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Orienting phylogenetic networks

by E.A.VERZIJLBERGEN

This thesis provides you with basic information on graph theory as well as phylogenetic net-
works, it studies the relationship between undirected (unrooted) and directed (rooted) phy-
logenetic networks, based on the manuscript ’Rooting for phylogenetic networks’ [HvIJ+].
Undirected phylogenetic networks can be oriented to become a directed network. In this
manuscript the authors come up with multiple algorithms for orienting phylogenetic net-
works meeting different characteristics. A network is built up of reticulation vertices (where
lineages merge) and tree vertices (where lineages separate). A network can be binary, mean-
ing every node in the body of the network has a degree of three or a network can be non-
binary, meaning there are no restrictions to the amount of edges a vertex can have. When a
network is binary, an algorithm is described that given the location of the root as well as a
set of reticulation points, is used to find an orientation (Algorithm 1). If a network is non-
binary, an algorithm is described that given a location of the root as well as the indegree
of each vertex, is used to find an orientation (Algorithm 2 ). Once an orientation is found
for a certain undirected network this orientation can be checked to see whether it meets the
characteristics of a certain network class. Three network classes are considered. First of
all an orientation can be tree-child, meaning that every non-leaf vertex has a child that is
not a reticulation. Secondly an orientation can be stack-free, meaning that no reticulation
has a child which is a reticulation. And last, an orientation can be valid, meaning that it
is stack-free and deleting a single reticulation edge and suppressing its endpoints does not
give parallel arcs. When we either did not find an orientation in the class we wanted or want
to know all the orientations for a certain network in a certain class, we use Algorithm 3 or 4.
The location of the root and the set of reticulation points were necessary input for Algorithm
1; whereas Algorithms 3 and 4 do not require this information. Algorithm 3 returns you the
first found orientation in the class you wanted and Algorithm 4 returns you a collection of
all orientations in the class. All orientations found by the program are returned in an output
format that can be read by a network visualisation website [GGL+].

HTTPS://WWW.TUDELFT.NL/EN/
https://www.tudelft.nl/en/eemcs/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/applied-mathematics/




ix

Acknowledgements
I want to thank all who taught me during my bachelor Applied Mathematics and enlight-
ened me with knowledge. Finishing my bachelor would have been impossible without the
aid and support of my family and friends. As most of us know, programming is thinking,
trying, and fixing all the error statements to come to a satisfying and well functioning pro-
gram. This thesis is the result of knowledge gained in the past years.
Special thanking are in order for dr. ir. L.J.J (Leo) van Iersel and dr. M.E.L. (Mark) Jones
for guiding me throughout this thesis and dr. ir. M. (Marleen) Keijzer for being part of my
Bachelor Committee.





xi

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

1 Introduction 1

2 Preliminaries 5
2.1 Graph theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Phylogenetic networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Network classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Tree-child . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Stack-free . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.3 Valid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Problem set-up 11

4 Programming choices 13

5 Binary networks 15
5.1 Algorithm 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Reticulation cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Non-binary networks 17
6.1 Algorithm 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2 Degree cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

7 Class orientations 21

8 Manual 23

9 Data 25

10 Conclusion 29

11 Discussion 31

A Appendix 35
A.1 Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
A.2 Binary check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A.3 Algorithm one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A.4 Algorithm two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.5 Network classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
A.6 Algorithm three . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A.7 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49





xiii

List of Figures

1.1 Division of a sloth of polar bears . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Uniting two packs of wolves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Example undirected and directed network . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Example of a walk, a closed walk and a cycle . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Example of a tree and a forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Examples of suppressing the vertex x in a directed network and suppressing the root

r in a directed network resulting in an undirected unrooted network . . . . . . . . . . 7
2.4 A visualisation of the relations of the classes. . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 A binary network that is not tree-child since v2 has v4 and v6, reticulation vertices , as

children. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 A binary network that is not stack-free since v5, a reticulation, has v6, a reticulation, as

a child. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7 Part of a binary network in which case deleting a single reticulation edge and sup-

pressing its endpoints does give a parallel arcs. . . . . . . . . . . . . . . . . . . . . . . . 9

4.1 Example directed graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Python representation of a directed graph . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Example undirected graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Python representation of a undirected graph . . . . . . . . . . . . . . . . . . . . . . . . 14

5.1 Orienting a network which results in a reticulation cut . . . . . . . . . . . . . . . . . . 16

6.1 Orienting a network which results in a degree cut . . . . . . . . . . . . . . . . . . . . . 18

8.1 .txt input example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.2 An undirected (on the left) and directed (on the right) representation of the input given

in Figure 8.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

11.1 A network and its underlying tree-base . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
11.2 The network of Figure 11.1 obtained by subdividing arcs of the tree and adding arcs

between the subdividing vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
11.3 Cherry picking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
11.4 Reticulate cherry picking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
11.5 A visualisation of the relations of the classes. . . . . . . . . . . . . . . . . . . . . . . . . 33





1

Chapter 1

Introduction

Phylogenetic networks are graphs used to describe and visualise evolutionary relationships
between (for example) genes, chromosomes or species. Networks come in all different lay-
outs, due to the way they are build using different nodes. For most networks we do know
which objects are related, often we do not know the direction of the relationship, e.g. which
one is the descendent and which is the ancestor. In 2018, 229 new plant and animal species
were discovered [Ims]. Due to DNA matching, scientists are able to relate these species to
earlier discovered ones. Using these relations it is possible for the new species to be added
to a larger network existing of known species on Earth. Since the direction of these new
relationships is not known, this network is not entirely directed anymore.
For these networks it might be possible to find an unique orientation. Such an orientation
shows the direction of the events, for example time or DNA/gene transfer. Mathematicians,
biologists and every specialist in between these fields might benefit from knowing the ori-
entations of a phylogenetic network. Two examples will be provided which occur in nature
and connect them to different nodes.

Consider a scenario in which a sloth of polar bears lives on an iceberg. Due to global warm-
ing the iceberg splits in two. A part of the sloth of polar bears is separated from the rest and
is no longer able to reach them. Now the separated part adapts to the new environment and
becomes a new sloth. This situation occurring in nature can be represented as a phyloge-
netic network, see Figure 1.1.

sloth of polar bears

first sloth second sloth

FIGURE 1.1: Division of a sloth of polar bears

Now consider another scenario in which there are adjacent forests in which two packs of
wolves live. One day due to a lightning strike there is a forest fire and one of the packs has
to migrate to the neighboring forest. The two packs of wolves now live in one forest and
the packs merge. This situation occurring in nature can be represented as a phylogenetic
network, see Figure 1.2.
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first pack second pack

new pack of wolves

FIGURE 1.2: Uniting two packs of wolves

In the unpublished manuscript: "Rooting for phylogenetic networks" [HvIJ+] by Katharina
Huber et al, several fundamental questions regarding the relationship between directed
(rooted) and undirected (unrooted) phylogenetic networks are answered. First they ask
themselves the following: suppose you know the underlying undirected phylogenetic net-
work of some directed binary phylogenetic network as well as the location of the root and
of the reticulation vertices (the vertices where lineages merge.) Does this give you enough
information to uniquely reconstruct the directed phylogenetic network? They show that
this is indeed the case. In Figure 1.3 you find a complete example of an undirected unrooted
binary network and a directed rooted orientation. The squares represent the reticulation
vertices, presented in the example of the wolves.

a b

c d

e f

g h

i j

ra b

c d

e f

g h

i j

FIGURE 1.3: Example undirected and directed network

Moreover, the authors give a mathematical characterization for when an undirected phy-
logenetic network, given the locations of the root and reticulation vertices, can be oriented
as a directed phylogenetic network. In addition, they give a polynomial-time algorithm to
find such an orientation. They also show how these results can be generalized to non-binary
networks, if the desired indegrees of the reticulation vertices are specified. Moreover, they
show how to apply the algorithm to partly-directed networks, networks in which some of
the edges are already oriented. In the second part of the manuscript, they study which undi-
rected binary phylogenetic networks can be oriented to become a directed phylogenetic net-
work of a certain class (with no information about the location of the root or the reticulation
vertices). They give an algorithm that is fixed parameter tractable (FPT), this means that the
algorithm runs quickly for large input networks as long as the number of reticulation ver-
tices is not too large. The algorithm can be applied to a wide range of classes of networks,
including the well-studied classes of Tree-child, Tree-based, Reticulation-visible and Stack-
free networks but also to the recently introduced classes of Valid networks [MvIJ+18] and
Orchard networks [JM18, ESS19].

Throughout this thesis, definitions, theory and algorithms will be presented to the reader.
At first a distinction will be made according to the structure of the graph, a graph will be
either binary or non-binary. For each of the two options, an algorithm exists which is able to
return an orientation of the network, if one does exist. After this, different network classes
will be introduced. The class algorithms will show you how to check if the found orienta-
tion belongs to its class. Then another two algorithms will be introduced, these algorithms
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return either the first found orientation belonging to a desired class or all of the orientations
belonging to a desired class, no additional information is needed about the location of the
root or the reticulation vertices. In Chapter 8 a manual on how to apply the program on
your data set is presented.

The main contribution of this thesis is a practical implementation of the orientation algo-
rithms that were presented in the manuscript [HvIJ+].
The implemented program is applied to multiple example networks [GGL+], the results will
be presented in Tables 9.1 and 9.2. For each example network, the program correctly returns
the orientation from the website [GGL+] when given the undirected network together with
the set of reticulation vertices (binary) or desired indegree (non-binary) and the rooted edge
as input. For each orientation it is checked to which network classes it belongs. Further-
more, for each binary example network, the program has been used to find out whether the
network has an orientation that belongs to a certain class, if the set of reticulation vertices
and rooted edge are assumed to be unknown. This has been done for each of the classes
Tree-child, Stack-free and Valid, the running times are presented. At the end you should be
able to understand and use the attached python program to orient a phylogenetic network.
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Chapter 2

Preliminaries

The following sections will give a short introduction to graph theory (Section 2.1) and specif-
ically phylogenetic networks (Section 2.2). Terminology used in this report will be explained
within these sections.

2.1 Graph theory

In this section terminology of graph theory will be explained, these definitions are either
given in or based on the definitions of the lecture notes [AvIJ18] of the subject Optimization
(Delft University of Technology, TW2020). Graph theory is the study of graphs. Graphs are
made up of points: vertices or nodes (V), and lines: edges (E). Each edge represents a relation
between two nodes, which correspond to different objects.
The official notation of an undirected graph is given by G = (V, E). An edge e ∈ E is given
by the following notation: e = {v, w}, in this case we say that v and w are endpoints of the
edge {v, w}. We say that an edge e ∈ E is incident to each of its endpoints. The degree d(v) of
a vertex v ∈ V is the number of edges that are incident to v. A walk in a graph G = (V, E) is
an ordered list of vertices (v0, v1, ..., vk) such that each connecting edge {vi−1, vi} ∈ E for all
1 ≤ i ≤ k. We call this a closed walk in case v0 = vk. If in this closed walk all vi are distinct,
it is called a cycle. In Figure 2.1, we find examples of a walk {v1, v3, v4, v6, v8, v7}, a closed
walk {v1, v2, v4, v6, v8, v7, v4, v3, v1} and a cycle {v1, v2, v6, v4, v7, v5, v3, v1}.

v1

v2 v6

v3

v4 v8

v5

v7

v1

v2 v6

v3

v4 v8

v5

v7

v1

v2 v6

v3

v4 v8

v5

v7

FIGURE 2.1: Example of a walk, a closed walk and a cycle

A path is a walk that does not visit any vertex more than once. It is called a u-v path if u is
the first vertex and v is the last vertex on the path. A graph is connected if it contains a u-v
path for each pair of vertices u, v ∈ V. A connected graph with no cycles is called a tree.
If a graph is not connected but does not contain any cycles it is called a forest, each of the
disconnected components is a tree. See Figure 2.2 for a visualisation of the relation between
a tree and a forest.
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FIGURE 2.2: Example of a tree and a forest

The following lemma holds for trees:

Lemma 2.1.1 Let G = (V, E) be a graph, then the following are equivalent:

1. G is a tree;

2. G is connected and |E| = |V| − 1;

3. G contains no cycles and |E| = |V| − 1;

4. G contains a unique path between each pair of vertices.

In case that an edge is directed it is called an arc. To relate this to an example occurring in
nature: an edge can be drawn when two individuals have DNA in common, an arc can be
drawn when we do know which one is the ancestor and which the descendent. The official
notation of a directed graph is given by G = (V, A). Taking arc a ∈ A as a = {v, w}, we say
that v is the tail and w is the head of the arc. We say that the arc {v, w} is leaving v and entering
w. The indegree d−(v) of a vertex v is the number of arcs entering v also called inedges of v
and the outdegree d+(v) of a vertex v is the number of arcs leaving v also called outedges of v.
The degree of a vertex might be defined as the sum of the indegree and outdegree.

2.2 Phylogenetic networks

A phylogenetic network is any graph used to visualise evolutionary relationships (either ab-
stractly or explicitly) between nucleotide sequences, genes, chromosomes, genomes or species
[HRS10]. Phylogenetic networks are mostly directed and rooted (containing a root) but can
be undirected and unrooted (not containing a root) as well. The edges or arcs represent evo-
lutionary events such as descent, endosymbiosis, hybridization, or gene transfer.
The rest of this section will explain more about directed rooted phylogenetic networks. A
phylogenetic network consists of different sorts of nodes. One of these sorts is called the
root, this vertex has no inedges, only outedges. In a rooted network there exists only one
root. Besides a root a phylogenetic network also contains leaves, a leaf has no outedges only
a single inedge. A network can have multiple leaves.

Besides roots and leaves a directed network exists of two kinds of nodes: tree nodes and
reticulation nodes. A tree node has only one inedge and can have multiple outedges. A
reticulation node can have multiple inedges as well as multiple outedges. Reticulation- and
tree nodes correspond to different kind of evolutionary events. In Chapter 1 two examples
are given referring to situations occurring in nature. The scenario of a split of a sloth can be
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represented as a phylogenetic network. This can be seen in Figure 1.1. This is an example
of a tree node, it has only one inedge and multiple, in this case two, outedges. The second
scenario, where two packs of wolves merge, can be represented as a phylogenetic network
as well. This can be seen in Figure 1.2. This is an example of a reticulation node, it has
multiple, in this case two, inedges and can have multiple, in this case one, outedges.

In mathematical terms, a network can be defined as a graph with one root and with leaves
labelled with species. The leaves have an indegree d−(v) = 1 and outdegree d+(v) = 0.
In case the network is directed it has a root which has indegree d−(v) = 0 and outdegree
d+(v) ≥ 1. In a binary network every node of the network that is not a leaf or root has a
degree of three. This means that it is either a tree node: v, having indegree d−(v) = 1 and
outdegree d+(v) = 2, or a reticulation node: w, having indegree d−(w) = 2 and outdegree
d+(w) = 1. In non-binary networks there is no restriction to the number of incident edges a
vertex can have. A non-binary network just like a binary network exists of a root and leaves
as well as two other kind of vertices: A tree node, which has only one inedge and can have
multiple outedges, and a reticulation node, which can have multiple inedges as well as mul-
tiple outedges.

Suppressing a vertex means deleting it but keeping the connections (paths that travel through
it). In Figure 2.3 you find two examples, suppressing the vertex x in a directed network and
suppressing the root r in a directed network resulting in an undirected unrooted network.

v1 v2

x

v3

v1 v2

v3

v1

r

v2

v3 v4 v5 v6

v1 v2

v3 v4 v5 v6

FIGURE 2.3: Examples of suppressing the vertex x in a directed network and
suppressing the root r in a directed network resulting in an undirected un-

rooted network

Given an undirected network N and a directed network N′, we say that N is the underlying
network of N′ and N′ is an orientation of N, if the network derived from N′ by replacing all
directed arcs with undirected edges and suppressing the former root (if this vertex has de-
gree two) is isomorphic to N. We say that N is orientable if it has at least one orientation.

2.3 Network classes

Networks as well as their orientations can be checked for membership of different classes.
Some classes overlap and some are sub-classes giving extra characteristics to a network.
Examples of overlapping classes are orchard and reticulation-visible, these classes will not
be discussed in this thesis. Figure 2.4 gives a representation of how some of the classes of
directed networks are related. We will discuss the following classes:

• Tree-child: every non-leaf vertex has a child that is not a reticulation.

• Stack-free: no reticulation has a child which is a reticulation.
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• Valid:

– Stack-free;

– deleting a single reticulation edge and suppressing its endpoints does not give
parallel arcs (definition in Section 2.3.3).

Tree-child Valid Stack-free

FIGURE 2.4: A visualisation of the relations of the classes.

For each of these classes, the following subsections show how to check algorithmically if a
network does belong to the specific class.

2.3.1 Tree-child

To check if a directed network is tree-child we need to check if every non leaf vertex has
a child that is not a reticulation. A collection is made containing all the vertices. For each
vertex we check if it has children, if a vertex has no children it is a leaf and therefore it is not
important for tree-child criterea.
If a vertex is not a leaf, we check if at least one of the children is not a reticulation point. If
there exist such a child, we continue to the next vertex.
If all of the vertices fulfil the requirement, the directed network is reported to be tree-child.
If a certain point does not fulfil the requirement the directed network is not tree-child.
The actual program can be found in Appendix A.5.

r
v1 v2

l1
v3 v4

v6

l4

v5

l3

l2

FIGURE 2.5: A binary network that is not tree-child since v2 has v4 and v6,
reticulation vertices , as children.

2.3.2 Stack-free

To check if a directed network is stack-free we need to check if there exist no reticulation
point with a reticulation as a child. A collection is made containing all the reticulations of
a network. For each reticulation we check if none of its children is a reticulation vertex.
As soon as one of the children of a reticulation turns out to be a reticulation the directed
network is not stack-free.
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If all of the reticulation points are checked and non of them has a reticulation as a child we
can conclude that the network is stack-free.
The actual program can be found in Appendix A.5.

r
v1 v2

l4l1
v3

v5

v6

v4

l2

l3

FIGURE 2.6: A binary network that is not stack-free since v5, a reticulation,
has v6, a reticulation, as a child.

2.3.3 Valid

To check if a directed network is valid we need to check if it is stack-free and if deleting a
single reticulation edge and suppressing its endpoints does not give parallel arcs. In case
we have e1, e2 ∈ E where e1 = {x, y} and e2 = {x, y} but e1 6= e2 we call e1 and e2 parallel
arcs. In binary networks there are two scenarios in which deleting a single reticulation edge
and suppressing its endpoints does result in parallel arcs, only one of these is stack-free and
can be seen in Figure 2.7. In this figure the reticulation edge (v, r) has to be deleted and the
endpoints v and r should be suppressed. When suppressing v this will result in parallel arcs
(k, s).

k

s

v

r

k

s

v

r

k

s

FIGURE 2.7: Part of a binary network in which case deleting a single reticula-
tion edge and suppressing its endpoints does give a parallel arcs.

The algorithm checks if an orientation is valid by iterating over all of the reticulation points.
We check if a sibling is a child of one of its grandparents (on that side) as well. When
referring to the given example, r is the reticulation point, v is its parent and s is the sibling.
s is also a child of k, which is r its grandparent (on the same side as v). The actual program
can be found in Appendix A.5.
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Chapter 3

Problem set-up

The first distinction that is made is based on the degree of the vertices, a network can be
either binary or non-binary. For each of these network types exists a different algorithm.
These algorithms need different input as well. We describe the input and output for each of
these algorithms below.

Definition 3.0.1 Suppose N’ is a directed rooted network, N is a binary undirected unrooted net-
work, eρ an edge in N and R a set of vertices in N, we say that N’ is a phylogenetic orientation of (N,
eρ, R) if:

• N’ is an orientation of N with an inserted root;

• the root of N’ is inserted in the edge eρ;

• the reticulation point of N’ equal the set R.

To orient a binary network we need to know the rooted edge eρ ∈ E (this is the edge where
the root will be inserted) and the set of reticulation points, R.

ORIENTATION ALGORITHM FOR BINARY NETWORKS

Input: An undirected network N, an edge eρ ∈ E, and a subset R of the vertices.
Output: A phylogenetic orientation of (N, eρ, R) if it exists and NO otherwise.

Definition 3.0.2 Suppose N’ is a directed rooted network, N is a non-binary undirected unrooted
network, eρ an edge in N and d− is the desired indegree of all vertices in N, we say that N’ is a
phylogenetic orientation of (N, eρ, d−) if:

• N’ is an orientation of N with an inserted root;

• the root of N’ is inserted in the edge eρ;

• the indegree of each point of N’ equals the desired indegree d−.

To orient a non-binary network we need to know the rooted edge eρ ∈ E and the indegree
d−(v) for each vertex v ∈ V.

ORIENTATION ALGORITHM FOR NON-BINARY NETWORKS

Input: An undirected non-binary network N, an edge eρ ∈ E, and the desired indegree
d−(v) with 1 ≤ d−(v) ≤ dN(v) for each v ∈ V.
Output: A phylogenetic orientation of (N, eρ, d−) if it exists and NO otherwise.

For each orientation found by one of these algorithms, we can check to which of the classes:
tree-child, stack-free and valid, it belongs.
It is possible to search for an orientation of a network which belongs to a desired class. An
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orientation belonging to a class C is called a C-orientation.

CLASS-ORIENTATION ALGORITHM RETURNING ONE ORIENTATION

Input: An undirected unrooted binary network N, number of reticulation points k, a class C.
Output: One phylogenetic C-orientation of (N, eρ, R) with the number of reticulation points
k, if it exists and NO otherwise.

Last, it is possible to return all the orientations of a network belonging to the desired class.

CLASS-ORIENTATION ALGORITHM RETURNING ALL ORIENTATIONS

Input: An undirected unrooted binary network N, number of reticulation points k, a class C.
Output: All phylogenetic C-orientations of (N, eρ, R) with the number of reticulation points
k, if it exists and NO otherwise.
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Chapter 4

Programming choices

This thesis is mostly focused on implementing the algorithms. To turn the written algo-
rithms into actual programs a language had to be chosen. Since Python is an upcoming lan-
guage and most faculties of Delft University of Technology are switching toward Python,
choosing this language will make the use of this program most worthwhile. Throughout
the process example networks [GGL+] are used. Their input is placed in a .txt file and the
python output is printed in the same format which can be used to make a visualisation us-
ing a network visualisation website [GGL+]. Once it was decided to use python many other
programming choices had to be made. One of the most important ones is the implemen-
tation of a network. To represent a network we have chosen to use a dictionary in python
[Fou]. Many functions already apply to this class and therefore only the actual algorithms
need to be implemented.

To represent the directed graph in Figure 4.1 we use the following code given in Figure
4.2.

ra b

c d

e f

g h

i j

FIGURE 4.1: Example directed graph

G = {'r': ['a', 'b'],
'a': ['c', 'd'],
'c': ['d', 'e'],
'e': [],
'd': ['f'],
'f': [],
'b': ['g', 'h']
'g': ['h', 'i'],
'i': []
'h': ['j'],
'j': []
}

FIGURE 4.2: Python representation of a directed graph

Referring to the code in Figure 4.2: for a line such as ’a’: [’c’, ’d’] we call a the key and c and d
the values. In an undirected graph, ’a’: [’c’, ’d’] means that there is an edge between a and c
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and between a and d. Hence, a will be a value of the keys c and d. The undirected unrooted
graph form of the graph given in Figure 4.2 is given in Figure 4.3 and the corresponding
code is given in Figure 4.4. Here we see that b is a value of the key a and a is also a value of
the key b.

a b

c d

e f

g h

i j

FIGURE 4.3: Example undirected graph

G = {'a': ['b', 'c', 'd'],
'c': ['a', 'd', 'e'],
'f': ['d'],
'e': ['c'],
'd': ['a', 'c', 'f'],
'b': ['a', 'g', 'h']
'g': ['b', 'h', 'i'],
'i': ['g']
'h': ['b', 'g', 'j'],
'j': ['h']
}

FIGURE 4.4: Python representation of a undirected graph
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Chapter 5

Binary networks

Firstly, simpler type of networks are considered, binary networks. In this chapter will be
discussed how to orient a binary network. First the algorithm will be explained and why
certain ’if’ and ’while’ statements are made. Sometimes the algorithm does not return an
orientation because not all networks can be oriented. In paragraph 5.2 such an example will
be given and explained what the algorithm does in such a case.

5.1 Algorithm 1

In the manuscript [HvIJ+] the authors found an algorithm to generate an orientation of a
binary network. The algorithm starts by checking the criterion |R| = |E| − |V| + 1. This
can be derived using lemma 2.1.1. An oriented network has a lot in common with a tree,
except an oriented network does not only consist of tree nodes and therefore the number of
reticulation nodes had to be inserted into the formula |E| = |V| − 1 resulting in the crite-
rion |R| = |E| − |V|+ 1. After checking this, the root is inserted and the edges incident are
oriented away from the root. Following this, the algorithm continues as long as there are
unoriented edges present.

Data: An undirected network N, an edge eρ ∈ E, and a subset R of the vertices
Result: A phylogenetic orientation of (N, R, eρ) if it exists and NO otherwise
if |R| 6= |E| − |V|+ 1 then

return NO
Subdivide eρ by a new vertex ρ and orient the two edges incident to ρ away from ρ ;
while there exists an unoriented edge do

if there is a vertex v ∈ V − R with one incoming oriented edge and two incident
unoriented edges then

orient the two unoriented edges incident to v away from v.
else if there is a vertex v ∈ R with two incoming oriented edges and one incident
unoriented edge then

orient the unoriented edge incident to v away from v
else

return NO
end
return the obtained orientation

Algorithm 1: Orientation algorithm for binary networks

When implementing Algorithm 1, changes had to be made due to programming choices.
Since an unoriented edge is programmed as two oriented edges, one forward and one
backward, the total number of edges has to be divided by two to meet the criterion |R| =
|E| − |V|+ 1. Since programming a graph as a dictionary does not give you the opportunity
to iterate over edges the while statement is changed. The new idea proposes that the algo-
rithm continues as long as there are too many edges, in other words: there still exist ’double
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edges’, which in this case represent unorientend edges. To know whether "there is a vertex
v ∈ V − R with one incoming oriented edge and two incident unoriented edges" or "there is
a vertex v ∈ R with two incoming oriented edges and one incident unoriented edge" there
exist two groups "orientable reticulation nodes" and "orientable tree nodes", each vertex, v,
meeting the criteria is added to such a group. The actual implementation can be found in
Appendix A.3.

5.2 Reticulation cut

Sometimes no orientation can be found. The criterion |R| = |E| − |V|+ 1 has already been
discussed in the last section. A scenario you can come across is that there are no orientable
treenodes left and only reticulation nodes with no inedges or one inedge. The reticulation
nodes with one inedge have two unoriented edges but it is not known which is an inedge
and which is an outedge. In this case no orientation can be given.

a b c

d e f

a b c

d e f

ρ a b c

d e f

ρ

FIGURE 5.1: Orienting a network which results in a reticulation cut

In Figure 5.1 a representation of the algorithm is given in which it results in a reticulation
cut. In the figure on the left the unoriented network can be seen. In the middle the root has
been inserted and the rooted edge has been oriented as well as the edges from tree node b.
After this no edges can be oriented anymore since c and d are both reticulation nodes with
only one inedge and two unoriented edges. Therefore the arcs (b, d) and (ρ, c), given in red
in the figure on the right, define the reticulation cut. The complete definition of a reticulation
cut is written in the following way:

Definition 5.2.1 Given an undirected binary network N = (V, E, X), a distinguished edge eρ ∈ E,
and a subset R of the vertices, a reticulation cut is a pair (R’, E’) with R’ ⊆ R, |R’| = |E’| and E’ is
an edge-cut of the network Nρ obtained by subdividing eρ by a new vertex ρ, such that E’ has exactly
one edge incident to each r ∈ R’ and ρ is not in the same connected component of N \ E’ as any r ∈
R’.

The following proposition shows that the existence of a reticulation cut proves that there is
no phylogenetic orientation [HvIJ+].

Proposition 5.2.2 Let N=(V, E, X) be an undirected binary network, eρ ∈ E and R ⊆ V. (N, eρ, R)
is orientable if and only if the following two conditions hold

1. (N, eρ, R) has no reticulation cut;

2. |R| = |E|-|V|+1

Every time no orientation can be found the algorithm provides you with the set of reticula-
tion edges together forming the reticulation cut.
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Chapter 6

Non-binary networks

Binary networks only make up a very small part of all types of graphs. In this chapter will
be discussed how to orient a non-binary network. First the algorithm will be explained and
why certain ’if’ and ’while’ statements are made. Sometimes the algorithm does not return
a orientation because not every network can be oriented. In paragraph 6.2 such an example
will be given and will be explained what the algorithm will do in such a case.

6.1 Algorithm 2

Since not all reticulation nodes have the same number of inedges anymore, the algorithm
cannot be provided with a set of all reticulation nodes as done in Algorithm 1. One of the
inputs needed to orient a non-binary network is the desired indegree for each v ∈ V. The
criterion |R| = |E| − |V| + 1 or |R| + |V| = |E| + 1 has to be rewritten to a statement in-
volving the indegree. Since R and V are not clearly distinguishable groups, rewriting the
statement will result in the new criterion ∑v∈V d−(v) = |E|+ 1. After checking this, the root
is inserted and the edges incident are oriented away from the root. After that the algorithm
continues as long as there are unoriented edges present.

Data: An undirected non-binary network N, an edge eρ ∈ E, and the desired indegree
d−(v) with 1 ≤ d−(v) ≤ dN(v) for each v ∈ V.

Result: A phylogenetic orientation of (N, eρ, d−) if it exists and NO otherwise
if ∑v∈V d−(v) 6= |E|+ 1 then

return NO
Subdivide eρ by a new vertex ρ and orient the two edges incident to ρ away from ρ ;
while there exists an unoriented edge do

if there is a vertex v ∈ V with d−(v) incoming oriented edges and at least one incident
unoriented edge then

orient all unoriented edges incident to v away from v.
else

return NO
end
return the obtained orientation

Algorithm 2: Orientation algorithm for non-binary networks

When implementing Algorithm 2, changes had to be made due to programming choices.
The same programming choice have been made evolving around the dictionary representa-
tion of a graph as discussed in the last chapter. To speed up the algorithm once ’there is a
vertex v ∈ V with d−(v) incoming oriented edges and at least one incident unoriented edge’
this vertex v is added to a group ’orientable’ this way we know over which keys to iterate.
The actual implementation can be found in Appendix A.4.
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6.2 Degree cut

As well as in the binary case sometimes no orientation can be found. This can be due to a
degree cut. Since a reticulation point w does not necessary have two inedges and one out-
edge but can have multiple inedges as well as multiple outedges it is less easy to provide the
user with the degree cut. The algorithm stops once there are no orientable tree nodes and
only reticulation nodes with less inedges than their indegree. All these inedges, belonging
to reticulation nodes with less inedges than their indegree, belong to the degree cut.

a b

c

d

e
f
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h
i

j

k l m

n o p q

ρa b

c

d

e
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h
i

j
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n o p q

ρa b

c

d

e
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g

h
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k l m

n o p q

FIGURE 6.1: Orienting a network which results in a degree cut

In Figure 6.1 a representation of the algorithm is given in which it results in a degree cut. In
the figure on the left the unoriented network can be seen, in this network all tree nodes have
desired indegree one, the reticulation nodes, marked with a square instead of a point, have
desired indegree two and only h has desired indegree three. In the middle figure the root
has been inserted and the rooted edge has been oriented as well as the edges from orientable
tree nodes and reticulation nodes. At one point, no more edges can be oriented since both i
and j have desired indegree two and only have one inedge and h has desired indegree three
and only has two inedges. Therefore the arcs (e, h), ( f , h), ( f , i) and (g, j), given in red in the
figure on the right, define the degree cut. The complete definition of a degree cut is written
in the following way:

Definition 6.2.1 Given an undirected nonbinary network N = (V, E, X), a distinguished edge eρ ∈
E, and the desired in-degree d−(v) of each vertex v ∈ V, a degree cut is a pair (V’, E’) with V’ ⊆ V
such that:

• E’ is an edge-cut of the network Nρ obtained by subdividing eρ by a new vertex ρ;

• each edge in E’ is incident to exactly on element of V’;

• each vertex v ∈ V’ is incident to less than d−(v) edges in E’ and

• ρ is not the same connected component of N \ E’ as any v ∈ V’.

The following proposition shows that the existence of a degree cut proves that there is no
phylogenetic orientation [HvIJ+].
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Proposition 6.2.2 Let N=(V, E, X) be an undirected non-binary network, eρ ∈ E be a distinguished
edge and d− be the desired indegree of each vertex v ∈ V where 1 ≤ d−(v) ≤ dN(v) . (N, eρ, d−) is
orientable if and only if the following two conditions hold

1. (N, eρ, d−) has no degree cut;

2. ∑v∈V d−(v) = |E|+ 1

Every time no orientation can be found the algorithm provides you with the set of edges
together forming the degree cut.
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Chapter 7

Class orientations

Networks as well as their orientations can be checked for different classes. In this chapter,
we describe how to search for an orientation belonging to a specific class. There are two dif-
ferent algorithms using class orientations. Algorithm 3 returns the first orientation it finds
and Algorithm 4 returns you all the possibilities. The algorithms need an input consisting
of an undirected unrooted binary network, the number of reticulation points and the class
to which the orientation should belong. First of all both algorithms loop through all of the
edges where the root could be inserted, for each of these options it checks if there exists an
orientation for each option of reticulation points. A graph can have multiple orientations
corresponding to the same place of the root even though an orientation is unique, this is
because each of these orientations has different reticulation points. Every time an orienta-
tion is found, the algorithm checks whether the orientation belongs to the given class. If the
orientation does belong to the given class it is either returned (Algorithm 3) or added to an
array combining all the orientations (Algorithm 4).
These algorithms can only be applied to binary networks, the reason is that the number
of reticulation points k is used to generate all combinations of possible sets of reticulation
points, this is only sufficient data when orienting binary networks. When orienting non-
binary networks the indegree of each vertex should be known.

Data: An undirected unrooted binary network N, number of reticulation points k, a
class C.

Result: One phylogenetic C-orientation of (N, eρ, R) with the number of reticulation
points k, if it exists and NO otherwise

for each edge e of N do

for each guess R ∈
(

V(N)

k

)
of the k reticulation nodes do

Compute N(e, R) = BINARY NETWORK ORIENTATION ALGORITHM (N, e, R);
if N(e, R) is a C-orientation then

Return N(e, R);
end

end
Algorithm 3: Class-orientation algorithm returning one orientation



22 Chapter 7. Class orientations

Data: An undirected unrooted binary network N, number of reticulation points k, a
class C.

Result: All phylogenetic C-orientations of (N, eρ, R) with the number of reticulation
points k, if it exists and NO otherwise

Set L := for the root locations and orientations;
for each edge e of N do

for each guess R ∈
(

V(N)

k

)
of the k reticulation nodes do

Compute N(e, R) = BINARY NETWORK ORIENTATION ALGORITHM (N, e, R);
if N(e, R) is a C-orientation then

L = L ∪ {(e, N(e, R)};
Quit the inner for-loop ;

end
end
return L

Algorithm 4: Class-orientation algorithm returning all orientations

A biconnected component of an undirected (non-binary) network is a maximal subgraph that
cannot be disconnected by deleting a single vertex. It is called a blob if it contains at least
three vertices. Algorithms 3 and 4 are based on the third algorithm in the manuscript
[HvIJ+]. It differs from the fact that the programmed orientation does not consider blobs,
only entire networks. By orienting blobs you reduce the amount of possibilities and there-
fore minimize the running time. The reason blobs are not considered is that separate dictio-
naries need to be constructed for each blob on which we can run the algorithm. For many
graphs looking at blobs separately would not make a difference since many only have a
single blob anyway. Since looking at separate blobs minimizes the running time, different
measures have been taken to make sure the algorithm would not take too long. First of all,
before generating all combinations of possible sets of reticulation points, leaves are removed
from a set of points which will be used to generate all these combinations since a point with
only one incident edge can never have an indegree of two. Secondly generating this set of
all combinations of possible sets of reticulation points is taken out of the loops, therefore it
is only generated once and reused for each possible rooted edge.
The actual implementation of Algorithm 3 and 4 can be found in Appendix A.6.
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Chapter 8

Manual

This chapter will give a detailed manual of how to use the actual python program to com-
pute the orientation of a phylogenetic network.

The input for the program should be provided in a .txt file, this file should be saved in
the same folder as the program. The .txt should be named according to the following lay-
out "graph_.txt", where at the lower dash a number should be inserted. The .txt should
have the following layout: each line should proved two connected vertices divided by a sin-
gle space, there should not be an extra space after the second vertex. Names of vertices can
consist of letters, numbers as well as combinations of the two and contain multiple division
signs, e.g. dots, lines and lower dashes, but make sure not to use a backslash or blank char-
acter (space). See Figure 8.1 for an example.

v1 Mbuti
v1 NonAfrican
NonAfrican v2
v2 Eastern_NonAfrican
NonAfrican BasalEurasian
BasalEurasian EEF
Eastern_NonAfrican h1
EEF h1
h1 MA1

FIGURE 8.1: .txt input example

v1

v2
NonAfrican

Mbuti

Eastern_NonAfrican

BaselEurasian

EEF

h1

MA1

v1

v2

NonAfrican Mbuti

Eastern_NonAfrican

BaselEurasian

EEF

h1

MA1

FIGURE 8.2: An undirected (on the left) and directed (on the right) represen-
tation of the input given in Figure 8.1
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To start the actual program you should run All.py. First of all the program will ask what
the number of the graph is that you want to open. The answer is the number you inserted in
the name of the .txt file. Secondly it wants to know if this graph is already directed or not,
in case the graph is directed it should also contain the root, otherwise it should not contain
the root.
After answering the first two questions it will provide you with the information if the graph
is binary or non-binary. Based on whether or not the graph is directed as well as binary or
non-binary you might be asked to provide more information.
If the graph is DIRECTED all information necessary is provided.
If the graph is NOT DIRECTED AND BINARY if will ask you to provide it with all of the retic-
ulation points, in case these are known. After the questions about the reticulation points it
will ask if you can provide the rooted edge, this is the edge where the root should be in-
serted.
If the graph is NOT DIRECTED AND NON-BINARY the program will ask you to provide the
desired indegree of each of the vertices and afterwards the rooted edge.

Once you have provided the program with all the necessary information it will provide
you with the orientation, if one does exist. If you would like to know more about this orien-
tations: it asks you if you would like to know the class of the orientation.

The last part of the program will only be available if the graph is BINARY.
This is the part where the algorithm returns orientations belonging to a desired class. At first
it will ask you if you want to check if there is a possible orientation for a place of the root
and a combination of reticulation points. If you agree it will ask to which class you want the
orientation to belong to. This part will provide you with the first found orientation.
After this it will ask you the same questions but provide you with all of the orientations
belonging to the desired class.

All returned orientations are provided in the same layout as the input. Therefore the out-
put can be copied and paste into the website [GGL+] and provide a visualisation of the
orientation.



25

Chapter 9

Data

Throughout the process examples from the website: Visualization of a rooted phylogenetic
network [GGL+] are used. The input the website uses is gathered from 31 sources. These
sources are listed on the website and clicking directly at the examples at the bottom of the
page will load the corresponding network in the form needed to visualise. The same format
can be used by the orientation program. The 31 example networks are used as data to check
all the possibilities of the orientation program. The results are presented in Tables 9.1 and
9.2. To generate these tables the following is done.

Firstly the directed rooted network is loaded in the program. From this network we could
already conclude whether the network was binary or not. The program changes this net-
work to an undirected and unrooted network, for this an orientation was found for which I
checked whether it is the same as the orientation from the website, this was the case for all
example networks.

After this I replace each directed arc by an undirected edge and I removed the root from
the input data and added an edge connecting the vertices earlier incident to the root. This
input was again inserted into the algorithm after which I provided the program with the
necessary information: if binary: the rooted edge and the reticulation vertices, if non-binary:
the rooted edge and the indegree of each vertex.
If the generated orientation did match the website orientation the third column was checked.
If there are question marks inserted this means in the non-binary case that the graph was
probably very large and inserting the desired indegree would have been a lot of work, and
in the binary case for example for graph 6 there were 32 reticulation points.

Using the results from either both or one of the tests, a class check was done. The results are
shown in the rows of "1st orientation".

For each of the binary undirected unrooted networks it is checked if an orientation belong-
ing to each of the three classes does exist, if one does exist the first found orientation is
returned. For each of these example networks (for which the algorithm run entirely) it was
possible to find an orientation beloging to each of the classes. The running times are pre-
sented in the table.

The for each of the binary undirected unrooted networks Algorithm 4 finds all orientations
belonging to each of the three classes. The running times are presented in the table, these
exclude the printing times. In one case the printing took a substantially long time. For graph
30, printing all orientations took for each class about 11 minutes, in each case longer than
the actual algorithm. For some graphs there are question marks at the places where running
times should be, this is the case for graphs 6, 11 and 26. For these graphs running the al-
gorithm combined with the printing took too long, but the algorithm did not crash. When

http://phylnet.univ-mlv.fr/recophync/networkDraw.php#form_n4
http://phylnet.univ-mlv.fr/recophync/networkDraw.php#form_n4
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looking at the other examples we know that the algorithm would have given a result even-
tually but three extra networks give not as much surplus value as the amount of effort and
time it takes finding and printing their orientations. Checking if a class orientation exists
and checking for all class orientations are only done for binary networks since this involves
using Algorithms 3 and 4, which again refer to Algorithm 1 which only works for binary
networks.

As can be seen most running times are acceptable and are matters of seconds. For a few
graphs the running time took longer, about 40 to 80 minutes. These graphs are significantly
larger and especially for the graphs with a lot of suitable orientations the printing took note-
worthy long. This last algorithm returning you all of the possible options regarding one
class, running for less than two hours is acceptable in my opinion. To run this algorithm
almost no knowledge of the network is required and it provides you with a wide range of
information.



Chapter 9. Data 27

TABLE 9.1: First part of the results of the example networks
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*This column is checked in case the generated orientation does match the website
orientation.
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TABLE 9.2: Second part of the results of the example networks
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Chapter 10

Conclusion

In this chapter the main results of this thesis will be discussed. A program has been de-
veloped that takes as input a directed rooted network as well as an undirected unrooted
network. At first will be checked whether this network is binary or non-binary.
The program can then run one of the following two algorithms.

ORIENTATION ALGORITHM FOR BINARY NETWORKS

Input: An undirected network N, an edge eρ ∈ E, and a subset R of the vertices.
Output: A phylogenetic orientation of (N, R, eρ) if it exists and NO otherwise.

ORIENTATION ALGORITHM FOR NON-BINARY NETWORKS

Input: An undirected non-binary network N, an edge eρ ∈ E, and the desired indegree
d−(v) with 1 ≤ d−(v) ≤ dN(v) for each v ∈ V.
Output: A phylogenetic orientation of (N, eρ, d−) if it exists and NO otherwise.

Looking at the test data can be concluded that these algorithms always return the correct
orientation if it exists. In case there is a reticulation cut, in the binary case, or the degree cut,
in the non-binary case, the edges belonging will be returned. This has been checked using
the examples given in Figure 5.1 and 6.1.

Moreover, the program can run the following two algorithms.

CLASS-ORIENTATION ALGORITHM RETURNING ONE ORIENTATION

Input: An undirected unrooted binary network N, number of reticulation points k, a class C.
Output: One phylogenetic C-orientation of (N, eρ, R) with the number of reticulation points
k, if it exists and NO otherwise.

CLASS-ORIENTATION ALGORITHM RETURNING ALL ORIENTATIONS

Input: An undirected unrooted binary network N, number of reticulation points k, a class C.
Output: All phylogenetic C-orientations of (N, eρ, R) with the number of reticulation points
k, if it exists and NO otherwise.

Looking at the test data can be concluded that for each of these example networks (for which
we let the algorithm run entirely) it was possible to find an orientation belonging to each of
the classes. For most graphs it was also possible to return all orientations belonging to a
required class, doing this within acceptable running time.





31

Chapter 11

Discussion

In this chapter we will discuss choices that could have been made differently and how that
might result into different outcomes, followed by possible extensions to the program as well
as the theory.
The first made programming choice is the representation of a network as a python dictio-
nary. Due to this choice it is not possible to iterate over the edges of the network in the first
two algorithms. If a different implementation is chosen for a network this could result into
iterating over the edges. You could divide these edges in two groups, directed and undi-
rected in this case.

In the manuscript this thesis is based on besides Tree-child, Stack-free and Valid also the
classes Reticulation-visible, Orchard and Tree-based are discussed. Their definitions are
given below:

• Tree-based: it can be obtained from a rooted tree (of which the root may have out-
degree 1 or 2) by subdividing arcs of the tree (any number of times) and adding arcs
between the subdividing vertices [FS15, JvI18].

In Figure 11.1 we can see a directed network and it underlying tree-base. In Figure 11.2 at
the top left we see the rooted tree on which the network of 11.1 is based. In the top right
figure the edges {r, l1} and {v2, l1} have been subdivided by the vertices v1 and v4, between
which an arc has been added. In the bottom left figure the edges {v4, l2} and {v6, l3} have
been subdivided by the vertices v5 and v8, between which an arc has been added. In the
bottom right figure the edges {v1, l1} and {v5, l2} have been subdivided by the vertices v3
and v7, between which an arc has been added. Now we have constructed the network from
a tree-base.

r

v1 v2

v3
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v5 v6

v7 v8
l1

l2 l3

l4

r

v1 v2

v3
v4

v5 v6

v7 v8
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l2 l3

l4

FIGURE 11.1: A network and its underlying tree-base
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FIGURE 11.2: The network of Figure 11.1 obtained by subdividing arcs of the
tree and adding arcs between the subdividing vertices

By deleting a cut-arc a connected network becomes a disconnected network.

• Reticulation-visible: from each reticulation there is a path to a cut-arc that does not
contain any further reticulations.

A further class of directed binary networks is defined based on the notion of cherry picking.
Two leaves with a common parent are called a cherry. Picking a cherry means deleting one
leaf of a cherry and suppressing its parent, see Figure 11.3. A reticulated cherry is a pair of
leaves connected by an undirected path with two internal vertices, exactly one of which is a
reticulation. Picking a reticulated cherry consists of deleting the middle arc of this path and
suppressing its endpoints, see Figure 11.4.

• Orchard: it can be reduced to a single cherry by picking cherries and reticulated cher-
ries.
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FIGURE 11.3: Cherry picking
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FIGURE 11.4: Reticulate cherry picking

All classes discussed up to now relate to each other in the way shown in Figure 11.5. These
class checks could be implemented and by adding them to Algorithms 3 and 4 we are able
to extend the algorithms such that they can also find orientations belonging to each of these
classes.

Tree-child Valid Stack-free Tree-based

Orchard

Reticulation-visible

FIGURE 11.5: A visualisation of the relations of the classes.

In phylogenetic networks often a part of the edges is directed and a part is not. A partly-
directed network is a mixed graph (a graph that may contain both undirected edges and
directed arcs) obtained from an undirected network by orienting a subset of its edges as
directed arcs. A semi-directed network is a mixed graph obtained from a directed binary
network by unorienting all arcs except for arcs entering reticulation vertices and suppress-
ing the former root [SLA16]. If an orientation is found for a certain undirected network
given a rooted edge and set of reticulation points or indegree, this orientation is unique.
Therefore it could be checked to match the edges for which you knew the direction. This
could of course also be done for the orientations found using Algorithms 3 and 4.

A biconnected component of an undirected (non-binary) network is a maximal subgraph that
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cannot be disconnected by deleting a single vertex. It is called a blob if it contains at least
three vertices. Algorithms 3 and 4 are changed when comparing it to the matching algo-
rithms represented in the manuscript. These algorithms could be applied to blobs and
combining the outcomes results into multiple orientations. By adding the blob part these
algorithms have to check less possible options, this could be profitable for the running time.
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Appendix A

Appendix

A.1 Program

1 #Name: All.txt
2

3 import EdgestoGraph as EtG
4 import Alg1
5 import Binarycheck as Bc
6 import Alg2
7 import Alg3
8 import ClassCheck as cc
9 import time

10

11 number = raw_input("What is the number of the graph you want to open? ")
12 graph = "graph"+ str(number)+ ".txt"
13 g = open(graph, "r")
14

15 if g.mode == "r":
16 S = g.read()
17

18 S = S + '\n'
19 Directed = raw_input("Is this tree directed? If so, it should also contain the root. Yes or

No: ")↪→

20

21 if Directed == 'Yes':
22 dgraph = EtG.StringtoDirectedGraph(S)
23 undgraph = EtG.StringtoUndirectedGraph(S)
24 undunrgraph = EtG.StringtoUndirectedUnrootedGraph(S)
25 Binary = Bc.BinarycheckRoot(undunrgraph)
26 root = EtG.Root(dgraph)
27 if Binary:
28 print "This graph is binary!"
29 if not Binary:
30 print "This graph is not binary! "
31 if Directed == 'No':
32 undunrgraph = EtG.StringtoUndirectedGraph(S)
33 Binary = Bc.BinarycheckRoot(undunrgraph)
34 if Binary:
35 print "This graph is binary!"
36 if not Binary:
37 print "This graph is not binary! "



36 Appendix A. Appendix

38 Know1 = ''
39 Know2 = ''
40 Know3 = ''
41 #Reticulation points
42 if Binary:
43 Know1 = raw_input("Do you know the reticulation points? Yes or No: ")
44 R = []
45 if Know1 == 'Yes':
46 print "Please enter the reticulation points one by one, leave empty when done. "
47 while True:
48 point = raw_input("Reticulation point = ")
49 if len(point)>0:
50 R.append(point)
51 else:
52 break
53 #degree
54 if not Binary:
55 degree = []
56 Know3 = raw_input("Do you know the indegree of the vertices? Yes or No: ")
57 if Know3 == 'Yes':
58 print "Please enter the indegree for each point."
59 for v in undunrgraph.keys():
60 ind = raw_input("What is the indegree of " + str(v) + " ? ")
61 degree.append((v,int(ind)))
62 #edge
63 if Know1 == 'Yes' or Know2 == 'Yes' or Know3 == 'Yes':
64 Know4 = raw_input("Do you know the edge where the root should be inserted? Yes or No:

")↪→

65 if Know4 == 'Yes':
66 x = raw_input("Where should the root be? The root is connected to (give 1 point

first): ")↪→

67 y = raw_input("and to: ")
68 e_p = (x,y)
69 else:
70 e_p = ()
71

72 if Binary and Directed == 'Yes':
73 R = EtG.R(dgraph)
74 Orient = Alg1.OrientationAlgRoot(undgraph, root, R)
75 if not Binary and Directed == 'Yes':
76 degree = Alg2.Indegree(dgraph)
77 Orient = Alg2.OrientationAlgRoot(undgraph, root, degree)
78

79 if Binary and Directed == 'No':
80 if R == []:
81 RNumber = Alg1.NumberofEdges(undunrgraph)/2-len(undunrgraph)+1
82 Orient = Alg3.OneOrientationAlg(undunrgraph, RNumber, '')[1]
83 else:
84 if e_p == ():
85 E = []
86 for i in undunrgraph.keys():
87 for j in undunrgraph[i]:
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88 if (i,j) not in E and (j,i) not in E:
89 E.append((i,j))
90 for e_p in E:
91 Orient = Alg1.OrientationAlgEp(undunrgraph, e_p, R)
92 if isinstance(Orient,dict):
93 print "The edge for which an orientation is found is "+str(e_p)+"."
94 break
95 else:
96 Orient = Alg1.OrientationAlgEp(undunrgraph, e_p, R)
97

98 if not Binary and Directed == 'No':
99 if degree == []:

100 print "Sorry, not enough information for this program to find an orientation"
101 else:
102 if e_p == ():
103 E = []
104 for i in undunrgraph.keys():
105 for j in undunrgraph[i]:
106 if (i,j) not in E and (j,i) not in E:
107 E.append((i,j))
108 for e_p in E:
109 Orient = Alg2.OrientationAlgEp(undunrgraph, e_p, degree)
110 if isinstance(Orient,dict):
111 print "The edge for which an orientation is found is "+str(e_p)+"."
112 break
113 else:
114 Orient = "No orientation exists for all places of the root"
115 else:
116 Orient = Alg2.OrientationAlgEp(undunrgraph, e_p, degree)
117

118 if isinstance(Orient,dict):
119 pOrient = EtG.GraphtoString(Orient) #printable Orientation
120 p = raw_input("Do you want the orientation printed? Yes or No: ")
121 if p == "Yes":
122 print "The Orientation is: \n", pOrient
123 #following can only be done if orientation exists
124 ClassCheck = raw_input("Do you want to know the class of the orientation? Yes or No: ")
125

126 if ClassCheck == 'Yes':
127 if cc.TreeChild(Orient):
128 print "The orientation is tree-child!"
129 else:
130 print "The orientation is not tree-child!"
131 if cc.StackFree(Orient):
132 print "The orientation is stack-free!"
133 else:
134 print "The orientation is not stack-free!"
135 if cc.Valid(Orient):
136 print "The orientation is valid!"
137 else:
138 print "The orientation is not valid!"
139 else:
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140 print Orient
141

142 L=""
143 if Binary:
144 Check = raw_input("Do you want to check if there is a possible orientation for a place of

the root and a combination of reticulation points? Yes or No: ")↪→

145

146 if Check == 'Yes':
147 Class = raw_input("What class should the orientation be? \n For tree-child enter: 1

\n For stack-free enter: 2 \n For valid enter: 3 ")↪→

148 RNumber = Alg1.NumberofEdges(undunrgraph)/2-len(undunrgraph)+1
149 print "The original graph had " + str(RNumber) + " reticulation point(s)."
150 start = time.time()
151 if Class == '1':
152 L = Alg3.OneOrientationAlg(undunrgraph, RNumber, "TreeChild")
153 elif Class == '2':
154 L = Alg3.OneOrientationAlg(undunrgraph, RNumber, "StackFree")
155 elif Class == '3':
156 L = Alg3.OneOrientationAlg(undunrgraph, RNumber, "Valid")
157 else:
158 print "There are no orientations meeting the criteria."
159 end = time.time()
160

161 tekst = ""
162

163 if len(L)>0:
164 o = EtG.GraphtoString(L[1])
165 tekst = tekst + "When the root is inserted in edge " + str(L[0]) + ", the

orientation is: " + o + "\n \n"↪→

166 elif len(L) == 0:
167 tekst = "There are no orientations meeting the criteria."
168 print tekst
169 print "to find one orientation took (in seconds) :", str(end-start)
170

171 L=""
172 if Binary:
173 Check = raw_input("Do you want to check all the possible orientations for all places of

the root and all combinations of reticulation points? Yes or No: ")↪→

174

175 if Check == 'Yes':
176 Class = raw_input("What class should the orientations be? \n For tree-child enter: 1

\n For stack-free enter: 2 \n For valid enter: 3 ")↪→

177 RNumber = Alg1.NumberofEdges(undunrgraph)/2-len(undunrgraph)+1
178 print "The original graph had " + str(RNumber) + " reticulation point(s)."
179 start = time.time()
180 if Class == '1':
181 L = Alg3.OrientationAlg(undunrgraph, RNumber, "TreeChild")
182 elif Class == '2':
183 L = Alg3.OrientationAlg(undunrgraph, RNumber, "StackFree")
184 elif Class == '3':
185 L = Alg3.OrientationAlg(undunrgraph, RNumber, "Valid")
186 else:
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187 print "There are no orientations meeting the criteria."
188 end = time.time()
189

190 tekst = ""
191 start1 = time.time()
192 for i in range(0,len(L)):
193 o = EtG.GraphtoString(L[i][1])
194 tekst = tekst + "When the root is inserted in edge " + str(L[i][0]) + ", the

orientation is: " + o + "\n \n"↪→

195 if len(L)==0:
196 tekst = "There are no orientations meeting the criteria."
197

198 print tekst
199 end1 = time.time()
200

201 print "to find all orientations took (in seconds) :", str(end-start)
202 print "printing took (in seconds) :", str(end1-start1)

A.2 Binary check

1 #Name: Binarycheck.txt
2

3 def BinarycheckRoot(graph):
4 #needs undirected graph
5 root=[]
6 internal = []
7 leaf = []
8 for k in graph.keys():
9 if len(graph[k])==2:

10 root.append(k)
11 elif len(graph[k])==3:
12 internal.append(k)
13 elif len(graph[k])==1:
14 leaf.append(k)
15 if len(root) == 0: #or len(root) == 1:
16 if len(root)+len(internal)+len(leaf)==len(graph):
17 return True
18 else:
19 return False
20 else: return False

A.3 Algorithm one

1 #Name: Alg1.txt
2

3 import ReticulationCut as RC
4 import copy
5
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6 def NumberofEdges(graph):
7 lengths = [len(v) for v in graph.values()]
8 sum = 0
9 for num in lengths:

10 sum += num
11 return sum
12

13 def OrientationAlgEp(graph1, e_p, R):
14 graph = copy.deepcopy(graph1)
15 if len(R) != NumberofEdges(graph)/2 - len(graph)+1:
16 return "NO, wrong summation"
17 NOE = NumberofEdges(graph)
18

19 #subdevide e_p by a new vertex p and orient the two edges incident to p away from p
20 graph["p"]=[e_p[0], e_p[1]]
21

22 #remove a to b and b to a
23 x = graph.get(e_p[0])
24 x.remove(e_p[1])
25 graph.update({ e_p[0]:x})
26 y = graph.get(e_p[1])
27 y.remove(e_p[0])
28 graph.update({ e_p[1]:y})
29

30 orientable_R = []
31 treenode = dict.keys(graph)
32 orientable_treenode= []
33 for r in R:
34 treenode.remove(r)
35 for i in [0,1]:
36 if e_p[i] in treenode:
37 if len(graph[e_p[i]])>0:
38 orientable_treenode.append(e_p[i])
39

40 while NumberofEdges(graph) > NOE/2+1+1:
41 while len(orientable_treenode)>0:
42 for v in orientable_treenode:
43 x = graph[v]
44 if len(graph[v]) != 2:
45 return "NO, wrong treenode"
46 y = graph.get(x[0])
47 y.remove(v)
48 graph.update({x[0]:y})
49 if x[0] in treenode:
50 if len(graph[x[0]])==2:
51 orientable_treenode.append(x[0])
52 elif x[0] in R:
53 if len(graph[x[0]])==1:
54 orientable_R.append(x[0])
55 z = graph.get(x[1])
56 z.remove(v)
57 graph.update({x[1]:z})
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58 if x[1] in treenode:
59 if len(graph[x[1]])==2:
60 orientable_treenode.append(x[1])
61 elif x[1] in R:
62 if len(graph[x[1]])==1:
63 orientable_R.append(x[1])
64 orientable_treenode.remove(v)
65 while len(orientable_R)>0:
66 for i in orientable_R:
67 if len(graph[i])==1: #always in case binary
68 x = graph[i]
69 y = graph[x[0]]
70 y.remove(i)
71 if x[0] in treenode:
72 if len(y)==2:
73 orientable_treenode.append(x[0])
74 elif x[0] in R: #in case not funneled
75 if len(y)==1:
76 orientable_R.append(x[0])
77 graph.update({x[0]:y})
78 orientable_R.remove(i)
79 if len(graph[i])==0:
80 orientable_R.remove(i)
81

82

83 if len(orientable_treenode)==0 and len(orientable_R)==0:
84 for i in graph.keys(): #check if still undirected edges, in case reticulation cut
85 for j in graph.keys():
86 for k in range(0,len(graph[j])):
87 if i == graph[j][k]:
88 for l in range(0,len(graph[i])):
89 if j==graph[i][l]:
90 RetCut= RC.ReticulationCutBin(graph,R)
91 return "NO, there exists a reticulation cut, namely:" +

str(RetCut)↪→

92 break #else no reticulation cut
93 return graph
94

95 def OrientationAlgRoot(graph, Root, R):
96 Root = Root[0]
97 if len(R) != NumberofEdges(graph)/2 - len(graph) +1: #-1-1
98 return "Eerste NO"
99 NOE = NumberofEdges(graph)

100

101 x = graph[graph[Root][0]]
102 x.remove(Root)
103 graph.update({graph[Root][0]:x})
104 if len(graph[Root])>1:
105 y = graph[graph[Root][1]]
106 y.remove(Root)
107 graph.update({graph[Root][1]:y})
108
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109 orientable_R = []
110 treenode = dict.keys(graph)
111 orientable_treenode= []
112 for r in R:
113 treenode.remove(r)
114 x = graph[Root][0]
115 if x in treenode:
116 if len(graph[x])==2:
117 orientable_treenode.append(x)
118 if len(graph[Root])>1:
119 y = graph[Root][1]
120 if y in treenode:
121 if len(graph[y])==2:
122 orientable_treenode.append(y)
123 while NumberofEdges(graph) > NOE/2+1+1:
124 while len(orientable_treenode)>0:
125 for v in orientable_treenode:
126 x = graph[v]
127 y = graph.get(x[0])
128 y.remove(v)
129 graph.update({x[0]:y})
130 if x[0] in treenode:
131 if len(graph[x[0]])==2:
132 orientable_treenode.append(x[0])
133 elif x[0] in R:
134 if len(graph[x[0]])==1:
135 orientable_R.append(x[0])
136 z = graph.get(x[1])
137 z.remove(v)
138 graph.update({x[1]:z})
139 if x[1] in treenode:
140 if len(graph[x[1]])==2:
141 orientable_treenode.append(x[1])
142 elif x[1] in R:
143 if len(graph[x[1]])==1:
144 orientable_R.append(x[1])
145 orientable_treenode.remove(v)
146 while len(orientable_R)>0:
147 for i in orientable_R:
148 if len(graph[i])==1:
149 x = graph[i]
150 y = graph[x[0]]
151 y.remove(i)
152 if x[0] in treenode:
153 if len(y)==2:
154 orientable_treenode.append(x[0])
155 elif x[0] in R: #in case not funneled
156 if len(y)==1:
157 orientable_R.append(x[0])
158 graph.update({x[0]:y})
159 orientable_R.remove(i)
160 if len(orientable_treenode)==0 and len(orientable_R)==0:
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161 for i in graph.keys(): #check if still undirected edges, in case reticulation cut
162 for j in graph.keys():
163 for k in range(0,len(graph[j])):
164 if i ==graph[j][k]:
165 for l in range(0,len(graph[i])):
166 if j==graph[i][l]:
167 RetCut= RC.ReticulationCutBin(graph,R)
168 return "NO, there exists a reticulation cut, namely:" +

str(RetCut)↪→

169 break
170 return graph

A.4 Algorithm two

1 #Name: Alg2.txt
2

3 import Alg1
4 import EdgestoGraph as EtG
5 import Binarycheck as Bc
6 import Alg2
7 import Alg3
8 import ClassCheck as cc
9 import ReticulationCut as RC

10 import copy
11

12 def Indegree(graph):
13 #directed graph needed
14 degree = []
15 for k in graph.keys():
16 for i in graph[k]:
17 y = [item for item in degree if item[0]==i]
18 if len(y)==0:
19 degree.append((i,1))
20 else: #len y ==1
21 degree.remove((i,y[0][1]))
22 z=y[0][1]+1
23 degree.append((i,z))
24 return degree
25

26 def IndegreeSum(degree):
27 Sum = 0
28 for i in range(0,len(degree)):
29 Sum = Sum + degree[i][1]
30 return Sum
31

32 def OrientationAlgEp(graph1, e_p, degree):
33 graph = copy.deepcopy(graph1)
34 #non rooted graph needed
35 if IndegreeSum(degree) != Alg1.NumberofEdges(graph)/2+1 :
36 print IndegreeSum(degree)
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37 print Alg1.NumberofEdges(graph)
38 return "NO (sommatie incorrect)"
39 #subdevide e_p by a new vertex p and orient the two edges incident to p away from p
40 graph["p"]=[e_p[0], e_p[1]]
41 orientable = []
42 #remove a to b and b to a
43 x = graph.get(e_p[0])
44 if e_p[1] in x:
45 x.remove(e_p[1])
46 graph.update({ e_p[0]:x})
47 y = graph.get(e_p[1])
48 if e_p[0] in y:
49 y.remove(e_p[0])
50

51 graph.update({ e_p[1]:y})
52 for i in [0,1]:
53 if len([item for item in degree if item[0]==e_p[i]])>0:
54 if 1== [item for item in degree if item[0]==e_p[i]][0][1]:
55 orientable.append(e_p[i])
56 else:
57 orientable.append(e_p[i])
58 NOE = Alg1.NumberofEdges(graph)
59 while Alg1.NumberofEdges(graph) > NOE/2+1+1:
60 while len(orientable)>0:
61 for v in orientable:
62 count = 0
63 for j in graph.keys():
64 for k in range(0,len(graph[j])):
65 if v==graph[j][k]:
66 count = count + 1
67 if (count-len(graph[v]))== [item for item in degree if item[0]==v][0][1]:
68 l = len(graph[v])
69 for i in range(0,l):
70 x = graph[v]
71 y = graph.get(x[i])
72 y.remove(v)
73 graph.update({x[i]:y})
74 teller = 0
75 for j in graph.keys():
76 for k in range(0,len(graph[j])):
77 if x[i]==graph[j][k]:
78 teller = teller + 1
79 if len([item for item in degree if item[0]==x[i]])>0:
80 if (teller-len(graph[x[i]]))== [item for item in degree if

item[0]==x[i]][0][1]:↪→

81 orientable.append(x[i])
82 orientable.remove(v)
83 if len(orientable)==0:
84 for i in graph.keys(): #check if still undirected edges, in case reticulation cut
85 for j in graph.keys():
86 for k in range(0,len(graph[j])):
87 if i ==graph[j][k]:
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88 for l in range(0,len(graph[i])):
89 if j==graph[i][l]:
90 print graph
91 RetCut = RC.ReticulationCutNonbin(graph,degree)
92

93 return "NO, there exists a reticulation cut, namely: " +
str(RetCut)↪→

94 break #else no reticulation cut
95

96 return graph
97

98 def OrientationAlgRoot(graph, Root, degree):
99 #rooted graph needed

100 Root = Root[0]
101 if IndegreeSum(degree)-1 != (Alg1.NumberofEdges(graph)-2)/2 :
102 return "NO (sommatie incorrect)"
103

104 orientable = []
105 #still turn edge to arc
106 for i in range(0,len(graph[Root])):
107 x = graph[graph[Root][i]]
108 x.remove(Root)
109 graph.update({graph[Root][i]:x})
110 if len([item for item in degree if item[0]==graph[Root][i]])>0:
111 if 1 == [item for item in degree if item[0]==graph[Root][i]][0][1]:
112 orientable.append(graph[Root][i])
113

114 NOE = Alg1.NumberofEdges(graph)
115 while Alg1.NumberofEdges(graph) > NOE/2+1+1:
116 while len(orientable)>0:
117 for v in orientable:
118 l = len(graph[v])
119 for i in range(0,l):
120 x = graph[v]
121 y = graph.get(x[i])
122 y.remove(v)
123 graph.update({x[i]:y})
124 teller = 0
125 for j in graph.keys():
126 for k in range(0,len(graph[j])):
127 if x[i]==graph[j][k]:
128 teller = teller + 1
129 if len([item for item in degree if item[0]==x[i]])>0:
130 if (teller-len(graph[x[i]]))== [item for item in degree if

item[0]==x[i]][0][1]:↪→

131 orientable.append(x[i])
132

133 orientable.remove(v)
134

135 if len(orientable)==0:
136 for i in graph.keys(): #check if still undirected edges, in case reticulation cut
137 for j in graph.keys():
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138 for k in range(0,len(graph[j])):
139 if i ==graph[j][k]:
140 for l in range(0,len(graph[i])):
141 if j==graph[i][l]:
142 RetCut = RC.ReticulationCutNonbin(graph,degree)
143 return "NO, there exists a reticulation cut, namely: " +

str(RetCut)↪→

144 break #else no reticulation cut
145

146 return graph

A.5 Network classes

1 #Name: ClassCheck.txt
2

3 import EdgestoGraph as EtG
4

5 def TreeChild(graph):
6 #directed graph needed
7 #every non leaf vertex has a child that is not a reticulation
8 R = EtG.R(graph)
9 Check = graph.keys()

10 for v in graph.keys():
11 if len(graph[v])==0:
12 Check.remove(v)
13 for w in graph[v]:
14 if w not in R:
15 if v in Check:
16 Check.remove(v)
17 if len(Check)==0:
18 return True
19 else:
20 return False
21

22 def StackFree(graph):
23 #directed graph needed
24 #no reticulation with a reticulation as a child
25 R = EtG.R(graph)
26 for v in R:
27 for w in graph[v]:
28 if w in R:
29 return False
30 return True
31

32 def Valid(graph):
33 #directed graph needed
34 #stack-free and deleting a single reticulation edge and suppressing its endpoints does

not give parallel arcs.↪→

35 if StackFree(graph):
36 R = EtG.R(graph)
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37 for r in R:
38 for v in graph.keys():
39 if r in graph[v]:
40 if len(graph[v])==2:
41 if r == graph[v][0]:
42 s = graph[v][1]
43 if r == graph[v][1]:
44 s = graph[v][0]
45 for k in graph.keys():
46 if v in graph[k]:
47 if s in graph[k]:
48 return False
49 return True
50 return False

A.6 Algorithm three

1 #Name: Alg3.txt
2

3 import Alg1
4 import itertools
5 import ClassCheck as cc
6 import Binarycheck as Bc
7 import time
8

9 def RCombinations(V, RNumber):
10 start = time.time()
11 it = itertools.combinations(V, RNumber)
12 RC = [c for c in it]
13 end = time.time()
14 print "Rcombinations took (seconds): ", str(end-start)
15 return RC
16

17 #Alg 4 in thesis
18 def OrientationAlg(graph, RNumber, Class):
19 #Orientation algorithm for undirected unrooted binary networks
20 L = []
21 #all edges in one set
22 E = []
23 for i in graph.keys():
24 for j in graph[i]:
25 if (i,j) not in E and (j,i) not in E:
26 E.append((i,j))
27

28 V = graph.keys()
29 Ropt = graph.keys()
30 for v in V:
31 if len(graph[v]) == 1:
32 Ropt.remove(v)
33 if RNumber > 1:
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34 RC = RCombinations(Ropt,RNumber)
35 if RNumber == 1:
36 RC = [{r} for r in Ropt]
37 for e_p in E:
38 print "e_p = ", e_p
39 for rc in RC:
40 Orient = Alg1.OrientationAlgEp(graph, e_p, rc)
41 if isinstance(Orient,dict):
42 if Class == 'TreeChild':
43 if cc.TreeChild(Orient):
44 L.append((e_p,Orient))
45 if Class == 'StackFree':
46 if cc.StackFree(Orient):
47 L.append((e_p,Orient))
48 if Class == 'Valid':
49 if cc.Valid(Orient):
50 L.append((e_p,Orient))
51 if Class == '':
52 L.append((e_p,Orient))
53 return L
54

55 #Alg 3 in thesis
56 def OneOrientationAlg(graph, RNumber, Class):
57 #Orientation algorithm for undirected unrooted binary networks
58

59 #all edges in one set
60 E = []
61 for i in graph.keys():
62 for j in graph[i]:
63 if (i,j) not in E and (j,i) not in E:
64 E.append((i,j))
65

66 V = graph.keys()
67 Ropt = graph.keys()
68 for v in V:
69 if len(graph[v]) == 1:
70 Ropt.remove(v)
71 if RNumber > 1:
72 RC = RCombinations(Ropt,RNumber)
73 if RNumber == 1:
74 RC = [{r} for r in Ropt]
75 for e_p in E:
76 print "e_p = ", e_p
77 for rc in RC:
78 Orient = Alg1.OrientationAlgEp(graph, e_p, rc)
79 if isinstance(Orient,dict):
80 if Class == 'TreeChild':
81 if cc.TreeChild(Orient):
82 return (e_p,Orient)
83 if Class == 'StackFree':
84 if cc.StackFree(Orient):
85 return (e_p,Orient)
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86 if Class == 'Valid':
87 if cc.Valid(Orient):
88 return (e_p,Orient)
89 if Class == '':
90 return (e_p,Orient)
91 return []

A.7 Layout

1 #Name: EdgestoGraph.txt
2

3 def StringtoComb(S):
4 combi = S.splitlines()
5 pairs = []
6 a = ""
7 b = ""
8 for item in combi:
9 for j in range(0,len(item)):

10 if item[j] == ' ':
11 for k in range(0,j):
12 a = a + item[k]
13 for l in range(j+1,len(item)):
14 b = b + item[l]
15 pairs.append((a,b))
16 a = ""
17 b = ""
18 return pairs
19

20 def CombtoDirectedGraph(P):
21 graph={}
22 for i in range(0,len(P)):
23 a,b = P[i]
24 if a in graph.keys():
25 x = graph.get(a)
26 x.append(b)
27 graph.update({a:x})
28 else:
29 graph[a]=[b]
30 return graph
31

32 def CombtoUndirectedGraph(P):
33 graph={}
34 for i in range(0,len(P)):
35 a,b = P[i]
36 if a in graph.keys():
37 x = graph.get(a)
38 x.append(b)
39 graph.update({a:x})
40 else:
41 graph[a]=[b]
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42 if b in graph.keys(): #only if edges not arcs
43 x= graph.get(b)
44 x.append(a)
45 graph.update({b:x})
46 else:
47 graph[b]=[a]
48 return graph
49

50

51 def StringtoDirectedGraph(S):
52 P = StringtoComb(S)
53 graph = CombtoDirectedGraph(P)
54 return graph
55

56 def StringtoUndirectedGraph(S):
57 P = StringtoComb(S)
58 graph = CombtoUndirectedGraph(P)
59 return graph
60

61 def StringtoUndirectedUnrootedGraph(S):
62 DirectedGraph = StringtoDirectedGraph(S)
63 root = Root(DirectedGraph)[0]
64 UndirectedGraph = StringtoUndirectedGraph(S)
65 a = UndirectedGraph[root][0]
66 x = UndirectedGraph.get(a)
67 x.remove(root)
68

69 if len(UndirectedGraph[root])>1:
70 b = UndirectedGraph[root][1]
71 y = UndirectedGraph.get(b)
72 y.remove(root)
73 y.append(a)
74 x.append(b)
75 UndirectedGraph.update({b:y})
76 UndirectedGraph.update({a:x})
77 del UndirectedGraph[root]
78 return UndirectedGraph
79

80

81 def Root(graph):
82 root = graph.keys()
83 for i in graph.keys():
84 for j in graph.keys():
85 for k in range(0,len(graph[j])):
86 if i == graph[j][k]:
87 if i in root:
88 root.remove(i)
89 return root
90

91 def R(graph):
92 R = []
93 for i in graph.keys():
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94 t = 0
95 for j in graph.keys():
96 if i in graph[j]:
97 t = t + 1
98 if t > 1:
99 R.append(i)

100 return R
101

102

103 def GraphtoComb(graph):
104 #directed graph needed
105 pairs = []
106 for a in graph.keys():
107 for b in graph[a]:
108 pairs.append((a,b))
109 return pairs
110

111 def CombtoString(pairs):
112 #array with pairs needed
113 string = ""
114 for pair in pairs:
115 string = string + "\n" + pair[0] + " " +pair[1]
116 return string
117

118 def GraphtoString(graph):
119 return CombtoString(GraphtoComb(graph))
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