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Abstract—The creation of comic illustrations is a complex artistic
process resulting in a wide variety of styles, each unique to
the artist. Conditional image synthesis refers to the generation
of de novo images based on certain preconditions. Applying
machine learning to conditionally generate novel comics proves
an intriguing yet difficult task. This paper aims to answer
whether Generative Adversarial Networks (GANs) can be used
for conditional comic synthesis. Recent advancements in Genera-
tive Adversarial Networks have increased the capability of image
synthesis to hyper-realistic levels. Despite this, the performance
of GAN models is almost always assessed on photo-realistic
images. To extend experimental knowledge of unconditional GAN
performance into the domain of comics, an empirical analysis
was performed on the unconditioned generative performance
of three cutting edge GAN architectures: Deep Convolutional
GAN (DCGAN), Wasserstein GAN (WGAN), and Stability GAN
(SGAN). This paper showed that the SGAN implementation
far outperforms both the DCGAN and WGAN architectures
on a dataset of Dilbert comics, achieving an FID score of 89.1.
Due to their relative simplicity, comics provide an intriguing
candidate for conditional generation. A comic panel can likely
be described using a few specific labels (eg. background and
characters). Two conditional networks were created, using the
SGAN architecture as a baseline. Multi Class SGAN (MC-SGAN)
used a traditional multi-class conditional approach while the
Multi Label SGAN (ML-SGAN) utilized a multi-label auxiliary
classification approach. Multiple experiments were performed
between these two networks resulting in hundreds of hours of
training. While performance between the networks was quite
similar on simple conditional tasks, on more complex tasks
MC-SGAN outperformed ML-SGAN. MC-SGAN was able to
conditionally generate comics based on character and color,
with desired conditions distinguishable in almost all outputs.
Issues with traditional methods of auxiliary classifier training
in the MC-SGAN implementation are additionally identified and
discussed.

I. INTRODUCTION

Comics represent a highly expressive form of visual
storytelling. The illustrations cover a myriad of artistic
styles, each extremely unique to the artist. What if one could
guide the extension of their favorite series, the characters,
and colors being in their control while the artistic style is
matched automatically to the illustrator? The generation of
novel comics using machine learning techniques proves an
interesting yet difficult task. Recently, there have been marked
advancements in the quality and success of image synthesis
techniques, although most of the existing research pertains to
photo-realistic images [1]. Extending the field of conditional
image synthesis, the controlled generation of novel images,

to comics serves not only to assess the boundaries of current
technology but extend the state-of-the-art into a completely
new domain.

Generative Adversarial Networks (GANs) excel at learning
to reproduce real-world data distributions [2]. Novel image
generation is one of the foremost applications of the GAN
[3]. All GAN implementations build off the framework
presented by Goodfellow et al. in which two networks: the
generator and discriminator, compete in a zero-sum game [4].
In this game the generator acts as a counterfeiter, trying to
create data that matches the original distribution, while the
discriminator network tries to distinguish between artificial
and real data.

Due to GANs notoriously unstable nature, numerous studies
have sought to identify the architecture and loss functions that
are most conducive to convergence. The first step towards
a generalizable GAN was the introduction of the Deep
Convolutional GAN (DCGAN) [5]. This model used deep
convolutional networks in its architecture, resulting in the
ability to synthesized high-resolution images in a wide array
of applications. Despite its general success, the DCGAN had
issues with vanishing gradients, a problem defined by a lack
of gradient presented by the discriminator network. This was
addressed by the Wasserstein GAN (WGAN), which replaced
the cross entropy loss of DCGAN with Wasserstein distance,
a loss function with superior theoretical properties for
convergence [6]. The WGAN left the underlying architecture
of the DCGAN unchanged. A gradient penalty was later
introduced that further improved stability, this network was
named WGAN-GP [7].

Mescheder et al. later published a paper on the convergence of
GANs, presenting an improved network that they claimed had
better convergence properties than WGAN [2]. Mescheders
network, Stability GAN (SGAN), utilized ResNet architecture
alongside their R1 regularizer to achieve more stable training
and superior image quality. DCGAN, WGAN, and SGAN
represent the state-of-the-art of image generating GANs and
provide a basis for the unconditional generations of comics.

While the default GAN frameworks produce de novo
images at random, it would be advantageous to influence
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Fig. 1: The image on the left is a Dilbert styled comic strip
composed of images generated using SGAN. The comic strip
on the left is an example of an original Dilbert comic.

generation based on a set of conditions. Conditional GANs
allow for output to be influenced by class labels. The most
naive implementation of GAN conditioning involves adding
class-specific embeddings to the input of the generator,
which has been shown to produce favorable results in
simple classification problems such as MNIST [8]. When
data and classes become more numerous and complex it
is useful to add an auxiliary classifier to the network [9].
Auxiliary classification is the act of expanding the task of the
discriminator to not only predict the source of the image but
also the class to which it belongs.

Comic generation presents a compelling application of
conditional generative networks for multiple reasons. The
difference in terms of structure and simplicity between comics
and photo images is vast; it has yet to be determined if
the performance of established GAN models is comparable
between the two. Additionally, due to the simplicity of
comics, a multi-label case can describe its contents in relative
entirety. Even given just the two conditions of characters
and background, one could create an output that, along
with dialogue, could tell a story. This creates a research
opportunity to further experimental understanding while
providing a practical application.

The aim of this paper is to answer the following question:
Can Generative Adversarial Networks be used for conditional
comic synthesis? In order to answer the research question
the paper must answer the following sub questions: (i)
Can DCGAN, WGAN-GP, or SGAN synthesise images of
a quality conducive to conditional generation (ii) Can a
multi-label and multi-class version of the best performing
architecture conditionally synthesize comics? (iii) Is there an
advantage to one conditional architecture over the other?

The paper is structured as follows with the contributions
highlighted: Section II discuses the related work. Section III
provides an overview of an empirical analysis study aimed at
comparing results of the previously mentioned architectures
on unconditional comic synthesis (contribution I). Section
IV describes the methodology of the creation and analysis
of a conditional GAN for comic synthesis (contribution II).
Section V discusses the experimental setup, while the results
and discussion can be found in section VI (contribution III).
Section VI reflects on the ethical implications, reproduciblity
and integrity of the research. Section VIII provides a conclu-
sion of the research as well as suggestions for future work.

Network: Architecture: Loss: Regularization:

DCGAN DCNN BCE None
WGAN-GP DCNN Wasserstein Loss Gradient Penalty
SGAN ResNet BCE R1

TABLE I: The differing architectures, loss functions, and
regularization techniques used in the DCAN, WGAN-GP, and
SGAN implementations.

II. RELATED WORK

The following related works sections will compare the defin-
ing differences of the Deep Convolutional GAN, Wasserstein
GAN, and Stability GAN as they relate to unconditional gen-
eration. Techniques of conditional generation such Auxiliary
Conditional-GAN will also be discussed.

A. Non-conditional GAN

The original GAN implementation used an RNN architecture
for both the generator and discriminator, allowing for
impressive results on simple data sets such as MNIST.
Despite its success on such tasks, the original GAN
implementation was not largely scalable [4].

1) DCGAN: The Deep Convolutional Generative Adversarial
Network replaced the previously fully connected layers of
the original RNN with deep convolutional layers. The use
of strided convolutions, batchnorm, and specified activation
functions for the generator and discriminator resulted in the
first truly stable GAN using a deep convolutional network.
The modifications allowed for the successful generation of
images from a much more complex distribution. DCGAN
remains a benchmark for GAN performance on the task of
image synthesis [5].

GAN training involves a minmax objective between the gener-
ator and the discriminator networks. In the case of the DCGAN
the game is as follows [10]:

(1)
min
G
max
D

V (D,G) = Ex∼Pdata(x)[logD(x)] +

Ez∼pz [log(1−D(G(z)))]

In this equation the discriminator (D) is trying to maximize
the log of its output when classifying data from the original
distribution and minimize its output when classifying data
that is produced by the generator (G) (this is represented
as the term log(1 − D(G(z)))). Network G on the other
hand is trying to minimize the same equation. Pdata(x)
Represents the distribution of real data while pz represents
the distribution of data from the latent space.

2) WGAN-GP: GANs are notoriously unstable when training.
In the case of DCGAN it often occurs that the Discriminator
performs too well at the task of identifying whether an image is
from the original distribution or not, especially early in training
[11]. This results in a problem called vanishing gradients, in
which the generator no longer has relevant gradients on which



to propagate. Wasserstein-GAN (WGAN) attempts to solve
this problem by using Wasserstein Loss [6]. Wasserstein loss
is defined as follows:

(2)
min
G
max
Dεβ

V (D,G) = Ex∼Pdata(x)[D(x)] +

Ez∼pz [D(G(z))]

In Wasserstein Loss β is a set of 1-Lipschitz continuous
functions. Rather than classifying output as real or fake, D
minimizes the Wasserstein Distance, W (q, p), with respect
to the generator parameters W (Pdata, pz). The most stable
version of this technique uses gradient penalty to assure
Lipschitz Continuity, this network is named Wasserstein GAN
with Gradient Penalty or WGAN-GP. WGAN-GP provides
a training environment that has been shown to converge in
most cases [7].

3) Stability-GAN: More recently Mescheder et al. stated in
a paper on the convergence of GANs that WGAN-GP does
not always converge. In order to assure convergence they
introduced a new R1 regularization technique along with a
ResNet architecture for both the generator and discriminator.
They called their findings Stability-GAN. Stability-GAN
was able to produce impressive results on Imagenet and
CelebA-HQ datasets. [2].

DCGAN, WGAN-GP, and SGAN represent a relatively com-
prehensive set of state-of-the-art GANs for image generation.
Previous research has has noted that the results of image syn-
thesis given a specific GAN architecture are highly dependant
on the training data [12]. In short, there is no way to predict
how these networks will perform on comic data without an
analytic comparison of their results. The emperical analysis
of DCGAN, WGAN-GP, and Stability-GAN is presented in
section III.

B. Conditional GAN
There are many methods of conditioning GANs. The simplest
form of network conditioning involves attaching a class
conditional to the latent vector for use as input to the
generator. This usually takes the form of concatenating an
embedding of a one-hot-vector representing the class to
the latent input [8]. While this works in simple cases, its
efficacy drops significantly during more complex conditional
generation tasks [13].

Auxiliary Conditional GAN or ACGAN uses the help of
auxiliary classification in order to improve results and sta-
bilize training during conditional synthesis. In ACGAN the
discriminator not only gives a probability distribution over
the source of the image (XReal or XFake) but also over the
corresponding class of the image (c). This necessitates a two
part loss function:

(3)
LS = E[logP (S

= real|Xreal)] + E[logP (S

= fake|Xfake)]

(4)
LC = E[logP (C

= c|Xreal)] + E[logP (C

= c|Xfake)]

Where D is attempting to maximize LS +LC and G is trying
to minimize LC − LS .

Existing conditional methods focus mainly on generating im-
ages within a multi-class problem. The use of these techniques
in multi-label conditional generation remains to be assessed.
Section IV and VI explore this question.

III. EMPIRICAL ANALYSIS OF NON-CONDITIONAL GANS

In this section, the non-conditional generation of comics
is compared across DCGAN, WGAN-GP, and SGAN
architectures. This allows for a comparison of performance
between state-of-the-art image generating networks on comics.
This empirical analysis is necessary to provide a basis for
the choice of network architecture used in the conditional
network. Each network varies in its architecture, loss, and
regularization method, these differences are presented in
TABLE I. Full descriptions of architecture and training
methods are available in section V.

The analysis focuses on the ability of the selected networks to
produce images that are conducive to conditional generation.
Background color and character presence were selected as
necessary observable conditions, due to their pertinence to
further experiments. Additional insight into these choices is
presented in section IV. Three categories of output quality
were defined for assessment: no conditions distinguishable,
conditions are distinguishable but not identifiable, conditions
are both distinguishable and identifiable. Networks were also
qualitatively ranked based on image quality. The final results
of this analysis are presented in TABLE II. This analysis
is additionally intended to determine what size of image is
necessary for the conditional network. Comparisons were
determined qualitatively based on the level of identifiability
of conditions within the results.

A. DCGAN

The Deep Convolutional GAN was trained on the Dilbert
data in both 64 x 64 and 128 x 128 configurations. The
documented issues with training stability in DCGAN were
immediately apparent. Multiple training attempts were
necessary in order to avoid the effects of vanishing gradients
in the 64 x 64 configuration. On the trials where convergence
was reached, conditional presence in the output was assessed.
Final results showed clearly evident background color,
individual characters were distinguishable but not easily
identifiable.



(a) (b) (c)
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Fig. 2: 2a, 2b, and 2c represent the output from WGAN 64 x
64, WGAN 128 x 128 and SGAN 128 x 128 trials respectively.
2a depicts the output of DCGAN 128 x 128 at 5, 20, and 60
epochs. The results of vanishing gradients can clearly be seen.

The previously identified issues with vanishing gradients be-
came an increasing issue in the 128 x 128 image size. The
model continually failed to converge even after multiple trials.
The resulting images of DCGAN in its 128 x 128 configuration
were extremely noisy, leaving conditions neither distinguish-
able nor identifiable. Examples of vanishing gradients during
DCGAN training can be seen in Fig 2d.

B. WGAN-GP

The findings of previous literature stating that WGAN-GP
fixes many of the instabilities in DCGAN training were
confirmed. WGAN-GP had no issues with vanishing gradi-
ents in both trials. The 64 x 64 implementation resulted in
clearly defined comics that accurately represented the Dilbert
distribution. Results from this trial can be seen in Fig 2a
Conditions were both distinguishable and identifiable. Despite
this, the size of the image limited the clarity of the characters,
meaning only certain identifying characteristics were present.
At this point is was determined that 128 x 128 resolution was
necessary for conditional synthesis. Due to this SGAN trials
were only run in the larger image size.
The 128 x 128 configuration of WGAN-GP had limited
improvement in terms of image quality over the 64 x 64 im-
plementation. It appeared that the training was stable, although
the model converged to sub-optimal results. Limited clarity of
characters was achieved. These results can be seen side by
side in Fig. 2.

C. SGAN

SGAN had extremely impressive results when generating 128
x 128 images. Training was extremely stable, no issues of
vanishing gradients were experienced. The network generated
images where conditions were clearly distinguishable and
identifiable, this can be seen in Fig. 2b. Qualitative analysis
of results from SGAN determined that it produced images of
far superior quality to both DCGAN and WGAN-GP.

Network 64 x 64 128 x 128 Rank

DCGAN 3rd
WGAN-GP 2nd
SGAN 1st

TABLE II: Results from empirical analysis of DCGAN,
WGAN-GP, and SGAN. Red: no conditions distinguishable.
Yellow: conditions are distinguishable but not identifiable.
Green: conditions are both distinguishable and identifiable.
Grey: generation not conducted

D. Analysis

The non-conditional experiments run on DCGAN, WGAN-
GP, and SGAN architectures demonstrated the importance of
stability in GAN training. It also highlighted the superiority
of SGAN’s R1 regularizer and ResNet architecture in the
task of comic generation. It was evident from the results
that the SGAN architecture would form a good basis for the
creation of a conditional GAN for comic generation. It was
also determined that the 128 x 128 size would be necessary in
order to provide good results in a conditional implementation,
as clarity is limited by pixel count in the 64 x 64 image size.

IV. METHODOLOGY

This section will cover the method by which the conditional
generation of comics from the Dilbert dataset using GANs
was performed and assessed. It will cover the chosen
conditions, created data-sets, and architectures as well as
an in-depth analysis of why they were chosen. A brief
description of the experiments is also included.

Conditional image synthesis is an extension of image synthe-
sis. An empirical analysis was performed in section III in order
to determine the architecture that created the highest quality
images without the input of conditions. This analysis found
that the SGAN implementation synthesized superior images to
both DCGAN and WGAN-GP in the domain of comics. This
resulted in the determination that the ResNet based SGAN
architecture would be used as a basis for the architecture of
the proposed conditional GANs.

A. Conditional Networks

The majority of existing c-GAN and ACGAN architectures
aim to solve multi-class classification problems, each
produced image aims to fall into the category of one of
many classes. Despite this, conditional comic generation
fits better into the category of multi-label classification. In
multi-label classification problems, the network tries to learn
the distribution over a set of independent labels [14]. In the
case of character conditioning, each label would correspond
to the presence of a certain character in the panel.

Multi-label problems can be converted to multi-class problems
by means of label powerset (LP) transformation [15]. LP
transformation attributes each possible grouping of labels to a



(a) ML-SGAN (b) MC-SGAN

Fig. 3: In 3a and 3b D represents the discriminator network
and G represents the generator network while Z represents the
latent space vector input to the generator. An embedding of
input labels is joined to C in both models. In ML-SGAN D
performs multi-label classification on source and label while
in MC-SGAN D outputs the probability over class labels.

class, for example the labels A and B might be converted to
the classes represented by [0 0], [1 0], [0 1], and [1,1]. The
LP transformation implicitly accounts for label dependence.
Limitations to this method exist due to an exponentially
increasing number of classes necessary to represent a given
set of labels. This method allowed us to use existing multi-
class conditional GAN architectures on an inherently multi-
label problem.

B. Multi-Class Stability-GAN (MC-SGAN)

The multi-class implementation of SGAN modifies the
discriminator by adding a single fully connected output layer
with one node for each desired class. The output of the final
layer is passed through a sigmoid function to ensure output
is between zero and one for each node while maintaining
independence between classes.

In order to condition the generator network, the class
conditional is one-hot encoded and embedded in a 128-bit
input vector. This 128-bit vector is then concatenated onto
the 128-bit latent noise vector for input to the network.

The loss for the generator and discriminator are calculated
by performing binary-cross-entropy (BCE) loss on the output
node that corresponds to the desired class. The labels used
for performing BCE loss are either one for real or zero for
fake. The discriminator network tries to minimize the loss on
the correct source. The generator network tries to minimize
the loss that its output is classified as real.

This conditioning strategy was employed due to its success
on the 1000 class ImageNet dataset in previous studies [2]. A
depiction of the architecture can be referenced in Fig. 3.

C. Multi-Label Auxiliary SGAN (ML-SGAN)

Due to the lack of scalability provided by the LP
transformation method, we created a GAN architecture

that could be conditioned purely on multi-label data. The
multi-class implementation took advantage of the fact that a
single node of the output layer could be used to calculate loss
based on source, this was no longer possible with multi-label
data. An auxiliary classifier was added to the network to
make the necessary separation between loss based on source
and loss based on label.

The Multi-Label Auxiliary SGAN (ML-SGAN) preserves
the underlying ResNet architecture of MC-SGAN while
adding a multi-label auxiliary classifier. The multi-label
model allows for multi-label conditional generation without
the requirement of performing an LP transformation. The
lack of LP transformation in this model greatly reduces the
complexity of the network on the same set of labels when
compared to the MC-SGAN.

In MLA-SGAN the loss is determined using an auxiliary
classification technique [9]. Two fully connected output layers
are added to the ResNet discriminator architecture found in
S-GAN. One of the output layers performs the task of binary
classification of the source, either from the original distribution
or a generated image. The second output layer has a node
for each corresponding label. The sigmoid function is applied
to both output layers and loss is calculated by summing the
binary cross entropy across the layers for the generator and
discriminator. The discriminator and generator follow the loss
proposed in Eq. 3 to determine loss based on source and the
proposed loss in Eq. 4 to determine loss base on label. The
method of conditional embedding to the generator remains
unchanged from MC-SGAN. The general architecture can be
referenced in Fig. 3.

D. Conditions

Comics provide a compelling application for conditional
synthesis as their simplicity allows for a finite number of
labels to provide a relatively complete description of their
content. It was determined that the most discernible and
indicative labels of comics were background and character
presence. With these two conditions it becomes possible to
generate panels that contribute to a coherent story. Datasets
were created for the conditions of both background color and
character presence.

The original idea for this paper was to use the dataset of
phdcomics. While there were sufficiently many examples of
phdcomic panels, the style varied greatly from comic strip
to comic strip and from year to year, additionally the panels
were in many different shapes and sizes making generation
impossible. After further researcher it was determined that
Dilbert provided ideal attributes to use in this study. The
Dilbert comics remain stylistically consistent, they are
available on the web, and they are all of the same size.
5000 Dilbert comics were scraped from the web for use
unconditionally. An automated process was created in order
to remove text from the panels in order to reduce noise.



Pre-processing was performed on this set of comics in order
to create datasets for conditional generation.

E. Experiments

A set of experiments were designed in order to assess
the capability of both ML-SGAN and MC-SGAN to
conditionally synthesise images based on the previously
mentioned conditions. Experiments were to include a simple
multi-class experiment, as well as a series of multi-label
experiments to provide a comparison between ML-SGAN
and MC-SGAN. Experiments were designed in order to allow
for comparison at varying levels of conditional complexity.
The experiments were designed in a manner of incrementally
increasing complexity in order to allow comparison when a
point of failure was reached.

1) Color as a Condition: Due to its easy distinguishability
within panels, color was thought to represent a relatively
simple classification task. Experimental analysis of color as
a condition would provide insight into the performance of
ML-SGAN on a simple single label classification task. It
would additionally provide a simple multi-class problem for
MC-SGAN in order to assess architectural functionality. It
was hypothesized that the results between both networks on
this task would be very similar.

2) Multi-Label Experiments: Two multi-label experiments
of varying complexity were designed. The first experiment
involved the conditional generation of comics based on the
presence of The Boss, Dilbert, both, or neither. This created a
4 class task for MC-SGAN and a 2 label task for ML-SGAN.
The distribution of data between classes was relatively equal
in this experiment. Results from this study would determine
if conditional generation based on character presence was
possible in the comics domain.

The second multi-label experiment involved the four most
common characters in the Dilbert dataset: Dilbert, The
Boss, Wolly, and Alice. These four characters comprised the
maximum set of characters for which at least one example
existed in each class of the LP transformation. 14 total classes
were created for input to MC-SGAN (the set including all
and no characters was excluded). The resulting distribution of
examples through these classes varied greatly with sets having
as few as 21 and as many as 200 examples. This experiment
provided a rigorous comparison between MC-SGAN and
ML-SGAN on a complex conditional generation task.

V. EXPERIMENTAL SETUP

This section will focus on the networks, environment, datasets
and evaluation metrics used in experiments throughout this
paper. This section is additionally applicable to the work
conducted in section III.

A. Environment

All the networks were trained on Google Cloud VM instances.
Training was performed on the NVIDIA Tesla K80 GPU.
NVIDIA’s CUDA parallel computing platform was used dur-
ing model training. Training time for the networks ranged from
24-96 hours and 150 cloud credits were used over the course
of all experiments. The open source PyTorch v1.9 library was
used in the implementation of all networks.

B. Networks

1) DCGAN and WGAN-GP: The DCGAN and WGAN-
GP implementation are based off the respective papers by
Gulrajani et al. and Radford et al. [7][5]. Both papers provided
an architecture for generation of 64 x 64 images. The hyper
parameters, training setup, and network architectures were
followed exactly as they are laid out in the papers.

For generation of 128 x 128 images an additional
convolutional layer was added to the discriminator with a
stride of 2, padding of 1, and kernal size of 4. The generator
was additional modified by adding a deconvolutional layer
with the same parameters.

The details of the differences in loss functions between the
networks is presented in section II.

2) SGAN, MC-SGAN, ML-SGAN: SGAN, MC-SGAN, and
ML-SGAN share the same base ResNet architecture and
hyperparameters. Training, hyperparameters, and architecture
remains consistent with the setup described by Meschder et al.
in their experiment on the CelebA dataset [2]. Implementation
details of the conditioning technique used in MC-SGAN and
ML-SGAN are presented in section IV.

C. Datasets

1) Unconditional Generation: That dataset used in
unconditional generation included 5000 dilbert panels
scraped from Dilbert.com. Text was cleared from all panels.

2) Color as Condition: The original set of 5000 Dilbert
images was processed in order to identify all panels that
contained solid background colors. Panels were automatically
labeled with background color in the CIELAB color space.
CIELAB expresses colors in a 3d space where distance is
equivalent to the difference in human perception [16]. K-
Means clustering was used in order to identify classifications
of colors based on their perceived similarity [17]. The panels
were labeled with the most commonly found background
colors in the original dataset: green, yellow, and purple. There
were 623, 740, and 637 examples respectively.

3) Character as Condition: The characters in a set of 2000
Dilbert Dilbert comics were manually labeled. Panels with
non-recurring characters or with more than 3 characters
present were removed in order to simplify the data.
This resulted in a dataset of 1444 comics labelled with



Network Color Two-Character Four-Character

MC-SGAN 100% 96% 84%
ML-SGAN 100% 92% 63.1%

TABLE III: This table highlights the accuracy of MC-SGAN
and ML-SGAN across color, two-character, and four-character
conditions. Accuracy represents the visibility of conditions
across all samples.

corresponding characters. Datasets were further filtered and
class labels were attached for both the two-character and
four-character experiments.

D. Evaluation Metrics

Quantitative evaluation of results was determined using the
Frechet Inception Distance (FID) [18]. FID represents the
Wasserstein distance between two multidimensional Gaussian
distributions, in this case, the generated and real images. This
method improved over the earlier technique of the Inception
Score (IS), which only evaluated the quality of generated
images [19]. Using FID over IS is especially significant in
this study as the generated comics are not meant to be
photorealistic. Conditional generation will be evaluated based
on the appearance of the specified condition in network output.
25 samples will be generated for each class and label presence
on those samples will determine accuracy.

(5)FID(r, g) = ||µr − µg||22 + Tr(Σr + Σg − 2(ΣrΣg)
1
2 )

The loss of the generator and discriminator were recorded
during training to gain insight into the training stability.
The FID was also recorded over time in order to gauge the
networks convergence.

VI. RESULTS AND DISCUSSION

This section will present the results of the experiments de-
signed to assess ML-SGAN and MC-SGAN on conditional
generation of Dilbert comics. It will also provide discussion on
the results. All networks were run for 125,000 iterations for the
following experiments. Accuracy Results for all experiments
can be seen in Table TABLE III.

A. Color as Condition

Conditional generation of comics based on color proved to be
a simple classification task. Both ML-SGAN and MC-SGAN
performed perfectly in this task with the correctly conditioned
color being present in all generated images. Additionally, when
images were generated using a latent vector that was identical,
except for the conditional embedding, the produced images
only varied in background color. This showed a great ability
for both ML-SGAN and MC-SGAN to conditionally generate
comics based on color. This result was expected and provided
a reference for increasingly more complex conditional gener-
ation tasks.

(a) (b)

(c) (d)

Fig. 4: 4a depicts the results from the two-character exper-
iment. From left to right: the output of ML-SGAN with
Dilbert label, the output of MC-SGAN with Dilbert label,
example of Dilbert from the original dataset. 4b depicts results
from the four character experiment when the networks were
conditioned to produce images containing Dilbert, The Boss
and Alice. Results are presented in the same order. In this case
you can see mis-generated image from ML-SGAN as it only
contains The Boss and Dilbert. 4c and 4d depict FID over
iteration for both character experiments, the FID of SGAN on
unconditional data is provided for reference.

B. Two-Character

Both MC-SGAN and ML-SGAN performed exceedingly well
at the task of generating images conditioned on the presence
of the Boss and Dilbert. The Boss was easily identifiable
by his distinctive pointy hair. Differentiation between Wolly
and Dilbert in generated images was slightly more difficult
as they both wear white shirts and have similar skin tones.
Both networks seemed to pick up the difference in tie color
between the two, allowing for distinction.

The accuracy of character presence between networks was
similarly high as shown in TABLE III. The majority of in-
correct outputs occurred due to Dilbert being interchanged for
Wolly. This is likely due to their previously stated similarities.
The FID scores were also similar between the networks, al-
though both networks performed worse than the unconditional
SGAN. The discrepancy in performance can almost certainly
be explained by the difference in volume of training data.
SGAN was trained on 5000 images while the training set for
ML-SGAN and MC-SGAN contained only 1444 examples.

C. Four-Character

Greater discrepancies were seen between the networks in
the four character classification task. MC-SGAN performed
exceptionally well in this task with 84% classification
accuracy across all 14 classes. ML-SGAN performed
significantly worse in this task with 63.1% classification
accuracy across all classes. This is thought to be due to



Fig. 5: Discriminator loss of MC-SGAN and ML-SGAN on
the four-character experiment. ML-SGAN is in orange and
MC-SGAN is in red. The collapse of the auxiliary classifier
can be seen around 20k iterations.

a collapse in the auxiliary classifier which is discussed
in the following sub-section. Despite research stating that
increasing the number of conditions on given data is likely
to increase image quality, the opposite effect was actually
noted [9]. The FID score for both networks was slightly
lower than in the two character trial, this is presented in
Fig. 2. This could also be attributed to changes in training data.

These results showed the impressive ability of LP transfor-
mation to convert a multi-label problem into a multi-class
problem. Even on classes with relatively few examples the
generator was able to learn to produce images that accurately
matched the conditional output. The MC-SGAN architecture
proved extremely effective in conditional comic synthesis.

D. Auxiliary Classifier Collapse

During the four-character experiment it became apparent
that the multi-label auxiliary classifier in ML-SGAN stopped
providing meaningful loss to the generator network during
training. This was identifiable by analysis of discriminator
loss during training. This is visible in Fig. 5. After around
20k iterations the loss for the auxiliary classifier on both
real and fake data was nearly zero, while the loss from the
source classifier reduced much more gradually. This meant
that after 20k iterations the generator backpropagation was
being performed only on loss from the binary source classifier
and not the multi-label auxiliary classifier. This resulted in a
stagnation of conditional learning after around 20k iterations
in the ML-SGAN.

The cause of this collapse can be attributed to the training
setup proposed by Odena et al. in the original paper on
ACGANs [9]. The proposed training steps dictate that the
weights of the auxiliary classifier be updated by the loss
generated both on the fake and real data. Updating the weights
on the loss from the real data allows the network to learn to
identify the distribution of labels in the real data, eg. it can
identify when Dilbert is in an image. This is an advantageous
feature of training as it provides meaningful loss on the basis
of labels to the generator. Backpropagating loss based on the
classification of fake data results in the auxiliary classifier

learning a bi-modal distribution for each label, one mode
being the real representation and the other being the generators
representation at that point in training. This learned bi-modal
distribution results in a lack of meaningful loss from the
auxiliary classifier during the generator training step.

VII. RESPONSIBLE RESEARCH

The quality and value of research are dictated in large part by
their integrity and reproducibility. The results in this paper
represent a high level of integrity and transparency. The
information in this paper also provides sufficient background
and information to make the results fully reproducible.

A. Integrity

Integrity denotes the absence of data fabrication, falsification,
data trimming, and conflict of interest. Due to the nature
of GANs, their resulting output contains a great deal of
randomness. When looking at individual results from the
network, it becomes easy to skew the picture of its overall
quality. Thus, evaluation metrics have been calculated based
on a large volume of outputs, creating a holistic picture of
performance across the entire distribution. When data was
filtered for classification tasks the results were also clearly
dictated. It is important to note that the produced comics are
for research purposes only and therefore hold no commercial
incentive. Under the copyright of dilbert.com the use of
material for non-commercial purposes is permitted.

B. Reproducibility

The difficulties associated with reproducibility within Artificial
Intelligence require thorough attention. The first step towards
reproducibility in this study is assuring clarity around the data
used in training. While it is often possible to use pre-existing
data sets, this study required that unique data be gathered and
processed. The data that was used is thoroughly documented
and can be recreated based on the method description. Next,
the architecture and hyper-parameters of the networks were
provided. Open source solutions were additionally always
referenced. The training cycle was also clearly stated. The
results are therefore able to be reproduced as they appear in
the paper.

VIII. CONCLUSION

The purpose of this report was to examine the efficacy of
conditionally generating comics using Generative Adversarial
Networks. DCGAN, WGAN-GP, and SGAN were assessed
on the task of unconditional comic generation in order
determine which architecture had superior performance. The
result of this empirical analysis guided the creation of both
a multi-label and multi-class network for conditional comic
synthesis. These networks were then compared across a set
of experiments using varying input conditions.

The SGAN created higher quality images than both the
DCGAN and WGAN-GP implementations. The results from



SGAN were extremely impressive, clearly representing the
style of Dibert comics. The SGAN based ML-SGAN and
MC-SGAN networks were both successful in conditionally
generating comics. They both performed equally well in the
generation of comics based on the condition of color as well
as the simple two-character generation task. The MC-SGAN
implementation outperformed the ML-SGAN during the
more complex four-character task, achieving 84% accuracy
on condition presence. The discrepancy in performance
was likely the result of the auxiliary classifier providing
insufficient loss to the generator during training. Further
discussion on the collapse of the auxiliary classifier can be
found in section VI. It can be concluded from this work that
Generative Adversarial Networks provide a viable method for
conditional comic synthesis.

In future work it would be advantageous to resolve the training
problems of the auxiliary classifier in MC-SGAN. Due to
the exponential growth of the label powerset transformation,
multi-label classification proves the only viable solution when
a large number of labels is needed in generation. This could
be fixed by implementing an auxiliary classifier that was pre-
trained on real data [9]. In experimentation, transfer learning
using VGG16 performed exceptionally on the task of label
classification of characters in Dilbert comic panels [20]. Using
a pre-trained auxiliary classifier likely has the ability to
create a more representative loss for the generator, thus vastly
improving results.

REFERENCES

[1] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and
A. A. Bharath, “Generative adversarial networks: An overview,” IEEE
Signal Processing Magazine, vol. 35, no. 1, pp. 53–65, 2018.

[2] L. Mescheder, A. Geiger, and S. Nowozin, “Which training methods
for gans do actually converge?” in International conference on machine
learning. PMLR, 2018, pp. 3481–3490.

[3] P. Shamsolmoali, M. Zareapoor, E. Granger, H. Zhou, R. Wang, M. E.
Celebi, and J. Yang, “Image synthesis with adversarial networks: A
comprehensive survey and case studies,” Information Fusion, 2021.

[4] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
arXiv preprint arXiv:1406.2661, 2014.

[5] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiv:1511.06434, 2015.

[6] J. Adler and S. Lunz, “Banach wasserstein gan,” arXiv preprint
arXiv:1806.06621, 2018.

[7] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and
A. Courville, “Improved training of wasserstein gans,” arXiv preprint
arXiv:1704.00028, 2017.

[8] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
arXiv preprint arXiv:1411.1784, 2014.

[9] A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with
auxiliary classifier gans,” in International conference on machine learn-
ing. PMLR, 2017, pp. 2642–2651.

[10] S. Liu, X. Li, Y. Zhai, C. You, Z. Zhu, C. Fernandez-Granda, and Q. Qu,
“Convolutional normalization: Improving deep convolutional network
robustness and training,” arXiv preprint arXiv:2103.00673, 2021.

[11] L. Weng, “From gan to wgan,” arXiv preprint arXiv:1904.08994, 2019.
[12] X. Cao, S. Dulloor, and M. Prasetio, “Face generation with conditional

generative adversarial networks.”
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APPENDIX

Fig. 6: A selection of generated images from SGAN

Fig. 7: A selection of generated images from MC-SGAN

Fig. 8: A selection of generated images from ML-SGAN



Fig. 9: Results from WGAN-GP in 128 x 128 configuration

Fig. 10: Results from WGAN-GP in 64 x 64 configuration


