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ABSTRACT

Functional magnetic resonance imaging (fMRI) intends to detect significant neural activity by means of statis-
tical data processing. Commonly used statistical tests include the Student-t test, analysis of variance, and the
generalized linear model test. A key assumption underlying these methods is that the data are Gaussian dis-
tributed. Moreover, although MR data are intrinsically complex valued, fMRI data analysis is usually performed
on single valued magnitude data. Whereas complex MRI data are Gaussian distributed, magnitude data are
Rician distributed.

In this paper, we describe five Generalized Likelihood Ratio Tests (GLRT's) that fully exploit the knowledge of
the distribution of the data: one is based on Rician distributed magnitude data and two are based on Gaussian
distributed complex valued data. By means of Monte Carlo simulations, the performance of the GLRTSs is
compared with the classical statistical tests.

Keywords: functional magnetic resonance imaging, Statistical Parameter Maps, Magnitude Data, Complex
data, Generalized Likelihood Ratio Test

1. INTRODUCTION

Functional activation detection using magnetic resonance imaging (MRI) is a rapidly growing field that has
emerged in only the past decade. Functional MRI (fMRI) is the use of an MR imaging system to detect regional
changes in cerebral metabolism or in blood flow, volume or oxygenation in response to task activation. The most
popular technique utilizes blood oxygenation level dependent (BOLD) contrast, which is based on the differing
magnetic properties of oxygenated (diamagnetic) and deoxygenated (paramagnetic) blood. These magnetic
susceptibility differences lead to small, but detectable changes in susceptibility-weighted MR image intensity.
However, relatively low image signal-to-noise ratio (SNR) of the BOLD effect makes detection of the activation-
related signal changes difficult. Fortunately, rapid image acquisition techniques can be used to generate data sets
with hundreds of images for each slice location, which can be statistically analyzed to determine foci of brain
activity. The aim of the analysis is to determine those regions in the brain image in which the signal changes
upon stimulus presentation. The resulting statistical parameter maps (SPM) denote the spatial locations in the
brain images that show significant neural activation.

Construction of SPMs is an important issue in fMRI. In the past, many statistical tests have been proposed
for this purpose (seel:? for an overview). Currently, the most popular analysis methods used to obtain the
activation map include the Student-¢ test, analysis of variance (ANOVA), and the general linear model test
(GLMT).? These tests share two important characteristics:

e Data probability density function Although MR data are intrinsically complex valued and Gaussian
distributed, most tests are commonly applied to a series of magnitude MR images, because these images
have the advantage to be immune to incidental phase variations due to various sources.* A consequence
of transforming the complex valued images into magnitude images is a change of the probability density
function (PDF) of the data under concern. Indeed, whereas the complex data are Gaussian distributed,
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magnitude MR data are known to be Rician distributed.>® Nevertheless, the Student-t test, ANOVA, and
the GLMT all rely on the assumption that the data under concern are Gaussian distributed. If the signal-
to-noise ratio (SNR) of the data is high, this may be a valid assumption since the Rician PDF tends to a
Gaussian PDF at increasing levels of the SNR. However, at low SNR, the Rician distribution significantly
deviates from a Gaussian distribution. Not incorporating the Rician PDF is therefore expected to lead to
suboptimal test characteristics.

e Single valued processing Statistical signal processing commonly applied to fMRI data is, as explained
above, generally performed on magnitude, and thus single-valued, data. This is because only the behavior
of the magnitude signal component in the activation time course is of interest (i.e., in fMRI, one is usually
not interested in estimation of the phase components within this time course). The magnitude signal
component, however, is of course also present in the original, complex valued data. So one could have
developed statistical tests based on complex valued data as well. The advantage of complex MR data is
that these are Gaussian distributed, which allows derivation of closed-form expressions when developing
these tests. The disadvantage is that one has to deal with the phase components as well.

The purpose of this paper is to develop and compare five Generalized Likelihood Ratio Tests (GLRTS):

e a GLRT for magnitude data with known noise variance

e a GLRT for complex data with constant phase and known noise variance

a GLRT for complex data with constant phase and unknown noise variance

a GLRT for complex data with random phases and known noise variance

a GLRT for complex data with random phases and unknown noise variance

The tests will be compared with standard statistical tests. Unfortunately, quantitative comparisons of these
methods based on experimental data are difficult given the absence of ground truth, little knowledge about
human brain activation patterns, and the indirect role fMRI plays in capturing brain activation. Therefore, in
this paper, we will conduct a number of Monte Carlo simulation experiments in which the ground truth is known.
Also, for the sake of simplicity, we will only consider a square wave activation function. However, the results
proposed can easily be extended to more complex reference functions.

The organization of this paper is as follows. Section 2 briefly reviews three commonly used statistical tests:
the Student-t test, ANOVA, and the GLMT. Next, in Section 3, a GLRT for magnitude data with known noise
variance is derived. In Section 4, the GLRTs for complex data with constant and random phases and with
known and unknown noise variance are derived. Section 5 describes the simulation experiments that have been
conducted so as to assess the performance of the proposed tests. The results of the simulation experiments are
described in section 6. Finally, conclusions are drawn in section 7.

2. COMMON METHODS FOR FMRI DETECTION

In this section, we will review three commonly used tests applied to fMRI data. Thereby, it is assumed that we
want to test for each voxel the null hypothesis Hy that activation is absent against the alternative hypothesis
H, that activation is present. The performance of each test can be characterized by two parameters:

Probability of false alarm (P;) The probability that the test will decide H; when Hy is true.

Probability of detection (P;) The probability that the test will decide H; when H; is true.

Furthermore, a test has the so-called constant false-alarm rate (CFAR) property if the threshold required to
achieve a constant false alarm rate can be chosen independent of the SNR.
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In this section, we will consider the problem of testing whether the response of a magnitude MR data set
m = (my,....,my)7 of sample size N to a known reference function » = (r1,...,ry5)7 is significant*. Thereby,
the noiseless magnitude data set is assumed to be described by a deterministic signal vector z of which the
components are given by:

Zn = a+ bry, (1)

Hence, z is a constant baseline on which a reference function » with amplitude b is superimposed. In the absence
of activity, b equals zero, such that z, = a, for all n. We will consider the problem of testing the hypothesis that
b =0 (Hp) against the hypothesis that b # 0 (H;). As a reference function, a square wave centered about zero
was chosen. This allows to divide the magnitude data m into an ‘on’-subset m; with sample size N; and an
‘off-subset m, with sample size Ns.

2.1. Student ¢-test

Today, the most widely used method for detecting neural activity is the Student’s ¢-test.? It provides a statistic
being a measure of the significance of the difference between the means of two distributions having the same
variance. For a square reference function, the Student’s ¢ test statistic is simply given by:

t= <m1> — <m2> (2)

A T
s N1+N2

with (m;) and (m,), the averages of m, and m,, respectively, and

o 2i(myy = (my))? + 30, (my, — (my))?
£ N+ Ny -2 ®)

with m,,; and m,; the i*! element of the sample m; and the sample m,, respectively. If ¢ > 1, with 7, a user
specified threshold, then we decide H;, otherwise choose Hy. It can be shown that for independent Gaussian
distributed data, the Student’s t test statistic follows a t—distribution when both parts have the same mean.
This allows one to find the value of 7; that corresponds with a desired false alarm rate. Moreover, it can be
shown that for independent Gaussian distributed data, the Student’s ¢ test has the CFAR property.

2.2. Analysis of Variance

Another well-known tool of linear statistics, often applied to fMRI time series is analysis of variance (ANOVA)."8
This technique, which does not require any assumptions about the shape of the activation time course, looks at
the changes in variance upon averaging.

To detect regions of activation, the ratio of the variance of the averaged data set to the variance of the
unaveraged data set is calculated for each pixel in the image. For pixels in regions of purely random intensity
variations, this ratio will be around 1/n, where n is the number of cycles averaged together. Pixels in regions of
activation, however, will have a significantly higher ratio than this, since the variance of both unaveraged and
averaged data sets is dominated by the stimulus locked intensity variations of the fMRI response, which does
not reduce upon averaging. The one-way ANOVA test statistic for K = 2 groups is given by:

E=3P (4)
Sy
where
1 < 2 1 K 1 al
5= -1 kZ:INk ((my,) — (m)) and s = 7 kZ:l (JVk_l ;(mki - <mk>)2> (5)

with (m) the average taken over all observations in both samples. If F' > 7, then we decide H;, otherwise
choose Hy. If Hy is true (and the data are Gaussian distributed), the ANOVA test statistic F will have an
F—distribution with 1 and N = N; + Ny degrees of freedom. This allows one to find the value of 7, that
corresponds with a desired false alarm rate.

*Here, and in what follows, random variables are underlined.
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2.3. Generalized linear model test

In this subsection, the generalized linear model test (GLMT) will be reviewed. In the derivation of this test, it
has been assumed that the magnitude data m = (my,...,my)7 can be described as follows:

m, =z, +e, n=1---,N (6)

with z defined by (1) and e = (e;,...,eny)T a vector of zero mean, Gaussian distributed noise components with
variance o2. Under this assumption, the likelihood function L of the data is given by

M2ﬂw=(é;ﬂ>g@m<—£#§§W%—zwﬁ ™

Since the data are assumed to be Gaussian distributed, the maximum likelihood estimator (MLE) is equal to the
least-squares estimator. Moreover, the parameters enter the model in Eq. (1) linearly. Therefore, closed form
expressions for the MLEs of the unspecified parameters can easily be derived.

e Under Hy, in which 2, = a, the MLEs @, and o2 of the unspecified parameters a and o2, respectively, are
given by:

)
=
M=
E

(8)

ag =

3
I
—

—

Q% = (mn - @0)2 (9)

=
WE

1

3
Il

e Under Hi, in which z = a + br,, the MLEs @, E and o7 of the unspecified parameters a, b, and o2,
respectively, are given by:

N

— 1 N2

g = 5 > (mn —a — brn) (11)
n=1

with X an N x 2 matrix given by: X = (1 ) and 1 an N-dimensional vector of ones.

From Eq. (7) and using the MLEs given in Egs. (8-11), a closed form expression for the Generalized Likelihood

Ratio (GLR) can be obtained®:
5\ V72
o
(g) (12)
g1

It can be shown that under the assumption of Gaussian distributed data the test statistic
o2
E=(N-2)= - (13)

will possess an F; y_o distribution, that is, an F-distribution with 1 and N — 2 degrees of freedom, under H,.10
This allows one to select a proper threshold so as to achieve a desired false alarm rate. For a false alarm rate «,
the threshold is given by Fi x_21_a, that is, the (1 — a)™ quantile of the Fy y_ distribution. The ¢*® quantile
of the distribution of a continuous random variable z is defined as the smallest number 7 satistying Q5 (n) = ¢,
with Q. () the cumulative distribution function of .2 The test will thus reject Hy if and only if the test statistic
in Eq. (13) exceeds this threshold.
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Finally, it is worthwhile mentioning that, for a square wave reference function, the GLMT is equivalent to the
well known unpaired two-sample Student ¢-test as described in subsection 2.1. Notice that due to its very nature,
the use of the t-test is only justified if one can divide each time series into two samples having (a) the same
variance under both Hy and Hy, (b) the same mean under Hy, and (c) different means under H;. In the special
case of a square wave reference function, these conditions are approximately met, as long as the assumption of
Gaussian distributed data is accurate enough.

3. GLRT FOR MAGNITUDE FMRI DATA

In this section, a GLRT for functional magnitude MR data will be constructed, exploiting the fact that we
know that magnitude data are Rician distributed. The Rician PDF of magnitude data with deterministic signal
component z and noise variance o2, is given by!!

T _a?42? 2T
pm(z|z) = e 27 Iy (—2> (14)
o o
where I is the zeroth order modified Bessel function of the first kind.

In this section, it will be assumed that the noise variance o? is known. This is usually a valid assumption,
since the noise variance can mostly be estimated independently, with high accuracy and precision, from a region
of background noise, away from any image signal.'>'* In that case, the likelihood functions for the Rician

distributed data under Hy and H; are given by

N
L(a;m) = nl;[l %e (mna) (15)
N My, _ mi+(atbra)? my(a+ bry)
L(a,b;m) = n];[l g 22 I (U2> (16)
respectively, and the GLR test statistic is given by:
sup L(a,b;m)
2= e Tam o

The modified test statistic 2In A can then be written explicitly as:

N Iy (22) sz 1
T P R R S{ N o
n=1 N G n=1

o2

with @, and (a;, b) the MLEs of the unspecified parameters under Hy and H;, respectively. The MLEs can be
found by maximizing the likelihood functions (15) and (16) with respect to the parameter a and the parameters
a and b, respectively. Notice that the maximization of these likelihood functions is a nonlinear optimization
problem for which no closed form solution exists. The solution can be found by means of iterative numerical
optimization methods. The test statistic described by Eq. (18) is asymptotically distributed as a x? random
variable (i.e., a random variable with a chi-square distribution with one degree of freedom) under Hy. The test
will select H; if and only if this test statistic exceeds a user specified threbhold value 7. In order to achieve a
des1red false alarm rate «, the threshold 7 can thus be chosen equal to x1 1o, that is, the (1 — a)* quantile of
the x? distribution.

4. GLRTS FOR COMPLEX FMRI DATA

Assume we have N independent complex data points {(wy ,, w; )}, of which the true (i.e., noiseless) magnitude
components under H; are described by Eq. (1). The set of N points consists of N1 and Ny points with underlying
true amplitude a+b and a —b under Hy, respectively, which we want to estimate from these data points. In what
follows, we will assume that Ny = No = N/2. We now derive the MLEs of a, b, and ¢ in case the underlying
true phase values are identical and in case they are not.
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4.1. Identical phase values

Let ¢ be the true phase of each complex data point. As the real and imaginary data are independent, the joint
PDF of the complex data is simply the product of the real and imaginary PDF’s. Then, from a set of complex

observations {(wy n,w; )} the likelihood function is given by:
>N N ((a+b) cos p—wyy )2 ((a+b) <1n<p wi1,,)2 ((a—b) cos p—wya )2 ((a—b) sin p—w;p )2

L= <27T02 He 2 ¢ He 20" e 207 (19)

with {(wy1,n, wi1.n)} the complex data points with underlying true amplitude a+b under H; and {(wy2,, wizn)}
the complex data points with underlying true amplitude a — b under Hj.

4.1.1. ML estimation under H;

Under H; (i.e., b # 0), the MLEs of a, b, and ¢ are then found by maximizing (19) with respect to a, b, and ¢.
Taking the logarithm yields:

Ny
1
InL = —NIn(27m0?) — 257 Z [((a +b)cosp — wy1 ) + ((a+b)sing — wiy ,)>
n=1
1 &
—55 > [((a=b)cosp = wyan)? + ((a = b)sing — wiz,n)? (20)
n=1

For (a,b,¢) to be a maximum, the first order derivatives of the likelihood function with respect to a, b, and ¢
should be zero. After some calculations, it can be shown that, in case N; = Ny = N/2:

OlnL 1 .
% = o2 [Na — (W, + Wia) cos o — (Wip + Wiz) sin ] (21)
OlnlL 1 .
b = —g [Nb — (er — Wrz) COS Y — (Wil — Wig) sin QO] (22)
OlnL 1 .
o T o — [(@+b)(Wrising — Wip cosp) + (a — b)(Wya sinp — Wiz cos ¢))] (23)
where:
Ny N1 N N
Wi = Z Wrin Wi = Z Wity Wi = Z Wran Wiz = Z Wi2,n (24)
n=1 n=1 n=1 n=1
Setting (21), (22), and (23) to zero and solving the resulting system yields the ML estimates of a, b and ¢:
N 1 2(WinWin + WiaWi)
= = t 25
! g W2+ W5 = Wi — W3 (%)
. 1 . N
ap = N [(er + Wrg) COS ©1 + (W’Ll + WZQ) S1n (pl] (26)
~ 1 —~ PN
b = i [(Wr1 — Wia) cos o1 + (Wi — Wia) sin @] (27)

4.1.2. ML estimation under H,
Under Hy, b is zero. Hence, In L is simply given by:
;N
InL = —NIn(2710?) — 292 Z [(a cos ¢ — wnn)2 + (asinp — wim)2 (28)

n=1

Maximizing In L with respect to (p,a) then yields the following ML estimates of ¢ and a under Hy:

~ Wi + Wia
— arctan L2 29
Do arctan yo— (29)
o = /Wt + W) + (Wiy + Win)? (30)
N T T K3 1
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4.1.3. GLRT statistics

Known o2 If ¢2 is known, it can be shown that the test statistic 2In A\, where
S — S3
2In )\ = 002 (31)
is asymptotically x? distributed under Hy, in which:
N/2
) - R 2 o~ 2
S = Z {(Ql +by)cosp, — Man} + {(91 +by)sing, — wil,n:| (32)
n=1
N/2 ) R )
+ Z |: - bl COs 301 Wy.o, n:| + [(@1 b ) Sm@l Wio n:|
n=1
) N 2 2
EO = Z [ao cos 900 w, n} + {0’0 sin 900 w; n} (33)

2

Unknown o2 If ¢? is unknown, it can be shown that the test statistic

= (2N - 3) (?2 - 1) (34)

21

is asymptotically F; on_3-distributed under Hy.

4.2. Random phase values

Next, let ¢,, be the true phase of the complex data point (wy ,,, w; ). Then, the likelihood function is given by:

N . N: .
1 N M ~ ((atb) cos @1 5 —wr1,5)> _((a+b)51“‘/’1,n_wi1,n)2 2 ~ ((a=b) cos @3 5 —wr2 5 )2 ~ ((a=d) Sin @o p —win )3
L = o2 I I e 202 e 202 | I e 202 e 202
Yixea
n=1 n=1

(35)
For this complex data set, we will discuss maximum likelihood (ML) estimation under Hy and Hy, as well as the
GLRT statistic, derived from the MLEs.
4.2.1. ML estimation under H;

Under H; (ie., b # 0), the MLEs for a, b, and ¢,, are then found by maximizing (35) with respect to a, b, and
@n. Taking the logarithm yields:

Ny
L = —NI@ro?) = " [(a+b)os o1 = wrin)’ + (@ +b)singr, = wis,n)” (36)
n=1
Ny
1 2 . 2
—55 > [((@=b)cos oo = wyan)’ + ((a = b)singa, — wiz,n) (37)
n=1

For (a,b, p,) to be a maximum, the first order derivatives of the likelihood function with respect to a, b, and ¢,
should be zero. Solving the resulting system then leads to the following MLEs:

arctan (wﬂl) (38)
Wy n

My, (39)

) ()

P1,n

H@)

I
=
Mz

I
—

Sal
I

2=
— 3
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4.2.2. ML estimation under Hj

Under Hy, b is zero. In that case, maximizing In L with respect to ¢ and a yields:

o = arctan(wi’"> (41)
Wy, n
L
ay = N;mn (42)

4.2.3. GLRT statistic

Known o2 If ¢2 is known, it can be shown that the test statistic 2In A\, where
S5 — St
2ln )\ = % (43)
is asymptotically y3-distributed under Hy, in which:
N/2 R ) R )
82 = Y@ +b)eos,, —w] +[@+5)sing,, —w]
n=1
N/2
A~ - o~ 2 A~ - . o~ 2
+ Z [(Ql —by) Cospy, ~ wrQ,n} + [(Ql —by) S, — Mz'z,n]
n=1
N/2 2 N/2 2
= @ +0) - mi] + Y [@ b)) - my,| (44)
n=1 n=1
N 5 5 N
S5 = Y [ancosB,, —wea| + |Gsing,, —wi.| =Y @) - m,)? (45)
n=1 n=1
Unknown o2 If ¢? is unknown, it can be shown that the test statistic
§2
n:(N—2)(Sg— > (46)
2]

is asymptotically Fy y_o-distributed under Hy. Note that this test is identical to the GLMT applied to magnitude
data (cfr. subsection 2.3).

5. SIMULATION EXPERIMENTS

In case the reference function r is a square wave, it can be shown that the Student-t test, the one-way ANOVA
and the GLMT are equivalent. Furthermore, since the GLMT was shown to be equivalent to the GLRT for
complex data with random phases unknown noise variance, it will also be excluded from the simulation tests.
Therefore, in this section, the simulation experiments will be restricted to comparisons of the proposed GLRTs.
During exhaustive Monte Carlo simulation experiments, numerous realizations of time series of N Rician dis-
tributed magnitude data points were generated of which the deterministic signal components are described by
Eq. (1). As a reference function, a square wave was considered that fluctuated between -1 and +1 with period
20 as shown in Fig. 1. For this reference function, the CFAR property as well as the detection rates of the tests
described above were evaluated.

5.1. CFAR property

First, simulation experiments have been carried out so as to find out to what extent the tests under concern have
the CFAR property, that is, whether a specified false-alarm rate Py could be achieved irrespective of the SNR.
The reason for this is that tests that do not have the CFAR property are of little practical use, since the SNR
is usually unknown beforehand. Although it is known that GLRTs have the CFAR property asymptotically, it
remains to be seen whether this property still applies to a finite number of observations.
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5.2. Detection rate

Next, simulation experiments were run in which, for a fixed false alarm rate, the detection rate P; was determined
as a function of the SNR. This was done for several combinations of the relative response strength p = g, and
the time course length IV, which corresponds to the number of images in the fMRI data set. In each experiment,
the false alarm rate Py was set to 0.01, which is a representative value of the P; values used in fMRI. As long as
the tests have the CFAR property, this can easily be achieved by selecting F} ny_2,0.99 as the threshold for the
GLMT and x7 g9 as the threshold for the Rician PDF based GLRT.

6. RESULTS AND DISCUSSION

Results were obtained for the square reference function and for various numbers of observations. The detection
rates obtained from 3 simulation experiments are shown in Tables 1-3 for N = 60, N = 120, and N = 240,
respectively. To allow a fair comparison, for each experiment only the detection rates of tests for which the
CFAR property could be verified are shown. Since simulation results revealed that the GLRT for complex data
with random phases and known noise variance lacks the CFAR property, this test will not be included in the
evaluation.

As can be observed from the numerical results, the GLRT based on the Rician distribution performs signif-
icantly better than the GLMT (i.e., the GLRT for complex data, random phases and unknown o?), which is
based on the assumption of Gaussian distributed data. Furthermore, the GLRT for complex data with identical
phases and unknown noise variance performs better than the GLRT for magnitude data. Finally, of course, the
GLRT for complex data with identical phases scores better in case o2 is known.

The fact that some of the tests considered require knowledge of the noise variance might seem an impediment
to their practical use. Fortunately, in practice, the noise variance can most times be assumed to be known
as it can be estimated very precisely from a background region, where the data are governed by a Rayleigh
distribution.'® Using the ML estimator, which has been described in,'3 '* an unbiased estimate of o2 can easily
be obtained. The standard deviation of this ML estimator is given by 02/v/N, with N the number of background
observations. Hence, to estimate o2 with a relative precision of, for instance, 1%, 10* background observations
are required. For an experiment in which the number of images equals 100, a background area of 10 x 10 pixels
would thus be sufficient to achieve this precision. This illustrates the relative ease with which precise knowledge
of the noise variance can be obtained.

7. CONCLUSIONS

Although statistical tests are available to construct statistical parameter maps from magnitude functional MR
data, there is still room for significant improvement by exploiting the knowledge of the distribution of magnitude
data. An even higher detection rate can be achieved when the assumption of identical phases is valid. In that
case, it is strongly advised to employ a generalized likelihood ratio test (GLRT) for complex data.
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magn. complex, complex, complex

iden. ¢, iden. ¢, random ¢
o o?known o2 known o2 unknown o2 unknown
1.4 99.83 99.85 99.81 99.74
1.6 98.76 98.84 98.59 98.23
1.8 95.43 95.79 95.19 94.12
2.0 89.64 90.33 89.33 87.51
2.2 81.54 82.69 81.49 78.92
2.4 72.60 74.19 72.71 69.61
2.6 63.87 65.64 64.15 60.69
2.8 55.27 57.55 55.98 52.25
3.0 47.60 50.25 48.73 44.73
3.2 41.64 44.21 42.86 39.01
3.4 35.36 38.23 36.96 33.29
3.6 30.70 33.55 32.46 28.78
3.8 26.64 29.55 28.55 24.99
4.0 23.34 26.22 25.29 21.92

Table 1. Detection rates obtained from 10° realizations for the GLRT for magnitude data with known o2, the GLRT for
complex data with identical phases and known o2, the GLRT for complex data with identical phases and unknown o2,
and the GLRT for complex data with random phases and unknown o2, for N = 60, u = 0.1, a = 10, P; = 0.01.

magn. complex, complex, complex
iden. ¢, iden. ¢, random ¢
o o?known o2 known o2 unknown o2 unknown
2.0 99.78 99.82 99.78 99.71
2.2 99.02 99.21 99.12 98.85
24 97.24 97.64 97.44 96.83
2.6 94.12 94.96 94.68 93.42
2.8 89.43 90.97 90.50 88.47
3.0 83.68 85.80 85.16 82.49
3.2 77.30 80.07 79.42 75.88
3.4 70.62 74.01 73.29 69.16
3.6 64.07 67.84 67.08 62.41
3.8 57.50 62.03 61.29 55.98
4.0 51.48 56.62 55.89 50.14
4.2 45.88 51.26 50.54 44.54
4.4 40.46 46.15 45.46 39.37
4.6 36.15 41.92 41.33 35.23
4.8 32.53 38.57 38.02 31.66
5.0 29.11 35.08 34.53 28.16

Table 2. Detection rates obtained from 10° realizations for the GLRT for magnitude data with known o2, the GLRT for
complex data with identical phases and known o2, the GLRT for complex data with identical phases and unknown o2,
and the GLRT for complex data with random phases and unknown o2, for N = 120, p = 0.1, a = 10, Py =0.01.
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Figure 1. For N = 120, a square wave is shown that was fitted to the magnitude fMRI data.

magn. complex, complex, complex
iden. ¢, iden. ¢, random ¢
o o?known o2 known o2 unknown o2 unknown
3.0 99.35 99.54 99.51 99.28
3.2 98.35 98.83 98.80 98.25
3.4 96.62 97.59 97.50 96.37
3.6 94.20 95.83 95.71 93.89
3.8 90.88 93.38 93.18 90.43
4.0 86.78 90.28 90.04 86.21
4.2 82.22 86.70 86.45 81.52
4.4 76.95 82.71 82.30 76.20
4.6 71.82 78.44 78.11 71.10
4.8 66.27 74.18 73.83 65.60
5.0 61.33 70.05 69.68 60.65
5.2 56.04 65.60 65.19 55.42
5.4 51.43 61.70 61.27 50.67
5.6 46.68 57.53 57.23 46.01
5.8 42.46 54.01 53.57 41.84
6.0 38.46 50.10 49.76 37.83

Table 3. Detection rates obtained from 10° realizations for the GLRT for magnitude data with known o2, the GLRT for
complex data with identical phases and known o2, the GLRT for complex data with identical phases and unknown o?,
and the GLRT for complex data with random phases and unknown o2, for N = 240, p = 0.1, a = 10, Py = 0.01.

662  Proc. of SPIE Vol. 5369

Downloaded from SPIE Digital Library on 21 May 2010 to 131.180.130.114. Terms of Use: http://spiedl.org/terms



10.

11.
12.

13.

14.

15.

REFERENCES

. K. J. Worsley, “An overview and some new developments in the statistical analysis of PET and fMRI data,”
Human Brain Mapping 5, pp. 254258, 1997.

A. S. Lukic, M. N. Wernick, and S. C. Strother, “An evaluation of methods for detecting brain activations
from functional neuroimages,” Artificial Intelligence in Medicine 25, pp. 69-88, 2002.

K. J. Friston, P. Jezzard, and R. Turner, “Analysis of functional MRI time series,” Human Brain Mapping
1, p. 153171, 1994.

D. C. Noll, C. H. Meyer, J. M. Pauly, D. G. Nishimura, and A. Macovski, “A homogeneity correction for
magnetic resonance imaging with time-varying gradients,” IEEE Transactions on Medical Imaging 10(4),
pp. 629-637, 1991.

A. Macovski, “Noise in MRI,” Magnetic Resonance in Medicine 36, pp. 494-497, 1996.

A. H. Andersen and J. E. Kirsch, “Analysis of noise in phase contrast MR imaging,” Medical Physics 23(6),
pp. 857-869, 1996.

G. A. F. Seber and C. J. Wild, Nonlinear regression, John Wiley and Sons, New York, 1989.

S. Clare, M. Humberstone, J. Hykin, L. D. Blumhardt, R. Bowtell, and P. Morris, “Detecting activations
in event-related fMRI using analysis of variance,” Magnetic Resonance in Medicine 42(6), pp. 1117-1122,
1999.

A. M. Mood, F. A. Graybill, and D. C. Boes, Introduction to the Theory of Statistics, McGraw-Hill, Tokyo,
3" ed., 1974.

L. Scharf and B. Friedlander, “Matched subspace detectors,” IEEE Transactions on Signal Processing 42(8),
pp- 2146-2157, 1994.

S. O. Rice, “Mathematical analysis of random noise,” Bell System of Technology 23, p. 282, 1944.

G. McGibney and M. R. Smith, “An unbiased signal-to-noise ratio measure for magnetic resonance images,”
Medical Physics 20(4), pp. 1077-1078, 1993.

J. Sijbers, A. J. den Dekker, M. Verhoye, J. Van Audekerke, and D. Van Dyck, “Estimation of noise from
magnitude MR images,” Magnetic Resonance Imaging 16(1), pp. 87-90, 1998.

J. Sijbers, A. J. den Dekker, E. Raman, and D. Van Dyck, “Parameter estimation from magnitude MR,
images,” International Journal of Imaging Systems and Technology 10(2), pp. 109-114, 1999.

H. Gudbjartsson and S. Patz, “The Rician distribution of noisy MRI data,” Magnetic Resonance in Medicine
34, pp. 910-914, 1995.

Proc. of SPIE Vol. 5369 663

Downloaded from SPIE Digital Library on 21 May 2010 to 131.180.130.114. Terms of Use: http://spiedl.org/terms



