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Mapping Surface Heat Fluxes by Assimilating SMAP Soil
Moisture and GOES Land Surface Temperature Data
Yang Lu1 , Susan C. Steele-Dunne1, Leila Farhadi2 , and Nick van de Giesen1

1Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the
Netherlands, 2Department of Civil and Environmental Engineering, George Washington University, Washington, DC, USA

Abstract Surface heat fluxes play a crucial role in the surface energy and water balance. In situ measure-
ments are costly and difficult, and large-scale flux mapping is hindered by surface heterogeneity. Previous
studies have demonstrated that surface heat fluxes can be estimated by assimilating land surface tempera-
ture (LST) and soil moisture to determine two key parameters: a neutral bulk heat transfer coefficient (CHN)
and an evaporative fraction (EF). Here a methodology is proposed to estimate surface heat fluxes by assimi-
lating Soil Moisture Active Passive (SMAP) soil moisture data and Geostationary Operational Environmental
Satellite (GOES) LST data into a dual-source (DS) model using a hybrid particle assimilation strategy. SMAP
soil moisture data are assimilated using a particle filter (PF), and GOES LST data are assimilated using an
adaptive particle batch smoother (APBS) to account for the large gap in the spatial and temporal resolution.
The methodology is implemented in an area in the U.S. Southern Great Plains. Assessment against in situ
observations suggests that soil moisture and LST estimates are in better agreement with observations after
assimilation. The RMSD for 30 min (daytime) flux estimates is reduced by 6.3% (8.7%) and 31.6% (37%) for
H and LE on average. Comparison against a LST-only and a soil moisture-only assimilation case suggests that
despite the coarse resolution, assimilating SMAP soil moisture data is not only beneficial but also crucial for
successful and robust flux estimation, particularly when the uncertainties in the model estimates are large.

1. Introduction

Surface heat fluxes significantly influence the terrestrial water and energy cycle and are crucial to many
aspects, such as ecology, meteorology, and climate change studies (Lu et al., 2016; McCabe & Wood, 2006).
However, in situ measurements of surface heat fluxes are difficult and costly, and are only available from a
handful of sparse flux networks (e.g., FluxNet, AmeriFlux, AsiaFlux) (Baldocchi et al., 2001; Kumar et al.,
2017). Remote sensing techniques provide potential for land surface measurements. Unfortunately, surface
heat fluxes cannot be observed directly from space since they do not have a unique signature that can be
detected by remote sensing instruments (Sini et al., 2008). Large-scale flux mapping is further complicated
by the spatial heterogeneity in the properties of the underlying land surface, such as surface roughness, soil
moisture, and vegetation cover (Jung et al., 2009, 2011).

w?>Many studies have been conducted to estimate surface heat fluxes, either at point or large scale. Some
studies build empirical relationships between surface heat fluxes and local indicators that are observable,
such as land surface temperature (LST) and vegetation indices (Gillies et al., 1997; Nagler et al., 2005a,
2005b; Tang et al., 2010). These methods are often referred to as the ‘‘triangle method’’ (Carlson, 2007).
Other studies estimate fluxes by solving the surface energy balance (SEB) using SEB models (Allen et al.,
2007; Anderson et al., 1997, 2011; Bastiaanssen et al., 1998a, 1998b; Jiang & Islam, 2001; Kustas et al., 1996;
Su, 2002; Timmermans et al., 2007) or land surface models (LSM) (Niu et al., 2011; Oleson et al., 2010; Zheng
et al., 2015). These models require ancillary data input such as surface roughness length and leaf area index
(LAI) to estimate fluxes, and a closure assumption is often imposed (Sini et al., 2008).

In a departure from the diagnostic methods, some studies estimate surface heat fluxes by assimilating LST
time series into a heat transfer model (Bateni & Entekhabi, 2012; Bateni & Liang, 2012; Bateni et al., 2013a;
Boni et al., 2001; Caparrini et al., 2003, 2004a, 2004b; Castelli et al., 1999; Xu et al., 2014, 2015). These studies
aim to estimate two key parameters: a bulk heat transfer coefficient under neutral condition (CHN) which
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governs the sum of fluxes, and an evaporative fraction (EF) which represents the partitioning between sen-
sible and latent heat fluxes. Sensible heat fluxes (H) are calculated using CHN, and latent heat fluxes (LE) are
derived from H and EF. Two assumptions are made: (1) CHN stays constant during a certain time period (e.g.,
a month), and (2) EF stays constant during the daytime (09:00–16:00 LT) under clear-sky conditions. As a
result of the simplified model structure, this group of methods greatly reduces the dimensions of parameter
estimation, and only requires a limited amount of data input (e.g., solar radiation, precipitation, wind speed,
and air temperature).

Despite the advantages of estimating fluxes from LST assimilation, some limitations have been demon-
strated. First, the methods perform poorly on wet soil or dense vegetation conditions, as the constraint of
LST on SEB is weakened when the energy partitioning becomes more energy limited (Bateni & Entekhabi,
2012; Caparrini et al., 2004a; Crow & Kustas, 2005; Lu et al., 2016; Xu et al., 2014). Second, an accurate initial
guess of CHN is crucial for flux estimation, which is often unavailable. Third, CHN has been demonstrated to
increase with LAI (Bateni et al., 2013b, 2014), hence assuming CHN to be constant in a monthly period may
degrade surface heat flux estimation, especially in the growing season when the surface characteristics
change dramatically over a few weeks.

Several studies have been conducted to improve the methodology. Sini et al. (2008) first demonstrated that
flux estimation can be improved by assimilating the antecedent precipitation index. Later, Farhadi et al.
(2014, 2016) and Lu et al. (2016) introduced different forms of relationships between EF and soil wetness
condition, and demonstrated that flux estimation is improved by putting stronger constraints on EF. An
exponential relationship between CHN and LAI was proposed by Farhadi et al. (2014), and proved effective
in characterizing the temporal evolution of surface control on heat fluxes with vegetation phenology
(Abdolghafoorian et al., 2017; Farhadi et al., 2016).

Remote sensing techniques provide global measurements of LST (Li et al., 2013; Sobrino & Romaguera,
2004; Sun & Pinker, 2003) and soil moisture (Entekhabi et al., 2010; Kim et al., 2014; Mladenova et al., 2014),
which greatly facilitates large-scale surface heat flux mapping. The commonly used soil moisture products
are from the Advanced Microwave Scanning Radiometer for Earth observation science (AMSR-E) (Njoku
et al., 2003), the Advanced Microwave Scanning Radiometer-2 (Imaoka et al., 2010), the Advanced Scatter-
ometer (ASCAT) (Bartalis et al., 2007), the Soil Moisture and Ocean Salinity (SMOS) (Kerr et al., 2001), and the
Soil Moisture Active Passive (SMAP) (Entekhabi et al., 2010). In particular, the SMAP mission launched in Jan-
uary 2015 provides global coverage of the top 5 cm soil moisture with a spatial resolution of about 36 km
every 2–3 days. Various validation studies have suggested that SMAP characterizes the dynamics of soil
moisture with a high accuracy (Cai et al., 2017; Colliander et al., 2017; Pan et al., 2016). Due to the coarse res-
olution of soil moisture estimates from remote sensing and the spatial heterogeneity of soil moisture, it is
unclear if these soil moisture data can effectively constrain EF. In addition, the large spatiotemporal resolu-
tion gap between SMAP data and LST data poses a significant challenge for the joint assimilation. For exam-
ple, LST data from Geostationary Operational Environmental Satellite (GOES) are provided every hour at
0.058 resolution.

Lu et al. (2016) proposed a methodology to estimate surface heat fluxes by joint assimilation of in situ LST
and soil moisture data into a simple heat and moisture transfer model. Here this approach is developed
further by: (1) employing a dual-source (DS) model to characterize the influence from the soil and canopy,
(2) adopting the relationship proposed by Farhadi et al. (2014) to eliminate the need for initial CHN values,
(3) assimilating soil moisture data from SMAP and LST data from GOES, (4) bridging the resolution gap using
a hybrid particle assimilation strategy, (5) using forcing data independent of ground measurements, and
(6) making the strategy calibration free (surface heat flux observations are not required to calibrate the tun-
ing factor in assimilation) using an adaptive approach. This study aims to answer the following questions:
(1) Can surface heat fluxes be improved by assimilating SMAP soil moisture and GOES LST data? (2) How
can the spatial and temporal resolution between the data sets be bridged? (3) What is the added value of
the SMAP soil moisture data to flux estimation?

This paper is organized as follows: Section 2 describes the DS model, the data sets used, the hybrid particle
assimilation strategy, and the study area. Section 3 provides results assessment and discussion of the esti-
mated soil moisture, LST, 30 min and daytime heat fluxes as well as the spatial distribution of parameters. The
added value of SMAP soil moisture data is also discussed. Finally, the conclusions are drawn in section 4.
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2. Materials and Methods

2.1. Dual-Source Modeling
2.1.1. Surface Energy Balance
The methodology is fundamentally based on the SEB equation

Rn5H1LE1G (1)

where Rn is net radiation, H is sensible heat flux, LE is latent heat flux, and G is ground heat flux. H can be
calculated from the vertical gradient of temperature between the land surface and the near-surface air by

H5qCpCHUðLST2TaÞ (2)

where q (kg/m3) is air density, Cp (J/kg/K) is specific heat capacity of air, CH (-) is the bulk coefficient for heat
transfer, U (m/s) is wind speed, and LST (K) and Ta (K) are LST and near-surface air temperature.

CH is mainly determined by influences from two factors: CHN and atmospheric stability. Following Farhadi
et al. (2014), CHN is estimated by

CHN5exp ða1b � LAIÞ (3)

Here the parameters a and b represent the surface control on energy fluxes from the soil and vegetation
density, respectively.

The stability correction function proposed by Caparrini et al. (2003) is adopted to calculate CH from CHN. This
approach has proved effective in several flux estimation studies (Bateni & Entekhabi, 2012; Bateni & Liang,
2012; Bateni et al., 2013a; Caparrini et al., 2003, 2004a, 2004b; Farhadi et al., 2014; Lu et al., 2016; Xu et al.,
2014, 2015). The function is given by

CH5CHN � f ðRiÞ5CHN � ½112ð12e10Ri Þ� (4)

where Ri is the Richardson number which is an indicator of the atmospheric stability, and can be calculated by

Ri5
g

Tpot

DTpot

Dz
Dz
DU

� �2

(5)

where g (m/s2) is gravitational acceleration, Tpot (K) is potential temperature, z (m) is vertical height, and D
represents the difference across height difference Dz.

H can be derived if CHN and Ri are determined, and LE is calculated from H and EF. EF is defined as

EF5
LE

H1LE
(6)

which renders

LE5H
EF

12EF
(7)

The primary assumption is that EF stays constant during daytime (09:00–16:00 LT) under clear-sky condi-
tions (Crago, 1996; Crago & Brutsaert, 1996; Gentine et al., 2007). In this way, only one EF estimate is needed
to calculate LE at every time step during daytime. This greatly reduces the number of parameters to be esti-
mated and increases the application robustness (Caparrini et al., 2004a).
2.1.2. Dual-Source Scheme
The DS SEB scheme, as shown in Figure 1, was first introduced by Norman et al. (1995) and Kustas et al.
(1996). In the DS scheme, the land surface is characterized as a mixed layer of soil and vegetation canopy,
and the energy balance is constructed for soil and canopy, respectively. The surface heat fluxes are calcu-
lated as weighted combination of the contributions from both sources. The net radiation for soil (Rns) is par-
titioned into sensible heat flux (Hs), latent heat flux (LEs), and ground heat flux (G) by

Rns5Hs1LEs1G (8)

The heat storage in the canopy is ignored, and the net radiation for canopy (Rnc) is partitioned into sensible
(Hc) and latent (LEc) heat fluxes
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Rnc5Hc1LEc (9)

The total fluxes are calculated by the combination of the fluxes from
soil and canopy, weighted by the respective fractional cover

H5fcHc1ð12fcÞHs (10)

LE5fcLEc1ð12fcÞLEs (11)

where fc (-) is the canopy cover fraction calculated from LAI following
an semiemipirical relationship (Caparrini et al., 2004b; Choudhury,
1987; Norman et al., 1995) by

fc512exp ð20:5 � LAIÞ (12)

The net radiation for soil and canopy are calculated by building a bal-
ance between incident shortwave (R#s ) and longwave (R#l ) radiation
and the corresponding outgoing radiation for each component

Rns5 12albsð ÞR#s 1R#l 2EsrT 4
s (13)

Rnc5 12albcð ÞR#s 1R#l 2EcrT 4
c (14)

where albs (-) and albc (-) are the surface albedo of soil and canopy, Es (-) and Ec (-) are the soil and canopy
emissivity, and r (W=m2=K4) is the Stefan-Boltzmann constant.

The conductances for heat transfer between soil and air within the canopy and between canopy and air
within the canopy are represented by CHS and CHC, respectively, following Caparrini et al. (2004b). Hs and Hc

are given by

Hs5qCpCHSUwðTs2TwÞ (15)

Hc5qCpCHC UwðTc2TwÞ (16)

where Ts (K) and Tc (K) are soil and canopy temperature, Tw (K) and Uw (m/s) are the air temperature and
wind speed at a reference height within the canopy volume.

Assuming an exponential decay of conductance within the canopy, Caparrini et al. (2004b) proposed an
approach to calculate CHSUw and CHC Uw from CHU by

KH5CHU

KHS5CHSUw5KHexp 20:6 � LAIð Þ

KHC5CHC Uw5KHexp 20:3 � LAIð Þ

8>><
>>:

(17)

H can also be calculated using CH for the heat transfer between air within the canopy and air above the can-
opy by

H5qCpCHUðTw2TaÞ (18)

The equation for Tw retrieval can be derived by solving equations (10) and (15–18):

Tw5
1

KH1 12fcð ÞKHS

fc 12EFcð Þ
qCp

Rnc1KHTa1 12fcð ÞKHSTs

� �
(19)

Likewise, Tc can be obtained as

Tc5
12albcð ÞR#s 1R#l 13EsrT 4

a

h i
12EFcð Þ1qCpKHC Tw

4EsrT 3
a 12EFcð Þ1qCpKHC

(20)

Here EFs and EFc are the evaporative fraction for soil and canopy, respectively.
2.1.3. Forward Model
The force-restore model is used to propagate Ts in response to atmospheric forcing and the restoring effect
of the deep soil

Figure 1. Schematic diagram of the DS SEB scheme.
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dTs

dt
5

2
ffiffiffiffiffiffiffi
px
p

Pe
ðRns2Hs2LEsÞ22pxðTs2TdÞ1� (21)

Here Pe ðJ=m2=K=s1=2Þ is the effective thermal inertia, x ðs21Þ is the diurnal frequency, Td (K) is deep soil
temperature, and � represents model error. Pe is calculated from soil moisture, bulk density, and sand frac-
tion using the method proposed by Lu et al. (2009), and Td is estimated with a semidiurnal filter (Caparrini
et al., 2003). An additive Gaussian error with a standard deviation of 0.1 K is added at each time step (Lu
et al., 2016).

Soil moisture is modeled using the scheme from the simple biosphere model (SiB) (Sellers et al., 1986). For a
soil column divided into n layers, the soil moisture variation is calculated by

@W1

@t
5

1
hsD1

½I12Q1;22
1
qw
ðEs1Et;1Þ�; k51

@Wk

@t
5

1
hsDk

½Qk21;k2Qk;k112
1
qw

Et;k �; k52 . . .n21

@Wn

@t
5

1
hsDn

½Qn21;n2Qn�; k5n

8>>>>>>>><
>>>>>>>>:

(22)

Here Wk (-) is the soil wetness of the kth layer, I1 (cm/s) is the infiltration into the first layer from precipita-
tion, Dk (cm) is the thickness of the kth layer, Qk;k11 (cm/s) is the flow between the kth and k 1 1th layer,
qw (g/cm3) is the water density, Es (g/cm3/s) is the water loss from soil evaporation, Et;k (g/cm3/s) is the water
loss from vegetation transpiration in the kth layer, and Qn (cm/s) is the gravitational drainage from the
deepest layer. In this experiment, the soil column is divided into six layers, with layer thicknesses of 5, 10,
15, 15, 15, and 30 cm, respectively. The additive modeling error is assumed Gaussian with a standard devia-
tion of 0.001 m3/m3. A more detailed description can be found in Lu et al. (2016).

To constrain EFs and EFc with modeled soil moisture, the relationship proposed by Dirmeyer et al. (2000) is
adopted and improved to apply to the soil and canopy separately:

EFref
s 5

2EFmax

p
arctanðas � SWIsÞ (23)

EFref
c 5

2EFmax

p
arctanðac � SWIcÞ (24)

where EFref
s and EFref

c are the reference daytime EF values estimated from the corresponding soil wetness
indices (SWI). EFmax is the maximum possible EF and is assumed to be unity (Lu et al., 2016). as and ac are
slope factors that control the shape of the curve and will be estimated during the assimilation. When the
reference EF is determined, the prior guess of daytime EF is uniformly sampled within a 60.2 range follow-
ing Lu et al. (2016).

EFs is assumed to be dependent only on the wetness condition of the surface soil (h1), and EFc is assumed
to be affected by the total transpirable water of the soil column (hcol):

SWIs5
h12hr

hs2hr
(25)

SWIc5
hcol2hwp

hfc2hwp
(26)

where hs and hr are saturated and residual soil moisture, while hfc and hwp are field capacity and wilting
point. hcol is the mean soil moisture of all layers weighted by root fractions proposed by Zeng (2001).

2.2. Study Area and Data
The developed methodology is tested over an area in the U.S. Southern Great Plains as illustrated in Figure 2.
The major part of the study area (35:75�N to 37:24�N, 96:72�W to 98:21�W) is in Oklahoma and a small por-
tion is in Kansas. The area is mostly flat with elevation ranging from about 230 to 450 m above sea level.
The area is covered by 4 3 4 SMAP soil moisture grid cells, or 30 3 30 GOES LST grid cells. The major land
cover types are grassland and cropland according to ESA Climate Change Initiative (CCI) land cover data set
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(v1.6.1). The main soil texture classes are silt loam and sandy loam, and the soil hydraulic properties are esti-
mated from soil texture data using ROSETTA software (Schaap et al., 2001). Thirty-minute in situ flux meas-
urements are available from four Energy Balance Bowen Ratio (EBBR) flux stations provided by the
Atmospheric Radiation Measurement (ARM) network. Hourly soil moisture measurements at the depths of 5,
10, 20, 50, and 100 cm are obtained at two stations: Abrams from the Soil Climate Analysis Network (SCAN;
Schaefer et al., 2007) and Stillwater from the U.S. Climate Reference Network (CRN; Bell et al., 2013).

Precipitation forcing data are obtained from Global Precipitation Measurement (GPM) (Hou et al.,
2014) 3IMERGHH product. The data set provides multisatellite precipitation estimates with gauge cali-
bration, which are available every 30 min at a spatial resolution of 0.18 (Huffman et al., 2015). Other
atmospheric forcing data (R#s ; R#l , Ta, U and air pressure [Pa]) are provided by the North American Land
Data Assimilation System project phase 2 (NLDAS-2) Forcing File A (Xia et al., 2012). The majority of
forcing data are interpolated from the North American Regional Reanalysis (NARR) and are provided
hourly at 0.1258 resolution.

Soil texture data, including sand fraction, clay fraction, and bulk density data are the same data sets used
for SMAP soil moisture retrieval (Das, 2013) and are obtained from the National Snow and Ice Data Center
(NSIDC). These data sets are provided at 3 km resolution. LAI data are extracted from the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) MCD15A2 product (Knyazikhin et al., 1999). The data are available
at 1 km resolution every 8 days.

Figure 2. Land cover and stations in the study area. The thick black grids represent SMAP soil moisture grids, while the
thin dashed grids represent GOES LST grids. The thick red line demarcates the border between Kansas and Oklahoma.
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The SMAP soil moisture data used for assimilation are the Level-3 soil
moisture data (L3 SM P) retrieved from the L-band radiometer. The
data are posted on 36 km Equal-Area Scalable Earth-2 (EASE-2) grids,
with a typical revisit interval of 2–3 days (Entekhabi et al., 2014). The
data are acquired and mapped to geographic coordinates from
https://reverb.echo.nasa.gov/. Previous studies have suggested that
SMAP surface soil moisture data may be biased (Colliander et al.,
2017; Zeng et al., 2016). Before assimilation, bias correction is per-
formed using cumulative distribution function (CDF) matching
between the observations and simulations for each SMAP grid cell
separately to reconcile the differences in long-term mean, variance,
and higher moments (De Lannoy & Reichle, 2016).

GOES LST data are provided by Copernicus Global Land Service
(http://land.copernicus.eu/global/). The LST data are generated from infrared data from a collection of geo-
stationary satellites covering different areas to provide global coverage (Freitas et al., 2013). The data are
provided hourly at 0.058 resolution. Following previous studies (Bateni et al., 2013b), the LST data are
directly assimilated into the forward model without bias correction. One concern is that the bias between
modeled and observed LST data can be caused by not only the climatological differences between the for-
ward model and the observation system but also by the uncertainties of initial parameter ranges at local
scale. Hence, prior scaling may disturb the diurnal variations of LST evolution, and degrade the algorithm
performance in updating parameters. A summary of the data sets is provided in Table 1, and all data are
converted to geographic coordinates.

2.3. Hybrid Particle Assimilation Strategy
Since SMAP soil moisture data and GOES LST data are provided at different spatial and temporal resolution,
a hybrid particle assimilation strategy is adopted. In this strategy, soil moisture states are updated by assimi-
lating SMAP soil moisture data using the particle filter (PF), while LST states and all parameters (i.e., a and b
for calculating CHN, and as and ac for calculating EF) are updated by assimilating GOES LST data using an
adaptive particle batch smoother (APBS).
2.3.1. Particle Filter for Soil Moisture Assimilation
Particle filters have their origin in Bayesian estimation. Instead of updating model states directly, the PF
updates the particle weights based on a likelihood function, and model states are estimated as the
weighted sum of all particle estimates (Dong et al., 2015; Moradkhani et al., 2012; Yan et al., 2015). The ratio-
nale for using the PF is that the ‘‘snapshot’’ of soil moisture is available every 2–3 days, hence it is more
appropriate to update the instantaneous soil moisture using a filter than a smoother. In addition, the distri-
bution of modeled soil moisture realizations is often non-Gaussian, therefore the performance of ensemble
methods is often suboptimal (Lu et al., 2016). Using the PF, the need for the assumption of probability den-
sities is relaxed, and the non-Gaussian distributions can be effectively handled (DeChant & Moradkhani,
2012; Lu et al., 2016; Moradkhani et al., 2005; Yan & Moradkhani, 2016).

The evolution of model states in time can be described by

xi
t5f ðxi

t21; ui
t;bi

tÞ1wi
t (27)

where f is the forward model, xi
t is the model state vector of the ith particle at time step t, ui

t is the per-
turbed forcing data, bi

t is the model parameter vector, and wi
t represents model error. Here wi

t is assumed
to be normally distributed.

The model states are related to the observations by

ŷ i
t5hðxi

tÞ1vi
t (28)

where ŷ i
t is the simulated observation, h is the observation operator that translates modeled states to the

observations, and vi
t is the observation error.

Initially, the particles are given uniform weights. At time step t when assimilation is conducted, the weights
are updated by

Table 1
Summary of Data Sets

Category Source Data set

Original resolution

Spatial Temporal

Forcing NLDAS-2 R#s ; R#l ;U; Ta; Pa 0.1258 1 h
GPM P 0.18 30 min

Ancillary NSIDC soil texture 3 km -
MODIS LAI 1 km 8 days

Assimilation SMAP soil moisture 36 km 2–3 days
GOES LST 0.058 1 h
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wi�
t / wi

t21pðytjxi
tÞ (29)

wi
t5

wi�
tXN

i51
wi�

t

(30)

where wi
t is the weight of the ith particle, wi�

t is the unnormalized weight from importance sampling, N is
particle size, and pðytjxi

tÞ is the likelihood function, which is expressed as

pðytjxi
tÞ / e 20:5ðyt 2ŷ i

tÞ
T R21ðyt 2ŷ i

tÞ½ � (31)

Here yt is the observation, and R is observation variance.

At the SMAP overpass time (06:00 LT), SMAP soil moisture data are assimilated if available. Since SMAP soil
moisture data are much coarser than the model grids, an averaging operator is used, which essentially aver-
ages the predicted surface soil moisture from the model so that they can be compared to the coarser reso-
lution observations. First, all the model grid cells within a SMAP grid cell are found. Second, for each model
grid cell, the particles are sorted based on the soil moisture of the first layer (i.e., the first particle is the wet-
test and the last particle is the driest). Finally, the particles from all the model grid cells within a SMAP grid
cell are grouped based on their ranking (i.e., the first group contains all the particles which rank first), and
the simulated ‘‘observation’’ of this group is generated using an averaging operator

ŷ i
t5

XM

j51
hi

j;1;t

M
(32)

where M is the number of model grid cells within a SMAP grid cell, and hi
j;1;t is the soil moisture of the first

layer of the ith particle in jth model grid at time step t. The SMAP observation error is assumed 0.04 m3/m3

(Cai et al., 2017; Chan et al., 2016; Colliander et al., 2017), and soil moisture is updated after assimilation. It is
worth noting that the SMAP observation error used is the nominal value at the original 36 km scale, and is
prone to influence from soil texture, vegetation water content and surface heterogeneity. Furthermore, the
actual observation error should be greater when the coarse soil moisture data are used to update simula-
tions at finer resolution. Soil moisture estimates may be improved if locally realistic observation error is
available.
2.3.2. APBS for LST Assimilation
The APBS was proposed by Dong et al. (2016a). The particle batch smoother (PBS) (Dong et al., 2015; Margu-
lis et al., 2015) can be seen as an extension of the PF. The difference is that the PBS updates model states
within an assimilation window in a batch using all available observations in that window, while the PF
assimilates observations sequentially (Lu et al., 2016). In the PBS, a tuning factor is estimated using in situ
observations to prevent particle degeneracy. The APBS is improved from the PBS by determining the tuning
factor automatically in an adaptive manner. The rationale for using the APBS for LST assimilation is that the
information of surface control on energy fluxes is contained in the LST time series rather than each individ-
ual observation, hence smoothing is better suited than filtering. In addition, estimating the tuning factor
adaptively in the APBS eliminates the dependence on in situ observations and is more appropriate for
large-scale applications using remote sensing data.

In the APBS, the likelihood function is given by

pðyt2L11:tjxi
t2L11:tÞ /

Yt

j5t2L11

e 20:5b2ðyj 2ŷ i
jÞ

T R21ðyj2ŷ i
jÞ½ � (33)

Here L is the length of the assimilation window, R is the covariance matrix of observations, and b is a tuning
factor to avoid particle degeneracy (Dong et al., 2016b). Although resampling of the posterior is performed
after each update (Moradkhani et al., 2005), degeneracy cannot be prevented for cases when the observa-
tions are nearly perfect (i.e., very small R) or when the model estimates are very inaccurate (e.g., bad initiali-
zation or parameterization) by resampling alone (Stordal et al., 2011). In the APBS, b for each assimilation
window is determined by maximizing the reliability of model states (0 for zero reliability and 1 for perfect
reliability). The probability metric of reliability is estimating using the Quantile-Quantile (Q-Q) plot, which
indicates whether the estimated uncertainty is appropriate. See Dong et al. (2016a) for details of the APBS.
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In the daytime window (09:00–16:00 LT), a maximum number of eight GOES LST observations are available.
At the end of the daytime window (16:00), the assimilation is performed for each model grid cell separately,
if at least half of the observations (i.e., four observations) are available for that grid cell. GOES LST observa-
tions are related to modeled Ts and Tc following Kustas et al. (1996)

LST5 fcT 4
c 1 12fcð ÞT 4

s

� �1=4
(34)

The GOES LST observation error is assumed to be 3 K (Lu et al., 2016). In the APBS, b is varied from 0.05 to 1
with an increment of 0.05, and the b value that yields the largest reliability is selected. After assimilation,
particles of modeled Ts and Tc as well as parameters are updated, and fluxes are estimated as the weighted
sum of all particle estimates.

2.4. Experiment Setup
The model is run for 120 days from DOY (day of year) 155 to 274, 2015 at 30 min time step for each 0.058

grid cell using 600 particles. Off-line sensitivity analysis confirms that this number of particles is large
enough to yield stable results. Grid cells with dominant land cover of water or urban area are masked out in
the modeling. Since the model grids are of finer resolution than the forcing data, the forcing data are
extracted from the forcing data grid cell in which the center of the model grid cell falls. The perturbations
used for the forcing data are listed in Table 2. The perturbations are used to characterize the data uncertain-
ties caused by the uncertainty of the forcing data as well as the heterogeneity within the forcing data grid
cell. Sensitivity analysis reveals that flux estimation is robust as long as the perturbations are reasonable.
The model and observation errors used are adopted from Lu et al. (2016), and prove to have limited influ-
ence on the flux estimates. The ancillary data are spatially aggregated to the modeling scale. The LAI data
are also temporally interpolated to get daily LAI data.

The unknown parameters are a and b in estimating CHN, and as and ac in estimating reference EF. Based on
the acceptable ranges of soil roughness and vegetation density, the valid ranges are determined for a (–7 <
a < 25) and b (0<b <1) following Abdolghafoorian et al. (2017). The initial range of (1,10) is used for as

and ac based on Dirmeyer et al. (2000). This range allows sufficient EF dynamics based on soil moisture con-
dition. Sensitivity analysis demonstrated that the model would generate reliable results as long as the
parameters were generated within physically reasonable ranges.

The main input data are solar radiation (R#s and R#l ) and meteorological data (P, Ta, U and Pa). At the start of
the experiment, parameters are uniformly sampled within the given ranges, and the energy balance is con-
structed at each time step for soil and canopy separately. To calculate net radiation, soil albedo albs is calcu-
lated from surface soil moisture based on Idso et al. (1975), and canopy albedo albc is based on the values
given in Houldcroft et al. (2009) and assumed constant.

During daytime, H is calculated using propagated Ts and Tc, and LE is calculated using H and estimated EF. G
is derived as the residual of the energy balance equation and is used to propagate Ts of the next time step.
From 16:00 to 09:00, the next day, G is assumed a random fraction of Rns as EF is no longer conservative,
and Ts is propagated. Tc is then assumed equal to Ts. SMAP soil moisture data and GOES LST data are assimi-
lated as described in section 2.3. The reader is referred to Lu et al. (2016) for more details.

3. Results and Discussion

3.1. Soil Moisture and LST Estimation
Modeled surface soil moisture after assimilation (hereafter DA) and
from open loop (hereafter OL, i.e., no assimilation case) is assessed
against in situ measurements in Abrams and Stillwater. It should be
noted that the modeled results are at 0.058 resolution, while in situ
data are point measurements. The same is true for flux data; therefore,
the term ‘‘assessment’’ is used instead of ‘‘validation.’’ The implicit
assumption is that the point measurements are representative of the
model grid cell condition, which may be influenced by surface hetero-
geneity. The assessment results are shown in Figure 3. In general, the
modeled soil moisture from OL and DA follows the dynamics of in situ

Table 2
Perturbations used for forcing dataa

Forcing Perturbation Standard deviation

R#s Gaussian, 3 30.1
R#l Gaussian, 3 30.1
U Gaussian, 1 1 m/s
Ta Gaussian, 1 5 K
P Lognormal, 3 30.2

a‘‘3’’ and ‘‘1’’ represent multiplicative and additive perturbations,
respectively.
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measurements very well. This reveals the good timing of precipitation events from GPM data, which can be
seen more clearly in the cumulative precipitation plots on the right. When SMAP observations are available,
the surface soil moisture is updated toward SMAP observations and gets closer to in situ soil moisture,
which is most evident from DOY 190–200 at both stations. This demonstrates that assimilating SMAP soil
moisture data improves surface soil moisture estimates, despite the coarse resolution.

The improvement is also reflected in the statistical metrics, especially in Abrams. In Abrams, the RMSD
decreases from 0.049 m3=m3 for OL to 0.040 m3=m3 for DA, and the estimation bias decreases from 20.025
m3=m3 for OL to 20.016 m3=m3 for DA. The R also increases from 0.64 for OL to 0.69 for DA. The improve-
ment is mostly due to a better characterization of the dry-down events after assimilating SMAP soil mois-
ture data. The estimation is less accurate in Stillwater, reflected by larger RMSD and bias. Only small
improvement can be seen from the RMSD (0.085 to 0.081 m3=m3), bias (–0.060 to 20.056 m3=m3) and R
(0.76 to 0.78) metrics after assimilation. This is caused by the erroneous soil hydraulic properties and dis-
agreement in precipitation magnitude between GPM and in situ precipitation measurements. For example,
the saturated soil moisture (thin dashed line) estimated using ROSETTA is about 0.4 m3=m3, but the maxi-
mum in situ soil moisture measurement exceeds 0.5 m3=m3 during many rain events. This would lead to a
general underestimation of soil moisture, which is reflected in the large negative bias in both OL and DA
results. On DOY 201, a precipitation event is detected in both GPM and in situ data, but the magnitudes dif-
fer significantly (>50 mm from GPM and <10 mm from in situ data). As a result, modeled soil moisture
increases sharply to near saturation, while only a small increase is seen from in situ soil moisture measure-
ments. A large increase in surface soil moisture is also seen in SMAP observations between DOY 200 and
202, which is in line with GPM measurements. This may be caused by the spatial heterogeneity of precipita-
tion, which appears to be lighter at the station location than in the surrounding areas.

Figure 4 shows that after assimilation, the magnitude of surface soil moisture agrees better with SMAP
observations, and that the spatial patterns are preserved at 0.058. A dry-wet gradient from the northwest to
the southeast is revealed by SMAP observations. The pattern is also seen in OL estimates but less clearly,
and large gap in the magnitude exists between SMAP observations and OL estimates. After assimilation, the
gradient is much clearer, and the spatial heterogeneity of soil moisture within each SMAP grid cell is pre-
served in the DA results.

Figure 3. Surface soil moisture assessment against in situ measurements. The thick and thin dashed lines represent residual and saturated soil moisture used in
the modeling, respectively.
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Thirty-minute LST estimates from OL and DA within the daytime window are compared to GOES LST obser-
vations for each model grid cell in Figure 5. To perform the assessment, all GOES LST observations available
within the daytime window each day are found. The corresponding modeled LST from OL and DA are
extracted to calculate statistical metrics for each model grid cell separately. After assimilation, 30 min LST
estimates improve significantly based on all the metrics. The range of R2 improves from 0.6 to 0.7 for OL to

Figure 4. Surface soil moisture from SMAP, OL, and DA at 06:00, DOY 173.

Figure 5. Thirty-minute LST assessment against GOES observations. The histograms of the metrics are plotted in the third row.
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0.8 to 0.9 for DA, and the RMSD improves from >5 K for OL to <4 K for DA. The estimation bias for OL is
generally between 2 and 8 K, and is reduced to almost zero after assimilation.

3.2. Flux Estimation
The 30 min H estimates are compared to in situ observations at the four flux stations on days when assimila-
tion is performed, as shown in Figure 6. Generally, the improvement in H is moderate, with the largest
improvement in R and small improvement in the RMSD. On average, R is increased by 0.14 and the RMSD is
decreased by 6.3%. This is caused by the compensation effect between CHN magnitude and LST dynamics
on H estimates. For example, if CHN is very large for a particle, G will be small based on the energy balance,
which will lead to a small LST at the next time step. As CHN and LST compensate each other on the influence
on H, the variation of H with CHN will be small, and vice versa for small CHN values.

Figure 7 shows the skill of 30 min LE estimates. In contrast to the H estimates, the improvement after assimi-
lation is more evident in all the stations. Since LE is determined by H and EF calculated from soil moisture,
high R values are achieved in both OL and DA results, which proves the validity of the EF�SWI relationship.
The assimilation improves LE estimates in two ways: (1) smaller and more reasonable ranges of as and ac

through data assimilation to characterize EF dynamics, and (2) better daytime LST evolution to get more
accurate Rn estimates. As shown in Figure 7, RMSD and bias decrease dramatically after assimilation. Aver-
aged among the four stations, RMSD decreases from 135.8 to 92.8 W=m2, and bias decreases from 297.4 to
228.0 W=m2.

Similar conclusions can be drawn from daytime H and LE estimates (an assessment of daytime fluxes is pro-
vided in the supporting information). For H estimates, R values increase dramatically after assimilation in all
four stations, and RMSD is reduced by 8.7% on average. The improvement in LE estimates is much more

Figure 6. Thirty-minute H assessment against in situ observations. The unit of RMSD and Bias is W=m2.
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evident than in H estimates. After assimilation, the RMSD and bias for LE are greatly reduced in all the sta-
tions. On average, the RMSD is reduced by 37% for LE estimates after assimilation. Daytime LE is generally
underestimated from OL at all four stations except E36, indicated by the large negative bias values. After
assimilation, the bias is reduced by 63% on average.

Time series of daytime H and LE estimates are plotted in Figure 8. Modeled 5 cm soil moisture and the cor-
responding SMAP observations are also plotted as a reference for soil wetness condition. The dynamics of
observed H and LE agree very well with soil moisture evolution, which is consistent with the soil wetness
control on surface energy partitioning. When data assimilation is performed, the magnitude of soil moisture
is updated toward SMAP observations, which improves the characterization of EF dynamics. For example,
during DOY 192 and 197, the OL soil moisture deviates significantly from SMAP observations in station E09
(Figure 8c), leading to substantial underestimation of LE. This may be caused by the failure in the forcing
data to record some precipitation events. After assimilation, soil moisture gets much higher, and the high
LE values are better modeled. The improvement from assimilation is also revealed in the better estimates of
parameters. For example, from DOY 200 to 230, the modeled soil moisture at station E34 (Figure 8f) from
OL and DA are almost the same, but the LE estimates from DA are in much better agreement with in situ
observations. Since parameters are also updated during assimilation, more reasonable ranges are obtained
for the parameters, and EF values are estimated more accurately.

Figure 9 shows the comparison between average modeled fluxes (Rn, H, and LE) and average in situ obser-
vations during daytime. The Rn estimates from OL are generally much lower than in situ observations. This
is caused by the dry bias in soil moisture estimates (Figure 3) and warm bias in LST estimates (Figure 5)
from OL. As a result, the outgoing shortwave and longwave radiation are higher, and the Rn estimates
become lower, which explains the large negative bias in LE estimates from OL in Figure 7. The Rn estimates

Figure 7. As in Figure 6 but for 30 min LE estimates.
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from DA are in better agreement with in situ observations, which further proves the validity of the Rn esti-
mation approach. H and LE estimates from OL hardly fall in the gray bands, which indicate 20% uncertain-
ties around in situ observations caused by measurement uncertainty and surface heterogeneity. After
assimilation, the flux daytime evolution is largely improved, especially for LE estimates.

Figure 8. Time series of daytime flux estimates from OL, DA plotted against in situ measurements on days with assimilation at the four stations. The 5 cm soil mois-
ture data from OL, DA, and the corresponding SMAP grid cells are also plotted in the column on the right.

Figure 9. Modeled and measured average daytime cycles of Rn (dash-dot line), H (solid line), and LE (dashed line). The col-
ors indicate results from DA (red), OL (black), and in situ observations (blue). The gray bands represent observed fluxes
620% uncertainties.
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Figure 10. Spatial distribution of CHN, LAI, EF, and 5 cm modeled soil moisture on 3 days (DOY 176, 193, 220).
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3.3. Parameter Estimation
Figure 10 shows the CHN and EF estimates and the corresponding LAI and modeled 5 cm soil moisture on 3
days with different wetness conditions. A positive gradient of LAI from the northwest to the southeast is
clearly seen in Figures 10d–10f, which influences the spatial pattern of CHN. During the modeling period,
the area average LAI value increases from about 1.22 on DOY 155 to about 1.35 on DOY 170 and decreases
to about 1.28 on DOY 185, and then increases quickly to about 1.48 on DOY 201, followed by a sharp
decrease to about 0.8 on DOY 274. During DOY 176 and 193, CHN increases dramatically, particularly in the
western part of the area, which is largely caused by the increase in LAI. From DOY 193 to 220, LAI decreases
greatly, especially in the eastern part. As a result, a decrease is observed in CHN estimates. The magnitude of
estimated CHN is comparable to the reported values in literature (Bateni et al., 2014; Caparrini et al., 2004b;
Xu et al., 2014).

The estimated EF distribution is shown in Figures 10g–10i. On DOY 176, the area is in the process of a long
dry-down event from DOY 170 to 187, and the eastern part is much wetter than the western part. As a
result, the EF estimates demonstrate an increasing trend eastward. Several precipitation events occurred
shortly before DOY 193, therefore the area is very wet, and EF values are generally very high. From DOY 200
until DOY 225, the precipitation pattern is very different in the north and south. As is demonstrated in Fig-
ures 3 and 8, precipitation in the north features several large precipitation events, while the south experien-
ces a long dry-down. On DOY 220, the soil moisture in the north is much higher than that in the south, and
the same pattern is seen in the EF map. Some grid cells with EF values greater than 0.5 exist in the south,
which is caused by the heterogeneity in the soil properties.

3.4. Added Value of SMAP Soil Moisture Data
To evaluate the added value of assimilating the coarse SMAP soil moisture data in flux estimation, the
model is also run with only GOES LST data assimilated (hereafter DAT ) and with only SMAP soil moisture
data assimilated (hereafter DAh). The comparison of 30 min flux estimates from DA, DAT , and DAh is shown
in Figure 11.

When only SMAP soil moisture data are assimilated, the soil moisture estimates from DAh will be similar to
those from DA. As a result, DAh is able to yield comparable R values in both H and LE estimates with DA,

Figure 11. Comparison of 30-min H and LE estimates from DA, DAT (only GOES LST assimilated) and DAh (only SMAP soil
moisture assimilated).
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which again proves the tight coupling between soil moisture and heat flux partitioning. However, since
the parameters and LST states cannot be updated through soil moisture assimilation, the LST evolution
from DAh is similar with LST from OL. As a result, large RMSD and bias exist in the LE estimates as is in OL
estimates.

When only GOES LST data are assimilated, DAT performs worse than DA in flux estimates in station E09, E34,
and E32 based on all the metrics. In station E36, DAT produces smaller RMSD and bias in H estimates. This is
caused by the large underestimation of Rn at this station (Figure 9). As a result, the RMSD and bias in LE esti-
mates become larger in DAT . In general, assimilating SMAP soil moisture data leads to significant improve-
ment in flux estimates, despite the coarse resolution.

It should be noted that in station E09 and E34, the flux estimates from DAT can be even worse than OL
results, featured by a significant overestimation of H and underestimation of LE. This is caused by the poor
characterization of soil moisture evolution. As soil moisture data are not assimilated, the soil moisture esti-
mates from DAT are similar to those from OL. As is discussed in section 3.2, when some precipitation events
are not recorded in the forcing data, soil moisture estimates from DAT will exhibit a dry bias, and EF will be
very low accordingly. Since the model is still constrained by GOES LST data in DAT , the particles with very
large CHN values will get larger weights to fit the LST observations. Consequently, the H estimates from DAT

will be much higher and the LE estimates much lower compared to OL results, leading to worse flux esti-
mates. This demonstrates that despite the very coarse resolution, assimilating SMAP soil moisture data is
not only beneficial but also crucial for successful and robust flux estimation, particularly when the uncer-
tainties in forcing data, model structure or parameters are large.

4. Conclusions

This study proposes a methodology to estimate surface heat fluxes by assimilating SMAP soil moisture data
and GOES LST data using a hybrid particle assimilation strategy. The methodology is based on a dual-source
(DS) surface energy balance model, in which the contributions from soil and canopy are calculated sepa-
rately. Fluxes are derived by estimating four parameters which are used to calculate a neutral bulk heat
transfer coefficient (CHN) and an evaporative fraction (EF). In the hybrid particle assimilation strategy, SMAP
soil moisture data are assimilated using the particle filter, and GOES LST data are assimilated within the day-
time window (09:00–16:00 LT) using an adaptive particle batch smoother. In this way, the resolution gap
between SMAP and GOES data is bridged, and the flux estimation becomes independent of in situ flux
observations. The methodology is applied over an area in the U.S. Southern Great Plains, and the results are
compared with in situ observations.

In general, the modeled soil moisture from OL and DA follows the dynamics of in situ observations very
well. After assimilation, modeled surface soil moisture is updated toward the in situ observations, which is
most evident in dry-down events. In addition, the spatial heterogeneity of soil moisture within a SMAP grid
cell is preserved, since the model grids are of finer resolution than SMAP grids. The improvement in LST esti-
mates is also significant after assimilation. Here no bias correction is applied to GOES LST data. Some studies
have suggested that the lack of prior scaling of LST data may lead to unrealistic surface heat flux estimates
(Reichle et al., 2010). Future work will consider the influence of LST bias correction on flux estimates.

H and LE estimates are improved after assimilation at both daytime and 30 min scales. The improvement is
more evident in LE estimates. The time series of daytime H and LE as well as their mean daytime cycles are
also better characterized after assimilation.

Despite the coarse resolution, assimilating SMAP soil moisture data leads to large improvement in flux esti-
mates. As the estimation is influenced by the uncertainties in forcing data, model structure and parameters,
modeled soil moisture may be biased. By assimilating SMAP soil moisture data, the bias is reduced, which
facilitates the estimation of EF. Therefore, assimilating SMAP soil moisture data is not only beneficial but
also crucial for successful and robust flux estimation, particularly when the uncertainties are large. Here the
36 km SMAP soil moisture data are used, so the methodology should also be applicable for other soil mois-
ture products with coarse resolution (e.g., SMOS, AMSR-E, AMSR2, and ASCAT). Further improvement is
expected if soil moisture data with finer resolution (e.g., SMAP 9 km enhanced soil moisture product) are
used.
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The forcing data used in this study are from remote sensing and reanalysis products, and in situ flux obser-
vations are not required to calibrate the model. As the dependence on in situ data is minimized, the meth-
odology can be easily applied to other areas.
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