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Abstract
Catenaxy mooring systems are widely used in the

ocean environment. This paper describes an experimen-
tal program set up to study.the dynamic forces that may
occur in these systems. The relation of these dynamic
forces to the applied forcing function is examined and an
example is given where the dynamic forces in the system
would be significant.

1 IntrOduction
Catenary mooring systems provide a simple and rela-
tively inexpensive way to position objects in the ocean
environment. Because of the properties of the system,
the moored object will be abk. to move when subjected to
displacing forces, but this movement Will induce a restoz-
ing force. The restoring force is non- linear and a small
change in displacement can produce a large change in it.

Traditionally, the way of analyzing catenary mooring
lines has been to use the quasistatjc analysfs. This pa-
per exarfli the limitations on the quasi-static analysis
and proposes that in some situations dynamic forces are
important in shallow water applications.

2 Description of the Catenary Sys-
tem

There are two properties that are in.herent in the analysisof the catary.. First it is assumed that there is zero
bending stiffness, second it is assumed that the cable hasa uniform mass per unit length. The first property istrue for chains and almost true. for wire rope. Note thatin this paper, cable rnaylnean either chain or wire rope.

These peeceding assumptions are used to derive the
equations that describe the. catenar-r. The derivation in-volves setting up a second order differential equation andcan be found in most text, on djffexcial ca1cuIu. Theequation that is finally derived is non-linear.

In descriptive terms, the catena- mooring system op-erates as follows. Using the basic cazenary system asshown in Figure 1, it is seen that as :he moored object
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Figure 1: The Basic Carenary Mooring System

displaces, the cable is forced to assume a shape closer to
a straight line between the moored object and the bet-
torn. As more chain is picked up from the bottom, there
is more vertical force acting on the object. . However, the
chain can only transmit force in a direction tangent to
it thus the increased vermjcaj force induces an increased
horizontal force on the moored object.

If there is a constant displacing force on the object.
the catenary will allow a horizontal displacement until
the horizontal component of the force in the catenary
is equal to the displacing force. When the. system is in
equilibrium it is defined as being static.

The static case is fairly easy to solve, so it makes
sense that the first attempisto analyze the dynamic case
were to superimpose the static forces on a time varying
displacement. This method i called the quasi-static case
and is still the most popular solution method. However
there may be significant problems with the quasi-static
solution.

In shallow water, the cable is affected by the forcing
function it experiences at the top and the drag of the -
ble in water. For typical wave phenomena, the frequency
of this function would be small enough that a quasi-static
analysis would give reasonable results. However, if the
frequency of the forcing function Was higher, significant



dynamic forces could result.
When it was realized that dyna.mic forces in cables

could be significant, there were a number of experiments
designed to examine these forces. Suhara et al (1981)
oscillated the top end of a chain in the vertical and hori-
zontal direction3. They defined the response of the cable
to fall into four stages: quasi-static, harmonic oscillation,
snap and free-fall. In the harmonic oscillating condition,,
the tenson is found to vary nearly sinusoidally. During
the snap condition the chain goes slack and then comes
up taut generating an impact force. In the free-fall con-
dition the chain cannot keep up with the motion of the
block and motions out of the plane are observed.

van den Boom (1985) also performed experiments
where the free end of a cable Was oscillated. He reported
dynamic tension amplification factors (the iatio of the
dynamic force to the static pre-tension) of 6 to 7.

Recently, Faure 1989) and Papazoglou et al (1990)
have sbon that for deep water moorings, the elasticity
of the cable becomes an important parameter. They both
used springs to model the stiffn of a truncated cable
for model tests.

In general, experimental work in this field is scarce.

3 Objectives
The investigations at dynamic analysis have been mainly
focused on deep water applications and on analyzing the
mooring systems of large offshore structur. The gen-
eral feeling was that the quas2-static analysis was suffi-
cient for shallow water systems. To study this an exper-
imental program was started at Memorial University of
Newfoundland.

The investigation had, as its objectives, to examiüe
the reaction of catenary mooring lines to a sinusoidal
forcing' function applied at the free end of the cable. This
function could be applied at various frequencies and an-
gles, and to various condit.ions of pre-tension.

4 Dimensional Analysis ofa Cate-
nary

The first step in the program was to analyze the problem
through a dirnensiooaJ analysis and derive a set of model
laws that govern the system,.

To perform the dimensional analysis, the parameters
important to the experiment had to be defined. These
paramers were categorized into three groups: the first
consisting Of the quantity to be measured in the system,
the second defining the input parameters to the system
and the last group containing the parameters describing
the properties of the system. Figure 2 shows the parain-
eters of the system..

The parameter to be measured, T, is the tension in
the chain at the top connection, The input parameters

Forcing Function: Frequency:

Amplitude: R

Fluid Density:
,

Viscosity:

Cable Density: i

Diameter: V

Figure 2: Test Parameters

that descjbe the system consist of the initial configura.
tibn of the system and the forcing function that acts at
the top part of the cable. The initial configuration is
described by the smpe of the chain, 5, and the depth
of the water, H. The static pretension is an important
consideration but for a specific cable it is defined by the
scope of the cable sad the depth of the water.

There are three parameters needed to describe the Si-
nusoidal forcing function. The first two are the frequency,
u.', and the amplitude of displacement, R The third is
the angIe 6 that the line of action makes with the Water,
(see Figure 2).

The system parameters describe various properties of
the working fluid and the cable. For the fluid, the impor-
tant para.meters are the viscosity and density of the fluid
(p and p; respectivdy). For the cable the parameters are
a measure of its density, m, the effective Young's modu-
lus, E and the cable diameter, D. rn is a quantity equal
to the density of the cable minus the density of the fluid
and E is the Young's modulus for the cable as a whole.
The diameter is straight forward for a wire strand cable,
but for a chain it is defined as the diameter of a cylinder
with the same length and volume as the chain. Another
parameter that mug be included is the gravitational con-
stant, g. These parameters form the functional relation
for the system.

To start the derivation, tension is assumed to be 'a
function of the other parameters,

T=#{PIIPIPL,E,D,S,H,gRWO} (1)
Then the method of synthesis using linearproportjo

as outlincd in Sharp (1981) is used to derive a dirnensjo0.
less equation. The equation in its final form is as follows:

I/I / il//i -1 , / /
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Se?J parameters in this equation are familiar. The
ten zesm and the ratio S/H are used in the static
aaa2i of a catenary. The term v213/9113D is a form
of the Frde-ReynoldS number. Also the term RID is
simi:a o the Keulegan-Carpenter number.

Th'e was assumed to be no C rren in this analysis.
the addition of a current would just introduce

anot term which would result in a Froude number.
h also important to note that owrng to its defixu-

tion. forcing function (oscillating force) can be de-
finec eithe; an amplitude and frequency, velocity and
freqimcy or even an acceleration and frequency.

x thelr analysis Suhara et al (1981) used the pa.
ramr. WXO/THO, Zrnw2/g and Zm/D. The first is a
me_- of the pretension in the chaiti (w is the weight
per le:gth). The second and third are similar to
the cicps .2R/g and RID except that the term Z,is
used were Zm is the vertical displacement of the center
of gravy of the catenary.

Pa..zogiou et a! (1990) based their analysis on the
meto of governing equations They produced similar
resn.ts o those derived here except they came up with a
ter Li,:(T/pA) instead of the term g/w2R where L
was the length of cable, Pc was its density and A was an
equia..t coss-sectional area.

(2)

5 Experimental Study
The eermental work was carried out during Septem-
ber. 1?90 in the wave/towing tank at Memorial Uni-
verv nf Newfound1and The tank had the dimensions
100= x 2m deep and was used because it provided
the esa.ry depth and length needed to lay out the
chain.. A PC computer using a Keithley 5000 AID con-
verter as used to take measurements. The data was
the: t.nsferred to a Vax 8530 computer for proessing.

A eiatic of the aparatus is shown in Figure 3.
Fign.-e 3a shows a plan view and Figure 3b shows it
mounte under the catwalk over the wave tank. The
blod travelled on grooved wheels which ran on rails. The
suppoc cxic.ld be inclined relative to the Water.

Insumentation consisted of an accelerometer and a
two *a force transducer. The accelerometer was used
to moO( the motion of the chain to make sure it was
sintciaL The two way force transducer was used to
measu the tension at the chain connection.

h s necessary to use a two way force transducer
becan the chain was free to rotate about the connec-
tion p'camt. By measuring force in mutually perpendicular
directics, the total force could be found for any orien-
tation.
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Figure 3a Top View of Equipment
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Test chain
Figure 3b: Side View of Equipment

The parameters changed during the test were tSe static
pre= tension, the frequency of the forcing function a.d the
angle that the forcing function made with the hoc 'a!
Pre-tension vas set by moving the position of the ancor
and values of 15, 20 and 30 N were used for the eri.
ment. Angles of 0°, 30°, 60° and 90° were use a.,d :he
frequencies ranged from about .4 Hz to 4 Hz.

The test chain was an open linked steel chain w:h a
weight of .786 kg/rn and a wire diameter of 6.35m The
R value was .038 ru.

Another series of tests was run to see how it
would take for the dynamie forces to reach theirf:: ag-
nitude.



6 Results
The data acquisition and processing routine is shown in
Figure 4. The data was processed on a Vax 8530 com-
puter and the sampLing rate for the tests was 250 Hz.
Sample plots from the test seres are shown in Figure 5.

The ratio of the maximum dynamic force to the static
force was obtained and is plocted against the frequency
for the various pre-tensions and forcing functions (see
Figure 6). The ratio was also plotted againsz the accel-
eration parameter (w2R/g) and the plots are shown in
Figure 7.

All the results show the same basic shape. The dy-
namic force amplitudestarts ot relatively flat indicating
that a quasi- static analysis woald be accepeable for this
section. However, very soon dynamic forces become im-
portant. The graphs eventually reach a peak, after which
a further increase in frequency causes a decrease in force.

The same type of results ha'c'e been reported by Suhara
(1981). van den Boom (1985) and Papa.zoçloo (1990).

'T Discussion
From the results it can be seen that dynamic forces can
sometin:ies be 5 times the static forces. The static pre-
tension seem to have only a moderate influence on the
dynamic force, however it does change the frequency at
which the maximum force Will occur.

It is also seen that the angle of inclination of excita-
tion has a considerable influence on the dynamic force.
The more in line the forcing function is with the top of
the mooring line, the great the dynamic focce.

Finally, it is seen that the Largest effect in caused by
the frequency. As the frequency increases, the dynamic
force increases up to a rnaxinmm.

The four regimes in whici the chain responds were
also observed, although they occurred at different fre-
quencies for the different pre-tensions. The ranges are
shown, in Figure 6. Generally, up to a freqDency of 0.5
Hz the maximum tension in the chain could be predicted
by using a quasi-static analysis for all pre-tensiOns. How-
ever, for frequencies in the range of 0.5 to approximately
2 Hz the chain is in the harmonic oscillating range and
dynamic forces are observable. Past this point, the force
time plots are no longer sinusoidal in nature. From 2 Hz
to 2.5-4 Hz (depending on the pre-tensioa) the chain is
in the snap condition and, altugh 'the maximum force
keeps increasing, the minimum force has gone to zero.
It is in this area that the largest dynamic tensions are
recorded. Eventually, the chain enters the free fall range
and dynamic forces start to decreas. The frequency
range did not go high enough to allow the free fall con-
dition to be observed for all pre-tensions.

The large forces found in the snap and the free fall
condition are due to internal impact forces of the chain.

I

These forces are caused by impacts between the links. As
the tension in the chain goes to nero, the links are able
to assume a motion, to a certain extent, independent of
their neighbors. However, wben the line comes under
tension again, the links must take up a certain position
and orientation. The forcing of the links into this set
position causes the impact forces.

The chain aLso reacted quicily when the forcing func-
tion was first applied. In the harmonic condition, the
steady state dynamic force was achieved after only 1 cycle
of the forcing function. In the snap and free fall ranges,
it took up to 5 oscillations before the maximum dynamic
force was observed.

It is important to examine bow the modelling of cate-
nary mooring cables applies in the ocean environment.
The first step in this is to examine scale errors.

The term 9 is an angle and thus transform identi-
cally. Geometric similarity can be achieved and thus the
terms RID, S/H and D/S w-11 be modelled correctly.
Also, since the experiments take place in water and the
material is steel, the ratio mc/?, will be correct.

The term &'2/g'/3D accounts for the hydrodynamic
properties of the cable. In this experiment, the Reynolds
number placed operation well into the turbulent range.
thus scaling should not have much effect on these prop-
erties. This is borne out by the results of van Sluijs and
Blok (1977).

The term E/rngS accounts for elasticity in the ca-
ble. Although for deep water, elasticity is an important
parameter, this study is aimed more at waters with a
depth measured in tens of meters rather than hundreds.
Thus elasticity should not have a great influence on the
system.

This leaves the parameter _- R/g as the most impor-
tant. This is the ratio of the acceleration that the top end
of the chain will undergo to gravit.ational acceleration.

An example shows that for a given situation, signif-
icant dynamic forces will occur. if there is a stretch of
water 10 km long with an average depth of approximately
15 meters and a wind of 70 km/hour blowing' for 1 hour,
waves with a period of 3.0 seconds and a significant height
of 1 meter will be produced. A can buoy in this wave field
would respond at the same frequemcy with approximately
the same amplitude of motion. The w2R/g parameter
for this scenario is 0.23. From Figure 7, it can be seen
that this corresponds to a dynamic amplification factor
of about 15.

8 Conclusions
It is seen that, although the quasi-static analysis is valid
for many shallow water conditions, the designer should be
aware that significant dynamic forces may occur. The fre-
quencies that these forcing functions operate at provides
an indication of whether or not allowance for dynamic
forces should be made.
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