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Counting Finite-Dimensional Algebras Over
Finite Field

Nikolaas D. Verhulst

Abstract. In this paper, we describe an elementary method for counting
the number of non-isomorphic algebras of a fixed, finite dimension over
a given finite field. We show how this method works in the case of 2-
dimensional algebras over the field F2.

Introduction

Classifying finite-dimensional algebras over a given field is usually a very hard
problem. The first general result was a classification by Hendersson and Searle
of 2-dimensional algebras over the base field R, which appeared in 1992 ([1]).
This was generalised in 2000 by Petersson ([3]), who managed to give a full
classification of 2-dimensional algebras over an arbitrary base field. The meth-
ods employed in these papers are quite involved and rely on a large amount of
previous work by many illustrious authors.

Our aim in this paper is to give perhaps not a classification but at least
a way to compute the exact number of non-isomorphic n-dimensional algebras
over a fixed finite field by elementary means. Indeed, nothing more complicated
than linear algebra and some very basic results about group actions will be
needed: we describe isomorphism classes of n-dimensional K-algebras as orbits
of a certain GLn(K)-action on Matn(K)n and use a basic result about group
actions to count these orbits. In the first three sections, we give a proof based on
concrete calculations, while Sect. 4 is dedicated to a more abstract alternative
which avoids all computations. In Sect. 5, we work out the concrete example
n = 2, K = F2.
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1. Notation and Basics

Fix a field K. In this article, an algebra is understood to be a K-vector space
A equipped with a multiplication, i.e. a bilinear map A × A → A. If a, b
are in A, we will write ab for the image of (a, b) under this map. We do not
assume algebras to have a unit or to be associative. By the dimension of an
algebra we mean its dimension as a K-vector space. Two algebras A and A′

will be called isomorphic if there exists a K-linear bijection f : A → A′ with
f(ab) = f(a)f(b) for all a, b in A. The isomorphism class of an algebra A will
be denoted by [A]. For n ∈ N, we define Algn(K) to be the set of isomorphism
classes of n-dimensional algebras.

Given a vector M = (Mi)i=1,...,n of n (n × n)-matrices over K, we can
define an algebra alg(M) which is Kn as a K-vector space and for which
multiplication is defined to be the unique bilinear map Kn × Kn → Kn with

eiej =
∑

k

(Mi)kjek

where the ei are the canonical basis vectors of Kn. Intuitively, this means
that multiplying an element a ∈ alg(M) on the left with ei is multiplying the
coordinate vector of a (with respect to the canonical basis) with Mi and inter-
preting the result again as a coordinate vector (with respect to the canonical
basis). This allows us to define the map

[alg] : Matn(K)n → Algn(K),M �→ [alg(M)]

which will play an important role in this paper.

Lemma 1.1. The map [alg] defined above is surjective.

Proof. Let A be an n-dimensional algebra with basis a1, . . . , an. There are
αij,k in K such that aiaj =

∑
k αik,jak for all 1 ≤ i, j ≤ n. Define the matrix

Mi by putting (Mi)jk = αij,k and set M = (Mi)i=1,...,n ∈ Matn(K)n. There
is a unique linear map alg(M) → A, ei �→ ai which is clearly bijective and
which, by construction, preserves multiplication. Hence [A] = [alg(M)]. �

On the other hand, [alg] is clearly not injective, since for any M = (Mi)i=1,...,n

and α ∈ K∗, for example, we have [alg(M)] = [alg(αM)].

2. A Group Action on Matn(K)n

Recall that for a given set X and a group G with neutral element e, a (right)
G-action on X is a map φ : X × G → X such that
(1) φ(x, e) = x for any x ∈ X,
(2) φ(x, gg′) = φ(φ(x, g), g′) for all g, g′ ∈ G, x ∈ X.

If φ is a G-action on X, then the φ-orbit of an element x ∈ X is the set
G(x) = {φ(x, g) | g ∈ G}. The set of φ-orbits is denoted by X/G. The fixpoints
of a g ∈ G are the elements of Xg = {x ∈ X | φ(x, g) = x}.
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Lemma 2.1. The map

φ : Matn(K)n × GLn(K) → Matn(K)n,

⎛

⎜⎝

⎡

⎢⎣
M1

...
Mn

⎤

⎥⎦ , G

⎞

⎟⎠ �→

⎡

⎢⎣
G−1

∑
i Gi1MiG
...

G−1
∑

i GinMiG

⎤

⎥⎦

is a GLn(K)-action on Matn(K)n.

Proof. It is clear that φ(M,1n) = M for all M in Matn(K)n. Take
M = (Mi)i=1,...,n in Matn(K)n and G,G′ in GLn(K). We have to show
φ(M, GG′) = φ(φ(M, G), G′). The term on the right is

φ

⎛

⎜⎝

⎡

⎢⎣
G−1

∑
i Gi1MiG
...

G−1
∑

i GinMiG

⎤

⎥⎦ , G′

⎞

⎟⎠ =

⎡

⎢⎣
G′−1

∑
j G′

j1

(
G−1

∑
i GijMiG

)
G′

...
G′−1

∑
j G′

jn

(
G−1

∑
i GijMiG

)
G′

⎤

⎥⎦

=

⎡

⎢⎣
(GG′)−1

∑
i(GG′)i1MiGG′

...
(GG′)−1

∑
i(GG′)inMiGG′

⎤

⎥⎦

which is the term on the left. �
Lemma 2.2. Two elements M,M′ of Matn(K)n are in the same φ-orbit if
and only if alg(M) and alg(M′) are isomorphic, i.e. if and only if [alg(M)] =
[alg(M′)].

Proof. Assume alg(M) and alg(M′) to be isomorphic for some M =
(Mi)i=1,...,n and M′ = (M ′

i)i=1,...,n in Matn(K)n. Take an isomorphism
f : alg(M) → alg(M′). Since alg(M) and alg(M′), considered as K-vector
spaces, are just Kn, there must be a G ∈ GLn(K) such that f(x) is just Gx
for all x ∈ alg(M′). As f is an isomorphism, we find

G
∑

i

xiMiy = f(xy) = f(x)f(y) = Gx · Gy =
∑

i

⎛

⎝
∑

j

GijxjM
′
i

⎞

⎠ Gy

for arbitrary x, y ∈ alg(M). In particular, if x = el, we find GMly =∑
i GilM

′
iGy for all y, so Ml = G−1

∑
i GilM

′
iG showing φ(M′, G) = M.

Suppose now that, for given M and M′ in Matn(K)n, there is some G ∈
GLn(K) with φ(M′, G) = M. G induces a function f : Kn → Kn, x �→ Gx
which is bijective as G is invertible. To prove that f is an isomorphism between
alg(M) and alg(M′), it suffices to show f(eiej) = f(ei)f(ej) for all i, j since
f is linear. We find

f(ei)f(ej) = (Gei)(Gej) =

(
∑

k

GkiM
′
k

)
(Gej) =

(
∑

k

GkiM
′
kG

)
ej

= GG−1

(
∑

k

GkiM
′
kG

)
ej = GMiej = f(eiej),
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the penultimate equality following from φ(M′, G) = M. �

3. Counting Orbits

From now on, we assume K to be a finite field with q elements. As a conse-
quence of Lemma 2.2, we find that alg induces a well-defined, injective map

alg : Matn(K)n/GLn(K) → Algn(K), (GLn(K))(M) �→ [alg(M)]

which is also surjective by Lemma 1.1. The number of isomorphism classes of n-
dimensional K-algebras therefore equals the number of φ-orbits of Matn(K)n.
The following well-known result from the theory of group actions will help us
count the latter:

Proposition 3.1 (Burnside’s lemma). Suppose φ is an action of a finite group
G on a finite set X. Then

|X/G| =
1

|G|
∑

g∈G

|Xg|.

Proof. Cf. e.g. [5], p.58. �

To use this lemma, we need to know the number of fixpoints of a given
invertible matrix M . For that, we need the following definition:

Definition 3.2. For a matrix M ∈ Matk×l(K), the vectorisation of M is the
vector vec(M) ∈ Kkl obtained by stacking the columns of M , the first column
being on top. For an element M = (Mi)i=1,...,n ∈ Matn(K)n, we write Vec(M)
for the single vector consisting of the vectorisations of all the Mi. For more on
the vectorisation operation, we refer to [2].

Lemma 3.3. For an invertible matrix M , we have
∣∣∣(Matn(K)n)M

∣∣∣ = qdimEig1(M
T ⊗MT ⊗M−1)

where Eig1(A) denotes the eigenspace of the matrix A with eigenvalue 1.

Proof. Suppose N = (Ni)i=1,...,n is a fixpoint of M , i.e.

Nl = M−1
∑

i

MilNiM for all l. (†)

It is known (see e.g. [2]) that, for arbitrary A,B,C in Matn(K), we have
(BT ⊗ A)vec(C) = vec(ACB). From this, we conclude:

Vec
(
(M−1NiM)i=1,...,n

)
= (1n ⊗ MT ⊗ M−1)Vec(N ).

We have furthermore that Vec((
∑

i MilOi)l=1,...,n) = (MT ⊗ 1n ⊗ 1n)Vec(O)
for any O = (Oi)i=1,...,n ∈ Matn(K)n. Consequently, (†) is equivalent to

Vec(N ) = (MT ⊗ 1n ⊗ 1n)(1n ⊗ MT ⊗ M−1)Vec(N )
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= (MT ⊗ MT ⊗ M−1)Vec(N ),

so N is a fixpoint of M if and only if Vec(N ) is an eigenvector of MT ⊗MT ⊗
M−1 with eigenvalue 1. �

Theorem 3.4. The number of non-isomorphic n-dimensional K-algebras is

|Algn(K)| =
1

|GLn(K)|
∑

M∈GLn(K)

qdimEig1(M
T ⊗MT ⊗M−1).

Proof. By Lemma 2.2, the number of non-isomorphic n-dimensional k-algebras
is the number of φ-orbits. By 3.1 and 3.3, this is equal to the given formula.

�

4. A Computation-Free Road to Rome

In this section, we will outline a version of the proof which avoids all concrete
computations. Grateful use has been made of an anonymous referee’s report.

Suppose A is a K-algebra. We can express a choice of basis for A as a
K-vector space isomorphism b : Kn → A. An algebra with basis can then
be seen as a pair (A, b). We call two such pairs (A, b), (A′, b′) isomorphic if
there is a K-algebra isomorphism f : A → A′ with f ◦ b = b′. We denote
the isomorphism class of (A, b) as (̃A, b) and the set of isomorphism classes of
n-dimensional K-algebras with basis as AlgBasn(K).

For a K-algebra A, we write μA : A⊗A → A, x⊗y �→ xy. Similarly, if M
is an element of Hom(Kn ⊗Kn,Kn), we write alg(M) for the algebra which is
Kn as a K-vector space and with multiplication given by xy = M(x ⊗ y) for
all x, y in Kn. We can identify the set AlgBasn(K) with Hom(Kn ⊗ Kn,Kn)
by the following maps

AlgBasn(K) → Hom(Kn ⊗ Kn,Kn), (̃A, b) �→ b−1 ◦ μA ◦ (b ⊗ b)

Hom(Kn ⊗ Kn,Kn) → AlgBasn(K), M �→ ˜(alg(M), Id)

which can be checked to be well-defined and inverse to each other.
We can define a GLn(K)-action φ on AlgBasn(K) by φ((A, b), g) = (A, b◦

g−1). The GLn(K)-orbits correspond to the fibers of the forgetful functor

AlgBasn(K) → Algn(K), (A, b) �→ A,

so we can count the number of non-isomorphic n-dimensional K-algebras by
counting the GLn(K)-orbits of φ. By the above correspondence, we get a
GLn(K)-action on Hom(Kn ⊗ Kn,Kn) as well and we can count the orbits of
that action instead. In order to apply Burnside’s lemma, we need to find the
M ∈ Hom(Kn ⊗ Kn,Kn) fixed by a given element g ∈ GLn(K). These are
precisely those M which satisfy g−1M(g ⊗ g) = M .
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Let us recall a few results from basic linear algebra. For any two finite-
dimensional K-vector spaces V,W we have, if we write V ∗ for the dual space
of V , HomK(V,W ) � V ∗ ⊗ W via the isomorphism

Φ : V ∗ ⊗ W → HomK(V,W ), φ ⊗ w �→ (Φ(φ ⊗ w) : V → W, v �→ φ(v)w).

Similarly, a map

HomK(V,W ) → HomK(V,W ), f �→ a ◦ f ◦ b

for some a ∈ EndK(W ), b ∈ EndK(V ) corresponds to the map

b∗ ⊗ a : V ∗ ⊗ W → V ∗ ⊗ W

where we have written b∗ for the dual of b.
In particular, we can apply this with V = Kn⊗Kn and W = Kn. Writing

vec for the isomorphism HomK(Kn ⊗ Kn,Kn) → (Kn ⊗ Kn)∗ ⊗ Kn, we find
that g−1M(g ⊗ g) = M is equivalent to

((g ⊗ g)T ⊗ g−1)vec(M) = vec(M).

We conclude that vec induces an isomorphism between the subvector space of
HomK(Kn ⊗ Kn,Kn) consisting of elements fixed under g on the one hand
and Eig1((g ⊗ g)T ⊗ g−1) on the other hand.

5. Example: the Case n = 2, q = 2

Any element of GL2(K) has, counting (algebraic) multiplicities, two eigenval-
ues in the algebraic closure K of K. Clearly, either both or none are elements
of K which makes counting invertible matrices with eigenvalues in K consid-
erably easier. Indeed, the only possible Jordan normal forms for a 2×2 matrix
are1

J1 =
[
α

β

]
and J2 =

[
α 1

α

]

for some α, β in the algebraic closure of K. Since M = SJS−1, M ′ = S′J ′S′−1

implies M ⊗ M ′ = (S ⊗ S′)(J ⊗ J ′)(S−1 ⊗ S′−1) and since the Jordan normal
form of M is also the Jordan normal form of MT , it follows that every MT ⊗
MT ⊗ M−1 must be conjugate either to

Mα,β =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α
α

α
α2β−1

α−1β2

β
β

β

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1Here and later we only write the non-zero entries in our matrices, as is usual.
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or to

Nα =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α −1 1 −α−1 1 −α−1 α−1 −α−2

α 1 1 α−1

α −1 1 −α−1

α 1
α −1 1 −α−1

α 1
α −1

α

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

for some α, β ∈ K. Note that dim Eig1(N1) = 3 unless the characteristic of K is
2, in which case dim Eig1(N1) = 4. If α 	= 1, we obviously have dim Eig1(Nα) =
0. For Mα,β , the dimension of the eigenspace associated to 1 depends heavily
on α and β, ranging from 8 if α = β = 1 to 0 if 1 /∈ {

α, β, α2β−1, α−1β2
}
.

We will do the computations explicitly for the concrete example of K =
F2. There are 6 invertible matrices, namely

12,

[
0 1
1 0

]
,

[
1 0
1 1

]
,

[
1 1
0 1

]
,

[
0 1
1 1

]
,

[
1 1
1 0

]
.

The identity obviously yields a contribution of 28. The next three are conju-
gate to J2 with α = 1, therefore yielding a contribution of 24 each. The last
two have no eigenvalues over K. Their eigenvalues are the roots t1, t2 of the
polynomial x2+x+1. As these roots satisfy t21 = t2, t

2
2 = t1, both matrices give

a contribution of 22. This gives a total of 28+3 ·24+2 ·22 = 312 which divided
by the total number of invertible matrices gives 312/6 = 52. This number
fits the formulae which were obtained, using completely different methods, by
Petersson and Scherer in [4].

6. Outlook

Theorem 3.4 suggests the following question: how many invertible n × n-
matrices M have

dim Eig1(M
T ⊗ MT ⊗ M−1) = k

for a given k ∈ N? If q and n are fixed, this is a finite problem and can therefore
be calculated, but this is rather tedious and time-consuming. Having a closed
formula in q and n would be nice.

On the algebraic side, it would be interesting to see whether the method
described in this paper can also be used to count certain subclasses of algebras,
like alternating algebras, associative algebras, or division algebras.
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