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Abstract

Catenary mooring systems are widely used in the

ocean environment. This paper describes an experimen-
tal program set up to study the dynamic forces that may
occur in these systems. The relation of these dynamic
forces to the applied forcing function is examined and an
example is given where the dynamic forces in the system
would be significant.

1 Introduction

Catenary mooring systems provide a simple and rela- -

tively inexpensive way to position objects in the ocean
environment. Because of the properties of the system,
the moored object will be able to move when subjected to
displacing forces, but this movemeat will induce a restor-
ing force, The restoring force is non- linear and a small
change in displacement can Produce a large change in it.

Traditionally, the way of ‘analyzing catenary mooring
lines has been to use the quasi-static analysis. This pa-
Per examines the limitations on the quasi-static analysis
and proposes that in some situations dwnamic forces are
important in shallow water applications.

2 Description of the Catenary Sys-

tem

There are two properties that are inhereat in the analysis
of the catenary. First it is assumed that there is zero
bend_ing stiffness, second it is assumed that the cable has
3 uniform mass per unit length. The first property is
}rue for chains and almost true for wire rope. Note that
in this paper, cable may mean either chain or wire rope.
ese preceding assumptions are iused to derive the
equations that describe the. catenary. The derivation in-
volves setting up a second order differential equation and
can be found in most texts on differential calculus. The
equation that is finally derived is noa-linear.
In descriptive terms, the catenary mooring system op-
erates as follows. Using the basic Catenary system as
shown in Figure 1, it is seen that as the moored object:
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Figure 1: The Basic Catenary Mooring System

displaces, the cable is forcad to assume a shape closer to
a straight line between the moored object and the bot-
tom. As more chain is picked up from the bottom. there
is more vertical force acting on the object. However. the
chain can only transmit force in a direction tangeat o
it thus the increased vertical force induces an increased
borizontal force on the moored object. . '

If there is a constant displacing force on the object.
the catenary will allow a horizontal displacement until
the horizontal componeat of the force in the catenary
is equal to the displacing focce. When the svstem is in
equilibrium it is defined as being static.

The static case is fairly easy to solve. so it makes
sense that the first attempts-to analyze the dvaamic case
were to superimpose the static forces on a time varying
displacement. This method is called the quasi-static case
and is still the most popular solution method. However
there may be significant problems with the quasi-static
solution. ' '

In shallow water, the cable is affected by the forcing
function it experiences az the top and the drag of the ca-
ble in water. For typical wave phenomena, the frequency
of this function would be small enough that a quasi-static

. analysis would give reasonable results. However, if the

frequency of the forcing function was higher, significant




dynamic forces could result.

When it was realized that dynamic forces in cables
could be significant. there were a number of experiments
designed to examine these forces. Suhara et al ( 1981)
oscillited the top end of a chain in the vertical and hori-
zontal directions. They defined the response of the cable °
to fall into four stages: quasi-static. harmonic oscillation,
snap and free-fall. In the harmonic oscillating condition,
the tension is found to vary nearly sinusoidally. During
the snap condition the chain goes slack and then comes
up taut generating an impact force. In the free-fall con-
dition the chain caanot keep up with the motion of the
block and motions out of the plane are observed.

van den Boom (1985) also performed experiments
where the free end of a cable was oscillated. He reported
dynamic tension amplification factors (the ratio of the
dynamic force to the static pre-tension) of 6 to 7.

Recently, Faure {1989) and Papazoglou et al (1990)
have shown that for deep water moorings, the elasticity
of the cable becomes an important parameter. They both
used springs to mode! the stiffoess of a truncated cable
for model tests.

In general, experimental work in this field is scarce.

3 Obje.ctives

The investigations of dynamic analysis have been mainly
focused on deep water applications and on analyzing the
mooring systems of large offshore structures. The gen-
eral feeling was that the quasi-static analysis was suffj-
cient for shallow water systems. To study this an exper-
imental program was started at Memorial University of
Newfoundland. .

The investigation had, as its objectives, to examine
the reaction of catenary mooring lines to a sinusoidal
forcing function applied at the free end of the cable. This
function could be applied at various frequencies and an-
gles. and to various conditions of pre-tension.

4 Dimensional Analysis of a Cate-
nary

The first step in the program was to analyze the problem
through a dimensional analysis and derive a set of model
laws that govern the system. o

To perform the dimensional analysis, the parameters
important to the experiment had to be defined. These
parameters were categorized into three groups: the first
consisting of the quantity to be measured in the system, -
the second defining the input parameters to the system
and the last group containing the Pparameters describing
the properties of the system. Figure 2.shows the param-
eters of the system.

The parameter to be measured, T, is the tension in
the chain at the top connection. The input parameters

Forcing Function: Frequency: o
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Figure 2: Test Parameters

that describe the svstem consist of the initial configura-
tion of the system and the forcing function that acts at
the top part of the cable. The initial configuration is
described by the scope of the chain, S, and the depth
of the water, H. The static Pretension is an important
consideration but for a specific cable it is defined by the
scope of the cable and the depth of the water.

There are three parameters needed to describe the si-
nusoidal forcing function. The first two are the frequency,
w, and the amplitode of displacement, R. The third is
the angle 6 that the line of action makes with the water,
(see Figure 2). .

_ The system parameters describe various properties of
the worlcing fluid and the cable. For the fluid, the impor-
tant parameters are the viscosity and density of the fluid
(¢ and py respectively). For the cable the parameters are
a measure of its density, m,, the effectjve Young's modu-
lus, £ and the cable diameter, D. ™, is a quantity equal
to the density of the cable minus the density of the fluid
and E is the Young’s modulus for the cable as a whole.
The diameter is straight forward for a wire strand cable,
but for a chain it is defined as the diameter of a cylinder
with the same length and volume as the chain. Another
parameter that must be included is the gravitational con-
stant, g. These parameters form the functional relation
for the system. .

To start the derivation, tension is assumed to be a
function of the other parameters.

T=é{ermmE,D,5,H g, Rut) (1

Then the method of synthesis using linear proportions
as outlimed in Sharp (1981) is used to derive a dimension-
less equation. The equation in its final form is as follows:
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Sewz=al parameters in this equation are familiar. The
tenson term and the ratio S/H are used in the static
analrsss of a catenary. The term ¥¥/3/g'/3D is a form

of the Froade-Reynolds number. Also the term R/D is

simTar 30 the Keulegan-Carpenter number.

" There was assumed to be no current in this analysis.
Howese= the addition of a current would just introduce
apother term which would result in a Froude number.

k = also important to note that owing to its defini-

tion. e forcing function (oscillating force) can be de-

finec a= eitler an amplitude and frequency, velocity and
frequemcy or even an acceleration and frequency.

For thex analysis Subara et al (1981) used the pa- -

rametes w.Xo/THo, Znw?/g and Z./Dc. The first is a
mezsa—= of the pretension in the chain (w is the weight
per iz leagth). The second and third are similar to
the rocps w2 R/g and R/D except that the term Z,, is
usec where Z,, is the vertical displacement of the center
of gav=zy of the catenary.

Pazazoglou et al (1990) based their analysis on the
met36< of governing equations. They produced similar
resuts o those derived here except they came up with.a
ter w=L? (T/p. A) instead of the term g/w?R where L
was ke length of cable, p. was its density and A was an
equivasent cross-sectional area.

5 Experimental Study

The exserimental work was carried out during Septem-
ber. 1230 in the wave/towing tank at Memorial Uni-
versty of Newfoundland: The tank had the dimensions
100= x 4m x 2m deep and was used because it provided
the ze<=ssary depth and length needed to lay out the
chann. A PC computer using a Keithley 5000 A/D con-
verter wras used to take measurements. The data was
thes tzansferred to a Vax 8530 computer for processing.

A schematic of the apparatus is shown in F igure 3.
Figeoe 3a shows a plan view and Figure 3b shows it
mouated under the catwalk over the wave tank. The

block =avelled on grooved wheels which ran on rails. The -

suppocs could be inclined relative to the. water,

Insccumentation consisted of an accelerometer and a
two waxr force transducer. The accelerometer was used
to moc=tor the motion of the chain to make sure it was
sinusoial. The two way force transducer was used to
measus= the tension at the chain connection.

k ==s secessary to use a two way force transducer
b.eanse the chain was free to rotate about the-connee¢-
tion paint. By measuring force in mutually perpendicular
directicis. the total force could be found for any orien-

tation.

Motor

ﬂ%g__cear
Reduction
=1

Figure 3b: Side View of Eq@ipment

The parameters changed during the test were t== s:atic
pre- tension, the frequency of the forcing functios 2=d the
angle that the forcing function made with the hori=ap:al.
Pre-tension was set by moving the position of the zactor
and values of 15, 20 and 30 N were used for the =xperi-
ment. Angles of 0°, 30°, 60° and 90° were used a=g ke
frequencies ranged from about .4 Hz to 4 Hz.

The test chain was an open linked steel chair wi:h a
weight of .786 kg/m and a wire diameter of 6.35m— The
R value was .038 m. .

Another series of tests was run to see how Jomg it
would take for the dynamic forces to reach their £~ =ag-
pitude. '




6 Results

The data acquisition and processing routine is shown in
Figure 4. The data was processed on a Vax 8530 com-
puter and the sampling rate for the tests was 250 Hz.
Sample plots from the test serses are shown in Figure 5.

The ratio of the maximum dynamic force 10 the static
force was obtained and is plotied against the frequency

for the vafious: pre-tensions aad forcing functions (see "

Figure 6). The ratio was also plotted againsz the accel-
eration parameter (w?R/g) and the plots are shown in
Figure 7.

All the results show the same basic shape. The dy-
namic force amplitude starts out relatively flaz indicating
that a quasi- static analysis would be acceptable for this
section. However, very soon d¥namic forces become. im-
portant. The graphs eventually reach a peak. after which
a further increase in frequency causes a decrease in force.

The same type of results bave been reported by Suhara
(1981), van den Boom (1985) and Papazogloa (1990).

7 Discussion

From the results it can be seen that dynamic forces can
sometimes be 5 times the static forces. The static pre-
tension seem to have only a moderate influence on the
dynamic force, however it does change the frequency at
which the maximum force will occur.

It is also seen that the angle of inclination of excita-
‘tion has a considerable influence on the dvnamic force.
The more in line the forcing fanction is with the top of
the mooring line, the greater the dynamic force.

Finally, it is seen that the Largest effect is caused by
the frequency. As the frequency increases. the dynamic
force increases up to a maximem.

The four regimes in which the chain responds were
also observed, although they occurred a1 different fre-
quencies for the different pre-tensions. The ranges are
shown. in Figure 6. Generally, up to a frequency of 0.5
Hz the maximum tension in the chain could be predicted
by using a quasi-static analysis for all pre-tensions. How-
ever, for frequencies in the range of 0.5 to approximately
2 Hz the chain is in the harmonic oscillating range and
dynamic forces are observable. Past this point, the force

time plots are no longer sinuscidal in natare. From 2 Hz

to 2.5-4 Hz (depending on the pre-tension) the chain is
in the snap condition and, altbough the maximum force
keeps increasing, the minimum force has gome to zero.
It is in this area that the largest dynamic tensions are
recorded. Eventually, the chain enters the free fall range
and dynamic forces start to decrease. The frequency

range did not go high enough to allow the free fall con- -

dition to be observed for all pre-tensions.
The large forces found in the snap and the free fall
condition are due to internal impact forces of the chain.

These forces are caused by impac:s between the links. As
the tension in the chain goes 1o zero, the links are able
to assume a motion. to a certaic extent, independent of
their neighbors. However, whea the line comes under
tension again, the links must take up a certain position
and orientation. The forcing of the links into this set
position causes the impact forces. -

The chain also reacted quick!y when the forcing func-
tion was first applied. In the harmonic condition, the
steady state dynamic force was ackieved after only 1 cycle
of the forcing function. In the snap and free fall ranges,
it took up to 5 oscillations before the maximum dynamic
force was observed.

It is important to examine bow the modelling of cate-
nary mooring cables applies in the ocean environment.
The first step in this is to examine scale errors.

The term @ is an angle and thus transform identi-
cally. Geometric similarity can be achieved and thus the
terms R/D, S/H and D/S will be modelled correctly.
Also, since the experiments taze place in water and the
material is steel, the ratio m./p; will be correct.

The term +%3/¢'/3D accounts for the hydrodynamic
properties of the cable. In this experiment, the Reynolds
number placed operation well into the turbulent range.
thus scaling should not have much effect on these prop-
erties. This is borne out by the results of van Sluijs and
Blok (1977).

The term E/m.gS accounts fior elasticity in the ca-
ble. Although for deep water, elasticity is an important
parameter, this study is aimed more at waters with a

‘depth measured in tens of meters rather than hundreds.

Thus elasticity should not have a great influence on the
system.

This leaves the parameter -*R/g as the most impor-
tant. This is the ratio of the acceleration that the top end
of the chain will undergo to gravizational acceleration.

An example shows that for a given situation, signif-
icant dynamic forces will occur. If there is a stretch of
water 10 km long with an average depth of approximately
15 meters and a wind of 70 km/hour blowing for 1 hour,
waves with a period of 3.0 secoads and a significant height
of 1 meter will be produced. A caa buoy in this wave field
would respond at the same frequency with approximately
the same amplitude of motion. The w?R/g parameter
for this scenario is 0.23. From Figure 7, it can be seen
that this corresponds to a dypamic amplification factor
of about 1.5.

8 Conclusions

It is seen that, although the quasi-static analysis is valid
for many shallow water conditions., the designer should be
aware that significant dynamic forces may occur. The fre-
quencies that these forcing functicns operate at provides
an indication of whether or not allowance for dynamic
forces should be made.
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Figure 4: The Data Acquisition and Processing Routine
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Figure 5: Sample Time Series Plots of Measured Force
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