑶𝟏: 𝑹𝟏, 𝑹𝟐)

𝐂(𝑶𝟏: 𝑹𝟏, 𝑺𝟐) 𝐂(𝑶𝟏: 𝑹𝟐, 𝑺𝟐)

𝐂(𝑶𝟏: 𝑹𝟏, 𝑹𝟐, 𝑺𝟏) 𝐂(𝑶𝟏: 𝑹𝟏, 𝑹𝟐, 𝑺𝟐)

𝐂(𝑶𝟏: 𝑺𝟏, 𝑺𝟐)

𝐂(𝑶𝟏: 𝑹𝟏) 𝐂(𝑶𝟏: 𝑹𝟐)

𝐂(𝑶𝟏: 𝑹𝟏, 𝑺𝟏, 𝑺𝟐) 𝐂(𝑶𝟏: 𝑹𝟐, 𝑺𝟏, 𝑺𝟐)𝐂(𝑶𝟏: 𝑹𝟏, 𝑹𝟐, 𝑺𝟏, 𝑺𝟐)

Figure 3-3: 2(nt−1) − 1 combinations of contact modes for the manipulation task in Figure
3-1, where nt = 5. The ones represented red will be discarded due to various assumptions and
limitations.

which represents the two robots cooperatively manipulating the object in their common
workspace. The total number of contact modes is based on combinatory logic. In simple
terms, it is just the combination of scene components, excluding the object being manipu-
lated. It can be given as:

nc =
∑

0≤k≤nt−1

[
(nt− 1)!

(k!)(nt− 1− k)!

]
− 1 = 2(nt−1) − 1 (3-5)

where, nc is the number of combinations and nt is the total number of components in the
scene. The negative one in the power is because the object being manipulated needs to be
excluded from the formula. The other negative one not in the exponent is so as to not include
an empty set of combinations. This formula does seem to suggest that the combinations
increase exponentially with the number of objects in the scene. However, many contact
modes can be excluded by applying a few assumptions and conditions, which have been cover
in the next section. The contact modes for the given example are shown in Figure 3-2 for
nt = 5, with O1 being manipulated. The relationships amongst the various these contact
modes in the scene can be defined by generating a contact map which is also described in the
next section.

3-3 Contact Maps

After having generated the various combinations of contact modes, it is yet not possible to
carry out a manipulation planning with their help. There have been no relationships defined
amongst these various contact modes. Using a few simple rules, transitions can defined
amongst these mode and a contact map can be generated. Based on a few assumptions, a
few of these combinations can be neglected or removed. Using further information of robot

Master of Science Thesis Anuj Shah

26 Robot Contact Language

workspaces, object and surface geometries and the initial and final manipulation positions,
many other transitions can be removed due to spatial constraints and other factors.

Taking again, the manipulation example in Figure 3-1, it can be noticed that the two surfaces,
S1 and S2 are not connected and it is, therefore, not possible to place O1 on both of these
surfaces simultaneously. This condition can be checked via a simple geometric verification.
Thus, a mode of the form C(O1 : . . .S1,S2) which has both the surfaces could be neglected.
The robotic manipulators used are assumed to have no gripper/grasper at the end-effector.
Thus, a single robot can not lift an object on its own and requires cooperative manipulation.
Hence, a mode of the form C(O1 : Rx), where x is the robot index, could also be neglected.
Similarly, using various other assumptions, more contact modes could be removed and the
total set can be reduced to a great extent. Using these aforementioned conditions, a number
of contact modes could be omitted for the manipulation task. These are highlighted in red in
Figure 3-3 and will be omitted before generating the contact map for that task.

On having the reduced set of contact modes, one can now start defining transitions amongst
these contact modes to generate a contact map. This can be done via some simple rules which
are as follows:

1. Only one component can make or break contact with the object being manipulated in
one transition.

2. Set a maximum limit to number of robots the object can be in contact with.

3. Set a maximum limit to the number of objects it can be in contact with.

Using these rules, a contact map can be generated, with transitions, as shown in Figure 3-4
for the same manipulation example. On inspecting this contact map, it can be seen that
there is already a structure in place which can help us analyse a robotic manipulation which
include these components.

For the previously stated task, the initial contact mode is C(O1 : S1) and the goal mode is
C(O1 : S2). As seen from the contact map, there are various possibilities or paths to get O1
from S1 to S2. There is no geometrical information yet attached to this map and thus, the
shortest path on this map cannot be determined just yet.

Geometrical information of all scene components are needed in order to practically carry out
the manipulation. Starting with robots, their dexterous workspaces are required to know the
volume of space they can manipulate objects in. Overlapping workspaces of two or more robots
will be the workspace where those robots can cooperatively manipulate and also enabling
longer connectivity and being able to manipulate objects to longer distances through several
robots. Volumes swept by the objects and surfaces serve as obstacles to manipulation path-
planning and their exteriors help determine their contact points and hence this information
is also very critical.

This information can be extracted using various robot vision techniques using 3D point clouds
followed by spatial reasoning to determine and extract various geometrical features of differ-
ent objects [24]. Probabilistic approaches for semantic mapping have also been studied and
applied in [25].

Anuj Shah Master of Science Thesis

3-3 Contact Maps 27

𝐂(𝑶𝟏: 𝑺𝟏) 𝐂(𝑶𝟏: 𝑺𝟐)

𝐂(𝑶𝟏: 𝑹𝟏, 𝑺𝟏) 𝐂(𝑶𝟏: 𝑹𝟐, 𝑺𝟏)

𝐂(𝑶𝟏: 𝑹𝟏, 𝑹𝟐)

𝐂(𝑶𝟏: 𝑹𝟏, 𝑺𝟐) 𝐂(𝑶𝟏: 𝑹𝟐, 𝑺𝟐)

𝐂(𝑶𝟏: 𝑹𝟏, 𝑹𝟐, 𝑺𝟏) 𝐂(𝑶𝟏: 𝑹𝟏, 𝑹𝟐, 𝑺𝟐)

Figure 3-4: Contact map for the manipulation task, as described in Figure 3-1, without spatial
relationships.

In the author’s research, geometrical information of all the scene components was represented
in terms of symbolic inequalities. Using equations of general 3D and 2D volumes and surfaces
respectively, these can be represented to a high (enough) degree of accuracy. For example,
the workspace of a robot is the volume swept by its end-effector. in the research work, planar
robots with all revolute joints were modelled for simulations. The (dexterous) workspace
could be written using an equation of a circle. If it needs to be represented using more
than one equation, logical AND, OR and NOT operators could be used to represent a
set. The equations can be in the form of equalities or inequalities. Similarly, surfaces and
objects could also be written using planar equations for their contact points and volumetric
equations to identify their volume occupied in space. Figure 3-5 illustrates a planar robot
with its workspace in its shaded blue region. The workspace of the robot is given by the
equation:

y2 + z2 < d0 AND x = 0 (3-6)

with the frame Ψ0 as the origin. Similarly, for the ground (surface), the contact surface
equation is given as z = 0 and the obstacle volume to be z < 0. Thus, the blue robot
workspace, after removing the obstacle workspace, is given as:

y2 + z2 < d0 AND x = 0 AND z > 0 (3-7)

This is obviously a very simple case. The equations could be much more complex with
many more logical relationships which could be simplified. This way, geometrical entities are
expressed as symbolic expressions and could be evaluated to determine if a point or a path
lies within these spaces or not.

The robot workspaces can be given as W1
R and W2

R for the two robots in the contact map
of Figure 3-4. Apart from these, we also need the workspaces of object and surface contact

Master of Science Thesis Anuj Shah

28 Robot Contact Language

𝜓0
1

𝜓𝑛
1

𝑥
𝑦

𝑧

𝑑0

𝑅1

𝑆1

𝓦R
1

Figure 3-5: An illustration of a robot and its workspace given by the shaded blue regionW1
R.

points. These are given as W1
S and W2

S. Let the total obstacle volume be given Wobs.
Using this information, we can assign specific workspaces to each of the contact modes. This
has been shown in Table 3-1. The information in the given table tells us the manipulability
workspace of that particular contact mode.

Table 3-1: The workspace of each contact mode of the task in Figure 3-1.

Contact mode Workspace Manipulable
C(O1 : S1) WS

1 ∩ ¬Wobs No
C(O1 : S2) WS

2 ∩ ¬Wobs No
C(O1 : R1,R2) WR

1 ∩WR
2 ∩ ¬Wobs Yes

C(O1 : R1,S1) WR
1 ∩WS

1 ∩ ¬Wobs Yes
C(O1 : R1,S2) WR

1 ∩WS
2 ∩ ¬Wobs Yes

C(O1 : R2,S1) WR
2 ∩WS

1 ∩ ¬Wobs Yes
C(O1 : R2,S2) WR

2 ∩WS
2 ∩ ¬Wobs Yes

C(O1 : R1,R2,S1) WR
1 ∩WR

2 ∩WS
1 ∩ ¬Wobs Yes

C(O1 : R1,R2,S2) WR
1 ∩WR

2 ∩WS
2 ∩ ¬Wobs Yes

From the overlapping workspaces of these contact modes, spatial relationships can be defined
amongst them which consequently state the workspace within which a transition can happen
from one contact mode to another. This has been illustrated in Figure 3-6. All manipulation
tasks involving these components could be planned using this final contact map. This has
been explained in the next section.

3-4 Manipulation Tasks via Contact Maps

Now that spatial relationships have been defined amongst the various contact modes using
geometrical information, we can use the contact map to plan out manipulation tasks. Given

Anuj Shah Master of Science Thesis

3-4 Manipulation Tasks via Contact Maps 29

𝐂(𝑶𝟏: 𝑺𝟏) 𝐂(𝑶𝟏: 𝑺𝟐)

𝐂(𝑶𝟏: 𝑹𝟏, 𝑺𝟏) 𝐂(𝑶𝟏: 𝑹𝟐, 𝑺𝟏)

𝐂(𝑶𝟏: 𝑹𝟏, 𝑹𝟐)

𝐂(𝑶𝟏: 𝑹𝟏, 𝑺𝟐) 𝐂(𝑶𝟏: 𝑹𝟐, 𝑺𝟐)

𝐂(𝑶𝟏: 𝑹𝟏, 𝑹𝟐, 𝑺𝟏) 𝐂(𝑶𝟏: 𝑹𝟏, 𝑹𝟐, 𝑺𝟐)

𝑆:𝑅2 ∩ 𝑆1𝑆:𝑅1 ∩ 𝑆1

𝑆: 𝑅1 ∩ 𝑅2 ∩ 𝑆1

𝑆: 𝑅1 ∩ 𝑅2 ∩ 𝑆1

𝑆: 𝑅1 ∩ 𝑅2 ∩ 𝑆1 𝑆: 𝑅1 ∩ 𝑅2 ∩ 𝑆2

𝑆: 𝑅2 ∩ 𝑆2𝑆:𝑅1 ∩ 𝑆2

𝑆: 𝑅1 ∩ 𝑅2 ∩ 𝑆2
𝑆: 𝑅1 ∩ 𝑅2 ∩ 𝑆2

Figure 3-6: Contact map for the manipulation task, as described in Figure 3-1, along with the
spatial relationships amongst contact modes.

the initial and final positions of the object to be manipulated, we could traverse through the
map to find the shortest path from the contact mode of the initial position to the contact
mode of the final or goal position of the object. The previously given example in Figure
3-1 describes a manipulation task of placing O1 from S1 to S2. The initial contact mode is
C(O1 : S1) and the final is C(O1 : S2).

There are many paths on the contact map from initial to final mode but all are not necessarily
valid. A contact mode without any robot is a static or non-manipulable mode, as stated
previously. This means that even though all points in its workspace are considered in its
workspace, no manipulation can happen when the object is in a static mode. There can be no
intra-mode manipulation. It is also possible that both, the initial and final object positions
lie in the same contact mode. But if that mode is static, there is a need to switch to a
manipulable mode to carry out the manipulation and reach the goal point. This happens, for
example when the initial and final contact positions are on the same surface. In such a case,
the initial and final contact modes are separated by adding a new node in the contact map.

Once this is done, the shortest path from the initial to goal contact mode can be found using
one of the most commonly used graph search algorithms for shortest path. The one used in
the author’s research is the Dijkstra’s shortest path algorithm [26]. Many other algorithms
like A∗, breadth first, depth first, etc. could be applicable too [27]. The shortest path on the
contact map tells us what modes the objects needs to go through to achieve the manipulation.
Thereafter, manipulation could be planned for each contact mode in this shortest path, having
a goal point that lies in the next contact mode and brings the object closer to the global or
final goal. The number of manipulations is less than or equal to the number of manipulable
modes the object has to pass through in the shortest path. The Dijkstra’s shortest path
algorithm is as follows.

The contact modes on the contact map are the nodes of the graph. The transitions to other
contact modes are considered to be the edges of the map or the graph. The edges could be
weighted, but in this application, all weights are equal. The node from which the search starts

Master of Science Thesis Anuj Shah

30 Robot Contact Language

is called the initial node which is the initial contact mode and the goal node is the contact
mode of the goal position of the object.

There are three variables attached to each node: the distance from initial node, the previous
node it came from, and whether it has been visited or not. We could name these variables as
distance, from, and visited. The algorithm goes as follows:

1. Initialize the distance of all nodes to infinity except the initial node, which is assigned
a zero. Set all weights to unity.

2. Mark all nodes as unvisited (i.e., visited = 0) and set initial node as current node.

3. Calculate the tentative distance to all the neighbours of the current node. (tentative
distance= edge weight + current node distance). If the previous distance at the
neighbour node is greater than the tentative distance, replace it with the tentative
one.

4. When all neighbours of the current node have been checked, mark the current node as
visited (i.e., visited = 1). This node will never be checked again.

5. End if goal node has been visited (visited = 1) or the smallest tentative distance
amongst the unvisited set of nodes is infinity (i.e., visited = 0, in which case, there is
no connection from initial to goal node).

6. Else, select the unvisited node with the smallest distance and mark it as the current
node. Go to step 3.

𝐂(𝑶𝟏: 𝑺𝟏) 𝐂(𝑶𝟏: 𝑺𝟐)

𝐂(𝑶𝟏: 𝑹𝟏, 𝑺𝟏) 𝐂(𝑶𝟏: 𝑹𝟐, 𝑺𝟏)

𝐂(𝑶𝟏: 𝑹𝟏, 𝑹𝟐)

𝐂(𝑶𝟏: 𝑹𝟏, 𝑺𝟐) 𝐂(𝑶𝟏: 𝑹𝟐, 𝑺𝟐)

𝐂(𝑶𝟏: 𝑹𝟏, 𝑹𝟐, 𝑺𝟏) 𝐂(𝑶𝟏: 𝑹𝟏, 𝑹𝟐, 𝑺𝟐)

Initial node Goal node

𝑆:𝑅2 ∩ 𝑆1𝑆:𝑅1 ∩ 𝑆1

𝑆: 𝑅1 ∩ 𝑅2 ∩ 𝑆1

𝑆: 𝑅1 ∩ 𝑅2 ∩ 𝑆1

𝑆: 𝑅1 ∩ 𝑅2 ∩ 𝑆1 𝑆: 𝑅1 ∩ 𝑅2 ∩ 𝑆2

𝑆: 𝑅2 ∩ 𝑆2𝑆:𝑅1 ∩ 𝑆2

𝑆: 𝑅1 ∩ 𝑅2 ∩ 𝑆2
𝑆: 𝑅1 ∩ 𝑅2 ∩ 𝑆2

Figure 3-7: Shortest path on the contact map for the manipulation task, as described in Figure
3-1, from the initial to the final contact mode.

The Contact map is passed to an algorithm closely based on Dijkstra’s algorithm and it
returns the shortest path on the contact map for the given manipulation task. The shortest

Anuj Shah Master of Science Thesis

3-5 Contact Maps for Multiple Object Manipulation 31

path is for the manipulation task in Figure 3-1 is illustrated in Figure 3-7. It is not necessarily
exclusive. A different path with the same distance is possible. Once the shortest path is
available, path-planning is done in each contact mode in that path, followed by controller
assignments and sequential execution. This has been described in the next chapter.

3-5 Contact Maps for Multiple Object Manipulation

In the previous section the author cover’s the manipulation task of a single object. It was
assumed that other objects in the scene, if any, were not supposed to be manipulated. Often
that is not the case, especially if it is a humanoid robot working in a domestic environment
where it has to place objects on top of each other, organise, de-clutter or make space for
objects. It is possible that another object needs to be manipulated first to carry out the
original object manipulation or sometimes when there are multiple objects, their sequence
of manipulation has to be right. This is because objects have contact dependencies with
other objects in the scene. There is a need to resolve these object dependencies by correcting
estimating the sequence of multiple object manipulation.

𝑥 𝑦
𝑧

𝑆1

𝑂1

𝜓0
2

𝜓𝑛
2

𝑅2

𝜓0
1

𝜓𝑛
1

𝑅1 𝑂2 𝑂3

𝑂1

𝑂2

𝑂3

Figure 3-8: A schematic describing a manipulation task of stacking three objects, O1, O2 and
O3.

Take for example the multiple object manipulation in Figure 3-8. The three objects need to
be in a certain order in their goal position. Hence, the sequence of their manipulation matters.
Intuitively, the manipulation sequence would be O2, followed by O3 and then O1. There is
no straightforward way for the manipulation planner to decipher this. Hence, an algorithm to
correctly find out this sequence is needed. This has been developed in this research work and
is know as Resolve Contact Constraints (RCC) algorithm. This algorithm uses the author’s
previously developed concept of contact maps and recursive constraint solving based on the
Resolve Spatial Constraints (RSC) algorithm developed in [28].

The RSC algorithm of [28] samples future path and recursively uses these samples to construct
paths for objects that are blocking. In a manipulation task where an object is blocked by

Master of Science Thesis Anuj Shah

32 Robot Contact Language

other objects, these objects have to first be displaced to other locations to free the path for
the original object manipulation. The last manipulation is considered to be of the given task.
Via path-planning of that manipulation, objects blocking its path could be found. These
objects are again analysed in a similar way via path-planning and check the object they are
blocked by, and removing them. This way, a recursive algorithm finally gives the paths and
the sequence of objects to be manipulated in order to achieve the original manipulation.
The idea of RSC is used to develop the RCC algorithm to find out the correct sequence
of object manipulation in a multiple object scenario. This has been explained in the next
section.

3-5-1 Obtaining Object Manipulation Sequence

As seen from the manipulation example given in Figure 3-8, there are dependencies amongst
objects being manipulated. Here, O1 is dependent on O3 as it rests on it or is in contact with
it. Similarly, O3 is dependent on O2. O2 is independent of any other object as it rests solely
on S1. If we start our manipulation sequence from O1, we see that in order to manipulate it,
O3 should already be at its final position. Moreover, in order to manipulate O3, O2 should be
in its final position. As O2 is independent, the manipulation sequence could be O2 followed
by O3 and then O1.
The contact maps are generated for one object manipulation while considering other objects
to be stationary at their given positions. On finding the shortest path on the contact map,
we can acquire the information regarding the dependencies of the object being manipulated
with other scene objects. For the object stacking example, if we consider the manipulation
of O1, the contact map will have a contact mode of C(O1 : O3) in the map, which states its
dependency on O3. Thereafter, it is possible to check if these dependent objects are placed
in their correct location or not. It they are not, we have a recursive run of the algorithm to
repeat the same procedure. In the end, the object which has no dependency with any objects
in the scene will be manipulated first, followed by other objects. Thus, this algorithm resolves
the contact constraints and generates the correct sequence of object manipulation without
the use of any path-planning algorithm.
This algorithm can also be used along with the RSC algorithm to displace blocking objects
for the individual object manipulation. This would produce a very robust algorithm that can
carry out various tasks like multiple object manipulations, environment de-cluttering, rescue
operations and assembly tasks to name a few. Due to time constraints, RSC could not be
implemented along with RCC in this research work. It has been suggested as a part of future
work by the author.
The algorithm to acquire the correct object sequence is shown in Algorithm 1 and is called
GetObjectSequence with RCC as a separate function. In the algorithm, scene geometry
information and the initial and goal positions of all the manipulable objects is given as the
input. Starting from the first object, the RCC function is called for all the objects. These
are indexed with j. This returns the sequence of object manipulation of the jth object along
with the objects which it is dependent on, given as LS (which stands for Local Sequence).
This is done for every object which is to be manipulated.
When the RCC function is called, it first checks if the object has been placed or not, if it
has already been dealt with, it returns an empty sequence. If not, then it first generates

Anuj Shah Master of Science Thesis

3-5 Contact Maps for Multiple Object Manipulation 33

Algorithm 1 GetObjectSequence algorithm with RCC function

Input:
GE ← scene geometry
no← number of objects
xi

1:no ← initial object positions
xg

1:no ← goal object positions

for j = 1 : no do . for all objects
(LS, xi

1:no, x
g
1:no) ← RCC(GE , j, xi

1:no, x
g
1:no) . call RCC

GS ← GS append LS . final manipulation sequence

function RCC(GE , j, xi
1:no, x

g
1:no) . RCC function

if xi
j = xg

j then
return ∅

CMap ← GenerateContactMap(GE , j, xi
1:no, x

g
1:no)

minP ← FindShortestContactPath(CMap)
DO ← GetDependentObjects(minP)
nd← length of DO
for l = 1 : nd do . for all dependable objects

if xg
l 6= xi

l then . if not in goal position
(LS, xi

1:no, x
g
1:no) ← RCC(GE , DOl, xi

1:no, x
g
1:no) . recursion

LS ← LS Append j
xg

j = xi
j

return LS . retuning local manipulation sequence

the contact map CMap, finds the shortest path minP for the given manipulation and
collects the set of all dependable objects DO for that manipulation. It then checks, for the
complete set of dependable objects, indexed as l, whether they are correctly placed in their
goal position. If not, RCC is recursively called for the unplaced object DOl. When there
are no dependable objects any more, the object is appended in the manipulation sequence
LS and is returned to the previous recursion. The final output of the GetObjectSequence
algorithm is the sequence of the given multiple object manipulation GS, which has been
acquired only via contact maps and no path-planning.

3-5-2 Parallel Manipulation

In a scene where there are multiple object manipulations, it is possible that the manipulation
specifications would lead to none of the manipulations being dependent on other objects in the
scene. It is viable, in such a case, that these manipulations could be carried out simultaneously
or in parallel. Take for example the manipulation task in Figure 3-9. O1 and O2 could be
manipulated simultaneously. This possibility could also be first seen via the shortest path on
their contact maps of the respective objects, as shown in Figure 3-10. The contact mode for
a parallel task could thus be written as:

Master of Science Thesis Anuj Shah

34 Robot Contact Language

𝑥 𝑦
𝑧

𝑆1

𝑂1
𝜓0
2

𝜓𝑛
2

𝑅2

𝜓0
1

𝜓𝑛
1

𝑅1 𝑂2𝑂1

𝑂2

𝑆2𝑆3

Figure 3-9: Multiple object manipulation tasks that could be carried out in parallel - placing O1
from S3 to S1 and placing O2 from S1 to S2 can be carried out simultaneously via two separate
robotic arms in the scene.

𝐂(𝑶𝟏: 𝑺𝟑)

𝐂(𝑶𝟏: 𝑹𝟏, 𝑺𝟏)

𝐂(𝑶𝟏: 𝑹𝟏, 𝑺𝟑)

𝐂(𝑶𝟏: 𝑺𝟏)

𝐂(𝑶𝟏: 𝑹𝟏)

Initial node

Goal node

𝐂(𝑶𝟐: 𝑺𝟏)

𝐂(𝑶𝟐: 𝑹𝟐, 𝑺𝟐)

𝐂(𝑶𝟐: 𝑹𝟐, 𝑺𝟏)

𝐂(𝑶𝟐: 𝑺𝟐)

𝐂(𝑶𝟐: 𝑹𝟐)

Initial node

Goal node

Figure 3-10: Multiple object manipulation tasks that could be carried out in parallel or simul-
taneously. Shortest path on the contact map for O1 and O2 manipulation on the left and right
respectively for the task in Figure 3-9.

Anuj Shah Master of Science Thesis

3-5 Contact Maps for Multiple Object Manipulation 35

C(O1 : R1) ∧ C(O2 : R2). (3-8)

This represents simultaneous manipulation of O1 via R1 and O2 via R2. The parallel mecha-
nism is represented by the logical AND operator “∧”. It is possible that these manipulations
may experience collision during path planning. The manipulation could then be timed in
a fashion that a part of it is running in parallel to save precious work time. The usage of
contact maps is to signify a possibility of parallel manipulation, not guarantee it.

3-5-3 Global Contact Map

The idea of contact map described in the previous sections only took the object being manipu-
lated into consideration while building the contact map. It would be convenient and useful to
have a complete description of all possible contact modes within one common map. A global
contact map (GCM) for a manipulation scene can be generated which serves this purpose.

Consider a scene with two objects O1 and O2, two robots R1 and R2, and a ground surface
S1. In a global contact map, all possible contact modes are generated from all possible
combinations of all the components present, in this case, five. The nomenclature becomes
different in this situation as the contact map is not referred to a particular object. Hence,
the contact mode of O1 with R1 is given as:

C(R1,O1). (3-9)

Note that the colon symbol “:” is dropped in GCMs. The total number of combinations for
the given five components would then be equal to nc = 31. From these thirty-one possibilities,
many can be rejected. The combinations of ones does not make sense and are thus dropped.
To add to this, all contact modes that do not have an object present, for example, C(R1,S1),
can also be removed as they do not make sense (apart from special cases). This brings down
the total combinations to nc = 22. Each of these combinations represents a contact mode in
the GCM. Using similar rules of components making or breaking contact, a GCM can created.
This has been shown in Figure 3-11.

The interpretation and usage of this map is somewhat different than the previously described
local contact maps (LCM). This can be explained using a couple of basic examples. Consider
first, a task of manipulating both objects O1 and O2. The task involves stacking of O1 on O2,
as shown in Figure 3-12. This is a multiple object manipulation which involves dependencies.
Object dependencies can be divided into three broad catagories:

• No dependency: There is no contact of the objects being manipulated in any contact
mode.

• Static dependency: The objects being manipulated are statically in contact with
other object(s) in one or more contact modes.

• Dynamical dependency: The objects being manipulated are dynamically in contact
with each other and need robots to maintain contact.

Master of Science Thesis Anuj Shah

36 Robot Contact Language

𝐂(𝑶𝟏, 𝑺𝟏)

𝐂(𝑶𝟏, 𝑹𝟐, 𝑺𝟏)

𝐂(𝑶𝟏, 𝑹𝟏, 𝑺𝟏)

𝐂(𝑶𝟏, 𝑹𝟏, 𝑹𝟐)

𝐂(𝑶𝟏, 𝑹𝟏, 𝑹𝟐, 𝑺𝟏)

𝐂(𝑶𝟏,𝑹𝟏)

𝐂(𝑶𝟏,𝑹𝟐)

𝐂(𝑶𝟏,𝑶𝟐, 𝑹𝟏)

𝐂(𝑶𝟏,𝑶𝟐, 𝑹𝟐)

𝐂(𝑶𝟏, 𝑶𝟐,𝑹𝟏, 𝑹𝟐)

𝐂(𝑶𝟏, 𝑶𝟐)

𝐂(𝑶𝟐, 𝑺𝟏)

𝐂(𝑶𝟐, 𝑹𝟐, 𝑺𝟏)

𝐂(𝑶𝟐, 𝑹𝟏, 𝑺𝟏)

𝐂(𝑶𝟐, 𝑹𝟏, 𝑹𝟐)

𝐂(𝑶𝟐, 𝑹𝟏, 𝑹𝟐, 𝑺𝟏)

𝐂(𝑶𝟐,𝑹𝟏)

𝐂(𝑶𝟐,𝑹𝟐)

𝐂(𝑶𝟏, 𝑶𝟐,𝑺𝟏)

𝐂(𝑶𝟏,𝑶𝟐, 𝑹𝟏, 𝑺𝟏) 𝐂(𝑶𝟏,𝑶𝟐, 𝑹𝟐, 𝑺𝟏)𝐂(𝑶𝟏, 𝑶𝟐,𝑹𝟏, 𝑹𝟐, 𝑺𝟏)

Figure 3-11: A global contact map for five scene components - O1 O2, R1, R2 and S1.

𝑥 𝑦
𝑧

𝑆1

𝑂1

𝜓0
2

𝜓𝑛
2

𝑅2

𝜓0
1

𝜓𝑛
1

𝑅1 𝑂2

𝑂1
𝑂2

Figure 3-12: A schematic describing a manipulation task of stacking object O1 on O2.

Anuj Shah Master of Science Thesis

3-5 Contact Maps for Multiple Object Manipulation 37

In the example given in Figure 3-12, the objects have static dependency. O2 needs to be in
correct place first, before O1 can be placed on top of it. Such type of manipulation task can
be carried out separately and the sequence of manipulation can be found using Algorithm 1,
described in 3-5-1.

The contact modes for the initial and goal positions of O1 are given as C(O1 : S1) and
C(O1 : O2) respectively. The manipulation contact path can be found on the GCM similar
to an LCM, as shown in Figure 3-13 with yellow nodes. Similarly, this can be shown for the
manipulation ofO2 for the same task. The contact modes forO2 manipulation are C(O2 : S1)
for both, initial and goal positions with different contact positions with the surface. The path
on GCM is shown by the red nodes.

When there is a manipulation task which involves dynamical dependencies, the usage of
GCMs is not similar to LCMs. Such a task is shown in Figure 3-14. Initially the objects
are in contact with the ground surface S1. R1 and R2 are then used to lift O1 and O2
respectively, and then the two objects make contact.

The local modes for the initial and goal position for O1 manipulation are given as C(O1 : S1)
and C(O1 : R1,O2) respectively. Similarly, for O2, they are C(O2 : S1) and C(O1 : R2,O1)
respectively. The global initial mode can be found from the local modes of the two objects.
This is done using the AND operator and then fusing the components involved, that is,

C(O1 : S1) ∧C(O2 : S1) = C(O1,O2,S1). (3-10)

The right hand side of the equation gives the global contact mode. This can similarly be done
for the goal position as well.

C(O1 : R1,O2) ∧C(O2 : R2,O1) = C(O1,O2,R1,R2). (3-11)

Hence, the initial and goal global contact modes are C(O1,O2,S1) and C(O1,O2,R1,R2).
A global contact mode can be interpreted as contact amongst the components in any possible
combination. C(O1,O2,S1) could be interpreted as:

C(O1 : S1) ∧C(O2 : S1)
C(O1 : O1) ∧C(O2 : S1)
C(O1 : S1) ∧C(O2 : O1)

and similarly other possible combinations. The correct local modes are chosen depending on
the task being performed. In the global contact map given in Figure 3-11, the path for the
task in Figure 3-14 is given by the green nodes.

In each contact mode in the global path, manipulations tasks can be achieved which would
bring the objects states closer to the goal states. This can be done using any possible combi-
nation of local modes using the components within the global contact mode and is dependent

Master of Science Thesis Anuj Shah

38 Robot Contact Language

𝐂(𝑶𝟏, 𝑺𝟏)

𝐂(𝑶𝟏, 𝑹𝟐, 𝑺𝟏)

𝐂(𝑶𝟏, 𝑹𝟏, 𝑺𝟏)

𝐂(𝑶𝟏, 𝑹𝟏, 𝑹𝟐)

𝐂(𝑶𝟏, 𝑹𝟏, 𝑹𝟐, 𝑺𝟏)

𝐂(𝑶𝟏,𝑹𝟏)

𝐂(𝑶𝟏,𝑹𝟐)

𝐂(𝑶𝟏,𝑶𝟐, 𝑹𝟏)

𝐂(𝑶𝟏,𝑶𝟐, 𝑹𝟐)

𝐂(𝑶𝟏, 𝑶𝟐,𝑹𝟏, 𝑹𝟐)

𝐂(𝑶𝟏, 𝑶𝟐)

𝐂(𝑶𝟐, 𝑺𝟏)

𝐂(𝑶𝟐, 𝑹𝟐, 𝑺𝟏)

𝐂(𝑶𝟐, 𝑹𝟏, 𝑺𝟏)

𝐂(𝑶𝟐, 𝑹𝟏, 𝑹𝟐)

𝐂(𝑶𝟐, 𝑹𝟏, 𝑹𝟐, 𝑺𝟏)

𝐂(𝑶𝟐,𝑹𝟏)

𝐂(𝑶𝟐,𝑹𝟐)

𝐂(𝑶𝟏, 𝑶𝟐,𝑺𝟏)

𝐂(𝑶𝟏,𝑶𝟐, 𝑹𝟏, 𝑺𝟏) 𝐂(𝑶𝟏,𝑶𝟐, 𝑹𝟐, 𝑺𝟏)𝐂(𝑶𝟏, 𝑶𝟐,𝑹𝟏, 𝑹𝟐, 𝑺𝟏)

Figure 3-13: A global contact map for five scene components - O1 O2, R1, R2 and S1. The
yellow nodes show the path for O1 manipulation and red nodes for O2 manipulation for the task
in Figure 3-12. The green nodes show the global path for O1 and O2 manipulation for the task
in Figure 3-14.

𝑥 𝑦
𝑧

𝑆1

𝑂1

𝜓0
2

𝑅2

𝜓𝑛
2

𝜓0
1

𝑅1

𝜓𝑛
1

𝑂2

𝑂1 𝑂2

Figure 3-14: A schematic describing a manipulation task of simultaneous manipulation of two
objects O1 and O2. This causes dynamical dependency between the two objects.

Anuj Shah Master of Science Thesis

3-6 Summary 39

on the given task. Once planning is done in a global contact mode, similar process is un-
dertaken in the next mode of the path. This way, planning is done on a global level for
complex manipulations tasks and a complete contact information is embedded in the GCM
of a scene for all possible manipulation tasks. The global contact modes and their equivalent
local modes for the task in Figure 3-14 are listed in Table 3-2.

Table 3-2: Local and global contact modes of the manipulation task in Figure 3-14.

O1 contact mode O2 contact mode global contact mode
C(O1 : S1) C(O2 : S1) C(O1,O2,S1)

C(O1 : R1,S1) C(O2 : S1) C(O1,O2,R1,S1)
C(O1 : R1,S1) C(O2 : R2,S1) C(O1,O2,R1,R2,S1)

C(O1 : R1) C(O2 : R2) C(O1,O2,R1,R2)

3-6 Summary

This chapter introduces the concept Robot Contact Language (RCL), its nomenclature and
importance in robotic manipulation planning. The idea of contact maps was also introduced
which is first built using combinatory logic of all the scene components followed by the addition
of geometrical information. This makes it more rich and it is possible to define spatial
relationships amongst various contact modes of the map. Using these maps, manipulation
tasks could be planned for single object. This idea has been extended to manipulation of
multiple object which are dependent on each other. The devised algorithm, Resolve Contact
Constraints (RCC), generates the correct object sequence using the contact maps for multiple
object manipulation, along with the their individual contact maps and shortest path in their
respective contact maps. The idea of global contact maps was also introduced, which embeds
complete contact information of all possible manipulation tasks. An example was used to
describe its usage for scene objects with both, static and dynamic dependencies.

Master of Science Thesis Anuj Shah

40 Robot Contact Language

Anuj Shah Master of Science Thesis

Chapter 4

Path-planning and Control

4-1 Introduction

After the shortest path on the contact map for a given manipulation has been generated,
the next step towards achieving the manipulation task is path-planning followed by controller
assignment. Each contact mode in the shortest path represents a sub-manipulation task. Each
sub-manipulation task needs path-planning for the object to be manipulated and consequently
the robot end-effector. These sub-manipulation paths together form the global path which is
used to achieve the overall task.

Path planning could either be done in the workspace or joint space. The complexity in
joint spaces increases with the increase in the number of joints. There is also the need of
inverse kinematics to map workspace positions and/or targets on to the joint space before
planning [4]. As this research work focuses on workspace control, the path-planning too, is
in workspace coordinates. This has been described in the next section.

Path-planning is followed by trajectory generation and controller assignment. Trajectory
refers to the assigning robot a position, velocity and an acceleration profile with respect to
time, that is, the desired end-effector positions and velocities are a function of time. This
can be either done online, while execution, or offline by generating a trajectory equation from
the given path and kinematic constraints and then the equation is then fed as the desired
end-effector positions and velocities with respect to time. More details on path-planning and
trajectory generation can be found in [4, 8].

To actually achieve the manipulation tasks, controllers have to be assigned to the robotic
manipulators to carry out the tasks. The type of controllers depend on the task being per-
formed. There are several types of manipulation and transition controllers needed for the
same. These controllers then need to be sequentially composed and switching condition need
to be derived to realize the final control automaton. The process of controller assignment for
each manipulation and transition and the consequent sequential composition has also been
covered in this chapter.

Master of Science Thesis Anuj Shah

42 Path-planning and Control

4-2 Workspace Path-planning

Workspace path-planning refers to manipulation planning in workspace. Before the paths of
the robotic manipulators are planned, the path of the object being manipulated needs to be
planned. From the contact map shortest path, we have the contact modes and the initial
and final position of the object. The objective of the object path-planner is to plan a path
separately in each of these contact modes which brings the objects in the workspace W of
the next contact mode and also more closer to the final contact mode. The goal position of
the path in each contact mode should:

• lie in the workspace of the next contact mode and

• bring the object closer towards the final goal.

To achieve this objective, a piecewise path-planner should be implemented which satisfy these
conditions. The goal position of the path in each contact mode will serve as the initial position
of the object for the next contact mode path-planning. This way, the resulting overall path
will be a smooth curve.

Ideally, a path-planner is required to plan the path of the object and the robotics arm(s)
simultaneously and should take into account the collision of object and the arms with other
workspace obstacles along with the self-collision of the arms. In the author’s research work,
path-planning is done using a modified Dijkstra’s shortest path algorithm. It is based on the
same algorithm as described in sub-section 3-4 as given in [26]. The path-planner obviously
takes into account the collision avoidance of the object with the obstacles in the scene. It
is however, only planning the path for the object and not for the robotic manipulators.
An obstacle-free path of an object may not guarantee a collision free path of the robotic
manipulator. Due to time constraints, path-planning works under the assumption that an
obstacle-free path for an object will lead to an obstacle free path for the robot and the
simulations are performed in a modelled environment with minimalistic collision probability
in order to avoid robot collisions.

𝑥init

𝑥goal𝑥obs

𝑥obs𝑥

𝑦
𝑥init

𝑥goal𝑥obs

𝑥obs

Figure 4-1: Object path-planning using modified Dijkstra’s algorithm. The yellow cell is the
initial position, green is the goal position and the red ones represent cells occupied by workspace
obstacles in the left and right figures. The blue cells in the right figure represent the shortest
path.

The basic principle of this algorithm for graph search remains the same. The graph is based
on dividing the scene workspace into equal grid samples and performing a search on that

Anuj Shah Master of Science Thesis

4-2 Workspace Path-planning 43

graph. A simplified illustration is shown in Figure 4-1. The grid on the left is the sampled
2D Cartesian space before planing. The yellow block represents the cell of the initial position
and the green one represents the goal. The red cells are the ones occupied by the workspace
obstacles. The aim is to find the shortest path from the initial position xinit to goal position
xgoal.

This can easily be done using Dijkstra’s algorithm. The distance between two consecutive
cells, which is the weight, is kept constant at unity. Every cell, that is not on the border, has
8 neighbouring cells. The distance to every cell is iteratively calculated until the goal cell is
reach. The shortest path is traced back once the goal cell is reached.

In a similar way, this method is used to find shortest paths when the overall task has been
divided into sub-tasks, which take place in separate, but overlapping workspaces. Take for
example the path-planning as shown in Figure 4-2. In this case, it is not possible to find
the shortest path from the initial position xinit to final goal position xgoal directly as the
workspaces,W1

c and W1
c , are different. This has been demarcated by the orange and green

bounding boxes respectively. These two workspaces however, do overlap. If an object needs to
be manipulated from xinit to xgoal, the task can be divided into two sub-tasks. Each sub-task
will be to find the shortest path in its respective workspace.

This has been shown in the second (bottom) figure in Figure 4-2. The planning starts from
xinit in the first workspace. It obviously cannot reach xgoal. This algorithm is however,
modified to return the cell position closest to xgoal, which is x1

goal. As contact map is also
built via overlapping workspaces, x1

goal automatically lies in the second workspace.

This local goal position x1
goal will now serve as the initial point for the shortest path search

in the next workspace, that is,
x1

goal ∼ x2
init. (4-1)

The shortest path can now be found from x2
init to the cell which is even more closer to xgoal.

As xgoal belongs to this second workspace, the algorithm will find the shortest path joining
x2

init to xgoal. The complete path from xinit to xgoal is shown in the bottom Figure 4-2 with
the blue cells. This path is continuous and passes via x1

goal ∼ x2
init.

The same concept is applied to the contact modes in the shortest path of a contact map
for a manipulation task. As these contact modes have overlapping workspaces, object path-
planning can be done in each of these contact modes to bring the object closer to the final
goal, ultimately performing a simultaneous global and local path planning for the given object
manipulation. The simulation results for this path planning are shown in the chapter that
follows.

This method is also applicable in 3D Cartesian space, but it becomes more computationally
expensive as the number of grid cells increase by an exponent. This could be solved by
increasing the cell sample size, which would result in faster results as the cost of accuracy.
Trade-offs have to made between accuracy and computation time. This algorithm, however
does not suffer from getting stuck at a local minimum as it samples and checks the complete
space, until the goal cell is reached. If the shortest path exists, it will be found. There are
several other path-planning algorithms which work in either joint space or workspace or a
combination of both like RRT [29], RRT-connect [30], RRT-JT [31] and potential-field based
path-planning [4].

Master of Science Thesis Anuj Shah

44 Path-planning and Control

𝑥init

𝑥obs

𝑥obs

𝑥

𝑦

𝑥goal𝑥obs

𝑥obs

𝑥init

𝑥obs

𝑥obs

𝑥goal𝑥obs

𝑥obs

𝑥goal
1

𝑥init
2

𝑥

𝑦

𝓦𝑐
1

𝓦𝑐
1

𝓦𝑐
2

𝓦𝑐
2

Figure 4-2: Object path-planning using modified Dijkstra’s algorithm for sub-tasks with over-
lapping workspaces. The goal cell of the first workspace is the initial cell for the next workspace
path-planning. This cell lies in the overlapping workspace.

4-3 Trajectory Planning

Once the object paths have been generated, a trajectory needs to be assigned to the object
for its manipulation. A trajectory, as previously defined, is the evolution of motion with
respect to time. In this research work, the trajectories have been kept simple in order to
avoid complicated velocity and acceleration profiles. A maximum speed has been assigned to
saturate the velocity in case it overshoots. Thus, the velocity is always less than or equal to
the maximum value.

The trajectory assigned to objects will determine the trajectory of the robotic arms, in both,
single arm manipulation and cooperative manipulation. This is because the arm trajectories
are constrained by the object trajectories and will be dependent on them. During position
control of the robotic arms, there is no object trajectory attached to it. In this case, the
trajectory is generated via the robot initial final positions. Both these cases will be described
exclusively. One other thing to note is that the trajectories are generated online from the
planned paths while control execution.

When the robotic arms are manipulating an object, their trajectories depend on that of the
object being manipulated. The trajectory of the object is generated from its path, planned
by the path-planner. The path of an object is given by an array of cell positions in Cartesian
space. The desired velocity is kept proportional to the different between the current and goal
object position, with an absolute upper limit.

Let xo and xo
f be the object current and final position vectors respectively. Let the maximum

absolute velocity vector be vo
max. The current velocity is given by:

Anuj Shah Master of Science Thesis

4-4 Controller Assignment 45

vo = min
(
vo

max, k1(|xo − xo
f |)
)

(4-2)

where k1 is some arbitrary positive constant. On having the desired velocity at every time
step from (4-2), the desired object position is calculated via numerical integration using this
given velocity and the previous desired position, which is given as:

xo
des = xo

des + diag(vo) sign(xo
n − xo) dt (4-3)

where xo
des is the desired object position, diag() is the diagonal matrix operator for a vector,

sign() is the signum operator, xo
n is the position of the next cell location in the object path

vector and dt is the sampling time. On generating the desired object trajectory at every time
step, the consequent robot arm trajectory can be generated from the constraint equation
given by Equations (2-22) to (2-25).
If the robotic arms are not in manipulation mode, there is no object path involved to generate a
trajectory. In this case, the arm trajectories are generated from the current final arm positions
xa and xa

f respectively. It is given the same way as in the case of object trajectory similar to
equations (4-2) and (4-3) as:

va = min
(
va

max, k1(|xa − xa
f |)
)

(4-4)

xa
des = xa

des + diag(va) sign(xa
n − xa) dt (4-5)

with the variables having similar meaning but associated with robotic arm a. This way,
robotic arm trajectories are generated from the aforementioned equations online while control
execution. This is, again, assuming that there are no obstacles and self-collisions during
implementation.

4-4 Controller Assignment

To carry out the manipulation tasks, the robotic arms need specific controllers. The manipu-
lation tasks are broadly divided into two categories - single arm manipulation and cooperative
manipulation. Single arm manipulation could be picking and placing an object form one po-
sition to another by grasping the object or it could be a robot pulling or pushing the object
that is resting on a surface. Cooperative manipulation controllers are a set of controllers
functioning individually on two or more arms that are manipulating a common object. These
controllers have a common target and their trajectories are constrained by the object trajec-
tory, as seen in the last section.
Another set of controller that are required are transition controllers. Before an object can
be manipulated, the robot(s) has to make contact with the object (by grasping or applying
a force.) A controller is also needed to make the robot arm orient in a safe workspace after
a manipulation task is complete. These transition controllers can be further termed as make
contact and break contact controllers. A flow chart classifying the general types of controllers
is given in Figure 4-3. This idea was first presented in [32] as transfer and transit controller.
These have been explained a little detail in the following.

Master of Science Thesis Anuj Shah

46 Path-planning and Control

Controllers

Transition Manipulation

Make Contact Break Contact Single Arm Cooperative

Figure 4-3: Classification of various types of controllers.

4-4-1 Manipulation Controllers

As previously mentioned, manipulation controllers are further divided into single arm and
cooperative controllers. It is only possible to switch to these controllers when the robots
have already made contact with the object being manipulated, which is in turn, done by the
transition controllers.

Single Arm Control

A Single arm controller can either be a robot positioning or placing a grasped object or a
force controller which is applying some force or a controller simultaneously applying a constant
force while manipulating an object (pushing or pulling). When an object is grasped with an
appropriate end-effector, a typical position controller, as explained in sub-section 2-4, could
be applied to track a give path or place the object from an initial to goal position. A good
property of the spatial springs based controller, as devised in section 2-5, is that it can be
used for both, position as well as force control by varying the spatial spring stiffness.

The parameters that need to be defined for the spring stiffness matrix Kd and the Cartesian
damping factor Dc. It is trivial to infer that a higher value of stiffness will lead to less
compliance but a greater position accuracy and the other way around. For position based
control, the stiffness is kept high with an appropriate damping factor. Grasping control has
not been studied in this research work for simplicity. Hence, single arm manipulation that is
studied is that of pushing a box.

Pushing an object at a constant speed requires a constant force on the object being ma-
nipulated to compensate for the frictional forces. As stated previously in section 2-5, the
end-effector force is proportional to the distance between actual end-effector position and the
desired or virtual end-effector position. Hence, the virtual-end effector trajectory is generated
in a similar fashion as derived in section 4-3 to apply the a desired velocity profile and the
force to push the box. This will no doubt lead to the virtual position of the robot end-effector
not coinciding with the object centre of mass or the actual contact point with the object.

Anuj Shah Master of Science Thesis

4-4 Controller Assignment 47

Cooperative Control

Cooperative control refers to two or more robots manipulating the same object. Each of these
robots have a grasping point where they make contact with the object and apply a certain
force. The grasp points should render the object statically stable. The grasp points should
not lead to unwanted moments in the objects. The internal and external forces or wrenches
on the object, W o

int and W o
ext respectively, should implicitly or explicitly be controlled.

In the author’s research, robotic arms without any gripper end-effector is used. Thus, the
external wrench applied by the robotic arms lead to internal wrench on the object being
manipulated. If the robotic arms exactly adhere to the closed chain constraints as given form
Equations (2-22) to (2-25), they would only position them at the contact points and will not
produce any wrench at the contact point as it is proportional to the distance between the
actual and virtual end-effector position of the object.

To counter this problem, as explained previously in section 2-6, the virtual end-effector po-
sitions are changed from the actual virtual sticks to modified virtual sticks, which produce a
wrench at the contact points as well as maintain the closed chain or grasp constraints. This
has also been illustrated in Figure 2-5.

The cooperative manipulation controllers work in two phases after contact is made by all
robots. First control sequence is to modify the virtual stick to increase the grasping force,
which is done by varying the end-effector virtual positions proportionally for all the robotic
arms. On having the desired grasping force, the second control sequence begins which involves
actual cooperative manipulation. The robot trajectories are generated from the closed chain
constraint equations ((2-22) to (2-25)) while maintaining the grasping forces and the object
is cooperatively manipulated.

4-4-2 Transition Controllers

Transition controllers are mainly required in-between manipulation controllers in order to
make contact or break contact with the object being manipulated. To demarcate a change of
contact mode involving robots, these controllers are used. These have been explained in the
following.

Make Contact

A manipulation can not occur unless the robotic arms that are manipulating an object are in
contact with it. If the two contact modes for some given arbitrary task are C(O1 : S1) and
C(O1 : R1,S1) in the order, a manipulation task within the contact mode C(O1 : R1,S1)
can occur only if R1 is in contact with O1. From the previous mode C(O1 : S1), it is
seen that R1 is not in contact with the object. In order to achieve this switching of contact
mode, a transition needs to be made where R1 makes contact with O1. This is done using a
make-contact transition controller.

This type of controller also involves a two level control sequence. The first is a pure position
control where the end-effector places itself close to the object, in line with the point of contact.
The orientation of the end-effector is equal to the one during contact. This is followed by a

Master of Science Thesis Anuj Shah

48 Path-planning and Control

second control sequence which makes contact with the object to be manipulated. If it is a
grasping task, the end-effector moves forward and closes its gripper. If no grasping is involved,
the end-effector basically “touches” the object to be manipulated. The consequence of this is
that there are grasping forces or an end-effector wrench (measured via a force sensor). This
end-effector wrench denotes that contact has been made and that it is possible to switch to
the next hybrid state in the control automaton. This concept will be explained later in section
4-5.

The controllers used for this type of control are mainly position based for the first control
sequence and a comparatively more compliant controller parameter with a slower velocity
profile for the second control sequence.

Break Contact

Similar to making contact, there are transitions in the contact map where a robot leaves
or breaks contact with an object that it is manipulating. In such cases, a break contact
controller could be used. As an example, take the case opposite to the one in make-contact
controller. The task is to go from C(O1 : R1,S1) to C(O1 : S1) contact mode. This involves
R1 breaking contact with O1, which is achieved by a break contact controller.

This is also achieved by two control sequences. Both involve position control with the first
one is of releasing contact or gripping force and moving away in the opposite direction of
the grasp point and the second one is to move the end-effector and the robotic arm to a safe
position, and freeing up the “active” workspace. When the grasp or contact is released, the
grasping force or the end-effector wrench becomes zero.

4-4-3 Control Synthesis

It has been seen that there are various types of controllers that could be used in a given
manipulation task. The task of assigning manipulation and transition controllers can be
easily done with help of a simple algorithm along with the use of the shortest path on the
contact map for the given manipulation task.

For assigning manipulation controllers, each relevant contact mode involved in the manip-
ulation task is checked, starting from the initial one. The number of robots involved in
the contact mode are checked at a symbolic level and depending on the number of robots
available, an appropriate manipulation controller is assigned. The controller parameter are
assigned according to the trajectory of the object and its dynamic and geometric properties.

To assign transition controllers, two consecutive contact modes are checked at a symbolic
level for addition or removal of robotic arms; addition represents the need of make contact
controller and break contact for subtraction. To make contact, a contact point is required.
An object in the scene is always associated with its available contact points or at least its
geometry, from which contact or grasp points could be derived. This, unfortunately, is out of
the scope of this research work. A general workflow of this process is given in Figure 4-4.

Anuj Shah Master of Science Thesis

4-5 Control Execution 49

Contact mode

Static mode
Find number of

robot arms

Acquire grasp
point

Assign controller
to each robot

Compare current
with next mode

Add robot

Remove robot

Assign controller
Make-Contact

Assign controller
Break-Contact

Next contact
mode

END
START

YES

NO

YES

YES

YES

NO

NO

NO

Figure 4-4: The workflow of controller assignment for each manipulation task and the robot
transitions that are required.

4-5 Control Execution

A final step to achieving a manipulation task is putting all its controllers together and exe-
cuting them in a synchronized and hybrid manner. The idea of sequential composition can
be applied to bring all these controllers together, compose their domains of attraction and
goal-sets and execute the hybrid automaton to achieve the task. It has been seen that the
workspaces of the contact modes are already overlapping for a given manipulation task. The
path-planning algorithm also works in a way that the goal position of each sub-task or contact
mode lies in the workspace of the next one. Hence, the workspaces are already sequentially
composed.

The DoA on the other hand, should include all the relevant dynamic information or states
in this composition. Along with the workspaces, it should also include the composition of
velocities and forces (twists and wrenches) of the robotic manipulators. This means, the DoA
should include the twist and wrenches and so should the goal-sets. Intuitively speaking, the
velocities of the robotic arms should approach to zero when a sub-task is ending or approaching
its goal position (unless it’s a special case). As this research aims mainly at manipulation
task of picking and placing objects, the velocity or twist part of the goal-set is kept to zero,
that is,

T g
p = 0± ε (4-6)

with T g
p ⊂ G(Φp). Here, T g

p is goal twist of an arbitrary controller Φp. 0 is a 6 × 1 zero
vector and ε is very small value (close to machine precision). The twist part of the DoA is

Master of Science Thesis Anuj Shah

50 Path-planning and Control

limited by the maximum twist a robotic arm can attain in every direction in SE(3), although
this value is not of much use in practical implementation.

𝑊

𝑇

𝐻
Φ1

Φ2
Φ2

𝑥0

𝓖(𝑥1) 𝓖(𝑥2)

𝓖(𝑥3)

Figure 4-5: A diagram representing sequentially composed controllers. The ellipsoids represent
the DoA of the specific controllers and the green points represent the goal-sets. The red-line
denotes the trajectory of the robot states.

In the case of the end-effector forces or wrench, the contact of a robot with an object would
result in some from of force at the end-effector depending on the way contact is made or the
object is grasped. In the author’s research work, robot without grippers are studied. Contact
is made via end-effectors having a flat surface. This would obviously result in a force acting in
the direction normal to the contact surfaces. Assuming the normal surface of the end-effector
frame is its z-axis, the wrench part of the goal set, when the object is in contact, would be,

fz < 0
fz > −k1

(4-7)

with fz ⊂ W g
p ⊂ G(Φp) where fz is the force component of the end-effector z-axis and k1

some arbitrary positive constant. The force sensed in the fz direction guarantees that the
contact with the object is not lost. The force limit set to k1 would ensure that high forces are
not acting on the object being manipulated and if they are, they are detected. Other sensor
information like vision could also be used to fuse data and come up with reliable estimates of
force values with which contact of robot with an object could be analysed.
This concept of sequential compositions using the Robot Contact Language (RCL) can be
further explained using a simple example. Consider a manipulation task with the sequence
of contact mode in the contact map shortest path as:

C(O1 : S1)→ C(O1 : R1,S1)→ C(O1 : R1)→ C(O1 : R1, S2)→ C(O1 : S2) (4-8)

which representsR1 performing a pick and place task of O1 from S1 to S2. This task involves
a lot of controllers. R1 first needs to make contact or grasp O1 and manipulate it and place

Anuj Shah Master of Science Thesis

4-5 Control Execution 51

it on S2 and finally break contact. The task involves three manipulation controllers for each
non-static contact mode and two transit controllers - one for R1 making contact and other
for R1 breaking contact in the end.

For representational purposes, we assume that positions, twists and wrenches are all one
dimension each. Hence, each of them can be represented in one axis each in 3D space. The
sequentially composed controllers for the above mentioned task with their respective DoA and
goal-sets are shown in Figure 4-5. Assuming there is no manipulation by the robot on the
surfaces, C(O1 : R1,S1) and C(O1 : R1,S2) will have no manipulation controllers assigned
to them.

Φ1

Φ2

Φ3

𝑥0

𝓖(Φ1)
𝓖(Φ2)

Make
Contact

Break
Contact

Manipulate

𝓖 Φ3 = 𝑥𝑓

Φ0

Rest

𝓖 Φ3

Figure 4-6: The control automaton of the manipulation task described by contact modes in
Equation 4-8

.

From the figure, there are a total of three controllers. Φ1 is a transition controller wherein
R1 is making contact. Φ2 is a manipulation controller which positions O1 from S1 to S2.
The last controller Φ3 is a break contact controller, which breaks contact from the object
and places itself is some safe location. The wrench increases when contact is made with the
object. Which manipulating, this force is never zero, ensuring no loss of grasping or contact
forces. On breaking contact, the force again comes to zero. The manipulation control is
mainly responsible for the change in the object’s physical position.

In a similar manner, any manipulation task could be executed with the use of contact maps.
An involved manipulation task is thus formulated into various sub-tasks and an organised
planning using contact maps and smart algorithms assign controllers to each of these sub-
tasks which are executed in a hybrid fashion. A hybrid automaton for the previous example
is shown in Figure 4-6. Starting from the initial state x0, the three active controllers are
sequentially executed. The goal-set of each controller lies in the DoA of the next controller.
The goal-set of the last controller is the equal to goal state. On successful execution of these
controllers, the overall manipulation task is achieved.

Master of Science Thesis Anuj Shah

52 Path-planning and Control

4-6 Summary

In this chapter path-planning of the object being manipulated is discussed. It is seen that
with the help of contact maps, the overall path-planning is divided into subtasks. These
sub-tasks have their own sub-path for the object manipulation. The sub-paths are derived
locally using a modified Dijkstra’s algorithm for path-planning in 2D Cartesian workspace.

These sub-paths are assigned specific controllers to achieve the manipulation tasks along
with transition controllers to make or break contacts. Switching conditions are assigned for
transitions between the controllers. Trajectory planning and generation is done while the sub-
tasks are being performed. Whilst sequentially executing these sub-tasks in a hybrid fashion
and switching to the controllers that follow, the overall all manipulation task is achieved.

Anuj Shah Master of Science Thesis

Chapter 5

Simulation Results

5-1 Introduction

In this chapter, various examples of manipulations tasks have been simulated and results have
been plotted. Given the initial and goal position of an object to be manipulated, a script
generates the contact map, finds the shortest path on it, does workspace path-planning,
assigns appropriate controllers and in a hybrid manner, executes the compete manipulation
in a simulation software.

The software used to model the robotic arms and perform manipulation is called Virtual Robot
Experimentation Platform (VREP) [33]. This has been explained in brief in the following
section. Task planning and control are both performed on Matlab. A virtual communication
link exists between VREP and Matlab and simulation trigger is done on the Matlab side
for each time step after the computations have been performed. Hence, the control can be
assumed to be in real-time.

First, the working of a compliance controller is tested using the spatial spring based impedance
controller, described in section 2-5. A stiff robot is compared with a fairly compliant robot
with both performing the peg-in-the-hole task. This is followed by the results of planning
and manipulation of a single object. The last section describes the results of multiple object
manipulation tasks and the working of the Resolve Contact Constraints (RCC) algorithm.

5-2 Virtual Robotics Experimentation Platform

Virtual Robotics Experimentation Platform (VREP) is a software specially designed for the
modelling and simulation of robotic systems with a dedicated physics engine for dynamical
simulations. It offers several robot models in its library and it is also possible to design one’s
own robots. For the purpose of this research, a three degrees-of-freedom planar robot with
revolute joints has been modelled. The robot has no gripper at the end-effector position. It
has been equipped with a force sensor at its end-effector to measure forces and torques. For

Master of Science Thesis Anuj Shah

54 Simulation Results

cooperative manipulation, a similar robot is used with a part of its workspace overlapping
with the first robot.

A virtual communication link runs between VREP and Matlab for sending and receiving
sensor data and control inputs to and from Matlab respectively. Joint positions and velocities
are acquired from VREP for the purpose of control. Other sensor data received are the force
sensor readings. The control signal sent to VREP are joint torque values calculated using the
control algorithm. The objects being manipulated are all similar and cubic in shape to make
their grasping simpler. The simulation screen-shot in Figure 5-1 shows the two robotic arms
used for manipulation along with the cubic object.

Figure 5-1: Two planar robots and a cubic object in VREP c© used for carrying out simulation
tests.

5-3 Compliant Manipulation Task

The controller used for both arms is based on the spatial spring controller as described in
section 2-5. By varying the stiffness, both position and force control can be achieved. A higher
stiffness would lead to higher position accuracy with a less compliant robot end-effector and
vice-versa. To test the usability and versatility of this controller, a test was performed using a
stiff and a compliant manipulator. The task was similar to the peg-in-the-hole task, described
in section 2-5.

Figure 5-2 shows the initial and final states (top and bottom respectively) of the robots
during the execution of the task. The robotic arm on the left is a stiff robot with the stiffness
parameters set to a considerably high value. In contrast, the robot on the right changes
its parameters to become much more compliant when it is close to the insertion. The test
conditions for both the arms are given as follows:

Anuj Shah Master of Science Thesis

5-3 Compliant Manipulation Task 55

Figure 5-2: Peg-in-the-hole task being executed in VREP.

• The global base frame Ψ0 is attached to the base of the left robotic arm. All measure-
ments are relative to this inertial frame.

• Both the arms start from rest with their initial end-effector position and orientation
(6D) vectors as:

[
(θ1

init)T (p1
init)T

]T
=
[
−π 0 0 0 0 0.25 0.12

]T
[
(θ2

init)T (p2
init)T

]T
=
[
π 0 0 0 0 0.5 0.12

]T
where one and two are the stiff and compliant arms respectively. Both these positions
are with respect to a common base frame. θinit is the initial orientation vector given
by Euler angles and pinit is the position vector in Cartesian space.

• The holes are positioned on the ground surface. The final or goal positions of the
end-effectors to correctly enter the holes are:

[
(θ1

goal)T (p1
goal)T

]T
=
[
−π 0 0 0 0 0.25 0

]T
[
(θ2

goal)T (p2
goal)T

]T
=
[
π 0 0 0 0 0.5 0

]T
.

The trajectory would be a straight line in the downwards position.

Master of Science Thesis Anuj Shah

56 Simulation Results

• If path-planning and trajectory tracking for this task are perfect, both the robotic arms
would achieve the task. To see the effect of position error in the constrained directions,
the goal positions was given a small mismatch from the actual position in the y-axis
direction. The y goal positions were set to be 0.245 m and 0.505 m instead of 0.25 m
and 0.5 m for arms one and two respectively. Thus, the error was 5 mm.

• Both the arms commenced with high stiffness parameters. When the second arm reached
a z-axis position of less than 0.02 m, its parameters changed to make the arm highly
complaint.

From Figure 5-2, it is seen that the stiff robotic arm is unsuccessful in inserting the end-
effector into the hole due to the position error while the compliant robot is able to achieve the
task. This is because it is not “stubborn” to accurately position itself. It can wiggle around
the goal position and the forces felt due to mismatch in the hole position make the arm move
towards the hole and thus achieving the task. Quantitative results are shown and described
in the description that follows.

Comparison of Forces

0 0.5 1 1.5 2 2.5 3
−0.01

0

0.01

0.02

0.03

Time [s]

y−
fo

rc
e

 [
N

]

0 0.5 1 1.5 2 2.5 3
−0.3

−0.2

−0.1

0

0.1

Time [s]

z−
fo

rc
e

 [
N

]

0 0.5 1 1.5 2 2.5 3
−3

−2

−1

0

1
x 10

−3

Time [s]

x−
to

rq
u

e
 [
N

m
]

Figure 5-3: Forces acting at the end-effector for peg-in-the-hole task with stiff robotic arm.

The end-effector is attached with a force sensor which can measure the external forces or
wrench acting on it. As the robots are planar, the relevant position axes are y and z and
orientation axis is x. On having stated that, the forces and torque acting on and about these
three axes for both the arms have been measured for the peg-in-the-hole task.

Anuj Shah Master of Science Thesis

5-3 Compliant Manipulation Task 57

Figure 5-3 gives the forces acting on the stiff arm. More stiffness leads to higher interaction
forces. Initially, the forces are zero due no interaction of the end-effector with any external
object. At around 1.25 seconds, the arm makes contact with the hole and it is not aligned
exactly with the vertical axis of the hole due to the offset in the goal position. The peaks are
caused due to the initial interaction and the momentum of the arm as it is approaching with
a great speed.
The most significant forces are acting in the z-axis frame of the end-effector. This is the
direction normal to the end-effector and will experience the maximum force during impact
and otherwise. The force in this direction is in the range of −0.15 N to −0.25 N. As the goal
position is not reached, the end-effector remains constrained. The forces are proportional to
the actual and virtual end-effector position and thus, the interaction forces do not die out.

0 0.5 1 1.5 2 2.5 3
−0.1

−0.05

0

0.05

0.1

Time [s]

y−
fo

rc
e

 [
N

]

0 0.5 1 1.5 2 2.5 3
−0.1

−0.05

0

0.05

0.1

Time [s]

z−
fo

rc
e

 [
N

]

0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1
x 10

−3

Time [s]

x−
to

rq
u

e
 [
N

m
]

Figure 5-4: Forces acting at the end-effector for peg-in-the-hole task with compliant robotic
arm.

In Figure 5-4, the same interaction forces acting on the other arm have been displayed. The
dotted vertical line represents the time instance at which the stiffness parameters are changed
to make the arm more compliant. This is done when the end-effector is approaching the hole.
As in the previous arm, the initial forces are zero as there is no interaction with any external
environment.
When the end-effector touches the body around the hole position. Due to position inaccuracy,
the insertion will not directly take place. There will be interaction forces acting at the end-
effector. As the robot arm is more compliant, the interaction forces are considerably low.
The z-axis force is now less than 0.01 N (in an absolute sense) and short lived.
Due to the arm being compliant, position accuracy gets compromised to some extent. This
is not exactly a disadvantage and that is what is making the robot move around more freely

Master of Science Thesis Anuj Shah

58 Simulation Results

and and slip into the hole position without high interaction forces. In this case, the task
is achieved and the end-effector reaches the goal position. Thus, after the initial peak, the
interaction forces go back to zero again.

Comparison of Position Errors

0 0.5 1 1.5 2 2.5 3
0.24

0.245

0.25

0.255

0.26

Time [s]

y−
p

o
si

tio
n

 [
m

]

Actual

Desired

0 0.5 1 1.5 2 2.5 3
−0.05

0

0.05

0.1

0.15

Time [s]

z−
p

o
si

tio
n

 [
m

]

0 0.5 1 1.5 2 2.5 3
178.5

179

179.5

180

Time [s]

x−
a

n
g

le
 [

°]

Figure 5-5: Trajectory tracking of the end-effector for peg-in-the-hole task with stiff robotic arm.

A constant velocity trajectory is generated for the desired end-effector position in each di-
rection for both the arms to reach from their initial to goal position. The goal positions, as
previously mentioned, have an offset of 5 mm in y direction. The desired orientation remains
constant at a value of 180 deg and −180 deg for both arms respectively.

Figure 5-5 shows the position profiles of the stiff arm. Due to sudden acceleration at the
beginning, there is some tracking error which slowly approaches zero as the end-effector
starts tracking the desired position. The red line is the desired end-effector position and the
blue one is the actual. After the impact, the stiff arms is unable to reach its goal position
inside the hole. It gets stuck on the outer surface of the hole and remains there. This can be
seen by the constant or steady-state position error after 1.5 seconds.

Figure 5-6 shows the position errors with time. The error along y axis are considerably small.
The maximum position errors are along the z-axis, as expected. The steady-state error along
this axis is 0.02 m which is the height of the hole structure. The orientation error about
x-axis at steady state is less that 0.2 deg and a maximum tracking error of less than 1.5 deg.

In the case of complaint arm, the steady position errors are much less as the goal position is
reached. Figure 5-7 shows the actual and desired end-effector position for the compliant arm,

Anuj Shah Master of Science Thesis

5-3 Compliant Manipulation Task 59

0 0.5 1 1.5 2 2.5 3
−5

0

5
x 10

−3

Time [s]

y−
a

xi
s

[m
]

0 0.5 1 1.5 2 2.5 3
−0.03

−0.02

−0.01

0

Time [s]

z−
a

xi
s

[m
]

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

Time [s]

x−
a

xi
s

[
°]

Figure 5-6: Position error of the end-effector for peg-in-the-hole task with stiff robotic arm.

0 0.5 1 1.5 2 2.5 3
0.49

0.5

0.51

0.52

0.53

Time [s]

y−
p

o
si

tio
n

 [
m

]

Actual

Desired

0 0.5 1 1.5 2 2.5 3
−0.2

−0.1

0

0.1

0.2

Time [s]

z−
p

o
si

tio
n

 [
m

]

0 0.5 1 1.5 2 2.5 3
−180

−179.5

−179

−178.5

−178

Time [s]

x−
a

n
g

le
 [

°]

Figure 5-7: Trajectory tracking of the end-effector for peg-in-the-hole task with compliant robotic
arm.

Master of Science Thesis Anuj Shah

60 Simulation Results

0 0.5 1 1.5 2 2.5 3
−5

0

5

10
x 10

−3

Time [s]

y−
a

xi
s

[m
]

0 0.5 1 1.5 2 2.5 3
−0.03

−0.02

−0.01

0

Time [s]

z−
a

xi
s

[m
]

0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

Time [s]

x−
a

xi
s

[
°]

Figure 5-8: Position error of the end-effector for peg-in-the-hole task with compliant robotic
arm.

with the vertical line having similar meaning as before. Initial position tracking is good as the
stiffness parameters are high. Just before interaction, the arm becomes compliant, adjusts to
the goal position error in the command due to its compliance and finally achieves the goal
position. Hence, the steady state errors are very small.

The position errors with time are shown in Figure 5-8. They are seen to be considerably low
for all three axes. The error along y-axis is mostly due to the command error. the z-axis
error is considerably low with a steady-state error in 10e−3 m. Due to compliant parameters,
there will be some steady-state errors. These could further be reduced by making the robot
stiff again after the task has been achieved and the robot is stationary. The orientation error
about x-axis too is 0.2 deg at steady state.

5-4 Single Object Manipulation Task

This section describes the results of the planning and execution of a manipulation task. The
task chosen involved the use of both the robotic arms separately and cooperatively along
with the use of transition controllers. The planning involves generation of all contact modes
followed by the contact map. Using spatial relationships, transition were added to the Map.
The shortest path for on the contact map was determined and object path-planning for each
sub-task was done. This was followed by controller assignment and execution. Figure 5-9
displays a set time-lapsed images of the task being executed in VREP. The task conditions
are described as follows:

Anuj Shah Master of Science Thesis

5-4 Single Object Manipulation Task 61

Figure 5-9: Time-lapse photos of the simulated manipulation task in VREP as described in
section 5-4 (Left to right, top to bottom).

• The scene consisted of two robots R1 and R2, one object O1 and one surface S1.
The robots were controlled via the previously described compliance controllers. Every
controller had fixed parameter during execution. The object chosen was cubical in
shape. The surface was the ground on which the robots and the object rested.

• The initial and goal positions of the object (centre of mass) were set as:

po
init =

[
0 0.24 0.02

]
po

goal =
[
0 0.36 0.12

]
.

The initial position of the object was on the ground which is given by the surface z = 0.
The offset of 0.02 in the po

init’s y position is because the object is not point mass.

• po
init lay only in the workspace of R1 and po

goal lay in the common workspace of both
the robots. As the robots have no grippers, one single robot cannot lift the object from
the ground. Such a task requires two robots manipulating cooperatively.

Master of Science Thesis Anuj Shah

62 Simulation Results

• Single arm manipulation is limited to a robot pushing the object in the desired direction.
The workspace of single arm manipulation is hence, restricted to the surfaces.

The manipulation planning begins with the generation of all contact modes, followed by the
contact map for the given manipulation task. This has been described in the next subsection.

5-4-1 Generation of Contact Map

The scene contains two robots R1 and R2, a surface S1 and the object being manipulated O1
(a total of four). Using RCL, the first step is to generate all possible contact modes. Using
Equation (3-5), the total number of contact modes are seven. These have been shown in
Figure 5-10. Again, from the given condition and assumptions, several of these modes could
be omitted.

𝐂(𝑶𝟏: 𝑺𝟏)

𝐂(𝑶𝟏: 𝑹𝟐, 𝑺𝟏)𝐂(𝑶𝟏: 𝑹𝟏, 𝑺𝟏) 𝐂(𝑶𝟏: 𝑹𝟏, 𝑹𝟐, 𝑺𝟏)

𝐂(𝑶𝟏: 𝑹𝟏) 𝐂(𝑶𝟏: 𝑹𝟐)

𝐂(𝑶𝟏: 𝑹𝟏, 𝑹𝟐)

Figure 5-10: 2(nt−1)−1 combinations of contact modes for the manipulation task in Figure 5-9,
where nt = 4.

Both the robots have no grippers. Thus, a single arm is only capable of manipulating an
object resting on the surfaces within its workspace. It can only push the object. From this
assumption, the contact modes marked in red in Figure 5-10 can be neglected. That leaves
a total of five. From the given geometrical information of the scene components, spatial
relationships amongst the contact modes have been defined and the contact map is generated
as shown in Figure 5-11. Using this map, the manipulation task can be divided into sub-tasks.

The initial object position po
init lies in the contact mode C(O1 : S1) and the goal position

po
goal in C(O1 : R1,R2). The next step is to find the shortest path on the contact map from

the initial to the goal contact mode. This is done via Dijkstra’s shortest path algorithm as
described in subsection 3-4. The shortest path is shown in Figure 5-12 from the green nodes.
They are listed as follows:

• C(O1 : S1)

• C(O1 : R1,S1)

• C(O1 : R1,R2,S1)

• C(O1 : R1,R2)

Anuj Shah Master of Science Thesis

5-4 Single Object Manipulation Task 63

𝐂(𝑶𝟏: 𝑺𝟏)

𝐂(𝑶𝟏: 𝑹𝟐, 𝑺𝟏)𝐂(𝑶𝟏: 𝑹𝟏, 𝑺𝟏) 𝐂(𝑶𝟏: 𝑹𝟏, 𝑹𝟐, 𝑺𝟏)

𝐂(𝑶𝟏: 𝑹𝟏, 𝑹𝟐)

𝑆:𝑅2 ∩ 𝑆1𝑆:𝑅1 ∩ 𝑆1

𝑆: 𝑅1 ∩ 𝑅2 ∩ 𝑆1𝑆: 𝑅1 ∩ 𝑅2 ∩ 𝑆1

𝑆: 𝑅1 ∩ 𝑅2 ∩ 𝑆1

Figure 5-11: The Contact map for the given scene components for the task in Figure 5-9.

These nodes are the relevant contact modes which the object has to pass through, in order to
be manipulated. Path-planing and controller assignment needs to be undertaken in each of
these contact modes. This is the basic idea of dividing a larger manipulation task into small,
multiple tasks. Each of these sub-manipulation task will bring the object closer to its global
goal-set. The next subsection describes the object path-planning for the manipulation task.

𝐂(𝑶𝟏: 𝑺𝟏)

𝐂(𝑶𝟏: 𝑹𝟐, 𝑺𝟏)𝐂(𝑶𝟏: 𝑹𝟏, 𝑺𝟏) 𝐂(𝑶𝟏: 𝑹𝟏, 𝑹𝟐, 𝑺𝟏)

𝐂(𝑶𝟏: 𝑹𝟏, 𝑹𝟐)

𝑆:𝑅1 ∩ 𝑆1

𝑆: 𝑅1 ∩ 𝑅2 ∩ 𝑆1
𝑆: 𝑅1 ∩ 𝑅2 ∩ 𝑆1

Initial node

Goal node

Figure 5-12: Shortest path on contact map for the manipulation task in Figure 5-9 found using
Dijkstra’s shortest path algorithm, represented as the green nodes.

5-4-2 Object Path-planning

In each of the relevant contact modes, the robot(s) has to manipulate the the object to bring
it closer to the global goal position po

goal as well as in the workspace of the next contact
mode. Planning is done in each of these modes until the one with po

goal is reached. The goal
position of each contact mode path-planning serves as the initial position of the next one in
each relevant contact mode. The overall path is hence, divided into various sub-paths, one in
each contact mode. This has been described previously in section 4-2. The path-planning is
done via modified Dijkstra’s algorithm in the author’s research.

The first of the four contact modes is C(O1 : S1). No manipulation can take place in this state
as it is a static state. Hence, planner has to move on to the next one, which is C(O1 : R1,S1).

Master of Science Thesis Anuj Shah

64 Simulation Results

−0.03 0.01 0.05 0.09 0.13 0.17 0.21 0.25 0.29 0.33 0.37 0.41 0.45 0.49
−0.03

0.01

0.05

0.09

0.13

0.17

0.21

0.25

0.29

0.33

0.37

0.41

0.45

0.49

y−axis [m]

z−
a

xi
s

[m
]

Figure 5-13: Object path for contact mode C(O1 : R1,S1) of the manipulation task in Figure
5-9. The blue boxes represent the object path and the red dots are obstacles.

−0.03 0.01 0.05 0.09 0.13 0.17 0.21 0.25 0.29 0.33 0.37 0.41 0.45 0.49
−0.03

0.01

0.05

0.09

0.13

0.17

0.21

0.25

0.29

0.33

0.37

0.41

0.45

0.49

y−axis [m]

z−
a

xi
s

[m
]

Figure 5-14: Object path for contact mode C(O1 : R1,R2) of the manipulation task in Figure
5-9. The blue boxes represent the object path and the red dots are obstacles.

Anuj Shah Master of Science Thesis

5-4 Single Object Manipulation Task 65

In this mode, O1 is in contact with R1 and S1. The workspace is given by R1 ∩ S1. The
remaining workspace is considered to be in the obstacle or non-attainable region. The path
generated by the algorithm for this Contact mode is given in Figure 5-13.

In this figure, the blue boxes represent the planned path of the object and the red dots
represent the obstacle region (or nodes.) The non-red region represents the workspace of
C(O1 : R1,S1). Starting from the initial position po

init, the goal position in this contact
mode is at [0 0.38 0.02]. This position will serve as the initial for next contact mode path-
planning.

The next contact mode is C(O1 : R1,R2,S1), with the workspace R1 ∩ R2 ∩ S1. It can
be observed, both intuitively and numerically, that the initial position is already the best
possible position in this contact mode which is closest to the global goal and also lies in the
workspace of the next contact mode. Hence, no new path is produced and it is possible to
directly move on to the next contact mode, which is C(O1 : R1,R2).

In this contact mode, there are two robots and no surfaces, and thus it is possible to cooper-
atively manipulate the object in the common robot workspace, given by R1 ∩R2. This also
contains the global goal position of the object, as it is also the goal node in the contact map
shortest path. This, path-planning will end here. The object manipulation path is shown is
Figure 5-14. The final object position coincides with po

goal.

−0.03 0.01 0.05 0.09 0.13 0.17 0.21 0.25 0.29 0.33 0.37 0.41 0.45 0.49
−0.03

0.01

0.05

0.09

0.13

0.17

0.21

0.25

0.29

0.33

0.37

0.41

0.45

0.49

y−axis [m]

z−
a

xi
s

[m
]

Figure 5-15: Object path for the complete manipulation task of Figure 5-9. The blue boxes
represent the object path and the red dots are obstacles.

The two paths shown in Figure 5-13 and 5-14 together make up the overall path of the object
to be manipulated. This is shown in Figure 5-15. This is the desired path the object needs
to follow to successfully reach from the given initial and goal positions. The next step is to
assign controllers to track each of these generated local paths.

Master of Science Thesis Anuj Shah

66 Simulation Results

5-4-3 Controller Assignment

The controller assignment is done based on the flowchart given in Figure 4-4. There are two
manipulation sub-paths in total for the given manipulation task. These would require two
manipulation controllers. The robots also need to make or break contact with the object
being manipulated, which would require transition controllers. These controllers have been
described in section 4-4.

The first controller needed will beR1 making contact with O1, which requires a make-contact
controller. The contact point will be a point on the surface of O1. Once the contact is made,
R1 needs to perform a manipulation task of pushing the object according the object path.
Hence, a single arm manipulation controllers is assigned. The next manipulation task is
cooperative manipulation task of lifting the object. Before that is possible, R2 needs to
make contact with the object, which is done by assigning another Make-Contact controller.
Controllers are assigned to both R1 and R2 for the cooperative manipulation that follows,
for the task of lifting up the box.

On having assigned the controllers needed for the manipulation task, dynamical information is
used to define the DoA and assign a goal-set to each. Switching condition are then established
and the controllers are sequentially composed and ready to be executed in a hybrid fashion.
The results of the execution of the hybrid automaton have been discussed in the subsection
that follows.

5-4-4 VREP Simulation Results

The hybrid automaton for the given task has been executed in VREP. This subsection dis-
cusses the various results obtained. The positions, forces and velocities of the two robotic
arms and the object being manipulated have been discussed and analysed. The complete
task execution took around 30 seconds in total. The controller switching are demarcated by
vertical, dashed lines on every graph. There are three of these lines which divide the graph
into four sections, one for each controller.

Comparison of Position Errors

Figure 5-16 shows the position tracking of the first robot, R1 (left robot in VREP). The red
line represents the desired or virtual end-effector position and orientation and the blue one
is the actual end-effector ones. The manipulation task starts with R1 making contact with
O1, following by it pushing the object. This can be seen by the first and second sections of
the graphs. The end-effector maintains good accuracy during position tracking. In the third
section, R1 remains stationary and hence the lack of movement in the graphs.

The third section represents the make-contact controller of the second robot , R2 (right robot
in VREP), with the object. Figure 5-17 shows the position tracking of R2. It has no activity
in the first two sections as R1 is active then. The third graph section shows R2 positioning
itself to make contact with O1. Again, the end-effector maintains a good tracking accuracy.

In the last section of the graph, the two arms are cooperatively manipulating to lift the object,
as seen from the z direction movement in the graph. The y direction for both the arms has

Anuj Shah Master of Science Thesis

5-4 Single Object Manipulation Task 67

0 5 10 15 20 25 30
0

0.5

1

Time [s]

y−
p

o
si

tio
n

 [
m

]

Actual

Desired

0 5 10 15 20 25 30
0

0.5

1

Time [s]

z−
p

o
si

tio
n

 [
m

]

0 5 10 15 20 25 30
−100

−80

−60

−40

Time [s]

x−
a

n
g

le
 [

°]

Figure 5-16: Position tracking of R1 for the simulated manipulation task.

0 5 10 15 20 25 30
0

0.5

1

Time [s]

y−
p

o
si

tio
n

 [
m

]

Actual

Desired

0 5 10 15 20 25 30
0

0.5

1

Time [s]

z−
p

o
si

tio
n

 [
m

]

0 5 10 15 20 25 30
40

60

80

100

Time [s]

x−
a

n
g

le
 [

°]

Figure 5-17: Position tracking of R2 for the simulated manipulation task.

Master of Science Thesis Anuj Shah

68 Simulation Results

0 5 10 15 20 25 30
−0.05

0

0.05

Time [s]

y−
a

xi
s

[m
]

0 5 10 15 20 25 30
−0.05

0

0.05

Time [s]

z−
a

xi
s

[m
]

0 5 10 15 20 25 30
−10

−5

0

5

Time [s]

x−
a

xi
s

[
°]

Figure 5-18: Position errors of R1 for the simulated manipulation task.

a constant steady state error. This is because the desired end-effector position is somewhere
“inside” O1 and can never be reached as the motion is constrained by the object. Instead, it
leads to higher grasping forces due the difference between the desired and actual end-effector
positions. This has been discussed previously, in section 2-6.

The orientation tracking for both arms is also seen to be performing well. The errors of
position tracking are shown in Figure 5-18 and 5-19 for robots R1 and R2 respectively.
The tracking error can be seen not exceeding a very high value, with the steady state error
asymptotically reaching zero when the desired positions are constant and the arms are not
constrained.

The position and orientation data of the object with time was also measured and is shown
in Figure 5-20. As only the second and fourth controllers are meant for manipulation, the
movement ofO1 is only in those two sections of the graph. During the single arm manipulation
task, O1 is only pushed in the positive y direction and during cooperative manipulation, it is
lifted by the two robots in the positive z direction, as seen from the figure. The orientation
remains constant with some jitters. The comparison of the desired and actual positions of O1
in the yz plane is displayed in Figure 5-21. It can be observed that the desired object path is
correctly tracked by O1 during manipulation.

Comparison of Velocities

The velocity profiles of the two robotic arms R1 and R2 for the manipulation task are given
in Figure 5-22 and 5-23 respectively. The velocities have an under-damped response for both

Anuj Shah Master of Science Thesis

5-4 Single Object Manipulation Task 69

0 5 10 15 20 25 30
−0.05

0

0.05

Time [s]

y−
a

xi
s

[m
]

0 5 10 15 20 25 30
−0.05

0

0.05

Time [s]

z−
a

xi
s

[m
]

0 5 10 15 20 25 30
−5

0

5

10

Time [s]

x−
a

xi
s

[
°]

Figure 5-19: Position errors of R2 for the simulated manipulation task.

0 5 10 15 20 25 30
0.2

0.25

0.3

0.35

0.4

Time [s]

y−
p

o
si

tio
n

 [
m

]

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

Time [s]

z−
p

o
si

tio
n

 [
m

]

0 5 10 15 20 25 30
−0.5

0

0.5

Time [s]

x−
a

n
g

le
 [

°]

Figure 5-20: Position and orientation of O1 for the simulated manipulation task.

Master of Science Thesis Anuj Shah

70 Simulation Results

0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42
0

0.02

0.04

0.06

0.08

0.1

0.12

y−axis [m]

z−
a

xi
s

[m
]

Figure 5-21: Actual and desired positions of O1 for the simulated manipulation task. The red
boxes represent the desired object position from path-planning and the blue line represents the
path taken by O1 in the yz plane.

the arms. This could be the high acceleration or the sudden change in the desired end-
effector positions. An improvement in the trajectory generation of the desired end-effector
position of the robotic arms could result in smoother velocity profiles. Avoiding sudden jumps
(accelerations and jerks) in the desired velocities could also lead to a smoother response of
the robotic arm and consequently, making the manipulation task safer, smoother and more
conducive for fragile objects.

The velocity in each direction is close to zero when there is a switching of controllers. This
can be observed by checking the velocities where the dashed vertical lines intersect the graphs.
This is due to the fact that the goal-set of each robot has the velocity states equal to zero.
It is only possible to switch to the next controller when the previous controller reaches its
goal-set.

Comparison of Forces

Forces at the end-effector represent the robotic arm in contact. Figure 5-24 and Figure 5-25
represent the end-effector forces acting on R1 and R2 respectively. It can be observed that
the forces are only present when there is contact of the robotic arm with the object, that is,
during the execution of manipulation controller and while making the final contact.

In both the figures, the forces in the y-axis and torques about x-axis do not have a significant
value. This is because the forces during contact are mainly acting in direction normal to the
end-effector (or object) contact surface, which is the z-axis with respect to the end-effector.

Anuj Shah Master of Science Thesis

5-4 Single Object Manipulation Task 71

0 5 10 15 20 25 30
−0.2

−0.1

0

0.1

0.2

Time [s]

y−
ve

lo
ci

ty
 [
m

/s
]

0 5 10 15 20 25 30
−0.5

0

0.5

Time [s]

z−
ve

lo
ci

ty
 [
m

/s
]

0 5 10 15 20 25 30
−40

−20

0

20

Time [s]

x−
a

n
g

.
ve

l.
[

°/
s]

Figure 5-22: Velocities of R1 for the simulated manipulation task.

0 5 10 15 20 25 30
−0.2

−0.1

0

0.1

0.2

Time [s]

y−
ve

lo
ci

ty
 [
m

/s
]

0 5 10 15 20 25 30
−0.5

0

0.5

Time [s]

z−
ve

lo
ci

ty
 [
m

/s
]

0 5 10 15 20 25 30
−20

0

20

40

Time [s]

x−
a

n
g

.
ve

l.
[

°/
s]

Figure 5-23: Velocities of R2 for the simulated manipulation task.

Master of Science Thesis Anuj Shah

72 Simulation Results

0 5 10 15 20 25 30
−0.02

−0.01

0

0.01

0.02

Time [s]

y−
fo

rc
e

 [
N

]

0 5 10 15 20 25 30
−0.2

−0.1

0

0.1

0.2

Time [s]

z−
fo

rc
e

 [
N

]

0 5 10 15 20 25 30
−2

−1

0

1
x 10

−3

Time [s]

x−
to

rq
u

e
 [
N

m
]

Figure 5-24: End-effector forces of R1 for the simulated manipulation task.

0 5 10 15 20 25 30
−0.01

−0.005

0

0.005

0.01

Time [s]

y−
fo

rc
e

 [
N

]

0 5 10 15 20 25 30
−0.2

−0.1

0

0.1

0.2

Time [s]

z−
fo

rc
e

 [
N

]

0 5 10 15 20 25 30
−1

0

1

2
x 10

−3

Time [s]

x−
to

rq
u

e
 [
N

m
]

Figure 5-25: End-effector forces of R2 for the simulated manipulation task.

Anuj Shah Master of Science Thesis

5-5 Multiple Object Manipulation Task 73

The manipulation controllers controller assigned were compliant to an extent of not generating
excessive end-effector forces while maintaining a considerable position accuracy.

When there is a switch from a non-contact controller to manipulation controllers, there are
forces always present at the robot end-effector along the z-axis. This can be observed by
checking the points at which the vertical, dashed lines intersect the horizontal axis. The
presence of the z-axis forces represent an establishment of contact of the robot with O1.
Unless contact has not been established, the robot cannot switch to a manipulation controller.
This is a part of the switching condition in the hybrid automaton. This can be observed for
R1 while switching to the push controller and for both the arms while switching to cooperative
manipulation controller.

5-5 Multiple Object Manipulation Task

Multiple object manipulation is done similar to the single object manipulation except that a
correct manipulation sequence might be necessary due to co-dependencies among the objects.
The sequence is of manipulation is found via Algorithm 1 described in section 3-5-1. The
input to the algorithm is the initial and goal positions of the objects to be manipulated,
along the geometrical information of the scene. The algorithm returns the correct sequence
of manipulating the set of objects.

For this purpose, a small case study was done involving 4 objects, which could be named as
O1, O2, O3 and O4. Different initial and final positions were implemented and the algorithm
was tested in order to produce the manipulation sequences in each case. To simulate static
dependencies of the objects with each other, a task of stacking the objects was studied. For
simplicity, all objects were of similar geometry. They were cubic in shape with a length of
0.02 meters. The scene also comprised of a ground surface S1 and two robots R1 and R2.
The results have been presented in Table 5-1.

Table 5-1: Sequence of object manipulation with varying initial and goal object positions with
object dependencies. The positions are given in meters with respect to base frame.

O1 O2 O3 Sequenceinit goal init goal init goal
[0.26 0.02] [0.36 0.02] [0.24 0.02] [0.36 0.10] [0.56 0.02] [0.36 0.06] 1, 3, 2
[0.24 0.02] [0.36 0.10] [0.24 0.02] [0.36 0.02] [0.56 0.02] [0.36 0.06] 2, 3, 1
[0.24 0.02] [0.36 0.06] [0.56 0.02] [0.36 0.10] [0.50 0.02] [0.36 0.02] 3, 1, 2
[0.24 0.02] [0.32 0.06] [0.28 0.02] [0.32 0.02] [0.50 0.02] [0.42 0.02] 2, 1, 3

On find the correct sequence of object manipulation, the similar concepts of single object
manipulation from the previous section can be applied to manipulate the object one after
another, via their contact maps. Other objects could be considered as obstacles when they
not being manipulated. It is also possible that two objects can be manipulated simultaneously
if there are no dependencies and there are robots available for each manipulation. This could
be a part an extension of the author’s work.

Master of Science Thesis Anuj Shah

74 Simulation Results

5-6 Summary

This chapter presents the important results of the simulations performed during the research
work. First, the results of two arms performing the peg-in-the-hole task have been compared,
where one arm is stiff and other is comparatively compliant. The compliant arm was seen to
achieve the task in the presence of a nominal error in the constrained plane whereas the stiff
robotic arm gets stalled along with high interaction forces.

This result is followed by a detailed analysis of the simulation results of the planning and
execution of a complete task of manipulating an object with two robotic arms in VREP. The
end-effector positions, forces and velocities are analysed followed by object’s positions and
velocities. Manipulation planning was performed via Robot Contact Language and contact
maps and the controllers were executed in VREP and Matlab to successfully execute the
manipulation task. Tracking errors and forces for both the arms and the object were observed
to be within acceptable bounds.

Lastly, the simulation results of Algorithm 1 is compared with a scene of three objects with
static dependencies. The object manipulation sequences provided by the algorithm were seen
to be appropriate and consistent for varying initial and goal positions of the objects being
manipulated.

Anuj Shah Master of Science Thesis

Chapter 6

Conclusions and Future Work

6-1 Conclusions

This chapter draws conclusions about various theories and results presented in the author’s
research. The main idea proposed in this research work was the formulation and usage of
Robot Contact Language (RCL). This idea was used to simulate compliant robotic arms to
perform a complex task with multiple controllers. The idea of sequential compositions was
used to execute the controllers in a hybrid manner and perform the manipulation task.

RCL uses combinatorics along with spatial relationships to divide a complex manipulation
task into various sub-tasks based on the contact of the manipulated object with other objects,
robots and surfaces. Each contact mode is a combination of two or more components present
in a given scene. Using some basic rules to make and break contact amongst these modes, a
map, called the contact map, can be build on a symbolic level. This map already gives some
insight to carrying out a manipulation task on a higher level.

If an object has to be picked and placed from one surface to another using a robot, it in-
volves the robot making contact with the object, breaking its contact with the first surface,
making contact with the other surface and finally breaking its own contact with the object.
This information is already embedded in the contact maps without the use of any geometric
information. This information is used in the next step, where more information is added to
the contact map for a specific manipulation planning.

The Geometric information consists of robot workspaces, the object shapes, size, grasps,
etc., the contact areas of objects and surfaces, the space occupied by obstacles and other
such relevant information. All these quantities can be expressed using basic geometrical
entities. This information is used to make the contact maps richer and more useful. Spatial
relationships are defined amongst the contact modes and it is hence possible to define a
workspace of each mode along with the workspace for the transition between two modes.

Given the initial and final positions of an object to be manipulated, the contact map can be
then used to plan a complex manipulation task by separating the task into various sub-tasks

Master of Science Thesis Anuj Shah

76 Conclusions and Future Work

with one for each relevant contact mode. The modes containing the initial and final object
positions can be identified and the shortest path on the contact map can be found between
the two contact modes. This can be done using a graph search algorithm. In the author’s
research the Dijkstra’s shortest path algorithm has been used.

On having found the shortest path on the contact map between the initial and final contact
modes, the manipulation task can be divided into smaller tasks, one for each contact mode
present in the shortest path (if necessary). Manipulation path-planning can now be done
separately and sequentially in each of these relevant contact modes with the aim to bring the
object being manipulated closer to the global goal position. With overlapping workspaces,
path-planning in each contact mode will lead to a connected global path for the manipulation
task. A controller can be assigned to each of these sub-manipulations to carry out their
respective task, along with transition controllers to make or break the contact of robot with
the manipulated object.

This is followed by using dynamical information to decipher the domains of attraction (DoAs)
and assign goal-sets for each controller. The switching conditions amongst these controllers
is derived and the controllers are sequentially composed and executed in a hybrid manner to
carry out the manipulation task. Various simulations were performed on the Virtual Robotics
Experimentation Platform (VREP) and Matlab software and results were analysed.

The controller used by the robotic arms for manipulating objects was spatial springs based
impedance controller. As interaction of robots with the environment necessitates some form of
force control, this particular compliance controller was used to carry out manipulation tasks as
well as position control of the robot, which requires no interaction with the environment. This
controller was found to have a number of advantages over conventional force controllers and
workspace controllers. The main advantages were that it did not require inverse kinematics
for workspace control and force control was achieved by varying the spatial spring stiffness
parameters and/or the desired end-effector position. The end-effector force was seen to be
proportional to the distance between the actual and desired end-effector positions.

Two robotic arms were simulated to perform the task of peg-in-the-hole. One arm was stiff
and other was made compliant. The resultant interaction forces and position accuracies
were analysed. The compliant arm was seen to perform the task with very low and short
lived interaction forces even with errors in the goal (hole) position. Similar conditions were
simulated for the stiff arm which was unable to accomplish the task successfully and got stuck
on the outer surface of the hole with very high interaction forces. The compliant robot arm
showed the property to adapt to position errors and “wiggle” around or about a surface to
accomplish the task. On the other hand, the stiff arm was seen trying to accurately track the
goal position and in the end, failing to perform a task which involved interaction with the
external environment.

To study the planning and execution of a complex manipulation task, a task involving various
controllers like making contact, pushing and cooperative manipulation, was chosen. A step-
wise planning was done, starting from the generation of contact modes and the contact map.
It was seen that the use of RCL indeed breaks down the manipulation task into smaller and
easier-to-plan sub-tasks. As stated previously, path-planning and assignment was done and
the controllers were sequentially composed and the control automaton was executed. Various
results of the task variables such as the force, position and velocities of the arms and the
object being manipulated were analysed.

Anuj Shah Master of Science Thesis

6-2 Future Work 77

The manipulation task was successfully performed. The forces acting on the object during
single arm and cooperative manipulation did not exceed a very high value by choosing the
correct stiffness values. The grasping forces could further be set by varying the desired end-
effector positions. Cooperative manipulation task was seen to satisfy the grasp constrains,
which lead to successful cooperative manipulation and avoided the object from losing the
grasping forces. The positions errors throughout the manipulation tasks were within accept-
able bounds throughout the task. The actual path of the object being manipulated complied
with the desired manipulation path and the goal object was achieved at the end of the ma-
nipulation.

The velocities were also within reasonable bounds. A few jerks were seen in the initial part
of the manipulation. This was due to sudden change in the desired position and velocity
of the end-effector. These could be reduced by further improving the trajectory generation
algorithm.

The concept of RCL was also extended to the manipulation of multiple objects in a scene.
A global contact map was derived which involved all the objects which were required to be
manipulated along with the other components in the scene. Using that map, it was shown
how any multiple manipulation task could be achieved at an abstract level with just the
combinatory map. If there are dependencies of an object being manipulated with other
objects in the scene, those objects were manipulated first.

This lead to the idea of developing an algorithm that resolves contact constraints or depen-
dencies in a multiple object manipulation scenario. Given the initial and goal positions of all
the objects to be manipulated, the algorithm uses the contact maps to calculate object de-
pendencies and return the correct sequence of objects to be manipulated. The algorithm was
validated by checking its performance with various different object initial and goal positions
and obtaining the results. It was found to be working accurately for all the given positions
for a simple manipulation task.

6-2 Future Work

The work undertaken in this M.Sc. research involves the knowledge from a varied robotics
fields. It hence, opens up the possibility of exploring these research directions to further
improve the concepts developed in the author’s research work, some of which will be discussed
in brief. Figure 6-1 displays the important fields which could be explored by a future researcher
who is interested to extend the idea presented in this book.

The idea of Robot Contact Language is fairly new. The nomenclature has further scope of
improvement along with its extension to multiple objects and complex manipulation scenarios
and parallel manipulations. Smarter algorithms for high level decision making could be devel-
oped with a proper integration, which could automate the complete planning and execution
process to the greatest extent.

This concept heavily depends on the availability of geometrical information and the all the
components of the scene. Simple robot workspaces, object shapes and surfaces have been
simulated in this research work. Extending RCL to complex scenarios, where there are multi-
ple objects with vary geometrical features and non-smooth, non-planar surfaces poses a great

Master of Science Thesis Anuj Shah

78 Conclusions and Future Work

Robot Contact Language

Robot Vision and Feature
Extraction

Smarter Algorithms for
Decision Making

Path Planning and
Obstacle Avoidance

Robot Trajectory
Generation

Robotic Systems

Sequential Compositions

Speech Recognition and
Conversion

Implementation

Figure 6-1: Aspects involving potential future work in the field of Robot Contact Language.

challenge. Defining grasp points, contact surfaces, stable object placements, etc. would be
more involved in such a case.
Path-planning and trajectory generation algorithms used in this research are quite basic. Di-
jkstra’s algorithm is far from optimal in object path-planning when it is used in 3D Cartesian
space as the time complexity increases exponentially while going from 2D to 3D space. Other
path planning algorithms based on workspace planning could be researched and adapted to
be used in the RCL framework. Same applies for trajectory generation.
Further work also needs to be done with regards to sequential compositions and proper
evaluation of controller Domain of Attraction. The idea proposed in this research in more
planning based. If a disturbance acts on an object, there is no way to correct it. If object states
could be observed or estimated, sequential compositions could be used to their true potential.
If a disturbance would lead to a change in contact mode, the supervisory controller could
switch to the correct controller and the manipulation task could be resumed by observing the
states of the object being manipulated.
This idea has only been evaluated using planar robotic manipulators. It could further be ex-
tended to six degrees-of-freedom manipulators and even other non-holonomic robotic systems
like UAVs and UGVs. Going one step further, its implementation on a physical experimental
setup is also a challenging but important undertaking for the evaluation and analysis of RCL
framework. Lastly, speech recognition algorithms could be adapted to convert human speech
to RCL which would enable the robot to understand commands in human language.

6-3 Epilogue

The aim of this research work was to bring ideas from varied fields of robotics and control
theory and integrate them to devise a robotics framework that would enable higher level
decision making in the robot. This was successfully achieved by introducing the Robot Con-
tact Language, development of smarter algorithms and automated execution of the complete
framework to perform a simple manipulation task. The idea of compliant robotic manipula-
tion, cooperative manipulation and sequential compositions were successfully integrated and
implemented in the framework developed in this research work.

Anuj Shah Master of Science Thesis

Bibliography

[1] F. Caccavale, P. Chiacchio, A. Marino, and L. Villani, “Six-dof impedance control of dual-
arm cooperative manipulators,” IEEE/ASME Transactions on Mechatronics,, vol. 13,
no. 5, pp. 576–586, 2008.

[2] “Baxter Robot, Rethink Robotics .” https://www.youtube.com/watch?v=Mr7U9pQtwq8.

[3] R. M. Murray, Z. Li, S. S. Sastry, and S. S. Sastry, A mathematical introduction to robotic
manipulation. CRC press, 1994.

[4] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot modeling and control, vol. 3.
Wiley New York, 2006.

[5] M. T. Mason, “Compliance and force control for computer controlled manipulators,”
IEEE Transactions on Systems, Man and Cybernetics, vol. 11, no. 6, pp. 418–432, 1981.

[6] J. J. Craig and M. Raibert, “A systematic method of hybrid position/force control of
a manipulator,” in The IEEE Computer Society’s Third International Conference on
Computer Software and Application (COMPSAC), pp. 446–451, IEEE, 1979.

[7] C. Smith, Y. Karayiannidis, L. Nalpantidis, X. Gratal, P. Qi, D. V. Dimarogonas, and
D. Kragic, “Dual arm manipulation - a survey,” Robotics and Autonomous Systems,
vol. 60, no. 10, pp. 1340–1353, 2012.

[8] B. Siciliano and O. Khatib, Springer handbook of robotics. Springer, 2008.

[9] N. Hogan, “Impedance control: An approach to manipulation,” in American Control
Conference, 1984, pp. 304–313, IEEE, 1984.

[10] N. Hogan, “Impedance control: An approach to manipulation: Part ii - implementation,”
Journal of dynamic systems, measurement, and control, vol. 107, no. 1, pp. 8–16, 1985.

[11] C. Ott, Cartesian Impedance Control: The Rigid Body Case. Springer, 2008.

Master of Science Thesis Anuj Shah

https://www.youtube.com/watch?v=Mr7U9pQtwq8

80 Bibliography

[12] M. A. Diftler, J. Mehling, M. E. Abdallah, N. A. Radford, L. B. Bridgwater, A. M.
Sanders, R. S. Askew, D. M. Linn, J. D. Yamokoski, F. Permenter, et al., “Robonaut
2-the first humanoid robot in space,” in IEEE International Conference on Robotics and
Automation (ICRA), pp. 2178–2183, IEEE, 2011.

[13] C. Fitzgerald, “Developing baxter,” in IEEE International Conference on Technologies
for Practical Robot Applications (TePRA), pp. 1–6, IEEE, 2013.

[14] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek, “Sequential composition of dynami-
cally dexterous robot behaviors,” The International Journal of Robotics Research, vol. 18,
no. 6, pp. 534–555, 1999.

[15] E. Najafi, G. A. Lopes, and R. Babuška, “Automatic synthesis of sequential composition
of controllers,”

[16] V. Kallem, A. T. Komoroski, and V. Kumar, “Sequential composition for navigating a
nonholonomic cart in the presence of obstacles,” IEEE Transactions on Robotics, vol. 27,
no. 6, pp. 1152–1159, 2011.

[17] S. Stramigioli, From differentiable manifold to interactive robot control. Delft University
of Technology, 1998.

[18] E. D. Fasse and J. F. Broenink, “A spatial impedance controller for robotic manipu-
lation,” IEEE Transactions on Robotics and Automation, vol. 13, no. 4, pp. 546–556,
1997.

[19] V. Perdereau and M. Drouin, “Hybrid external control for two robot coordinated mo-
tion,” Robotica, vol. 14, no. 02, pp. 141–153, 1996.

[20] M. Uchiyama and P. Dauchez, “A symmetric hybrid position/force control scheme for
the coordination of two robots,” in Proceedings of the IEEE International Conference on
Robotics and Automation, pp. 350–356, IEEE, 1988.

[21] T. Wimbock, C. Ott, and G. Hirzinger, “Impedance behaviors for two-handed manip-
ulation: Design and experiments,” in IEEE International Conference on Robotics and
Automation, pp. 4182–4189, IEEE, 2007.

[22] D. Williams and O. Khatib, “The virtual linkage: A model for internal forces in multi-
grasp manipulation,” in Proceedings of the IEEE International Conference on Robotics
and Automation, pp. 1025–1030, IEEE, 1993.

[23] E. Najafi, G. A. Lopes, and R. Babuska, “Reinforcement learning for sequential com-
position control,” in IEEE 52nd Annual Conference on Decision and Control (CDC),
pp. 7265–7270, IEEE, 2013.

[24] R. B. Rusu, N. Blodow, Z. Marton, A. Soos, and M. Beetz, “Towards 3d object maps for
autonomous household robots,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 3191–3198, IEEE, 2007.

[25] A. Pronobis and P. Jensfelt, “Large-scale semantic mapping and reasoning with het-
erogeneous modalities,” in IEEE International Conference on Robotics and Automation
(ICRA), pp. 3515–3522, IEEE, 2012.

Anuj Shah Master of Science Thesis

81

[26] T. H. Cormen, C. E. Leiserson, R. L. Rivest, et al., “Dijkstra’s algorithm,” 2001.

[27] T. H. Cormen, Introduction to algorithms. MIT press, 2009.

[28] M. Stilman, J.-U. Schamburek, J. Kuffner, and T. Asfour, “Manipulation planning among
movable obstacles,” in IEEE International Conference on Robotics and Automation,
pp. 3327–3332, IEEE, 2007.

[29] S. M. LaValle, “Rapidly-exploring random trees a Ðęew tool for path planning,” 1998.

[30] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach to single-query
path planning,” in IEEE International Conference on Robotics and Automation (ICRA),
vol. 2, pp. 995–1001, IEEE, 2000.

[31] M. V. Weghe, D. Ferguson, and S. S. Srinivasa, “Randomized path planning for redun-
dant manipulators without inverse kinematics,” in 7th IEEE-RAS International Confer-
ence on Humanoid Robots, pp. 477–482, IEEE, 2007.

[32] R. Alami, J.-P. Laumond, and T. Siméon, “Two manipulation planning algorithms,” in
Proceedings of the workshop on Algorithmic foundations of robotics, pp. 109–125, AK
Peters, Ltd., 1995.

[33] C. Robotics, “V-rep, virtual robot experimentation platform,” 2013.

Master of Science Thesis Anuj Shah

82 Bibliography

Anuj Shah Master of Science Thesis

Appendix A

Glossary

List of Acronyms

SCC sequential composition control

P(I)D proportional-(integral)-derivative

IK inverse kinematics

DoA domain of attraction

GCM global contact map

LCM local contact map

RCL Robot Contact Language

RCC Resolve Contact Constraints

RSC Resolve Spatial Constraints

DoF degree-of-freedom

Master of Science Thesis Anuj Shah

84 Glossary

List of Symbols

q generalized/joint position vector
Q joint space
Ψ0 base(inertial) frame
Ψn nth link frame
H Homogeneous matrix
R Rotation matrix
p translational position vector
T Twist
w angular velocity
v translational velocity
W Wrench
m torque vector
f force vector
J Jacobian matrix
M(q) Manipulator inertia matrix
C(q, q̇) Coriolis matrix
G(q) Gravity matrix
τ Joint torque co-vector
Wext External end-effector Wrench
Kd Derivative gain
Kp Proportional gain
qd Desired joint position vector
Fspg One-dimensional spring force
x Actual spring position
xd desired/rest-length spring position
Kspg Spring stiffness
Λd Desired end-effector inertia
Dd Desired end-effector damping
Kd desired end-effector stiffness
Wee Generated end-effector Wrench
x̃ Infinitesimal end-effector Twist
Espg Energy in 1D spring
Kt Translational stiffness
Kr Rotational stiffness
Kc Coupling stiffness
Gt Translational co-stiffness
Gr Rotational co-stiffness
Gc Coupling co-stiffness
Wf Generated end-effector Wrench via spatial springs

Anuj Shah Master of Science Thesis

85

Dc Cartesian damping matrix
W o

ext Object external forces
W o

int Object internal forces
A Grasp matrix
B Null-space matrix of grasp matrix
To Object trajectory
Tk kth arm trajectory
x State vector of a system
u Input vector of a system
X State space
U Input space
Φ Generic controller/control law
D Domain of Attraction (DoA)
G Goal-set of a controller
x0 Initial state vector
Φup Up controller
Φdown Down controller
Φswing Swing-up controller
θp Pendulum angular position
fext External force vector
S State space
c arbitrary constant
Ox Object “x” in the scene
Rx Robot “x” in the scene
Sx Surface “x” in the scene
nr Number of robots
no Number of object
ns Number of surfaces
nc Total combinations of contact combination / contact modes
nt Total number of scene components
d0 Total length of a stretched planar robotic arm
WR Robot workspace
WS Contact plane/workspace of a surface
Wobs Total obstacle workspace
GE scene geometry (Algorithm 1)
xi

1:no initial object positions (Algorithm 1)
xg

1:no goal object positions (Algorithm 1)
LS Local object sequence (Algorithm 1)
GS Global object sequence (Algorithm 1)
CMap Contact Map (Algorithm 1)
minP Shortest path on Contact Map (Algorithm 1)
DO Set of dependable objects (Algorithm 1)
xinit initial position (of an object)
xgoal goal position (of an object)
xo Current object position
xo

f Final object position
vo

max Maximum absolute velocity of the object

Master of Science Thesis Anuj Shah

86 Glossary

vo Object current velocity
k1 Arbitrary constant
xo

des Desired object position
xo

n Position of next cell location in desired object path
dt sampling time step
xa Current end-effector position/orientation vector
xa

f Final end-effector position/orientation vector
va End-effector current velocity
va

max End-effector maximum velocity
xa

des End-effector desired position/orientation
xa

n Next End-effector position/orientation vector in desired path
K Stiffness matrix
T g
p Goal Twist of an arbitrary controller p
ε Machine precision/tolerance (very small value)
θinit End-effector initial orientation vector (Euler angles)
pinit End-effector initial position vector
θgoal End-effector goal orientation vector (Euler angles)
pgoal End-effector goal position vector
po

init Object initial position vector
po

goal Object goal position vector

Anuj Shah Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Preface
	Acknowledgements

	Main Matter
	Introduction
	Robotic Manipulation
	Modelling and Control
	Compliance Control
	Cooperative Manipulation

	Supervisory Control
	Robot Contact Language
	Summary

	Theoretical Background
	Introduction
	Robotic Manipulation
	Modelling of Robotic Manipulators
	Control of Robotic Manipulators
	Compliance Control
	Cooperative Manipulation
	Sequential Composition
	Summary

	Robot Contact Language
	Introduction
	Nomenclature of Robot Contact Language
	Contact Maps
	Manipulation Tasks via Contact Maps
	Contact Maps for Multiple Object Manipulation
	Obtaining Object Manipulation Sequence
	Parallel Manipulation
	Global Contact Map

	Summary

	Path-planning and Control
	Introduction
	Workspace Path-planning
	Trajectory Planning
	Controller Assignment
	Manipulation Controllers
	Transition Controllers
	Control Synthesis

	Control Execution
	Summary

	Simulation Results
	Introduction
	Virtual Robotics Experimentation Platform
	Compliant Manipulation Task
	Single Object Manipulation Task
	Generation of Contact Map
	Object Path-planning
	Controller Assignment
	VREP Simulation Results

	Multiple Object Manipulation Task
	Summary

	Conclusions and Future Work
	Conclusions
	Future Work
	Epilogue

	Appendices
	Glossary
	List of Acronyms
	List of Symbols

