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Summary

Volcanic eruptions release a large amount of volcanic ash, which can pose hazard
to human and animal health, land transportation, and aviation safety. Volcanic
Ash Transport and Dispersion (VATD) models are critical tools to provide advisory
information and timely volcanic ash forecasts. Due to the complexity and the un-
certainty of many dynamic processes involved in the volcanic ash distribution, even
the most advanced VATDs today are not capable to reproduce the reality accurately.
It is necessary to integrate available observations in the models for more accurate
predictions by emloying data assimilation techniques.

In addition to a valid VATD, ash emissions, usually used as input so the model,
are crucial for the forecasts of the locations and shapes of the ash cloud. In general,
the eruption source parameters for the construction of the emission are poorly
known, which include Plume Height (PH), Mass Eruption Rate (MER) and vertical
distribution of the emission rate. Even when PH can be obtained from ground-
based observations in some cases, the emission source computed from this PH
and a MER empirically related to this PH remains highly uncertain. Not to mention
the volcanoes which are unmonitored or hardly accessible, the PH can merely be
retrieved from satellite data with a large uncertainty and temporal insufficiency.
Fortunately, satellite instruments are able to observe the movement of an ash cloud
with a global coverage. Therefore, this thesis focuses on the estimation of the
volcanic ash emissions by assimilating Ash Mass Loadings (AMLs) retrieved from
satellite data to improve the accuracy of forecasts.

Among all available data assimilation approaches, Four Dimensional Variational
assimilation (4D-Var) approach was chosen as a suitable one. 4D-Var seeks an
optimal set of parameters, including model states, initial conditions and systematic
parameters, by minimizing a cost function which combines the model simulations
and observations over a period according to their statistic properties. 4D-Var with
a standard form of the cost function is tested in a twin experiment framework,
where synthetic observations of ash columns computed from model simulated 3D
ash concentrations are used. The results show that Standard 4DVar (Std4DVar)
is unable to reconstruct the vertical profile of the emission. The injection layer
containing the maximal amount of emission rate cannot be accurately determined.
This failure is attributed to the fact that AML data lacks vertical resolution. Using
the AMLs, it is difficult to reconstruct the volcanic ash emission presented in forms
of an eruption column.

To deal with this problem, a Trajectory-based 4D-Var (Trj4DVar) approach is
proposed. Trj4DVar reformulates the cost function in a regression type which com-
putes the total difference between observed ash columns and a linear combination
of simulated trajectories coupled with a priori emission knowledge. The results
of twin experiments show that, for most cases, Trj4DVar is capable of estimating
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x Summary

the input emission column when a large assimilation window (> 6 hours) is used.
The twin experiments is repeated where different values of noise are given in the
synthetic observations or perturbations are used in the meteorologic data. The
outcomes show that there is still a small possibility that Trj4DVar fails to determine
the injection height accurately. Being disturbed by the weather condition (light and
cloud, etc) at that moment, satellite instrument can be hampered to observe the
ash cloud, which may increase the possibility of failure for the use of Trj4DVar. To
remedy this, Trj4DVar is modified to incorporate observations of PH and MER in
addition to satellite AMLs. The modified Trj4DVar is shown to be able accurately
estimate the injection height based on the results of twin experiments.

When it comes to using real-life field data, the situation is more complicated.
The detection of volcanic ash can be disturbed by the weather condition such as
water vapor. This will result in observations of undetected or wrongly-detected
ash. Besides, many sensors ,such as UV and visible sensors, have limited temporal
coverage which can only observe during daylight. In order to find effective method
in dealing with the temporal and sometimes spatial insufficiency of the data, in-
vestigations are carried out on how to use the data properly to benefit more and
produce a reasonable estimate. A prepossessing procedure and guidance on the
proper use of satellite data are presented.

Finally, a deeper analysis is given on the failure of using Std4DVar in this ap-
plication. It is found that using Std4DVar to assimilate remote sensing data can
be tricky. Remote sensing measures quantities that combine several state vari-
ables. This creates Sensor-Induced Correlations between the state variables which
share the same observation variable and may be physically unrelated. This may
cause numerical problems resulting in a low convergence rate or inaccurate esti-
mates of parameters using gradient-based variational assimilation if an erroneous
or improper specification of error statistics is adopted. These problems are usually
ignored when a reasonable result is obtained, or are avoided by reducing the 3D
model to a 2D model. However, it results in significantly unreliable and misguiding
estimates for the application in this thesis. Two criteria are proposed to quantify
the negative effects of the SICs, which give indications of the effectiveness of the
assimilation process and the forecast quality. They are simple to implement and
very practical for the use of remote sensing data. They are tested in the twin ex-
periments. The results show that they are able to give evaluation on the design
and configuration of the assimilation system with remote sensing data.



Samenvatting

Bij vulkaanuitbarstingen komen er een grote hoeveelheid vulkanische as in de lucht,
die gevaar kan opleveren voor de gezondheid van mensen en dieren, transport
over land, en de veiligheid van de luchtvaart. Vulkanic Ash Transport en Disper-
sion (VATD) modellen zijn cruciaal gereedschappen waarmee adviesdiensten tijdig
prognoses kunnen doen. Vanwege de complexiteit en de onzekerheid van de vele
dynamische processen bij de vulkanische as distributie, zijn zelfs de meest geavan-
ceerde VATDs van tegenwoordig niet in staat om de realiteit nauwkeuriger weer
te geven. Om nauwkeurigere voorspellingen te maken moeten beschikbare waar-
nemingen in de modellen worden geïntegreerd met behulp van data-assimilatie
technieken.

Naast een geldige VATD, gegevens over asemissies, die vaak als invoer voor het
model worden gebruikt, zijn cruciaal voor de prognoses van de locaties en vormen
van de aswolk. In het algemeen zijn de uitbarsting parameters voor de constructie
van de emissie slecht bekend, zoals de Plume Hoogte (PH), Mass Eruption Rate
(MER) en de verticale distributie van as emissie. Zelfs wanneer PH kan worden
verkregen door grond waarneming stations in sommige gevallen, de emissiebron
berekend uit deze PH en een MER empirisch in verband met deze PH blijven hoogst
onzeker. Niet te vergeten de vulkanen zijn vaak ongecontroleerd of nauwelijks
toegankelijk. De PH kan nauwlijks worden via de satelliet genemten en vaak met
grote onzekerheid. Gelukkig zijn satelliet-instrumenten in staat om verspreiding van
een aswolk te observeren met een wereldwijde dekking. Dit proefschrift richt zich
op de schatting van de vulkanische asuitstoot door middel van het assimileren van
Ash Mass Loadings (AMLs) opgehaald uit satellietgegevens ter verbetering van de
nauwkeurigheid van de prognoses.

Van alle beschikbare data assimilatie benaderingen, Vier Dimensionaal Variatio-
nele assimilatie (4D-Var) methode werd gekozen als een geschikte aanpak. 4D-Var
zoekt een optimale set parameters, waaronder modelstaten, beginwaarden en sys-
teemparameters, door het minimaliseren van een kostenfunctie die de modelsimu-
laties combineert met observaties over een periode op basis van hun statistische
eigenschappen. 4D-Var met een standaardvorm van de kostenfunctie wordt getest
in het kader van een twin-experiment waar de synthetische waarnemingen van as
kolommen berekend op basis van model gesimuleerde 3D asconcentraties worden
gebruikt. De resultaten tonen aan dat Standaard 4DVar (Std4DVar) niet instaat is
het verticale profiel van de emissie te reconstrueren. De injectielaag met de maxi-
male hoeveelheid van de emissie kan niet nauwkeurig worden bepaald. Dit falen
wordt toegeschreven aan het feit dat AML data verticale resolutie ontbreken. Het is
moeilijk om de vulkanische asemissie te reconstrueren met de AML data in de vorm
van een uitbarsting kolom. Een Traject gebaseerde 4D-Var (Trj4DVar) benadering
is voorgesteld om dit probleem op te lossen. Trj4DVar herformuleert de kosten-
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xii Samenvatting

functie in een regressie type dat het totale verschil tussen waargenomen as zuilen
en een lineaire combinatie van gesimuleerde trajecten gecombineerd met a priori
kennis over emissie berekent. De resultaten van de twin-experimenten blijken dat
in de meeste gevallen Trj4DVar de emissiekolommen goed kan schatten wanneer er
een grote assimilatie venster (> 6 uur) wordt gebruikt. De twin-experimenten wor-
den uitgevoerd met verschillende ruiswaarden in de synthetische waarnemingen of
verschillende verstoringen in de meteorologische gegevens. De resultaten tonen
dat er nog een kleine kans is dat Trj4DVar de hoogte van injectie niet nauwkeurig
kan bepalen. Verschillende weersomstandigheden (licht en wolk, enz.) kunnen een
satelliet-instrument belemmeren om de aswolk te observeren, waardoor de kans
van het falen voor Trj4DVar groter wordt. Om dit te verhelpen, wordt Trj4DVar
aangepast om observaties van PH en MER op te nemen in aanvulling op de AMLs
waarnemingen van de satelliet. Deze aanpassing in Trj4DVar levert een nauw-
keurige schatting van de as injectiehoogte zoals gebleken uit de resultaten van
twin-experimenten.

Als het gaat om het gebruik van velddata (van echte metingen) is de situatie
ingewikkelder. De detectie van vulkanische as kan worden verstoord door de weers-
omstandigheden zoals waterdamp. Dit zal resulteren in onopgemerkte of verkeerd
gedetecteerde aswolk. Bovendien, veel sensoren, zoals UV en zichtbare sensoren
hebben beperkte tijd dekking die alleen kan waarnemen bij daglicht. Met het oog
op effectieve methode te vinden de behandeling van de soms onvoldoende tempo-
rele en ruimtelijke gegevens, hebben we onderzoek uitgevoerd op de vraag hoe de
gegevens in deze situatie kunnen worden gebruikt om meer te profiteren en een
redelijke schatting te produceren. Een voorbewerking procedure en richtlijn op het
juiste gebruik van satellietgegevens worden gepresenteerd.

Tenslotte wordt een diepere analyse gegeven op het falen van Std4DVar met
standaard kostenfunctie in deze toepassing. Het gebruik van Std4DVar om remote
sensing data te assimileren kan in sommige gevallen problemen leveren. Remote
sensing meet grootheden die in feit een aantal toestandsvariabelen combineren.
Dit creëert valse correlaties tussen de toestandsvariabelen die dezelfde observatie
variabele delen. Dit kan numerieke problemen veroorzaken zoals langzame conver-
gentie of onjuiste schattingen in gradiënten voor variationele assimilatie. Deze pro-
blemen worden meestal genegeerd wanneer er een redelijk resultaat is verkregen,
of worden vermeden door het 3D-model tot een 2D-model te reduceren. Echter
ze leiden tot een aanmerkelijk onbetrouwbare en misleidende prognoses voor de
toepassing in dit proefschrift. Twee criteria zijn voorgesteld om de negatieve ef-
fecten van de onechte correlaties te kwantificeren en indicaties van de effectiviteit
van het assimilatieproces en prognose kwaliteit te geven. Zij worden getest in de
twin-experimenten. De resultaten laten zien dat zij in staat zijn om het ontwerp en
de configuratie van het assimilatiesysteem met remote sensing data te evalueren.
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2 1. Introduction

1.1. Motivation: hazard of volcanic ash
Every now and then, the Earth undertakes tremendous explosive volcanic erup-
tions. The eruptions inject large amounts of chemicals, corrosive gases, and very
small rock fragments known as volcanic ash into the upper troposphere and lower
stratosphere. The fine ash with diameter less than 64 𝜇m can be transported
by wind at a continental scale. Due to its wide dispersal, volcanic ash can have
great impacts on society, including human and animal health (Baxter et al., 1999;
Horwell et al., 2003), disruption to aviation (Casadevall, 1994; Casadevall et al.,
1996; Prata, 2009), disruption to critical infrastructure (e.g., electric power sup-
ply systems, telecommunications, water and waste-water networks, transportation)
(Stewart et al., 2006; Wilson et al., 2010; Wardman et al., 2012; Wilson et al.,
2014), agriculture (Cook et al., 1981; Cronin et al., 1997), buildings and struc-
tures(Spence et al., 2005). The next sections describe the various hazards in more
detail.

1.1.1. Impact on human and animal health
Aerosol particles with a diameter less than 10 𝜇m are known as Particular Matter <
10 𝜇m (PMኻኺ). PMኻኺ is harmful to human beings, therefore, as a source of PMኻኺ,
volcanic ash can impact human health. The suspended PMኻኺ in the air are inhal-
able, so that people exposed to ash falls can experience respiratory discomfort. The
reported symptoms include breathing difficulty, runny nose, throat irritation accom-
panied with by dry coughing sometimes, and eye and skin irritation.Most of these
effects are short-term and are not considered to pose a significant health risk to
those without pre-existing respiratory conditions (Horwell and Baxter, 2006). Peo-
ple with preexisting chest may develop severe bronchitic symptoms which can last
several days after exposure to ash. People with asthma may experience shortness
of breath, couching and wheezing (Shimizu et al., 2007). Chronic health effects
from volcanic ash falls are possible, since exposure to free crystalline silica may
cause silicosis. However, there are no documented cases of silicosis developed
from exposure to volcanic ash, and there lacks long-term studies which are neces-
sary to evaluate these effects (Horwell and Baxter, 2006).

Ingesting ash may also be harmful to livestock. It may cause abrasion of the
teeth for grazing animals, and cause fluorine poisoning in cases of high fluorine
content ( > 100 𝜇g gዅኻ) (Cronin et al., 2003). The eruption of Laki in 1783 released
ash and gas containing high levels of Hydrogen Fluoride, which resulted in fluorine
poisoning in human and livestock. The 1995/96 Mount Ruapehu eruptions in New
Zealand created 1-3 mm of ash falls on the grazing land, and two thousand ewes
and lambs died as a result of being affected by fluorosis (Cronin et al., 2003).

1.1.2. Disruption to ground-based transportation
Volcanic ash falls may disturb ground-based transportation system over large re-
gions for hours to days. Small accumulation of ash will reduce visibility and cre-
ate slippery runways and taxiways, which makes driving difficult and dangerous
(Guffanti et al., 2009). In addition, fast traveling vehicles will stir up ash and cre-
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ate secondary emissions, which can perpetuate ongoing visibility hazards. Railway
transportation is less vulnerable, with disruptions mainly caused by the reduction
in visibility (Wilson et al., 2012). Ash accumulation of more than a few millimeters
requires removal before airports can resume full operations. Ash must be disposed
of in a manner that prevents it from being remobilized by wind and aircraft (Guffanti
et al., 2009). Marine transport can also be impacted by volcanic ash. Ash fall will
block air and oil filters and abrade any moving parts if ingested into engines. Nav-
igation will be impacted by a reduction in visibility during ash fall. Vesiculated ash
(pumice and scoria) will float on the water surface in ‘pumice rafts’ which can clog
water intakes quickly, leading to over heating of machinery Wilson et al. (2012).

1.1.3. Disruption to aviation
The airborne ash is an extreme hazard to everything flying including birds and air-
crafts during its residence (Casadevall, 1992). Drifting ash clouds, consisting of
corrosive gas and fine rock fragments, are carried away by winds. Large volcanic
eruptions produce clouds that may transport over a continent domain and even
circle the globe in a matter of weeks. The composition of most ash is such that
its melting temperature is within the operating temperature (> 1000∘C) of mod-
ern large jet engines Taylor and Lichte (1980). The melting ash would damage
the engine of jet planes and lead to total engine failure. The threat of volcanic
ash hazards to aviation safety first received public attention in 1980, when several
commercial jet aircrafts were damaged flying through volcanic ash clouds duo to
the following eruptions: Galunggung Volcano in Indonesia in 1982; Redoubt Vol-
cano in Alaska, U.S. in 1989 and 1990 (Casadevall, 1994); and Mount St. Helens
in Washinton, U.S in 1980. The interest in aviation safety grew rapidly after Mount
Pinatubo volcano in 1991 caused significant damage to aircraft, including engine
failures, and severely disrupted regional air operations (Casadevall et al., 1996).
Rerouting and cancellation of flights may result from the contaminated air routs
and airport facilities by drifting clouds of volcanic ash and affect local economy.
The repair and replacement costs associated with airplane-ash cloud encounters
are also high. For instance, the repairing cost of the Boeing 747-400 damaged by
an ash could from redoubt Volcano, Alaska, U.S., in 1989 was estimated to exceed
$80 million US dollars (Casadevall, 1992).

1.1.4. Overview of severe economic losses
An overview of severe economic losses due to volcano eruptions are shown in Tab.
1.1, where the information is taken partly from Annen and Wagner (2003). The
significant impact of Eyjafjallajökull eruption in 2010 was impressive and historical,
which brought the UCL Institute for Risk and Disaster Reduction to provide an inte-
grated analysis covering volcanology, geophysics, rock and ice physics, meteorol-
ogy, statistics, mechanical engineering, systems engineering, transport engineer-
ing, hazard and risk communication, law and ethics (Ucl-Irdr, 2010). The eruption
of Eyjafjallajökull began on 14 April 2010 and became an international event in
mid April 2010 as the ash cloud spread eastwards towards Europe. It caused an
unprecedented closure of UK, European and North Atlantic air space from 15-20
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Table 1.1: Costs related to volcanic eruptions in U.S. Dollars reported with different information sources,
taken partly from Annen and Wagner (2003).

Eruption Year Costs Source
(U.S. dollars)

Eyjafjallajökull, Iceland 2010 5 billion Oxford-Economics (2010)
Pinatubo, Philippines 1991 553.5 million Rantucci (1994)
Redoubt, USA 1990 160 million AVO & Miller et al. (1993)
Soufriere Hills, Montserrat, U.K. 1995 120 million MunichRe
Pacaya, Guatemala 1998 75 million Press
Mayon, Philippines 1993 56.5 million SwissRe
Rabaul, Papua New Guinea 1994 40.26 million OCHA

Note: OCHA: United Nations Office for the Coordination of Humanitarian Affairs, AVO: Alaska
Volcanic Observatory, SwissRe and MunichRe are reinsurance companies.

April 2010. This was followed by further episodes of air travel disruption. Busi-
ness travellers and tourists were stranded, industrial production was affected as
raw materials could not be flown in.

The volcanic activities at a similarly tremendous scale are not unusual. Explo-
sive eruptions, comparable to the Eyjafjallajökull 2010 event, occur in Iceland every
20-40 years on average. The 1821-1823 Eyjafjallajökull eruption lasted 14 months.
There is no doubt that future explosive eruptions, coupled with appropriate meteo-
rological conditions, have the potential to cause further disruption to air transport.
What makes it worse is that it is not possible to predict either when this will occur
or at what scale (Ucl-Irdr, 2010).

However, the losses caused by Eyjafjallajökull 2010 event could have been re-
duced given good prediction of the volcanic ash transportation by making use of
the existing observations of the ash clouds. Consequently, the ash-affected region
with potential threat to aviation safety could be recognized in advance, give the
prediction of ash clouds and safe ash levels. The response of the aviation advisory
institutes to the volcanic eruptions can be more efficient and flexible. The impact
of the eruption on regional air space could be predicted and be better prepared for.

1.2. Volcanic ash transport and dispersion models
Pyroclastic particles, known as tephra, can be classified by their diameters. Pyro-
clastic particles greater than 64 mm in diameter is referred to as volcanic bomb
when molten, or volcanic block when solid. Lapilli range from 2 to 64 mm in diam-
eter. Particles with diameter less than 2 mm are known as volcanic ash, and with
diameter less than 64 𝜇m are usually defined as fine ash. Blocks and lapilli follow
ballistic and non-ballistic trajectories, and fall rapidly near the volcano. Volcanic ash
remain airborne from hours to days, while fine ashes can remain entrapped in the
atmosphere for months to years and cover wide areas downwind.

In order to define hazards to aircraft during volcanic eruptions and to provide
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warnings on actual ash fall concentrations, volcanic ash transport and dispersion
models (VATDs) have been developed to forecast the location and movement of
ash clouds over hours to days. Considerable progress has been made during the
last three decades on the development of effective VATDs through increasingly
comprehensive understanding of ash movement and removal (aggregation and de-
position) mechanism. In addition, models with more complexity that can simulate
more realistic physical processes are affordable nowadays, thanks to the increas-
ingly powerful computational capability of computers. Nowadays, models are basi-
cally used to quantify hazard scenarios and to provide short-range forecasts during
emergency.

There are a number of models with different focuses and approximations. Some
focus on particle settling and deposition in a wind field (Carey and Sparks, 1986;
Bursik et al., 1992b; Koyaguchi, 1994; Koyaguchi and Ohno, 2001; Bonadonna and
Phillips, 2003; Bonadonna et al., 1998; Bursik et al., 1992a). Lagrangian particle
tracking are devoted to tracking the trajectories of particles and the position of a
volcanic cloud (Heffter and Stunder, 1993; D’amours, 1998; Searcy et al., 1998;
Draxler and Hess, 1998; Jones et al., 2007). They are mainly used by the Vol-
canic Ash Advisory Centers (VAACs) to determine the potentially affected regions
for the purposes of aviation safety. Advection-diffusion Eulerian models solve the
advection-diffusion-sedimentation equation (Suzuki, 1983; Armienti et al., 1988;
Macedonio et al., 1988, 2005; Glaze and Self, 1991; Connor et al., 2001; Bonadonna
et al., 2002a; Folch and Felpeto, 2005; Costa et al., 2006; Pfeiffer et al., 2005). They
are mainly used for the purposes of civil protection, for instance, hazard maps can
be developed to give public warnings.

Each family of models can have a range of complexity, and each with their own
advantages and drawbacks. Simple models can be less accurate. Their simulation
are usually based on hypotheses that simplify the physics. Some precesses can
be oversimplified, which may lead to poor matching between model outputs and
reality. This is a critical issue in the case of volcanic ash transport. Particle dispersion
and deposition is mainly ruled by atmospheric properties. Particle sedimentation
transitions from inertial-dominated single particle settling to aggregation-dominated
very fine particle (< 30 𝜇m in diameter) settling as distance increases from the
source (Rose and Durant, 2009). During one eruption, particle size distribution
exhibit a wide range of variety both within the emission source (depending on the
eruption type) and during the transport. A poor estimation on the eruption source
and/or oversimplified removal processes can result in substantial bias. Yet, simple
models require lower computational effort. They are suitable for inverse problems
or immediate gross predictions.

In contrast, complex models are more accurate theoretically. However, they
generally require more inputs, set-up times, computational costs and user expertise,
where the inputs may not be always available. Therefore, they can be inefficient to
produce short-term forecasts for the decision-making authorities during an episode
of pre-eruptive crisis or even during the course of eruption.
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1.3. Eruption source parameters
Initial source information on the volcanic emissions is critical for the quality of the
forecasts using VATD models. Mastin et al. (2009b) has developed “Eruption Source
Parameters (ESP)” for the definition of eruptive source, such as plume height 𝐻,
mass eruption rate 𝑀, duration 𝐷, and the mass fraction 𝑚ዀኽ of erupted debris with
diameter less than 63 𝜇m.

1.3.1. Plume height
Plume height𝐻 is defined as the maximum height of an eruption column. It does not
necessarily coincide with the injection height which contains the maximum of the
eruptive mass. Most of the measurements provide information of the plume height,
not the injection height. Plume height can be obtained primarily from ground-based
or airborne visual observations, radar measurements, and cloud satellite temper-
ature. The observations are not always available, especially for the unmonitored
volcanoes or on the first a few minutes to hours after an eruption is detected.

Plume height has a significant influence on the vertical and horizontal struc-
ture of the ash cloud forecast downstream. Since the speed and direction of wind
changes with altitude, the location and shape of ash cloud changes with plume
heights. In order to accurately represent the evolution of the ash cloud, it is impor-
tant to accurately determine the height at which ash particles are emitted into the
atmosphere.

1.3.2. Vertical distribution
The vertical distribution of the ash load during an eruption is a parameter that is
difficult to estimate. In general, most of the emitted ash is assumed to be found
well above the ground and close to the plume top (Sparks, 1986; Sparks et al.,
1997). However, this is not always correct, for instance, if the volcano plume height
is varying rapidly or the particles are released over a large range of heights. In
addition, it is difficult to ascertain about the lower plume boundary (plume extent)
or the information on lower part of the eruption column. Therefore, for operational
use, uniform vertical distribution is sometimes employed in order to avoid predicting
no ash where a significant hazard may exist.

1.3.3. Mass eruption rate
Up to now, there is no direct method of measuring the mass eruption rate or the
emitted mass flux of an eruption. As a result, many VATDs use an empirical rela-
tionship to relate observed maximum plume height to the mass flux. The empirical
relationships between plume height and mass eruption rate 𝑀 (kg sዅኻ), or between
plume height and volumetric flow rate 𝑉 (Dense-Rock Equivalent mኽ sዅኻ) can be
used for the determination of the emission rate of mass or volume. For instance,
Dacre et al. (2011) used an empirical relationship for the 2010 Eyjafjallajökull erup-
tive events as follows:

𝐻 = 0.365𝑀ኺ.ኼኼ኿, (1.1)
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Table 1.2: ESP including injection height, duration, eruption rate, volume that are used to determine
the eruption properties within the LOTOS-EUROS. Adapted from Mastin et al. (2009b). Type “M”, or
mafic types, include basaltic and ultramafic magmas. Type “S”, or silicic types, include andesite, dacite,
rhyolite, and others such as phonolite that can produce high ash columns. Submarine eruptions that
occur beneath at least 50 m water depth are assigned type “0”.

ESP Type Height above Duration Eruption rate Volume ፦ᎸᎵ
vent (km) (h) (kg sᎽᎳ) (kmᎵ)

M0 standard mafic 7 60 1.0 × ኻኺᎷ 0.01 0.05
M1 small mafic 2 100 5.0 × ኻኺᎵ 0.001 0.02
M2 medium mafic 7 60 1.0 × ኻኺᎷ 0.01 0.05
M3 large mafic 10 5 1.0 × ኻኺᎸ 0.17 0.1
S0 standard silicic 11 3 4.0 × ኻኺᎸ 0.015 0.4
S1 small silicic 5 12 2.0 × ኻኺᎷ 0.003 0.1
S2 medium silicic 11 3 4.0 × ኻኺᎸ 0.015 0.4
S3 large silicic 15 8 1.0 × ኻኺᎹ 0.15 0.5
S8 co-ignimbrite silicic 25 0.5 1.0 × ኻኺᎺ 0.05 0.5
S9 Brief silicic 10 0.01 3.0 × ኻኺᎸ 0.0003 0.6
U0 default submarine 0 - - -

where the power law was based on a fit to a look-up table constructed by the
National Oceanic and Atmospheric Administration (NOAA) for the VAFTAD model
(Heffter and Stunder, 1993), and the pre-factor was determined by comparing the
values to the best fit curve presented by Mastin et al. (2009b). This empirical rela-
tionship is not necessarily valid, especially for phreatomagmatic eruptions or small
eruptions that have no access into the stratosphere (at mid latitudes at about 10
km; the Eyjafjallajökull 2010 eruption was an example of this) due to the influence
of variable meteorology (stratification and wind) (Dacre et al., 2011).

In practice, the fine ash fraction of total emitted mass is important for quantita-
tive predictions of ash concentrations at long-range. This fine ash refers to particles
with diameter < 63 𝜇m , which dominate the transport of downstream plume. Stud-
ies showed that larger ash particles cannot survive after several hundred kilometers
from the volcano, and fine ash retains consistent size characteristics in the distal
part of ash cloud (Rose and Durant, 2009; Durant and Rose, 2009). The fine ash
fraction varies a lot depending on different types of eruption.

1.3.4. Mastin’s ESP
Mastin et al. (2009b) provides details on each source parameter for each ESP type
(see Tab. 1.2). Eleven eruption ESP types were identified by compiling published
data on plume height, erupted volume or mass, and duration from well-documented
eruptions: small, medium, and large eruptions of mafic and silicic magma respec-
tively; silicic co-ignimbrite (i.e. co-pyroclastic flow) plumes; “brief” vulcanian-style
events possibly associated with lava-dome collapse; submarine eruptions from be-
neath over 50 m water depth; and “standard” values for mafic and silicic volcanoes,
which are used when historical information about a volcano is unavailable.

These eruption types and associated parameters can be used for ash-cloud mod-
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Figure 1.1: Volcanic monitoring types and methods employed by the USGS Volcano Hazards Program,
taken from the following website: https://volcanoes.usgs.gov/vhp/monitoring.htmls

eling in the event of an eruption, when no observational constraints on these pa-
rameters are available.

1.4. Observations of volcanic ash
The monitoring of volcanic activities uses a variety of satellite-based, airborne and
ground-based techniques, as illustrated in Fig. 1.1.

1.4.1. Satellite-based measurements
Current satellites provide unparalleled opportunities for the observation of volcanic
ash and SOኼ with global coverage. They enable the retrieval of aerosol optical prop-
erties, such as the Aerosol Optical Depth (AOD), which can be transfered to a 2D
ash-column (ash mass loading) field. There exists a broad range of satellite-borne
instruments on various platforms in both Low Earth Orbit (LEO) and Geostation-
ary Earth Orbit (GEO). The most prominent instruments used during the eruption
of Eyjafjallajökull 2010 events were SEVIRI, AVHRR, MODIS and OMI (Prata and
Prata, 2012; Prata, 2015; Christopher et al., 2012).

The main requirements for an optimal satellite observing system are high tem-
poral, spacial and spectral resolution. High temporal resolution permits to track
the time evolution of volcanic ash cloud and to follow the continuity of the erup-
tion process. High spatial resolution allows better characterisation of the volcanic
plumes near the source for better initialising volcanic ash models. A wide spectral
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range from UV to TIR can be exploited to retrieve the volcanic ash particles from
fine (0.05 𝜇m) to coarse (15 𝜇m) and SOኼ (Prata et al., 2014). SOኼ can be used as
proxy for volcanic ash (Thomas and Prata, 2011).

However, many sensors have limited temporal coverage. Shortwave (UV and
visible) sensors can only observe during daylight. There are passive and active
sensors. The observations from passive sensors are hampered by clouds, and they
are typically presented in column integrated values which hardly have any vertically
resolved quantitative information. Satellite carrying lidars can measure at night and
are less hampered by clouds than passive sensors, but observe only along a fixed
line of sight (Winker et al., 2012).

1.4.2. Ground-based measurements
Ground-based lidars, ceilometers, photometers and microwave radars provide ob-
servations for plume probing. A key element in understanding aerosol-related pro-
cesses and transport are vertical profiles of aerosol parameters, which have been
recorded since many years by lidar networks like EARLINET. Ground-based lidars
can be used to monitor the aerosol dispersion in the low and middle troposphere. As
a supplement to the 2D AOD fields provided by satellite observations, they provide
observations of long-range transport, detailed information of plume height, vertical
extent and vertical structure of the plume (Mona et al., 2012; Flentje et al., 2010;
Ansmann et al., 2010). These information allows a much better construction of the
initial ash plume for the VATD models.

Ground-based weather radar systems are able to monitor 24-hours a day, in
all weather conditions, with high spatial resolution and within few minutes after
the eruption. The fast response is crucial to monitor the “near-source” eruption
from the early-stage near the volcano vent, dominated by coarse ash and blocks,
to the ash-dispersion stage up to hundreds of kilometers, dominated by transport
and evolution of coarse and fine ash particles. For distances larger than about
several tens of kilometers fine ash might become “invisible” to the radar (Marzano
et al., 2011). Active microwave remote sensing, through ground-based scanning
weather radars, can be better exploited and can represent a very powerful, and to
some extent, unique instrument to study explosive eruptions in proximity of volcanic
vents (Harris and Rose, 1983; Lacasse et al., 2004; Marzano et al., 2006b; Gouhier
and Donnadieu, 2008). In the ‘near-source’ region weather radars may in principle
be, capable to provide data determining, not only the plume height, but also ash
particle category, ash volume, ash fall-out and ash concentration (Marzano et al.,
2006a)

In addition, if available, webcams can provide a live video stream and allows
viewers to get a better sense of the conditions near the volcano.

1.4.3. In-situ measurements
Aircraft measurements provide data directly along the flight path and with other
methods to determine the height as well as the vertical extent of the ash plume.
Newly-developed aircrafts have been specially designed to be allowed for the flight
in the outskirt of the ash cloud with low ash concentration. They carried particle
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Figure 1.2: Comparison between kalman filter approach and 4D-Var approach.

counters which provide in-situ observations with high accuracy about particle sizes
and the size distribution (Weber et al., 2012).

Weather balloons have been enhanced to be able to acquire the information of
where it is potentially dangerous to aircraft (Petäjä et al., 2012). The balloons can
carry instruments which measure the particle size and concentration using a minia-
ture laser system. They provide detailed information on the ash plume position,
extent and structure. The balloon system can also report its position using GPS.
However, the route of balloon flight is determined by the local weather condition
(wind).

1.5. Data assimilation
Data Assimilation (DA) has been used in atmospheric chemistry models for many
decades to improve the air quality forecasts, reanalyze and reconstruct the 3D
chemical concentrations, and estimate the model parameters or inputs. Coupled
with the VATDs, data assimilation offers the possibility to improve the estimation of
the eruption source inputs and the ash cloud forecasts,

The most commonly used DA approaches can be divided into two categories:
filtering approaches and variational approaches. The former estimate model state
sequentially by assimilating the observations up to this time (Evensen, 1994;
Houtekamer and Mitchell, 1998; Burgers et al., 1998; Whitaker and Hamill, 2002;
Zupanski, 2005). The latter minimize a cost function which quantifies the difference
between the model results and observations (Dimet and Talagrand, 1986; Penenko,
2009; Penenko et al., 2012). 4-Dimensional Variational (4D-Var) approach bene-
fits from the flow dependence in the statistics by incorporating observations over a
period. Comparison between filtering approach and 4D-Var is shown by Fig. 1.2.

Both approaches have been successfully used for conducting air quality assess-
ments or improving the accuracy of the forecast. The best known chemical species
in the atmosphere to be calibrated include ozone (Oኽ), carbon monoxide (CO), ni-
trogen dioxide (NOኼ), and aerosols/particular matter (PM). For instance, columns
and vertical profiles retrieved from satellite data tracing gas of the above species
were assimilated into stratospheric Chemical Transports Models (CTMs) (Errera and



1.6. Objectives and outline

1

11

Fonteyn, 2001) and tropospheric CTMs (Elbern et al., 1997). DA approaches have
also been used for multiple purposes. For instance, they can be used to reproduce
air pollutant concentration maps (Elbern and Schmidt, 2001), to improve boundary
conditions (Roustan and Bocquet, 2006) and model parameters (Bocquet, 2012;
Jackson et al., 2004; Barbu et al., 2009; Tong and Xue, 2008), to identify model
error and observation bias (Zupanski and Zupanski, 2006; Fertig et al., 2009; Dee
and Da Silva, 1998), and to estimate emissions (Yumimoto and Uno, 2006; Hakami
et al., 2005; Konovalov et al., 2006).

For the concern of the estimation of model parameters and emissions, they
provide two different types of solutions. These two approaches provides different
types of solution in the estimation of model parameters or emissions. The filter
approach requires the augmentation of the system state with the parameters (Ruiz
et al., 2013). The variational approach is preferable in these applications since the
parameters can be accounted for in the cost function Penenko (2009); Penenko
et al. (2012); Elbern et al. (2007); Bocquet (2012). 4D-Var approach, whose cost
function is defined in both space and time, can be used to estimate emission rates
either through a location-dependent scaling factor or/and arbitrary emission forc-
ing restricted to a single point source Bocquet et al. (2014). The former has been
used for optimization of emission inventories of anthropogenic or natural pollutants
Meirink et al. (2008); Elbern et al. (2007); Strunk et al. (2010); Yumimoto et al.
(2012); Vira and Sofiev (2012). The latter can be developed to source term esti-
mation in volcanic eruptions (Lu et al., 2016a).

1.6. Objectives and outline
The eruptive parameters or the emission source is critical on the forecasts of vol-
canic ash clouds, however, those parameters are either unable to be observed
directly or poorly observed. More accurate estimation of the ash emission are re-
quired. Data assimilation using available observations is a possible solution. Among
all means of measurements, the most powerful and generally used are satellite ob-
servations. This thesis aims at reconstructing the vertical profile of volcanic ash
emissions using satellite ash mass loading data using a variational assimilation ap-
proach.

The potential of 4D variational approach for volcanic ash assimilation has been
tested, which turns out to be failed in the estimation of the mass vertical structure.
A series of scientific questions occur:

• What are the causes that 4D-Var is incapable of estimating the volcanic ash
emissions using satellite-retrieved ash columns?

• Can we develop an alternative 4D-Var approach for this application?

• Can we use the SEVIRI satellite ash products to produce a more accurate
estimate of the emission and a better forecast?

• Are there any criteria or soring rules that are able to predetermine whether the
variational approach would work for a specific application instead of verifying
the assimilation results by conducting the assimilation?
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The content of the thesis is organized following the structure imposed by the
questions, as a collection of the published work. In order to conduct experiments,
a validated VATD model is required. The LOTOS-EUROS model is used by including
the volcanic ash eruptive source parameters and generating an ash column as the
emission input. The model is adapted to volcanic ash transport by adjusting the
parameters in the advection and deposition processes. Description and validation
of the model for this application based on a case study are given in Chapter 2.

In Chapter 3, 4D-Var approach is introduced to assimilate ash-column data for
the estimation of volcanic ash emissions, which is shown to be unable to reconstruct
the vertical structure of the emissions.

In Chapter 4, an alternative method termed ‘trajectory-based 4D-Var (Trj4DVar)’
is proposed. The derivation of the methodology and the details of the algorithm
are presented. The method is tested in twin experiments using both a perfect
model and a stochastic model. The latter is done to test how Trj4DVar deals with
uncertainties of the observations. Comparisons are made against the experimental
results of using standard 4D-Var.

Trj4DVar does not always guarantee an accurate reconstruction of the plume
height, which is a critical parameter for the quality of the forecast. This motivates
the assimilation of ground-based observations of plume heights in Chapter 5. Mod-
ifications of the Trj4DVar with different control strategies are proposed to this end.
Results of twin experiments using modified Trj4DVar show that the method is capa-
ble of correctly estimating the plume heights, which largely improves the forecast
quality and reliability compared to that of using straightforward Trj4DVar.

In Chapter 6, field data from the geostationary satellite instrument - SEVIRI
and observations of plume heights from ground-based weather radar - IMO are put
into use to explore the potential of applying Trj4DVar in real case. Pre-processing
of satellite data and guidance on the proper use of it are provided in this chapter.
Investigations of the influence of the assumptions on the observational uncertainty
to the assimilation outcomes are carried out.

Chapter 7 gives a in-depth and comprehensive analysis of the ill-conditioned
problem occurred when using standard 4D-Var for this application. Evaluation cri-
teria on the quality of assimilating remote-sensing data using gradient-based (varia-
tional) assimilation approaches are presented based on the analysis. These criteria
are validated to quantitatively evaluate the effectiveness of the assimilation process
and the reliability of the forecast, and can be further used to adjust configuration
of the assimilation system

Finally, Chapter 8 presents the conclusions and outlook of the thesis.
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LOTOS-EUROS: modelling of

volcanic ash cloud

This chapter mainly describe a new functionality within the LOTOS-EUROS
model that allows the simulation of emission, transport (including advection
and dispersion), and sedimentation of volcanic ash released during volcanic
eruptions. A preprocessor tool produces a vertical ash column at the model
pixel nearest to the volcano locations, based on eruption source parameters
such as plume height and total emission rate, as well as additional informa-
tion of timing and durations. Using this emission source, the LOTOS-EUROS
model can realistically simulate transport and sedimentation of the ash cloud
using its own dynamics. Parameterizations of some physical procedures are
adapted. Model validation is carried out based on the case study of the 2010
Eyjafjallajökull eruption in Iceland. Comparisons about ash fall and move-
ment of ash clouds are made, and show good matches with simulations of
other VATDs and observations.
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2.1. Introduction
Volcanoes can inject large volumes of ash into the atmosphere, which will pose
a threat to international and domestic airspace and disrupt local communities
(Casadevall, 1992; Tuck and Huskey, 1994; Casadevall, 1994). Volcanic ash typi-
cally contains fine-grained rock, glass shards, and mineral fragments. Volcanic Ash
Transport and Dispersion (VATD) models play an important role in forecasting the
movement of volcanic ash clouds to provide hazard mitigation and timely warnings
for the concern about aviation safety.

Several VATD models have been developed for ash falling to low levels. Carey
and Sigurdsson (1982) simulated the aggregation and deposition behavior from a
dispersion ash plume. Hopkins and Bridgman (1985) modeled the transport and de-
position of the ash particles to determine the ground-level fallout along a centerline.
Suzuki (1983) used a 2D turbulent diffusion equation to calculate ground-based ash
concentrations and the model was modified by Glaze and Self (1991) to account
for vertical wind shear. Carey and Sparks (1986) presented a theoretical model for
clast ash fallout from convective eruption columns. There are also VATD models for
the understanding and tracking of the airborne volcanic ash clouds, such as Emer-
gency Response Model (Pudykiewicz, 1988, 1989), PUFF (Searcy et al., 1998), Hy-
brid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) (Draxler and Hess,
1998), Numerical Atmospheric-dispersion Modeling Environment (NAME) (Jones
et al., 2007). Besides, new models can be developed by adding new function-
ality within the existing numerical gas and aerosol transport models, for instance,
Stuefer et al. (2013) included a volcanic emission preprocessor in the Weather Re-
search and Forecasting model coupled with Chemistry(WRF-Chem) to compute the
initial volcanic ash and SOኼ plume.

In our study, the LOTOS-EUROS model (Schaap et al., 2008) version 1.10 is
adapted to model the transport of volcanic ash and to determine the location of
ash clouds. This model is an operational air-quality model, used for daily air-quality
forecasts over Europe (Curier et al., 2012), focusing on ozone, nitrogen oxides, and
particular matter.

This chapter is organized as follows. Section 2.2 describes the physical pro-
cesses that are used in the modeling, and the parameters of some of the processes
that are adjusted for this application. In Section 2.3, a volcanic ash plume model
is presented to generate the emission source input. In Section 2.3, validations for
the model as VATD are provided based on a case study. A brief summary is given
in the last section.

2.2. Description of the LOTOS-EUROS model
The model adapted for volcanic ash is based on a discretization of the advection
diffusion equation:

𝜕𝐜፬
𝜕𝑡 = −∇ ⋅ (𝐮 ⋅ 𝐜፬) +

𝜕
𝜕𝐯 (𝝁𝐯

𝜕𝐜፬
𝜕𝐯 ) + 𝐄፬ − 𝐃𝐬(𝐜፬) (2.1)
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Figure 2.1: An illustration of the vertical grid system as function of the hour of the day, taken from
LOTOS-EUROS manuscript.

where 𝐜፬ is the 3D concentration field of the tracer gas or aerosol, or as in our
study, volcanic ash. 𝐮 is the wind velocity field. 𝝁𝐯 represents the vertical diffu-
sion coefficients. The source and sink terms 𝐸 and 𝐷 account for emission and
deposition, respectively.

The model domain in this study is bound at 45∘N and 70∘N, 30∘E and 15∘W. The
grid resolution is 0.5∘ longitude × 0.25∘ latitude. There are 12 vertical layers, which
contain a surface layer of 25 m, three dynamic layers with a top at 3.5 km Above Sea
Level (ASL), and the rest are 1-km-thick layers to the top (see Fig. 2.1). The lowest
dynamic layer represents the variable mixing layer with the height obtained from
the meteorological input, and the upper two dynamic layers are reservoir layers
with equal thickness and a minimum of 100 m.

The transport consist of 3D advection, horizontal and vertical diffusion. The ad-
vection is driven by meteorological data produced by European Centre for Medium-
Range Weather Forecasts (ECMWF). This data provide wind fields in the 2 horizontal
dimension, and the vertical wind speed is calculated by the model as a result of the
divergence of the horizontal field. The system is solved highly-accurate, monotonic
advection scheme by developed by Walcek (2000).

Deposition of particles follows Zhang (2001) deposition scheme(unless
adapted), explicitly including particle size and sedimentation. The parameterization
of particluar deposition has been adapted for tephra fallouts following Schwaiger
et al. (2012).

2.3. Volcanic ash emission model
A volcanic plume model has been developed to generate the eruption ash column,
which is represented by the term 𝐄፬ in Eq. 2.1. The necessary parameters for the
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Figure 2.2: Vertical distribution of volcanic emission rates with a: Poisson-distributed; b: exponentially-
distributed; and c: umbrella-shaped. The red dot represents the injection layer.

initial source information of the volcanic emissions include the mass eruption rate
(MER), the plume height (PH), vertical distribution, and a grain size spectrum of the
ash particles, as defined by Mastin et al. (2009b). Details of Mastin’s ESP definition
can be found in section 1.3.4. The volcanic emission generator provides the location
of the volcano in the nearest model grid cell and the emission parameters (i.e.
MER, PH and time duration) determined by the database developed by Mastin et al.
(2009b). This default database can be used for the computation of the initial ash
plume when no observations are available.

All parameters calculated from this database may be overwritten by the users
once more accurate information is available. Ground-based observations from Li-
dar, weather radar, web-cam often provide PH 𝐻 (m) that are more accurate than
historical records. The total erupted mass rate 𝑀 (kg sዅኻ) can be calculated using
an empirical relationship according to Mastin et al. (2009b):

𝑀 = 𝜌(0.0005𝐻)ኾ.ኻኾዃኾ, (2.2)

where the variable 𝜌 denotes the assumed magma density of 2600 kg mዅኽ. Note
that the exponent of the power function (4.1494) and the multiplication coefficient
(0.5) can be adapted to observations.

PH and MER are used within LOTOS-EUROS to determine the vertical distribution
of the erupted mass. Large volcanic plumes are typically “umbrella” shaped (Sparks
et al., 1986; Koyaguchi, 1994; Sparks et al., 1997), i.e. shaped as shown in Fig.
2.2c. Three types of vertical distribution, as shown in Fig. 2.2, are provided to
generate this “umbrella-shaped” initial plume which can be modified by users. The
first is Possion-distributed , where the percentage of the eruption rate is defined
by probability density, the discrete random variable is the layer number, and the
expected value is the injection layer at the injection height altitude. The second is
exponentially-distributed, where values from the injection layer above are constant.
The third is umbrella-shaped, where the cap containing 75% of the eruption mass is
a parabolic function mirrored by the injection layer, and the base layers are uniformly
distributed. The injection height with maximal emission rate is assumed to be
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Table 2.1: Volcanic ash particle size distribution corresponding to LOTOS-EUROS ash bins variable
names; the mass fractions in percentage of total mass are given for each ESP eruption type M0-M3
and S0-S9.

Bin Vars vash_1 vash_2 vash_3 vash_4 vash_5 vash_6

Par Dia (𝜇m) 250 - 2000 63 - 250 30 - 63 10 - 30 2.5 - 10 < 2.5
M0 37.3 56.8 3.0 2.0 1.0 0.0
M1 14.0 84.0 2.0 0.0 0.0 0.0
M2 37.3 56.8 3.0 2.0 1.0 0.0
M3 60.5 29.5 4.0 4.0 2.0 0.0
S0 31.0 29.5 12.0 15.0 10.5 2.0
S1 69.0 21.0 4.3 3.9 1.7 0.3
S2 31.0 29.5 12.0 15.0 10.5 2.0
S3 18.3 16.1 13.0 28.3 23.1 5.6
S8 18.3 16.1 13.0 28.3 23.1 5.6
S9 0.0 31.0 23.0 30.0 16.0 0.0

roughly located at 87% of the plume height.
It is evident that the total mass strongly depends on accurate injection heights

according to the empirical relationship (2.2). However, injection heights can vary
frequently during the eruption, and the forecasts for the location and concentration
of the ash cloud are very sensitive to these parameters. In this thesis, data assimi-
lation methods are developed to improve the accuracy of the modeled state of the
atmosphere and its emission when more observations are available besides plume
heights. The emission ash column can be renewed by the estimates.

The volcanic ash particles can be describes in terms of particle number per size
bin. Here we use 6 different bins representing the diameters of the particles typically
ranging from a few micrometers up to two millimeters. A look-up table has been
developed based on literature for particle size distribution as illustrated by Tab. 2.1.
This table gives the mass fraction in percentage of total mass for ESP eruption type
M0-M3 and S0-S9, which is derived from the analysis of of ash samples mostly from
the example eruptions listed in Tab. 1.2 (see section 1.3.4) provided by Bonadonna
et al. (2002b); Bonadonna and Houghton (2005); Scollo et al. (2007); Rose et al.
(2008); Durant and Rose (2009); Durant et al. (2009). This option is useful if it
is important to predict ashfalls with reasonable accuracy. For a simple long-range
forecast, the use of the fine ash (< 63𝜇m in diameter) is enough to simulate the
distal part of ash cloud and provide information for aviation safety.

2.4. Modeling of volcanic ash clouds and validation
The volcanic ash simulation with the LOTOS-EUROS model has been applied to
based on a case study of the 2010 Eyjafjallajökull eruption event. The initial volcanic
plume is calculated with PH derived from the local weather radar station (IMO,
2010), an MER according to Eq. 2.2, Poission-distributed vertical profile and a
particle size distribution shown in Tab. 2.3 adjusted from S2 ESP type (compare
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Table 2.2: Input parameters for April 14-19, 2010 period of activity at Eyjafjallajökull (Webley et al.,
2012).

.

Start Time Duration Height Eruption Rate Eruption Rate
(UTC) (hour) (km a.s.l.) (mኽ sዅኻ) (kg sዅኻ)

4/14/2010 09:00 10 9 219.553 5.71𝑒 + 05
4/14/2010 19:00 9 5.5 14.884 3.87𝑒 + 04
4/15/2010 04:00 39 6 199.503 6.44𝑒 + 04
4/16/2010 19:00 35 8.25 140.325 3.65𝑒 + 05
4/18/2010 06:00 17 5 8.335 2.17𝑒 + 04
4/18/2010 23:00 1 4 1.898 4.93𝑒 + 03

Table 2.3: Volcanic ash particle size distribution and ash bins property for LOTOS-EUROS model simu-
lation. Fine ashes categorized in vash_4 to vash_6 are used to compare model simulations and satellite
observations.

Bins Particle Diameter Percent of Mass Average Particle Size (𝜇m)
vash_1 250 to 2000 𝜇m 29 1125.00
vash_2 63 to 250 𝜇m 31 156.50
vash_3 30 to 63 𝜇m 12 46.50
vash_4 10 to 30 𝜇m 18 20.00
vash_5 2.5 to 10 𝜇m 8 6.25
vash_6 0.0 to 2.5 𝜇m 2 1.25

to Tab. 2.1). The emission information of explosive eruption from 14 April, 00:00
UTC for 5 days until 19 April, 00:00 UTC is taken from Webley et al. (2012) and
shown in Tab. 2.1. The 3D volcanic ash concentrations are described by the 6
tracers following Tab. 2.3. The transport processes include advection, diffusion,
sedimentation, and dry and wet depositions as described in section 2.2.

LOTOS-EUROS simulations show that wind patterns first transported the ash
cloud to the northeast of Iceland, then turned the cloud’s main trajectory to the
southeaster toward mainland North-Western Europe and the United Kingdom (April
15, 2010 at 00:00 UTC, Fig. 2.3(a)). In the further forecast, the ash dispersed
further over Europe and to the east towards northern Russia, then shifting winds
across the United Kingdom and over the North Atlantic during the following days
(April 17, 2010 at 00:00 UTC, Fig. 2.3(b)).

LOTOS-EUROS simulated results are compared with forecasts modeled by
Weather Research Forecast coupled with Chemistry (WRF-Chem) and provided by
Volcanic Ash Advisory Center (VAAC), shown in Fig. 2.3. The ash mass loadings
in Fig. 2.3 for comparison against other model outcomes, include all the volcanic
ash mass from volcanic ash particle size bin 1 (0.25 to 2 mm diameter) to volcanic
ash bin 6 (less than 2.5 𝜇m). The WRF-Chem has been validated as a proper VATD
model, and its simulated snapshots (Figs. 2.3(c)-(d)) are taken from Webley et al.
(2012). By comparing Figs. 2.3(a)-(b) against Figs. 2.3(c)-(d), respectively, we
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can see that LOTOS-EUROS simulations match the WRF-Chem forecasts in the same
time period.

VAAC are established by the International Civil Aviation Organization (ICAO), to
provide information to the aviation community through timely Volcanic Ash Advi-
sories (VAA) based on NAME modeled forecast. VAAC provides figures that show
contour boundaries of ash concentrations of 200 𝜇g mዅኽ at specific altitude bounds.
200 𝜇g mዅኽ is low valued limitation of aviation safety (Zehner, 2012). Comparison
of NAME model to other models is to compare superposition of ash cloud locations
over all the altitude bounds to the boundaries of ash mass loadings. LOTOS-EUROS
forecasts show a good agreement with VAAC outcomes, comparing Figs. 2.3(a)-(b)
against Figs. 2.3(e)-(f), respectively,

Volcanic ash concentration maps from each individual bin illustrate the ability of
the model to deal with the dispersion and settling processed for different particle
sizes (at 00:00 UTC on April 17, 2010, Fig. 2.4). Figs. 2.4(a)-(b) show that large
particles with diameter > 63 𝜇m from bins 1-2 were not advected beyond 120 km
from the volcano. This is consistent with the conclusions of Schneider et al. (1999)
and Rose et al. (2001). Schneider et al. (1999) showed particles in diameter > 50
𝜇m would have residence time of less than 5 hours given spherical particles falling
out of a 20 km ASL initial plume and Rose et al. (2001) stated that particles of >
500 𝜇m in size would fall out rapidly within 0-12 hour after emission, within 25 km
of the volcano. Figs. 2.4(c)-(f) show the ash particles from bins 3-6 dominated the
dispersing ash cloud, which propagated across Northern Europe (Northern Scandi-
navia).

In addition, satellite observations are also used to aid in confirming the LOTOS-
EUROS-predicted volcanic ash clouds, shown by Fig. 2.5. These observations are
ash mass loadings retrieved by Prata and Prata (2012) from Spinning Enhanced
Visible and Infrared Imager (SEVIRI) data. The SEVIRI data confirmed the presence
of the volcanic cloud propagated towards (April 15, 2010 at 12:00 UTC, Fig. 2.3(c))
and situated overhead at (April 15, 2010 at 17:00 UTC, Fig. 2.3(d)) northern Russia.
Figs. 2.3(a)-(b) show that the ash-dense part (in red) of the modeled ash clouds
have similar shapes and positions as SEVIRI observations at the same time.

2.5. Summary and conclusions
A volcanic ash plume module has been added to the LOTOS-EUROS model. It
generates eruption sources in an ash column above the volcano as input in three
stages. In stage one: this module can produce a default emission for a certain
eruptive type based on historical data for the initial release when no observations
are available. The calculation of the emission are made using a definition of eruption
source parameters, which are given in a look-up table. The default parameters are
those compiled by Mastin et al. (2009b) from historical eruptions. In stage two:
the module is able to calculate a new emission using observed eruptive source
parameters. Usually the plume height and mass eruption rate can be updated,
and the latter is computed by using observations of the former. In stage three:
an estimate of the eruption ash column can be obtained through data assimilation
using more observations besides the source parameters. The application of data
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Figure 2.3: LOTOS-EUROS model simulation results compared with WRF-Chem forecasts and VAAC
forecasts. In the top row there are the time snapshots from LOTOS-EUROS model simulations of April
14-19, 2010 volcanic ash clouds from Eyjafjallajökull volcano at (a) 10:00 UTC on April 15; (b) 00:00
UTC on April 17. The middle row are the corresponding WRF-Chem forecasts at (c) 00:00 UTC on April
15; and (d) 00:00 UTC on April 17. The bottom row are the corresponding VAAC forecasts at (e) 00:00
UTC on April 15; and (f) 00:00 UTC on April 17.
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Figure 2.4: LOTOS-EUROS simulations with ash bin (a) vash_ኻ, (b) vash_ኼ, (c) vash_ኽ, (d) vash_ኾ, (e)
vash_኿ and (f) vash_ዀ.
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Figure 2.5: LOTOS-EUROS simulated results at (a) 12:00 UTC; and (b) 17:00 UTC; compared against
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assimilation is the subjects of the next chapters.
The ash tracers in the model are categorized by their diameter according to par-

ticle size distribution into 6 bins. The size distribution is given by 11 default eruption
types, and can be further adjusted using observations of ash fallout. The trajecto-
ries of ash in each bin can be computed independently as tracers from coarse mode
to fine mode. The physical processes include advection, diffusion, sedimentation,
and wet and dry deposition. The parameters for the depositions are adapted for
the prediction of ash falls according to historical database and parameterization
study of tephra sedimentations. Removal processes for aggregation, evaporation
and resuspension have not yet been taken into account, and might be included
later.

The model simulations have been validated as capable to provide quantitative
forecasts on volcanic ash air-borne concentrations. The validation was made using
the example of Eyjafjallajökull 2010 eruptions in Iceland. The model simulations
have been compared and showed a good match with the simulations from other
VATDs such as NAME and WRF-Chem and real data. The shapes and locations of
ash clouds were in good agreement with those obtained from the SEVIRI retrievals.
The LOTOS-EUROS model can now be used for the next step of this study - the
assimilation of data and calibration of some of the parameters.





3
Standard 4D-Var and its

application in volcanic ash
problem

The forecast of the location and movement of volcanic ash clouds depends
largely on the eruption source parameters, especially the plume height and
vertical structure. 4-dimensional variational data assimilation (4D-Var) ap-
proach is used to estimate the ash emissions from 2D ash column observa-
tions combining the LOTOS-EUROS simulations. In general, it is beneficial
to use variational data assimilation for the estimation of aerosol pollutant
emissions. However, the trial for our case shows that the 4D-Var fails to re-
construct the vertical profile of volcanic ash emissions or improve the forecast
of ash concentrations. Twin experiments are conducted to illustrate this fact,
using simplified LOTOS-EUROS model and synthetic satellite observations.
The ill-posed nature of this problem is analyzed to provide an inspiration to
solve the problem.

Parts of this chapter have been published in:
Lu, S.⋆, Lin, H.X., Heemink, A.W., Fu, G., and Segers, A.J. (2016). Estimation of Volcanic Ash Emissions
Using Trajectory-Based 4D-Var Data Assimilation. 0onthly Weather Review 144, 575-589, 2016.
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3.1. Introduction
Volcanic eruptions lead to the release of greenhouse gases, ashes, and chemicals
that influences climate (Robock, 2000). Volcanic ash impacts respiratory health
of human beings, and can cause acute and chronic diseases (Horwell and Baxter,
2006). People in a wide area covered by extensive ash fallout will be affected, and
undertake long term health risk after ash falls. Despite of relatively rapid settling
process of large particles (Rose et al., 2001), fine particles with small radius can
float in the atmosphere for a long time, transport and spread out in a continental
domain. Airborne ash, containing silicate which can melt in the engines and cause
devastating risk to jet planes, could affect commercial and military air operations,
and disturb local economy (Casadevall, 1994). Therefore rerouting and cancellation
is necessary according to hazard assessment.

Volcanic ash forecasting is a crucial tool in hazard assessment and operational
volcano monitoring. Analysts use volcanic ash transport models to determine the
future location of ash clouds. Besides, validated atmospheric transport models
which are capable of modeling the physical behavior of volcanic ash transport and
dispersion process, accurate estimation of emission source terms is needed in order
to obtain reliable prediction results. However, the source parameters, such as total
mass of eruption products and the altitude at which they are effectively released into
the atmosphere, are hardly known. Thus, the source term, which usually appears in
forms of vertical distribution of emission rates in an aerosol transport model, must
be accurately estimated.

Therefore, systematic and automatic estimation approaches are needed to cor-
rect emission parameters and improve forecast accuracy. In this chapter the use of
data assimilation (DA) is considered. DA techniques have been successfully applied
to meteorology and oceanography, to produce improved model states forecast or
model parameters, by combining model and observations. There are two main cate-
gories of modern DA approaches, filtering (Evensen, 1994) and variational methods
(Dimet and Talagrand, 1986). The former is a class of sequential methods, which
seeks a balance between prior model states and observations by minimizing the
updated error covariance matrix. The latter search an optimal set of parameters
by minimizing a cost function measuring the difference between the model outputs
and observations.

Both approaches have been successfully used for estimating the state space
variables on the purpose of conducting air quality assessments or of improving the
initial condition for a better forecast. The best known chemical species in the at-
mosphere to be celebrated include ozone (Oኽ), carbon monoxide (CO), nitrogen
dioxide (NOኼ), and aerosols/particular matter (PM). For the concern of the estima-
tion of model parameters and emissions, they provide two different types of solu-
tions. These two approaches provides different types of solution in the estimation of
model parameters or emissions. The filter approach requires the augmentation of
the system state with the parameters (Ruiz et al., 2013). The variational approach
is preferable in these applications since the parameters can be accounted for in the
cost function Penenko (2009); Penenko et al. (2012); Elbern et al. (2007); Bocquet
(2012). 4D-Var approach, whose cost function is defined in both space and time,
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can be used to estimate emission rates either through a location-dependent scaling
factor or and arbitrary emission forcing restricted to a single point source Bocquet
et al. (2014). The former has been used for optimization of emission inventories
of anthropogenic or natural pollutants Meirink et al. (2008); Elbern et al. (2007);
Strunk et al. (2010); Yumimoto et al. (2012); Vira and Sofiev (2012). The latter can
be developed to source term estimation in volcanic eruptions.

The number of applications of 4D-Var on volcanic ash problem is quite limited.
Valdebenito et al. (2010) assimilated the PM mass concentrations near the surface
with observations provided by Dutch stations, and corrected the PM mass concen-
trations in other places according to the correlation between the observed state
variables and the unobserved ones. The emission rates were adjusted through ex-
perience (so not using systematic approach) by comparison of AOD values with the
simulated model forecasts and the retrievals from satellite instruments. Due to the
insufficiency of in-situ observations, and the small correlation between the state
variables at the surface layer and the ones at higher layers, the estimation of vol-
canic ash concentrations at higher layers remains unreliable. Accurate estimation
of volcanic ash cloud at higher altitudes is critical for aviation hazard information,
which needs a more sufficient observation sets and an systematic way to assimilate
them.

The 4D-Var with a standard cost function is tested for the optimization of vol-
canic ash emissions using observations provided by the powerful monitoring tool -
satellite. The experimental outcomes shows that standard 4D-Var is not able to ac-
curately estimate vertical distribution of effective volcanic ash injection rates from
ash columns. In this chapter, this problem will be illustrated and analyzed both
theoretically and experimentally.

This chapter consists of the following topics. Section 3.2 gives an overview of
4D-Var approach. Section 3.3 explains theoretically how an ill-conditioned situation
occurs which results in ineffective estimates. In section 3.4, twin experiments are
carried out for the demonstration of the ill-conditioned problem and its influence
on the assimilation results. Section 3.5 summarizes the chapter.

3.2. 4D-Var approach
Variational methods determine an optimal combination of the prior information and
observation data over an assimilation period by minimizing a cost function to es-
timate the control variables of a model. Control variables can include both state
variables and system parameters, and in our case (total column observations to
estimate volcanic ash emissions) they are the input of the system. A typical cost
function would be the sum of the squared deviations of the analysis values from
the observations weighted by the accuracy of the observations, plus the sum of the
squared deviations of the background fields and the analyzed fields weighted by
the accuracy of the background parameters. The cost function of Four-Dimensional
Variational data assimilation (4D- Var) is defined in space and in time.

In our case, suppose the volcanic ash model can be mathematically represented
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in forms of:

𝐱፤ = 𝑀፤(𝐱፤ዅኻ, 𝐮፤ +𝐰፤), (3.1)
𝐲፤ = 𝐻፤(𝐱፤) + 𝐯፤ . (3.2)

The subscript 𝑘 represents time 𝑡፤. 𝐱፤ ∈ 𝑅፧ is the state vector; in volcanic ash
transport model, this contains ash concentrations defined in a 3D array of grid
cells. 𝐮፤ ∈ 𝑅፩ is the parameter vector including model parameters, inputs and
initials. Here 𝑢𝑢𝑢፤ is defined as the volcanic ash emission rate in a column as input
to the model, which comprises the emission rates at 𝑝 vertical layers above the
summit. Vector 𝐲፤ ∈ 𝑅፪ contains the observations. The noise terms 𝐰፤ and 𝐯፤
represent the model and observation uncertainty respectively, both in terms of a
Gaussian distribution with covariance matrices 𝖡𝖡𝖡፤ and 𝖱𝖱𝖱፤ respectively, where the
model uncertainty lies in the parameter in this case. 𝑀፤ ∈ 𝑅፧×፧ is the eventually
transport model. Observation operator 𝐻፤ ∈ 𝑅፪×፧ projects the state space into
observation space; the inverse observation operator 𝐻ፓ፤ that will be used in 4D-Var
projects the observation space into the state space.

Once the observations are obtained, 4D-Var data assimilation can be carried
out to seek optimal initial states and parameters which minimize the following cost
function over an assimilation window [𝑡ኺ, 𝑡ፍ] :

𝐽(𝐔) = 1
2

ፍ

∑
፤዆ኺ

(𝐮፤ − 𝐮፛፤)
ፓ 𝖡𝖡𝖡ዅኻ፤ (𝐮፤ − 𝐮፛፤) +

1
2

ፍ

∑
፤዆ኺ

(�̃�፤ − 𝐲፤)ፓ 𝖱𝖱𝖱ዅኻ፤ (�̃�፤ − 𝐲፤)

= 𝐽፛ + 𝐽፨ ,

(3.3)

where �̃�፤ = 𝐻፤(𝐱፤), and 𝐔 = [𝐮ኺ, ⋯ , 𝐮፤ , ⋯ , 𝐮ፍ]. The model described by Eq. (3.1)-
(3.2) is regarded as constraints to the minimization problem Eq. (3.3).

The solution of the minimization problem could be obtained using gradient-
based methods (conjugate gradient, quasi-Newton, etc.), which are iterative meth-
ods by updating the parameters based on the gradients of the cost function with re-
spect to the parameters. The adjoint model is usually required for the computation
of the gradient (Talagrand and Courtier, 1987; Courtier and Talagrand, 1987). The
incremental 4D-Var method has been developed to accelerate the solution process
of nonlinear problems (Courtier et al., 1994). However, no matter how advanced
the approach is, the key point lies in how accurate the gradient represents the per-
turbations of parameters. When the gradient cannot represent the perturbations,
it will never converge to the correct solution, as will be illustrated for the volcanic
ash application in the next section.

3.3. The ill-posed nature of the problem
The standard 4D-Var has been successfully applied in air quality applications (El-
bern et al., 2000), including source estimation (Elbern et al., 2007; Meirink et al.,
2008). However, estimation of vertical distribution of ash emission rates from satel-
lite data is problematic. Infrared satellite instruments from which aerosol optical
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depth (AOD) is retrieved only provide information on total column ash loadings.
The instruments provide effective particle radius and AOD (𝜏) of volcanic ash clouds
(Prata, 1989). The column mass loading (Ω) (or 𝐲፤ in Eq. (3.2)) is related to 𝜏 by
Ω = 4𝜌𝑟 𝜏/(3𝑄፞), where 𝜌 is the aerosol mass density at ambient relative humidity,
𝑟 is the column averaged effective radius and 𝑄፞ is the column averaged extinction
efficiency with 40%-60% (Wen and Rose, 1994; Fu et al., 2015). To transfer the
ash concentrations 𝐱፤ to ash mass loadings 𝐲፤ (in Eq. (3.1)-(3.2)) the observation
operator is in the following form:

𝐻፤(𝐱፤) =
ፍ፳

∑
፥዆ኻ
𝜔፥ ∗ 𝐱፥፤ . ∗ Δ𝐡፥ , (3.4)

where 𝑁𝑧 is the number of the vertical layers, .∗ denotes the element-wise multipli-
cation, 𝐱፥፤ and Δ𝐡፥ represent the states and thicknesses of the all grid cells in the 𝑙፭፡
layer, respectively, and 𝜔፥ is the weighing factor of the 𝑙፭፡ layer corresponding to
mass extinction and the sensitivity of the specific satellite instrument with respect
to height (Pierce, 2013).

Since in this way the satellite observation computes the vertical integral of state
variables along a column and has no vertical resolution, it is difficult to distinguish
which of the vertical emissions could explain a mismatch between the model and
the observation. This results in invalid gradients for the parameter update, and the
ill-conditioning issue in the optimization process.

To explain how the invalid gradients are formed, first the concept of Sensor-
Induced Correlation (SIC) is introduced which is created by observation. Suppose
there is an observation variable formed by summation of state variables as 𝑦 =
𝑥ኻ + 𝑥ኼ. A change in 𝑦 will be explained by changes in both 𝑥ኻ and 𝑥ኼ even it is
introduced by only one of the states. Therefore, there is a SIC between 𝑥ኻ and 𝑥ኼ
created through shared observation 𝑦.

Additionally, if 𝑥ኻ and 𝑥ኼ are sensitive to different parameters 𝑢ኻ and 𝑢ኼ through
a model, respectively, or to say, 𝑥ኻ and 𝑥ኼ are physically uncorrelated, the SIC may
cause ineffective estimations of the parameters. If 𝑥ኻ and 𝑥ኼ are sensitive to the
same parameter, the SIC may help to accelerate the convergence process. Fig. 3.1
gives us an example of the former case, and illustrates how satellite observation
𝑦 build up SIC between states [𝑥ኻ, ⋯ , 𝑥። , ⋯ , 𝑥፩], which are sensitive to different
input parameters [𝑢ኻ, ⋯ , 𝑢። , ⋯ , 𝑢፩]. All parameters are updated no matter which
parameter causes a perturbation in the observation. Now it will be shown how SICs
occur in our case and work on the DA process. In atmospheric transport models,
particles are transported with the wind to somewhere else other than the source
position. Thus wind transports information of the emissions from the location of
release to the place where the particles reach. Observations of concentration at
certain position (in-situ observation) could be used to trace back information of
emissions through wind field. This is how the sensitivity of state vector (concentra-
tions) with respect to emissions is formed. However, observations in the real world
are usually not of a single state variable but combination of several state variables
or other variables, such as satellite data, which measures total column mass load-
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Figure 3.1: The impact of sensor-induced correlations on the update of parameters.

ings of volcanic ash. It is problematic to use observations like this to trace back
along the wind field and obtain the emission information. In normal cases, wind
fields bear the characteristic that horizontal winds are much stronger than vertical
winds (extreme cases such as hurricane are not considered). Hence, states in one
layer are sensitive to the input parameter in that layer. Subsequently, states along
a column are sensitive to different input parameters locating at the corresponding
layers, respectively. Therefore, the satellite observation operator creates strong
ISA correlations between physically uncorrelated or slightly-correlated state vari-
ables, and between emission source variables. Therefore, a perturbation in one
emission layer may result in big values of the element in gradient corresponding to
other layers.

3.4. Twin experiments and discussion
3.4.1. Experimental setup
Twin experiments are conducted to test the performance of standard 4D-Var ap-
proach on the estimation of volcanic ash emissions using synthetic ash column data
and a priori emissions. The synthetic observations are generated by the implemen-
tation of the model with the ‘true’ emission rates.

A simplified LOTOS-EUROS model is utilized to simulate the eruption of the Ey-
jafjallajökull volcanic activity during April 14-19, 2010. The model computes the
forecasts in a tracer mode, which includes only the advection and diffusion pro-
cesses. Wind fields are obtained from 3-hourly meteorological data from the Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF), which is interpolated
to a hourly resolution.

The emission information of the first few days of explosive eruption is taken from
(Webley et al., 2012) and shown by Tab. 2.2 in chapter 2.4. The eruption is de-
scribed in terms of parameters such as total emission rate and plume height, which
are assumed to be constant during an emission episode of several hours. Poisson
distribution (see section 2.3) are used to generate the ‘truth’ emission rates in verti-
cal layers according to emission information in Tab. 2.2. To give the ‘background’/a
priori emission rates, a total emission rate is used which is an underestimation com-
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Figure 3.2: An illustration for the computation of the synthetic observations.

pared to the ‘truth’. Then the corresponding plume height, which is higher than that
of the ‘truth’, is computed from the empirical relationship (1.1) in chapter 1.3.3, and
the vertical profile is also given by Poisson distribution.

Because this chapter focuses on obtaining a theoretical base for future imple-
mentations, instead of real data, synthetic observations (𝜇g mዅኼ) is generated by
assuming 𝜔 = 1 in Eq. (3.4):

𝑦። =
ፍ፳

∑
፥዆ኻ
𝑥።,፥ ∗ Δℎ።,፥ , (3.5)

where 𝑦። is the observation variable at 𝑖፭፡ pixel, 𝑥።,፥ is the ash density at 𝑖፭፡ pixel
and 𝑙፭፡ vertical layer, Δℎ።,፥ is the height of the grid cell where 𝑥።,፥ locates. The
computation of synthetic observations is illustrated in Fig. 3.2. In reality a satellite
instrument will not observe this quantity directly but the optical properties, and the
observation operator for the model state should include a radiative transfer model
with assumptions on for example the ash density 𝜌. The observations are obtained
hourly such as potentially available from the geostationary SEVIRI instrument Prata
and Prata (2012). A spatial resolution of 0.25∘×0.25∘ is assumed for both modeling
and observations, which is equivalent to the spatial resolution of the meteorological
data used in this chapter.

To compare the influence of assimilation window length, assimilation windows
of 1, 3, or 6 hours are used which are no longer than one emission episode. In
practice, assimilation window of constant length should be used within one episode.
To deal with the change of episodes, the length should be adaptively shorten within
one episode. Since in our case new released particles will not spread further than 50
grid cells horizontally within 6 hours according to local wind velocity, a small domain
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Figure 3.3: European domain for forecast and Iceland domain in the rectangular for assimilation.

(Iceland area in the red rectangular, Fig. 3.3) is employed for the assimilation
in order to keep a low computational expense. In practice, an extended domain
(European area, Fig. 3.3) should be used for forecast in one day or longer after
assimilation.

In the experiments, both deterministic model and stochastic model are used.
For deterministic (noise-free) model experiments, observations are obtained by di-
rect realization of the model with the ’truth’ emission rates. Since the emission
parameters 𝐮 and the observation variables 𝐲፤ are assumed to be independent,
the background covariance matrices 𝖡𝖡𝖡 and observation covariance matrices 𝖱𝖱𝖱፤ are
diagonal (in Eq. (3.1)-(3.2)), in forms of 𝖡𝖡𝖡 = 𝜎ኼ፛𝖨𝖨𝖨 and 𝖱𝖱𝖱፤ = 𝜎ኼ፨𝖨𝖨𝖨, respectively. For
experiments using models with uncertainties, 50% noise is added to observation
data according to realistic satellite instrument retrieval uncertainties in section 3.3.
For the construction of 𝖡𝖡𝖡 in the cost function (3.3) of the stochastic model, the
uncertainties in the background parameters are always assumed to be 50%.

3.4.2. Estimation of volcanic ash emissions
First, a perfect model and complete observation which measures the state vari-
ables in all the grid cells are used to verify whether the model is physically well-
conditioned. The results with 1h assimilation window are shown in Fig. 3.4, where
the ‘analysis’ perfectly matches the ‘truth’, and the results with 3h and 6h assimi-
lation windows are similar. This means emission rates can be well estimated using
standard 4D-Var according to model dynamic. Therefore, once the estimation result
with another observation operator is undesirable, it is caused by the observation
but not the model.

Next, experiments with satellite ash column observations are conducted by both
the noise free model and stochastic model, and 50% noise are added in the syn-
thetic observations for the stochastic case. The noise-free model is used here to
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Figure 3.4: Estimation result of emission rates using standard 4D-var with complete observations and
1h assimilation window.
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Figure 3.5: Estimation result of emission rates using standard 4D-var with satellite observations and
assimilation window of (a)-(b) 1h and (c)-(d) 6h, conducted by the noise-free model (left column) and
the stochastic model (right column), respectively.
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exclude the influences of uncertainty in observations or other disturbance for the
performance of the assimilation approach. Note that in the noise-free model with
a zero observational error covariance matrix, the inverse of the matrix will be in-
finity and the ‘background’ term vanishes compared to the ‘observation’ term. The
stochastic model is able to create a more realistic simulation situation, besides, it
can be used to include the influence of ‘background’ term.

Results in Fig. 3.5 shows that standard 4D-Var is incapable of reconstructing
the vertical profile of the emissions. The injection height is unable to be accurately
determined. To be more specific, the emissions are corrected as a whole, i.e., the
total emission rate is improved, and the emission rates in each layer are increased
by almost the same amount. This ineffective estimation problem is not caused
by observation uncertainty but the observation itself (comparing Figs. 3.5(a) with
3.4). The problem will not be solved or improved by including the background term
(comparing the figures in right column against those in the left column of Fig. 3.5).
Enlarging the assimilation window and integrating a larger the amount of data do
not have obvious improvement of the situation (comparing Figs. 3.5(c)-(d) against
Figs. 3.5(a)-(b)).

3.4.3. Impact on volcanic ash forecast
Forecasts are produced using emissions of the truth, the background and the esti-
mated till the end of assimilation (at 19:00 UTC, April 14, 2010), which are regarded
as initial conditions for future prediction, shown by Fig. 3.6. It can be seen that
the ash columns of the forecast with assimilation have been largely improved from
the background and are closer to the observations of the truth (Figs. 3.6(a)-(c)).

However, shapes and concentrations of ash cloud at individual layers do not
fit the ‘truth’. To illustrate this aspect, ash concentration fields are used which are
taken out of the 7፭፡ layer (Figs. 3.6(d)-(f)) and 5፭፡ layer (Figs. 3.6(g)-(i)) above the
summit, which are the injection layers with the maximum emission rates of the ‘true’
and ‘background’ emissions, respectively. We can see that the ash concentrations
are increased in both layers with assimilation, but the shapes and positions do not
match the ‘truth’. This is implied by the estimates of emissions, the total amounts
of which are increased but the vertical profiles do not match the true emissions.
This would misguide us to regard that the initial condition is good enough for an
accurate forecast in a nearby future (less than 24 hours) by only comparing the ash
columns.

Next, comparison are made for the future forecasts in Fig. 3.7, which are the
model simulations at 10:00 UTC, April 15, 2010, using the above initial conditions.
We compare the main bodies of the ash clouds around Western Norway and West-
ern Sweden, where the ash particles can be by the assimilation. It can be observed
that either the ash concentration fields (Figs. 3.7(d)-(f) and (g)-(i)) or the ash mass
loading fields (Fig. 3.7 (a)-(c)) do not fit the ‘truth’. This would mean that, in an
application with real data, even if we obtain an analysis which matches satellite im-
age, there is a high probability that we may still give a bad and misguiding forecast.
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Figure 3.6: Forecasts of volcanic ash clouds at 19:00 UTC, April 14, 2010 with (a), (d), (g): the true
emissions; (b), (e), (h): the background emissions; (c), (f) and (i): the estimate of emissions using
standard 4D-Var approach. The top row illustrates the ash mass loading fields, the middle row illustrates
the ash concentration fields at the ዁ᑥᑙ layer above the summit, and the bottom row illustrates the ash
concentration fields at the ኿ᑥᑙ layer above the summit.
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Figure 3.7: Forecasts of volcanic ash clouds at 10:00 UTC, April 15, 2010 with (a), (d), (g): the true
emissions; (b), (e), (h): the background emissions; (c), (f) and (i): the estimate of emissions using
standard 4D-Var approach. The top row illustrates the ash mass loading fields, the middle row illustrates
the ash concentration fields at the ዁ᑥᑙ layer above the summit, and the bottom row illustrates the ash
concentration fields at the ኿ᑥᑙ layer above the summit.
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3.4.4. Ineffectiveness of the standard 4D-Var approach
To illustrate how ineffective ISA correlation and invalid gradient lead to the problem,
a single-input-perturbation experiment is conducted. In the experiment, perturba-
tion is given in a single input parameter and gradients are computed and normal-
ized with both complete observations and column observations. The former reflects
model behavior and the comparison with the perturbation vector illustrates whether
the model is physically well conditioned to identify the perturbed parameter, which
will be called normalized ‘model gradient’. The latter compared with normalized
‘model gradient’ illustrates whether the observation creates ineffective ISA corre-
lations or leads to invalid gradient, which can be called normalized ‘observation
gradient’ accordingly. The formulations are given based on model representation
in Eqs. 3.1-3.1.

The true observations are computed by:

𝐱፭፤ = 𝑀፤(𝐱፭፤ዅኻ, 𝐮), (3.6)
𝐲፭፤ = 𝐻፤(𝐱፭፤). (3.7)

where 𝐲፭፤ are the synthetic column observations.
The background model simulations with single-input-perturbation on the 𝑖፭፡ in-

put variable are:
𝐱፭፤ = 𝑀፤(𝐱፭፤ዅኻ, 𝐮 + Δ𝐮።), , (3.8)

where Δ𝐮። = [𝑢ኻ, ⋯ , Δ𝑢። , ⋯ , 𝑢፩]ፓ.
𝐽፜፨፥ and 𝐽፜፨፦ are the cost functions with column observations and complete

observations, respectively, given as following:

𝐽፜፨፥ = (𝐲፭፤ − 𝐻፤(𝐱፤))ፓ(𝐲፭፤ − 𝐻፤(𝐱፤)), (3.9)
𝐽፜፨፦ = (𝐱፭፤ − 𝐱፤)ፓ(𝐱፭፤ − 𝐱፤), (3.10)

The model gradient and observation gradient will be ∇𝐽፜፨፦𝐮 and ∇𝐽፜፨፥𝐮 , respec-
tively.

In this experiment, the 7፭፡ parameter is perturbed which bears the biggest
difference between the ‘background’ and the ‘truth’ input, and the both normal-
ized gradients are shown in Fig 3.8. It is observed that ‘model gradient’ can well
represent the perturbation of the input but ‘observation gradient’ evens out the per-
turbation. Moreover, the value of the ‘observation gradient’ with respect to the 7፭፡
parameter is smaller than to some other parameters. This is consistent with the
estimation results, which means the estimation result will never reach the ‘truth’
regardless of the number of iterations.

3.5. Summary and conclusions
The adjoint model is needed for the computation of the gradient of objective func-
tion in the implementation of the 4D-Var approach. The LOTOS-EUROS model has
been simplified and modified such that the corresponding adjoint model is easy to
build. 4D-Var approach has been integrated to the simplified model, and twin ex-
periment was carried out for the volcanic ash problem based on this configuration.
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Figure 3.8: Normalized gradient generated by perturbation in a single input parameter at the ዁ᑥᑙ layer
above the summit with 1h assimilation window.

The experimental outcomes illustrated that was unable to reproduce the mass
vertical structure of the ash emissions. The plume height, which has been shown
to be an important parameter in the construction of emission source, was not accu-
rately determined. Actually, the total emission rate was corrected and the correction
effect was distributed almost evenly in the vertical. The forecasts of ash cloud pro-
duced by this estimates of emissions were misleading. The ash-column field has
been largely improved, from which one can believe that this forecast was good and
reliable. However, the interior concentration fields differed a lot from that of the
truth.

The ill-conditioning problem is attributed to the fact that one data value was
computed by the integration of several state variables. This integrated data will
create numerical and ISA correlation between the states that share the data and
may not be physically correlated. Some input (emission) variables are strongly re-
lated to these states. Therefore, ISA correlations are consequently created between
these inputs. This resulted in the inappropriate estimate of the inputs, where the
change of one variable is related to the perturbation of another variable. Experi-
ment was designed and conducted based on this discussion to gain insight of how
the ISA correlation was created and influenced the estimates. The results confirmed
the theoretical analysis and showed that each variable had strong correlations to all
other variables. This fact will inspire the development of an alternative assimilation
approach in the next chapter.
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Trajectory-based 4D-Var for
volcanic ash problem: twin

experiment

The ill-conditioned problem of using 4D-Var approach with a standard type of
cost function to estimation volcanic ash emissions by assimilating ash column
observations has been addressed from the perspective of SICs as mentioned
in the previous chapter. In order to make better use of the influence of SICs
created by observations integrating multiple state variables, an alternative
approach termed ‘trajectory-based 4D-Var (Trj4DVar)’ is proposed. This ap-
proach is adjoint-free, which is more accurate to estimate the vertical profile
of volcanic ash from volcanic eruptions. It seeks the optimal vertical distri-
bution of emission rates of a reformulated cost function which computes the
total difference between simulated and observed ash columns. Twin experi-
ments are conducted to test the performance of the new method. Experimen-
tal results are compared against those of using standard 4D-Var to assess
the improvement on methodology on dealing with integrated type of observa-
tions.

Parts of this chapter have been published in:
Lu, S.⋆, Lin, H.X., Heemink, A.W., Fu, G., and Segers, A.J. (2016). Estimation of Volcanic Ash Emissions
Using Trajectory-Based 4D-Var Data Assimilation. 0onthly Weather Review 144, 575-589, 2016.
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4.1. Introduction
The forecast of the locations and concentrations of the volcanic ash cloud is very
sensitive to emissions. However, it is a great challenge to accurately determine
source parameters such as vertical distribution of volcanic emission plume. Volca-
noes exhibit a wide range of eruption types, thus it is difficult to make assump-
tions of emission parameters estimation for predictive purpose. Up to now, indirect
methods are used to estimate volcanic ash emissions (Mastin et al., 2009b). For
instance, empirical relationship between plume height above vent and total volume
has been used to determine total emission rates from plume altitude observations.
This plume height could be obtained from aircraft measurements (Mankin et al.,
1992) or ground-based radar or Lidar observations (Wang et al., 2008), which are
often not available. Then, in practice, explicit assumptions on the vertical dis-
tribution have to be made such as an uniform-distributed (Dacre et al., 2011),
umbrella-shaped (Stuefer et al., 2013; Webley et al., 2012), Poisson-distributed,
or exponentially-distributed plume (Searcy et al., 1998). Even if the vertical dis-
tribution is more or less correct, the relationship between plume height and total
emission is loose, thus the vertical assignment of the total emission rates to each
layer is poorly quantified.

Data assimilation (DA) techniques, which have been used in traditional weather
forecasting for many years, can be applied for forecasting volcanic ash (Fu et al.,
2015, 2016). The variational approach has already been used to estimate vol-
canic eruptive parameters and to improve the forecast accuracy using satellite Ash
Mass Loading (AML) data (Strunk et al., 2010). Flemming and Inness (2013) used
satellite observations of sulfur dioxide to estimate the total emission rate and the
plume height using a ‘trajectory-matching’ 4D-Var method. However, the vertical
distribution of the emission rate remains uncertain. Eckhardt et al. (2008) first re-
constructed the vertical profiles of sulfur emissions from AML data based on the
inverse modeling approach proposed by Seibert (2000). Stohl et al. (2011) im-
proved the inverse modeling method to estimate the vertical profile of the volcanic
ash emissions and the mass eruption rate of fine ash as a function of both height
and time.

Satellite ash-column observations lack vertical resolution which integrate the
states in a column. This will result in strong SICs between the input variables
distributed vertically which are assumed to be independent on each other in our
case as mentioned in the previous chapter. The SICs can lead to the failure of
using the standard 4D-Var (Std4DVar) to estimate the volcanic ash emissions due
to improper specification of error statistics. To remedy this, a trajectory-based 4D-
Var (Trj4DVar) assimilation method is proposed as an alternative.

This chapter has the following topics. Section 4.2 gives the derivation of
Trj4DVar, the steps to conduct the algorithm and an acceleration scheme. In sec-
tion 4.3, the performance of Trj4DVar in the application of volcanic ash problem
is tested in the twin experiments, and comparison is made between Trj4DVar and
Std4DVar. Section 4.4 gives a brief summary of this chapter.



4.2. Trajectory-based 4D-Var approach

4

41

4.2. Trajectory-based 4D-Var approach
4.2.1. Derivation of trajectory-based 4D-Var
We can reduce the influnece of SICs artificially by perturbing parameters one by
one, such that the states sensitive to the perturbed parameter are automatically
activated and separated from other states. Therefore, we propose a modified 4D-
Var method, which reformulates the least square problem by using a better error
statictics for the SICs. In this method, we seek a linear combination of states
(or trajectories) generated by system simulations with perturbed input parameters,
which best matches the observation data.

The trajectories consists of a reference simulation with background input
parameters 𝑀፤(𝐱፤ዅኻ, 𝐮፛) and a set of simulations with perturbed parameters
𝑀፤(𝐱፤ዅኻ, 𝐮፛ + Δ𝐮።) for 𝑖 = 1,⋯ , 𝑝, where Δ𝐮። is a perturbation of the emis-
sion rate in the 𝑖፭፡ layer above summit, which is the 𝑖፭፡ effective emission layer
and denoted as 𝑖፭፡ EEL in this chapter. Then we define the background mea-
surements: 𝐲ኺ፤ = 𝐻፤(𝑀፤(𝐱፤ዅኻ, 𝐮፛)) and the snapshot measurements: Δ𝐲።፤ =
𝐻፤(𝑀፤(𝐱፤ዅኻ, 𝐮፛ + Δ𝐮።)) − 𝐲ኺ፤. Suppose the parameter space can be spanned by
the perturbed parameter sets, which means that the ‘truth’ can be computed as a
linear combination of perturbed parameters weighted by unknown parameters 𝛽።:
𝐮 = 𝐮፛ + ∑፩።዆ኻ 𝛽።Δ𝐮።. Then the observations in Eq. (3.2) can be approximated by:

𝐲፤ ≈ 𝐻፤(𝑀፤(𝐱፤ዅኻ, 𝐮፛)) +
፩

∑
።዆ኻ
𝛽።𝐇፤𝐌፤(𝐱፤ዅኻ, 𝐮፛)Δ𝐮። + 𝐯፤

≈ 𝐲ኺ፤ +
፩

∑
።዆ኻ
𝛽።(𝐻፤(𝑀፤(𝐱፤ዅኻ, 𝐮፛ + Δ𝐮።)) − 𝐲ኺ፤) + 𝐯፤

= 𝐲ኺ፤ +
፩

∑
።዆ኻ
𝛽።Δ𝐲።፤ + 𝐯፤ ,

(4.1)

where 𝐇፤ and 𝐌፤ denote the tangent linear model of 𝐻፤ and 𝑀፤, respectively.
Therefore, the coefficients 𝜷 = [𝛽ኻ, ⋯ , 𝛽፩] can be computed by minimizing the
reformulated cost function given by:

𝐽(𝜷) = 1
2

ፍ፭

∑
፤዆ኻ

(
፩

∑
።዆ኻ
𝛽።Δ𝐲።፤ + 𝐲ኺ፤ − 𝐲፤)

ፓ

[𝖱𝖱𝖱፤]ዅኻ (
፩

∑
።዆ኻ
𝛽።Δ𝐲።፤ + 𝐲ኺ፤ − 𝐲፤)

+ 12

ፍ፭

∑
፤዆ኻ

(𝐮 − 𝐮፛)ፓ [𝖡𝖡𝖡፤]ዅኻ (𝐮 − 𝐮፛) + 𝜇||∇𝐮||ኼ

= 𝐽፨ + 𝐽፛ + 𝐽፫ ,

(4.2)

where 𝐽፨ and 𝐽፛ are defined similar to those in cost function Eq. (3.3), and 𝐽፫ is a
regularization term in case that large uncertainties in model or observations lead to
unstable solution or negative solution.
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When the number of parameters is small (less than 100) we can transform the
optimization problem into an algebraic problem and solve it directly. As it can be
observed that cost function (4.2) is convex, according to the first order optimality
condition, to find the minimum is to find the solution to the linear problem:

𝑑𝐽
𝑑𝜷 =

𝑑𝐽፨
𝑑𝜷 + 𝑑𝐽

፛

𝑑𝜷 + 𝑑𝐽
፫

𝑑𝜷 = 0. (4.3)

Simple derivation and moving all the terms independent of 𝜷 to the right hand side
yields:

(𝖠𝖠𝖠፨ +𝖠𝖠𝖠፛ +𝖠𝖠𝖠፫)𝜷 = 𝐛፨ + 𝐛፛ + 𝐛፫ , (4.4)

where

𝖠𝖠𝖠፨ = [
Δ𝐲ኻኻ ⋯ Δ𝐲፩ኻ
⋮ ⋱ ⋮

Δ𝐲ኻፍ፭ ⋯ Δ𝐲፩ፍ፭
]
ፓ

[
[𝖱𝖱𝖱ኻ]ዅኻ 0

⋱
0 [𝖱𝖱𝖱ፍ፭]ዅኻ

] [
Δ𝐲ኻኻ ⋯ Δ𝐲፩ኻ
⋮ ⋱ ⋮

Δ𝐲ኻፍ፭ ⋯ Δ𝐲፩ፍ፭
] , (4.5)

𝐛፨ = [
Δ𝐲ኻኻ ⋯ Δ𝐲፩ኻ
⋮ ⋱ ⋮

Δ𝐲ኻፍ፭ ⋯ Δ𝐲፩ፍ፭
]
ፓ

[
[𝖱𝖱𝖱ኻ]ዅኻ 0

⋱
0 [𝖱𝖱𝖱ፍ፭]ዅኻ

] [
𝐲ኻ − 𝐲ኺኻ
⋮

𝐲ፍ፭ − 𝐲ኺፍ፭
] , (4.6)

𝖠𝖠𝖠፛ = [Δ𝐮ኻ ⋯ Δ𝐮፩]ፓ (
ፍ፭

∑
፤዆ኻ
[𝖡𝖡𝖡፤]ዅኻ) [Δ𝐮ኻ ⋯ Δ𝐮፩] , (4.7)

𝐛፛ = 0, 𝖠𝖠𝖠፫ = 𝜇𝖫𝖫𝖫, 𝐛፫ = 0, and regularization operator 𝖫𝖫𝖫 is defined in section 4.2.2.
The Trj4DVar algorithm is thus described as the following sequence of opera-

tions:

1. Specify the background emission rates 𝐮፛ and run the model to obtain model
state 𝐱፤ = 𝑀፤(𝐱፤ዅኻ, 𝐮፛) and background measurement 𝐲ኺ፤ = 𝐻፤(𝐱፤) (𝑘 =
1,⋯ ,𝑁𝑡).

2. Perturb the emission rates 𝐮። = 𝐮፛ + Δ𝐮። and perform the forward model
runs 𝐱።፤ = 𝑀፤(𝐱።፤ዅኻ, 𝐮።), then compute the snapshot measurements Δ𝐲።፤ =
𝐻፤(𝐱።፤) − 𝐲ኺ፤ (𝑘 = 1,⋯ ,𝑁𝑡, 𝑖 = 1,⋯ , 𝑝).

3. Solve the linear system of equations (4.4) to obtain coefficients 𝜷 =
[𝛽ኻ, ⋯ , 𝛽፩]ፓ.

4. Update emission rates 𝐮 = 𝐮፛ + ∑፩።዆ኻ 𝛽።Δ𝐮።.

Note that Trj4DVar is adjoint free, since it needs only forward model runs to
generate the trajectories and the effort to solve the transformed algebraic problem
without adjoint model runs to compute the gradients. This saves the effort in the
formulation and implementation of the tangent linear model and the adjoint model
for the transport model, which is usually required for a 4D-Var application.



4.2. Trajectory-based 4D-Var approach

4

43

Since the meteorological conditions vary at each layer, the position and shape of
the ash plume bear information on its emission altitude, and vice versa. Therefore,
the snapshots Δ𝐲።፤ have different values as wind fields change with altitude, which
benefits in emission profile estimation with this trajectory-based 4D-Var (Trj4DVar)
method. Trj4DVar would not work with velocity fields that are vertically unchanged.
Fortunately, this is not the case in the real world. However, there are still cases
where meteorological pattern of one layer bear a great resemblance to that of
other layers, which will result in unstable solution. This problem can be solved by
regularization as mentioned above, and details will be given in section 4.2.2.

Notice that although the formulation is similar, our method is different from
ensemble-based 4D-Var(En4DVar) (Tian et al., 2008; Liu et al., 2009; Tian et al.,
2011) in three folds. First, this method aims at solving the ill-conditioning problem in
our case, whereas En4DVar targets at obtaining a flow-dependent error covariance
matrix. Second, the generation of trajectories in this method is specially designed
according to a priori knowledge of the model property and the characteristics of
the observation, but En4DVar adopts Monte Carlo method which technically can be
applied to any case. Third, this method is not scalable to the cases with a huge
amount of parameters and it is specially designed to efficiently estimate vertical
emission profile with a relative small number of parameters, while En4DVar naturally
reduces the rank of the problem and can be scalable to high-dimensional cases.
However, in our case, the utilization of En4DVar with a set of randomly generated
ensembles would lead to inaccurate estimation as standard 4D-Var does (see Figs.
3.5 and 4.5).

4.2.2. Regularization
There are three types of ill-posedness of an inverse problem (the optimization prob-
lem in our case): the solution does not exist, is not uniqueness or is unstable (Doicu
et al., 2010). In our case we have the third type, the stability of the solution. Note
that due to the severe ill-conditioning of the Hessian (𝖧𝖾𝗌𝗌 = [∑ፍ፭፤዆ኻ(Δ𝐲።፤)ፓ(Δ𝐲

፣
፤)]።፣)

in the term 𝐽፨ of cost function (4.2) and the noise in the observations 𝐲፤, the so-
lution of minimizing 𝐽፨ is not a meaningful approximation of the ‘truth’. In order to
be able to obtain an accurate approximation of the ‘truth’, a regularization term is
added in the cost function, whose solution is less sensitive to perturbations in 𝐲፤
(Reichel and Ye, 2008).

Actually, the ‘background’ term 𝐽፛ plays a role as regularization term (Cacuci
et al., 2013), but the ill-posedness of the problem is still unresolved although some-
what improved since we can not arbitrarily enlarge the proportion it takes in cost
function (4.2). Firstly in our case the ‘background’ emissions have a large un-
certainty, a larger proportion of 𝐽፛ leads to a solution closer to the very inaccurate
‘background’ emissions; and secondly the weighting factors of 𝐽፨ and 𝐽፛ (i.e. [𝖱𝖱𝖱፤]ዅኻ
and [𝖡𝖡𝖡፤]ዅኻ) are generated according to their statistic properties through Bayesian
theory in 4D-Var approaches, hence increasing the weighting for 𝐽፛ will make it
statistically unrealistic. Therefore, an extra term 𝐽፫ for regularization is introduced
in cost function (4.2).

In the Trj4DVar approach, the popular Tikhonov regularization is used, where a
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regularization term is in the following form

𝐽፫(𝜷) = 𝜇||𝐿𝜷||ኼ, (4.8)

where the matrix 𝐿 ∈ 𝑅፤×፩, is referred to as the regularization operator and the
scalar 𝜇 ≤ 0 as the regularization parameter.

Common choices of regularization operators are the identity matrix and a scaled
finite difference approximation of a derivative ||∇𝜷||ኼ (equals ||∇𝐮||ኼ in our case).
They both have a smoothing effect on the solution and make the solution more
stable. However, when 𝜇 is large, using identity matrix results in a solution close to
zero, while using the derivative can preserve the total emission rate. Therefore, in
this chapter, a scaled finite difference approximation of a derivative in the following
forms is used:

𝐿ኻ ∶=
1
2
⎡
⎢
⎢
⎣

1 −1 0
1 −1

⋱ ⋱
0 1 −1

⎤
⎥
⎥
⎦
∈ 𝑅(፩ዅኻ)×፩ (4.9)

or

𝐿ኼ ∶=
1
4
⎡
⎢
⎢
⎣

−1 2 −1 0
−1 2 −1

⋱ ⋱ ⋱
0 −1 2 −1

⎤
⎥
⎥
⎦
∈ 𝑅(፩ዅኼ)×፩. (4.10)

4.2.3. Acceleration schemes
Most of the computational cost of the Trj4DVar method lies in the generation of
the trajectories. Therefore, the total cost is linearly proportional to the number
of forward model simulations denoted by 𝑛፫፞፟፬።፦. The number of ensembles 𝑛

፫፞፟
፬።፦ is

equal to the number of input parameters 𝑝 according to section 4.2.1. For standard
4D-Var method the computation of gradients takes most of the time, which can
also be quantified in terms of forward model simulations 𝑛፭፫ፚ፝፬።፦ . Since one gradient
computation requires one forward run and one adjoint run, this can be counted
approximately as two forward simulations. Thus 𝑛፭፫ፚ፝፬።፦ equals to the twice the
number of iterations 𝑛።፭፫. Therefore, when 𝑝 and 2𝑛።፭፫ are almost the same, the
computational costs of the two methods are comparable. In our experiment, 𝑝 is
smaller than 2𝑛።፭፫ and thus the reformulated method is more efficient in this case.

However, 𝑛፫፞፟፬።፦ increases with 𝑝, thus refining grid cells vertically could make
the reformulated 4D-Var less efficient than the standard 4D-Var. Moreover, to deal
with the nonlinearity of a more realistic model, the reformulated 4D-Var scheme
should be repeated several times with new ensembles generated from an updated
background state 𝐱፮፩፝ፚ፭፞፝፤ and parameters 𝐮፛,፮፩፝ፚ፭፞፝ in each iteration. This prob-
lem can be reduced by a simple acceleration scheme through generating multiple
ensembles in one forward simulation. This can be done in the following way:

1. In one simulation, we perturb multiple input parameters which are physi-
cally unrelated or slightly related to each other. For instance we perturb the input
variables located in every 𝑚 layers (i.e., with a distance of m layers) as follows
𝐮 = 𝐮፛ + ∑(፩ዅኻ)/፦።዆ኻ Δ𝐮፦∗።ዄኻ, and compute Δ𝐱፤ = 𝑀፤(𝐱፤ዅኻ, 𝐮) − 𝑀፤(𝐱፤ዅኻ, 𝐮፛).
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2. After the forward simulation, we generate the ensembles corresponding to
each perturbed parameter by computing the column integral of the layers where
the states are sensitive to the specific parameter according to Eq. (3.4) as follows

Δ𝐲፥፤ =
ዱይዲ{፩,፥ዄ(፦ዄኻ)/ኼ}

∑
፣዆ዱዥዼ{ኻ,፥ዅ(፦ዄኻ)/ኼ}

𝜔፣ ∗ Δ𝐱፣፤ . ∗ Δ𝐡፣ , 𝑙 = 𝑚 ∗ 𝑖 + 1, 𝑖 = 1,⋯ , (𝑝 − 1)/𝑚.

(4.11)
3. Repeat 1 and 2 to compute trajectories Δ𝐲፦∗።ዄ፣፤ , 𝑖 = 1,⋯ , (𝑝 − 𝑗)/𝑚, with

perturbed parameter 𝐮 = 𝐮፛ + ∑(፩ዅ፣)/፦።዆ኻ Δ𝐮፦∗።ዄ፣, 𝑗 = 2,⋯ ,𝑚.
In this way, we can efficiently obtain the entire approximated trajectories with

𝑚 model simulations, which is independent of 𝑝. There is a trade off between a
small value of 𝑚 and high accuracy of the trajectories.

4.3. Twin experiments and discussion
4.3.1. Experimental setup
Twin experiments are conducted to test the performance of Trj4DVar approach, on
a PC with an Intel Xeon E3-1240 V2 processor with 8 cores, a total memory of 32
GB (approximately 5% was taken during experiments) and a clock speed of 3.4GHz.
In order to compare the it with Std4DVar, the same experimental configurations as
in chapter 3 are employed.

The influence of assimilation window on the approach are tested with length 1-
hour, 3-hour, and 6-hour. Both deterministic model and stochastic model are used.
The former is used to compare the difference between Std4DVar and Trj4DVar. The
latter is used to explore the influences of uncertainties or other aspects to the per-
formance of Trj4DVar. 50% Gaussian noise is added to the synthetic observations
according to realistic satellite instrument retrieval uncertainties in section 3.3. Be-
sides, in order to investigate the influence of noise for solutions 10% noise is used
in comparison experiments.

4.3.2. Estimation of volcanic ash emissions
The Trj4DVar method is first applied to the noise-free model with the same back-
ground emissions as in the previous experiments, and the comparison with the
standard 4D-Var method shows that this method can help solve the ill-conditioned
problem caused by the radiation observation (Fig. 4.1 compared with Fig. 3.5(d)).
However, when it is applied to a stochastic model, unstable solution with big os-
cillations occurs especially with a small assimilation window (Fig. 4.2(a)), which
is caused by the similarity of meteorological fields in each layer. Therefore, the
regularization term is used according to a priori knowledge of the model that the
input should be smoothed.

To test the influence of noise, assimilation window length and regularization term
on the performance of Trj4DVar, we apply Trj4D-Var with 50% model uncertainties,
10% and 50% observation uncertainties and assimilation windows of 1h, 3h and
6h, respectively, and the results are shown in Fig 4.2 where ‘est_reg’ is the estimate
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Figure 4.1: Estimation result with 1h assimilation window and a noise-free model using (a): Trj4Dvar
method; and (b): Std4DVar .

with regularization.

It can be noticed that the basic vertical profile of inputs is preserved in Fig.
4.2, especially the effective injection layer is well estimated, but oscillations in the
solution occur when noise is added to observations. We observe large oscillation in
1h cases especially with 50% observation noise in Fig. 4.2(d). Situation is improved
with smaller observation uncertainty or larger assimilation window. This can be
explained from the perspective of statistics that larger amount of data can reduce
the disturbance of noise and provide more stable solution.

Moreover, by comparing the results with 10% noise and 50% noise, we can
observe obviously that in Figs. 4.2(e) and 4.2(f) a spike appear around the 5፭፡
layer where the maximal input of ‘background’ lies, which is because with larger
observation uncertainty the ‘background’ impact more in the solution. Enlarging
assimilation window helps improving the situation, which can be observed by com-
paring the 3 figures with 50% uncertainty. However, enlarging the assimilation
window will increase computational time polynomially with both increased DA time
and enlarged DA domain, thus a trade off should be made between stable solution
and computational efficiency.

Regularization can smooth the solution and reduce oscillation (Fig. 4.2(a)),
which improves the accuracy of parameter estimation. However, sometimes it
works in a negative way that it smooths the solution too much and thus decreases
the accuracy (Fig. 4.2(f)). Therefore, compromise should be made between the
oscillation problem and the smoothing problem. The impact of regularization de-
creases with the length of assimilation window, which can be observed by compar-
ing the 1h, 3h and 6h cases. It would not be a problem, because as the estimation
becomes more accurate with bigger assimilation window, regularization becomes
less important to further improve the accuracy.
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Figure 4.2: Trj4DVar results of twin experiments with (a)-(c) ኻኺ% and (d)-(f) ኿ኺ% observation noise
and assimilation window of (a),(d) 1h; (b),(e)3h and (c),(f) 6h.
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4.3.3. Impact on volcanic ash forecast
With a more accurate estimation of vertical profile of emission rates, a better fore-
cast of state fields will be obtained. Although the forecasts of ash mass loadings us-
ing both Std4DVar and Trj4DVar methods are largely improved (Fig. 4.4), Trj4DVar
gives a more reliable ash fields in layers (Fig. 4.3) as advisory information.

Additionally, free forecasts are conducted using the state fields at the end of
assimilation time (19:00 UTC, April 14, 2010, in this experiment) as initial condition
and emissions in Table 2.2 for further forecast (till 10:00 UTC, April 15, 2010, in
this experiment). Results show that initial condition computed with a more accurate
emission yields a more faithful forecast (Fig. 4.5). It can also be observed that ash
clouds between Fig. 4.5(c) and Fig. 4.5(d) are more distinguishable in terms of the
shapes and values than those between Fig. 4.4(c) and Fig. 4.4(d). This is because
although they bear a great resemblance from the top view at one moment, the ash
clouds locate in different altitudes, and will eventually transport in different patterns
due to the meteorological fields . It confirms the conclusion in section 3.4.3 that an
inaccurate estimate of vertical distribution is likely to result in a misleading forecast
in the long run.

4.4. Summary and conclusions
Satellite observations of ash columns create SICs between the state variables in a
column, which will lead to low convergence rate and ineffective estimates of vol-
canic ash emissions when standard 4D-Var (Std4DVar) approach is employed. In
order to solve the ineffectiveness problem, a trajectory-based 4D-Var (Trj4DVar)
approach was proposed. The approach perturbs the input parameters one by one
and computes different trajectories resulted from the perturbations. Then it re-
formulates the cost function to seek the optimal linear combination of trajectories,
which forms an ash-column field that fits the observations the most. It benefits
from the fact that the wind fields change with altitude and the shapes of the trajec-
tories differ from each other. It does not lose meteorological information as regular
4D-Var cost function does. In the reformulated cost function, the impact of SICs
between the parameters being calibrated (coefficients for the linear combination of
the trajectories) has been reduced.

In addition, Trj4DVar approach is adjoint free, so it does not require the im-
plementation of the adjoint of the tangent linear model. This is a very attractive
feature of the new approach. However the computational effort required for the
modified 4D-Var method increases fast with the number of parameters. Therefore,
an acceleration technique was discussed to solve the problem of large computa-
tional costs.

Twin experiment was conducted using the same set-ups as in chapter 3 so that
comparison could be made between using Std4DVar and using Trj4DVar. Trj4DVar
showed good performance in the estimation of the emissions with a perfect model.
However, ill-conditioned physical condition with similar wind fields in each layer
can lead to a set of similar snapshot observations and resulted in an unstable solu-
tion. Therefore, regularization terms were introduced in the cost function to include
additional information.
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Figure 4.3: Ash concentrations at the ዁ᑥᑙ layer above summit of initial condition after assimilation at
19:00 UTC, April 14, 2010: generated with emission rates for the first 10 hours of (a) the ‘truth’, (b) the
‘background’, (c) ‘estimated’ through standard 4D-Var method and (d) the ’estimated’ through Trj4Dvar
method.
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Figure 4.4: Ash columns of initial condition after assimilation at 19:00 UTC, April 14, 2010: generated
with emission rates for the first 10 hours of (a) the ‘truth’, (b) the ‘background’, (c) ‘estimated’ through
standard 4D-Var method and (d) the ’estimated’ through Trj4Dvar method.
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Figure 4.5: Ash columns of free forecasts after assimilation at 10:00 UTC, April 15, 2010: generated
with emission rates for the first 10 hours of (a) the ‘truth’, (b) the ‘background’, (c) ‘estimated’ through
standard 4D-Var method and (d) the ’estimated’ through Trj4Dvar method.
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A stochastic model was also used to test the performance of Trj4Dvar method.
Although the estimates basically preserve the vertical profile of the true emission
rates, oscillations in solution occurred with noise, and large noise led to large oscil-
lations. Regularization helped to smooth the solution and improve the estimation
accuracy. With a larger assimilation window, more observations were available,
which diminished the influence of noise and resulted in a more stable and accurate
solution. Moreover, in the case of larger assimilation window, the regularization
had less impact on the solution, and thus the more accurate solution could be bet-
ter preserved. However, enlarging assimilation window would cause an polynomial
increase in computational expense, and trade off should be made between a more
accurate estimation and less computational effort.

The Trj4DVar method has been shown to be able to produce satisfactory esti-
mates using a simplified model and yet one has to test it on realistic models and
real-life volcanic ash emissions. Next chapter will focus on application to real data
with a full model including other physical ash transport processes besides advection
and diffusion, such as dry deposition and wet deposition.
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Modified trajectory-based

4D-Var to integrate
ground-based observations:

twin experiment

In the previous chapters, it has been show that an accurate determination
of the injection layer, where the ash is emitted into the atmosphere, is cru-
cial for the forecast of volcanic ash clouds. Trj4DVar was implemented and
it has shown improved performance compared to Std4DVar in twin experi-
ments using synthetic satellite observations. However, there are some cases
with real satellite data where Trj4DVar has difficulty in obtaining an accu-
rate estimation of the injection layer. To remedy this, Trj4DVar is modified to
reconstruct the vertical profile of volcanic ash emissions by assimilating ob-
servations of PH along with satellite data. The modified approach is tested
with synthetic twin experiments in this chapter. The results show that the
modified Trj4DVar is capable of accurately estimating the injection height (lo-
cation of the maximal emission rate) by incorporating the PH (top of the ash
plume) and MER data obtained from ground-based observations near the
source into the assimilation system. This will produce more accurate emis-
sion estimations and more reliable forecasts of volcanic ash clouds.

Parts of this chapter have been published in:
Lu, S.⋆, Lin, H.-X., Heemink, A., Segers, A., and Fu, G. (2016). Estimation of volcanic ash emis-
sions through assimilating satellite data and ground-based observations. -ournal of Geophysical
Research: Atmospheres 121, 18, 10,971-10,994, 2016.
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observations: twin experiment

5.1. Introduction
In the previous chapters, it has been discussed that Std4DVar is unable to recon-
struct the vertical profile of volcanic ash emissions. The failure is attributed to the
ill-conditioning problem caused by the lack the vertical information in satellite data.
To deal with the problem, the Trj4DVar approach was proposed. Trj4DVar refor-
mulates the cost function in a regression type which computes the total difference
between observed ash columns and a linear combination of simulated trajectories
coupled with a priori emission knowledge (‘background’ term). To construct the
cost function, it decomposes the system into subsystems which represent source-
receptor relationships to each source term (ash injection at each layer), thus it does
not lose vertical information as Std4DVar does. This approach has been tested in
the twin experiments using a simplified model. The results showed that it was ca-
pable of estimating the input emission column when a large assimilation window (>
6 hours) is used for most of the time. The twin experiments were repeated where
different values of noise were given in the synthetic observations or perturbations
were used in the meteorologic data. The outcomes show that there is still a small
possibility that Trj4DVar fails to determine the injection height accurately. Being
disturbed by the weather condition (light and cloud, etc) at that moment, satellite
instrument can be hampered to observe the ash cloud, which may increase the
possibility of failure for the use of Trj4DVar.

Information about the Plume Height (PH) and the Mass Eruption Rate (MER) are
available for some extensively monitored volcanoes from ground-based, airborne
and space-borne measurements. PH can be observed from the ground by weather
radar, Lidar and web-cam (Lacasse et al., 2004; Arason et al., 2011; Mona et al.,
2012; Flentje et al., 2010; Ansmann et al., 2010). Aircrafts and weather balloons
have provided in-situ measurements of PH with high temporal resolution and accu-
racy (Weber et al., 2012; Petäjä et al., 2012). For unmonitored or hardly accessible
volcanoes, one still has to rely on satellite data. Zakšek et al. (2013) has recently
developed a photogrammetric method to determine the height of the volcanic ash
cloud through simultaneous retrieval of optical data from polar orbiting and geo-
stationary satellites. In addition, the ‘trajectory-matching’ method in Flemming and
Inness (2013) can be used to automatically estimate injection height and MER as a
part of the DA process. This provides a new possibility to increase the accuracy of
estimation results by integrating the information of PH and MER into DA systems.

Observations of PH have already used in an indirect way to estimate volcanic ash
emissions for predictive purposes (Mastin et al., 2009a) as mentioned in chapter
1 and 2. MER can be determined using an empirical relationship between plume
height above the vent and total volume (Mastin et al., 2009a). Emission plume can
be computed combining the PH, MER and a presumed vertical distribution. However,
this approach is not always feasible. Firstly, the plume height observations are often
not available, and secondly, the empirical relationship is loose. Furthermore, one
of the main limitations of this approach is that it does not provide an estimate
for the vertical distribution of the emissions, which can vary substantially. Mastin
et al. (2009a) also provide estimates of the fraction of total emitted mass carried
by small particles (< 63𝜇m diameter), which is termed as ‘fine ash fraction’. These
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fine particles are known to be able to survive early fall out near the source (Rose
et al., 2001). A limitation of using this fine ash fraction is that the fraction values
can vary a lot ranging from 2% to 60% depending on the type of volcano, and the
assumption on this strongly affects the forecasts of fine ash.

In this chapter, a modification of Trj4DVar is proposed in order to be able to
estimate emission rates using a combination of satellite ash mass loading data and
information of PH and MER. Twin experiments are designed based on the eruption
activity of Eyjafjallajökull in April 2010. In order to make it more realistic, the full
LOTOS-EUROS model is used and the synthetic observation are generated according
to the retrieval products of SIVIRI data (say effective radius and AML). Instead of
fine ash fraction, we use the Satellite-Constraint Ash Fraction (SCAF) which defines
the emitted mass fraction carried by the particles with radii ranging from 1 𝜇m to
16 𝜇m constrained by SEVIRI retrievals. Studies show that very fine particles (<
30 𝜇m diameter) with extended atmospheric residence present the greatest hazard
(Rose and Durant, 2009). Therefore, the SCAF in this case is also good to simulate
the distal part of the ash cloud (> 500 km from the source or > 6 hours travel time)
in long-range forecasts (Dacre et al., 2013).

This chapter has been organized as follows: Section 5.1.1 presents two mod-
ifications on Trj4DVar to integrate ground-based observations PH and MER for a
better estimation of injection layer. In section 5.2, the modified Trj4DVar is tested
in twin experiments, besides, its influence on the estimates of the emissions and
the forecasts of ash cloud is discussed. The last section briefly summarizes this
chapter.

5.1.1. Incorporating MER and PH information in Trj4DVar
Trj4DVar has been presented to estimate emission rates from ash mass loadings
based on the concept of 4D-Var and a trajectory matching approach. Trj4DVar
seeks an optimal linear combination of trajectories generated with different inputs
(emission) to fit the observation data as good as possible, by minimizing a refor-
mulated 4D-Var cost function (4.2) (see section 4.2.1).

In an ideal situation, with a perfect model and exact observations, Trj4DVar can
accurately estimate the parameters, however, it encounters difficulty in dealing with
real satellite data with a large uncertainty. In this chapter, we propose two schemes
of integrating the additional information of PH and the MER in the DA process to
enhance the estimates. The idea is to restrict the sum of emission rates at all layers
to the value of MER and the maximal emission rate to be at the injection layer. The
injection layer is calculated with observations of the PH. The two modifications are
defined as follows:

1. Penalty term correction: add penalty terms containing additional information
to the cost function:

𝐽(𝛽𝛽𝛽) = 𝐽፨ + 𝐽፛ + 𝐽፩, (5.1)

where 𝐽፨, 𝐽፛ are defined in Eq. (4.2). The penalty term 𝐽፩ restricts most of the
emission products to the injection layer and restricts the MER to the observations
(such as the satellite mass loadings). For instance, in the twin experiment of this
chapter, we compute the total mass loading from satellite retrievals (summation of
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mass loadings at all pixels) at the beginning of the assimilation time 𝑚ኺ, and at
the end of the assimilation time is 𝑚ፍ፭. The satellite-constraint MER can now be
roughly calculated as:

𝑀𝐸𝑅 = 𝑚ፍ፭ −𝑚ኺ
𝑡ፍ − 𝑡ኺ

, (5.2)

We assume a fraction 𝑓፦ of this𝑀𝐸𝑅 distributed at the injection layer indexed by
𝑖፡ and assume the summation along the emission column 𝑢𝑢𝑢 equal 𝑀𝐸𝑅 as follows:

𝐽፩(𝛽𝛽𝛽) = 𝛼፡(𝑢𝑢𝑢ፓ𝑒𝑒𝑒።ᑙ − 𝑓፦ ∗ 𝑀𝐸𝑅)ኼ + 𝛼፦(𝑢𝑢𝑢ፓ𝜖𝜖𝜖 − 𝑀𝐸𝑅)ኼ, (5.3)

where 𝛼፡ and 𝛼፦ are weight factors, the unit vector 𝑒𝑒𝑒። is a vector with the 𝑖፭፡
element equals 1, all others are 0, and 𝜖𝜖𝜖 is a vector filled with ones. Note that
the calculation of MER (5.2) does not take removal processes (such as sedimen-
tation) into account. A better MER can be achieved by using a combination of
satellite observations and other types of observations. This MER is constrained by
the limitations of satellite retrieval of ash to a certain size range within the Satellite-
Constraint Ash Fraction (SCAF). In order to obtain a reasonable model forecast after
the assimilation, the emitted MER including all particle sizes should be corrected by
the SCAF.

2. Background term correction: generate a new emission based on the addi-
tional information and substitute it for the background

𝐽(𝛽𝛽𝛽) = 𝐽፨ + 𝛼፛ (𝑢𝑢𝑢 −𝑢𝑢𝑢፛,፧፞፰)
ፓ [𝖡𝖡𝖡፧፞፰]ዅኻ (𝑢𝑢𝑢 −𝑢𝑢𝑢፛,፧፞፰) = 𝐽፨ + 𝐽፛,፧፞፰ , (5.4)

where 𝑢𝑢𝑢፛,፧፞፰ is calculated according to the additional information of PH and MER
with a predefined vertical distribution. The new error covariance matrix 𝖡𝖡𝖡፧፞፰ rep-
resents the uncertainty of 𝑢𝑢𝑢፛,፧፞፰ that should be smaller than 𝖡𝖡𝖡፤. The vertical
distribution could be based on explicit assumptions, such as uniform-distributed
(Dacre et al., 2011), umbrella-shaped (Stuefer et al., 2013; Webley et al., 2012),
Poisson-distributed, exponentially-distributed plume (Searcy et al., 1998), or based
on characteristics of the current eruption type.

Note that, the thickness of injection layer does not necessarily cover only one
layer depending on the vertical extent. Or there can be multiple peaks of the verti-
cal distribution of the emission rate due to the frequent changing of PH. Therefore,
the injection layer in the two modifications should be extended to multiple layers
according to the observations. Besides, the background term 𝐽፛ in the formula of
the penalty term correction (5.1) can also be replaced by 𝐽፛,፧፞፰ in formula (5.4). In
the experiments, the original 𝐽፛ is used to include the influence of a priori informa-
tion since the injection height value is uncertain as mentioned in the introduction
of this chapter.

In order to determine the weight factors 𝛼፦, 𝛼፡ and 𝛼፛, two schemes are con-
sidered as following. One is based on the uncertainty of the additional information,
and the weight factors are chosen as:

𝛼፦ = 𝑐1፦ , 𝛼፡ = 𝑐1፡ , 𝛼፛ = 𝑐1፛ . (5.5)
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where 𝑐1፦, 𝑐1፡ and 𝑐1፛ are constants. The other is based on the accumulative
influence of the uncertainty in each time step, thus the weight factors are linearly
related to the length of assimilation window as

𝛼፦ = 𝑐2፦ ∗ 𝑁𝑡, 𝛼፡ = 𝑐2፡ ∗ 𝑁𝑡, 𝛼፛ = 𝑐2፛ ∗ 𝑁𝑡, (5.6)

where 𝑐2፦, 𝑐2፡ and 𝑐2፛ are constants. Values of 𝑐1፦, 𝑐1፡, 𝑐1፛, 𝑐2፦, 𝑐2፡ and 𝑐2፛
depend on the uncertainties of observations of PH and MER.

5.2. Twin experiments and discussion
Twin experiments are designed to test the performance of the Trj4DVar approach
and the impact of integrating the injection height and the total mass loading in the
DA system. The experiments are carried out using the Eyjafjallajökull 2010 eruptive
event as a case study.

5.2.1. Experimental setup
In the twin experiments, we estimate the emission rates from the background emis-
sions and the observations. The synthetic observations are generated hourly by
summing up the mass loadings from ash concentrations of all the last 3 tracers in
Tab. 2.3 (see section 2.4), to which the SEVIRI instrument is sensitive. These ash
concentrations are computed using the full LOTOS-EUROS model (see section 2.2)
with true emissions, which are calculated according to the PH and MER given in Tab.
2.2 (section 2.4). 50% Gaussian noise is added to the data according to the uncer-
tainty in the retrieval of satellite data as suggested by Wen and Rose (1994) and Fu
et al. (2015). The background emissions are computed with an overestimation of
MER. This cautious approach is recommended in practice for advising commercial
jet operations in airspace affected by volcanic ash. A correspondingly higher PH is
used according to the empirical formula (1.1).

For the construction of 𝖱𝖱𝖱፤ and 𝖡𝖡𝖡 in the cost function (Eq. (4.2)), 50% uncer-
tainty is assumed in both observations and parameters with 𝖱𝖱𝖱፤ and 𝖡𝖡𝖡 in form of a
diagonal matrix 𝖱𝖱𝖱ዅኻ፤ = (1/𝜎፨፤)ኼ𝖨𝖨𝖨፨ and 𝖡𝖡𝖡ዅኻ = (1/𝜎፛)ኼ𝖨𝖨𝖨፛. To compare the influence
of the assimilation window length on the estimates, assimilation windows of 1, 3,
or 6 hours are used. Using a larger assimilation window implies that more observa-
tions are incorporated. During one episode the eruptive parameters are assumed
to be constant. All assimilation windows are shorter than the eruption episodes.
In practice, an assimilation window of constant length should be used within one
episode.

PH information retrieved by Icelandic Meteorological Office (IMO) is integrated in
the construction of correction terms. The height of the plume was monitored every
5 minutes with a weather radar located in Keflavík International Airport, at 155 km
distance from the volcano. PH (echo top altitude) is calculated from the volume
reflectivity data with a lowest altitude limitation of 2.9 km, which is archived at the
IMO. Fig. 5.1 shows the time series and the 6-hour averages constructed from the
radar detected echo tops by IMO, taken from Arason et al. (2011). To generate the
penalty term and the new background term as described in section 5.1.1, 𝑓፦ = 0.8
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Figure 5.1: Additional information of plume height obtained from a weather radar provided by IMO,
taken from Arason et al. (2011). Upper panel: The 5-min time series of the echo top radar data of the
eruption plume altitude (km). Lower panel: The 6-hour averages of the echo top heights of the eruption
plumes (km) with the bars representing the standard deviation.
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Figure 5.2: Timeline of twin experiment.

is used in the penalty term. This value is based on experience. It means that
80% of the MER is assumed to be distributed at the injection layer. The injection
layer is computed according to the PH information from the IMO observations.
To make it more realistic, this MER is computed by applying formula (5.2) to the
synthetic observations, not the MER of the ‘truth’ in Tab. 2.2. To compare the two
modifications, the new background term is calculated correspondingly with 80% of
MER distributed at the injection layer and 20% of MER evenly distributed across
other layers above the summit.

To test the impact of the estimate on the forecast, results with respect to the
initial condition and the free forecast are computed. Data assimilation is iteratively
applied with a 1h assimilation window till the end of the first episode at 19:00 UTC,
April 14. The initial condition, which is the initial state field for the forecast run, is
computed using the model with estimated emissions as reconstructed at the end
of the assimilation. A forecast with the prior emission using this initial condition,
denoted as ‘free forecast’, is computed for the next period of 24 hours. The result
of the free forecast is given at 19:00 UTC, April 15. The timeline is shown in Fig.
5.2.

5.2.2. Estimates of emission and discussion
To test the impact of incorporating the additional information on the accuracy of the
estimates, we use different assimilation windows and the two schemes of weighting
the correction terms as mentioned in section 5.1.1. The results are shown in Figure
5.3, where ‘estimated’ represents the solution obtained from cost function (4.2) with
only ash-column observations and the assumed background, ‘est_pc’ represents the
solution of cost function (5.1) with penalty term correction, ‘est_bc’ represents the
solution of cost function (5.4) with the background term correction, and ‘bg_new’
represents the new background emission used in the background term correction.

First, we evaluate the impact of incorporating additional information. It can be
observed that large oscillations occur in the estimated solution and it may even be
impossible to identify the injection height correctly (Figs. 5.3 (a) or (d)). This might
be caused by the meteorological fields where some layers have similar meteorologic
patterns, by the large uncertainty in observation data or by the nonlinearity in the
volcanic ash model. The estimates with penalty term (est_pc) or new background
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Figure 5.3: Estimation of the vertical profile of the volcanic ash emission at 19:00 UTC, April 14, 2010,
using modified Trj4DVar. Figures in the left column are computed with constant weight factors (ᎎᑞ and
ᎎᑙ) and in the right column with weight factors as linear functions of the length of assimilation windows:
using assimilation windows of 1h in (a) and (d); 3h in (b) and (e); and 6h in (c) and (f).
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term (est_bc) are significantly more accurate. Both ways of adding information work
well in order to restrict the injection height (comparing estimated against est_pc or
est_bc in Figs. 5.3 (a) or (d)). We can also notice that est_pc is closer to estimated
at the layers other than the injection layer. Therefore, when estimated is reliable,
penalty term correction is recommended to achieve a more accurate vertical profile
than using background term correction. Note that the use of correction terms
aims at capturing the injection layer. The maximum emission rates might be an
underestimation or, in this case, an overestimation of the truth. Therefore, 𝑓፦ in
cost function (5.3) and the weight factors (𝛼፡, 𝛼፦ in Eq. (5.1) and 𝛼፛ in Eq. (5.4))
should be adjusted to change the influence of the correction terms.

Second, we consider the influence of the length of assimilation window to the
estimation results. By comparing estimated solutions in one column (for instance,
Figs. 5.3 (a), (b) and (c)), it can be observed that when the assimilation window is
enlarged oscillations are decreased and emissions are estimated more accurately.
Especially the injection height and the basic shape of the profile are preserved in the
6h situation. Moreover, the influence of the background (a priori information) on the
estimates reduces with an increasing assimilation window, since the estimates are
improved and consequently the importance of the background is decreased (Figs.
5.3 (a), (b) and (c)).

Finally, the impact of the weights of the correction terms (𝛼፡, 𝛼፦ in Eq. (5.1)
and 𝛼፛ in Eq. (5.4)) is analyzed. By comparing the figures in one column, we
observe that the influence of the additional information decreases with the length
of assimilation window when constant weight factors are used (Figs. 5.3 (a) - (c)),
and the influence remains the same when the other set of weight factors is used
(Figs. 5.3 (d) - (f)). A constant weighting scheme is recommended when AML has a
large uncertainty, since it makes the solution closer to the estimated solution when
the assimilation window is enlarged and the accuracy of estimated is improved.
Linear weight factors with small values are recommended when AML has a small
uncertainty. Note that, the weighting schemes are provided for assimilation win-
dows with adjustable length. They are not considered when assimilation windows
with constant length are used.

5.2.3. Forecasts of ash clouds
In this section, the predictive performance of the assimilation with or without the
additional information of PH and MER will be analyzed.

As shown in the previous section, the original estimates and the estimates with
correction terms differ more when using 1h assimilation window than larger assim-
ilation windows. Therefore the forecasts using a 1h assimilation window will be
better for illustrative purpose. We apply data assimilation sequentially with a 1h
assimilation window during the first eruptive episode and simulate the model with
the assimilation results until the end of the first episode (19:00 UTC, April 14, 2010).
The ash columns after simulation, which can be regarded as the initial condition for
the forecast run, are illustrated in the left column of Fig. 5.4. It can be noticed that
both estimated results (Figs. 5.4 (c) and (d)) are significantly improved with the
mass loadings much closer to the forecast with the true emissions (Fig. 5.4 (a)).
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Figure 5.4: Comparison of the simulation results with assimilation and without assimilation. Figures in
different rows represent results simulated with different emissions of: (a),(e) and (i) the truth; (b), (f)
and (j) the background; (c), (g) and (k) the estimate with assimilation of PH and MER; and (d), (h) and
(l) the estimate without assimilation of PH and MER. Figures in the left column are the AMLs of the initial
conditions at 19:00 UTC, April 14, 2010. Figures in the middle column are the ash clouds at the ዁ᑥᑙ
layer over the vent of the initial condition, at 19:00 UTC, April 14, 2010. Figures in the right column are
the AMLs of the free forecast at 10:00 UTC, April 15, 2010, initiated from 19:00 UTC, April 14, 2010.
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Although the total column shows great resemblance, there are differences when
looking into the details in each layer. This is because the wind fields change with
the altitude, and the ash particles released at different layers transport differently.
Therefore, each specific vertical profile of emissions will lead to a unique ash cloud
which is distinguishable as shown in the initial conditions at the 7፭፡ layer over the
vent in the middle column of Fig. 5.4. This implies that, in practice, although
ash clouds generated with poorly estimated emissions often appear to match the
satellite image (Figs. 5.4 (e) and (g)), the interior 3D ash concentrations may be
far from the truth (Figs. 5.4 (e) and (g)). However, with the incorporation of the
additional information, both the ash mass loadings (comparing Figs. 5.4 (a), (b)
and (d)) and the 3D ash fields (comparing Figs. 5.4 (e), (f)and (h)) improve a lot.
This implies that the correction terms are able to improve the initial condition with a
more accurate estimate of the emissions, resulting in a more reliable forecast. This
is confirmed by the results in the right column of Fig. 5.4, which shows the free
forecast until 10:00 UTC, April 15, 2010 simulated in the European domain with
the same emissions and initial conditions as used for the model simulation in the
left column of Fig. 5.4. The pink box marks the area where ash emitted from the
first episode was transported to. We can see that the shapes and positions of ash
clouds vary (Figs. 5.4 (k) and (l)) with different initial fields (Figs. 5.4 (g) and (h)),
and apparently a better estimation of the emission leads to a more reliable forecast
which is closer to the truth (Figs. 5.4 (i), (k) and (l)).

5.3. Summary and conclusions
Trj4DVar has been presented and tested on a simplified model previously. It was
shown that this approach performed well with large assimilation windows and with
synthetic observations of ash columns which can be regularly obtained in the whole
domain. Given different observational noise or meteorologic condition, Trj4DVar
may lead to a poor estimate with a 6-hour assimilation window, although only in
very rare situations. This chapter illustrated a case where Trj4DVar was unable to
accurately estimate the injection layer, and eventually resulted in a unreliable and
misleading forecast.

Two modifications to Trj4DVar was thus proposed for a better estimation of the
injection layer by incorporating observations of PH and MER in addition to AML
data. They aim at restricting the sum of emission rates at all layers to the value
of MER and restricting the maximal emission rate to be at the injection layer. One
is adding a penalty term in the cost function for the restriction. The other is to
replace the background term based on a priori knowledge with a new background
term related to the PH and MER observations. The former is recommended when
a priori information is with good accuracy or the vertical distribution have a large
uncertainty. For instance, the plume extent can vary for different eruption type,
and the thickness of the umbrella cap in the umbrella-shaped distribution (see sec-
tion 2.3) should be adapted to this. Modified Trj4DVar was tested on the realistic
(full) LOTOS-EUROS model and compared with straightforward Trj4DVar. Results
showed that using modified Trj4DVar, the injection layer could be captured well and
more accurate initial conditions were achieved. The forecast of ash cloud was also
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improved. The approach should be further tested using real-life satellite data due
to the complexity and insufficiency of the data.



6
Trajectory-based 4D-Var for

volcanic ash problem: SEVIRI
data experiment

In the previous chapters, Trj4DVar has been proposed based on the con-
cept of 4D-Var assimilation approach and been enhanced to achieve more
accurate estimates for our application. The modified Trj4DVar scheme has
been tested on the full LOTOS-EUROSmodel using synthetic satellite-like ash
columns, synthetic MER and weather radar observations of PH. This scheme
was shown to be able to accurately determine the injection layer of an vol-
canic ash eruption plume. In this chapter, real-life field data is assimilated
to explore the potential of applying the modified Trj4DVar in practice. Satel-
lite data is more complicated to be used than synthetic data, therefore, the
preprocessing of the data is presented before assimilation is conducted. Be-
sides, the guidance and suggestions on the proper use of the data for as-
similation are provided, which will result in a more reasonable estimate of
emission and more reliable forecast than using the data directly without pre-
processing.

Parts of this chapter have been published in:
Lu, S.⋆, Lin, H.-X., Heemink, A., Segers, A., and Fu, G. (2016). Estimation of volcanic ash emis-
sions through assimilating satellite data and ground-based observations. -ournal of Geophysical
Research: Atmospheres 121, 18, 10,971-10,994, 2016.
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6.1. Introduction
In the previous chapter, Trj4DVar was proposed for reconstructing the vertical pro-
file of volcanic ash emissions by assimilating satellite AMLs. Using a simplified
model, the method performed well with a 6-hour assimilation window in the twin
experiments. When the full model is used, there are cases that the method is not
able to provide a correct determination of the injection layer. Therefore, Trj4DVar
has been modified to further incorporate PH and MER obtained from ground-based
observations for a more accurate estimation of injection height. Results of the twin
experiments using the full LOTOS-EUROS model showed good performance of the
modified Trj4DVar, which implied that the approach was ready to be tested on a
real-life case.

When it comes to using real-life field data, the situation is more complicated.
The detection of volcanic ash can be disturbed by the weather condition such ash
water vapor. This will result in observations of undetected or wrongly-detected
ash. Besides, many sensors (such as UV and visible sensors) have limited temporal
coverage which can only observe during daylight (see section 1.4). Due to the
temporal and sometimes spatial insufficiency of the data, study is taken on how to
use the data properly to benefit more and give a reasonable estimate.

This chapter is organized as follows. Section 6.2 gives a detailed description
of the observations of the case study which are used in the experiments of this
chapter. In section 6.3, a preprocessing procedure is provided to exclude pixels
containing bad satellite data. In section 6.4, field data experiments are conducted
using the preprocessed data, and a heuristic technique is presented to deal with
the spatially insufficiency problem. A summary is given in the last section.

6.2. Observations for assimilation
We use the Eyjafjallajökull 2010 volcanic eruption event as a case study. The 39-
day long eruption in April-May 2010 resulted in a dispersal of ash over a large part
of Europe. It caused unprecedented disruption to air traffic and its implications on
modern society have made Eyjafjallajökull 2010 a landmark event. Various tech-
niques and observations have been used to detect the volcanic ash cloud, and pro-
vide unique data for various studies. In this chapter, we focus on the first explosive
phase, 14-18 April.

6.2.1. SEVIRI ash mass loading data
Spinning Enhanced Visible and Infrared Imager (SEVIRI) (Schmetz et al., 2002)
is a 12-channel spin-stabilized imaging radiometer aboard the Meteosat Second
Generation (MSG) platform, in geosynchronous orbit situated approximately over
0∘ longitude and 0∘ latitude. The total field of view coverage of the earth’s surface
and atmosphere is 70∘ from 70∘S to 70∘N and 70∘W to 70∘E. Measurements are
made of spectral range from visible (500 nm) to the infrared (13400 nm) with a
spatial resolution of 3 km × 3 km at the sub-satellite point and 10 km × 10 km at
the edge of the scan. Images can be acquired in all channels for the whole of the
70∘ disk every 15 minutes.
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Prata and Prata (2012) retrieved the ash mass loadings (AMLs) based on in-
frared channels for the case study of Eyjafjallajökull in a sub-region of the disk
covering 40∘N to 70∘N and 30∘W to 30∘E. This region includes the geographic area
affected by the Eyjafjallajökull volcanic ash. The data products from the SEVIRI ash
retrievals contain estimates of mass loadings of particles with radii between 1𝜇𝑚
and 16𝜇m, the effective particle radius, and the retrieval errors in mass loadings
at ash-detected pixels. In the Eyjafjallajökull dataset, 15 minutes samples were
provided starting on April 14, 2010, 00:00 UTC and ending on May 22, 2010, 23:45
UTC. The 15 minutes pixel-by-pixel mass loadings were then binned into 0.1∘ ×
0.1∘ grid cells and time-averaged every hour. A parallax correction (Vicente et al.,
2002) was applied to all ash-detected pixels by first assuming that the ash clouds
were at 6 km height. This simplification introduces a small error in geolocation, but
is an improvement compared to using the data without a parallax correction. The
data are the same as used by Stohl et al. (2011).

In our study, the data in the European continental domain (Fig. 3.3) is used for
validation, while the data in the region of Iceland (area within the red box of Fig.
3.3) is used for the assimilation. The Iceland domain includes the area affected by
the ash released within 6 hours, which is the maximal length of the assimilation
window in our experiments.

6.2.2. Additional information of PH and MER
The ash plume was monitored by a doppler weather radar located in Keflavík Inter-
national Airport. The radar was the only operational weather radar in Iceland during
the eruption, which gave operational doppler scans from the beginning of the erup-
tion towards the end of April. In case of a volcanic eruption within a radius of 240
km from the radar, the scanning strategy is to make 240 km reflectivity scans every
five minutes (except at 5 and 35 minutes past the hour when 120 km doppler scans
are made). PH (echo top altitude) is calculated from the volume reflectivity data
with a lowest altitude limitation of 2.9 km. Gudmundsson et al. (2012) provided
the 6-hourly mean and maximum values of the plume altitude based on Keflavík
radar observations (Fig. 6.1(a)), which will be used in the field data experiment in
section 6.4.

MER information was reported by Gudmundsson et al. (2012), shown in Fig.
6.1(b). The magma discharges were produced from combining information from
tephra fallout maps and PH variations with time. The total volume for different
periods is obtained from isopach maps on land and piecewise exponential decline
outside Iceland. Gudmundsson et al. (2012) computed the 6-hourly discharge rate
by applying the record of the PH to a scaled version of the empirical formula of
Mastin et al. (2009a):

𝑄። = 0.0564𝑘። [
𝐻፦፞፝ + 𝐻፦ፚ፱

2 ]
ኾ.ኻ኿

. (6.1)

Here 𝑄። (mኽ sዅኻ) is the average magma discharge for the 6 hour interval. 𝐻፦፞፝
and 𝐻፦ፚ፱ are respectively the median and maximum values of the plume height
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(a)

(b)

Figure 6.1: Eruption source parameters used for the field data experiment, taken from Gudmundsson
et al. (2012). (a): Six hourly mean and maximum values of the plume altitude based on the weather
radar in Keflavík. (b): Magma discharge based on combining plume and tephra dispersal data (6-hour
average).
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Figure 6.2: Preprocessing of SEVIRI data to remove retrieval noise with thresholds. (a) - (c) are the
illustration of the retrieval noise (dark blue ‘bands’) and SEVIRI AMLs (g mᎽᎴ) filtered with different
thresholds: (a) no threshold; (b) thr = 10ᎽᎳᎲ; and (c) thr = ኻኺᎽᎸ.
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Figure 6.3: Illustration of an invalid detection of ash from SEVIRI retrievals: (a) AML of SEVIRI data;
compared to (b) satellite image obtained by ASA’s MODIS satellite.

over the vent for the interval. 𝑘። is the scaling factor tuned in such a way that when
integrated it yields values that fit the total ash volume estimates.

Note that the radar-observed PH value is not necessarily the injection height of
the fine particles to be assimilated because the PH data bears a 20% uncertainty
(Bonadonna and Costa, 2013). Microwave radar echoes are sensitive to coarse ash
and lapilli concentrations (with size range from 2 to 64 mm in diameter), but not
necessarily to moderate and light (< 5 g mዅኽ) fine ash distributions (Marzano et al.,
2011). Moreover, radar observes ash plume top height, which may not be where
the maximal emission rate locates, leading to further inaccuracies.

6.3. Preprocessing of the SEVIRI data
To properly use the SEVIRI AML data, a threshold valued 10ዅዀ (g mዅኼ) is adopted
to screen out the invalid data below this threshold. The values below this threshold
are set to zero in this study. Alternatively, they can be set to NaN or negative
values. Noise is the result of the observational uncertainty of the instrument and
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Figure 6.4: Illustration of a mask matrix to eliminate the influence of retrieval noise and invalid detection.
(b) is the illustration of the mask matrix computed corresponding to (a).

the errors introduced by the retrieval algorithm. Fig. 6.2 (a) illustrates the noisy
AML field of the original SEVIRI data, where the ‘dark blue bands’ indicate the noise
resulted from the retrieval algorithm with the values above zero. Fig. 6.2 (c) shows
the clean AML field used in the experiment. The threshold is manually tuned and
selected based on experimental results, which is able to filter out the ‘dark blue
bands’ while preserve most of the usable data.

Besides noise, invalid data can also be the result of undetectable ash or
incorrectly-detected ash. Figs. 6.3 demonstrate a case of invalid ash detection.
In the boxed area of Fig. 6.3 (a) there appears to be no ash detection from the
SEVIRI data with zero values. However, NASA’s MODIS satellite gives a clear ob-
servation of volcanic ash in the corresponding area (Fig. 6.3 (b)). In this case,
assimilating the data of the entire domain or in the boxed area in Fig. 6.3 (a) will
result in inaccurate estimates.

The original zero values (without being processed by the threshold) imply no
ash detected, but it is difficult to determine whether that corresponds to really no
ash in the real world. The use of the original zero to constrain the pixels without
plume could be misleading and could influence the estimates negatively. Therefore,
we only use the pixels where ash is clearly detected. To eliminate the disturbance
of invalid data to the estimates, after the threshold is employed, a mask matrix is
generated to select/mark the valid data area (pixels with values above zero). If
the pixels containing original zeros are further confirmed and validated with extra
knowledge to be no ash affected, these pixels can be marked so that the zeros
will constrain where the plume should not be. An illustration of the mask matrix
generated from Fig. 6.4 (a) is given in Fig. 6.4 (b) with selected pixels shown by
blue dots. Consequently, the target of DA is to obtain the estimate of emission
which will lead to an ash cloud matching the SEVIRI AML data the most in the
selected area by the assimilation of preprocessed data above zeros.
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6.4. Field data experiments
After having evaluated the method using synthetic data previously, now experi-
ments with field data are conducted to explore the potentials of applying the method
to realistic volcanic ash problems.

6.4.1. Experimental setup
The field data experiments is conducted on a PC with an Intel Xeon E3-1240 V2
processor with 8 cores, a total memory of 32 GB (approximately 5% was taken
during experiments) and a clock speed of 3.4GHz. The full LOTOS-EUROS model is
used. The background (a priori) emissions are calculated according to the PH and
MER given in Tab. 2.2 (see section 2.4). The hourly-averaged mass loadings from
the SEVIRI volcanic ash products are used to estimate the emission rates of the first
eruptive phase of Eyjafjallajökull event. The validated data is available from 00:00
UTC, April 14, 2010 till 23:45 UTC, May 22, 2010. The data of 12:00 - 18:00 UTC,
April 15 is used to carry out the assimilation, and future data is used to validate
the results of the forecasts. The 6-hourly averaged PH and MER information shown
in Fig. 6.1 is integrated in the assimilation process through the penalty correction
and background correction methods. A 6-hour assimilation window is used since
this has been shown as the best settings in section 5.2. We only use tracers of
vash_4 - vash_6 in Tab. 2.1, because large particles will fall out of the ash plume
very soon and will have little contribution to the forecasts. Furthermore, the SEVIRI
instrument is sensitive to small particles with radii 1𝜇m - 16𝜇m (Prata and Prata,
2012). Subsequently, the value of MER to be assimilated is scaled with the SCAF
accordingly. The SCAF value is a percentage of the total MER including particles
ranged from vash_4 to vash_6.

6.4.2. Results with different estimation windows
In a typical assimilation process, the time range of the parameters to be calibrated
(estimation window) coincides with that of the observations to be assimilated (ob-
servation window), represented by the assimilation window in Fig. 6.5 (a). In this
section, an estimation window separate from the observation window is used as
shown in Fig. 6.5 (b), and the performance of using different estimation windows
is tested.

We assimilate the observations during 12:00 - 18:00 UTC, April 15, 2010. Fig.
6.6 gives a series of AML fields of SEVIRI to be assimilated. Notice that there is
no valid data near the summit (< 250 km from Iceland) in Figs. 6.6 (b) and (c)
where newly emitted ash (< 3 hours) should be transported to. Since the detected
ash clouds (colored pixels) consist of emissions earlier than 12:00 UTC, April 15,
2010, it is not appropriate to estimate emissions after 12:00 UTC using this data.
Therefore, an estimation window is computed by roughly tracing back the emission
time from the valid data areas in the observation window according to the wind
speeds. Note that the estimation window and observation window can overlap or
can be totally different due to specific meteorological conditions.

The estimation results of applying both assimilation processes are given in Fig.
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Figure 6.5: Timelines of real data experiment for: (a) typical assimilation process; and (b) assimilation
process with separate time ranges.

Figure 6.6: AMLs of SEVIRI during the observation window 12:00 - 18:00 UTC, April 15, 2010, chosen
at time: (a) 12:00 UTC; (b) 15:00 UTC; and (c) 18:00 UTC.

Figure 6.7: Estimation results of emissions during the estimation window of: (a) 06:00 - 12:00 UTC;
and (b) 12:00 - 18:00 UTC, April 15, 2010.
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Figure 6.8: Initial conditions (AML) at 15:00 UTC, April 15, 2010, simulated with: (b) background
emission; (c) normal estimate; and (d) earlier estimate. The middle column shows the AML fields of the
left column in the masked area (colored pixels in (a)). The right column is the error fields of the middle
column compared with (a) the SEVIRI AML fields.
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Figure 6.9: Free forecasts (AML) at 12:00 UTC, April 16, 2010, simulated with: (b) background emission;
(c) normal estimate; and (d) earlier estimate. The middle column shows the zoomed-in AML fields of
the left column in the masked area (colored pixels in (a)). The right column is the error fields of the
middle column compared with (e) the SEVIRI AML fields.
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6.7. Here, the estimate is denoted as ‘earlier estimate’ when using separate time
ranges (with an earlier estimation window), and denoted as ‘normal estimate’ when
using a typical assimilation time range. It is shown that both correction methods
(est_bc and est_pc) will restrict the maximum of the emission rate at the injection
height, 5.5 km in this case. This confirms the conclusion from the twin experiments.

The impact of using different estimation time ranges with respect to estimating
the initial condition is explored. Usually, the initial condition is available when the
free forecast starts, i.e. at the end of the estimation window. However, in this case,
the two assimilation processes have different initial times for the free forecasts. For
the purpose of comparison, a shared initial time at validation point 1 (15:00 UTC,
April 15) is considered. This point is chosen because it should be later than 12:00
UTC so that the estimated emissions of both assimilation processes can influence
the initial condition, and the masked area of SEVIRI should be large enough to
clearly observe the influences.

The initial conditions are shown in Fig. 6.8. By comparing Figs. 6.8 (b), (c)
and (d), we can see that both assimilations have influence on the initial condition
However, the earlier estimate affects the whole masked area, while the normal
estimate affects the tip in the Northwest of the masked area, since with the normal
estimate ash cannot be transported that far in such a short period (compare the
masked area in Figs. 6.8 (e), (f) and (g), and compare the error fields in Figs. 6.8
(h), (i) and (j)). This implies that the ash clouds in the masked areas of 12:00 -
18:00 UTC come mostly from the emission during 06:00 - 12:00 UTC.

The free forecasts till 12:00 UTC, April 16 (validation point 2) are shown in Fig.
6.9. It should be noticed that in the first column, forecasts show a large plume
throughout the European domain (Figs. 6.9 (b) - (d)), but SEVIRI data shows no
ash detected around Iceland (Figs. 6.9 (a)). It is difficult to determine which is
correct since the free forecast is formed with the a priori emissions which have
a large uncertainty, meanwhile no ash detected does not necessarily imply no ash
presenting as illustrated Figs. 6.3. Therefore, the masked area is used for validation
and the whole domain for a general comparison. It can be seen in the left column
that the ash of earlier estimate has been transported to the masked area in the
pink box, while the ash of normal estimate has only been transported there partly.
Moreover, by observing the middle column and the right column, we can see that
the earlier estimate corrects the whole masked area while the normal estimate
hardly has influence in that area. This further confirms the conclusion that using
the earlier estimation window is more proper in this case.

6.4.3. Results with different observational error covariance
matrices

In this section, the effects of using different observation error covariance matrices
in the field data case are compared. The earlier estimation window of 06:00 -
12:00 UTC in Fig. 6.5 (b) is used. The error covariance matrices are diagonally
generated with 30%, 50%, 70% uncertainty, and the SEVIRI retrieval error data.
Note that, theoretically, retrieval error data with high quality will provide a better
latent information on the observational uncertainties than the Gaussian-distributed
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Figure 6.10: Estimation results of emission during 06:00 - 12:00 UTC, April 15, 2010, with observa-
tional error covariance matrices generated from: (a) 30% uncertainty; (b) 50% uncertainty; (c) 70%
uncertainty; and (d) the SEVIRI retrieval error data.
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Figure 6.11: Initial conditions (AML) at 15:00 UTC, April 15, 2010, simulated with estimates of the
observational error covariance matrices generated from: (b) 30% uncertainty; (c) 50% uncertainty; (d)
70% uncertainty; and (e) the SEVIRI retrieval error data. The middle column shows the AML fields of
the left column in the masked area (colored pixels in (a)). The right column is the error fields of the
middle column compared with (a) the SEVIRI AML fields.
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Figure 6.12: Free forecasts (AML) at 12:00 UTC, April 16, 2010, simulated with estimates of observa-
tional error covariance matrices generated from: (b) 30% uncertainty; (c) 50% uncertainty; (d) 70%
uncertainty; and (e) the SEVIRI retrieval error data. The middle column shows the zoomed-in AML fields
of the left column in the masked area (colored pixels in (a)). The right column is the error fields of the
middle column compared with (e) the SEVIRI AML fields.
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assumptions.
The estimation results are shown by Fig. 6.10. By observing the original esti-

mation results without using correction schemes, i.e. est shown by the green lines,
it can be noticed that: 30% uncertainty is an underestimation so that the injection
height is not well identified, since the lower spike is larger than the spike at the
injection layer; 70% uncertainty is an overestimation so that the estimate is too
close to the background emission and observation data has little effect on the DA
process. The 50% uncertainty balances the influence of the background emission
and the observations. In addition, by observing the length of spike at the injection
layer of the estimation with the penalty correction (est_pc) or background correc-
tion (est_bc), the correction algorithm has an increasingly correcting effect with
higher observational uncertainty.

The initial conditions displayed in Fig. 6.11 are computed from the original
estimated emissions, i.e. est solutions in Fig. 6.10. The influence of observational
uncertainties on the forecasts are being tested, so it will be chosen among est,
est_pc and est_bc for the one that can be distinguished the most by the use of a
different uncertainty. In Fig. 6.11, although the entire ash clouds look similar in
the left column, it can be noticed from the middle column that the clouds vary in
the masked area. The right column gives the error fields using data assimilation.
Here, we observe that using 50% uncertainty or retrieval error data results in a
more accurate initial condition.

The free forecasts are shown in Fig. 6.12. We can see that the shapes and
positions of the red parts formed by the estimated emissions in the left column
vary. From the middle column, it can be seen that 70% uncertainty (Fig. 6.12 (i))
works the worst on the assimilation since the red parts cover a larger area (the
Belgium area) compared to the SEVIRI figure 6.12 (f), while uncertainties of 50%
and 30% work similarly as shown in Figs. 6.12 (h) and 6.12 (g). However, Fig.
6.12 (c) seems to be more reasonable with smaller concentrations than 6.12(b)
around the Netherlands, Belgium, Luxembourg and Northern France. Using error
data produces a forecast (Fig. 6.12 (j)) which matches the best to the red parts in
the SEVIRI figure (Fig. 6.12 (f)). The right column confirms what we observe from
the middle column, using 30% uncertainty has little influence in the masked area,
while using 50% and 70% uncertainties can correct the ash-dense area (red parts)
partly. Using the retrieval error data corrects most of the ash-dense area.

6.4.4. Evaluation with CALIPSO data
Additional spaceborn data is available from the Cloud-Aerosol Lidar with Orthogonal
Polarization (CALIOP) lidar on the Cloud-Aerosol Lidar and Infrared Pathfider Satel-
lite Observation (CALIPSO) platform (Winker et al., 2012). This data is used for the
evaluation of the vertical structure of the simulated ash cloud after the assimila-
tion. Analysis is given on the total attenuated backscatter signal at 532 nm, which
responds to aerosols including volcanic ash. On April 15, at 13:30 UTC, CALIPSO
passed over the ash cloud (Fig. 6.13 (a)) and detected the cloud at around 6-7 km
a.s.l. from 62.5∘N-63.5∘N (Fig. 6.13 (c)).

The simulated AML results after the assimilation is shown in Fig. 6.13(a). We can
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see that the position where ash cloud with high concentration passes the CALIPSO
track (62.5∘N-63.5∘N) is in agreement with the CALIPSO data. In addition, eval-
uation is given on the vertical ash concentration profile at 62.75∘N, 12.5∘W using
the CALIPSO data near this location. The altitude (around 6-7 km) and thickness
(around 1 km) of the simulated ash cloud (Fig. 6.13 (b)) are clearly similar to the
observations (Fig. 6.13 (c)).

6.4.5. Comparison with other observations
Additional spaceborn data is available from the Cloud-Aerosol Lidar with Orthogonal
Polarization (CALIOP) lidar on the Cloud-Aerosol Lidar and Infrared Pathfider Satel-
lite Observation (CALIPSO) platform (Winker et al., 2012). This data is used for the
evaluation of the vertical structure of the simulated ash cloud after the assimila-
tion. Analysis is given on the total attenuated backscatter signal at 532 nm, which
responds to aerosol including volcanic ash. On April 15, at 13:30 UTC, CALIPSO
passed over the ash cloud (Fig. 6.13 (a)) and detected the cloud at around 6-7 km
a.s.l. from 62.5∘N-63.5∘N (Fig. 6.13 (c)).

The simulated AML results after the assimilation are provided in Fig. 6.13(a).
We can see that the position where ash cloud with high concentration passes the
CALIPSO track (62.5∘N-63.5∘N) is in agreement with the CALIPSO data. In addition,
evaluation is given on the vertical ash concentration profile at 62.75∘N, 12.5∘W using
the CALIPSO data near this location. The altitude and thickness of the ash cloud
are clearly similar to the observations.

6.5. Summary and conclusions
In this chapter, the potentials of applying the modified Trj4DVar approach to esti-
mate the volcanic ash emissions using ash mass loadings retrieved from SEVIRI data
have been explored. Discussion has been given on the preprocessing of the data
and a procedure was proposed to exclude the influence of retrieval noise and the
invalid detection of ash on the assimilation results. This preprocessing is necessary
for achieving a more accurate estimate of the emissions. It is not a time-consuming
procedure where the computational cost for data to be assimilated is much less than
one model simulation during the assimilation window.

Due to the insufficiency of the data, it was recommended to estimate the emis-
sion using a proper time range which does not necessarily coincide with the ob-
servational time range. The emission time range was computed by tracing back
to where the ash released covered most of the valid data area. Furthermore, we
suggest to use the retrieval error data, which was obtained as a by-product of the
ash mass loading data, in the construction of observational error covariance matrix
as an extra benefit from the satellite data.

The modified Trj4DVar showed good performance on this case study. Its com-
putational cost was affordable (33 minutes using 6-hour assimilation window on a
computer mentioned in section 6.4, or about 13 forward simulations in our case).
Therefore, the modified Trj4DVar bears a great potential for use in operational vol-
canic ash forecasting using assimilation of ash columns in conjunction with ground-



6.5. Summary and conclusions

6

81

Longitude (degree 
o
)

L
a

ti
tu

d
e

 (
d

e
g

re
e

 o
)

LOTOS−EUROS AML (µg m
−2

) after assimilation

and CALIPSO track
13:30 UTC, April 15, 2010

 

 

−30 −25 −20 −15 −10 −5 0 5

56

58

60

62

64

66

68

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

0 2 4 6 8 10 12

x 10
4

0

2

4

6

8

10

12

Vertical Cross Section

Ash Concentration (µg m
−3

)

62.75
o
N, 12.5

o
W

Ash Concentration (µg m
−3

)
H

e
ig

h
t 

(k
m

),
 a

.s
.l
.

62.5 63 63.5

0

1

2

3

4

5

6

7

8

9

Latitude (degree 
o
)

H
e

ig
h

t 
(k

m
),

 a
.s

.l
.

CALIPSO Retrieval: log
10

[ 532 nm Total Attenuated

             Backscatter * 10
4
 (km

−1
 sr

−1
) ]

13:30 UTC, April 15, 2010

 

 

1

1.5

2

2.5

3

(a) (b)

(c)

Figure 6.13: Comparison of the simulation results after the assimilation and the CALIPSO observations
at 13:30 UTC, April 15, 2010: (a) LOTOS-EUROS simulated volcanic ash forecast (AML), the CALIPSO
track illustrated by the magenta curve, and the evaluation spot marked by black dot; (b) vertical profile
of volcanic ash concentration located at ዀኼ.዁኿∘N, ኻኼ.኿∘W, marked by a black dot in (a); (c) CALIPSO
total backscatter at 532nm.
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based observations of PH and MER. In other applications, the information of PH and
MER may not be averaged and validated every 6 hours, thus assimilation windows
of adaptive length could be considered. In order to utilize data of other satellite
instruments, adjustments should be made in the preprocessing of the data and in
the specification of the observational uncertainty. For instance, the construction of
the observational error covariance can be adjusted according to the retrieval error
data.



7
Evaluation criteria on the

design for assimilating
remote sensing data using

variational approaches

Remote sensing, as a powerful tool for monitoring atmospheric phenomena,
has been playing an increasingly important role in inverse modeling. Re-
mote sensing instruments measure quantities that often combine several
state variables as one. This creates very strong correlations between the
state variables which share the same observation variable. This may cause
numerical problems resulting in a low convergence rate or inaccurate esti-
mates in gradient-based variational assimilation if improper error statistics
are used. In this chapter, two criteria or scoring rules are proposed to quan-
tify the numerical robustness of assimilating a specific set of remote sensing
observations and to quantify the reliability of the estimates of the parame-
ters. The criteria are derived by analyzing how the correlations are created
via shared observation data and how theymay influence the process of varia-
tional data assimilation. Experimental tests are conducted and show a good
agreement with theory. The results illustrate the capability of the criteria to
indicate the reliability of the assimilation process. Both criteria can be used
with Observation System Simulation Experiments (OSSEs), and in combina-
tion of other verification scores.

Parts of this chapter are under review in:
Lu, S.⋆, Heemink, A., Lin, H.-X., Segers, A., and Fu, G. (2016). Evaluation criteria on the design on the
assimilation of remote sensing data using variational approach. 0onthly Weather Review.
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7.1. Introduction
During the past three decades, the assimilation of atmospheric observations to im-
prove the forecast of air quality and to construct the re-analysis of past weather and
climate change has gained growing interest (Talagrand and Courtier, 1987; Elbern
and Schmidt, 2001; Elbern et al., 2007; Fu et al., 2015). The available observations
consist of a mixture of in situ, visual, and remotely sensed observations of temper-
ature, wind velocity, pressure, humidity and clouds (McMurry, 2000; Clemitshaw,
2004; Lahoz et al., 2010). Remote sensing makes it possible to collect data from
dangerous or inaccessible areas, and meteorological satellites provide an indispens-
able supplement to the conventional meteorological observing system. Due to the
ability of acquiring data in the traditionally data-poor regions of oceans, strato-
sphere and the Southern Hemisphere, and the high horizontal resolution, satel-
lite observations have played an increasingly important role in atmospheric studies
(Bocquet et al., 2015; Fu et al., 2016). Numerous experiments have been con-
ducted in order to make good use of the satellite data in operational numerical
weather forecasting or to improve the analysis and understanding of atmospheric
phenomena and dynamics.

The assimilation of satellite data and other remote sensing data using variational
approaches has been successfully applied to various atmospheric problems, such as
on the improvement of initial model states and on the estimation of the emissions of
natural or anthropogenic pollutants. For instance, Chai et al. (2009); Lamsal et al.
(2011) estimated regional or global NO፱ emission inventories with satellite NOኼ
column observations. Besides the estimation of a single emission specie, Huneeus
et al. (2012) demonstrated the simultaneous estimate of global emissions of mul-
tiple gaseous and aerosol species including dust, sea salt, BC, OC, and SOኼ by
assimilating daily MODIS total and fine mode aerosol optical depth AOD. Kawabata
et al. (2014) used the non-hydrostatic 4D-Var assimilation system to assimilate the
Doppler wind lidar (DWL) data to forecast the heavy rainfall event of 5 July 2010 in
Japan.

The remote sensing instruments including satellite, lidar and radar acquire infor-
mation without physical contact with the object (the state) by detecting the electro-
magnetic radiation, solar radiation or microwave radiation. The retrieval algorithm
of the detections, such as satellite-retrieved AOD data (Prata and Prata, 2012) and
lidar backscatter coefficients (Wang et al., 2014), usually require the combination
or integration of multiple state variables and subsequently Sensor-Induced Corre-
lations (SICs) are introduced between the states which share the same combined
observation data. These SICs may have a negative impact on the performance of
the parameter estimation method when erroneous or improper specification of er-
ror statistics or of the prior information is used. Alternative 4D-Var approaches that
lead to better conditioned estimation problems should be used to remedy this. For
example, Lu et al. (2016b) demonstrated that using 4D-Var method with a standard
form of cost function to estimate the vertical profile of the volcanic ash emission rate
from the satellite ash column data could result in undesired estimates, and this was
solved by a using Trajectory-based 4D-Var (Trj4DVar) approach with a reformulated
cost function.
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Observation System Simulation Experiments (OSSEs) are an important tool for
evaluating the potential impact of proposed observing systems, as well as for eval-
uating trade-offs in observing system design, and in developing and assessing im-
proved methodology for assimilating new observations (Atlas, 1997). These OSSEs
are used in combination with scoring rules and verification skills, which usually
measure the deviations between forecasts and observation values, the hits, misses
and false alarms (Mittermaier and Roberts, 2010; Gilleland et al., 2009; Ebert, 2008;
Gilleland et al., 2010). Besides, there are many tools for observability or identifiabil-
ity analysis can be used to diagnose whether the parameters can be identified from
a given set of observations (Paulino and de Bragança Pereira, 1994; Rothenberg,
1971; Jacquez and Greif, 1985). However, these methods focus more on the use-
fulness of the observations and are incapable of determining numerical robustness
of the estimation procedure. The condition number of the Hessian is able to indicate
the numerical performance of the gradient-based assimilation approach (variational
approach). However, the computation of this condition number is computational
very expensive.

In this chapter, two criteria are proposed to quantify the numerical effects of
the SICs on the assimilation process. The criterion are simple and practical to
implement for a rough evaluation of the numerical performance of assimilating a
certain type of observations for a given application. They were inspired by the
analysis in section 3.3, and were originally developed to evaluate the performance of
two 4D-Var approaches with different specifications of error statistics in assimilating
satellite column data to estimate a vertical-distributed emission. It is found that the
two criterion can be also used for other applications using remote sensing data or
other integrated data.

This chapter consists of the following topics. Section 7.2 presents two criteria
to evaluate the SICs introduced by assimilating remote sensing data. Tests of the
criteria are given in section 7.3 based on the case study of volcanic ash problem.
The last section gives a brief summary.

7.2. The evaluation methodology
7.2.1. Preliminary knowledge about variational data assimila-

tion
Consider a discrete dynamic model given by:

𝐱፤ = 𝑀፤(𝐱፤ዅኻ, 𝛼𝛼𝛼), (7.1)

where the subscript 𝑘 represents time step 𝑡፤. 𝐱፤ ∈ ℝ፧ and 𝑀፤ are the model state
vector and its corresponding dynamics operator, respectively. 𝛼𝛼𝛼 ∈ ℝ፩ is the static
parameter vector including the model parameters, inputs and initials which needs
to be estimated in this case.

The background or the first guess of the parameters 𝛼𝛼𝛼፛ are assumed to differ
from the true parameters 𝛼𝛼𝛼፭ by stochastic perturbations:

𝛼𝛼𝛼፛ = 𝛼𝛼𝛼፭ +𝜖𝜖𝜖፛ , (7.2)
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Figure 7.1: Process of gradient-based approaches

where 𝜖𝜖𝜖፛ ∼ 𝒩(0,𝖡𝖡𝖡).
Observations 𝐲፨ at time 𝑡፤ are defined by:

𝐲፨፤ = 𝐻፤(𝐱፭፤) + 𝜖𝜖𝜖፨ , (7.3)

where𝐻፤ is the observation operator which projects the state space into observation
space, and 𝜖𝜖𝜖፨ ∼ 𝒩(0,𝖱𝖱𝖱፤) is the observation uncertainty.

4D-Var minimizes the cost function 𝐽 that measures the weighted sum of squares
of distances 𝐽፛ to the background parameters 𝛼𝛼𝛼 and 𝐽፨ to the observations 𝐲፨
obtained over a time interval [𝑡ኺ, 𝑡ፍ፭],

𝐽(𝛼𝛼𝛼) = 1
2 (𝛼𝛼𝛼 −𝛼𝛼𝛼

፛)ፓ 𝖡𝖡𝖡ዅኻ (𝛼𝛼𝛼 −𝛼𝛼𝛼፛) + 12

ፍ፭

∑
፤዆ኺ

(𝐲፤ − 𝐲፨፤)
ፓ 𝖱𝖱𝖱ዅኻ፤ (𝐲፤ − 𝐲፨፤) , (7.4)

where the 𝐲፤ = 𝐻፤(𝐱፤) represents the model-simulated observations. In this study
we focus on the impact of observations on the update. Therefore, the development
of the evaluation criteria requires only the observation term 𝐽፨.

The minimization usually requires the gradient of the cost function 𝐽፨ with re-
spect to the parameters:

𝐠፨ = ∇𝐽፨(𝛼𝛼𝛼)ፓ =
ፍ፭

∑
፤዆ኺ

𝖲𝖲𝖲ፓ፤𝖧𝖧𝖧ፓ፤𝖱𝖱𝖱ዅኻ፤ (𝐲፤ − 𝐲፨፤) , (7.5)

where 𝖧𝖧𝖧፤ and 𝖧𝖧𝖧ፓ፤ are the tangent linear model and its adjoint, respectively, corre-
sponding to observation operator 𝐻፤.

𝖲𝖲𝖲፤ =
𝜕𝐱፤
𝜕𝛼𝛼𝛼 = 𝜕𝑀፤

𝜕𝐱፤ዅኻ
𝜕𝐱፤ዅኻ
𝜕𝛼𝛼𝛼 + 𝜕𝑀፤𝜕𝛼𝛼𝛼 (7.6)

is the sensitivity of the states with respect to the parameters, and 𝖲𝖲𝖲ፓ፤ is its transpose.

7.2.2. Sensor-induced correlations and their impact
Remote sensing observations, and some other observations measure quantities
whose computation involves multiple state variables or parameters. SICs are
created between those variables which share a common observation data, and
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may have a negative numerical effect on the assimilation process or lead to ill-
conditioned numerical problems. The impact of observations on the assimilation
and the mechanism of a gradient-based algorithm is illustrated by Fig.7.1.

The difference Δ𝛼𝛼𝛼 between the true parameters 𝜶፭ and the background (first
guess) parameters 𝛼𝛼𝛼፛ will result in a difference Δ𝐱፤ between the true state fields 𝐱፭፤
and the background state fields 𝐱፛፤. The perturbations Δ𝐱፤ are determined based
on the model sensitivity behavior:

Δ𝐱፤ = 𝖲𝖲𝖲፤Δ𝛼𝛼𝛼, (7.7)

where 𝖲𝖲𝖲፤ is given by equation (7.6).
However, 𝛼𝛼𝛼 or even 𝐱፤ usually cannot be observed directly by remote sensing

instruments for computing Δ𝛼𝛼𝛼 or Δ𝐱፤. In order to estimate Δ𝛼𝛼𝛼, we will make use of
the difference Δ𝐲፤ between the true observations 𝐲፨፤ and the simulated observations
𝐲፤. First, the observed difference between states Δ�̂�፤ is computed by distributing
Δ𝐲፤ to the states according to the observational error statistics and the adjoint
operational operator 𝐇ፓ፤ by:

Δ�̂�፤ = 𝐇ፓ፤𝖱𝖱𝖱ዅኻ፤ Δ𝐲፤ = 𝐇ፓ፤𝖱𝖱𝖱ዅኻ፤ 𝐇፤𝖲𝖲𝖲፤Δ𝛼 = 𝖲𝖲𝖲፨፤Δ𝛼, (7.8)

where 𝖲𝖲𝖲፨፤ = 𝐇ፓ፤𝖱𝖱𝖱ዅኻ፤ 𝐇፤𝖲𝖲𝖲፤ is termed the ‘observed sensitivity’ representing the sen-
sitivity of states through observations with respect to the parameters. The pa-
rameters will then be updated according to model dynamics 𝖲𝖲𝖲፤ and the observed
perturbation of states Δ�̂�፤ as

Δ�̂�፤ = 𝖲𝖲𝖲ፓ፤Δ�̂�፤ . (7.9)

This mechanism can be interpreted by the rewritten of the gradient in Eq. (7.5):

𝐠፨ =
ፍ፭

∑
፤዆ኺ

𝖲𝖲𝖲ፓ፤𝖧𝖧𝖧ፓ፤𝖱𝖱𝖱ዅኻ፤ (𝐲፤ − 𝐲፨፤) =
ፍ፭

∑
፤዆ኺ

𝖲𝖲𝖲ፓ፤ (𝖧𝖧𝖧ፓ፤𝖱𝖱𝖱ዅኻ፤ Δ𝐲፤) =
ፍ፭

∑
፤዆ኺ

𝖲𝖲𝖲ፓ፤Δ�̂�፤ . (7.10)

If the actual perturbation of states Δ𝐱፤ is used for the update of the parameters
Δ�̃�𝛼𝛼 = 𝖲𝖲𝖲ፓ፤Δ𝐱፤, this update (Δ�̃�𝛼𝛼) is affected by no SICs. The formulation of the
corresponding gradient 𝐠፜ is given as following:

𝐠፜ =
ፍ፭

∑
፤዆ኺ

𝖲𝖲𝖲ፓ፤Δ𝐱፤ . (7.11)

𝐠፜ can be viewed as the gradient of a cost function when using a ‘complete obser-
vation operator’ 𝐻፜ which observes the complete states:

𝐻፜(𝐱፤) = 𝐱፤ . (7.12)

𝐠፜ reflects the model sensitivity behavior, physically only. The impact of SICs is
implied by how much the observed model sensitivity differs from the physical model
sensitivity, where the former is reflected by 𝐠፨ and the latter is reflected by 𝐠፜.
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7.2.3. Evaluation criteria
Two criteria are now presented to test how much the SICs will influence the assim-
ilation process in a negative way, which can be considered as an indication to the
usefulness of the data on a given DA system.

Criterion 1 (FIM Criterion): The distance between the normalized Hessian or the
normalized Fisher information matrix (FIM) generated with complete observation
and remote sensing observation:

|| 𝐈
፜

||𝐈፜|| −
𝐈፨
||𝐈፨|| || = ||�̄�

፜ − �̄�፨||, (7.13)

where the norm ||.|| is Frobenius norm with ||𝖠𝖠𝖠||ፅ = (∑፦።዆ኻ ∑
፧
፣዆ኻ |𝑎።,፣|ኼ)

ኻ/ኼ
or 𝐿ኼ,ኻ

norm with ||𝖠𝖠𝖠||ኼ,ኻ = ∑፧፣዆ኻ (∑
፦
።዆ኻ |𝑎።,፣|ኼ)

ኻ/ኼ
for a matrix 𝖠𝖠𝖠 ∈ ℝ፦×፧. 𝐈፜ = ∑ፍ፭፤዆ኺ 𝖲𝖲𝖲ፓ፤𝖲𝖲𝖲፤

and 𝐈፨ = ∑ፍ፭፤዆ኺ 𝖲𝖲𝖲ፓ፤𝐇ፓ፤𝖱𝖱𝖱ዅኻ፤ 𝐇፤𝖲𝖲𝖲፤ for a linear model, 𝐈፜ = 𝜕ኼ𝐽፜/𝜕𝜶ኼ and 𝐈፨ = 𝜕ኼ𝐽፨/𝜕𝜶ኼ
for a nonlinear model or other specifications of error statistics (formulation of cost
function), with 𝐽፜ and 𝐽፨ are the cost functions formed by complete observation and
remote sensing observation, respectively.

𝐈፜ reflects the DA process influenced only by the physical dynamics or the model
sensitivity behavior, while 𝐈፨ reflects the performance of DA as a result of combin-
ing the observation operator and model dynamics. This criterion provides global
information on how much the SICs change the sensitivity behavior that is used for
the update of parameters (gradient) over iterations The FIM Criterion is practical
for those cases where the FIM (Hessian) or its approximation is easy to compute.

Criterion (Gradient Criterion): The distance between the normalized model gra-
dient and the normalized observed gradient:

|| 𝐠
፜

||𝐠፜|| −
𝐠፨
||𝐠፨|| || = ||�̄�

፜ − �̄�፨||, (7.14)

or

1
𝑀

ፌ

∑
።዆ኻ
|| 𝐠

፜
።

||𝐠፜። ||
− 𝐠፨።
||𝐠፨። ||

|| = 1
𝑀

ፌ

∑
።዆ኻ
|| ̄𝐠።፜ − ̄𝐠።፨||, (7.15)

where the norm ||.|| is Euclidean norm with ||𝐚|| = (∑፧።዆ኻ |𝑎።|ኼ)
ኻ/ኼ

for a vector
𝐚 ∈ ℝ፧. 𝐠፜ is the model gradient and 𝐠፨ is the observed gradient, as defined in
equation (7.11) and (7.5) for a standard cost function, respectively. Or 𝐠፨ = (∇𝐽፨)ፓ
and 𝐠፜ = (∇𝐽፜)ፓ with 𝐽፨ and 𝐽፜ are defined as in FIM Criterion for other formulation
of cost function.

Criterion (7.14) provides local and detailed information that measures the im-
pact of SICs on the quality of gradient as well as on the convergence performance.
A large value of this criterion indicates that a poor gradient is obtained using the
observations. We can perturb one parameter or one state variable and compute
the criterion value, which indicates whether the observation is capable of estimat-
ing the perturbed parameter. In general, perturbations can also be performed on
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a set of closely-related parameters or states. Criterion (7.15) calculates in this case
the mean of the differences between the two normalized gradients generated by a
number of random perturbations of parameters or states, and this provides global
information about whether the observed model sensitivity behavior is valid. Crite-
rion (7.14) and (7.15) can be applied to cases where the adjoint model is available
but the Hessian is difficult to obtain .

The values of the two criteria ranges from 0 to 2. A small value (say less than
0.1) implies a good observation operator, which almost preserves the characteristics
of the model dynamics. The two criteria will give large values as an alarm when
SICs are created by using remote sensing data or other integrated data and will
lead to ill-conditioned assimilation processes. Theoretically, a bad situation occurs
when the gradient is unable to distinguish the perturbed parameters and gives an
equal update on each parameter, in such a case it leads to a Gradient criterion value
of √2√(1 − √𝑛/𝑛) ∈ (0.76, 1.41) with 𝑛 ∈ [2, +∞). An even worse scenario is that
larger updates are given on the unperturbed parameters than on the perturbed
ones, which results in even larger criteria values. Tests suggest that FIM criterion
values larger than 0.9 or Gradient criterion values larger than 1.0 indicate a very
ineffective assimilation process for the gradient-based method. Values less than
0.6 turned out to be acceptable for our case of volcanic ash.

Criteria (7.13) and (7.15) both provide a global assessment on the numerical
robustness of the assimilation process, and on the reliability of the forecast after
assimilation. The values of both criteria change with observation operators (ob-
servation position and observation type). Criterion (7.13) is invariant to perturbed
variables and more robust than Criteria (7.15), while Criteria (7.15) is more simple
to implement. Criteria (7.14) and (7.15) can potentially be used as a diagnostic tool
to detect which parameters are correlated via observations but not physically and
how this will affect the assimilation outcomes. It provides a mean to better analyze
the sensitivity behavior and develop a more effective alternative method for the use
of certain type of observations.

Note that, the background term 𝐽፛ of the cost function plays an important role in
the performance of 4D-Var approach which is able to distinguish different variable
in the analysis increments and also works as a regularization term. However, this
study focuses on exploring the impact of remote sensing observations and other
integrated observations on the DA process, therefore in the derivation of the criteria
we ignore the background term. Besides, Gradient Criteria (7.14) and (7.15) require
the gradient that begins with the background (first guess), which indicates the back-
ground has no effect on the value of the criteria. The information of background is
implicitly included in the observation term 𝐽፨ by the use of model simulated obser-
vation 𝐲፤. Therefore, the impact of different background and different perturbed
parameters can both be tested, which are related to 𝐲፤ and 𝐲፨፤ in 𝐽፨, respectively.

7.2.4. Example: trajectory-based 4D-Var approach
In this section, trajectory-based 4D-Var (Trj4DVar) will be briefly reviewed and the
procedure of its corresponding criteria will be described, which will be used in the
case study in the next section.
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Trj4DVar seeks an optimal linear combination of trajectories generated with dif-
ferent emissions to fit the observation data coupled with a priori information, by
minimizing a reformulated 4D-Var cost function.

We assume the vector of parameters 𝛼𝛼𝛼 is in a parameter space spanned by the
perturbed parameter sets Δ𝛼𝛼𝛼። (𝑖 = 1,⋯ , 𝑝) and can be represented in the following
form:

𝛼𝛼𝛼 = 𝛼𝛼𝛼፛ +
፩

∑
።዆ኻ
𝛽።Δ𝛼𝛼𝛼። , (7.16)

where 𝛽። is the weight of Δ𝛼𝛼𝛼። in the sum. If 𝑝 is large the parameter space can
be approximated by a smaller space spanned by a smaller number of perturbed
parameters. Therefore, the determination of 𝛼𝛼𝛼 corresponds to estimating 𝛽𝛽𝛽 =
[𝛽ኻ, ⋯ , 𝛽፩].

The simulated observations 𝐲፤ in cost function (7.4) can be approximated by:

𝐲፤ = 𝐻፤(𝑀፤(𝐱፤ዅኻ, 𝛼𝛼𝛼)) = 𝐻፤(𝑀፤(𝐱፤ዅኻ, 𝛼𝛼𝛼፛ +
፩

∑
።዆ኻ
𝛽።Δ𝛼𝛼𝛼።))

≈ 𝐻፤(𝑀፤(𝑥𝑥𝑥፤ዅኻ, 𝛼𝛼𝛼፛)) +
፩

∑
።዆ኻ
𝛽።𝖧𝖧𝖧ፓ፤𝖬𝖬𝖬ፓ፤(𝑥𝑥𝑥፤ዅኻ, Δ𝛼𝛼𝛼።)

≈ 𝑦𝑦𝑦፛፤ +
፩

∑
።዆ኻ
𝛽።(𝐻፤(𝑀፤(𝑥𝑥𝑥፤ዅኻ, 𝛼𝛼𝛼፛ + Δ𝛼𝛼𝛼።)) − 𝐲፛፤)

= 𝐲፛፤ +
፩

∑
።዆ኻ
𝛽።Δ𝐲።፤ ,

(7.17)

where 𝑦𝑦𝑦፛፤ = 𝐻፤(𝑀፤(𝑥𝑥𝑥፤ዅኻ, 𝛼𝛼𝛼፛)) are reference trajectories computed using back-
ground parameters, and Δ𝑦𝑦𝑦።፤ = 𝐻፤(𝑀፤(𝑥𝑥𝑥፤ዅኻ, 𝑢𝑢𝑢፛ +Δ𝑢𝑢𝑢።))−𝑦𝑦𝑦፛፤ ≈ 𝖧𝖧𝖧ፓ፤𝖬𝖬𝖬ፓ፤(𝑥𝑥𝑥፤ዅኻΔ𝛼𝛼𝛼።) are
trajectories associated with perturbation of parameters Δ𝛼𝛼𝛼 in the neighborhood of
𝛼𝛼𝛼፛.

Therefore, the coefficients 𝛽𝛽𝛽 can be computed by minimizing a reformulation of
the cost function (7.4) given by:

𝐽፭፫፣(𝛽𝛽𝛽) =
1
2

ፍ፭

∑
፤዆ኻ

(
፩

∑
።዆ኻ
𝛽።Δ𝑦𝑦𝑦።፤ +𝑦𝑦𝑦፛፤ −𝑦𝑦𝑦፨፤)

ፓ

[𝖱𝖱𝖱፤]ዅኻ (
፩

∑
።዆ኻ
𝛽።Δ𝑦𝑦𝑦።፤ +𝑦𝑦𝑦፛፤ −𝑦𝑦𝑦፨፤)

+ 12 (
፩

∑
።዆ኻ
𝛽።Δ𝛼𝛼𝛼።)

ፓ

[𝖡𝖡𝖡፤]ዅኻ (
፩

∑
።዆ኻ
𝛽።Δ𝛼𝛼𝛼።)

= 𝐽፨፭፫፣ + 𝐽፛፭፫፣ .

(7.18)

The gradient 𝐠፨ of 𝐽፨ in cost function (7.18) with respect to 𝛽𝛽𝛽 now is computed
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Figure 7.2: (a) Simulation and assimilation domain of Iceland area. (b) Ash columns of volcanic ash
cloud at 19:00 UTC, April 14, 2010.

by:

𝐠፨፭፫፣ =
ፍ፭

∑
፤዆ኻ

Δ𝖸𝖸𝖸ፓ፤𝖱𝖱𝖱ዅኻ፤ (Δ𝖸𝖸𝖸፤𝛽𝛽𝛽 + 𝐲፛፤ − 𝐲፨፤) , (7.19)

where Δ𝖸𝖸𝖸፤ = [Δ𝐲ኻ፤ , ⋯ , Δ𝐲፩፤ ]. The Hessian can be similarly obtained as:

𝖨𝖨𝖨፨፭፫፣ =
ፍ፭

∑
፤዆ኻ

Δ𝖸𝖸𝖸ፓ፤𝖱𝖱𝖱ዅኻ፤ Δ𝖸𝖸𝖸፤ . (7.20)

The counterparts of the gradient and Hessian for 𝐽፜ can be obtained by substituting
the complete observation operator (7.12) for 𝐻፤ in the computation of trajectories.

7.3. Case study
We illustrate how to use both criteria for the evaluation on the effectiveness of the
assimilation process and for the design of a DA system. The criteria are tested using
a case where SICs typically influence the assimilation process negatively when using
4D-Var approach with a standard type of cost fucntion. It was explicitly pointed out
in chapter 3 that using satellite ash-column data can result in inaccurate estimates
of volcanic ash emissions. Therefore, twin experiments are conducted based on a
volcanic ash estimation problem.

7.3.1. Experimental setup
Twin experiments are carried out to estimate the emission rates of volcanic ash by
assimilating synthetic observations. A 3D aerosol transport model of the Iceland
area (Fig. 7.2(a)) is used to simulate the eruption of the Eyjafjallajökull volcanic



7

92
7. Evaluation criteria on the design for assimilating remote sensing data

using variational approaches

0 0.5 1 1.5 2 2.5

x 10
5

0

2

4

6

8

10

emission rate (kg s
−1

)

h
e

ig
h
t 

o
v
e

r 
s
u

m
m

it
 (

k
m

)

 

 

truth

background

estimated

0 0.5 1 1.5 2 2.5

x 10
5

0

2

4

6

8

10

emission rate (kg s
−1

)

h
e

ig
h
t 

o
v
e

r 
s
u

m
m

it
 (

k
m

)

 

 

truth

background

est_1h

est_3h

est_6h

(a) (b)

Figure 7.3: Estimation results of emission rates with (a) complete observations and (b) synthetic satellite
observations.

activity during April 14-19, 2010, with a temporal resolution of 15 minutes and a
spatial resolution of 0.25∘ × 0.25∘. For simplicity, the transport model includes only
advection and diffusion processes for which the adjoint model is available. Wind
fields are obtained from 3-hourly meteorological data from the European Centre
for Medium-Range Weather Forecasts (ECMWF), which is interpolated to hourly
resolution. Figure 7.2(b) is an illustration of a volcanic ash cloud simulated by the
model.

The emission information of the first few days of the explosive eruption is taken
from Webley et al. (2012) and shown in Table 2.2 in section 2.4. The eruption is
described in terms of parameters such as the total emission rate and the plume
height, which are assumed to be constant during an emission episode of several
hours. The ‘true’ emission rates in the vertical layers are generated using a Poisson
distribution according to the emission information shown in Table 2.2. The ‘back-
ground’/first guess emission is calculated with an underestimated total emission
rate of the ‘true’ emission and a correspondingly lower plume height.

The synthetic observations are generated hourly by running the model with the
‘true’ emissions. The complete observations are 3D state fields. The satellite-like
observations are ash columns computed by Eq. 3.5 given in section 3.4.1.

7.3.2. Twin experiment of using standard 4D-Var
Twin experiments are conducted with both complete observations and column-
integrated observations. The results are shown in Fig. 7.3(a) and (b), respectively.
In Fig. 7.3(a) it can be seen that the ‘estimated’ perfectly matches the ‘truth’,
which implies that the model is physically well-conditioned and emission rates can
be well estimated according to the model dynamics. However, in Fig. 7.3(b), with
1 hourly assimilation of column-integrated observations, the estimated emission
rates (denoted by ‘est_1h’) are increased by the same amount in all layers without
recognizing the vertical profile in the ‘truth’. The injection layer, with the maximum
of the emission rate, cannot be correctly determined. Similar results are obtained
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Table 7.1: Gradient Criterion values computed from 4 single-state-perturbation experiments.

case 1 hour 3 hours 6 hours
𝑥ኻ,ዀ 1.1342 1.1618 1.2267
𝑥ኻ,዁ 1.2203 1.1873 1.2671
𝑥ኼ,ዀ 1.0257 1.0096 1.1822
𝑥ኼ,዁ 1.1132 1.0536 1.2442

Table 7.2: Gradient Criterion values computed from 2 single-input-perturbation experiments.

case 1 hour 3 hours 6 hours
the 5፭፡ input 1.1012 0.9850 0.9510
the 7፭፡ input 1.1768 1.0904 1.0331

with larger assimilation windows (3 hours and 6 hours). This shows that it is very
ineffective to estimate volcanic ash emission rates using satellite data, and that this
is not caused by the model but by the type of observations used.

Now we investigate the problem using the Gradient Criteria. First perturbations
on a single state variable are carried out, and the model gradient and observed
gradient are computed with complete observation and column-wise observation,
respectively. The gradients can be viewed as sensitivities of the perturbed state
with respect to the parameters (emission rates). Four single-state-perturbation
experiments are performed. The first two states are located at horizontal positions
shown by ‘meas1’ and ‘meas2’ in Fig. 7.2(a) marked by red asterisks, in the 6፭፡
layer above the summit, denoted as 𝑥ኻ,ዀ and 𝑥ኼ,ዀ, respectively. The other two
are located at the same pixels as the first two, but now in the 7፭፡ layer above
the summit, denoted by 𝑥ኻ,዁ and 𝑥ኼ,዁ accordingly. The horizontal locations of the
perturbed states are chosen such that they are downwind and close to the summit
and thus carry more information about the parameters than those located upwind
or further away. The vertical layers are chosen to be the injection layers of the
‘truth’ and ‘background’ where the injection height is located, since states at those
two layers play important roles in this parameter estimation process. The Gradient
criterion results given in Table 7.1 show the values all larger than 1. This implies
that the observed sensitivity behavior is not able to represent the model dynamics.

Then, perturbations of a single parameter are carried out, and the model gradi-
ent and observed gradient are computed. The perturbed parameters are selected
to be the inputs at the 6፭፡ and 7፭፡ layers, the injection layers in ‘background’ and
‘truth’, respectively. The Gradient criterion results in Table 7.2 all give large values
around 1. This implies that SICs have been largely influence the numerical pro-
cess for the update of the parameters, and the perturbed parameters cannot be
determined accurately using this kind of error statistics. This is also reflected by
the estimation results in Fig. 7.3(b), where the injection layer cannot be identified
by assimilating the ash columns using a standard 4D-Var approach.

In order to diagnose how the SICs affect sensitivity behavior, the normalized
model gradients and observed gradients of the parameter perturbation experiments
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Figure 7.4: Normalized gradients generated by perturbation in a single input parameter at (a) the ዀᑥᑙ
layer and (b) the ዁ᑥᑙ layer above the summit, with a 1h assimilation window using Std4DVar.

are shown in Fig. 7.4. We can see that due to the model dynamics, an input variable
is sensitive to its own perturbation and slightly sensitive to the inputs in the near
layers. SICs are introduced by using column-integrated data, making a single input
variable almost equally sensitive to all inputs and even slightly more sensitive to
the variable in other layers.

7.3.3. Twin experiment of using trajectory-based 4D-Var
Based on the sensitivity analysis in section 7.3.2, Trj4DVar (see section 7.2.4) should
be applied in the way of perturbing the emission rate in each layer one by one and
computing the corresponding trajectories to obtain a better estimate using the ash
column data. In this experiment, we will demonstrate how the two criteria are
used for the configuration of the assimilation system and for a sensitivity analysis
to better understand the estimation results.

The FIM criterion and Gradient criterion in Eq. (7.15) are applied for the se-
lection between Trj4DVar and standard 4D-Var (Std4DVar), and the selection of a
proper assimilation window. The criteria values are shown in Fig. 7.5, where ‘std’
represents Std4DVar, ‘trj’ represents Trj4DVar, ‘FIM’ represents FIM criterion and
‘grd’ represents Gradient criterion. It can be seen that both approaches result in
criteria values which decrease with larger assimilation windows. Using Std4DVar,
this decease becomes smaller. This indicates that enlarging the assimilation win-
dow will introduce less improvements in the estimates. This result is consistent
with the experimental results in section 7.3.2. On the other hand, the criteria val-
ues obtained using Trj4DVar are clearly smaller and they decrease faster than those
obtained using Std4DVar. Based on the diagnosis of the criteria results , we can
see that Trj4DVar is a better choice for this application.

Assimilation windows larger than 3 hours lead to criteria values that are accept-
able (< 0.6) for our case mentioned in section 7.2.3. 6-hour assimilation window
produces the smallest values and thus is the best option. Therefore the assimila-
tion is conducted using 6-hour window to test the performance of Trj4DVar. Figure



7.3. Case study

7

95

1 2 3 4 5 6
0.4

0.6

0.8

1

1.2

1.4

Length of assimilation window (hours)

C
rit

er
ia

 v
al

ue

 

 

std_FIM
trj_FIM
std_grd
trj_grd

Figure 7.5: Criteria values of Std4DVar v.s. Trj4DVar.

0 0.5 1 1.5 2 2.5

x 10
5

0

2

4

6

8

10

emission rate (kg s−1)

he
ig

ht
 o

ve
r 

su
m

m
it 

(k
m

)

 

 

truth
background
Std4DVar
Trj4DVar

Figure 7.6: Comparison of estimation results with a 6h assimilation window using Std4DVar v.s. using
Trj4DVar.



7

96
7. Evaluation criteria on the design for assimilating remote sensing data

using variational approaches

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

sensitivity value

in
p
u

t 
v
a

ri
a

b
le

 

 

model sensitivity

observed sensitivity

perturbed variable

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

sensitivity value

in
p
u

t 
v
a

ri
a

b
le

 

 

model sensitivity

observed sensitivity

perturbed variable

(a) (b)

Figure 7.7: Normalized gradients generated by perturbation in a single input parameter at (a) the ኿ᑥᑙ
layer and (b) the ዁ᑥᑙ layer, with a 6h assimilation window using Trj4DVar.

7.6 shows a comparison between the estimation results using Std4DVar and those
using Trj4DVar. The vertical profile of the estimate is significantly improved using
Trj4DVar. The injection layer is correctly determined in the 7፭፡ layer. However,
emission rates in 7፭፡ − 9፭፡ are almost the same. Parameter-perturbation experi-
ments are conducted to illustrate the reason behind this. The normalized gradients
of individually perturbing the 6፭፡ and the 7፭፡ inputs are illustrated in Fig. 7.7. We
can observe that the 7፭፡ − 9፭፡ inputs are equally correlated. It is because meteo-
rological patterns in the 7፭፡ −9፭፡ layers above the summit are similar and changes
occurring in any layer of the three are not distinguishable.

7.4. Conclusion and discussion
In this chapter two criteria were presented to evaluate the numerical performance of
gradient-based parameter estimation algorithms for a given type of remote sensing
observations. The first criterion (FIM) was constructed to provide global information
on how numerically robust an assimilation process is, and how accurate assimilation
results will be. The second one can provide local and detailed information about
sensitivity behavior. This can be used to diagnose what went wrong when poor
estimates were obtained. Twin experiments were carried out to validate the criteria
and to illustrate how the criteria can be applied in practice for multiple purposes.

These two criteria indicate the estimation quality and the forecast quality after
assimilation. They can be used for the design and configuration of an assimilation
system to benefit the most from a given data set. Configurations include the selec-
tion of data when a huge amount of data are obtained, the selection of assimilation
algorithm, and the configuration of the assimilation system such as the length of
assimilation window. Furthermore, the criteria are also recommended as a diag-
nostic tool for sensitivity analysis, which provides a possibility to seek alternative
methods when the use of the traditional methods is problematic due to the impact
of large SICs.

It should be noticed that the two criteria are necessary not sufficient conditions
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to quantify the numerical robustness of the procedure to assimilate the remote
sensing data. Their benefits are that they are simple to implement and the results
can be easy to understand when they are used as diagnostic tools. They can be
used in OSSEs (twin experiments) where “complete observations” exists. Twin ex-
periments performed in this chapter could be regarded as OSSE. For real system,
the two criteria can be used in combination with other verification scores for fore-
casts. For instance, the criteria can be performed first to test the potential impact
of assimilating a new type of observation on a certain application; then verification
scores can be used to quantify the quality of forecasts after assimilating real data;
and last, the criteria can be used as diagnostic tool for sensitivity analysis if bad
results of assimilating real data occur.





8
Conclusion and Outlook

8.1. Conclusion
Volcanic eruptions, especially explosive ones, inject large amount of chemicals, cor-
rosive gases and volcanic ash into the upper troposphere and lower stratosphere.
Volcanic ash, consisting of very small rock fragments, has been known to be haz-
ardous for human and animal health, land transportation, and aviation safety. Vol-
canic Ash Transport and Dispersion (VATD) models are critical tools to provide advi-
sory information and timely volcanic ash forecasts. Even the most advanced VATDs
are not capable of reproducing the reality perfectly. It is necessary to integrate
available observations in the models for more accurate predictions by emloying
data assimilation techniques.

An operational air-quality model - the LOTOS-EUROS, were adapted as a VATD.
A new functionality was developed within the model that allowed the simulation
of emission, transport (including advection and dispersion), and sedimentation of
volcanic ash released during volcanic eruptions. A preprocessor tool produced an
vertical ash column at the model pixel nearest to the volcano locations, based on
eruption source parameters such as plume height and total emission rate, as well
as additional information of timing and durations. Using this emission source, the
LOTOS-EUROS model can realistically simulate transport and sedimentation of the
ash cloud using its own dynamics. Parameterizations of some physical procedures
such as ashfalls were adapteds.

Besides a valid VATD, eruption source parameters which are crucial for the fore-
casts of the locations and shapes of the ash cloud, are usually poorly known. The
value of these parameters can vary frequently in a wide range depending on dif-
ferent eruption types, which results in the large uncertainty of the volcanic ash
emission (input) to the VATDs. Therefore, the estimation of the ash emission is
the main focus of this thesis. Indirect methods based on an empirical relationship
were used for the calculation of mass eruption rate (MER) from observations of
plume height (PH). This empirical relationship is loose, and the reproduced source
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parameters can only be qualified as rough values. Therefore, observations from
a more powerful monitoring tool - satellite, is considered to be assimilated. The
Ash Mass Loadings (AMLs) retrieved from satellite observations contain informa-
tion about the time evolution of the ash cloud, which yields good possibility of an
accurate estimation of the emission.

Among all available data assimilation approaches, Four Dimensional Variational
assimilation (4D-Var) approach was considered as an appropriate choice for the ap-
plication. 4D-Var was first introduced in meteorological field for the estimation of
initial condition, then it was proven to be a proficient tool for parameter estimation.
It seeks an optimal set of parameters, including model states, initial conditions and
systematic parameters, by minimizing a cost function which combines the model
simulations and observations according to their statistic properties. The cost func-
tion is defined both in space and in time, which benefits from the flow dependence
in the statistics by incorporating observations over a period. In addition, the param-
eters to be estimated can be easily accounted for in the cost function. The approach
has already been used to estimate emissions of air pollutant including ozone (O3
), carbon monoxide (CO), nitrogen dioxide (NO2), and aerosols/particular matter
(PM), etc., by assimilating retrievals from satellite data tracing gas and aerosols of
the above species.

However, it is a challenge to integrate the AMLs which lack vertical resolution for
the estimation of volcanic ash emissions which are presented in forms of an eruption
column. Standard 4D-Var (Std4DVar) are tested in a twin experiment framework,
where synthetic observations of ash columns computed from model simulated 3D
ash concentrations are used. The results show that Std4DVar is unable to recon-
struct the vertical profile of the emission. Actually, the emission rate distributed to
each vertical layer will increase/decrease almost in the same amount depending on
the difference between the true MER and the background MER. The injection layer
containing the maximal amount of emission rate cannot be accurately determined.

To deal with this problem, a Trajectory-based 4D-Var (Trj4DVar) approach is
proposed. Trj4DVar reformulates the cost function in a regression type which com-
putes the total difference between observed ash columns and a linear combination
of simulated trajectories coupled with a priori emission knowledge. To construct the
cost function, it decomposes the system into subsystems which represent source-
receptor relationships to each source term (ash injection at each layer), thus it does
not lose vertical information as Std4DVar does. The results of twin experiments
show that, for most cases, Trj4DVar is capable of estimating the input emission
column when a large assimilation window (> 6 hours) is used.

The twin experiments is repeated where different values of noise are given in
the synthetic observations or perturbations are used in the meteorologic data. The
outcomes show that there is still a small possibility that Trj4DVar fails to determine
the injection height accurately. Being disturbed by the weather condition (light and
cloud, etc) at that moment, satellite instrument can be hampered to observe the
ash cloud, which may increase the possibility of failure for the use of Trj4DVar. To
remedy this, Trj4DVar is modified to incorporate observations of PH and MER in
addition to satellite AMLs. The modification aims at restricting the maximal fraction
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of emission rate to the injection layer. The modified Trj4DVar is able to accurately
estimate injection height the based on the results of twin experiments.

When it comes to using real-life field data, the situation is more complicated.
The detection of volcanic ash can be disturbed by the weather condition such as
water vapor. This will result in observations of undetected or wrongly-detected ash.
Besides, many sensors ,such as UV and visible sensors, have limited temporal cov-
erage which can only observe during daylight. Due to the temporal and sometimes
spatial insufficiency of the data, study is taken on how to use the data properly in or-
der to benefit more and produce a reasonable estimate. A prepossessing procedure
and guidance on the proper use of satellite data is provided.

Finally, a deeper analysis is given on the failure of using Std4DVar in this ap-
plication. It is found that using Std4DVar to assimilation remote sensing data can
be tricky. Remote sensing instruments measure quantities that combine several
state variables. This creates SICs between the state variables which share the
same observation variable. The SICs may cause numerical problems resulting in a
low convergence rate or inaccurate estimates in gradient-based variational assimi-
lation when an improper specification of error statistics are used. Two criteria are
proposed to quantify the numerical effects of the SICs, which can be regarded as
indications of the effectiveness of the assimilation process and the forecast qual-
ity. They are tested in the twin experiments. The results show that they are able
to give evaluation on the design and configuration of the assimilation system with
remote sensing data, and the evaluation on how well the forecast with assimilation
can reproduce the ‘truth’.

8.2. Outlook
There are still unresolved problems or challenges remain, which can be inspiring
for further research. Some suggestions and topics that might be interesting are
discussed in the following.

Based on the experimental results of this thesis, the modified Trj4DVar are
shown to bear a great potential for use in operational volcanic ash forecasting using
assimilation of ash columns in conjunction with ground-based observations of PH
and MER. Adaption should be made on the approach for applications to other volca-
noes. First, due to the experimental results and the fact that the information of PH
and MER were averaged and validated every 6 hours, 6 hour is an optimal length
of the assimilation windows in this case. For other cases, the selection of assimi-
lation window should be based on examination and eruption type, or assimilation
window with adaptable length can be considered. Second, in order to utilize data
of other satellite instruments, adjustments should be made in the preprocessing of
the data and in the specification of the observational uncertainty. For instance, the
construction of the observational error covariance can be adjusted according to the
retrieval error data.

Care should be taken of using remote sensing data. The mapping of model
states into observation space usually involves the integration of several states in a
column/row. SICs are created between the state variables which share a common
observation variable. This will have different influence the assimilation process and
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the quality of estimation for different specifications of error statistics. Interesting
topics are triggered on the use of this kind of data (integrated data). Firstly, evalu-
ation schemes can be developed to numerical robustness of assimilating the data,
and assess effectiveness of assimilation process or the quality of estimates. Sec-
ondly, new method can be developed for the assimilation of this data, for instance,
Trj4DVar can be extended to general cases. Thirdly, the 2D retrievals of remote
sensing data can be transfered to the 3D state fields to be assimilated.
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A
Notations

A.1. Abbreviations

Symbol Description
VATD Volcanic Ash Transport and Dispersion model
PH Plume Height
MER Mass Eruption Rate
AML Ash Mass Loading
DA Data assimilation
4D-Var Four Dimensional Variational assimilation approach
Std4DVar Standard 4D-Var approach with a standard cost function
Trj4DVar Trajectory-based 4D-Var approach with a reformulated cost func-

tion
ESP Eruption Source Parameter
AOD Aerosol Optical Depth
NAME Numerical Atmospheric-dispersion Modelling Environment
WRF-Chem Weather Research and Forecast model coupled with Chemistry
ASL Above Sea Level
ECMWF European Centre for Medium-range Weather Forecast
VAA Volcanic Ash Advisory
SEVIRI Spinning Enhanced Visible and Infrared Imager
SIC Sensor-Induced Correlation

A.2. Vectors

Symbol Dimension Description
𝐱፤ [𝜇g mዅኽ] state vector at 𝑘፭፡ time level containing 3D vol-

canic ash concentration field
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𝐲፤ [𝜇g mዅኼ] observation vector at 𝑘፭፡ time level containing 2D
ash mass loading field

𝐮፤ [kg sዅኻ] emission rate of volcanic ash at 𝑘፭፡ time level
𝐮፛፤ [kg sዅኻ] background emission rate of volcanic ash at 𝑘፭፡

time level
𝐮 [kg sዅኻ] constant emission rate during one assimilation

window
𝐮፛ [kg sዅኻ] constant background emission rate during one as-

similation window
Δ𝐮። [kg sዅኻ] perturbation on the 𝑖፭፡ element of 𝐮
𝐰፤ [-] uncertainty of 𝐮፤
𝐯፤ [-] uncertainty of 𝐲፤
𝜷 [-] coefficient of linear combination of vectors Δ𝐮።
𝐠 [-] gradient of cost function with respect to parame-

ters

A.3. Matrices

Symbol Dimension Description
𝖡𝖡𝖡፤ [-] covariance matrix of 𝐰፤
𝖱𝖱𝖱፤ [-] covariance matrix of 𝐯፤

A.4. Operators

Symbol Description
𝑀፤ volcanic ash transport model
𝐻፤ observation operator projecting then state space into the obser-

vation space
𝐌፤ tangent linear model of 𝑀፤
𝐇፤ tangent linear model of 𝐻፤
𝐌ፓ
፤ adjoint model of 𝑀፤

𝐇ፓ፤ adjoint model of 𝐻፤
𝐽 cost function
𝐽፛ background term of cost function 𝐽
𝐽፨ observation term of cost function 𝐽
𝐈 Fisher information matrix
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