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Abstract

Cardiovascular diseases (CVDs) are a group of disorders of the heart and blood vessels.
CVDs are the leading cause of death worldwide. To diagnose and treat CVDs, clinicians
and cardiologists use multiple noninvasive imaging techniques. These scans are used to seg-
ment certain structures of the heart. Deep learning-based cardiac segmentation on short-axis
cardiac magnetic resonance images (CMRI) has gained popularity over the past few years
because of its generalisability and accuracy. This has exponentially reduced contouring times
for clinicians. The development of such deep learning techniques has seen a common trend.
In order to accommodate learning for larger cardiac datasets, the depth, and size of segmenta-
tion networks have been increased. Unfortunately, the environmental impact of exploding such
networks is not taken into account. One solution to mitigate having computationally expensive
networks is to incorporate anatomical knowledge in the form of shape priors. The Gridnet and
UNet with a shape prior are computationally efficient networks that are used to evaluate seg-
mentation performance on a large and varied cardiac dataset (Combination of the Automated
Cardiac Diagnosis Challenge - ACDC and Multi-Centre, Multi-Vendor and Multi-Disease Car-
diac Segmentation challenge - M&M datasets). On average, these networks segment CMRIs
with an average dice score of 0.87 and a Hausdorff distance of 11.7mm. In parallel, one of the
major issues in cardiac technology is the under-representation of women in cardiac datasets.
Purposefully curated cardiac datasets such as ACDC and M&M try and maintain equal repre-
sentation. In real-world scenarios, this might not always be the case. Clinical trials to collect
such data often report female representation as low as 25%. Evaluation of segmentation per-
formance between a balanced and skewed dataset is conducted. This is to address if bias
in such cardiac training datasets affects the performance of segmentation networks between
male and female test patients.
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Introduction

According to the World Health Organization (WHO), cardiovascular diseases (CVDs) are the
top cause of death worldwide, taking close to 17.9 million lives yearly. This causes 32% of all
fatalities each year [1]. With the aim of improving heart disorder detection and treatment as
well as lowering the mortality from CVD, substantial advancements in cardiovascular study and
practice have been made in recent decades. Despite these advancements, the heart remains
to be a difficult organ to visualise using state-of-the-art non-invasive imaging techniques like
MRI, AT etc. This can be attributed to its complex structure and continuous motion. Therefore
cutting edge tools are required to optimally use these cardiac images and support clinicians
through the entire chain of cardiovascular disease management.

In this context, artificial intelligence (Al), in particular computer vision, has been an emerging
tool for the past five years. When combined with the exponential rise in computing power, Al
offers possibilities for utilising the collections of cardiac imaging data to create more robust
cardiac image analysis algorithms. Figure 1.1 summarises the different ways in which Al tech-
niques are being used in cardiac imaging. For the purposes of this project, we will focus on
cardiac segmentation.

Cardiac disease diagnosis is a time-intensive task. Post MRI scans, a clinician is required to
manually annotate, mark and segment the images slice by slice for the cardiologist. Clinicians
often take up to 30 minutes to manually segment cardiac MRIs. Semi-automated or completely
automated segmentation techniques centered around data-driven models have gained much
popularity as it reduces segmentation times from minutes to a matter of seconds.

Apart from the time advantage of Al in cardiac segmentation, there are more reasons why this
is preferred over traditional segmentation techniques.

1. Automating detection in the event that physicians are scarce.

2. The accuracy of previous techniques, which are rule-based systems, relies heavily on
feature engineering and domain knowledge.

3. These methods are also challenging to scale when presented with new and unseen data.

The combination of Al and healthcare, especially in cardiac technology is an upcoming and
promising field. Now, more than ever, there is a dire need for machine intervention to as-
sist healthcare workers. Research to further improve such technology and make it reliable is
necessary.
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Figure 1.1: Various applications of Al in cardiac imaging [2]

1.1. Implications of Al in cardiac technology

Despite the technological advantages of these data-driven models, there are various chal-
lenges posed to healthcare practitioners, policymakers, and patients [3]. Various forms of
technological advancements have been regulated but never has there been such a gener-
alised form of technology as Al. Thus it poses various challenges, especially in a field like
healthcare and medicine. Due to this, there are many sociopolitical and ethical questions that
are brought up.

Healthcare and medicine is built upon the relationship between the patient and the healthcare
worker. However, patients may not completely understand Al-based technology. Learning
that the decision-making process of the healthcare worker is influenced by such technology
may be distressing.

Another major point of consideration when it comes to Al and healthcare is data, privacy, and
protection. Vast amounts of patient data is collected and stored. There are regulations for the
use of such data. For example, the Europe Union (EU) has General Data Protection Regu-
lation (GDPR) which provides a base for informed data collection. The cardiac data used for
this project are publically available datasets and conform to required regulations.

The development of cardiac technology heavily relies on clinical trials in which the compo-
sition of the study population has a significant effect on the results. There is often a large
under-representation of females in such trials. Reported numbers are as low as 22.6% when
it comes to the number of females present in such trials [4]. Therefore implementing Al tech-
nology using such unbalanced data can lead to new forms of bias. This can affect the accuracy
and fairness of such systems. Similarly, the latest forms of non-invasive cardiac imaging tech-
nology are mainly present in higher-income countries. Due to a greater possibility of data
collection in such countries, these networks can be affected by bias and thereby introduce in-
equality in terms of performance against other populations. These are some of the challenges
that are being tackled by the healthcare and Al communities together.

Environmental Impact: As mentioned earlier, Al has proven to be popular in cardiac seg-
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mentation. Networks have been growing larger and larger to be inclusive, generalisable, and
robust. This dramatic progress and increase in performance and robustness comes at a cost.
Training models with more and more parameters take up a lot of energy. Figure 1.2 gives a
basic representation of all the energy-intensive devices used and tasks conducted in an Al
cycle.

For example, language processing networks such as BLOOM or GPT-3 almost consists of
175 billion parameters and it takes about 433MWh (Megawatt hour) and 1,287MWh respec-
tively to train and run them. To put things into perspective, 1300MWh of energy consumption
amounts to 500 tonnes of carbon emissions [5]. This trend of making Al models bigger has to
be regulated and more innovative ways to achieve similar performances must be considered.

Sensing ' pata { Data Computing
devices |collection | Processing | devices

@—» Inference < : - s { Learning ng‘i):ggg

Figure 1.2: Energy intensive tasks of Al cycle (adapted from [6])

This research project aims to answer questions regarding the use of Al in cardiac segmen-
tation and efficiency. Also, it answers questions regarding any form of bias that can induce
performance differences in such networks.

Tangentially, these segmentation techniques can also benefit the field of surgical robotics. For
example, 3D segmented output from such Al-based algorithms can be used to construct aug-
mented and virtual reality setups for robotic surgery. Figure 1.3 gives an example of how such
systems work [7]. There is a whole field dedicated to combining robotics and cardiac technol-
ogy called Intervention Cardiology [8] and such computer vision algorithms play a huge role
in data collection, image reconstruction, image processing, and analysis.

Figure 1.3: Application of Augmented reality in cardiac surgery [7]
Report Outline: This report is structured as follows.
Chapter 2 discusses some basics regarding cardiac imaging and the evolution of cardiac seg-

mentation. Finally, the research questions obtained from the literature study are introduced.
The initial part of Chapter 3 talks about the data being used for the purpose of this project, its
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description, collection, and preparation. Next, the formulation of the shape prior is discussed.
Details of the segmentation networks used and the loss functions driving these networks are
listed. Evaluation metrics used to quantify the performance of the listed networks have been
described. Chapter 4 talks about the experiments and discusses the results obtained. Finally,
recommendations based on results and future work is presented.



Related literature

2.1. The heart

In order to familiarise ourselves with the physiology of the heart and its functioning please refer
to Appendix B.1.

2.2. Cardiac Imaging

Non-invasive cardiac imaging is the collective name for several techniques that are used to
provide pictures of the anatomy and functions of the heart without invasive intervention. Nonin-
vasive tests can be used to detect a variety of heart conditions, from abnormalities that impair
the heart’s ability to pump blood to plaque in the arteries that supply it (known as coronary
artery disease). They are safer and easier to perform than invasive techniques that for exam-
ple, may require the insertion of catheters into the heart. Over the past ten years, there has
been a significant rise in the number of noninvasive cardiac tests which has greatly benefited
both patient and physician [9].

Echocardiography, Coronary Computed Tomography Angiography (CCTA), Cardiac Magnetic
Resonance (CMR), and nuclear cardiology, are some of the non-invasive imaging techniques
used to diagnose and stratify risk in cardiac disease and to guide its management. Each of
these methods has unique qualities that enable examination of the specifics of the heart’s
anatomy, function, or both[10]. This project mainly focusses on cardiac MRI segmentation.
The following gives a better understanding of cardiac MRlIs.

2.2.1. Cardiac MRI

Cardiac magnetic resonance imaging (MRI) uses a powerful magnetic field, radio waves, and
a computer to produce detailed pictures of the structures within and around the heart[11]. The
greater the strength of the magnetic field, the greater the size of the net magnetisation. Es-
sentially, more powerful the magnetic strength, the greater the clarity of the image. A typical
clinic would have an MRI scanner of 1.5T or 3T ( T - Tesla, a unit of magnetic strength).

MRI scans are acquired as slices that are a couple of millimeters thick and they can be oriented
in different directions. MRIs are usually scanned across three planes.

* Short Axis View
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» Horizontal Long Axis 4-chamber View
 Vertical Long Axis 2-chamber View

As shown in figure2.1, these planes are prescribed along a line that runs from the cardiac apex
to the center of the mitral valve (long axis of the heart). At the level of the middle left ventricle,
the short-axis plane extends perpendicular to the real long axis of the heart. The vertical long
axis is dictated along a vertical plane orthogonal to the short-axis plane, and the horizontal
long axis is formed by choosing the horizontal plane that is perpendicular to the short axis[12].

Short Axis Horizontal Long Axis  Vertical Long Axis

Figure 2.1: Cardiac planes of acquisition during MRI scan[12]

2.2.2. Cardiac cycle
The cardiac cycle consists of different phases. Namely,

1. End Diastole (ED) - This is defined as the first frame when the mitral valve is closed but
in layman’s terms, this is the phase of the heart when it is in expansion and blood is
being pumped into the heart.

2. End Systole (ES) - This is defined as the first frame when the aortic valve is closed but
in layman’s terms, this is the phase of the heart when it is in compression and blood is
being pumped out of the heart. [13]

These phases can be clearly visualised in figure 2.2. The first frame marked in red is the ED
phase when the heart is in expansion. The frames marked in blue are in the ES phase when
the heart is in compression. The frames marked in green indicate the end of the cardiac cycle.

Figure 2.2: Changes in the heart during a cardiac cycle
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2.3. Cardiac segmentation

In a clinical setting, a radiologist manually draws outlines around the structure of interest (in
this case the heart) to separate it from the surrounding tissues and organs. Because it takes a
long time and is laborious, this method is impractical in high-throughput hospitals. In addition,
it adds intra- and inter-observer variability [14]. This is one of the main reasons why a fully
automated method is desirable for the segmentation and prediction of clinical diagnosis. While
traditional computer software performs tasks according to established rules that depend on
human experience and understanding, Al systems learn from information and perform tasks
based on the learnt model. As computational power has increased over the years, tasks
such as these have moved on from classical ML techniques to more accurate and robust DL
techniques. As such, the focus shall remain on novel DL algorithms that are in use for Cardiac
Segmentation.

2.3.1. Deep Learning cardiac segmentation
Appendix A has been provided to explain the basic concepts and terminologies that will be
used to explain upcoming DL-based cardiac segmentation.

Deep Learning networks have the ability to pick up patterns and features in complex data.
This makes them well-suited for image segmentation and analysis. In order to gauge the per-
formance of segmentation techniques multiple challenges have been introduced in the last
10 years. The following table 2.1 is a summary of the cardiac challenges. Considering that
the ACDC (Automated Cardiac Diagnosis Challenge) dataset and the M&M (Automated Car-
diac Diagnosis Challenge) dataset were publicly available in 2017 and 2020 respectively, we
can assume that the images collected are from the latest scanners and that the acquisition
protocols are not outdated.

Table 2.1: Summary of publicly available Cardiac MRI datasets

CMRI datasets
Name Year | Number of subjects Ground Truth Active Website
Train Test LV RV MYO Pathology

Sunnybrook | 2009 | 45 - v X v v X
STACOM | 2011 | 100 100 X v X X
MICCAIRV | 2012 | 16 32 X v X X X
Kaggle 2015 | 500 200 X X X X X
ACDC[ ] | 2017 | 100 50 o/ v 4 v
M&M[ 1 | 2020 | 175 200 v 7/ v 4 v

The ACDC challenge [17] marked the rapid development of Deep learning networks for car-
diac segmentation. A majority of the networks used are variants of CNN and FCN. Details
regarding the networks that performed the best and their performance metrics are provided in
Appendix B.1 and Appendix B.2 respectively.

The development of DL networks for cardiac segmentation has been further encouraged and
progressed with the M&M challenge [16]. Again, the majority of the networks used here are
variants of CNNs. Details regarding the teams that performed, the networks used, and their
performance are provided in Appendix B.3.
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Figure 2.3: Cardiac segmentation performance (Dice score) between 2009 and 2021[18]

An overview of cardiac segmentation performances (performance metric i.e dice score intro-
duced in 3.6.1) is presented in figure 2.3. The blue markers are DL networks. Notably, the
accumulation of these markers around 2018 and 2021 is attributed to the ACDC and the M&M
challenge. Table 2.1 shows that the latter has more patients. To improve segmentation perfor-
mance, a common approach has been to increase the network depth and size. This strategy
is supported by table 2.2 which shows that the most successful networks have over 30 million
model parameters.

Table 2.2: Number of model parameters of each participating team in the M&M challenge (Adapted from [16])

Participating team | Model parameters (million)
P1 30
P2 30
P3 30
P4 36
P5 33
P6 28
P7 6
P8 9
P9 30

P10 4
P11 38
P12 18
P13 20
P14 24

Given the premise about environmental implications of Al technology, a question arises: ’Is
making the network deeper and more complex the only solution ?’. Segmentation techniques
before DL methods used significant prior knowledge. [19] shows the various ways in which
prior knowledge can be incorporated into DL networks for medical image segmentation. A
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summary of the mentioned is provided in Appendix B.4. This brings us to the first research
question this project is designed to answer.

Can computationally efficient cardiac segmentation DL networks benefit in terms of

performance with the usage of prior knowledge in the form of shape priors ?

250

ES |
| 200
150

100

ED %

Figure 2.4: Differences in pixel intensities between ES and ED phase of heart

Additionally, when closely observed, table B.2 and table B.5 clearly shows an interesting trend.
There has been a consistently lower performance for the ES phase when compared to the ED
phase. These can be attributed to the presence of blood pools and prominent cardiac mus-
cles that may be visible in one phase but not in the other. Due to this, pixels usually change
their intensities between cardiac phases. This change is clearly seen in figure 2.4. The image
shows a heart slice from a patient during the ES and ED cardiac phase. The ES phase i.e
when the heart is compressed is darker whereas the ED phase is clearly visible.

Can segmentation networks take advantage of specifically designed shape priors to
improve its performance in different phases of the cardiac cycle ?

Finally, if one zooms out of the world of deep learning in cardiac segmentation, there are a
plethora of problems that exists in cardiac technology. As mentioned previously, one of the
main issues is the under-representation of females in cardiac clinical trials. Clinical trials re-
ported numbers as low as 22.6% when it came to the number of females present in the trial
[4]. Contrary to popular belief, the female heart is not an isometrically scaled-down version of
the male heart. The geometric structures of the heart are very different for males and females
[20]. For greater detail regarding these differences between the male and female heart please
refer to Appendix B.5. Considering real-world applications, the following question arises.

Can the under-representation of female hearts in cardiac datasets contribute to bias in
the segmentation networks ?



Methodology

3.1. Data Collection

To this day semi-automatic segmentation techniques remain the norm for biomedical image
segmentation in clinics. Completely automated pipelines are not yet incorporated into the
workflow as it lacks the robustness and generalisability that is necessary for such tasks. This
is mainly due to the lack of data available and privacy laws that protect such sensitive data.
Despite this limitation, multiple organisations and associations have tried to encourage the
development of automated pipelines by creating some publicly available datasets. For the
purpose of this project, 2 such datasets are used.

3.1.1. ACDC and M&M Datasets

The ACDC dataset consists of Short axis view MRI images for 150 patients. These images
are provided in the NIfTI (Neuroimaging Informatics Technology Initiative) format. The MRI
images were obtained by scanners either having a strength of 1.5T (Tesla - unit of Magnetic
Field Strength) or 3T. For each patient, a series of short axis slices with a thickness of 5
mm (or occasionally 8 mm) and an interslice gap of 5 mm cover the LV from the base to the
apex. Each patient’s End-Systolic and End-Diastolic images include accompanying contour
files. Depending on the patient, the resolution of the obtained cardiac MRI images varied
between 1.34 - 1.68mm?/pixel. The number of time frames for each image varied from 28 - 40
frames to cover an entire cardiac cycle. The two main drawbacks of the ACDC dataset were
its limited numbers in terms of patients for training and test sets and the lack of variability and
diversity in terms of scanner images.

Table 3.1: Average specifications for the images acquired for ACDC Dataset

Centre| Vendor Model | Field In-Plane Slice Thick- | Number| Number
Strength resolution ness (mm) | of of time
(T) (mm) Slices | frames

1 Siemens | - 1.5 1.34-168 | 5-10 12 28 - 40

2 Siemens | - 3.0 1.34-168 | 5-10 12 28 - 40

The M&M dataset consists of Short axis view MRI images for 375 patients. The details of
the different scanner parameters are shown in table 3.2. The M&M dataset was curated to
overcome with the drawbacks of the ACDC dataset. Cardiac segmentation techniques trained
on the ACDC dataset, more often than not, will perform poorly on MRI scans acquired from

10
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other types of scanners with different acquisition parameters.
The M&M dataset has MRI scans as input data from 4 different types of scanners, collected
from multiple clinical centers. This is shown in table 3.2

Table 3.2: Average specifications for the images acquired in different imaging centers [21]

Centre| Vendor Model Field In-Plane | Slice Thick- | Number| Number
Strength reso- ness (mm) | of of time
(M lution Slices | frames
(mm)
1 Siemens | MAGNETOM | 1.5 1.32 9.2 12 25
Avanto
2 Philips Achieva 1.5 1.20 9.9 10 30
3 Philips Achieva 1.5 1.45 9.9 11 26
4 GE Signa Excite | 1.5 1.36 10 12 25
5 Canon Vantage 1.5 0.85 10 13 29
Orian
6 Siemens | MAGNETOM | 3.0 0.98 9.7 12 29
Avanto

Visual differences between the different scanner types used in the ACDC dataset and M&M
dataset can be found in Appendix C.1.1 and Appendix C.1.2 respectively.

3.2. Data Description

Medical images formats can broadly be categorised into:

1. Standardised diagnostic medical image format ( DICOM )
2. Post-processing medical image format ( NIfTI )

Generally, medical images consist of 2 parts:

1. Image data
Image data in the form of arrays. It can either be represented as a greyscale image or
in RGB format.

2. Metadata
Metadata describes the information about the image. For example, one of the sub-
headers in the metadata is In-Plane resolution. It gives information about the actual
area of the anatomic structure encoded into each pixel. More information about cardiac
NIfTI image metadata can be found in Appendix C.2

Considering that we are using these cardiac MRI datasets for cardiac segmentation, the data
is present in the form of NIfTI files. NIfTI files encode image data 4-dimensional dataspace. It
is usually present in (z,y, z,t) or (¢,z,y, z) format where (z,y) is 2-dimensional data, z is the
slice number and ¢ is the time frame. This is visualised in figure 3.1
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Figure 3.1: Visual representation of 4-dimensional image obtained from an MRI scan and stored in NIfT| format.
Figure adapted from [22]

3.3. Data Preparation

3.3.1. Bridging differences between ACDC and M&M Data structure

The ACDC dataset was released in 2017 and there were many differences in the input data
when compared to the data acquired for the M&M dataset released in 2020. These differences
have been enumerated in section 3.1. Apart from acquisition and inherent image differences,
there are differences in the directory structures. The figure below shows the arrangement of

files present for each patient in the respective datasets.

ED ground truth

4D ground truth U\
Patient Folder
Y
ES MRI scan
Patient Folder O
ES ground truth

4D MRI scan
(a) Directory structure for each patient in the M&M dataset (b) Directory structure for each patient in the ACDC dataset

Figure 3.2: Arrangement of files provided per patient in ACDC and M&M datasets

When compared to the ACDC dataset (sub-figure 3.2b) each patient’s data in the M&M set
only consists of the 4D MRI NIfTI file along with the ground truth. The ES and ED phases of
the heart had to be extracted from the 4D NIfTI file and saved in the individual folder. The
information that was used gave the exact number of frame for the respective phases of the
heart along with some other information such as the scanner type used for the patient, Vendor
site, Sex, Height etc. This is shown in Appendix C.3.



3.3. Data Preparation 13

3.3.2. Label Differences
These datasets provide us with bi-ventricular MRI scans. As mentioned previously, they mainly
have 3 labels.

1. Left Ventricle (LV)
2. Right Ventricle (RV)
3. Myocardium (MYO)

Another major difference that exists between the 2 datasets is the different labeling. The
ground truth images are labeled based on integers.

Table 3.3: Ground truth Label differences between ACDC and M&M dataset

M\&M Dataset ACDC Dataset
Integer Label | Anatomical Feature | Integer Label | Anatomical Feature
0 Background 0 Background
1 LV 1 RV
2 MYO 2 MYO
3 RV 3 LV

Table 3.3 shows that the LV and RV labels have been switched. This had to be changed in
order to make it uniform between the two datasets (The M&M labels were changed to conform
to the ACDC labels). Visually the differences are shown in Appendix C.4.

Categorical encoding

00
250
200
150
100
50
o
© s 100 1% 200 25 300

(a) Multi-class ground truth image for an MRI slice for a patient

o
%
100
150
200
250
300
0 s w0 10 20 25 30

(b) Ground truth for LV class (¢) Ground truth for MYO class (d) Ground truth for RV class
after Categorical encoding after Categorical encoding after Categorical encoding

Figure 3.3: An example of Categorical encoding performed on a patient’s MRI scan groundtruth

Since this is a multi-class segmentation problem, categorical encoding is a crucial part of data
preparation. The ground truth images are generally given as per table 3.3 and each slice is
represented as shown in figure C.3. For the purpose of training a multi-class segmentation
module, we perform categorical encoding on each slice. By definition, it is a process of con-
verting data into binary integer format so that the data with converted categorical values can
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be provided to the model. Figure 3.3 provides a visual representation of how the different
classes are separated while performing this form of multi-class encoding.

3.3.3. Preparation of model input datasets

In order to access input images, the corresponding ground truths and shape priors, a Hierar-
chical data format (HDF5) is used. Large, intricate, and heterogeneous data can be supported
with the open-source file format HDF5. Similar to how you might organise files on your com-
puter, HDF5 uses a "file directory”-like structure that enables you to organise the data within
the file in a variety of structured ways. The final dataset consists of patients from the ACDC
and M&M datasets (i.e 150 + 375 patients) divided into training, validation, and test sets. The
training and validation sets are 80:20 split. This is the standard file structure unless otherwise
specified (refer to section 3.3.4).

v ) ! !
Train set Test set Validation set Shape prior
Train Test Validation
Patient Patient Patient
groups groups groups

Figure 3.4: Arrangement of groups and datasets within the HDF5 file in turn being used for accessing data by
the segmentation model

The HDF5 files that are being used to train and test the segmentation models are as shown in
figure 3.4. Each variation of the file consists of 4 groups:

* Train set (284 patients)

* Validation set (71 patients)
» Test set (65 patients)

» Shape Prior

3.3.4. Skewed and Data Augmented Datasets

Skewed Dataset

In order to recreate the under-representation of females in clinical trials, we create a skewed
dataset (from the M&M set) that consists of only 25% female subjects.
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Figure 3.5: Generation of balanced and skewed training datasets for sex-based segmentation experiments

Final list of test subjects———

In order to test the performance of segmentation networks under male-female skewed datasets,
it is important to generate a training and test dataset without bias.

The total number of train and test subjects are 200 and 24 respectively. This shall remain the
same for both the balanced and skewed datasets.
For the balanced dataset, a subset of the total available male subjects is selected.

* Number of male subjects in balanced training set - 100
* Number of female subjects in balanced training set - 100

For the skewed dataset, the number of female subjects in the training set is reduced to 25% of
the total training size. This is to simulate an under-representation of female patients in clinical
trails.

* Number of female subjects in skewed training set - 50
* Number of male subjects in skewed training set - 150

To ensure that other forms of bias do not creep into this setup, the total number of patients in
both datasets remains constant. The 100 male patients in the balanced dataset remain the
same in the skewed dataset as well. The male and female test patients are constant in both
setups. This is shown in figure 3.5.

Augmented Dataset

In order to create an augmented dataset, each image and its corresponding ground truth are
subjected to rotation from —60° to +60° (Figure 3.6). The input MRI scans were also sub-
jected to gamma correction of [0.5, 1.5] (Figure 3.7) and flipped. These data augmentation
techniques are implemented to ensure that the network is robust and generalisable to diversi-
fied cardiac MRI datasets.
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(a) Original image (b) MRI scan with (c) MRI scan with (d) MRI scan with (e) MRI scan with
—30° rotation —60° rotation 30° rotation 60° rotation

(f) Original ground (g) Ground truth for (h) Ground truth for (i) Ground truth for (j) Ground truth for
truth MRI scan with —30° MRI scan with —60°  MRI scan with 30° MRI scan with 60°
rotation rotation rotation rotation

Figure 3.6: Various Rotations performed on an MRI scan for data augmentation

(a) MRI scan with 0.5 gamma (b) MRI scan with 1.0 gamma (c) MRI scan with 1.5 gamma
correction correction (Original image) correction

Figure 3.7: Various Gamma corrections performed on an MRI scan for data augmentation

Figure 3.8: Original MRI slice and ground truth image along with its flipped counterparts

The augmented dataset is created in order to deal segmentation network’s inability to accu-
rately segment rotated MRI scans. Both the ACDC and M&M dataset are fairly consistent
with the orientation of patients MRI scans [23] Also, the python package Nibabel (link) that is
used to read Nifti files has an in-built function that normalises the orientation of MRI scans.
Using the metadata from the nifti files, the images are usually arranged in a RAS+ (left to
Right, posterior to Anterior, inferior to Superior) format. Since orientation is not an issue in the
ACDC and M&M dataset, experiments in section 4 do not account for this. For rotation based
experiments, please refer to Appendix D.

3.4. Formulation of Shape prior
The shape prior is used by the segmentation model to prevent itself from generating anatomi-
cally impossible segmentations. This, in turn, helps generalise the segmentation network and


https://nipy.org/nibabel/index.html
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make it more robust. The shape prior is a 3D array that is formulated by calculating the prob-
ability of a certain class i.e (LV, MYO, RV or background) being present in 3D space. This
probability is calculated by computing the pixel-wise proportion of each class based on the
ground truth images of the training set. Mathematically, the shape prior can be represented
as:

1 &
P(C|0) = N > 1e(Ti) (3.1)
=1

where 1¢(7; 7) is a function which is equal to 1 when T; ; is equal to one of the classes present
in that 3D location and otherwise it is equal to 0. V; is the total number of training samples. v
represents 3D space [23].

The shape prioris encoded intoa 15 X 100 X 100 X 3 space. The first dimension is the number
of slices from the apex to the base of the heart. The last dimension represents the 3 classes.

Additionally, when formulating shape priors, a region of interest should be cropped from the
ground truth images. This is done by calculating the centre of mass for each training label.
This centre of mass is computed based on the location of the LV. This cropping is shown in
figure 3.9.

Also, cropping around the centre of mass eliminates any issue caused by interslice shifts that
usually occur in MRI scans. The cause of interslice shifts is explained more clearly in section
3.5

Centre
of Mass

0 50 100 150 200

Figure 3.9: Calculation of Mass of centre of LV and cropping out 100 X 100 space around it for the formulation of
shape prior

Figure 3.10 below shows the different slices of the shape prior (apex to base) that has been for-
mulated based on equation 3.1. The intensity of the individual labels represents the probability
of each class being present in that particular location.
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Figure 3.10: Apex to base slices of the shape prior

There are three types of shape priors that are used in the segmentation network under
various conditions.

1. Normal shape prior:
This shape prior is formed by cumulatively adding up (according to eq 3.1 all the ground
truth data available from the training set.
2. ED shape prior:
This shape prior consists of data only from the end-diastolic phase
3. ES shape prior:
This shape prior consists of data only from the end-systolic phase

(a) Long axis view of ED shape prior (b) Long axis view of ES shape prior
(c) Short axis view of ED shape prior (d) Short axis view of ES shape prior

Figure 3.11: Long and short axis view of ED and ES shape prior

Visually there are clear differences between the two shape priors. Sub-figure 3.11c and sub-
figure 3.11d are the short axis view of the same slice in the ED and ES phase respectively.
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Clearly, the ED prior is more dilated, as it should be. According to the second research ques-
tion proposed in section 2.3.1 the objective of creating distinct shape priors is to evaluate
whether incorporating these phase-specific priors can enhance the performance of the seg-
mentation network.

3.5. Segmentation network

3.5.1. Segmentation network architecture

Variations of the UNet [24] and Gridnet architectures have been used for the segmentation
networks. In order to evaluate the efficacy of embedding prior anatomical knowledge into the
segmentation network, a shape prior module had been added as well.

The UNet has 2 columns and 5 rows (figure 3.12a) of feature extractors whereas the Gridnet
has 3 columns and 5 rows (figure 3.12c).

The input to these networks is a 256 X 256 MR image. The output is also a 256 X 256 label
output as shown in figure 3.12. Both networks are 2D segmentation networks. An important
aspect to consider is that MRI scanning is prone to inter-slice shifting in the 2D short axis. This
error is caused due to variations in breath holds between scans. This in turn compromises
the accuracy of the final 3D image. Considering that aspects such as 3D cardiac motion, and
building whole heart models are out of the scope of this project, we are not concerned with
the information lost by ignoring interslice shifts.

Also, considering that some of the data have large interslice gaps (upto 10mm), a 3D convolu-
tional operation is not preferred [25]. A 2D segmentation network is advantageous as it is not
affected by inter-slice shifts. The final output is obtained by stacking up a series of 2D labelled
outputs.

The addition of convolutional blocks in between the skip connections of the UNet is the main
difference between the UNet and the Gridnet. Batch normalisation was applied to each fea-
ture layer, ReLU was the activation function used and dropout was used in order to prevent
overfitting.
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(a) Network architecture of a UNet
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(b) Network architecture of a UNet with the addition of the shape prior module
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(c) Network architecture of Gridnet
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(d) Network architecture of Gridnet with the addition of the shape prior module

Figure 3.12: Segmentation network architectures with and without the addition of the shape prior module

For details regarding the Convolutional blocks used, kernel sizes, stride and outputs at each
layer, refer to Appendix C.3 for UNet and Appendix C.2 for Gridnet.
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3.5.2. Loss functions
There are various loss functions that are used to train the segmentation network. They are as
follows.

1. Cross-entropy loss

(a) Label loss
(b) Contour loss
(c) Multi-resolution loss

2. Regression loss

(a) Center of Mass (COM) loss

3. Shape prior loss
4. Dice loss

Cross-entropy loss :

It is also referred to as logarithmic loss or logistic loss.Generally for any application, each
predicted probability is compared with the actual value which is usually between 0 and 1. The
difference is calculated and penalised based on how far the predicted value is from the ground
truth. The penalty is based on a logarithmic scale. Therefore, the larger the difference, the
higher the penalty. Mathematically, this loss can be formulated in the following way.

Lop=—Y _tilog(pi) (3.2)

=1

where t; is the ground truth and p; is the softmax probability (link) of the prediction.

1. Label loss is determined by applying cross-entropy loss for each label. Since each la-
bel is categorically encoded (3.3.2.1), a simple binary cross entropy loss is calculated
for each label.

2. Contour loss is similar to label loss with the only difference being that this is used to
penalise any deviation from the ground truth contour. Prediction and ground truth la-
bels are extracted using a Sobel filter. This is a standard edge detection filter. Figure
3.13 gives an example of how this filter works. This filter is applied to the categorically
encoded ground truth. This eliminates any problem with label distinction.

(a) Ground truth image before applying Sobel filter (b) Ground truth image before applying Sobel filter

Figure 3.13: Ground truth image before and after applying Sobel filter for contour loss


https://deepai.org/machine-learning-glossary-and-terms/softmax-layer
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3. Multi-resolution loss is an additional step that is required to make the network more ro-
bust. At each level of the network, the output of the network is compared to the rescaled
version of the ground truth. This is again similar to label loss but performed at each level
of the Gridnet.

COM loss:

Centre of mass calculation is important for the shape prior module. Table 3.4 shows the archi-
tecture of the shape prior module. The loss function used for this network is Mean squared
error loss. The output of this network is a co-ordinate (x,y).

Dice loss:
Dice loss has been proven to be effective with biomedical segmentation methods [26]. This is
used to counteract the class imbalance problem that arises with cardiac datasets. For example,
since the number of pixels in the LV label is usually more than the MYO label, there is a class
imbalance.

(3.3)

| 2), TT
D(T,T) =1 S [Z)\ZZnT2f2

where n is the number of pixels and i is the class. 7" and 7 are the ground truth and predicted
labels. )\; is a weighting value that is large for classes that have a lower number of pixels on
the image i.e LV, RV, and MYO, and a small value for background pixels since there are many
more when compared to the cardiac structure labels.

7

3.5.3. Prediction of Centre of mass for shape prior module in segmentation net-
work

At the bottleneck section (lowest point of network) of the segmentation network (for both UNet

and Gridnet) we obtain a feature space of 16 x 16 x 512. This feature set is used as the input

for the shape prior module. In order to completely incorporate anatomical knowledge in the

form of a shape prior there are two steps:

» Step 1: Predict the centre of mass for LV.

» Step 2: Using the centre of mass, concatenate the shape prior at the predicted 2D spatial
point onto the output of the network.

In order to predict the LV centre, a global average pooling layer is used as the first layer. This
reduced the feature space from a 3D space to a 1D space. The output obtained is a [512 x 1]
array. Next, this is fed into a fully connected layer with ReLU activation which gives an output
of [256 x 1]. The same step is performed two more times to obtain a feature space of [128 x
1] and finally [2 x 1] array which is the x and y predicted location of the LV centre. Figure 3.14
shows us now the regression network is designed to predict the centre of mass coordinates.
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Figure 3.14: Visual representation of centre of mass regression network

Before we concatenate the prior with the predicted label output from the network (shape:
256x256x4) we align the shape prior (which is currently a 100x100x3 distribution) using the
predicted LV centre and then pad it 256x256x3 size. Finally, we concatenate these shapes to
get a 256x256x7 output before we finally pass it through a convolutional block to get the final
adjusted prediction. This is summarised in table 3.4

Table 3.4: Fully connected regression blocks and convolutional blocks for predicting centre of mass and
concatenation of shape prior into segmentation network

Block Layer Kernel | Stride Output
AVG Average pooling - - 512
1 Fully connected + - - 256
REGRESSIONT 1 Fully connected + - - 128
REGRESSION2 | 1 Fully connected - - 2
align prior + - -
CONCATT concat - - 256x256x7
3 conv 3x3 1 256x256x32
CONV 1 conv 1x1 1 256x256x4

3.6. Evaluation metrics

Evaluation metrics for biomedical segmentation techniques are broadly divided into 2 cate-
gories: Geometric metrics and Clinical metrics(chamber volumes, mass etc.). Since the per-
formance of segmentation networks with and without prior knowledge is being tested under
different scenarios, geometric evaluation metrics are used and clinical metrics are ignored.
Geometric metrics are broadly classified as:

1. Pixel-based metrics [27]
(a) Dice similarity coefficient
(b) Jaccard score
(c) Precision
(d) Recall
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2. Contour-based metrics

(a) Hausdorff distance
(b) 95th percentile Hausdorff distance

3.6.1. Dice Similarity coefficient or Dice Similarity index
DSC is the overlap between predicted segmentation and reference manual segmentation.
Given below is a visual representation of the evaluation metric. Dice score has a range of
0-1. Here 0 indicates no area being overlapped and 1 indicates a perfect overlap between
ground truth and prediction.
DSC — 2(|Vpred N Vref|)

(|Vpred + Vref|)
Here V,,..q is the predicted segmentation map from the network.
Vier is the reference segmentation map that has been provided by expert clinicians i.e the
ground truths.

Figure 3.15: Dice Score

3.6.2. Jaccard Index

Jaccard Index or Jaccard Score also commonly referred to as loU (Intersection over Union)
is one of the most commonly used metrics in semantic segmentation. It can be defined as
an area of overlap between predicted segmentation and the ground truth divided by the area
of union between the predicted segmentation and the ground truth. 10U has a range of 0-1.
Here 0 indicates no area being overlapped and 1 indicates a perfect overlap between ground
truth and prediction. Given below is a pictorial representation of the evaluation metric.

(|Vpred N ‘/ref|)
(|V;ored U ‘/ref‘)

Here V,,,..q is the predicted segmentation map from the network.
V,es is the reference segmentation map that has been provided by expert clinicians i.e the

ground truths.
Area of Overlap J

Avrea of Union

Jaccard(Vpred, Vyef) =

loU =

Figure 3.16: Jaccard Index
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3.6.3. Precision
Precision, also called positive predictive value is defined as the ratio between the true positive
pixels to the sum of true positive and false positive pixels [28].
. TP

Precision = TP+ FP (3.4)
TP - Pixels correctly segmented when compared to ground truth segmentation
FP - Pixels incorrectly segmented when compared to ground truth segmentation
In order to gain a better understanding of TP, FP, and FN in biomedical segmentation, a visual
representation is provided in Appendix C.6.

3.6.4. Recall
Recall also referred to as True positive rate or sensitivity quantifies the proportion of positive
pixels in the predicted segmentation that are marked positive in the ground truth [28].

TP

RGCCL” = m (35)

FN - Pixels incorrectly segmented as background when compared to ground truth segmenta-
tion

3.6.5. Hausdorff Distance (HD)

HD is a contour-based metric where the predicted contour/segmentation boundary and manual
reference contour are compared. If they are represented as a setof point A = {a;,as, -+ ,a,,}
and B = {by,bs,---,b,,}, where each a; and b, are z,y co-ordinated of each point on the
contour, distance to closest point (DCP) for a; on curve B is given as

d(a;, B) = min|/b; —a;| (3.6)
J
HD is defined as the maximum of the DCP’s between these curves.

HD(A,B) = max <m%ax {d(a;,B)}, mjax {d (bj,.A)}> (3.7)

Figure 3.17: Hausdorff distance (link)

Greater the Hausdorff distance, worse the performance of the segmentation network.


https://structseg2019.grand-challenge.org/Evaluation/
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3.6.6. 95th percentile HD (HD95)
HD is comparable to 95th percentile HD. The 95th percentile of the distance between border

points in A and B is considered for this metric. This is used to reduce the influence of a very
tiny subset of outliers.



Experiments and Results

Before discussing results it is important to recap how values for each metric signify segmen-
tation performance.

1.

41

Dice score - (range 0 - 1):
0 indicates no overlap and 1 indicates perfect overlap. Larger the value, better the per-
formance.

. Jaccard index - (range 0 - 1):

0 indicates no overlap and 1 indicates perfect overlap. Larger the value, better the per-
formance.

Pecision - (range 0 - 1)
Recall- (range 0 - 1)

Hausdorff distance (HD) - mm
Lower the value, better the performance

. 95th percentile Hausdorff distance (HD95) - mm:

Lower the value, better the performance

Shape prior influence

Can computationally efficient cardiac segmentation DL networks benefit in terms of
performance with the usage of prior knowledge in the form of shape priors ?

The objective of this research question as mentioned in 2.3.1 is to explore alternative ap-
proaches to address the challenge of accommodating diverse cardiac datasets, instead of
relying solely on increasing the complexity and depth of segmentation networks. A UNet (sec-
tion 3.5) and Gridnet (section 3.5) with and without the shape prior module are trained and
evaluated. These networks have 2.6 million and 3.5 million trainable parameters respectively.

Table 4.1: Number of trainable parameters for each segmentation network

Network Trainable parameters (million)
Gridnet with and without shape prior ~3.5
UNet with and without shape prior ~2.6

The following 4 sets of experiments use the dataset as mentioned in section 3.3.3. All the
networks are trained for 31 epochs. This is to ensure that there is no disparity between the

27
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training conditions of the 4 experiments. A point of consideration during performance compar-
ison is the time taken to train each epoch. The shape prior itself consists of around ~0.15M
parameters. More importantly, in essence, it is a single-channel regression network. So the
time difference in training between the network with and without the shape prior is almost 0.

Table 4.2: Training time per epoch for each segmentation network

Network Time taken per epoch (s)
Gridnet with shape prior ~900
Gridnet without shape prior ~900
UNet with shape prior ~600
UNet without shape prior ~600

Training and validation loss and dice scores for the Gridnet and UNet with shape priors are
shown in figure 4.1. Both networks converge at 0.89 - 0.90 dice scores. Considering that
most of the participants of the M&M challenge have developed networks with over 30 million

parameters, these are more efficient (table 4.3) and compact segmentation networks with
comparable performance.
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(d) Validation dice score for Gridnet and UNet with shape prior

Figure 4.1: Training and validation loss and dice scores for Gridnet and UNet with shape prior
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Figure 4.1c shows us that the UNet with the shape prior comparatively takes lesser time to
converge at a dice score of 0.9 when compared to the larger network i.e Gridnet with shape
prior. The UNet with shape prior takes around 10000s when compared to Gridnet with shape
prior which takes around 15000s to reach a validation dice score of 0.9 (figure 4.1d).

As an interesting side note, the table below gives the total power consumption of nnUNet (Best
performing network from M&M challenge), Gridnet with shape prior, and UNet with shape prior.

Both the Gridnet and UNet with shape prior were trained on the Nvidia A100 - 40GB GPU and
the nnUNet was trained on the Nvidia Titan XP GPU. The Nvidia A100 GPU has a power draw
of 250W (Link) and the Titan XP averages between 350 - 375W (Link).

Based on these values, table 4.3 quantifies the efficiency and benefit of using less complex
segmentation networks.

(Note: The power draw values of the GPUs are derived from the Nvidia datasheets and
Gamers Nexus testing. This only considers GPU power draw as training Al models are usu-
ally run on CUDA platform. It does not take into account other sources of power draw such as
cooling hardware. This is a comparative analysis)

Table 4.3: Complexity, power efficiency, and performance of cardiac segmentation networks

Segmentation Model Average GPU Power Training GPU
parameters Dice o : . energy
network (million) score for training | consumption (W) | time (h) (KWh)
nnUNet 30 0.925 Titan XP 362.5 60 21.75
S;';’Sgtp"r‘?g? 3.5 0.880 | A100 250 775 | 1.94
Sﬁg‘g{: ‘g:gr 26 0.860 | A100 250 516 | 1.29

Based on the metric evaluation, Gridnet with the shape prior performs the best. This network
has the best dice score (0.8895) and Jaccard index and the lowest Hausdorff distance scores
(7.7805) (lower is better). This is indicated in green in table 4.4. Figure 4.2 shows this com-
parison in the form of bar plots.


https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.gamersnexus.net/hwreviews/2892-nvidia-titan-xp-review-vs-1080-ti-benchmark/page-3
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(a) Quantitative evaluation of segmentation performance of Gridnet with and without a shape prior on ED cardiac phase
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(b) Quantitative evaluation of segmentation performance of Gridnet with and without a shape prior on ES cardiac phase

Figure 4.2: Comparative analysis of Gridnet with and without a shape prior

Table 4.4: Segmentation performance of Gridnet with and without shape prior

Dice | Jaccard | . .ion | Recall | HD HD95
score Index

Gridnet with | ED | 0.8895 | 0.8294 | 09284 | 0.8904 | 11.8563 | 7.7805
shape prior | ES | 0.8690 | 0.7950 | 0.0006 | 0.8835 | 12.5067 | 8.9687
Gridnet without | ED | 0.8559 | 0.7636 | 0.7919 | 0.9625 | 16.5525

shape prior | ES | 0.8250 | 0.7185 | 0.7400 | 0.9679 | 17.0572

The Gridnet segmentation network without the shape prior has a performance that is lower
but comparable. The dice scores are 3.3% and 4.7% lower for the ED and ES cardiac phases
respectively and a similar trend is observed for the Jaccard index as well.

The actual effect of the shape prior can be seen in the contour-based metric i.e the Hausdorff
distance and the 95th percentile Hausdorff distance. The Gridnet with prior has a performance
increase of up to 42.18%. The HD95 value decreased from 12.98mm to 8.96mm and 11.41mm
to 7.78mm for the ED and ES phase respectively. This is indicated by the blue marked cells
in table 4.4.

The effect of the shape prior is made more evident by the precision and recall numbers. Both
precision and recall values for the Gridnet with shape prior range between 0.88 and 0.93. This
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indicated that the number of false positive (precision) and false negative (recall) pixels is low
and the number of true positive pixels is high.

The removal of the shape prior leads to a decrease in precision values and an increase in
recall. This shows us that the network has a lot more false positive pixels. As a consequence,
the recall value shoots up as this over-segmentation of pixels to a certain label reduces false
negatives.

Figure 4.3 gives a clear representation of the performance benefits of including a shape prior.
Apical, mid, and basal slices of the heart are compared.

The apical and basal slices suffer in terms of segmentation when the shape prior is absent in
the network. Gridnet without the shape prior fails to recognise that the right ventricle is absent
in the original image (as confirmed by the ground truth images) and it falsely segments the RV
(green label in the apical and basal slice - last column).

Original Ground truth Gridnet V\._'lth Gridnet wnhout
image image shape prior shape prior
g g prediction prediction

Apical slice

Mid slice

Basal slice

Figure 4.3: Comparison between Gridnet with and without shape prior on apical, mid, and basal heart slice

The effect of the shape prior is even more prominent when implemented with the UNet. The ab-
solute dice and Jaccard scores are lower when compared with Gridnet. This can be attributed
to the presence of additional convolution blocks and the transfer of features.
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Shape prior influence

Table 4.5: Segmentation performance of UNet with and without shape prior

Dice | Jaccard | o .ion | Recall | HD HD95
score Index
UNetwith | ED | 0.8817 | 0.8184 | 00162 | 0.8875 | 11.4343 | 7.8402
shape prior | ES | 0.8586 | 0.7833 | 0.8982 | 0.8745 | 11.3338 | 8.2840
UNet without | ED | 0.8254 | 0.7185 | 0.7348 | 0.9732 | 27.1278 | 20.1346
shape prior | ES | 0.7722 | 0.6507 | 0.6682 | 0.9659 | 29.2529 | 23.2367

The UNet with shape prior has comparable performance with Gridnet segmentation network.
UNet without shape prior performs poorly in comparison. Dice scores are lower by 6-8% and
Jaccard scores by 7-10%.

The effect is seen in the contour-based metrics. 95th percentile Hausdorff distance scores are
all over 20mm and this shows a poor segmentation ability of the network. Figure 4.4 shows

this performance difference in the form of bar plots.
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(b) Quantitative evaluation of segmentation performance of UNet with and without shape prior on ES cardiac phase

Figure 4.4: Comparative analysis of UNet with and without a shape prior




4.2. Multiple shape priors 34

Original 'Ground truth UNet W't.h UNet wnh_out
image image shape prior shape prior
9 9 prediction prediction

Apical slice

B

Mid slice

Basal slice

Figure 4.5: Comparison between UNet with and without shape prior on apical, mid, and basal heart slice
Figure 4.5 confirms the lack of segmentation performance of the UNet without the shape prior
when compared to the network with the shape prior. UNet without shape prior does not accu-

rately segment the ventricles. The prediction spills over the actual contour of cardiac structures
(LV, RV, MYO) which in turn results in a lower dice score and a larger Hausdorff distance value.

4.2. Multiple shape priors
Can segmentation networks benefit from the usage of multiple shape priors for differ-
ent applications (i.e different phases of the heart)?

Segmentation networks consistently perform worse on the ES phase when compared to the
ED phase for reasons as stated in section 2.3.1.

Three separate priors are used with the normal dataset. The main difference between the ES
and ED prior lies in the spatial distribution of the labels.



4.2. Multiple shape priors 35
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Normal
(combined)

Figure 4.6: Differences in ED and ES shape prior labels (LV, RV, MYO)

Figure 4.6 gives a reference for the spatial distribution of each label in the prior through pixel
intensity. The prior is a probabilistic distribution of different labels in 2D space. Mathematically
it is formulated as per equation 3.1.

In order to justify the need for different priors, let us take the LV label as an example. For both
ES and ED phases, the concentration and thereby the probability of finding this label towards
the centre is very high as confirmed by the figure.

As we move away from the centre, the probability for the ES phase declines faster than the ED
phase. This is because during the ES phase, the heart in compression and thereby smaller in
terms of volume. Similarly, the decline of probability for the LV in the ED phase is slower as
the heart is in expansion and thereby larger. This is the same case for the MYO and RV label.

LV

ED prior ES prior Normal prior (combined)

Figure 4.7: Probability distribution difference between normal, ED, and ES prior

When both these phases are combined in one prior, the probability distribution changes. Figure
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4.7 provides a clearer picture. The same prior slice and 2D location on this slice is considered
for 3 priors. The probability of finding the LV in the ED phase is very close to 1 where as the
probability is much lower in the same location on the ES prior. When combined, the probability
is compromised for both the ES and ED phase. Therefore this experiment is designed to see
if we can take advantage of individualised priors for the different phases of the heart.

Table 4.6: Segmentation performance of Gridnet with different shape priors

Dice | Jaccard | o o .ion | Recall| HD | HD95
score Index

Normal | ED | 0.8895 | 0.8204 | 0.9284 | 0.8904 | 11.8563 | 7.7805
prior | ES | 0.8690 | 0.7954 | 09006 | 0.8835 | 12.5067 | 8.9687
ED | ED | 0.8906 | 0.8318 | 0.0447 | 0.8807 | 11.0200 | 7.3102
prior | ES | 0.8693 | 0.7974 | 09226 | 0.8655 | 11.0422 | 7.9914
ES | ED | 0.8997 | 0.8387 | 00189 | 0.9117 | 10.6870 | 7.1246
prior | ES | 0.8728 | 0.7968 | 0.8919 | 0.8956 | 11.1572 | 7.8995

The difference in performance between the networks trained with 3 different shape priors is
marginal. The ED dice scores and HD values of the network with the ED prior are slightly
better than the segmentation network with the normal prior. These marginal but insignificant
differences for the ED phase are shown in the form of bar plots in figure 4.8

ED phase - Area based metric scores

B Normal (combined) shape prior [l ED shape prior ES shape prior
Lo 0.9447
09284 09189 09117
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Figure 4.8: Quantitative evaluation of segmentation performance of Gridnet with a normal, ED, and ES shape
prior on the ED cardiac phase
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Figure 4.9: Quantitative evaluation of segmentation performance of Gridnet with a normal, ED, and ES shape
prior on the ES cardiac phase

A similar trend can be seen for the network with the ES shape prior when compared to the
base network. Figure 4.9 shows this trend in the form of bar plots.

This requires further investigation. Table 4.7 breaks down the dice scores and HD values
for different labels.

Table 4.7: Segmentation performance of Gridnet with normal, ED, and ES prior on individual labels i.e LV, RV,
MYO

Dice score HD96
LV MYO RV LV MYO RV

ED Prior ED | 0.9287 | 0.7944 | 0.8574 | 2.5327 | 3.1946 | 6.6949
ES | 0.8765 | 0.8156 | 0.8013 | 2.9979 | 3.7765 | 6.4165
ES Prior ED | 0.9230 | 0.7944 | 0.8682 | 2.6354 | 3.3859 | 5.4699
ES | 0.8751 | 0.8268 | 0.7928 | 2.9162 | 3.6440 | 7.0982

The LV and MYO scores remains consistent across ED and ES phase with the different priors.
The effect of the different priors is minimal but can be noticed in the contour based scores
for the RV label. Based on these results, different shape prior does not necessarily improve
performance on different phases of the heart but it is useful in preventing impossible anatomies
and very low performance segmentations. An example of Gridnet trained separately with the
ES and ED shape prior is provided in figure 4.10.
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Figure 4.10: Baseline performance of Gridnet with shape prior on ES and ED cardiac phase

4.3. Sex bias in segmentation network
Do segmentation networks suffer from skewed training data i.e female under-representation
in cardiac datasets?

Section 2.3.1 gives a line of reasoning as to why it is important to investigate if cardiac seg-
mentation techniques suffer from bias when considering real world scenarios. Public datasets
such as the ACDC and M&M datasets are curated in such a way that the male and female
patients in the train and test sets are balanced. This might not be the case in private datasets
and female under-representation in clinical trials is to be expected.

Section 3.3.4 explains how male-skewed and balanced training datasets are designed such
that there is no bias except for the female under-representation specifically induced for this
experiment. The Gridnet network with the shape prior is trained on both the training sets under
exact conditions.

Table 4.8 compares the performance of the Gridnet segmentation network with shape prior
trained on the balanced dataset.

Table 4.8: Segmentation performance of Gridnet with shape prior (trained on balanced training set) on male and
female test patients

Dice score | Jaccard index | Precision | Recall HD HD95

Male ED 0.8945 0.8415 0.9337 0.9008 | 13.4738 | 8.6413
ES 0.8879 0.8206 0.9210 0.8913 | 12.0462 | 8.2859

Female ED 0.9183 0.8657 0.9279 0.9333 | 13.5930 | 7.1850
ES 0.9137 0.8513 0.8963 0.9497 | 10.9738 | 6.6041

Table 4.9 shows segmentation results of the Gridnet network with shape prior trained on the
male-skewed training dataset. Since the number of female patients has been reduced to 25%
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in the training set to emulate female under-representation, the following comparison is be-
tween the results obtained on the female patients in the test set.

Table 4.9: Segmentation performance of Gridnet with shape prior (trained on male-skewed training set) on male
and female test patients

Dice score | Jaccard index | Precision | Recall HD HD95
Male ED 0.8787 0.8131 0.8746 0.9285 | 13.4889 | 9.2967
ES 0.8655 0.7918 0.8657 0.9178 | 12.0447 | 7.9053
Female ED 0.8811 0.8142 0.8700 0.7572 | 12.9843 | 7.3364
ES 0.8914 0.8098 0.7075 0.9022 | 13.5332 | 8.5204
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(a) Quantitative evaluation of segmentation performance of Gridnet with shape prior (trained on balanced and skewed dataset)
on ED cardiac phase of male test patients
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(b) Quantitative evaluation of segmentation performance of Gridnet with shape prior (trained on balanced and skewed dataset)
on ED cardiac phase of female test patients

Figure 4.11: Comparative analysis of Gridnet with shape prior (trained on balanced and skewed dataset) on ED
cardiac phase between male and female test patients

Figure 4.11 compares the performance of Gridnet with shape prior trained on balanced and
skewed dataset. Figure 4.11a and figure 4.11b shows this comparison for male and female
test subjects on the ED cardiac phase respectively. Dice scores for both male and female pa-
tients remain relatively consistent. There is a marginal reduction of performance when training
is switched from the balanced dataset to the skewed dataset. For male patients the dice score
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performance reduced by 1.6% and by 3.7% for female patients. Female patients suffer more
when it comes to performance but when you consider the fact that the male to female ratio in
the training dataset is 3:1, it can be concluded that the network has maintained its segmenta-
tion performance.

A similar trend can be seen for the other area based metrics. The network has managed to
maintain almost equal performance. An exception is seen for recall on female test patients. A
reduction of 17% is seen between balanced and skewed sets. Basically this tells us that there
are more false negatives in the predictions on female test patients.

The Hausdorff distance and 95th percentile HD are fairly consistent for the ED cardiac phase
between between the balanced and skewed datasets for both male and female test patients.
The difference does not exceed 0.6mm.
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(a) Quantitative evaluation of segmentation performance of Gridnet with shape prior (trained on balanced and skewed dataset)
on ES cardiac phase of male test patients
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(b) Quantitative evaluation of segmentation performance of Gridnet with shape prior (trained on balanced and skewed dataset)
on ES cardiac phase of female test patients

Figure 4.12: Comparative analysis of Gridnet with shape prior (trained on balanced and skewed dataset) on ES
cardiac phase between male and female test patients

Figure 4.12 gives us the comparative analysis of networks trained on balanced and skewed
datasets and tested on male and female patients ES cardiac phase. It is already known that
segmentation networks suffer in the ES cardiac phase when compared to the ED cardiac
phase. Surprisingly, in area based metrics, the network maintains comparable scores be-
tween male and female test patients. The difference is dice scores do not exceed 2.6%. There
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is a significant reduction in precision values of female test patients. Female test patients in
the skewed dataset has precision values lowered by 19%. This means that the network is
predicting more false positives. The effect of this can be seen in the contour based metrics.
Hausdorff distance reduces for male patients from 12mm to 10.9mm and increases from 12mm
to 13.5mm for female patients. For the ES phase, the network suffers in Hausdorff distance
from a lack of female patients in the training set. But considering that most of the area based
metrics are showing good performance, we need to look at HD95. Here it is seen that there
is a significant reduction for male patients (8.2mm to 6.6mm) but for female patients the in-
crease is minimal i.e (7.9mm to 8.5mm). This means that there are outliers in the predicted
segmentation.

Based on the evaluation of both networks, these segmentation networks do not suffer from
sex bias even if there is an under-representation of one when compared to the other.



Conclusion and Future work

The methodology and findings are covered in this chapter’s discussion and conclusion. We will
first briefly discuss the key findings of this research and the three sub-questions are addressed
in Section 5.1. In Section 5.2, we will finally suggest potential directions for future study.

5.1. Summary of results and conclusions

This thesis is aimed at investigating and evaluating the performance of relatively efficient Deep
Learning segmentation networks assisted by the use of anatomical knowledge. The motiva-
tion for this project arises from the fact that nowadays DL networks are growing in depth in
order to accommodate more learning and improve its performance. This is done without tak-
ing into consideration the environmental impact training such large networks have. Also, sex
bias is a major issue in cardiac technology. Investigating the effects of such biases in cardiac
segmentation performance is done.

The usage of DL in cardiac segmentation has gained popularity over the last decade as they
are able to accurately recognise patterns and draw out contours. This has immensely assisted
clinicians as inference times have been reduced. The evolutionary trend of these networks
has been to increase their size in terms of model parameters. This is to accommodate larger
and more diverse datasets. The ACDC challenge and M&M challenge show us this trend.

[23] came up with an innovative idea of combining anatomical knowledge in the form of a
shape prior in order to improve the performance of a UNet derivative called the Gridnet. This
worked very well with the ACDC dataset.

This network was tested on a more diverse dataset i.e the M&M dataset and the performance
even though lower is still comparable. This network manages a dice score of 0.927 and 0.894
on the ED and ES cardiac phase respectively. Whereas when tested on the M&M dataset and
ACDC dataset combined, it manages a dice score of 0.889 and 0.869. Considering that this
performance is still comparable to the top-performing cardiac segmentation networks, we can
conclude that simply exploding networks is not always the solution.

In order to ensure that the shape prior benefiting Gridnet is not an isolated case, similar tests
were performed on the UNet with and without the shape prior. With an average dice score of
0.870 and 0.798 respectively, it can be inferred that the shape prior module greatly improves
the performance of the UNet, a relatively simple DL network. This is the case even when

42
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the cardiac datasets are complex and diversified. We can conclude that the shape prior can
benefit less complex cardiac segmentation networks.

When closely observed, most of the DL networks for cardiac segmentation have a lower per-
formance on the ES phase when compared to the ED phase. The performance of the Gridnet
with various shape priors was tested. There were marginal performance differences. Dice
scores and HD values did not vary much. It was concluded that the shape prior does not
affect area-based segmentation performance.

In order to test if real-world biases affect segmentation networks, we designed an experiment
where the training datasets were specifically designed to mimic a balanced population between
males and females and a skewed dataset where females were under-represented. Again, the
segmentation network did not greatly suffer any performance bias. The average dice scores
for the balanced and skewed datasets were 0.904 and 0.880 respectively. Even though the fe-
male population was only 33% of the male population in the training dataset, the performance
difference did not exceed 3.7%.

In conclusion, this project was designed to answer the following question.

How influential is the addition of anatomical knowledge in the form of shape priors in Deep
Learning based cardiac segmentation networks ?

To answer this research question, the formulated sub-questions are first answered:

Can simpler cardiac segmentation networks benefit in terms of performance with the
usage of prior knowledge in the form of shape priors ?

In one word, Yes. Tests have clearly shown that the performance of simple segmentation
networks benefits from the addition of shape priors.

Can segmentation networks benefit from the usage of multiple shape priors for different
applications (i.e different phases of the heart)?

No, in terms of segmentation performance, having specialised shape priors are not beneficial
for the ED or ES cardiac phase.

Do segmentation networks suffer from skewed cardiac training data i.e female under-
representation in cardiac datasets?

No, segmentation networks do not suffer from skewed datasets. The performance on the
female test set is lower but only by a very small margin. When considering the difference
between male and female patients in the training set, this marginal performance difference is
insignificant.

5.2. Future research

This thesis addresses the use of deep learning in cardiac segmentation. Not only does it
evaluate the innovative use of prior knowledge to improve the performance of deep learning
networks but also investigates the possibility of real-world biases creeping into such segmen-
tation networks. Various limitations of and suggestions for future work based on this thesis
are as follows.

1. Data:

(a) Size of cardiac dataset:
The data being used for this thesis are publicly available datasets. They are limited
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when compared to private datasets such as UK-biobank ( 6000 manually contoured
cardiac MRIs, [link]) or MESA ( 2000 patients cardiac MRI [link]). Larger datasets
can provide segmentation networks with better generalisation.
(b) Diversity in dataset:
For the purpose of this project, we have only investigated the bias in cardiac seg-
mentation due to inequality in male-female representation. Research has shown
that heart geometry not only varies between male and female but also between dif-
ferent ethnic groups [29] [30]. Bias in cardiac segmentation due to unequal ethnic
representation in cardiac datasets bears further investigation.

2. Segmentation type:
Most cardiac segmentation networks focus on bi-ventricle segmentation. Extending
these research topics to whole heart segmentation which also include the atria can be
considered.

3. Anatomical knowledge:
The anatomical knowledge included in the segmentation network in this thesis is a shape
prior. Other forms of knowledge such as motion information knowledge and appearance
information (Appendix B.4) can be considered.

4. Network optimisation:
Hyper-parameter study was not given much importance in this project. Hyper-parameters
such as the learning rate, selection of different activation functions, size of batch, etc. can
be further optimised in order to see which set of parameters gives the best segmentation
performance.
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Deep Learning Theory

In the following chapter, the building blocks of a Neural network will be discussed. In order
to gain a better understanding of the concepts discussed in methodology (chapter 3) and
experiments (chapter 4), this chapter talks about Deep Learning fundamentals.

A.l. Neural Networks

Neural Networks (NNs) are a type of machine learning model that is designed to work like
the brain. Just like the brain, it is composed of a number of neurons that are interconnected
layer by layer. This has proven to be highly beneficial in dealing with very large datasets. NNs
are used for various applications such as object detection and classification, segmentation,
synthetic data generation, language processing, etc. In section A.3 we shall further discuss a
specialised NN which is widely used for biomedical segmentation.

A.1.1. Preceptron
The perceptron forms the basis of all NNs. It is a linear combination of n inputs i.e x =

[x1,x2, x3......705] € R™, the weights associated with these inputs w = [w;, ws, ws......wy], @
bias term wy and an activation function o

z:woJrZwixi (A.1)
=0

where z is the output of the perceptron.
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Figure A.1: The perceptron, the building block of a neural network
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A.12. Multilayer Perceptron

A Multilayer Perceptron (MLP) is a collection of perceptrons that are connected layer by layer.
The input layer of the MLP consists of a number of input neurons that is equal to the size
of the feature space (number of inputs in the data). The output is as per the desired output
dimension. A number of hidden layers may be present between the input layer and the output
layer.
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Figure A.2: Visual representation of a Multilayer perceptron

The following set of equations are the parameters necessary to design an MLP.

Zi=2i1, 220y Zing, 1=1,2,...,L
b; = [wo1, w02, -, Wom,] i=1,2,...,L
w171 e w17ni71
W, = € RMixXmi—1
Wp; 1 --- Wnyn;_q (A2)
T =[x1,T2,...,Tng, 1]

0 ={61,0s,...,00}

where z; is the linear combination sum of the layers. For a single perceptron, refer to equa-
tion A.1. W, is the weights matrix which contains all the weights of each neuron. 6 is the
combination of weights and biases.

A.1.3. Activation function

The output function defines the output of a node or neuron of a NN. It is also called the transfer
function. There are two types of activation functions i.e Linear activation functions and Non-
linear activation functions. Usually, non-linear functions are used as they help the network to
learn complex relations from the input data. It is important to note that the activation function
should be fully differentiable as its gradient is used during backpropagation (explained in sec-
tion A.2.3). A list of these activation has been provided in the figure below.
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Figure A.3: List of activation functions used to build ML and DL networks

Figure A.3 above provides a list of commonly used activation functions. Their mathematical
formulation along with a graphical representation is shown as well.

ReLU (Rectified Linear Unit) has been extensively used in the DL algorithms that have been
employed for this project. The ReLU activation can be mathematically written as:

z ifz>0

A.3
0 ifz<0 (A-3)

o(z) = maz(0,z) = {

RelLU is a piecewise-defined linear function. If the value is below 0, it maps the output to O
and is a linear function for all other values i.e o(z) € [0,00). Due to the fact that the derivative
won’t approach zero for large values of z, it avoids the vanishing gradient problem that arises
with other activation functions such as the sigmoid or hyperbolic tangent function.

A.2. Parameter estimation

To estimate the parameters 6 (equation A.2 which comprises of the weights and biases, the
network has to be trained. Training included selecting a loss function and then optimising the
network by using backpropagation.

A.2.1. Loss function

A loss function is a function that calculates the error between the actual output value and
the network-predicted value. When training the network, the aim is the minimise this loss by
tweaking and adjusting the parameters of the network specified by 6. There are a number
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of loss functions that can be used and these are selected based on the application. Some
commonly used loss functions are:

1. Mean Absolute Error (MAE)
2. Mean Squared Error (MSE)
3. Cross Entropy

Semantic segmentation usually uses cross-entropy loss or a variation of cross-entropy loss.
Each class’s predicted probability is compared to the actual class’s desired output, which can
be either 0 or 1, and a loss is calculated that penalises the probability based on how far it
deviates from the actual expected value. Because of the penalty’s logarithmic structure, sig-
nificant differences close to 1 receive a large score, while minor differences close to 0 receive
a small score.

1 n
Leg = — =t;l i A4
cp =" ; 0g(pi) (A.4)
where t; is the actual ground truth value and p; is the softmax probability of the predicted value
for the " class.

A.2.2. Gradient descent

Gradient descent is an algorithm that is utilised to optimize the parameters of a network. It
works by taking small steps in the direction of the negative gradient. With each iteration, the
objective of the algorithm is to minimise the loss function.

wi1 = wy + 0V L(wy) (A.5)

where w1 and w; are the set of parameters to be optimised at ¢ and ¢ + 1 step. L(wy) is the
loss function. 7, is the learning rate. The learning rate influences the ability of the algorithm to
reach an optimum solution. It decides the step that is being taken in the direction of the gradi-
ent. A high learning rate can overshoot the algorithm and thereby miss the optimum solution.
A low learning rate will increase the training time which is not ideal.

Stochastic gradient descent is very similar to the algorithm discussed above with one excep-
tion. It takes steps based on a subset of data points that are randomly selected. Hence the
term stochastic. This can be taken a step further by adding a momentum term. The momen-
tum term introduces a dynamic nature to the main update equation (equation A.5).

M1 = YMmyg — mVL(wt) (A.6)

W41 = Wi + My41

where ~ is the momentum. This is used to decrease the convergence time of the stochastic
gradient descent algorithm.

A.2.3. Backpropagation

Backpropagation is in essence the algorithm used by NNs to learn and update itself during
training. The neurons in the hidden layer do not have a target output as it is not feasible
to create an error function for each node and layer. Starting at the output layer, the error is
calculated towards the input and this is how the neurons in the hidden layers are updated.
The mathematical formulation of the backpropagation algorithm in detail can be found using
this link

In summary, the workings of an NN can be compiled in 4 steps.


https://brilliant.org/wiki/backpropagation/

A.3. Convolutional Neural Networks 53

Forward pass through the network and calculate error using the loss function
Backpropogate through the network to calculate the losses in the individual layers
Use gradient descent to update the weights

Iterate until the loss function has been minimised

i

A.3. Convolutional Neural Networks
CNNs are a common NN used for image detection and segmentation. A CNN is made up of
the following building blocks:

» Convolutional blocks (encoder)

* Pooling layer

Decoder blocks

» Skip connections (For UNet and Gridnet)
 Fully connected layer

The encoder part of the CNN consists of convolutional layers and pooling layers. This con-
verts the input data (usually an image) into a feature space which when decoded using the
deconvolutional layers gives an output. Figure A.4 is an example of a variation of CNN called
UNet.

Cutput

segmentation
result

Slicing in the short axis direction

left ventricle

Figure A.4: Example of a variation of CNN with convolution blocks, pooling layers, and fully connected layer [31]

A.3.1. Convolutional layer

Convolutional operations are performed by passing a kernel or filter over the image. The
operation is simple. The kernel slides over the image, performing element-wise multiplication
and finally summing up values to one output pixel. The output features are the weighted
sums of those features, where the weights are the values of the kernel itself. A mathematical
explanation of the same is given below.
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Figure A.5: Convolution operation (figure adapted from [32])

Convolution operation Kernel - K € R*1*2) (k;, k,) are the dimensions of the kernel
matrix
Image - I ¢ RM:N) (M, N) are the dimensions of a 2D image array
Assuming a stride length of s and padding p the output of the convoluted image is as follows.

(M +2p — k)
S

(N +2p — k)
S

X = +1

Y = +1

Stride: When performing the convolution operation, more often than not the spatial dimen-
sions of the output are lesser than the input. As the number of channels increases (moving
forward in the CNN) the spatial dimension reduces and this can be achieved by striding. Usu-
ally, when the network uses a stride of 1, it means that the kernel slides by one pixel. If the
stride value is 2, then the kernel skips 2 pixels. Figure A.6 clearly shows how the output is
affected when the stride length of the convolution operation changes.

Stride =1 Stride = 2

X7 -« Input |
| Volume

-
LI

Feature 3x3

5x5 Map

Figure A.6: Difference between stride length 1 and stride length 2 (Image source: link)
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Padding: As we perform convolution operations, the image shrinks in terms of its spatial
dimensions but grows in terms of its channels. If we perform this operation enough times,
the image is reduced to a single-pixel, multi-channel output. Padding is performed in order
to prevent this eventuality. Essentially padding is adding extra pixels in between the output
features or on the borders. In figure A.7, the above image uses valid padding where the
dimensions of the output are lesser than the input before convolution. The image at the bottom
uses same padding where a number of pixels are added along the border that ensures the
dimensions of the output and input are the same.

InputDxD:5x5 Padding VALID Output: 3x3
Qutput dimension=D-N+1

5-3+1=3

Padding SAME
Output dimension = Input dimension

Filter NxN: 3x3

Input D x D; 5x 5
Plus added padding of size 1
Output: 5% 5

Filter Nx N: 3x 3

|7

AlGeekProgrammer.com © 2019

Figure A.7: Difference between valid and same padding (Image source: link)

A.3.2. Pooling layer
Pooling is another operation by which spatial dimensions can be reduced while still maintaining
important information. Max pooling and Average pooling are the two main types of pooling.

1. Max Pooling: Calculate the maximum value for each patch on the input image
2. Average Pooling: Calculate the average value f the entire patch on the input image

Figure A.8 clearly shows how pooling is performed.

Max Poolin
1100 104
16 |100| 16 | 96 Average Pooling
36 | 48 | 88 |104 .
50 76

Figure A.8: Average and Max pooling operation [33]


https://aigeekprogrammer.com/convolutional-neural-network-image-recognition-part-2/
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A.3.3. Upsampling layer

Upsampling is undoing convolution operations. With upsampling layers, the spatial dimen-
sions are reduced while the number of channels increases. The opposite happens with down-
sampling. Here the spatial dimensions are recovered from the important features and the
depth of the feature space (channels) reduce.

* Nearest Neighbour:
The input pixel or feature is taken and applied to the k nearest neighbours. The number
of nearest neighbours is determined by the size of the output.

* Bilinear interpolation:
In bilinear interpolation, the output is smoothed by performing a weighted average based
on the distance between the four nearest cells and the four input pixel values.

+ Bed of Nails:
In this method, the position of the input pixel or feature is constant in the output array as
well. The other positions are filled with 0’s

* Max-Unpooling:
The Max-Pooling layer in CNN selects the highest value out of every kernel value. The
index of the maximum value for each max-pooling layer is first saved during the encoding
process in order to perform max-unpooling. The input pixel is subsequently mapped to
the saved index during the decoding stage, filling the remaining spaces with zeros.

Figure A.9 provides a visual understanding of the various upsampling techniques that can be
used in the decoder layer of the network.

Nearest Neighbor
9 11)2]2
10 | 12 | 17 | 20
1T 2 11122
I 10 | 20 2x 15 | 17 | 22 | 25
3 4 >
I[3[4]4 30 | 40 25 | 27| 32| 35
3,344
22 30 | 32| 37 | 40
Input: 2 x 2 Output: 4 x 4 axd
(a) Nearest neighbour upsampling technique (b) Bilinear interpolation upsampling technique
“Bed of Nails”
1 0j2)|0
Remaroar which somentwas mas! Max Unpooling
1 2 0 D 0 0 11283 pool ojoj|2]|o0
— sls5[2]1 .>”'>4’u|uu
tz]z]e estofthonetwark | 3 | 4 elojojo
3 4 3 0 4 0 7(3]a]8 R‘”h‘k 3/0|0f4
0 D 0 0 Input: 4x 4 Output: 2 x 2 Inpu\t 2x2 Output: 4 x 4
et fﬁfﬂ ,"’m‘ﬁ
Input: 2 x 2 Output: 4 x 4 upsampling layers [t LAD
(c) "Bed of Nails” upsampling technique (d) Max-unpooling upsampling technique

Figure A.9: Various upsampling techniques

A.4. Regularisation techniques

Dealing with a limited dataset often tends to compromise the performance of a network. Over-
fitting is a major concern regarding NNs. An overfit network will train well on a certain training
set but it will also learn from the noise in the dataset and will fail to recognise it in other test sets.
In order to ensure that the network is robust and is generalised well, regularisation techniques
are employed.
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A.41. Data Augmentation techniques

Data augmentation is the process of enlarging your dataset by creating new data points from
the existing set. There are numerous techniques that can be used but considering that the
focus of this project is segmentation and biomedical image sets, data augmentation techniques
related are listed below.

1. Spatial Augmentation techniques

(a) Rotation to the input images

(b) Flipping the input image by 180°

(c) Scaling

(d) Deformations - Elongation or compression

2. Intensity-based Augmentation

(a) Histogram Matching
(b) Gaussian Noise

(c) Brightness
(d) Gamma

A.4.2. Batch normalisation

Deep neural network training is challenging because when the parameters of the earlier lay-
ers change, so do the input distributions for each layer. This makes it extremely difficult to
train models with saturating nonlinearities and slows down the training by necessitating lower
learning rates and precise parameter settings. Batch normalisation is a technique that has
been introduced to tackle this problem [34].

At each layer, BM entails normalising activations. Each stage’s output has a mean that is
nearly or equal to zero and a standard deviation of one. It incorporates backpropagation of
gradients through the normalisation settings as well as normalising for each mini-batch. Nor-
malisation entails the following steps to ensure that the output data from a network layer has
zero mean and a standard deviation of 1.

1. Find mean for a hidden layer

p= %(Z hi)

where m is the number of neurons at layer h;
2. Calculate standard deviations for hidden activations

_ i L 212
0= [m Z(hz )]
3. Normalise the hidden activation using mean and standard deviation
(hi — )
(0 +e¢)

where ¢ is a smoothing term to prevent the denominator from tending to O.

4. Finally the input has to be rescaled and offset. The parameters 3 and ~ are required to
shift and rescale the input containing values from the previous operations.

hi(norm) =

hi =y * hi(norm) + B
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A.4.3. Dropout

a) Standard Neural Net (b) After applying dropout.

Figure A.10: Dropout regularisation technique to reduce overfitting [35]

Dropping out the nodes in a neural network’s input and hidden layers is referred to as "dropout”
(figure A.10). A new network architecture is made out of the parent network by temporarily
removing all forward and backward links with dropped nodes. The nodes are eliminated with
a certain probability.

A.4.4. 1L1L2regularisation

This is yet another technique that is used to reduce overfitting and increase the generalisability
of the network. The use of L1 and L2 regularisation also called Lasso and Ridge regularisation
respectively can be represented as follows.

J(0; X, y) = J(0; X,y) + af)(0) (A7)

where a € [0,inf) is a weighting term that dictates how much the regulariser term influences
the learning process.

1. For L1 regularisation,

aQ() = ax¥, 6]

2. For L2 regularisation,
aQ(0) = aX¥(6;)>

L1 or Lasso regularisation adds the absolute value of the coefficient as a penalty term. An
advantage to this method is the removal of unimportant features. When the input data feature
space is large and a large proportion of variance can be represented with fewer features, L1
regularisation works brilliantly. Conversely, it is disadvantageous when dealing with a limited
feature space.

L2 or Ridge regularisation adds the squared magnitude of the coefficient as a penalty term.
Although the weights are made to be minimal by ridge regularisation, they are not made to
be zero and the sparse solution is not produced. Ridge is not resistant to outliers since the
regularisation term attempts to solve it by punishing the weights while square terms blow up
the outliers’ error differences.
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B.1. Anatomy of the heart
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Figure B.1: Labelled cross-section of the Heart [36]

The circulatory system’s primary job is to provide oxygen and nourishment to every cell in the
body. The heart may be compared to two parallel pumps that circulate a fluid via a network of
tubes before returning to the pump.

The blood is sent by one pump to the lungs to take up oxygen, and by the other pump, it is sent
throughout the rest of the body. Eventually, the blood flows back to the heart, where the cycle
is repeated. Each pump consists of an Atrium and a Ventricle. This gives the heart a total of 4
chambers. The atria are tasked with receiving blood from different parts of the body through
the Superior and Inferior Vena Cava and the Pulmonary veins. The Ventricles are responsible
for pumping blood to the Aorta and Pulmonary Arteries in turn distribute blood to the different
parts of the body. The superior and inferior vena cava deliver deoxygenated blood to the right
atrium (RA). The pulmonary artery transports blood from the right ventricle (RV) to the lungs.

59
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The left atrium of the heart is then filled with oxygenated blood via the pulmonary veins (LA).
Blood that has been oxygenated is pumped into the body through the aorta by the left ventricle
(LV). The heart only receives blood in one way. Two sets of valves work together to maintain
this one-way flow. Backward flow into the atria is prevented during ventricular contraction by
the tricuspid and mitral atrioventricular (AV) valves. During ventricular relaxation, the aortic
valve, pulmonary valve, and semilunar valves all prevent backflow into the ventricle[37].

The cardiac cycle has two phases: diastole and systole. Initially, the heart muscles are at rest
and the atria fill with blood, marking the beginning of the cardiac cycle i.e the diastole. The
atrial systole comes next. As the atria close, blood flows into the ventricles. The initial stage
of ventricular contraction comes next. The pressure that is produced closes the AV valves
but does not instantly cause them to open. Blood is expelled from the ventricles when the
pressure increases. The ventricles start to relax and the ventricular pressure drops at the end
of the cycle[37].

Given the function of the ventricles i.e pumping oxygenated and deoxygenated blood through-
out the body, these chambers are usually investigated segmentation pipelines are designed
around the prediction of ventricle structures and functions.

B.2. Bi-venticle segmentation networks (ACDC challenge)

Given below is a table containing the list of winners of the ACDC challenge. Table B.1 also
provides a small description of the network being used. Table B.2 provides the performance
statistics of the networks.

Table B.1: Summary of SoTA bi-ventricular segmentation techniques as verified by the ACDC challenge [17]

Reference Method Description
Ensemble of 2D and 3D U-Net with a dice loss and
Isensee et al. [38] 2D + 3D U-Net a MLP and Random Forest classifier for

classification task
A number of different architectures were tested but

Baumgartner et al. [39] 2D U-Net the best one was 2D U-Net with a cross-entropy
loss

A new FCN architecture similar to M-Net without

Jang et al. [40] 2D M-Net the 2D-3D convertor layers with a weighted cross

entropy loss
Use of the Grid-Net architecture with shape prior

Zotti et al. [23] 2D Grid-Net registration and a modified cross-entropy loss
function
A FCN with dense connections was used. A
Khened et al. [41] Dense U-Net Random forest classifier was used for the

classification task
Feedforward CNN with a dilated convolutional

Wolterink et al. [42] Dilated CNN :
operations
. Multiple architectures were tested and the 2D
Partrvali et al. [43] 2D U-Net U-Net with a dice loss yielded the best results
Rohé et al. [44] SVF-Net An automatic multi-atlas segmentation framework

that uses registration trained with CNN
Chan-Vese active contour followed by graph cut
and B-spline fitting to smooth out results
A 3D FCN with transfer learning fro, C3D model
Yang et al. [46] 3D U-Net and Multi-class Dice Similarity Co-efficient loss
function

Tziritas-Grinias [45] Levelset + MRF
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Table B.2: Statistics of SoTA bi-ventricular segmentation techniques as verified by the ACDC challenge [17]
ED ES
Method / Reference LV RV MYO LV RV MYO
DS [HD (mm)| DS [HD (mm)| DS [HD (mm)| DS [HD (mm)| DS [HD (mm)| DS [HD (mm)
Isensee et al. [38] |0.968| 7.4 |0.946| 10.1 (0.902| 8.7 |0.931 6.9 0.899| 122 |0.919| 8.7
Baumgartner et al. [39]|0.963| 6.5 |0.932| 12.7 |0.892| 8.7 0.911 9.2 |0.883| 14.7 |0.901| 10.6
Jang et al. [40] 0.959| 7.7 0929 129 |0.875] 9.9 |0.921 7.1 0.885| 11.8 |0.895| 8.9
Zotti et al. [23] 0.957| 6.6 |0.941| 103 |0.884, 8.7 |0.905| 8.7 0.882| 141 |0.896| 9.3
Khened et al. [41] |0.964| 8.1 0.935 14 0.889| 9.8 |0.917 9 0.879| 139 |0.898| 12.6
Wolterink et al. [42] [0.961 7.5 10928 11.9 |0.875| 1.1 (0918 96 |0.872| 134 |0.894| 10.7
Partrvali et al. [43] |0.955| 8.2 |0.911| 13.5 |0.882] 9.8 |0.885| 10.9 |0.819| 18.7 |0.897| 11.3
Rohé et al. [44] 0.957| 75 (0916, 141 |0.867| 11.5 0.9 10.8 ]0.845| 159 |0.869 13
Tziritas-Grinias [45] [0.948| 8.9 ]0.863 21 0.794| 126 |0.865| 11.6 |0.743| 25.7 |0.801| 14.8
Yang etal. [46]  |0.864| 47.9 |0.789] 30.3 - - |0.775] 534 |0.77| 31.1 - -
B.3. Bi-ventricle segmentation networks (M&M challenge)
Table B.3: List and Details of the Participating teams in the M&M challenge
Team  Institution Location Name during challenge
Pl German Cancer Research Center (DKFZ) Heidelberg, Germany — Mountain goat
P2 Chinese Academy of Sciences Beijing, China Dugong
P3 Nanjing University of Science and Technology  Nanjing, China Opossum
P4 Universitat Politécnica de Valéncia Valéncia, Spain Ox
P5 University of California Berkeley, USA Monkey
P6 University of Oxford Oxford, UK Donkey
P7 Nile University Cairo, Egypt Porpoise
P8 Technical University of Munich Munich, Germany Owl
P9 Aristra GmbH Berlin, Germany Lovebird
P10 King’s College London London, UK Mandrill
P11 University of Alberta Edmonton, Canada Muskox
P12 University of Edinburgh Edinburgh, UK Springbok
P13 Shenzhen University Shenzhen, China Seagull
P14 Fudan University Shanghai, China Steer
Table B.4: Characteristics of Participating models (M&M challenge)
ackbone . . D".m augmentation . omain
Method a?chill‘:cture lgp(ant)lal au]%mcnlsarlon% . Ig']r\clnsn)};baﬁcg augmcnga;m;h Others TTA m]JJaplalion
P1 nnUNet +180 v v v v v o contrast v No
P2 nnUNet +180 v v v v v label propagation v No
P3 nnUNet +180 v v ¥ v v v No
P4 UNet (ResNet-34) +45 v v translations Yes
P5 Attention UNet +10 v CycleGAN low-level frequency No
P6 UNet+DA+DUNN £180 Vv translations Yes
P7 UNet +15 v v No
P8 DRUNet +15 v v v oo CycleGAN blurring No
P9 nnUNet +180 Vv v v No
P10 UNet +22.5 v v v v translations Yes
P11 UNet++ (ResNet101) No
P12 SDNet ' VAE No
P13 UNet +90 v v v WaveCT-AIN [32] contrast v No
P14 UNet CycleGAN No
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Table B.5: DSC and HD for the final submissions of all participants and the two baseline models (M&M

challenge)
ED ES

Method LV MYO RV LV MYO RV

DSC HD DSC HD DSC HD DSC HD DSC HD DSC HD
Pl 0.939 9.1 0.839 128 0910 11.8 | 0.886 9.1 0.867 10.6 0.860 12.7
P2 0.938 93 0.830 129 0909 123 | 0.880 95 0.861 10.8 0.850 13.0
P3 0.935 95 0825 133 0906 123 | 0.875 105 085 11.6 0.844 13.0
P4 0939 113 0.826 152 088 154 | 0884 114 0.856 140 0829 167
P5 0931 100 0816 13.7 0893 143 | 0.877 98 0.850 11.3 0827 152
P6 0927 11.2 0815 140 0892 13.6 | 0.877 9.7 0.852 11.1 0.834 150
P7 0933 134 0812 17.1 0876 157 | 0.867 140 0.839 182 0.815 18.1
P8 0922 155 0.809 18.0 0867 16.6 | 0.857 175 0.836 17.2 0.802 19.1
P9 0914 121 0768 17.2 0850 17.5 | 0.853 12.0 0.814 152 0794 170
P10 0905 136 0772 172 0.876 162 | 0.848 155 0.820 175 0.809 19.6
P11 0913 145 0776 17.8 0.791 30.7 | 0851 13.0 0.809 145 0732 329
P12 0.880 160 0.785 221 0.814 22.1 0.835 142 0.808 189 0.758 220
P13 0896 157 0761 179 0820 21.0 | 0.772 230 0.721 202 0.698 295
P14 0.797 219 0.668 31.6 0552 491 | 0716 258 0.673 33.0 0517 520
B1 0918 129 0.801 155 0881 157 | 0866 115 0.842 126 0817 163
B2 0930 10.8 0.817 157 0.889 148 | 0.863 132 0.835 148 0818 16.8

B.4. Prior knowledge in medical image segmentation

B.4.1. Shape Information
1. Contour and region :
Shape information in the form of contours and regions can be modeled in two different
ways.

(a) Parametric formulation
(b) Non-parametric formulation

The maijority of somewhat regular geometries can be parametrically modeled. For in-
stance, characteristics like center coordinate, radius, height, breadth, orientation, etc.
can be used to define 2D shapes like ellipses, circles, and rectangles as well as 3D ob-
jects like spheres, cylinders, and cubes. A non-parametric approach, such as a level set
(LS) representation, maybe a better description for irregular forms. An LS representa-
tion works by defining a contour C with a function ¢. The zero set of ¢ is known as the
boundary C of an object €, i.e.

C={zxeQ:px)=0}

where 2 denotes the entire image plane. The sign of ¢(x) determines whether x is in Q

or outside €, i
+1lifzisin Q
sign(¢(x)) = 0 if 2 is on the boundary.
—~1ifzisin Q°
An example of the Non-parametric formulation of shape knowledge is ACM (Active Con-
tour Model)
2. Topology :

In medical imaging, many anatomical items have fixed topological properties that must
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be preserved in the segmentation outcomes. For example, the myocardial wall must
surround the left ventricle. Connectivity and compactness are the two primary topological
characteristics. If an object is connected, connectivity describes that connection (e.g.
one circle is connected, while two non-intersecting circles are not connected). If an
object is closed and bounded, it is considered to be compact (e.g. a circle is compact,
while a line is not).

3. Size and location :

The most fundamental characteristics of an object are its size and position. Size and
position can frequently be utilised as a limitation to filter out or get rid of extraneous and
irrelevant objects. To make the segmentation results suit the input shape prior, some
segmentation techniques that use shape priors may overcorrect the results. Using size
and location constraints may be an alternative to reduce undesirable results.

As the target orimage modality changes, so does the parameter used to describe size. It
might be the volume, length, width, area, and height, among other things. Similarly, there
are numerous factors for describing a location, including the centroid and coordinates.
Soft limitations, such as a size range or a location range, might be used when there is
just rough knowledge of the size and location.

4. Spatial distance :
Here, the minimum distance and maximum distance are primarily two types of spatial
distances that are quite frequently used in segmentation methods. A constraint that
enforces the separation of areas or objects can be the minimal distance between two
objects. In many instances, the maximum separation between regions or limits is known.
For instance, in cardiac CT, it is possible to estimate the maximum distance between the
left ventricle and its myocardium.

5. Shape distribution :

Target items for medical image segmentation hardly ever have regular forms in practice.
The majority of the objects in the several sample images are not stiff or identical. Even
relatively regular items like organs have different shapes from one another (in terms of
medical image segmentation). A fixed geometrical model may not be suitable for such
objects as a result. To address this intra-class variation, a shape probability model can
be created by including a probability distribution in the model.

Shape representations and probability distributions are the two main components of
the majority of shape probability models. There are numerous options for shape rep-
resentations, including the LS, point cloud, surface mesh, etc. Gaussian distribution
and Gaussian mixture model are typical models for probability distributions.

B.4.2. Appearance information

1. Appearance distribution : The distribution of appearance features in small samples
is typically observed in order to learn or estimate the appearance distribution. This is
the appearance distribution if F;(x) provides a set of appearance features for item i and
P(z|F;(x)) indicates the likelihood that each pixel or voxel belongs to a particular class.
The most obvious appearance characteristics include the grayscale value, RGB value,
or other values of each pixel or voxel. By minimising the distance between them, we can,
for instance, force the segmentation distribution to fit the prior distribution when using it
in segmentation networks.

2. Texture : One of the direct visual clues to distinguish many objects, such as tissues
and lesions, in medical imaging is texture. To depict the texture of things, many models
are utilised. The majority of them are included in ML techniques to represent texture
features, while some inspired DL-based image segmentation research.
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Texture feature extraction methods can be classified into 7 approaches.

(a) Statistical approaches

(b) Structure approaches

(c) Transform-based approaches
(d) Model-based approaches

(e) Graph-based approaches

) Learning-based approaches
)

(f
g) Entropy-based approaches

(

B.4.3. Motion information
There are three types of motion in our body for image analysis:

1. Dense motion
2. Sliding motion
3. Elastic motion

Particle motion in a fluid is a common example of dense motion. When used to describe
medical imagery, it might, for instance, depict cells moving in blood or another fluid. The optical
flow is a common way for computer vision to describe dense motion. The sliding motion is yet
another fundamental motion type. Such motion is typically described by physical models with
velocity and locations. Elastic motion is the force-induced deformation of objects. There are
numerous physical models that can be used to describe different motion kinds.

B.4.4. Context information
1. Adjacency information :
Anatomical studies provide us with an understanding of different organs of the body. We
also learn about relationships and dependencies between the structures within organs
and between organs.
There are three ways to represent the adjacent information:

(a) Labels
(b) Distances
(c) Models

For example, the position of the right ventricle with respect to the left ventricle is always
fixed. The 2D or 3D euclidean distance between two objects is referred to as a distance
in this context. The distance between two items can be managed or constrained based
on the prior since the adjacency relationships are known.

2. Geometric structure and atlas :
Geometrical structure and the atlas consist of anatomical information such as shape in-
formation, adjacency information, size, location, spatial relationships, etc together. One
way to model this is by extending the concept of regions and contours. Another way
to formulate an atlas is by using Graphical Neural Networks (GNNs). Segmentation
approaches using such geometrical knowledge are known as Multi Atlas Segmentation.

B.5. Sex differences in the Heart

Not only do the male and female hearts differ in mass and size, but they also exhibit numer-
ous functional, structural, genetic, and hormonal variances. Apart from variations due to sex,
the heart also differs due to age, exercise and diseases. Through a process called cardiac
remodeling, the heart adapts to mechanical stimuli that in turn can change its shape[47]. But
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for the moment we shall only consider healthy male and female heart.

The average adult female heart is approximately one-fourth smaller than the average adult
male heart. There is a strong positive correlation between lean body mass and the mass of
the heart. Scaling by lean body mass can reduce but not eliminate sex differences in the
heart[20]. This is shown in the following table B.6.

Table B.6: Sex differences in healthy heart geometry and function [20]

| | Male | Female | Sex Difference ||

Lean body mass (kg) 56.7+7.9 36.5+£5.0 -36%
Body fat percentage (%) 21.7+8.7 39.4+8.9 82%
Whole heart mass (g) 331.0+56.7 245.0£52 -26%
Body mass (kg) 74.0£6.9 58.916.1 -20%
Body surface area (m"2) 1.91+£0.11 1.63+0.10 -15%
LV mass (g) 173.9£39.7 114.5£23.5 | -34%
Septal thickness (mm) 9.2+1.6 8.2+1.5 -11%
LV free wall thickness (mm) 9.311.5 8.51£1.5 -9%
LV end diastolic volume (LV-EDV)(mL) | 168.35+27.24 | 124.0+27 1 -26%
LV end systolic volume (LV-ESV)(mL) 78.6+£20.31 53.53+11.88 | -32%
LV stroke volume (LV-SV)(mL) 89.75+15.26 | 69.32+19.69 | -23%
LV ejection fraction (LV-EF)(%) 53.6516.47 57.1745.08 | 7%
RV mass (g) 52+10 395 -25%
RV end diastolic volume (RV-EDV)(mL) | 142.4+31.1 110.2424.0 | -23%
RV end systolic volume (RV-ESV)(mL) | 54.3+16.9 35.1£12.5 -35%
RV stroke volume (RV-SV)(mL) 88.3£21.6 75.0£17.9 -15%
RV ejection fraction (RV-EF)(%) 6210 69+10 1%
Left atrial volume (mL) 77149 68+14.9 -12%
Right atrial volume (mL) 109+20 91+20 -17%
Heart rate (bpm) 74.318.9 79.148.2 6%
Cardiac output (L/min) 59114 4.6+0.8 -22%

Stroke Volume: Stroke volume is the difference between the end-diastolic and end-systolic
volume of the chamber in consideration .

Ejection Fraction: The volumetric portion of the fluid that is expelled from a chamber with each
contraction is known as the ejection fraction. It can be calculated as the ratio percentage of
the systolic volume and end-diastolic volume.

Cardiac output: Cardiac output is the total amount of blood pumped by the heart every minute.

Looking at the numbers reported in table B.6, it is clearly understood that the female heart is
not an isometric scaled-down version of the male heart. This in turn affects cardiac functions.
The cardiac output of the female heart is smaller than that of a male’s heart even though the
scaled-down calculations suggest that it should be larger. Another example is the ejection
fraction. The female EF is larger than a male heart. The female heart differs from the male
heart in more ways than one. When utilising the same diagnostic criteria for male and female
hearts, regular checkups commonly miss cardiac illness in women; it is discovered later in life
and with more severe symptoms than in males. It is obvious that there is a pressing need to
comprehend the female heart and develop sex-specific diagnostic tools.

A study conducted by [48] showed sex and age differences of the heart. Their study consisted
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Figure B.2: Age and gender-related differences in LV and RV volumes, function and mass [48]
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of 235 men and 219 women. They also divided the cohort into different age groups (21-47
years, 48-57 years, and 58-84 years).

As shown in figure B.2 and confirmed by table B.6, LV-EDV, LV-ESV, RV-EDV, RV-ESV, LV-
SV, RV-SV and LV-M are all lesser for females when compared to males and correspondingly
RV-EF and LV-EF are higher for women when compared to men. The graphs also show us
that the proportions are not isometrically scalable with lean body mass.



Methodology

C.1. ACDC and M&M Data
C.1.1. ACDC dataset

0 50 100 150 200

(a) An MRI scan slice from the ACDC dataset with Siemens  (b) An MRI scan slice from the ACDC dataset with Siemens
scanner with 3T field strength scanner with 1.5T field strength

Figure C.1: Difference between images collected and curated for the ACDC dataset

Sub-figure C.1a and sub-figure C.1b represent the two different types of images that have
been acquired for the ACDC dataset. The scanner type remains the same. The difference
lies in the magnetic field strength being used. Sub-figure C.1a has been acquired from a 3T
scanner whereas sub-figure C.1b has been acquired from a 1.5T scanner. Due to a higher
strength, it is clearly seen that the In-plane resolution is smaller i.e there is a smaller area of
the anatomy being represented per pixel ( lesser is better ).

C.1.2. Variability in M&M Datasets

The figure below shows the different variations in cardiac MRI scans present in the M&M
dataset. These images have been acquired from Siemens (Sub-figure C.2a), Philips (Sub-
figure C.2b), GE (Sub-figure C.2c), and Canon (Sub-figure C.2d) scanners respectively. Not
only does the Field strength vary per scanner but also the resolution and image intensities.
This variability will ensure a robust and generalised functioning of the DL algorithm.
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(a) MRI scan slice acquired for M&M dataset from
Siemens scanner

(c) MRI scan slice acquired for M&M dataset from
GE scanner

(b) MRI scan slice acquired for M&M dataset from
Philips scanner

25 50 75 100 125 150 175 200

(d) MRI scan slice acquired for M&M dataset from
Canon scanner

Figure C.2: MRI images from different scanner types that were used in the M&M dataset

C.2. NIfTI image Metadata

An example of the metadata acquired from a cardiac MRI image is given below. For more
information regarding the different headers you can refer to - Nifti Information

<class 'nibabel.niftil.NiftilHeader'> object,
sizeof_hdr : 348

data_type : b

db_name : b'!

extents : 0

session_error : 0

regular : b

dim_info 0

dim : [ 4 208 2566 13
intent_pl : 0.0

intent_p2 : 0.0

intent_p3 0.0

intent_code : none

datatype : float32

bitpix : 32

slice_start : 0

pixdim : [1. 1.25 1.25 8.8
vox_offset : 0.0

scl_slope : nan

scl_inter : nan

slice_end : 0

slice_code : unknown
xyzt_units : 0

cal_max : 0.0

endian="'<"

1]


https://brainder.org/2012/09/23/the-nifti-file-format/
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cal_min : 0.0

slice_duration 0.0

toffset : 0.0

glmax : 0

glmin : 0

descrip : b'!

aux_file : b'!

qform_code : unknown

sform_code : scanner

quatern_b : -0.16253759

quatern_c : 0.4607882

quatern_d : -0.72393334

goffset_x : —-66.10668

qoffset_y : 130.2947

qoffset_z : 171.0065

STrow_X : [ -0.5910131 0.6941639 6.020497 -66.10668 ]
Srow_y : [-1.0686409e+00 -1.2624486e-01 -4.4778433e+00 1.3029469e+02]
STrow_z : [ -0.26685232 -1.0318424 4.5981016 171.0065 ]
intent_name : b'!

magic : b'n+l!

C.3. M&M dataset Patients Information

Given below is a snippet of 7 patients in the M&M dataset. This table shows us the information
that has been provided per patient. This is used in order to extract the ES and ED phase from
the original 4D NIfTI file. The number under the ES and ED column in the sheet is the time
frame when these phases occur for each patient.

Table C.1: Various details of each patient present in the M&M dataset

External code VendorName Vendor Centre ED ES Age Pathology Sex Height Weight

A0S9V9 Siemens A 1 0 9 67 DCM M 180 88
A1D0Q7 Philips B 2 0 9 79 HCM F 88
A1D9Z7 Siemens A 1 22 11 53 HCM M 175 75
A1E9Q1 Siemens A 1 0 9 16 DCM M 175 75
A1K2P5 Canon D 5 33 11 35 DCM F 170

A108Z3 Philips B 3 23 10 36 DCM F 72
A2CO0I1 Siemens A 1 0 7 61 HCM M 172 89
A2E3W4 GE C 4 0 0 73  HHD F 85

C.4. Label Differences

0 o

(a) Ground truth of an MRI scan slice from the ACDC dataset (b) Ground truth of an MRI scan slice from the M&M dataset

Figure C.3: Difference of ground truth images between ACDC and M&M datasets
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Figure C.3 shows the difference between the labels in the ground truth images between the
two datasets. Sub-figure C.3a and sub-figure C.3b clearly shows that the RV and LV labels
have been interchanged.

C.5. Segmentation network architecture
Table C.2 provides details about the network architecture of Gridnet.

Table C.2: Gridnet architecture

Block Layer Kernel | Stride Output
2Conv + 3x3 1 256x256x32
CONV-1
Maxpool 2x2 2 128x128x32
2Conv + 3x3 1 128x128x64
CONV-2
Maxpool 2x2 2 64x64x64
2Conv + 3x3 1 64x64x128
CONV-3
Maxpool 2x2 2 32x32x128
2Conv + 3x3 1 32x32x256
CONV-4
Maxpool 2x2 2 16x16x256
CONV-5 2Conv 3x3 1 16x16x512
CONV-6 2Conv 3x3 1 32x32x256
CONV-7 2Conv 3x3 1 64x64x128
CONV-8 2Conv 3x3 1 128x128x64
CONV-9 2Conv 3x3 1 256x256x32
Deconv + 2x2 32x32x768
DECONV-1
2Conv 3x3 1 32x32x256
Deconv + 2x2 64x64x384
DECONV-1
2Conv 3x3 1 64x64x128
Deconv + 2x2 128x128x192
DECONV-1
2Conv 1 128x128x64
Deconv + 2x2 256x256x96
DECONV-1 Conv + 3x3 1 256x256x32
Conv 1x1 1 256x256x4

Table C.3 provides details about the network architecture of Unet.

Table C.3: UNet architecture

Block Layer Kernel | Stride Output
2Conv + 3x3 1 256x256x32
CONV-1
Maxpool 2x2 2 128x128x32
2Conv + 3x3 1 128x128x64
CONV-2
Maxpool 2x2 2 64x64x64
2Conv + 3x3 1 64x64x128
CONV-3
Maxpool 2x2 2 32x32x128
2Conv + 3x3 1 32x32x256
CONV-4
Maxpool 2x2 2 16x16x256
CONV-5 2Conv 3x3 1 16x16x512
Deconv + 2x2 32x32x512
DECONV-1
2Conv 3x3 1 32x32x256
Deconv + 2x2 64x64x256
DECONV-1
2Conv 3x3 1 64x64x128
Deconv + 2x2 128x128x128
DECONV-1
2Conv 1 128x128x64
Deconv + 2x2 256x256x64
DECONV-1 2Conv + 3x3 1 256x256x16
Conv 1x1 1 256x256x4
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C.6. Evaluation Metrics
Given below is a visual representation of True Positive, False Positive, and False Negative
pixels in biomedical segmentation.

Manual Segmentation by

/Radiologist

Autormatie Segmentation
\ using Algorithm

True Positive False Positive

Figure C.4: True Positive, False Positive and False Negative pixel in biomedical segmentation [49]



Experiments and results

D.1. Rotations experiments on Gridnet with shape prior

As mentioned in section 3.3.4, the M&M and ACDC datasets are fairly consistent with respect
to orientation. Hence, segmentation networks trained without rotational data augmentation
performs fairly well on the test images. This does not mean that orientation inconsistencies
do not exist within MRI images. For the purpose of testing the rotational capabilities of Gridnet,
2 experiments were conducted.

1. Gridnet with shape prior trained on normal training dataset (without any rotated images)
and tested on images rotated between -60° and +60°.

2. Gridnet with shape prior trained on data augmented training dataset (rotated images)
and tested on images rotated between -60° and +60°.

D.1.1. Untrained on rotated images

Table D.1: Gridnet with shape prior (not trained on rotated images) tested on rotated test subjects

Degre_e of Dice score | Jaccard index | Precision | Recall Ha.usdorff HD95
rotation distance
0 ED 0.8996 0.8404 0.9191 0.9128 | 13.9234 8.4132
ES 0.8957 0.8261 0.8884 0.9306 | 13.1403 8.8050
30 ED 0.8728 0.8091 0.9273 0.8716 | 15.5290 | 10.4086
ES 0.8668 0.7829 0.8939 0.8846 | 15.1382 | 11.1420
.30 ED 0.8645 0.7924 0.9244 0.8556 | 16.5829 | 11.9771
ES 0.8566 0.7761 0.8856 0.8734 | 15.5487 | 11.1288
60 ED 0.8001 0.7279 0.9289 0.7838 | 21.0838 | 16.0770
ES 0.8173 0.7278 0.9034 0.8084 | 18.3073 | 13.6777
-60 ED 0.6281 0.5271 0.9532 0.5523 | 33.1786 | 29.4461
ES 0.7736 0.6316 0.9080 0.6901 24.6297 | 20.5622

Table D.1 shows the performance of the Gridnet with shape prior (trained on the normal
dataset) on rotated test sets. With 0° of rotation, the performance of the segmentation net-
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work is best.

This is represented by the green cells in the table. The network has degraded but still has
comparable performance on test subjects whose MRI scans were rotated by 30°. This is rep-
resented by the cells that are marked in blue. The dice scores on the 30° rotated images are
around 0.85-0.87 when compared to 0.89-0.90 dice scores on unrotated images.

When rotated by +60° the performance of the segmentation network is poor. The dice scores
are as low as 0.77. The network is not able to pick up on highly rotated patterns. This is
confirmed by figure D.1. The network fails to even segment the apical and basal slice when
rotated by -60°. The right ventricle of the mid-slice is not segmented as well.

Basal Mid Apical

Ground truth Segmentation Ground truth Segmentation Ground truth Segmentation

Figure D.1: Predicted segmentation of Gridnet with shape prior (not trained on rotated train images) on rotated
test images

D.1.2. Trained on rotated images

When trained on an augmented dataset that consists of rotated images, it is clearly seen that
the performance of the segmentation network remains consistent across test images rotated
to various angles. The average dice score is around 0.86 on test images rotated between -60°
to +60°. The Hausdorff distance is consistent as well, averaging around 9mm.
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Table D.2: Gridnet with shape prior (trained on data augmented images) tested on rotated test subjects

Degre_e of Dice score | Jaccard index | Precision | Recall Hz?usdorff HD95
rotation distance
0 ED 0.8444 0.7752 0.9315 0.8346 13.0051 9.2006
ES 0.8527 0.7776 0.8973 0.8670 11.5799 8.4326
30 ED 0.8582 0.7946 0.9261 0.8605 12.5838 8.6510
ES 0.8577 0.7810 0.8903 0.8787 11.4789 8.2306
.30 ED 0.8683 0.8039 0.9259 0.8668 12.4144 8.4244
ES 0.8710 0.7979 0.8923 0.8932 10.8780 7.6700
60 ED 0.8456 0.7776 0.9194 0.8421 13.9556 9.7133
ES 0.8471 0.7688 0.8932 0.8622 13.2902 9.8665
-60 ED 0.8743 0.8108 0.9256 0.8742 12.5868 8.4821
ES 0.8703 0.7974 0.8909 0.8945 11.6686 8.2130
Basal Mid Apical
Ground truth Segmentation Ground truth Segmentation Ground truth Segmentation

Figure D.2: Predicted segmentation of Gridnet with shape prior (trained on data augmented images) on rotated
test images
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