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Abstract
Self-tracking has expanded exponentially in an era defined by the ubiquitous presence of wearable
technologies and smart devices. From health and fitness to finances and productivity, these devices
empower users to delve into their quantified self (QS) through an almost infinite amount of visualiza-
tions. However, a user has limited time to engage with the data, and the device with which they interact
has limited screen space — this calls for the need to suggest the user proactively with valuable and
informative plots. An algorithm can suggest and select plots of user activities and adapts to a user’s
changing requirements while offering maximum usefulness in the information. We leverage combina-
torial optimization to handle the multi-objective task of extracting the most informative 𝑘 plots from a
much larger pool of 𝑁 plots. The novel optimization formulation encapsulates plot features into four
unique objective functions designed to capture diverse aspects of data usefulness. We evaluate the ef-
ficacy of our selection method in silico for various diverse usage scenarios. The simulation results show
that the proposed methodology is efficacious in realizing three objectives (‘relevance’, ‘freshness’, and
‘likability’) while identifying the need for refinement in the fourth objective (‘noteworthiness’). Our work
demonstrates the design, development, and evaluation of a selection algorithm that delivers a relevant
yet fresh selection of visualizations for a quantified-self user interested in keeping track of information
related to several activities.
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𝑠𝑓𝑟𝑒(𝑠𝑗) Mean score of plots selected in 𝑗-th selection on evaluation metric for ‘freshness’

𝑑𝑓𝑟𝑒(𝑡𝑥 , 𝑡𝑦) Mean score of all plots selected in a given duration on evaluation metric for ‘freshness’

𝐸𝑓𝑟𝑒 Evaluation metric for measuring efficacy of the system in ensuring ‘freshness’

𝑒𝑙𝑖𝑘(𝑢𝑖) Score of plot 𝑢𝑖 on evaluation metric for ‘likability’

𝑠𝑙𝑖𝑘(𝑠𝑗) Mean score of plots selected in 𝑗-th selection on evaluation metric for ‘likability’

𝑑𝑙𝑖𝑘(𝑡𝑥 , 𝑡𝑦) Mean score of all plots selected in a given duration on evaluation metric for ‘likability’

𝐸𝑙𝑖𝑘 Evaluation metric for measuring efficacy of the system in ensuring ‘likability’

𝑒𝑛𝑜𝑡(𝑢𝑖) Score of plot 𝑢𝑖 on evaluation metric for ‘noteworthiness’

𝑠𝑛𝑜𝑡(𝑠𝑗) Mean score of plots selected in 𝑗-th selection on evaluation metric for ‘noteworthiness’

𝑑𝑛𝑜𝑡(𝑡𝑥 , 𝑡𝑦) Mean score of all plots selected in a given duration on evaluationmetric for ‘noteworthiness’

𝐸𝑛𝑜𝑡 Evaluation metric for measuring efficacy of the system in ensuring ‘noteworthiness’





1
Introduction

Wellness has emerged as one of the most prominent objectives for many people in the modern world.
It involves several sub-components such as physical well-being, financial health, acquiring new skills
and so on. For instance, a person employed in a sedentary job might be interested in running to stay
active while also wanting to reduce their screen time on the phone. However, it is difficult to consistently
strive towards our goals unless we can somehow keep track of our activities in the relevant area. It is
therefore said that if we can measure it, we can manage it. Thus, firstly we need data to monitor the
activities.

In the general population, wellness-related data collection and analysis are mostly done by the
users themselves since it is expensive to hire professionals. Quantified-self or self-trackers refers to
the users who do self-tracking and analysis of gathered data for self-knowledge and wellness gains.
Quantified-self practitioners and activities being tracked by them are increasing at an exponential pace.
The Economist did a cover story on the quantified self movement in March 2022 (in Figure 1.1) and
reports that self-tracking tools are going to transform the health sector [1].

Figure 1.1: The cover page of Technology Quarterly (May 7th 2022) of The Economist with several article on the topic of quantified
self [2].
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2 1. Introduction

The widespread adoption of wearable technologies such as fitness and sleep trackers in recent
years has brought tracking tools to a much greater population. At the same time, portable and wearable
computers such as smartphones and smartwatches are offering ever-increasing computational power
and user-interaction (UI) capabilities to analyse, visualize and interact with their data. Therefore, a
great variety of plots, tables, and notifications can be generated at any given time using data being
collected through self-tracking devices.

The amount of personal data and ways to present it are so much today that there is now an ex-
plosion in choice of the visualizations that can be used to summarize user data. As argued in the
Paradox of Choice [3] albeit in a different context, abundance in choice leads to powerlessness and
frustration. It stems from choosing ‘one’ among many other options, which means giving up the rest of
the opportunities. Moreover, the time available to a user is limited and it is not possible to sift through
all the possible plots and reports that can be generated from their data. Therefore, users would want
to have the most useful information presented to them. Achieving this is challenging, as usefulness is
a multi-faceted concept.

1.1. Research questions
In this thesis, we address the problem of identifying the most useful information from the abundant
activity data streams that can be provided to a user at every interaction with the user-interface of a self-
tracking tool. For this purpose, we develop and evaluate an algorithm that can select the most useful
data plots (further also referred as UI Elements) given the user context, a predefined set of data types
and the types of plots presenting that data (also referred to as UI Element Bank). In other words,
we aim at selecting effectively from a discrete, large, but limited set of data visualizations related to
different activities. Towards that end, our work attempts to address the following research questions:

1. What makes an UI Element useful to a user?

2. Given the relevance criteria, what are the effective ways to select an UI Element given the use
context?

3. How does the proposed way of selecting UI Elements perform from the perspective of user sat-
isfaction?

1.2. Contribution
In this thesis, we consider the situation in which a user interacts with a self-tracking tool and set out
to develop a selection algorithm that can select a limited number of most useful UI Elements out of a
large UI Element Bank at every interaction.

To address the first research question, we investigate the possibilities for defining a utility function
to quantify the expected usefulness of a plot. This utility function takes as input a number of features
representing the plots which we define and model for this purpose. These features take into account,
for example, a user’s goals, measured activity trends, but also personal preferences on how the in-
formation is presented. For the latter, we rely on user interaction, where the user can give positive or
negative feedback on the UI Element offered by the system. The features are selected such to reflect
the four aspects of plot usefulness we focus on in this thesis: relevance, likability, freshness and
noteworthiness.

We approach the second research question of selecting optimal UI Elements by investigating the
ways how to solve the utility maximization problem resulting in a ranked list of UI Elements. In partic-
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ular, we exploit the potential of Integer Programming techniques, for which we argue to be potentially
effective for this purpose. The result of our investigation is an optimization engine (UI Optimizer) that
takes into account user goals, interaction history and user preferences, and the information in the UI
Element Bank.

Finally, the third research question is approached by implementing and evaluating our optimization
engine. In order to do that, we rely on a self-tracking tool that can analyse a user’s activity data from a
fitness tracker, generate a UI Element Bank and enable the user to interact with the selected plots. We
devise an evaluation framework implemented in Python and develop hypotheses on how the selection
algorithm should behave in different scenarios depending on the usage frequency, patterns in user
data and feedback provided by the user. These hypotheses are then tested by simulating a number of
predefined use scenarios. The plots chosen by the selection algorithm in these simulation are analysed
for whether the hypothesized behaviour is observed or not. The results indicate that the performance
of the UI Optimizer matches the expectations expressed by the hypotheses in majority of the scenarios,
which shows effectiveness of our optimization approach.

1.3. Thesis Outline
The remainder of the thesis is organized as follows. In Chapter 2, we first discuss the overall design
of a self-tracking tool and thereafter the components that relate to our proposed optimization engine
are further elaborated. In Chapter 3, we define the feature engineering of plots, the overall utility
function, the optimization approach used in solving the utility maximization problem, and provide the
necessary implementation details. In Chapter 4, we start with describing the validation approach used
to evaluate the optimization engine. Thereafter, the results from the validation experiments are provided
and discussed. In Chapter 5, we conclude by reflecting on our work and its limitations and give a view
on the future work.





2
Background

In this chapter, we first contextualize our work by reviewing the existing literature related to our research.
Thereafter, we introduce a system architecture of a self-tracking tool providing the framework for our
research. While our study focuses on a self-tracking for limited (health and wellbeing related) input
datastreams, the proposed approach for selecting useful UI Elements can be used for any number of
data inputs and activity data coming from multiple domains. Similarly, the current approach is designed
and developed for a single output device but it can easily be adapted to support optimization across
devices.

2.1. Related Work
Much work has been done in the area of UI optimization, including the usage of Integer Programming
(IP) techniques, as well the quantified self domain. In this section we summarize the related work that
has been done so far.

2.1.1. Quantified-self
As for the quantified-self, the initial thrust of research was focused on understanding the motivation of
people who use self-tracking technologies [4] [5]. The primary driving force identified by these stud-
ies was self-improvement and make productivity gains. Fawcett [6] reviewed the opportunities and
challenges posed by the QS movement. The paper underscores that there is currently a lack of scien-
tifically tested mechanisms for generating insights from the QSelfers data-streams. Swan [7] in 2013
forsees much of the trajectory the quantified-self phenomenon has taken. For example, she empha-
sized the need for data collection, integration, and analysis using newer models specifically suited for
the self-tracking data. Moreover, she posits that the long-term objective of QS systems would be to
offer systemic monitoring approach to an individual. However, the paper and subsequent research in
the quantified-self domain has not considered the problem of user-interface optimization for QS appli-
cations that aggregate multiple self-tracking data streams.

5
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2.1.2. System design for quantified-selfers
Human-Computer Interaction domain has produced a number of design frameworks over the years
that are relevant to Quantified-Selfers. Unremarkable computing [8, 9], relevance of context [10], and
activity-centric computing [11] offers guiding principles for developing a UI management system. Has-
san, Dias, and Hamari [12] employ survey data to argue that quantified-self as a motivational design for
pursuing user engagement offers informational feedback as well as affective feedback. In their anal-
ysis, gamification, a lot more researched and widely-known class of motivational design, only offers
affective feedback. The paper recommends combining several types of feedback in system design to
increasing the likelihood of a user perceiving benefits from the use of the system and continue their
use of it.

2.1.3. Designing utility function for optimizing user interface
Finally, there is a rich body of literature on user-interface optimization and management. Oulasvirta
[13] summarizes model-driven combinatorial approach. Related approaches that have been validated
through UI development and subsequent user studies include that of multi-armed bandits [14] and
integer programming [15]. Gajos and Weld [16] take a machine learning approach for eliciting user
preferences to learn a factored cost function. Coming from a expert systems perspective, Tarkka-
nen et al. [17] describes an incremental approach to develop the user interface using multi-objective
optimization. To sum up, we find several approaches that can be employed for user-interface opti-
mization. However, none of these UI optimization techniques have been implemented in the context
of quantified-self applications so far.

2.1.4. Research gaps
Despite considerable work on quantified-self and IP techniques, the prospects of IP techniques in UI
optimization for quantified self haven’t been examined so far. In this thesis we bring the method of IP
technique to the domain of quantified-self.

2.2. Overall system architecture
Figure 2.1 illustrates the overall system diagram for a self-tracking system we developed. The system
collects data from self-tracking devices and other services in an aggregated form. This data is analysed
to generate data visualizations available as device-own plots (UI Elements). The plots are collected in
the UI Element Bank and form the input for the core optimization engine (UI Optimizer). On the output
side of the UI Optimizer, the selected plots are delivered by the system to the users via output devices,
such as smartphone app, to provide them insights into their daily life. The optimization engine has
the task to intelligently pick the most useful plots. It is designed to use plot characteristics from the UI
Element Bank, pre-specified interest areas by the user in form of User Goals, and the information from
previous user interactions (Interaction History) to make the optimal selection. More specifically, the
optimization engine takes five inputs that we explain in more detail in the subsequent section: a) From
the UI Element Bank: Plot Features (further denoted by 𝑀) and Plotted User Data (further denoted by
𝑃); b) User Goals (further denoted by 𝐺); c) from the Interaction History: Selection Log (further denoted
by 𝑆) and Interaction Log (further denoted by 𝐼). The optimization engine itself is the topic of the next
chapter.
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Figure 2.1: Overall schematic diagram for an automated quantified-self information system

2.3. Data sources for the optimization engine
We now discuss and illustrate each of the five components of the self-tracking system that acts as input
to the optimization engine as discussed in the previous section. An overview of these components will
help us in understanding the data available to the optimization system to make the plot selection.

2.3.1. Plots Features (𝑀)
Every plot that is generated using an available datastream has certain characteristics associated with it,
which are represented by features. For example, Figure 2.2a shows a bar-plot for the number of hours
a user has been sitting for the past several weeks. The table in Figure 2.2b summarizes the features
of this bar plot. In the system architecture deployed by us, the visualization generator that parses
the aggregated user data to UI elements also exports machine-readable features for each element for
subsequent usage by the optimization engine.
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Activity ‘sit’
Analysis type ‘historical’
Plot type ‘barplot’
Frequency ‘weekly’

Data newness 82%
Trend -0.13

Goal completion 37.8d
(b) Features associated with the adjacent plot

Figure 2.2: An example of plot and associated plot features
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2.3.2. Plotted User Data (𝑃)
Plots having time series data can be analysed by the optimization engine for noticing any trends. As
illustrated by Table 2.3, current user data in plots such as barplot, areaplot etc. are therefore logged in
a separate table of plotted user data (𝑃) that holds the numerical values of the depicted data for usage
by optimization engine.

Table 2.1: Example of plotted user data (𝑃) at a given time

Plot ID Plotted Data Values
1 {3.4, 3.1, …4.4}
2 𝜙
. .
. .

542 {12.4, 10.5, …12.2}

2.3.3. User Goals (𝐺)
Users logging their daily activities typically have some goals in mind. They also typically use some
numerical targets that can help them quantify their goals in the area of life that they want to monitor or
improve upon. For example, a person having a desk job who wants to avoid prolonged hours sitting
(goal) can do so by keeping a tab of the number of hours they spend sitting using a smartwatch and by
setting a target, for example, to stand at least 5 hours a day. As shown in Figure 2.4, the goals could
be for various domains of life as long as a data stream is available to monitor it. In our system, we use
such explicitly provided targets to improve the UI Element selection by prioritizing plots that capture
one or more of these targets.

Activity Target

. . Stand > 5h/d
Mandarin vocabulary +30 words/week

. .
. .
..

Expenses on junk food < €50/month

. . Steps > 12000/d

. . Journaling
. ./. . Screen time < 35h/week
. .

. .
Expenses on transport

. . Sleep ≈ 8h/d

. . Rowing > 2h/week

Figure 2.3: An example of user-goals and the corresponding targets

2.3.4. Interaction Log (𝐼)
While the ’User Goals’ data source serves to steer the selection of the relevant plots, users could still
have preferences for one plot over another. Therefore, another mechanism is required to learn the user
preferences in a dynamic, but non-intrusive way through continuous interactions to help the system to
better serve the user over time .

In our prototype system, the feedback is taken using the ”like” or ”dislike” button that can optionally
be clicked by the users to suggest whether a plot was useful to them or not. The feedback could
potentially also be taken in another way, such as swiping left and right, or by tracking the time spent
on looking at each plot. To keep the UI and selection algorithm simple, the likes/dislikes are attributed
to all features of the plot in question. Our selection algorithm is designed to make use of the collected
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logs for adapting to the user taste as will be detailed in the next chapter.

Table 2.2: A sample log of interaction data (𝐼)

Session ID Plot ID Rating
1 14 +
1 52 +
. . .
. . .
2 334 +
2 13 -
3 245 +
. . .
. . .
53 242 -

2.3.5. Selection Log (𝑆)
Additionally to the Interaction Log, a log of all plots that were presented to the user is also kept even
if no explicit feedback was received in terms of ”like”/”dislike”. This log helps in keeping track of what
information has already been delivered to the user in the recent past. More specifically, the system
keeps a log of plot indices that are selected whenever a user interacts with the user interface system.
Table 2.3 illustrates the data fields that are logged.

Table 2.3: A sample log of selection log (𝑆) data

Session ID Start Time Session Duration Selected Plots IDs
1 2020-01-15 12:18:30 23 {14, 52, …, 367}
2 2020-01-15 16:32:56 53 {334, 123, …, 13}
3 2020-01-16 07:18:30 35 {52, 245, …, 62}
. . . .
. . . .
53 2020-01-45 15:23:63 85 {67, 3, …, 242}

In the above table, the field Session ID keeps a unique value for each interaction while Start Time
logs the time when user refreshes the plot selection (i.e., starts a new session). Session Duration logs
the session duration (in seconds) while Selected Plots holds the ranked indices of 𝑘 plots and the order
in which they were displayed to the user during that session.





3
Method

Designing a Graphical User Interface (GUI) for Quantified-Self applications can entail various design
tasks, such as functionality selection, icon selection, menu design, grid layout or widget selection, to
name a few. In this thesis, we focus on a simple user interface where users are presented with a
fixed number of plots of their logged data per interaction with the self-tracking system, with each button
having ”like” and ”dislike” button that can be optionally interacted with. There are no icons, menus or
complex grid layouts. As depicted in Figure 3.1 (right), we consider the plots presented column-wise,
ranked according to their match with the selection criterion. The size of all the selected plots is the
same and there is only one output device. In other words, we use a simple user interface layout where
the only variables are the plot-selection criteria and where the main task is to optimize the plot selection
given the criteria.

In the subsequent sections, we first narrow down conceptually on the optimization approach that
would be most suitable for the problem at hand. Thereafter, we propose the selection criteria that reflect
our goal to select the most useful plots for the user in the given context. Finally, we translate these
criteria into the optimization method we implement.

3.1. Plot selection as combinatorial optimization problem
Optimization is the process of searching the solution space for candidates that yield the most desir-
able value with regard to some criterion. Combinatorial optimization is a sub-field of optimization that
consists of finding an optimal object from a finite set of objects, where the set of feasible solutions
is discrete or can be reduced to a discrete set [18] [19]. Over years, combinatorial optimization has
emerged as a flexible and powerful tool for computational generation and adaptation of GUIs [20].

Combinatorial optimization is especially suited to decide on the GUI design and interactions. It is
distinguished by its algorithmic capacity, controllability, and generalizability. In comparison to formal
methods, such as logic, combinatorial optimization offers an effective but a flexible way of expressing
design knowledge and objectives in a computablemanner. Compared to data-driven approaches based
on machine learning, such as artificial neural networks, combinatorial optimization allows one to control
the design outcomes via specific design objectives [21].

11
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Figure 3.1: An illustration of the interaction context with the selected plots: plots extracted from theUI Element Bank are presented
to the users column-wise, ranked according to their match with the selection criterion.

3.1.1. Selection problems in GUI design
Selection problems in GUI design involve choosing a set of given elements 𝑈 = {𝑢1, ..., 𝑢𝑛}, with each
element 𝑢𝑖 being equipped with a nonempty set of attributes 𝐴𝑖 ⊆ 𝐴, 𝐴 = {𝑎1, ..., 𝑎𝑚}, to meet given
requirements while optimizing one or multiple objective functions. Oulasvirta et al. [21] divides the
selection problem for UI design in four sub-types. Among them, the packing and covering problems
are of most interest to us.

In packing problems we have positive capacities 𝑐𝑗 for each attribute 𝑎𝑗, and only those subsets of
𝑈 are feasible that do not exceed the capacity for each attribute. On the other hand, covering problems
have have a certain requirement 𝑟𝑗 for each attribute 𝑎𝑗. The task is to select a subset of 𝑈 that satisfies
all requirements; that is, the number of selected elements with attribute 𝑎𝑗 is at least 𝑟𝑗 for each attribute.
[21]

In packing problems, the goal is to find a selection of the elements that do not exceed the capacities
and maximizes the total profit while in covering problems, the goal is to make a selection that minimizes
the total costs.

3.1.2. Plot selection as packing-type widget selection problem
The plot selection problem is closest to widget selection problem discussed in the literature [21]. In the
widget selection problem, there are multiple widgets, or widget types, but there is only a limited-size
canvas to place them on. The plots generated in a Quantified Self’s system can be considered as
widgets of same type but each plot/widget having different attributes. The objective of widget selec-
tion problems (or plot selection problem in our case) can be formulated as both packing and covering
problems, as discussed in previous section.

We argue that, the plot selection problem that we aim to take up in this project are best suited to be
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formulated as packing problems. The goal of widget selection problem formulated as a packing problem
is to find a selection of elements that, without exceeding the capacities, maximizes some positive value,
such as usefulness to end users.

3.2. Linear Programming for solving optimization problems
The optimization problem addressed in this thesis can be formulated as a linear program, in which the
set of feasible solutions is formed by finitely many constraints and where the constraints are linear.
Linear programs can be expressed in canonical form as

Find a vector x (3.1)

that maximizes cTx (3.2)

subject to 𝐴x ≤ b (3.3)

and x ≥ 0. (3.4)

Here the components of x are the variables to be determined, c and b are given vectors, and A is
a given coefficient matrix. The function whose value is to be maximized or minimized (x ↦ cTx in this
case) is called the objective function. The inequalities Ax  ≤  b and x ≥ 0 are the constraints which
specify a convex polytope over which the objective function is to be optimized.

Linear programming problems can be solved by various methods, one of which is the simplex
method [22]. In integer linear programming (ILP), some or all of the variables of the linear program
are restricted to be integers [23], as is the case in our research context.

3.3. Multi Objective Linear Programming
The usefulness of a plot is a multi-faceted criterion (see next section for details), which translates into a
multi-objective optimization scenario. In such a scenario, the resulting objectives 𝑓𝑖 for 𝑖 = 1, ..., 𝑘 may
conflict with each other. A solution that is optimal for one objective may perform poorly for others. One
common technique in solving multi-objective linear programming problems is to combine the objectives
into a single objective expression [24]. This can be done in many ways, for example, by using weighted
sums, the lexicographic method or goal-programming methods. The resulting problem can then be
solved via well-established algorithms [25]. Alternatively, one function 𝑓𝑗 can be considered as the
main objective function, which is to be optimized given the bounds of values of the other objective
functions as constraints, i.e., 𝑓𝑖(𝑥) ≤ 𝜀𝑖. This method is usually referred to as the ε-constrained method
[26]. Mavrotas [27] argues that later has several advantages over the weighing method and weighting
method cannot produce unsupported efficient solutions in multi-objective integer and mixed integer
programming problems. For this project, we therefore use ε-constrained method to solve the multi-
objective integer linear programming formulation of our research problem.

3.4. Modeling the plot selection problem
The main goal of plot selection is to identify plots that are most useful in a given interaction. As dis-
cussed in Section 2.1, usefulness (i.e. utility function) can be modeled in various ways [13]. In this
thesis we map usefulness on four criteria, for which we believe to reflect best the needs of the users in
a quantify-self application context. Furthermore, following the principle of the ε-constrained optimiza-
tion method, within these four criteria we select one of them as the main one (the primary optimization
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objective) and the other three as constraints (the secondary optimization objectives). We elaborate on
these criteria in the following subsections.

3.4.1. Primary optimization objective
In our project, the primary concern is that to find plots that are most relevant to user goals. If a user
has explicitly marked ”number of steps taken on a day” as an activity they want to particularly focus on
and perhaps also have goal about it, the selection system should prioritize plots that have information
on this activity. We denote this criterion by relevance (𝑓𝑟𝑒𝑙) and consider it the necessary condition for
a successful interaction with a self-tracking system.

3.4.2. Secondary optimization objectives
The GUI of a quantified self is often accessed by its user multiple times a day. If we only have relevance
of plots to user’s goals as the sole criterion, it is likely that the same types of plots gets selected over
and over again. This may introduce dullness in the information presented to the user and result in the
users gradually losing interest, decreasing their interactions and thus losing track of their activity data.
In order to prevent this, we propose to have the optimizer prioritize plots that bring freshness (𝑓𝑓𝑟𝑒) in
plot selection. For example, if a barplot on ”hours of sleep a day” during last week has already been
displayed during an interaction, there should be some penalty in choosing it again in a subsequent
interaction.

Our user interface allows a user to provide their feedback (using ”like” and ”dislike” button provided
for each plot) to how useful they found a plot. Leveraging this functionality, if we find in interaction log
that a user is consistently rating line-charts positively and pie-charts negatively, we should be prioritizing
line-charts in the selection. Therefore, we would like to prioritize selection of plots that are expected to
have high likability (𝑓𝑙𝑖𝑘), as inferred from the user preferences.

As discussed in previous chapter, the quantified-self system proposed for this project has a visual-
ization generator that also provides metadata on the generated plots. For instance, the data depicted
in a bar-plot for weekly average of kilometers ran in the last month is available as a list of 𝑦-values such
as [12.2, 10.2, 6.3, 5.4, 5.6]. This information can be used to evaluate whether the depicted data has a
certain pattern to it, such as increasing/decreasing trend. It is likely that plots having such notewor-
thiness (𝑓𝑛𝑜𝑡) in terms of displayed data would be found useful by the users. We thus consider it as
another criterion while selecting plots for display.

3.4.3. Formulation of the optimization problem
For every plot, a decision needs to be made whether it is chosen or not in the final selection. We
therefore have a binary integer variable 𝑥𝑖 for each plot 𝑢𝑖 that takes value of 0 or 1 where 0 signifies
that plot is not selected while 1 signifies that plot is selected, i.e. 𝑥𝑖 ∈ {0, 1} ∀𝑥𝑖 ∈ 𝑋.

We have only one constraint where we limit the total number of plots that are to be selected. In
other words, we want to select 𝑘 plots from the full set of 𝑛 (𝑛 = |𝑈|) plots:

𝑛

∑
𝑖=1
𝑥𝑖 = 𝑘

As discussed before, we use the 𝜀-constrained method to solve the multi-objective optimization
problem by choosing one criterion ∑𝑛𝑖=1 𝑥𝑖 × 𝑓𝑟𝑒𝑙(𝑥𝑖) as the main optimization objective and bind the
values of the other objective functions 𝑓𝑘 in the constraints as follows:
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𝑛

∑
𝑖=1
𝑥𝑖 × 𝑓𝑓𝑟𝑒(𝑢𝑖) ≥ 𝜀𝑓𝑟𝑒 ,

𝑛

∑
𝑖=1
𝑥𝑖 × 𝑓𝑙𝑖𝑘(𝑢𝑖) ≥ 𝜀𝑙𝑖𝑘 ,and

𝑛

∑
𝑖=1
𝑥𝑖 × 𝑓𝑛𝑜𝑡(𝑢𝑖) ≥ 𝜀𝑛𝑜𝑡 .

The values for 𝜀-parameters (i.e. 𝜀𝑓𝑟𝑒, 𝜀𝑙𝑖𝑘, and 𝜀𝑛𝑜𝑡) are hyper-parameters of our optimization
model. They are discussed in detail in Section 3.7. The modified optimization problem, after applying
the 𝜀-constrained method can now be formulated as follows:

maximize
𝑛

∑
𝑖=1
𝑥𝑖 × 𝑓𝑟𝑒𝑙(𝑢𝑖) (3.5)

such that
𝑛

∑
𝑖=1
𝑥𝑖 × 𝑓𝑓𝑟𝑒(𝑢𝑖) ≥ 𝜀𝑓𝑟𝑒 , (3.6)

𝑛

∑
𝑖=1
𝑥𝑖 × 𝑓𝑙𝑖𝑘(𝑢𝑖) ≥ 𝜀𝑙𝑖𝑘 , (3.7)

𝑛

∑
𝑖=1
𝑥𝑖 × 𝑓𝑛𝑜𝑡(𝑢𝑖) ≥ 𝜀𝑛𝑜𝑡 , (3.8)

𝑛

∑
𝑖=1
𝑥𝑖 = 𝑘, (3.9)

𝑥𝑖 ∈ {0, 1} ∀𝑥𝑖 ∈ 𝑋 (3.10)

Objective functions 𝑓𝑘 ∈ 𝐹, with 𝐹 = {𝑓𝑟𝑒𝑙 , 𝑓𝑓𝑟𝑒 , 𝑓𝑙𝑖𝑘 , 𝑓𝑛𝑜𝑡}, are high-level in nature. In the next
sections we identify and formulate a set 𝑄 of seven lower-level plot features (𝑞𝑗) which become the
building blocks for these objective functions. Each objective function (i.e. 𝑓𝑟𝑒𝑙, 𝑓𝑓𝑟𝑒, 𝑓𝑙𝑖𝑘, and 𝑓𝑛𝑜𝑡)
is thereafter taken as a linear combination of a subset of plot features that have a bearing on that
objective. In mathematical terms, the relationship between an objective functions (𝑓𝑘) and plot features
(𝑞𝑗) in general can be formulated as follows

𝑓𝑘(𝑢𝑖) =
∑𝑗∈𝑄 𝑤𝑖,𝑗 × 𝑞𝑗(𝑢𝑖)

∑𝑗∈𝑄 𝑤𝑖,𝑗
∀𝑢𝑖 ∈ 𝑈, ∀𝑓𝑘 ∈ 𝐹 and ∀𝑞𝑗 ∈ 𝑄 (3.11)

In the above equation, 𝑤𝑖,𝑗 is the weight of plot feature 𝑞𝑗 in the value of the objective function 𝑓𝑘,
for which it holds 𝑤𝑖,𝑗 ∈ [0, 1] and ∑𝑗∈𝑄 𝑤𝑖,𝑗 = 1.

The definition of the plot features in section 3.5 will be followed by the introducion of the weights 𝑤𝑖,𝑗
in Section 3.6. Finally, we will revisit the modified optimization problem discussed in previous section
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and values of hyper-parameters 𝜀𝑘 in Section 3.7.

3.5. Plot features
Every plot in the UI element bank has several properties, also referred to as features, such as type of
plot, frequency of data depicted, x-values, y-values, etc. In this project we identify and mathematically
formulate seven plot features which can act as approximations for the high-level plot selection criteria
(i.e. relevance, likability, freshness, and noteworthiness). In order to keep the optimization problem
computable, we quantify the categorical properties so that we only have to deal with numerical values.

We introduce the plot features using the following toy example. Let us suppose a person uses an
activity tracker to capture their activity data. Using this data, the visualization engine creates a plot
shown in Figure 3.2, which depicts the average number of hours per day a person spends time sitting
over consecutive weeks. Table 3.1 shows raw values of the features for this plot collected from the
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Figure 3.2: An example plot of user data depicting weekly average hours spent sitting as gathered from a fitness tracker

different data sources introduces in the previous chapter (𝑀, 𝐺, 𝐼, 𝑆, and 𝑃) . In the remainder of this
section, we briefly describe each of the seven features used in our optimization system and how raw
values are quantified (using 𝑞𝑗) so that the resulting numeric values can be used to compute objective
functions 𝑓𝑘. For the example plot provided in Figure 3.2, the numeric values for the features are listed
in ‘Quantified feature value’ column of Table 3.1.

3.5.1. Activity (𝑞𝑎𝑐𝑡)
This feature captures the user’s activities depicted in the plot. This field can have one or more values.
For example, in Figure 3.3 first plot has ten activities while the second plot only has five.

A plot is more relevant if many of the activities depicted in the plot are part of user-defined goals
(i.e. activities of interest) as discussed in previous chapter. If we denote by 𝐴𝐺 = {𝑎|𝑎 ∈ 𝐺′} the set of
activities present in user goals, and by 𝐴𝑖 = {𝑎|𝑎 ∈ 𝑀𝑎𝑐𝑡(𝑢𝑖)} the set of activities present in plot 𝑖 then
we can quantify the activity features using the following expression:

𝑞𝑎𝑐𝑡(𝑢𝑖) =
|𝐴𝑖 ∩ 𝐴𝐺|
|𝐴𝑖|

As an example, let’s take a plot 𝑢𝑖 showing data about three activities such that 𝐴𝑖 = {′𝑠𝑖𝑡′, ′𝑤𝑎𝑙𝑘′,
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Table 3.1: Raw and quantified feature values for the example plot in Figure 3.2

Feature 𝑀, 𝐺, 𝐼, 𝑆, 𝑃 Raw feature values 𝑞𝑗(𝑢𝑖) Quantified feature value
Activity 𝑀𝑎𝑐𝑡(𝑢𝑖) {‘sit’} 𝑞𝑎𝑐𝑡(𝑢𝑖) 1.00

𝐺𝑎𝑙𝑙 {‘sit’, ‘walk’, ‘meditate’}

Plot type 𝑀𝑝𝑙𝑡(𝑢𝑖) ‘barplot’ 𝑞𝑝𝑙𝑡(𝑢𝑖) 0.33
𝐼+𝑀𝑝𝑙𝑡(𝑢𝑖) 5
𝐼−𝑀𝑝𝑙𝑡(𝑢𝑖) 10

Analysis type 𝑀𝑎𝑛𝑡(𝑢𝑖) ‘historical’ 𝑞𝑎𝑛𝑡(𝑢𝑖) 0.50
𝐼+𝑀𝑎𝑛𝑡(𝑢𝑖) 6
𝐼−𝑀𝑎𝑛𝑡(𝑢𝑖) 6

Frequency type 𝑀𝑓𝑟𝑡(𝑢𝑖) ‘weekly’ 𝑞𝑓𝑟𝑡(𝑢𝑖) 0.70
𝐼+𝑀𝑓𝑟𝑡(𝑢𝑖) 7
𝐼−𝑀𝑓𝑟𝑡(𝑢𝑖) 3

Trend 𝑑𝑖 {6.2 ,5.2…, 6.3} 𝑞𝑡𝑟𝑒(𝑢𝑖) 0.13

Goal completion 𝑃𝑑𝑎𝑡𝑎(𝑢𝑖) {6.2 ,5.2…, 6.3} 𝑞𝑔𝑜𝑐(𝑢𝑖) 0.83
𝑀𝑓𝑟𝑡(𝑢𝑖) ‘weekly’
𝐺𝑇𝑎𝑟𝑔𝑒𝑡𝑗 8.0

Data freshness 𝑃𝑡𝑒𝑛𝑑 2020-02-09 13:46:34 𝑞𝑑𝑎𝑓(𝑢𝑖) 0.72
𝑃𝑡𝑠𝑡𝑎𝑟𝑡(𝑢𝑖) 2019-12-23 00:00:00
𝑆𝑡𝑙𝑎𝑠𝑡(𝑢𝑖) 2020-01-15 17:24:23

′𝑚𝑒𝑑𝑖𝑡𝑎𝑡𝑒′}, while the user is having goals for four activities such that𝐴𝐺 = {′𝑤𝑎𝑙𝑘′, ′𝑠𝑙𝑒𝑒𝑝′, ′𝑚𝑒𝑑𝑖𝑡𝑎𝑡𝑒′,
′𝑝ℎ𝑜𝑛𝑒 − 𝑢𝑠𝑎𝑔𝑒′}. In this example, two (i.e. ′𝑤𝑎𝑙𝑘′ and ′𝑚𝑒𝑑𝑖𝑡𝑎𝑡𝑒′) of three activities in the current
plot are part of user goals. Using the above relation, 𝑞𝑎𝑐𝑡(𝑢𝑖) for this plot will be 0.67. 𝑞𝑎𝑐𝑡(𝑢𝑖) takes
value between 0 and 1, inclusive of the limits. For any given plot, the value for this feature may change
if user goals are updated.

3.5.2. Plot type (𝑞𝑝𝑙𝑡)
Plot type represents the type of visualization used to represent data. The main thrust of this feature is
that if a user has expressed strong preference for a particular plot type through the ratings in previous
interactions, we should prioritize the plots having that plot type for selection in subsequent interactions.
Therefore, we make use of the following variables to calculate how many times the current plot type
(𝑀𝑝𝑙𝑡(𝑢𝑖)) has been positively or negatively rated by a user in previous interactions:

• 𝐼+𝑀𝑝𝑙𝑡(𝑢𝑖) is the number of times a user has positively rated plots having the same plot type as in
plot 𝑢𝑖 (i.e. 𝑀𝑝𝑙𝑡(𝑢𝑖)).

• 𝐼−𝑀𝑝𝑙𝑡(𝑢𝑖) is the number of times a user has negatively rated plots having the same plot type as in
plot 𝑢𝑖 (i.e. 𝑀𝑝𝑙𝑡(𝑢𝑖)).

These values can be gathered from the interaction log (𝐼) data source discussed in the previous
chapter. Making use of above definitions, we define the feature plot type as follows:

𝑞𝑝𝑙𝑡(𝑢𝑖) =
𝐼+𝑀𝑝𝑙𝑡(𝑢𝑖)

𝑚𝑎𝑥(1, 𝐼+𝑀𝑝𝑙𝑡(𝑢𝑖) + 𝐼−𝑀𝑝𝑙𝑡(𝑢𝑖)
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Figure 3.3: Example plots showing information about different subsets of activities to illustrate Activity feature (𝑞𝑎𝑐𝑡)

Figure 3.4: Two different types of visualizations to illustrate the Plot type feature (𝑞𝑝𝑙𝑡): on the left is a stacked area plot and on
the right is a barplot.

We illustrate this feature on the two example plots in Figure 3.4. If a plot 𝑢𝑖 being of the ‘barplot’
type (i.e. 𝑀𝑝𝑙𝑡(𝑢𝑖) = ′𝑏𝑎𝑟𝑝𝑙𝑜𝑡′). has been displayed 28 times in previous interactions, out of which
six times it got positively rated (i.e. 𝐼+𝑀𝑝𝑙𝑡(𝑢𝑖) = 6) and four times negatively (i.e. 𝐼−𝑀𝑝𝑙𝑡(𝑢𝑖) = 4), the
above equation tells us that the 𝑞𝑝𝑙𝑡(𝑢𝑖) for the plot 𝑢𝑖 will be 0.6. 𝑞𝑎𝑛𝑡 takes value between 0 and 1,
inclusive of the limits. For any given plot, the value for this feature will change at the next interaction if
a user gives positive/negative rating to a displayed plot.

3.5.3. Analysis type (𝑞𝑎𝑛𝑡)
The same type of plot can show different type of information. For instance, a barplot can show histor-
ical data for one particular activity. In an another type of visualization, barplot can be used to depict
categorical distribution of time across different activity categories. Figure 3.5 illustrates a couple of
analysis types.

Similar to the previous feature, we make use of the interaction log of user ratings for quantifying this
feature. If a user has expressed strong preference for a particular analysis type through the ratings in
previous interactions, we should prioritize the plots having that analysis type for selection in subsequent
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Figure 3.5: Example plots to illustrate the Analysis type feature (𝑞𝑎𝑛𝑡): plot on the left shows ’historical’ analysis of meditation
data while the one on the right depicts ’correlation’ between different activities.

interactions. Therefore, we make use of the following variables to calculate how many times a plots
of the current analysis type (𝑀𝑎𝑛𝑡(𝑢𝑖)) have been positively or negatively rated by a user in previous
interactions:

• 𝐼+𝑀𝑎𝑛𝑡(𝑢𝑖) is the number of times a user has positively rated plots having the same analysis type
as in plot 𝑢𝑖 (i.e. 𝑀𝑎𝑛𝑡(𝑢𝑖)).

• 𝐼−𝑀𝑎𝑛𝑡(𝑢𝑖) is the number of times a user has negatively rated plots having the same analysis type
as in plot 𝑢𝑖 (i.e. 𝑀𝑎𝑛𝑡(𝑢𝑖)).

Making use of above definitions, we define the feature analysis type as follows:

𝑞𝑎𝑛𝑡(𝑢𝑖) =
𝐼+𝑀𝑎𝑛𝑡(𝑢𝑖)

𝑚𝑎𝑥(1, 𝐼+𝑀𝑎𝑛𝑡(𝑢𝑖) + 𝐼−𝑀𝑎𝑛𝑡(𝑢𝑖)
If a plot 𝑢𝑖 of the ‘historical’ analysis type (i.e. 𝑀𝑎𝑛𝑡(𝑢𝑖) = ′ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙′) has been displayed 15

times in previous interactions, out of which seven times it got positively rated (i.e. 𝐼+𝑀𝑎𝑛𝑡(𝑢𝑖) = 3) and
seven times negatively (i.e. 𝐼−𝑀𝑎𝑛𝑡(𝑢𝑖) = 7), the above relation tells us that the 𝑞𝑎𝑛𝑡(𝑢𝑖) for the plot 𝑢𝑖
will be 0.3. 𝑞𝑎𝑛𝑡 takes value between 0 and 1, inclusive of the limits. For any given plot, the value for
this feature will change at the next interaction if a user gives a positive/negative rating to a displayed
plot.

3.5.4. Frequency type (𝑞𝑓𝑟𝑡)
The same type of plot and analysis type can be deployed for different frequency intervals. For instance,
an areaplot having historical data for average sleep hours can have frequency (i.e. aggregation) lev-
els as daily, weekly, fortnightly, monthly, and so on. Figure 3.6 provides example of two such such
frequency types.

Similar to the previous two features, we make use of interaction log of user ratings for quantifying
this feature. If a user has expressed strong preference for a particular frequency type through the
ratings in previous interactions, we should prioritize the plots having that frequency type for selection in
subsequent interactions. Therefore, we make use of following variables to calculate how many times a
plot of the current frequency type (𝑀𝑓𝑟𝑡(𝑢𝑖)) has been positively or negatively rated by a user in previous
interactions:
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Figure 3.6: Example plots to illustrate frequency type feature (𝑞𝑓𝑟𝑡): plot on the left show sleep data in an areaplot with ‘daily’
frequency while the one on right depicts sleep data in an areaplot with ‘monthly’ frequency.

• 𝐼+𝑀𝑓𝑟𝑡(𝑢𝑖) is the number of times a user has positively rated plots having the same frequency type
as in plot 𝑢𝑖 (i.e. 𝑀𝑓𝑟𝑡(𝑢𝑖)).

• 𝐼−𝑀𝑓𝑟𝑡(𝑢𝑖) is the number of times a user has negatively rated plots having the same frequency type
as in plot 𝑢𝑖 (i.e. 𝑀𝑓𝑟𝑡(𝑢𝑖)).

Making use of the above definitions, we define the feature frequency type as follows:

𝑞𝑓𝑟𝑡(𝑢𝑖) =
𝐼+𝑀𝑓𝑟𝑡(𝑢𝑖)

𝑚𝑎𝑥(1, 𝐼+𝑀𝑓𝑟𝑡(𝑢𝑖) + 𝐼−𝑀𝑓𝑟𝑡(𝑢𝑖)
If a plot 𝑢𝑖 of the ‘monthly’ frequency type (i.e. 𝑀𝑓𝑟𝑡(𝑢𝑖) = ′𝑚𝑜𝑛𝑡ℎ𝑙𝑦′) has been displayed 20

times in previous interactions, out of which five times it got positively rated (i.e. 𝐼+𝑀𝑓𝑟𝑡(𝑢𝑖) = 5) and
five times negatively (i.e. 𝐼−𝑀𝑓𝑟𝑡(𝑢𝑖) = 5), the above relation tells us that the 𝑞𝑓𝑟𝑡(𝑢𝑖) for the plot 𝑢𝑖 will
be 0.5. 𝑞𝑓𝑟𝑡 takes value between 0 and 1, inclusive of the limits. For any given plot, the value for this
feature will change at the next interaction if a user gives a positive/negative rating to a displayed plot.

3.5.5. Trend (𝑞𝑡𝑟𝑒)
Some visualizations are conducive to easily allow the quantification of information depicted by them.
For instance, we can calculate the slope of a historical barplot to know the overall trend in the data.
This is an example of a trend feature, which we illustrate in figure 3.7 by three examples.

Figure 3.7: Example plots to illustrate the trend feature (𝑞𝑡𝑟𝑒): the first figure has an overall negative slope (i.e trend), second
has a positive trend, and no trend value can be determined for the third type of plot.

We make use of the following information in order to model the trend feature:
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• 𝑑𝑖 is the array of time-series values displayed in a plot 𝑖. 𝑃𝑑𝑎𝑡𝑎(𝑢𝑖) can be gathered from the
Plotted user data (𝑃) data source discussed in the previous chapter.

• 𝑡𝑟𝑒𝑛𝑑(y) = 𝛽, where 𝛽 is the slope obtained from fitting a list of values y to a simple regression
model (i.e. y = 𝛼 + 𝛽x) using the least-squares approach.

We define the feature trend as follows:

𝑞𝑡𝑟𝑒(𝑢𝑖) = {
|𝑚𝑎𝑥(𝑚𝑖𝑛(𝑡𝑟𝑒𝑛𝑑(𝑃𝑑𝑎𝑡𝑎(𝑢𝑖)), 2), −2)|

2 , if |𝑃𝑑𝑎𝑡𝑎(𝑢𝑖)| > 1
𝜙, otherwise

In the context of this thesis, we take modulus of slope values with the understanding that both
positive and negative slopes would be interesting for the user. A plot having zero slope will have
zero value for the quantified feature and the maximum value (i.e. 1) is attained by a plot when either
𝑡𝑟𝑒𝑛𝑑(y) ≤ −2 or 𝑡𝑟𝑒𝑛𝑑(y) ≥ 2. This capping ensures that slope values for unusually steep plots
remain comparable to the values for plots having gentle slopes. If we now take the centre plot in Figure
3.7 as an example, the list of values displayed in the plot is such that 𝑃𝑑𝑎𝑡𝑎(𝑢𝑖) = y = {2.0, 3.5, 3.9}
and x = {−2, −1, 0}. Using least-squares approach, we can calculate that 𝑡𝑟𝑒𝑛𝑑(y) = 𝛽 = 0.95,
such that y = 𝛼 + 𝛽x. Finally, using the above relation tells us that 𝑞𝑡𝑟𝑒(𝑢𝑖) for the plot 𝑢𝑖 will be 0.475.

When computable, 𝑞𝑡𝑟𝑒 takes value between 0 and 1, inclusive of the limits. For any given plot, the
value for this feature may change at the next interaction if user data that is displayed in the plot gets
updated.

3.5.6. Goal completion (𝑞𝑔𝑜𝑐)
With the ‘goal completion’ feature, we go one step further from the previously discussed ‘Trend’ fea-
tures. Here we quantify how far a user is from their specified goal value. Using the slope (𝛽) calculated
in the previous section, we solve the linear equation to find the expected time required to complete the
goal. The feature can only be calculated where the target value is available for the activity and the
slope value can be calculated from the data depicted in the plot. Moreover, the same activity can have
different goal completion values based on the aggregation level and the values displayed in a plot.

In order to quantify the goal completion feature, we rely on the following information:

• 𝑑𝑖 is the array of time-series values displayed in plot 𝑖. 𝑑𝑖 can be gathered from plotted user data
(𝑃) data source discussed in previous chapter.

• 𝛼 and 𝛽 are, respectively the y-intercept and the slope obtained from fitting x and y to a simple
regression model (i.e. y = 𝛼 + 𝛽x) using the least-squares approach.

• 𝐺∗𝑖 is the target value for goal activity 𝐺𝑖 as defined by the user in the user goals (𝐺) data source.

Primarily, we want to find the duration in which a user will be able to achieve their goal (i.e. 𝐺∗𝑖 ) going
by the current trend. We make use of the relation 𝑦 = 𝛼 + 𝛽𝑥, to find the 𝑥∗ value by substituting 𝑦
with 𝐺∗𝑖 and using 𝛼 and 𝛽 values calculated previously. As a result, we get the 𝑥∗ =

𝐺∗𝑖 −𝛼
𝛽 .

To make the goal completion feature comparable across all frequency types, we make use of the
plot frequency type (i.e. 𝑀𝑓𝑟𝑡(𝑢𝑖)) to calculate the number of days (𝑑𝑎𝑦𝑠(𝑥)) in each interval of the
plots, which is in turn used to normalize the feature value:



22 3. Method

𝑑𝑎𝑦𝑠(𝑥) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

1, if 𝑥 = 𝑑𝑎𝑖𝑙𝑦
7, if 𝑥 = 𝑤𝑒𝑒𝑘𝑙𝑦
30, if 𝑥 = 𝑚𝑜𝑛𝑡ℎ𝑙𝑦
90, if 𝑥 = 𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑙𝑦
365, if 𝑥 = 𝑎𝑛𝑛𝑢𝑎𝑙𝑙𝑦

The above function is used to calculate the final feature value using following the formuation:

𝑞𝑔𝑜𝑐(𝑢𝑖) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝑚𝑎𝑥(𝑚𝑖𝑛(𝑑𝑎𝑦𝑠(𝑀𝑓𝑟𝑡(𝑢𝑖))∗
𝐺∗𝑖 −𝛼
𝛽 ), 365), 0)

365 , if |𝐴𝑖| = 1
and 𝐴𝑖 ∈ 𝐺
and 𝐺∗𝑖 ≠ 𝜙
and |𝑑𝑖| > 1
and |𝛽| > 0

𝜙, otherwise

The if condition in the above formulation essentially means the following:

1. a plot should have only one activity,

2. the activity should be part of user goals,

3. a user should have defined a target value for that activity,

4. there should be at least two values being displayed on the plot so that 𝛼 and 𝛽 can be calculated,
and

5. the slope should not be zero.

We illustrate this feature on the example of the first two plots in Figure 3.7, that we will refer in
the following as the left and the right plot. The list of values displayed in the right plot is such that
𝑃𝑑𝑎𝑡𝑎(𝑢𝑖) = y {2.0, 3.5, 3.9} and x = {−2, −1, 0}. Using the least-squares approach, we can calculate
that 𝛼 = 4.08 and 𝛽 = 0.95. Since, it is a plot with ‘quaterly’ frequency type, 𝑑𝑎𝑦𝑠(𝑀𝑓𝑟𝑡(𝑢𝑖)) = 90.
Now, let us suppose ‘walk’ is an activity part of user goals (𝐺) and the user has a target of walking of 5
hours every day (i.e. 𝐺∗𝑖 = 5). Using the previously listed formulation for feature goal completion, we
can calculate that 𝑞𝑔𝑜𝑐 = 0.24.

When computable, 𝑞𝑔𝑜𝑐(𝑢𝑖) takes value between 0 and 1, inclusive of the limits. The value of zero
for this feature means a user is already at the target level or beyond for the activity depicted in the goal.
The value of one implies that a user is 365 or more days away from achieving their goal. For any given
plot, the value for this feature may change at the next interaction if user data that is displayed in the
plot gets updated.

3.5.7. Data freshness (𝑞𝑑𝑎𝑓)
A relevant plot may keep getting selected over and over again. Moreover, it may be the case that
since the last time a plot was displayed to the user, not much has been changed in the plotted data
and thus there might be repetition in the selection. This would particularly be true for plots having a
long frequency type, such as plots tracking an activity with monthly or quarterly frequency, where there
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would be little change in plotted data in a day or two. To limit the repetition of the same plots over and
over again, we introduce a feature that quantitatively estimates the new data that is available in the
plot compared to its previously displayed version. This feature can help in prioritizing plots that have
significantly more new data. To do so, we rely on the following information:

• 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the current time.

• 𝑡𝑠𝑡𝑎𝑟𝑡 is the start time (i.e. earliest 𝑥 value) of plotted data. This value can be taken from plotted
user data (𝑃) data source.

• 𝑡𝑙𝑎𝑠𝑡 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑢𝑖) is the time when plot 𝑢𝑖 was last selected. This value can be gathered from
selection log (𝑆).

Using the above values, we formulate the feature data freshness as follows:

𝑞𝑑𝑎𝑓(𝑢𝑖) =
𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑡𝑙𝑎𝑠𝑡 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛

𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑡𝑠𝑡𝑎𝑟𝑡

Figure 3.8: Example plot to illustrate the data freshness feature (𝑞𝑡𝑟𝑒): last displayed plot to the user having the timestamp of
2019-11-16 12:34:12

Figure 3.9: Example plot to illustrate data freshness feature (𝑞𝑡𝑟𝑒): currently generated plot having the timestamp of 2019-12-
09 10:34:12

To illustrate this feature, we suppose that the plot for monthly mean hours spent sitting by a user
(as shown in Figure 3.8) was last displayed (i.e. 𝑡𝑙𝑎𝑠𝑡 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛) at 2019-11-16 12:34:12. Now
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let us assume that the current time (i.e. 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡) is 2019-12-09 10:34:12, and the plot with the
updated data looks like in Figure 3.9. In Figure 3.9, we can see that the smallest 𝑥 value (i.e. 𝑡𝑠𝑡𝑎𝑟𝑡)
is 2019-06-01 00:00:00. With these three timestamps, and using the previously listed formulation
for feature goal completion, we can calculate that 𝑞𝑑𝑎𝑓 = 0.18.

When computable, 𝑞𝑑𝑎𝑓(𝑢𝑖) takes value between 0 and 1, inclusive of the limits. For any given plot,
the value for this feature may change at the next interaction if user data that is displayed in the plot
gets updated and also when a plot gets selected to be displayed.

3.6. Defining the weights
As discussed in Section 3.4, the four objective functions are high-level in nature and are to be under-
stood as linear combination of a subset of low-level quantifiable plot features that are relevant to an
objective function. As a parameter of this linear combination, we introduced 𝑤𝑖,𝑗 as the weight of a
plot feature 𝑞𝑗 in the value of the objective function 𝑓𝑘. In this section we discuss the way of selecting
the values for these weights, which is mainly defined by an analysis of the relevance of the individual
features for a given objective function.

For the relevance objective, the only pertinent plot feature is activity. A plot is deemedmore relevant
if most of the activities depicted in it are part of user goals. Therefore, we model the relevance of the
plot directly by the activity feature, set its weight to 1 and the weights of all other features to 0. In others
words, we define 𝑓𝑟𝑒𝑙(𝑢𝑖) as following:

𝑓𝑟𝑒𝑙(𝑢𝑖) = 𝑞𝑎𝑐𝑡(𝑢𝑖) (3.12)

A similar reasoning can be applied for the freshness objective, where the relevant plot feature is
data freshness. A plot is deemed more fresh if most of the data depicted in it has not been previously
presented to the user. Therefore, we define 𝑓𝑓𝑟𝑒(𝑢𝑖) as following:

𝑓𝑓𝑟𝑒(𝑢𝑖) = 𝑞𝑑𝑎𝑓(𝑢𝑖) (3.13)

For the likability objective, the relevant plot features are all those that capture user ratings. Accord-
ing to our feature definitions, plot features ‘plot type’, ‘analysis type’, and ‘frequency type’ make use of
the interaction log to quantify a user’s preference for the plot’s plot type, analysis type and frequency
type, respectively. We take all these three features to contribute equally to the likability objective with
higher value on any of the three feature implying greater preference for the plot. Therefore, we define
𝑓𝑙𝑖𝑘(𝑢𝑖) as following:

𝑓𝑙𝑖𝑘(𝑢𝑖) =
1
3(𝑞𝑝𝑙𝑡(𝑢𝑖) + 𝑞𝑎𝑛𝑡(𝑢𝑖) + 𝑞𝑓𝑟𝑡(𝑢𝑖)) (3.14)

For the noteworthiness objective, the relevant plot feature are all those that make use of patterns
in plotted data. According to our feature definitions, plot features ‘trend’ and ‘goal completion’ make
use of plotted user data to quantify certain patterns in plot. We take these two features to contribute
equally to the noteworthiness objective such that higher value on any of the two feature implies that
the plot would be interesting for the user. Therefore, we define 𝑓𝑛𝑜𝑡(𝑢𝑖) as following:
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𝑓𝑛𝑜𝑡(𝑢𝑖) =
1
2(𝑞𝑡𝑟𝑒(𝑢𝑖) + 𝑞𝑔𝑜𝑐(𝑢𝑖)) (3.15)

Table 3.2: Value of weights

Feature Relevance Freshness Likeability Noteworthiness

𝑓𝑟𝑒𝑙 𝑓𝑓𝑟𝑒 𝑓𝑙𝑖𝑘 𝑓𝑛𝑜𝑡

Activity 𝑞𝑎𝑐𝑡(𝑢𝑖) 𝑤𝑟𝑒𝑙, 𝑎𝑐𝑡 = 1 𝑤𝑓𝑟𝑒, 𝑎𝑐𝑡 = 0 𝑤𝑙𝑖𝑘, 𝑎𝑐𝑡 = 0 𝑤𝑛𝑜𝑡, 𝑎𝑐𝑡 = 0

Plot type 𝑞𝑝𝑙𝑡(𝑢𝑖) 𝑤𝑟𝑒𝑙, 𝑝𝑙𝑡 = 0 𝑤𝑓𝑟𝑒, 𝑝𝑙𝑡 = 0 𝑤𝑙𝑖𝑘, 𝑝𝑙𝑡 =
1
3 𝑤𝑛𝑜𝑡, 𝑝𝑙𝑡 = 0

Analysis type 𝑞𝑎𝑛𝑡(𝑢𝑖) 𝑤𝑟𝑒𝑙, 𝑎𝑛𝑡 = 0 𝑤𝑓𝑟𝑒, 𝑎𝑛𝑡 = 0 𝑤𝑙𝑖𝑘, 𝑎𝑛𝑡 =
1
3 𝑤𝑛𝑜𝑡, 𝑎𝑛𝑡 = 0

Frequency type 𝑞𝑓𝑟𝑡(𝑢𝑖) 𝑤𝑟𝑒𝑙, 𝑓𝑟𝑡 = 0 𝑤𝑓𝑟𝑒, 𝑓𝑟𝑡 = 0 𝑤𝑙𝑖𝑘, 𝑓𝑟𝑡 =
1
3 𝑤𝑛𝑜𝑡, 𝑓𝑟𝑡 = 0

Trend 𝑞𝑡𝑟𝑒(𝑢𝑖) 𝑤𝑟𝑒𝑙, 𝑡𝑟𝑒 = 0 𝑤𝑓𝑟𝑒, 𝑡𝑟𝑒 = 0 𝑤𝑙𝑖𝑘, 𝑡𝑟𝑒 = 0 𝑤𝑛𝑜𝑡, 𝑡𝑟𝑒 =
1
2

Goal completion 𝑞𝑔𝑜𝑐(𝑢𝑖) 𝑤𝑟𝑒𝑙, 𝑔𝑜𝑐 = 0 𝑤𝑓𝑟𝑒, 𝑔𝑜𝑐 = 0 𝑤𝑙𝑖𝑘, 𝑔𝑜𝑐 = 0 𝑤𝑛𝑜𝑡, 𝑔𝑜𝑐 =
1
2

Data freshness 𝑞𝑑𝑎𝑓(𝑢𝑖) 𝑤𝑟𝑒𝑙, 𝑑𝑎𝑓 = 0 𝑤𝑓𝑟𝑒, 𝑑𝑎𝑓 = 1 𝑤𝑙𝑖𝑘, 𝑑𝑎𝑓 = 0 𝑤𝑛𝑜𝑡, 𝑑𝑎𝑓 = 0

∑𝑗∈𝑄 𝑤𝑟𝑒𝑙, 𝑗 = 1 ∑𝑗∈𝑄 𝑤𝑓𝑟𝑒, 𝑗 = 1 ∑𝑗∈𝑄 𝑤𝑙𝑖𝑘, 𝑗 = 1 ∑𝑗∈𝑄 𝑤𝑛𝑜𝑡, 𝑗 = 1

Table 3.2 summarizes the values for all weights. Firstly, it may be noted with the values proposed
by us for different weights that a low-level plot feature contributes to exactly one high-level objective.
However, this is not strictly necessary in such formulations. If a plot feature is understood to have a
bearing on multiple objective functions, an alternative formulation could assign positive weights for that
plot feature with multiple objective functions. Secondly, we have assumed equal weights for all the
contributing plot features in this project. However, advanced formulations could make use of variable
and/or dynamic weights. For example, the weights could be treated as parameters in a reinforcement
learning (RL) based approach that are dynamically learned. Since RL-based approach would require
significantly more interaction log data (i.e. 𝐼) than we had for this project, the values of weights 𝑤𝑖,𝑗 are
kept static for this project. However, if significantly large interaction log is available, perhaps through
prolonged usage of the optimization system by a user and/or in a multi-user setting, RL-based approach
for updating values of weights 𝑤𝑖,𝑗 could be explored. We leave this and other potential alternative
approaches for the future work.

3.7. 𝜀-values as hyper-parameters
As discussed in Section 3.4, we introduced 𝜀-values (i.e., 𝜀𝑓𝑟𝑒, 𝜀𝑙𝑖𝑘, and 𝜀𝑛𝑜𝑡) to modify our multi-
objective linear programming problem into a standard linear programming formulation with one objec-
tive function. In effect, 𝜀-values limit the selection (i.e. 𝑥𝑖 values) such that a minimum threshold must
be satisfied for each of three secondary objectives (i.e. ∑𝑛𝑖=1 𝑥𝑖×𝑓𝑓𝑟𝑒(𝑢𝑖) for freshness, ∑

𝑛
𝑖=1 𝑥𝑖×𝑓𝑙𝑖𝑘(𝑢𝑖)

for likability, and ∑𝑛𝑖=1 𝑥𝑖×𝑓𝑛𝑜𝑡(𝑢𝑖) for noteworthiness) for any valid solution to our integer programming
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problem formulation. As evident from the problem formulation, the higher an 𝜀-value, the stricter are
the requirements for the corresponding objective. Since the 𝜀-values directly govern the strictness
imposed by a secondary objective, we consider them hyperparameters of our optimization model.

The values of 𝜀𝑖 (i.e. 𝜀𝑓𝑟𝑒, 𝜀𝑙𝑖𝑘, and 𝜀𝑛𝑜𝑡) are deployed to put a minimum on overall score of an
objective function (i.e. ∑𝑛𝑖=1 𝑥𝑖 ×𝑓𝑖(𝑢𝑖). It is therefore pertinent to set the 𝜀𝑖 value in relation to the mag-
nitude of the summation score. As discussed in previous sections, the overall objective score depends
on the objective score of candidate plots, which in turn depends on the quantified plot features. More-
over, quantified plot feature values themselves depend on certain underlying raw values. Therefore,
it is difficult to set meaningful 𝜀-values in an absolute manner. We therefore, make use of percentile
scores from ranked lists of 𝑓𝑖(𝑢𝑖) values to set 𝜀𝑖.

Let us define a sequence 𝐹𝑖 of objective scores 𝑓𝑖 for all plots as follows:

𝐹𝑖 =< 𝑓𝑖(𝑢1), 𝑓𝑖(𝑢2), … , 𝑓𝑖(𝑢𝑛) > (3.16)

Now, let us reindex the sequence 𝐹𝑖 in the monotone increasing order as 𝑅𝑖 such that:

𝑅𝑖 =< 𝑟𝑖(1), 𝑟𝑖(2), … , 𝑟𝑖(𝑛) > (3.17)

Now the maximum value that 𝜀𝑖 should take is ∑
𝑘
𝑗=1 𝑟𝑖(𝑗). In other words, the overall objective score

while selecting 𝑘 plots can take a maximum value of the sum of top-𝑘 objective scores. We define the
𝜀𝑖 value on a scale from 0 to the previously listed maximum value. To do that, we define a function 𝑙𝑖(𝑐)
such that:

𝑙𝑖(𝑐) = 𝑐 ×
𝑘

∑
𝑗=1
𝑟𝑖(𝑗) (3.18)

Using the above relation, having 𝜀𝑖 = 𝑙𝑖(1) means that we want to maximize the overall score for
objective 𝑓𝑖. On the other hand, having 𝜀𝑖 = 𝑙𝑖(0) translates to nullifying any requirements for the
objective 𝑓𝑖. We use 𝜆𝑖 as a value between 0 and 1, inclusive of the limits, to set the hyperparameters
𝜀𝑖 as following:

𝜀𝑓𝑟𝑒 = 𝑙𝑓𝑟𝑒(𝜆𝑓𝑟𝑒) (3.19)

𝜀𝑙𝑖𝑘 = 𝑙𝑙𝑖𝑘(𝜆𝑙𝑖𝑘) (3.20)

𝜀𝑛𝑜𝑡 = 𝑙𝑛𝑜𝑡(𝜆𝑛𝑜𝑡) (3.21)

s. t. 𝜆𝑖 ∈ [0, 1] ∀ 𝑖 ∈ {𝑓𝑟𝑒, 𝑙𝑖𝑘, 𝑛𝑜𝑡} (3.22)

We find 𝜆𝑖 = 0.25∀ 𝑖 ∈ {𝑓𝑟𝑒, 𝑙𝑖𝑘, 𝑛𝑜𝑡} as a reasonable choice to set the hyperparameters. In the
following chapter we discuss results obtained using aforementioned values and variations on them.
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3.8. Implementation design choices
Since ILP is NP-hard, heuristic methods are often used to solve it and various implementations of these
algorithms are readily available. SInce the focus of this thesis project is on modeling the problem, we
do not dive deeper into an analysis of implementation posisbilities for solving ILP problems. Instead,
for this project, the Python-MIP package is used for implementing ILP programs which in turn uses Cbc
(Coin-or branch and cut) as the solver.

Solving the ILP problem provide us with values 𝑥𝑖 as 0 or 1, where 𝑥𝑖 = 0 means that the plot 𝑢𝑖 is
not selected, while 𝑥𝑖 = 1 says that plot 𝑢𝑖 is selected for the current display. As would be evident from
Equation 3.9, out of the total 𝑛 plots, 𝑘 plots will be selected( i.e. plots with 𝑥𝑖 = 1). It is possible to
rank these 𝑘 plots using several metrics such as score on primary objective, combined score across all
objectives, etc. It is known that in a vertical layout such as ours, higher ranked UI elements get more
visibility and user’s attention. Therefore, displaying the 𝑘 plots in a ranked order can result in similar
type of plots (i.e. those would rank high according to the implemented criterion) getting disproportionate
visibility. Therefore, in our implementation, we display the selected 𝑘 selected plots in a random order.

3.9. Overall schema of optimization engine
We introduced the raw data sources for the optimization engine in Section 2.3. The raw values in these
data sources are used to formulate quantified plot features (𝑞𝑘) as discussed in Section 3.5. Thereafter,
the plot features are variously combined to get values for higher level objective functions (𝑓𝑗). Finally,
𝜀𝑙 values are deployed to put constraints on overall scores of secondary objective functions (𝑓𝑓𝑟𝑒, 𝑓𝑙𝑖𝑘,
and 𝑓𝑛𝑜𝑡) while maximizing for overall score for primary objective (i.e. 𝑓𝑟𝑒𝑙) to identify the plots (𝑥𝑖)
that delivers the most utility to the user. The selected plots are then randomly sorted for display to the
user. The process from taking raw values from input data sources to generating the user-interface with
selected plots can be summarized as follows:

(𝑀, 𝐺, 𝑃, 𝐼, 𝑆) −→ 𝑞𝑘
𝑤(𝑗, 𝑘)−−−−→ 𝑓𝑗

𝜀𝑙−→ 𝑥𝑖 −→ User Interface generated with selected plots

Figure 3.10 depicts the overall schema of optimization system.
Table 3.4 summarizes the plot features defined in previous section and the nature of data (i.e. user

goals, interaction log, and user data) utilized to compute it.

Table 3.3: Summary of plot features and nature of data sources utilized in computing them

Feature User Goals Selection Log Interaction Log Plotted User Data
𝐺 𝑆 𝐼 𝑃

Activity 𝑞𝑎𝑐𝑡(𝑢𝑖) Yes
Plot type 𝑞𝑝𝑙𝑡(𝑢𝑖) Yes
Analysis type 𝑞𝑎𝑛𝑡(𝑢𝑖) Yes
Frequency type 𝑞𝑓𝑟𝑡(𝑢𝑖) Yes
Trend 𝑞𝑡𝑟𝑒(𝑢𝑖) Yes
Goal completion 𝑞𝑔𝑜𝑐(𝑢𝑖) Yes Yes
Data freshness 𝑞𝑑𝑎𝑓(𝑢𝑖) Yes Yes

https://www.python-mip.com/
https://github.com/coin-or/Cbc
https://github.com/coin-or/Cbc
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Figure 3.10: Overall schema of the optimization engine

Table 3.4: Summary of plot features and their contributions to objective functions

Feature Relevance Freshness Likeability Noteworthiness
𝑓𝑟𝑒𝑙 𝑓𝑓𝑟𝑒 𝑓𝑙𝑖𝑘 𝑓𝑛𝑜𝑡

Activity 𝑞𝑎𝑐𝑡(𝑢𝑖) Yes
Plot type 𝑞𝑝𝑙𝑡(𝑢𝑖) Yes
Analysis type 𝑞𝑎𝑛𝑡(𝑢𝑖) Yes
Frequency type 𝑞𝑓𝑟𝑡(𝑢𝑖) Yes
Trend 𝑞𝑡𝑟𝑒(𝑢𝑖) Yes
Goal completion 𝑞𝑔𝑜𝑐(𝑢𝑖) Yes
Data freshness 𝑞𝑑𝑎𝑓(𝑢𝑖) Yes
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3.10. Simulation model and system design for evaluating the opti-
mization engine

We use a full-fledged implementation of quantified-self system spanning various tools implemented in
various programming languages sketched in the following chapter to generate the UI element bank
and other data sources required by the optimization engine. The optimization engine is implemented in
Python as per formulations discussed in the previous chapter. Additionally, we use a simple JavaScript
based web-app to function as user interface for the quantified-self system and communicate with the
system. Finally, we also developed a test-suite in Python to simulate user-interactions with the User
Interface and analyse performance of the optimization. Figure 3.11 depicts the schema of simulation
model that we use for evaluating the optimization engine.

UI Optimizer
Aggregated Data

UI Element Bank
with Plots’ Metadata

Interaction and
Selection Log

User Goals and
Hyperparameters

Server

g
Simulated
User

Figure 3.11: Simulation model to evaluate the optimization engine

The activity data used by the quantified-self system was collected over several months using an ac-
tivity tracker and self-logging apps on phone by the author. The raw values are altered for anonymiza-
tion purposes. Nevertheless, the masked values retain the real-world character to serve for the evalu-
ation purposes.

The UI element bank is populated at any given time instance in the available time range of the data
stream. The selection tool implements our optimization algorithm in python, and provides the IDs of
the selected plots which are then displayed on a web-app. The user has the ability to interact with the
web-app in terms of clicking the ”like” and ”dislike” button. The statistics on features of plots that are
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selected are logged for evaluation if the system behaves in line with our hypothesis or not. Another
tool was developed to automate user interactions over the specified period of time so that many runs
of the optimization engine can be made.

In the following chapter we evaluate the optimization system discussed in this chapter using the
above-mentioned simulation model to analyse the performance of plot selection methodology for sev-
eral usage scenarios of a quantified-self user.



4
Evaluation

As already discussed in Chapter 2, the function of the optimization engine in the larger quantified-self
system is to take into consideration plot features, user goals, selection log, previous user interactions,
and the patterns in plotted user data to select a small number of plots that should be presented to
a user to maximize the multi-criteria (i.e., relevance, freshness, likability, and noteworthiness) utility.
In Chapter 3, we discussed the design of the optimization engine and the underlying mathematical
formulations. Since we aim to optimize for relevance, freshness, likability, and noteworthiness in plot
selection, we use the same criteria for evaluating the performance of our optimization engine.

In this chapter, we first provide details of user data and the simulation model used to evaluate
the optimization engine. Secondly, we discuss the criteria for evaluating the optimization methodology
described in the previous chapter. Thirdly, the results from the simulation model to evaluate the efficacy
of the optimization engine on identified criteria are provided. Finally, we reflect on the obtained results
and the effectiveness of our methodology in optimizing UI for a quantified-self application.

4.1. Evaluation Setting
The activity data used by the quantified-self system was collected over several months using the au-
thor’s activity tracker and self-logging apps. The details of the simulation conditions are provided in
table 4.1.

The user data consists of ten different activities for ninemonths. The optimization engine is deployed
at the beginning of the fourth month so that sufficient historical data is available for visualization. As
a result, the simulation of plot selection using the proposed optimization engine is carried out for six
months (i.e., from the beginning of the fourth month to the end of the ninth month).

The simulation model outlined in the previous chapter is used in conjugation with different parameter
values to create several scenarios of system usage by the user to mimic different real-world conditions.
For instance, if we want to simulate a user who starts using the optimization engine out-of-the-box
without specifying any goal activities or inclination for objective functions (i.e., “relevance”, “freshness”,
“likability”, and “noteworthiness”), the goal activities are left as blank in the system, and the hyperpa-
rameters take default values. Alternatively, if a user has a greater preference for the “likability” objective
and is interested in ‘Sleep’ and ‘Meditate’ activities, the parameters can be specified accordingly. Fig-
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Table 4.1: Data-streams and parameters employed by simulation model for evaluating optimization engine

Measure Value
Data stream start date June 1, 2019 00:00:00
System deployment date (𝑇𝑠𝑡𝑎𝑟𝑡) September 1, 2019 00:00:00
Data stream end date (𝑇𝑒𝑛𝑑) February 29, 2020 23:59:59
Simulation duration (𝑇) Six months

All activities 10: {‘Steps’, ‘Sit’, ‘Stand’, ‘Sleep’, ‘Walk’,
‘Run’, ‘Other’, ‘Phone’, ‘Meditation’, ‘Sports’}

Goal activities (when marked) (𝐺′) 3: {‘Sleep’, ‘Walk’, ‘Meditation’}

Number of total plots (𝑁) 170
Number of plots to be selected (𝑘) 7

Frequency for updating UI element bank once every three hours
Frequency for renewing plot selection at every update of UI element bank
Interaction frequency 𝑢𝑛𝑖𝑓{0, 3} interactions per day
Rating frequency 𝑢𝑛𝑖𝑓{0, 3} plots per interaction
Default values for hyperparameters 𝜆𝑓𝑟𝑒 = 𝜆𝑙𝑖𝑘 = 𝜆𝑛𝑜𝑡 = 0.25

ure 4.1 illustrates settings that may be specified to suit the aforementioned scenario by a user of the
proposed quantified-self system.

Figure 4.1: User interface in our simulation model for updating the settings (i.e. parameter values for ‘Goals activities’ (𝐺′) and
𝜆 values) by the quantified-self system user in our simulation model. The setting in the above figure models one scenario (i.e.
a hypothetical real-world usage situation) where a user has a greater preference for the “likability” objective and is interested in
tracking ‘Sleep’ and ‘Meditation’ activities.

To sum up, scenarios are hypothetical real-world usage situations that are implemented for evalu-
ation by using suitable settings (i.e. value for goal activities and hyperparameters 𝜆𝑓𝑟𝑒, 𝜆𝑙𝑖𝑘, and 𝜆𝑛𝑜𝑡).
In this chapter, we will create several scenarios for each of the evaluationmetrics and the corresponding
settings used to model that scenario will also be provided.

4.2. Evaluation criterion, evaluation metrics, and hypotheses
We evaluate our optimization engine in terms of efficacy of the proposed system to meet the objec-
tives. We thus have an evaluation criterion corresponding to each of the four objectives discussed and
outlined in Chapter 2 and Chapter 3. For each of the four evaluation criteria, we propose qualitative
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scenarios (and the corresponding settings of parameter values) using which we can evaluate the ef-
ficacy of the optimization engine by comparing the output (i.e. selection log) of optimization engine.
Thereafter, we formulate an evaluation metric to make quantitative comparison of the various sce-
narios/settings suitable for the criterion. Subsequently, we make hypotheses for the evaluation metric
value for different scenarios if the system were to satisfy the evaluation criterion (i.e. prove effective in
achieving the corresponding objective).

4.2.1. Relevance
We evaluate the realization of the relevance objective by measuring the sensitivity of the optimization
engine in adapting to changing user goals. If we consider theactivities the quantified-self user wants
to track especially, the selection algorithm should prioritize those goal activities. To evaluate it, we
compare the share of “relevant” plots (i.e., those related to goal activities, like ”Sleep,” ”Walk,” and
”Meditate”) with and without specifying the same to the system. Equation 4.1 defines the evaluation
metric for relevance (i.e., 𝑃𝑟𝑒𝑙) as the share of relevant goal activities 𝐺′ in all the activities 𝐴𝑖 depicted
in the given plot 𝑢𝑖.:

𝑃𝑟𝑒𝑙(𝑢𝑖) =
|𝐴𝑖 ∩ 𝐺′|
|𝐴𝑖|

(4.1)

Equation 4.2 defines for i-th selection/interaction 𝑠𝑖, the “relevance” metric 𝑆𝑟𝑒𝑙 as the share of
“relevant” plots (out of total 𝑘 plots) selected during that interaction:

𝑆𝑟𝑒𝑙(𝑠𝑖) =
∑𝑘𝑗=1 𝑃𝑟𝑒𝑙(𝑢𝑗)

𝑘 × 100 (4.2)

Equation 4.3 defines the evaluation metric for relevance (i.e., 𝐷𝑟𝑒𝑙) for a given duration as the av-
erage of “relevant” plot share (i.e. 𝑆𝑟𝑒𝑙) of all interactions occurring between 𝑡𝑖𝑛𝑡𝑖𝑎𝑙 and 𝑡𝑓𝑖𝑛𝑎𝑙.

𝐷𝑟𝑒𝑙(𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑡𝑓𝑖𝑛𝑎𝑙) =
∑∀𝑠𝑖∈{𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ,𝑡𝑓𝑖𝑛𝑎𝑙} 𝑆𝑟𝑒𝑙(𝑠𝑖)
∑∀𝑠𝑖∈{𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ,𝑡𝑓𝑖𝑛𝑎𝑙} 1

(4.3)

Equation 4.4 defines the main evaluation metric for measuring efficacy of the system in ensuring
“relevance” (i.e., 𝐸𝑟𝑒𝑙) as average of “relevant” plot share (i.e. 𝑆𝑟𝑒𝑙) in all interactions occurring during
the entire simulation duration (i.e. between 𝑇𝑠𝑡𝑎𝑟𝑡 and 𝑇𝑒𝑛𝑑).

𝐸𝑟𝑒𝑙 = 𝐷𝑟𝑒𝑙(𝑇𝑠𝑡𝑎𝑟𝑡 , 𝑇𝑒𝑛𝑑) (4.4)

We make the following hypotheses for the expected value of the evaluation metric 𝐸𝑟𝑒𝑙 in various
scenarios to validate the usefulness of our proposed selection method in ensuring the “relevance” in
plot selection:

• Hypothesis 1a (𝐻𝑟𝑒𝑙): For default 𝜆 values (i.e., 𝜆𝑓𝑟𝑒, 𝜆𝑙𝑖𝑘, and 𝜆𝑛𝑜𝑡), we should be seeing a
higher proportion of “relevant” plots (i.e., 𝐸𝑟𝑒𝑙) in a scenario where goals-activities are marked in
the optimization engine compared to a scenario where no goal-activities are specified.

• Hypothesis 1b (𝐻′𝑟𝑒𝑙): If we decrease the importance of secondary objectives (i.e., freshness,
likability, and noteworthiness), the share of “relevant” plots should increase. In other words, 𝐸𝑟𝑒𝑙
should be negatively co-related with 𝜆 values.
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4.2.2. Freshness
With the freshness objective, we aimed to show users plots containing data they have not seen in
previous interactions. Therefore, we evaluate the realization of the freshness objective by measuring
what percentage of 𝑘 plots can be deemed ”fresh.” To do so, we define Equation 4.5 that considers a
plot to be ”fresh” if the raw value of data-freshness (i.e., 𝑀𝑑𝑎𝑓(𝑢𝑖) for that plot is greater than 50%:

𝑃𝑓𝑟𝑒(𝑢𝑖) = {
0, for 𝑀𝑑𝑎𝑓(𝑢𝑖) < 0.5
1, for 𝑀𝑑𝑎𝑓(𝑢𝑖) ≥ 0.5

} (4.5)

Equation 4.6, Equation 4.7, and Equation 4.8 defines the share of “fresh” plots in the interaction 𝑠𝑖,
all interactions occurring between 𝑡𝑖𝑛𝑡𝑖𝑎𝑙 and 𝑡𝑓𝑖𝑛𝑎𝑙, and all interactions occurring during the whole of
simulation duration (i.e. between 𝑇𝑠𝑡𝑎𝑟𝑡 and 𝑇𝑒𝑛𝑑), respectively:

𝑆𝑓𝑟𝑒(𝑠𝑖) =
∑𝑘𝑗=1 𝑃𝑓𝑟𝑒(𝑢𝑗)

𝑘 × 100 (4.6)

𝐷𝑓𝑟𝑒(𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑡𝑓𝑖𝑛𝑎𝑙) =
∑∀𝑠𝑖∈{𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ,𝑡𝑓𝑖𝑛𝑎𝑙} 𝑆𝑓𝑟𝑒(𝑠𝑖)
∑∀𝑠𝑖∈{𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ,𝑡𝑓𝑖𝑛𝑎𝑙} 1

(4.7)

𝐸𝑓𝑟𝑒 = 𝐷𝑓𝑟𝑒(𝑇𝑠𝑡𝑎𝑟𝑡 , 𝑇𝑒𝑛𝑑) (4.8)

We make the following hypotheses for the expected value of evaluation metric 𝐸𝑓𝑟𝑒 in various sce-
narios to validate the usefulness of our proposed selection method in ensuring the “freshness” in plot
selection:

• Hypothesis 2a (𝐻𝑓𝑟𝑒): For default 𝜆 values, we should be seeing a significant share of ”fresh”
plots (i.e., 𝐸𝑓𝑟𝑒) in all scenarios, irrespective of whether goals have been marked or not.

• Hypothesis 2b (𝐻′𝑓𝑟𝑒): The share of ”fresh” plots (i.e. 𝐸𝑓𝑟𝑒) should be positively co-related with
the value of 𝜆𝑓𝑟𝑒. As a result, a scenario having a higher 𝜆𝑓𝑟𝑒 value should result in a greater
share of “fresh” plots than a scenario that uses a lower 𝜆𝑓𝑟𝑒 value, with the remaining 𝜆 values
staying the same.

4.2.3. Likability
With the likability objective, we aimed at prioritizing plot types that the user rated positively in previous
interactions. We thus evaluate the realization of the likability objective by measuring what percentage of
𝑘 plots can be said to have likable properties. We do this by means of Equation 4.9, which defines that
a plot is considered to be ”likable” if the percentile score is greater than 75 for any of the following three
likability-related quantified plot vectors: i) likability of plot type (i.e., 𝑞𝑝𝑙𝑡(𝑢𝑖)); ii) likability of frequency
type (i.e., 𝑞𝑓𝑟𝑡(𝑢𝑖)); iii) likability of analysis type (i.e., 𝑞𝑎𝑛𝑡(𝑢𝑖)). :

𝑃𝑓𝑟𝑒(𝑢𝑖) = {
1, if 𝑞𝑝𝑙𝑡(𝑢𝑖) ≥ 75 or 𝑞𝑓𝑟𝑡(𝑢𝑖) ≥ 75 or 𝑞𝑎𝑛𝑡(𝑢𝑖) ≥ 75
0, otherwise

} (4.9)

Equation 4.10, Equation 4.11, and Equation 4.12 defines the share of “likable” plots in the interaction
𝑠𝑖, all interactions occurring between 𝑡𝑖𝑛𝑡𝑖𝑎𝑙 and 𝑡𝑓𝑖𝑛𝑎𝑙, and all interactions occurring during the whole
of simulation duration (i.e. between 𝑇𝑠𝑡𝑎𝑟𝑡 and 𝑇𝑒𝑛𝑑), respectively.
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𝑆𝑙𝑖𝑘(𝑠𝑖) =
∑𝑘𝑗=1 𝑃𝑙𝑖𝑘(𝑢𝑗)

𝑘 × 100 (4.10)

𝐷𝑙𝑖𝑘(𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑡𝑓𝑖𝑛𝑎𝑙) =
∑∀𝑠𝑖∈{𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ,𝑡𝑓𝑖𝑛𝑎𝑙} 𝑆𝑙𝑖𝑘(𝑠𝑖)
∑∀𝑠𝑖∈{𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ,𝑡𝑓𝑖𝑛𝑎𝑙} 1

(4.11)

𝐸𝑙𝑖𝑘 = 𝐷𝑙𝑖𝑘(𝑇𝑠𝑡𝑎𝑟𝑡 , 𝑇𝑒𝑛𝑑) (4.12)

We make the following hypotheses for the expected value of evaluation metric 𝐸𝑙𝑖𝑘 in various sce-
narios to validate the usefulness of our proposed selection method in ensuring the “likability” in plot
selection:

• Hypothesis 3a (𝐻𝑙𝑖𝑘): For default 𝜆 values and after having a sufficiently large interaction log of
user ratings for the plots, we should be seeing a significant share of ”likable” plots (i.e., 𝐸𝑙𝑖𝑘) in all
scenarios, irrespective of whether goals have been marked or not.

• Hypothesis 3b (𝐻𝑙𝑖𝑘): The share of ”likable” plots (i.e. 𝐸𝑙𝑖𝑘) should be positively co-related with
the value of 𝜆𝑙𝑖𝑘. As a result, a scenario having a higher 𝜆𝑙𝑖𝑘 value should result in a greater
share of “likable” plots than a scenario which uses a lower 𝜆𝑙𝑖𝑘 value, with the remaining 𝜆 values
staying the same.

4.2.4. Noteworthiness
With the noteworthiness objective, we aimed to prioritize plot types with significant trends in the plotted
user data. We evaluate the realization of this objective by simulating a strong trend in the time series
data of a non-goal activity and then measuring the selection rate of plots for that activity.

For the evaluation of “noteworthiness”, we simulate the logged data such that data values for activity
”Phone” are relatively constant for the first 30% (i.e., from (𝑇𝑠𝑡𝑎𝑟𝑡 to 𝑇𝑠𝑡𝑎𝑟𝑡 +

3𝑇
10 )) of system usage

duration. The data values for this activity thereafter show a strong upward trend for the next 20% of the
duration followed by strong downward trend for the next 20% duration. The data values are again stable
for the final 30% (i.e., from 𝑇𝑒𝑛𝑑 −

3𝑇
10 to 𝑇𝑒𝑛𝑑) of the duration. Figure 4.2 depicts the simulated values

for “Phone” usage activity in the user’s datastreams employed for evaluation of efficacy in achieving
“noteworthiness” objective.
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Figure 4.2: Simulated values for ‘Phone’ activity in user’s datastream

With the above simulation, the metric of interest in evaluating “noteworthiness” is the mean share
of plots related to activity ‘Phone’ in a given interval (i.e., 𝐸𝑛𝑜𝑡(𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑡𝑓𝑖𝑛𝑎𝑙)). We define the intervals
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(i.e. (𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑡𝑓𝑖𝑛𝑎𝑙)) as 5% intervals of the simulation duration. Equation 4.13 defines the evaluation
metric for “noteworthiness” (i.e., 𝑃𝑛𝑜𝑡(𝑢𝑖)) as the share of ‘Phone’ activity in all the activities 𝐴𝑖 depicted
in the plot 𝑢𝑖.

𝑃𝑛𝑜𝑡(𝑢𝑖) =
|𝐴𝑖 ∩ {‘Phone’}|

|𝐴𝑖|
(4.13)

Equation 4.14 and Equation 4.15 define the share of “fresh” plots in the interaction 𝑠𝑖 and all inter-
actions occurring between 𝑡𝑖𝑛𝑡𝑖𝑎𝑙 and 𝑡𝑓𝑖𝑛𝑎𝑙, respectively.

𝑆𝑛𝑜𝑡(𝑠𝑖) =
∑𝑘𝑗=1 𝑃𝑛𝑜𝑡(𝑢𝑗)

𝑘 × 100 (4.14)

𝐷𝑛𝑜𝑡(𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑡𝑓𝑖𝑛𝑎𝑙) =
∑∀𝑠𝑖∈{𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ,𝑡𝑓𝑖𝑛𝑎𝑙} 𝑆𝑛𝑜𝑡(𝑠𝑖)
∑∀𝑠𝑖∈{𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ,𝑡𝑓𝑖𝑛𝑎𝑙} 1

(4.15)

Equation 4.16 defines the main evaluation metric for measuring efficacy of the system in ensuring
“noteworthiness” (i.e., 𝐸𝑛𝑜𝑡) as a difference between the share of “noteworthy” plots selected between
the central part (i.e. during the time 𝑇𝑠𝑡𝑎𝑟𝑡 +

3𝑇
10 and 𝑇𝑒𝑛𝑑 −

3𝑇
10 ) when there is strong trend in underlying

data and the remaining duration when the data values are relatively constant.

𝐸𝑛𝑜𝑡 = 𝐷𝑛𝑜𝑡(𝑇𝑠𝑡𝑎𝑟𝑡 +
3𝑇
10 , 𝑇𝑒𝑛𝑑 −

3𝑇
10 ) −

𝐷𝑛𝑜𝑡(𝑇𝑠𝑡𝑎𝑟𝑡 , 𝑇𝑠𝑡𝑎𝑟𝑡 +
3𝑇
10 ) + 𝐷𝑛𝑜𝑡(𝑇𝑒𝑛𝑑 −

3𝑇
10 , 𝑇𝑒𝑛𝑑)

2 (4.16)

We make the following hypotheses for the expected value of evaluation metric 𝐸𝑛𝑜𝑡 in various sce-
narios to validate the usefulness of our proposed selection method in ensuring the “notworthiness” in
plot selection:

• Hypothesis 4a (𝐻𝑛𝑜𝑡): For default 𝜆 values, we should be seeing a higher proportion of plots
related to ”Phone usage” in the central part of system usage duration (i.e., where the data values
have strong upward or downward trends).

• Hypothesis 4b (𝐻′𝑛𝑜𝑡): The rise in the selection rate of plots related to “Phone” activities during
the central part vis-à-vis initial and final parts (i.e. 𝐸𝑛𝑜𝑡) should be positively co-related with the
value of 𝜆𝑛𝑜𝑡.

4.3. Results
In this section, we present and discuss the evaluation metrics’ results and validity of our hypotheses.
We do this using different scenarios that we define per objective in the corresponding tables.

4.3.1. Relevance
Table 4.2 provides the mean values for three scenarios and the employed parameter settings for the
whole simulation duration. Figure 4.3 depicts the results from evaluating the optimization engine for
the realization of relevance objective for every 5% interval for each of these three scenarios.

As provided in Table 4.2, the mean share of relevant plots (i.e., those depicting “Sleep”, “Walk”,
and “Meditate” activities) is 39.45% for the simulation duration in Scenario 1a where the goal activities
are not marked. In Scenario 1b, we mark the goal activities and see the mean share of relevant plots
increase to 61.82% for the simulation duration. Therefore, we do see the increase in the share of
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Scenario Goal Activities 𝜆𝑓𝑟𝑒 𝜆𝑙𝑖𝑘 𝜆𝑛𝑜𝑡 𝐸𝑟𝑒𝑙
1a No goals are set 𝜙 0.25 0.25 0.25 39.45%
1b Goals are defined and system

prioritizes all objectives
𝐺′ 0.25 0.25 0.25 61.82%

1c Goals are defined and system
mainly prioritizes “relevance”

𝐺′ 0.10 0.10 0.10 82.14%

Table 4.2: Results for evaluation metric for relevance averaged across all interactions for the whole of simulation duration (i.e.,
𝐸𝑟𝑒𝑙) for different scenarios.
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Figure 4.3: Aggregated mean share of “relevant” plots (i.e. plots depicting 𝐺′ activities) in the selected plots for every 5% interval
for —
Scenario 1a: No goals are set with hyperparameter values as 𝜆𝑓𝑟𝑒 = 0.25, 𝜆𝑙𝑖𝑘 = 0.25, and 𝜆𝑛𝑜𝑡 = 0.25;
Scenario 1b: 𝐺′ are marked as goal activities with hyperparameter values as 𝜆𝑓𝑟𝑒 = 0.25, 𝜆𝑙𝑖𝑘 = 0.25, and 𝜆𝑛𝑜𝑡 = 0.25
Scenario 1c: 𝐺′ are marked as goal activities with hyperparameter values as 𝜆𝑓𝑟𝑒 = 0.1, 𝜆𝑙𝑖𝑘 = 0.1, and 𝜆𝑛𝑜𝑡 = 0.1
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relevant plots from Scenario 1a to 1b and the obtained results corroborate our Hypothesis 1a. Similarly,
we see the share of relevant plots increase as we decrease the 𝑙𝑎𝑚𝑏𝑑𝑎 values in Scenario 1c compared
to their magnitude in Scenario 1b. This proves our Hypothesis 1b that decreasing the importance of
secondary objectives should increase the share of relevant plots. Moreover, the same pattern in the
share of relevant plots in the three scenarios can be observed for each of the 5% intervals of the
simulation duration in Figure 4.3. Hence, the results obtained from the simulation of the optimization
engine corroborate our hypotheses 1a and 1b.

4.3.2. Freshness
Table 4.3 provides the mean values for five scenarios for the whole simulation duration. Figure 4.4
depicts the results from evaluating the optimization engine for the realization of the freshness objective
for every 5% interval for each of the five scenarios.

Scenario Goal Activities 𝜆𝑓𝑟𝑒 𝜆𝑙𝑖𝑘 𝜆𝑛𝑜𝑡 𝐸𝑓𝑟𝑒
2a No goals are set 𝜙 0.25 0.25 0.25 30.62%
2b Goals are defined and system priori-

tizes all objectives
𝐺′ 0.25 0.25 0.25 25.79%

2c Goals are defined and system mainly
prioritizes “relevance”

𝐺′ 0.10 0.10 0.10 15.43%

2d Goals are defined and system mainly
prioritizes “relevance” and “freshness”

𝐺′ 0.30 0.10 0.10 38.56%

2e Goals are defined and system mainly
prioritizes “freshness”

𝐺′ 0.50 0.10 0.10 43.68%

Table 4.3: Mean share of “fresh” plots in the selected plots across all interactions for the whole of simulation duration (i.e. 𝐸𝑓𝑟𝑒).
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(a) Scenario 2a: No goals are set with hyperparameter values as 𝜆𝑓𝑟𝑒 =
0.25, 𝜆𝑙𝑖𝑘 = 0.25, and 𝜆𝑛𝑜𝑡 = 0.25;
Scenario 2b: 𝐺′ are marked as goal activities with hyperparameter val-
ues as 𝜆𝑓𝑟𝑒 = 0.25, 𝜆𝑙𝑖𝑘 = 0.25, and 𝜆𝑛𝑜𝑡 = 0.25
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(b) Scenario 2c: 𝐺′ are marked as goal activities with hyperparameter
values as 𝜆𝑓𝑟𝑒 = 0.10, 𝜆𝑙𝑖𝑘 = 0.10, and 𝜆𝑛𝑜𝑡 = 0.10;
Scenario 2d: 𝐺′ are marked as goal activities with hyperparameter val-
ues as 𝜆𝑓𝑟𝑒 = 0.30, 𝜆𝑙𝑖𝑘 = 0.10, and 𝜆𝑛𝑜𝑡 = 0.10; and
Scenario 2e: 𝐺′ are marked as goal activities with hyperparameter val-
ues as 𝜆𝑓𝑟𝑒 = 0.50, 𝜆𝑙𝑖𝑘 = 0.10, and 𝜆𝑛𝑜𝑡 = 0.10

Figure 4.4: Aggregated mean share of “fresh” plots in the selected plots for every 5% interval

As provided in Table 4.3, the mean share of “fresh” plots is 30.62% for the whole simulation duration
in Scenario 2a, where the goal activities are not marked. In Scenario 2b, we mark the goal activities and
see the mean share of “fresh” plots comes down to 25.79%. The same pattern in the share of “fresh”
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plots in the two scenarios can be observed for each of the 5% intervals of the simulation duration in
Figure 4.4a. Therefore, we see a significant number of “fresh” plots being selected when no goals are
specified and when goals activities are marked. This corroborates our Hypothesis 2a.

The share of “fresh” plots increases as we go on, increasing the 𝜆𝑓𝑟𝑒 value from 0.1 in Scenario 2c
to 0.3 in Scenario 2d and further to 0.5 in Scenario 2e. The same pattern in the share of “fresh” plots
in the three scenarios can be observed for each of the 5% intervals of the simulation duration in Figure
4.4b. Preceding results validate our Hypothesis 2b (𝐻𝑓𝑟𝑒).

4.3.3. Likability
To evaluate the realization of likability objective, Table 4.4 provides the mean values of the evaluation
metric 𝐸𝑙𝑖𝑘 for five scenarios for the total simulation duration. Figure 4.5 depicts the results for the
metric 𝐸𝑙𝑖𝑘(𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑡𝑓𝑖𝑛𝑎𝑙) from evaluating the optimization engine for every 5% interval for each of the
five scenarios.

Scenario Goals 𝜆𝑓𝑟𝑒 𝜆𝑙𝑖𝑘 𝜆𝑛𝑜𝑡 𝐸𝑙𝑖𝑘
3a No goals are set 𝜙 0.25 0.25 0.25 26.93%
3b Goals are defined and system prioritizes

all objectives
𝐺′ 0.25 0.25 0.25 22.14%

3c Goals are defined and system mainly pri-
oritizes “relevance”

𝐺′ 0.10 0.10 0.10 10.35%

3d Goals are defined and system mainly pri-
oritizes “relevance” and “likability”

𝐺′ 0.10 0.30 0.10 29.72%

3e Goals are defined and system mainly pri-
oritizes “likability”

𝐺′ 0.10 0.50 0.10 34.94%

Table 4.4: Mean share of “likable” plots in the selected plots across all interactions for the whole of simulation duration (i.e. 𝐸𝑙𝑖𝑘)
for several scenarios
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(a) Scenario 3a: No goals are set with hyperparameter values as 𝜆𝑓𝑟𝑒 =
0.25, 𝜆𝑙𝑖𝑘 = 0.25, and 𝜆𝑛𝑜𝑡 = 0.25;
Scenario 3b: 𝐺′ are marked as goal activities with hyperparameter val-
ues as 𝜆𝑓𝑟𝑒 = 0.25, 𝜆𝑙𝑖𝑘 = 0.25, and 𝜆𝑛𝑜𝑡 = 0.25
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(b) Scenario 3c: 𝐺′ are marked as goal activities with hyperparameter
values as 𝜆𝑓𝑟𝑒 = 0.10, 𝜆𝑙𝑖𝑘 = 0.10, and 𝜆𝑛𝑜𝑡 = 0.10;
Scenario 3d: 𝐺′ are marked as goal activities with hyperparameter val-
ues as 𝜆𝑓𝑟𝑒 = 0.10, 𝜆𝑙𝑖𝑘 = 0.30, and 𝜆𝑛𝑜𝑡 = 0.10; and
Scenario 3e: 𝐺′ are marked as goal activities with hyperparameter val-
ues as 𝜆𝑓𝑟𝑒 = 0.10, 𝜆𝑙𝑖𝑘 = 0.50, and 𝜆𝑛𝑜𝑡 = 0.10

Figure 4.5: Aggregated mean share of “fresh” plots in the selected plots for every 5% interval

The mean share of “likable” plots for is 26.93% for the entire simulation duration in Scenario 3a and
22.14% in Scenario 3b. As we see a significant number of “likable” plots selected both when no goals
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are specified and when goals activities are marked, our Hypothesis 3a is validated.
The share of “likable” plots increases as we go on, increasing the 𝜆𝑓𝑟𝑒 value from 0.1 in Scenario

3c to 0.3 in Scenario 3d and further to 0.5 in Scenario 3e. Moreover, the same pattern in the share
of “likable” plots in the three scenarios can be observed for each of the 5% intervals of the simulation
duration in Figure 4.5b. All these results prove our Hypothesis 3b.

4.3.4. Noteworthiness
To evaluate the realization of the noteworthiness objective, Table 4.5 provides the mean values of the
evaluation metrics 𝐸𝑛𝑜𝑡(0,

3𝑇
10 ), 𝐸𝑛𝑜𝑡(

3𝑇
10 ,

7𝑇
10 ), 𝐸𝑛𝑜𝑡(

7𝑇
10 , 𝑇)), and 𝐸𝑛𝑜𝑡 for five scenarios for the simulation

duration.
Figure 4.6 depicts the results from evaluating the optimization engine for every 5% interval for each

of the five scenarios. Additionally, the figure plots the trend in “Phone” data stream that underlies the
evaluation metrics for the “noteworthiness” component.

Scenario Goals 𝜆𝑓𝑟𝑒 𝜆𝑙𝑖𝑘 𝜆𝑛𝑜𝑡 𝐸𝑛𝑜𝑡(0,
3𝑇
10 ) 𝐸𝑛𝑜𝑡(

3𝑇
10 ,

7𝑇
10 ) 𝐸𝑛𝑜𝑡(

7𝑇
10 , 𝑇) 𝐸𝑛𝑜𝑡

4a No goals are set 𝜙 0.25 0.25 0.25 13.24% 18.30% 16.58% 3.39%
4b Goals are defined and system prioritizes

all objectives
𝐺′ 0.25 0.25 0.25 8.21% 14.45% 13.72% 3.49%

4c Goals are defined and system mainly pri-
oritizes “relevance”

𝐺′ 0.10 0.10 0.10 7.56% 10.42% 10.90% 1.19%

4d Goals are defined and system mainly pri-
oritizes “relevance” and “noteworthiness”

𝐺′ 0.10 0.10 0.30 8.65% 14.66% 13.18% 3.75%

4e Goals are defined and system mainly pri-
oritizes “noteworthiness”

𝐺′ 0.10 0.10 0.50 7.94% 19.37% 17.74% 6.53%

Table 4.5: Mean share of “Phone usage” plots in the selected plots across all interactions in the three intervals of the simulation
duration (i.e. 𝐸𝑛𝑜𝑡(𝑇𝑠𝑡𝑎𝑟𝑡 , 𝑇𝑠𝑡𝑎𝑟𝑡 +

3𝑇
10 ), 𝐸𝑛𝑜𝑡(𝑇𝑠𝑡𝑎𝑟𝑡 +

3𝑇
10 , 𝑇𝑒𝑛𝑑 −

3𝑇
10 ), and 𝐸𝑛𝑜𝑡(𝑇𝑒𝑛𝑑 −

3𝑇
10 , 𝑇𝑒𝑛𝑑)) for several scenarios. The last

column tabulates values for the main evaluation metric 𝐸𝑛𝑜𝑡.
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(a) Scenario 4a: No goals are set with hyperparameter values as 𝜆𝑓𝑟𝑒 =
0.25, 𝜆𝑙𝑖𝑘 = 0.25, and 𝜆𝑛𝑜𝑡 = 0.25;
Scenario 4b: 𝐺′ are marked as goal activities with hyperparameter val-
ues as 𝜆𝑓𝑟𝑒 = 0.25, 𝜆𝑙𝑖𝑘 = 0.25, and 𝜆𝑛𝑜𝑡 = 0.25
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(b) Scenario 4c: 𝐺′ are marked as goal activities with hyperparameter
values as 𝜆𝑓𝑟𝑒 = 0.10, 𝜆𝑙𝑖𝑘 = 0.10, and 𝜆𝑛𝑜𝑡 = 0.10;
Scenario 4d: 𝐺′ are marked as goal activities with hyperparameter val-
ues as 𝜆𝑓𝑟𝑒 = 0.10, 𝜆𝑙𝑖𝑘 = 0.10, and 𝜆𝑛𝑜𝑡 = 0.30; and
Scenario 4e: 𝐺′ are marked as goal activities with hyperparameter val-
ues as 𝜆𝑓𝑟𝑒 = 0.10, 𝜆𝑙𝑖𝑘 = 0.10, and 𝜆𝑛𝑜𝑡 = 0.50

Figure 4.6: Aggregated mean share of “fresh” plots in the selected plots for every 5% interval

As provided in Table 4.5, the increase in the mean share of “noteworthy” plots (i.e. those depicting
‘Phone’ activity) in the central part is 3.93% for the entire simulation duration in Scenario 4a, where
the goal activities are not marked. In Scenario 4b, we mark the goal activities incremental gain in
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“noteworthy” plots is 3.49%. The gain in “noteworthy” plots during the central part of simulation duration
when there is significant trend in ‘Phone’ usage is not as significant as expected. Moreover, the trend for
share of “noteworthy” plots in the scenarios 4a and 4b can be observed for each of the 5% intervals of
the simulation duration in Figure 4.6a and it too shows only a marginal increase in share of “noteworthy”
plots during the central part of simulation duration. Therefore, these results provide insufficient evidence
to validate our Hypothesis 4a (𝐻𝑛𝑜𝑡).

The share of “noteworthy” plots increases as we proceed with increasing the 𝜆𝑛𝑜𝑡 value from 0.1
in Scenario 4c to 0.3 in Scenario 4d and further to 0.5 in Scenario 4e. However, as with the previous
hypothesis, the sensitivity of the optimization engine to 𝜆𝑛𝑜𝑡 is rather weak and the results are thus
inconclusive for our Hypothesis 4b (𝐻′𝑛𝑜𝑡).

4.4. Efficacy of proposed approach
Table 4.6 summarizes the results obtained for all scenarios discussed earlier in this chapter. Figure 4.7
illustrates the results obtained for 𝐸′𝑟𝑒𝑙, 𝐸′𝑓𝑟𝑒, 𝐸′𝑙𝑖𝑘, and 𝐸′𝑛𝑜𝑡 for various of hyperparameters 𝜆𝑓𝑟𝑒, 𝜆𝑙𝑖𝑘,
and 𝜆𝑛𝑜𝑡.

Scenario Goals 𝜆𝑓𝑟𝑒 𝜆𝑙𝑖𝑘 𝜆𝑛𝑜𝑡 𝐸′𝑟𝑒𝑙 𝐸′𝑓𝑟𝑒 𝐸′𝑙𝑖𝑘 𝐸′𝑛𝑜𝑡
1a/2a/3a/4a No goals are set 𝜙 0.25 0.25 0.25 39.45% 30.62% 26.93% 3.39%
1b/2b/3b/4b Goals are defined and system priori-

tizes all objectives
𝐺′ 0.25 0.25 0.25 61.82% 25.79% 22.14% 3.49%

1c/2c/3c/4c Goals are defined and system mainly
prioritizes “relevance”

𝐺′ 0.10 0.10 0.10 82.14% 15.43% 10.35% 1.19%

2d Goals are defined and system mainly
prioritizes “relevance” and “freshness”

𝐺′ 0.30 0.10 0.10 38.56%

2e Goals are defined and system mainly
prioritizes “freshness”

𝐺′ 0.50 0.10 0.10 43.68%

3d Goals are defined and system mainly
prioritizes “relevance” and “likability”

𝐺′ 0.10 0.30 0.10 29.72%

3e Goals are defined and system mainly
prioritizes “likability”

𝐺′ 0.10 0.50 0.10 34.94%

4d Goals are defined and system mainly
prioritizes “relevance” and “noteworthi-
ness”

𝐺′ 0.10 0.10 0.30 3.75%

4e Goals are defined and system mainly
prioritizes “noteworthiness”

𝐺′ 0.10 0.10 0.50 6.53%

Table 4.6: Mean share of “relevant”, “fresh”, and “likable” plots in the selected plots across all interactions for the whole of
simulation duration (i.e. 𝐸′𝑟𝑒𝑙, 𝐸′𝑓𝑟𝑒, and 𝐸′𝑙𝑖𝑘 respectively) for several scenarios

The inverse relationship between the 𝜆 values and selection of “relevant” plots is made clear by
Figure 4.7a, which displays the mean share of “relevant” plots in the selected plots across all interac-
tions for the entire simulation duration for different values of hyperparameters. The positive correlation
between the 𝜆𝑓𝑟𝑒 value and selection of “fresh” plots are made evident by Figure 4.7b. The positive
correlation between the 𝜆𝑙𝑖𝑘 value and selection of “likable” plots is evident from Figure 4.7c. A posi-
tive correlation, albeit weak, is evident between the 𝜆𝑛𝑜𝑡 value and selection of “noteworthy” plots from
Figure 4.7d.

Based on the results obtained in Table 4.6 and Figure 4.7 and as discussed in previous sections,
Table 4.7 summarizes our findings on the efficacy of the proposed system for achieving the objectives of
“relevance”, “freshness”, “likability”, and ”noteworthiness”. As evident from Table 4.7, our optimization
engine shows its usefulness in ensuring selection and calibrating the relative share of “relevant”, “fresh”,
and “likable” plots. However, our evaluation results provide inconclusive evidence regarding the efficacy
of the proposed optimization engine for prioritizing the “noteworthy” plots for selection.
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(a) Mean share of “relevant” plots in the selected plots across all interac-
tions for the whole of simulation duration (i.e. 𝐸′𝑟𝑒𝑙) for different values
of hyperparameters while having a) no goals specified; and b) 𝐺′ as
goal activities. In the above analysis, all the 𝜆 values are equal (i.e.
𝜆𝑓𝑟𝑒 = 𝜆𝑙𝑖𝑘 = 𝜆𝑛𝑜𝑡)
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(b) Mean share of “fresh” plots in the selected plots across all interactions
for the whole of simulation duration (i.e. 𝐸′𝑓𝑟𝑒) for different values of
hyperparameters.
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(c) Mean share of “likable” plots in the selected plots across all interac-
tions for the whole of simulation duration (i.e. 𝐸′𝑙𝑖𝑘) for different values
of hyperparameters.
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(d) Mean share of “noteworthy” plots in the selected plots across all in-
teractions for the whole of simulation duration (i.e. 𝐸′𝑛𝑜𝑡) for different
values of hyperparameters.

Figure 4.7: Results obtained for 𝐸′𝑟𝑒𝑙, 𝐸′𝑓𝑟𝑒, 𝐸′𝑙𝑖𝑘, and 𝐸′𝑛𝑜𝑡 for various of hyperparameters 𝜆𝑓𝑟𝑒, 𝜆𝑙𝑖𝑘, and 𝜆𝑛𝑜𝑡.
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Hypothesis Evaluation objective Controlled Varied Scenarios Evaluation Hypothesis
parameters(s) parameter(s) compared Metric validation

from results

𝐻𝑟𝑒𝑙 Is the system selecting “relevant” plots on
marking the goal-activities?

𝜆𝑓𝑟𝑒, 𝜆𝑙𝑖𝑘, 𝜆𝑛𝑜𝑡 𝐺′ 1a, 1b 𝐸𝑟𝑒𝑙 Yes

𝐻′𝑟𝑒𝑙 Is the system sensitive to 𝜆-values to allow
calibration of the share of “relevant” plots?

𝐺′ 𝜆𝑓𝑟𝑒, 𝜆𝑙𝑖𝑘, 𝜆𝑛𝑜𝑡 1b, 1c 𝐸𝑟𝑒𝑙 Yes

𝐻𝑓𝑟𝑒 Is the system selecting “fresh” plots both when
no goals have been specified and when they
have been marked?

𝜆𝑓𝑟𝑒, 𝜆𝑙𝑖𝑘, 𝜆𝑛𝑜𝑡 𝐺′ 2a, 2b 𝐸𝑓𝑟𝑒 Yes

𝐻′𝑓𝑟𝑒 Is the system sensitive to 𝜆𝑓𝑟𝑒 value to allow
calibration of the share of “fresh” plots?

𝐺′, 𝜆𝑙𝑖𝑘, 𝜆𝑛𝑜𝑡 𝜆𝑓𝑟𝑒 2c, 2d, 2e 𝐸𝑓𝑟𝑒 Yes

𝐻𝑙𝑖𝑘 Is the system selecting “likable” plots both
when no goals have been specified and when
they have been marked?

𝜆𝑓𝑟𝑒, 𝜆𝑙𝑖𝑘, 𝜆𝑛𝑜𝑡 𝐺′ 3a, 3b 𝐸𝑙𝑖𝑘 Yes

𝐻′𝑙𝑖𝑘 Is the system sensitive to 𝜆𝑙𝑖𝑘 value to allow
calibration of the share of “likable” plots?

𝐺′, 𝜆𝑓𝑟𝑒, 𝜆𝑛𝑜𝑡 𝜆𝑙𝑖𝑘 3c, 3d, 3e 𝐸𝑙𝑖𝑘 Yes

𝐻𝑛𝑜𝑡 Is the system selecting “noteworhtly” plots
both when no goals have been specified and
when they have been marked?

𝜆𝑓𝑟𝑒, 𝜆𝑙𝑖𝑘, 𝜆𝑛𝑜𝑡 𝐺′ 4a, 4b 𝐸𝑛𝑜𝑡 Maybe

𝐻′𝑛𝑜𝑡 Is the system sensitive to 𝜆𝑛𝑜𝑡 value to cali-
bration of the share of “noteworthy” plots?

𝐺′, 𝜆𝑓𝑟𝑒, 𝜆𝑙𝑖𝑘 𝜆𝑛𝑜𝑡 4c, 4d, 4e 𝐸𝑛𝑜𝑡 Maybe

Table 4.7: Summary of results from evaluation of proposed user-interface optimization engine





5
Conclusion

An algorithm for selecting plots of user activities that adapts to the changing requirements of a user
while managing to offer maximum usefulness in the information provided at every interaction, is key
to securing pleasant and continued use of a self-tracking tool. It is especially true when we have high
volume user data streams along with computational power and UI capabilities to analyse and present
in umpteen ways.

As seen in last section of the previous chapter, we have successfully demonstrated design and
development of a selection algorithm that delivers relevant yet fresh selection of visualizations for a
quantified-self user interested in keeping track of information related to several activities. Moreover,
our algorithm learns from user preferences provided by them over time to prioritise UI elements that are
particularly found useful by the user. We have thus been able to achieve three out of four objectives
we set forward in our research question for our UI optimization engine.

5.1. Reflection
Available data, computational power and UI capabilities are always on an increase. Wearable devices
have contributed to the volume of available data. Increasingly capable hardware on smartwatches
and smartphones have increased the available computational power on the edges and their always
connected nature enables them to tap into much higher computational power available through APIs
of several cloud services. Finally, the devices are increasing in their UI capabilities with the wearable
and more recently that of AR/VR hardware. Therefore, we anticipate increasing importance of our UI
optimization engine for self-tracking tool that thrives exactly in the aforementioned conditions.

Selection algorithm functions as the most critical interface where computer output gets tuned to
user requirements. For an application such as self-tracking tool, making this interaction intelligent and
user-centric is of utmost importance. People make non-obligatory personal efforts in making use of
self-tracking tools. Therefore, it becomes critical to ensure consistent usage of these tools by the
users. Our optimization approach was guided by this understanding of keeping the user’s preferences
and limitations at the center. We find that an effective UI optimization engine is not only central to the
full-stack development of a self-tracking tool but also plays a key role in the bigger picture by assisting
users in achieving their wellness goals.
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5.2. Limitations
While we use real-life data for evaluation of our system, a multiple user study could not be carried out
due to objective reasons. A lab study along the lines of what was carried out in [15] would have been
most suitable since it also deals with UI optimization using combinatorial techniques. The same holds
for a user study spread over several weeks that would also have been useful in making a qualitative
evaluation of the optimization engine to complement the quantitative analysis of the selection results.
Additionally, the scenarios aggregate results by changing values for only the subsets of variables. For
examples, multiple runs can be made for a set of values of hyperparameters. Finally, while the UI
element features already allows for quantification of the distance from goal values, the performance of
this feature in the selection output has not been evaluated. This, coupled with recent implementations
of the interior point method [28], can be explored for faster computation.

5.3. Future Work
In addition to the need to expand the evaluation protocol by addressing the limitations of the current
work, as explained in the previous section, here we elaborate on some further suggestions on how to
expand the scope of this research. To start with, we used a web-based (optimized for desktop) UI deliv-
ery system. Introducing another UI output device, such a smartphone, would be an interesting addition
to the research question. For this we would need to augment the optimization engine to allow selec-
tion of UI elements based on capabilities of the new UI output device. Furthermore, the UI elements
currently comprise only of plots. However, they could also include push notifications using a mobile
app, summary emails, custom elements on watch-face of a smartwatch etc. Therefore, expanding the
optimization scope across different classes of UI elements would be a worthwhile research direction.
Lastly, we can consider alternative optimization techniques in addition to the Integer Programming
method used in our study. Particularly interesting wwould be to explore application of reinforcement
learning methods to achieve better performance. To sum up, future work on the study can look into in-
troducing new classes of UI elements, new classes of UI output devices, and adding more optimization
techniques. Most importantly, the current study as well aforementioned future exploration areas would
greatly benefit from an elaborate, long-term multi-user study.
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