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Stellingen horende bij het proefschrift

” Compressible Flow Simulation on Unstructured Grids using
Multi-dimensional Upwind Schemes”

1 Limiting wordt in dit proefschrift gebruikt voor het converteren van een eerste
orde schema in een tweede orde schema. Dit leidt tot verwarring en onbegrip,
aangezien bij de veel gebruikte MUSCL schema’s limiting juist gebruikt wordt om
in de buurt van discontinuiteiten een tweede orde schema te converteren in een
eerste orde schema.

2 Voor geidealiseerde testgevallen geven de huidige turbulentie-modellen redelijke
tot goede resultaten (zie hoofdstuk 6 van dit proefschrift); voor gecompliceerde
aérodynamische problemen zijn de tekortkomingen zodanig dat men kan volstaan
met de Euler vergelijkingen.

3 Door de grote menselijke inbreng, zelfs voor niet-gestruktureerde roosters, en door
het feit dat elk geval uniek is, is gridgeneratie meer kunst dan wetenschap.

4 Het conservatief koppelen van verschillende elementsoorten door middel van de
conservatieve linearisatie is het grootste obstakel voor de uitbreiding van de in dit
proefschrift beschreven monotone schema’s naar hybride roosters.

5 Koude kernfusie is alsof men water ziet branden.

6 Het gebruik van "black box software” kan de ontwikkelingstijd van een simulatie-
code vertragen.

7 De verhouding tussen specialisten op het gebied van de numerieke aérodynamica
en die op het gebied van de experimentele aérodynamica kan beschreven worden
met de term ”shotgun wedding”.

8 Het afsluiten van Windows 95 door middel van het gebruik van de "start-knop” is
illustratief voor de logica van deze software.

9 In een duur restaurant betaalt men voornamelijk voor de kwaliteit.

10 Veel voetbalwedstrijden worden gewonnen door de verdediging.

Delft, oktober 1998 Edwin van der Weide
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Chapter 1

Introduction

Fluid dynamics plays an important role in today’s society, from industrial pro-
cesses, such as the production of steel and coatings, to means of transport like
cars, trains, ships and aircraft. Historically fluid dynamics was divided into a
theoretical and an experimental branch. While the former attempts to (approxi-
mately) solve the governing equations by means of known mathematical methods
such as small disturbance theory, asymptotic analysis, hodograph transformation
etc., the latter performs experiments and develops experimental techniques, which
lead to a better understanding of the physical phenomena involved in the flow field.
Due to the enormous growth in computer power, both in speed and memory, over
the last 30 years, to these two branches has been added a third one, computational
fluid dynamics (CFD). Like the theoretical branch, it tries to solve the governing
equations, but now with numerical methods rather than analytical ones.

In the aerospace industry, CFD has gained an important place in the design
cycle of a new aircraft. Currently simulations of the three-dimensional Reynolds-
Averaged Navier-Stokes (RANS) equations over complete aircraft configurations
are being used in the final design phase, reducing the number of even more ex-
pensive and time consuming wind-tunnel tests. Although the belief (in the early
eighties) that everything could be done numerically and experiments would no
longer be needed much, has turned out to be over-optimistic (mainly because of
the very difficult task of closing the set of RANS equations by a suitable turbu-
lence model), CFD has led to a shift of the development procedure in the fluid
dynamics world: experiments are now more often used to validate the numerical
results, rather than as the only way to obtain accurate information about the flow
field. Despite this success of CFD, progress can still be made and hopefully this
thesis contributes a small part to this.
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1.1 Space discretization techniques

Many physical problems can be modeled by a conservation law, a set of partial
differential equations of the form

U ()  OF (U(&)) _ .
5 T om = S (U (%)) (1.1)

on a certain spatial domain Q. Here U(Z) is the vector of conserved variables,
Fy(U) the flux vector in the z; direction, S(U) the source term and # = z;1,, the
position vector. Use is made of the Einstein summation convention and, unless
stated otherwise, this convention will be used in the entire thesis.

The set of equations (1.1) are completed by appropriate boundary conditions
on I, the boundaries of ). It must be noted that equations of the type (1.1) have
been derived under some simplifying assumptions, for example: the medium is
a continuum, or: the stresses are linear functions of the strain rates (Newtonian
fluid) etc.

1t is the task of the discretization technique to transform the differential equa-
tion (1.1) and corresponding boundary conditions into a set of algebraic equations,
which can be solved numerically. As the number of "points” where the solution
is known changes from infinite in the original problem to a finite number in the
discrete problem, it is inevitable that during this transformation an error is in-
troduced, the discretization error. In the following sections the three most well-
known discretization techniques are presented, the finite-difference method, the
finite-volume method and the finite-element method.

1.1.1 The finite-difference method (FDM)

As the name implies, in the finite-difference method the derivatives occurring in
equation (1.1) are approximated by finite differences. Consider, for example, the
one-dimensional steady advection equation:

_d¢ — 1.
U~ 0 (1.2)
on a Cartesian grid with step size A, see figure 1.1, with advection speed u. A

L D N T
! I 1 | I
1-2 l-1 l I+1 1+2

Figure 1.1: One-dimensional Cartesian finite-difference grid
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Taylor series expansion in the neighborhood of point z; gives:

&
b = 1+ (j¢) ht s ( o ¢) B+ O(R), (13)
!
d d?
it = i — ( ‘/’) hts (d‘f) R + O(K?). (1.4)
!
Subtracting both equations and dividing the result by & results in:
d¢ i1 — P11 2
L) = T h .
(8) - Bzt o0, (15)

and thus the first term in the right hand side is a second-order approximation of
% in point z;. Substituting the expression (1.5) into the differential equation (1.2)
for every grid point, results in a set of algebraic equations, which can be solved if
the boundary conditions are taken into account.

The approximation (1.5) is called a central discretization of the first-order
derivative, because it is symmetric with respect to the neighbors that occur in
the expression for (4),. Alternatively either equation (1.3) or (1.4) can be used

separately to approximate (%)1, which leads to:

(gﬁ‘i) = $m =9y o), (L6)
(%)1 id h¢“ +O(h), 1.7)

respectively. These types of differences are called one-sided differences, because
only one neighbor is involved in the expressions. They are also known as upwind
differences if they are taken in the appropriate direction, i.e. if the advection speed
u is positive, equation (1.7) is used, otherwise (1.6) is needed. Equations (1.6)
and (1.7) only give a first-order approximation to (%ﬁ); and consequently the
discretization error will be larger than for the central discretization (1.5). De-
spite this, upwind-differences play an important role in the numerical treatment
of advection-dominated problems, see section 1.2. Higher order, either central or
upwind, approximations can be obtained by taking into account the nodes [ — 2
and [ + 2, see figure 1.1.

1.1.2 The finite-volume method (FVM)

In the finite-volume method the differential form of the conservation law is trans-
formed into the integral form by integrating equation (1.1) over a control volume
V. Using Gauss’s theorem for the spatial derivatives results in:

aUdV+ f F; - nt®doV = / Sdv. (1.8)
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—_—
naxt

Figure 1.2: Control volume V and its unit outward normals.

Again U is the vector of conserved variables, F; the flux vector in the x; direction
and S the source term. Additionally nf** is the component of the unit outward
normal in the r; direction, see figure 1.2. The one-dimensional advection equa-
tion (1.2) is written in conservation form, assuming a constant advection speed
u:

dug  df

dz  dz
where f = u¢ is the flux function. For the finite-volume grid given in figure 1.3
this gives at point I:

Sy fip =0 (1.10)

The accuracy of the discretization is determined by the way in which the flux func-
tions at the interfaces, f;, 1 and f;_ 1, are computed. The central approximation:

=0 = }gT fn.ddV =0, (1.9)

fl-}-% = = (fix1 + fi) + O(h?), fioy = %(fl + fis1) + O(R?), (1.11)

D | -

leads to a second-order accurate discretization. Moreover on a Cartesian grid
and for a constant advection speed u it is obvious that, apart from the boundary
condition treatment, the resulting set of algebraic equations is identical to the
one obtained with the finite-difference method in combination with the central
discretization (1.5).

.3 l-é l+£ l+§
e o]
-1 ) I+1

Figure 1.3: One-dimensional finite-volume grid
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The upwind discretization is obtained by the following approximations:

fiur =i+ Oh), fiiy=fior+O(h) (1.12)
for a positive u, and:
fier = frn + O(h), fi_y = fi+O(h) (1.13)

in case the advection speed is negative. Again these approximations are only
first-order accurate and so is the resulting discretization based on them.

Note that in two and three space dimensions not only the definition of the flux
function but also the numerical integration rule used in equation (1.8) determines
the accuracy of the discretization. The overall accuracy is given by the lowest
approximation of the two and therefore it is pointless to use for example a fourth-
order integration rule, while the flux functions are only second-order accurate and
vice versa.

1.1.3 The finite-element method (FEM)

The philosophy behind the finite-element method is somewhat different than the
previously discussed discretization techniques. The solution of the problem (1.1)
is assumed to have the following form:

#nodes

; N (@)U (), (1.14)

where = z;1,, is the position vector, U; the value of U in node [ and N;(Z) the
nodal basis functions of U; which must have the property:

Ni(Z%) = b, (1.15)

where &;; is the Kronecker delta function. In principle any function which obeys
condition (1.15) can be used. In practice these functions are piecewise-continuous
polynomials. An example is seen in figure 1.4.

The second step consists of transforming the conservation law (1.1) into an
equivalent integral form, also called a weighted residual or variational formulation.
This is done by multiplying equation (1.1) by weight functions w;(Z) and integrat-
ing the result over the domain 2, which leads to the following set of equations:

#nodes

ff g ( 2 NkUk) dﬂ+f] Wt dQ /f wSde, (1.16)

where the counter ! varies from 1 to the number of nodes, i.e. there is one rela-
tion (1.16) for each node. The reason why equation (1.16) must hold for all w;
is that (1.1) and (1.16) are equivalent if and only if equation (1.16) holds for all
possible choices of the weight function. Practically this is not feasible and there-
fore this choice is limited to all w;. It can be proved [56] that equation (1.16) is
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N 1 xy)

Figure 1.4: Two-dimensional piecewise linear interpolation function for node [.

the best possible approximation to (1.1) in the finite-dimensional function space
with the w;’s as basis. The weight functions w; must obey certain conditions; both
wy and its first-order derivatives must be square integrable, see [56]. A function
is square integrable if the integral of the square of that function over a certain
domain exists. More formally this means w; must belong to H'({2), the Hilbert
space of square integrable functions with square integrable first-order derivatives.
Note that for systems of equations w; is a matrix. If (parts of) the flux functions
F; contain derivatives of U, for example the viscous fluxes in the Navier-Stokes
equations, these terms in equation (1.16) are rewritten as:

// w,az:dn_ f/ aw'FdQ-!-f. wiF;: - n¥*doq, (1.17)

where use is made of the Gauss theorem. Equations (1.16) and (1.17) lead to
a set of coupled, ordinary differential equations in time, which can be solved by
standard time-integration methods. Like the FDM and FVM the steady problem
is given by a set of algebraic equations. If the weight functions w; are identical

. to the basis functions N, the classical Galerkin FEM is obtained. Otherwise the

method is called a Petrov-Galerkin FEM.

Again consider the one-dimensional advection equation (1.2) on the Cartesian
grid of figure 1.1. The piecewise linear basis function for nodes { — 1, and [ + 1,
are shown in figure 1.5. The weighted residual formulation becomes:

#nodes d Nk( )

/Qw;(:c)u Z Iz

k=1

STET) 5kd) = 0. (1.18)

Usually the weight function wi(z) is chosen to be zero if Nj(z) vanishes and con-
sequently only the nodes ! — 1,/ and [ + 1 give a nonzero contribution in the sum
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o\ < -

1-2 I-1 1 1 142

Figure 1.5: Piecewise-linear, tent-shaped, one-dimensional basis functions for

nodes | — 1 (dashed), [ (solid) and ! + 1 (dotted).

of equation (1.18). For the Galerkin method, wi(z) = Ni(z), on a uniform grid
the weighted residual formulation (1.18) for node ! becomes:

% (G141 = d11) =0, (1.19)

which is identical to the relations obtained with the central discretization (1.5) for
the FDM and the central approximation (1.11) for the FVM.

1.2 The problem with the central discretization

Despite the fact that the central discretization of the first-order derivative, equa-
tion (1.5), results in a second-order approximation, it cannot be used in practice,
because of stability reasons. This explains the use of upwind schemes for advec-
tion (-dominated) problems. The instability of the central discretization will be
analyzed for the one-dimensional steady advection-diffusion equation

do ¢
7w VY (1.20)

with boundary conditions

u

= @in =0
j: im z _, (1.21)

on the domain 2 = [0,1]. For simplicity the advection speed u and the diffusion
coefficient v are taken constant and positive. The grid is the Cartesian grid of
figure 1.1 with step size h. As explained in the previous sections, under these
conditions the three discretization techniques all lead to the same result for the
advective part. Similarly this can be shown for the diffusive part as well and
therefore it is suffices to work out the stability analysis only for the finite-difference
method.
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The exact solution of equations (1.20) and (1.21) is:

. _ . \exp(2Pez) -1 _uxl
¢(z) = ¢1n + (¢out ¢m) exp(Z_P—e) 1 Pe = o (122)

where the 1 in the numerator of the expressions for Pe has been added to indicate
a unit length. The non-dimensional Peclet number Pe is the ratio between the
advection and diffusion terms. In figure 1.6 two solutions are shown for different
values of this non-dimensional quantity. Clearly the diffusion-dominated case, low
Pe, is totally different from the advection dominated case, high Pe. While the
former shows a nearly linear variation between the inflow and outflow boundary
(the limiting case for u = 0), the latter has a constant solution in almost the entire
domain in combination with a thin outflow boundary layer. A similar behavior
is seen in high Reynolds number flow fields and therefore this model equation is
well suited to demonstrate the problem of the central discretization for advection
dominated flows.

The central discretization of the advection term at point z; is given in equa-
tion (1.5). A similar analysis can de done for the second-order derivative, which
results in:

d’¢ 141 — 201 + b1 2
— ] = h®). .
(£2) tm=tarn o .
Consequently the discrete version of equation (1.20) at point z; becomes:
D1 — Pt b1 =24+ i1
u——— v 52 = 0. (1.24)
Qup-—m -
¢

q. J

VIV WA IS WA ITearae | W WIFEF VS I I e |
0.0 0.2 04 0.6 0.8 10 00 02 04 0.6 0.8 1.0
4 X
(a) solution for Pe = 0.5, diffusion dominated (b) solution for Pe = 100, advection dominated

Figure 1.6: Exact solutions of the advection-diffusion equation: (a) low Pe number,

(b) high Pe number.
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In combination with the boundary conditions (1.21) this gives a set of linear alge-
braic equations, which can easily be solved:

—1

r—-
é1 = in + (dout — ¢in);‘j}_—1, (1.25)
where
1 + Peh h_ uh _
r—l—Pe"’ Pe" = V—Pexh. (1.26)

The node [ = 0 corresponds with the inflow and { = N with the outflow boundary.
On the Cartesian grid use can be made of the relation:

— h T\ _ A\ — AN
exp (2Pe z;) = exp <2Pe -’7) = exp (2Pe l) = (exp (2Pe )) , (1.27)
and the exact solution (1.22) at point z; can be written as:
(exp (2Pe"))l -1
(exp (2Peb))N —1'

Compared to the solution of the central discretization (1.25) it is clear that r,
equation (1.26), must be an approximation to exp(2Pe"). Substituting the power
series

(1.28)

45( = ¢in + (¢out - ¢u1)

o
1— Peh —

> (Pet)’ (1.29)

k=0

into equation (1.26) results in:

r=(14P) X (P)" =142 (P

k=0 (1.30)

=1+2Pe"+2(Pe")2+2(Pe")3+---.

Comparison with the power series of exp(2Pe"),

exp (2Pe") = f: L (2Pe")k =142Pc"+2 (Pe")2 + % (Pe")3 4o, (1.31)

= k!
shows that r is a third-order approximation to exp(2Pe"). However, the power
series (1.29) has a radius of convergence |Peh| < 1 and consequently the approx-
imation (1.26) is only valid for |Pe*| < 1. For |Pe*| > 1, ' in equation (1.25)
changes sign from grid point to grid point and the solution becomes oscillatory, as
can be seen in figure 1.7, which illustrates a stable (|Pe*| < 1) and an unstable
(|Pe*| > 1) solution.

To give an idea about the number of points needed to obtain a stable solu-
tion with the central discretization for a high Reynolds number flow, consider the
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Qu: ——————————————————— Q\u ———————————————————
¢
¢ ¢
¢ J
PEFEPEVES BV EVEU IO N RIS DS NE N R T S i e | PWEETSETEN RO VN T N S U S WU [T UUT T ST HX SO WY W Y |
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 06 0.8 1.0
x x
(a) solution for Pe = 100, Pe" = 0.5 (b) solution for Pe = 100, Pe* = 10

Figure 1.7: Numerical solutions of the centrally-discretized advection-diffusion
equation: (a) stable (|Pe”| < 1), (b) unstable (|Pe?| > 1).

following example. A low estimate of the typical Reynolds number for a modern
transonic airliner in cruise conditions is O(107) and consequently the number of
points per coordinate direction is of the same magnitude in order to have Re®* < 1.
This leads to a total of O(10?!) points in three space dimensions, which is far be-
yond the capabilities of current supercomputers, O(107) points, and even more
than required for a direct numerical simulation of turbulence, O(10'®) points.
Therefore the central discretization is not practical, unless artificial dissipation
terms are added, see [55]. These schemes are robust and relatively cheap, but the
quality of the solution is not as good as what modern upwind schemes give.

1.3 Upwind discretizations

1.3.1 The first-order upwind scheme

An alternative for the central difference is to use the first-order upwind differ-
ence (1.7) for the advective term, which leads to the following discrete approxima-
tion of equation (1.20):

¢ — di1 b1 — 201 + i1
u—p —v T2 =0. (1.32)

The solution to this problem is also given by equation (1.25), but with a different
definition of r:

r=1+2Pe". (1.33)

This is only a second-order approximation to exp(2Pe") and consequently an order
of accuracy is lost compared to the central discretization. This is to be expected,
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Figure 1.8: Numerical solutions of the first-order upwind discretized advection-
diffusion equation: (a) (|Pe*| < 1), (b) (|Pe*| > 1). Both are stable.

as equation (1.7) is only a first-order approximation to (%);. However, equa-
tion (1.33) is valid for any Pe” and remains positive. Therefore a stable scheme
is obtained independent of the cell Peclet number, as illustrated for two solutions
with different Pe", figure 1.8.

1.3.2 The hybrid upwind/central scheme

The first-order upwind scheme is indeed stable, but its drawback is that it is too
diffusive. This can be seen by rewriting equation (1.32) as

T ek \P1-1 =261+ d
BB (v +9) = =0, (1.34)

where © = }|u|h is the numerical diffusion coefficient. Equation (1.34) is a central
discretization of a modified problem, with v replaced by (v + ). Hence upwind-
ing of the advection term is identical to adding a (centrally discretized) artificial
dissipation term, V—? to the central discretization. Consequently sharp gradients
are smeared out, especw.lly when Pe* >> 1, for the ratio £ = = Pe*. As this is the
normal situation for advection dominated problems, this i 1s unacceptable in terms
of accuracy and a remedy must be found.

One possibility is to use high-order upwind approximations to the advection
term, which have to be nonlinear to assure monotonicity [44, 98], see e.g. [96] or
in a slightly different context [129]. This technique is usually used for the finite-
difference and finite-volume method and very good results have been obtained. Its
drawback is that the computational stencil is increased, i.e. also the neighbors of
the neighbors are needed, which becomes rather complicated on unstructured grids
in multiple space dimensions [10, 133]. An alternative, which keeps the compact
stenc11 (only immediate neighbors are involved), was discovered by Spalding [114]
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and is mainly used in the finite-element method, namely a blending between the
upwind approximation (1.7) and the central one (1.5). This leads to the discretiza-
tion:

Cu

¢ — P11 $ur =iy b1 — 24 + P
h 2h h?

where the blending function ¢ = {(Pe") is a function of the cell Peclet number
Pe®. A nodally exact solution of this model problem can be obtained by choosing,
see [48]:

+(1=-Qu =0, (1.35)

1
Peh’
This function has been plotted in figure 1.9 together with two other choices for
¢((Pe*), which do not contain the expensive hyperbolic cotangent function,

¢ (Peh) = coth (Peh) (1.36)

e Mizukami’s approximation [78]:

Pet
‘=T3P (1.37)
o Johnson’s approximation [57]:
= max (0,1 = ) (1.38)
¢ = max {0, 3P .

Note that for Pe® > 1 both functions are above the optimal blending function,
see figure 1.9. This is essential, because otherwise not enough diffusion is added
to guarantee stability. Solutions of these two alternatives are shown in figure 1.10.
Mizukami’s blending function gives a slightly better solution for Pe* = 10, while
both solutions are clearly better than the first-order upwind solution, see figure 1.8.

OEinnl
W

—eo— Mizukami
—— Johnson

N4
i

00 " . " " .| N 1
e X 50 n 100 15.0
Pe

s
W
L

Figure 1.9: Three blending functions for hybrid upwind/central differencing.




1.4. MOTIVATION FOR MULTI-DIMENSIONAL UPWINDING 13
Q- mmmmmmmmmmm e S
¢ ¢
‘ ]

o.s"‘-""o‘z'“"'*ak"“"#a""“s‘r"“fo o.o""'"“a'z"""‘sk"""‘afa"‘*‘?b"""%o
() soluhonfofPe= 100, Pe* =0.5 (b) solution forPe 100, Pe" = 10
Mizukami's blending function Mizukami's blending function
[ S S
¢ ¢
Y J «
7 T T aﬁ‘z‘“‘a‘z‘“‘a‘s‘“‘a%““‘fo

(d) solution for Pe 100, Pe" =10
Johnson’s blending function

(c) solution forP:=100. Pe=05
Johnson's blending function
Figure 1.10: Numerical solutions of the hybrid upwind/central discretized
advection-diffusion equation, (a) and (c) (|Pe?| < 1), (b) and (d) (|Pe*| > 1).

1.4 Motivation for multi-dimensional upwinding

In the previous section it has been shown that the upwind discretization is a very
robust tool for the numerical approximation of the one-dimensional model problem.
In this section the extension to two space-dimensions is made and the motivation
for the use of multi-dimensional upwind schemes is given.
Consider the two-dimensional, steady advection equation:
3¢ d¢
== =0, 1.39

uz-tv Yy (1.39)
where, for the sake of convenience, the advection speeds u, v are assumed positive
and constant. For reasons of clarity the summation convention is not used here.
The most common method to discretize equation (1.39) is the dimensionally split
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x
Figure 1.11: Uniform 2D Cartesian grid.
approach, i.e. the z and y derivatives are treated in a one-dimensional manner.

On the Cartesian grid, shown in figure 1.11, the first-order, dimensionally-split
upwind discretization at point (z,y) becomes for u,v > 0:

u¢k,l ~ Pr-1,0 + v¢k,z = Pri-1 _ 0. (1.40)
h h
A simple Taylor series analysis shows that
Gkt — br-14 _ (O . (0% 2
u A =1Uu oz y Vex 922 "y + O(h ), (1.41)
Gk — D1 (34’) . (32‘25) 2
p——— =y | — —Uy | =—=1 <+ O(h%), 1.42
h ay ki v ayz k1 ( ) ( )
with the numerical diffusion coefficients: A
. uh vh
Voz = 25 Py =5 (1.43)

Consequently the first-order dimensionally split upwind discretization is a central
second-order approximation to:
d 9 . P . 0%
u—a-:-t- + v:,j-; - V,,z'a—z—z - Vw-a—y—z =0. (144)
To analyze the numerical diffusion coefficients (1.43), equation (1.44) is written in
a streamline coordinate system (£, 1), see figure 1.12:




1.4. MOTIVATION FOR MULTI-DIMENSIONAL UPWINDING 15

Figure 1.12: Relation between the Cartesian (z,y) coordinate system and the
streamline (§,7n) coordinate system.

, P L O . O

0¢ '
”u”gg_yff-ggf_‘ufﬂaga ﬂfla 2 _0’ (1.45)
where |[u|| = vu? + v?,
u v
cosf = ——, sinf = —, 1.46
Tall Tul (146)
see figure 1.12, and the diffusion coefficients are:
Dge = Dgp €082 0 + Dy sin? 6 = H112||h (cos3 6 + sin® 0) , (1.47)
Den = 2(Dyy — Ugz)sinfcos b = U_u?”ﬁ sin 26 (sind — cos ) , (1.48)
Dy = Dgz 8in% 0 + Dy cos? 8 = @ cosdsinf (sin + cosb). (1.49)

In figure 1.13 the values of these three coeflicients as a function of the flow angle
6 are depicted. Equation (1.45) shows that the overall effect on the numerical
solution is determined by the product of the diffusion coefficient and its corre-
sponding second-order derivative. For advection-dominated flows the derivatives
normal to the streamline are much larger than those in the streamwise direction
(for pure advection, @ - V¢ = 0, ¢ is even constant in the streamwise direction
(u,v)). Therefore the cross-wind diffusion coefficient 2y, is of much more con-
cern than the streamline, ¥, and the mixed, 7, diffusion coeflicients. As can be
seen in figure 1.13, &, is large if the flow is not aligned with the grid lines and
consequently flow features are smeared out considerably for these cases.

An examination of the computational stencil (1.40) of the dimensionally split
upwind scheme shows that the point (kK — 1,/ — 1) is not used, although from a
physical point of view there is no reason not to use it, see figure 1.15. This was the
motivation for the use of multi-dimensional upwind schemes, in which the upwind
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Figure 1.13: Numerical diffu- Figure 1.14: Numerical diffusion co-
sion coefficients for the first-order efficients for the first-order multi-
dimensionally-split upwind scheme dimensional upwind scheme as a
as a function of the flow angle 4. function of the flow angle 6.

direction is not determined by the grid lines, but by the streamline [93, 92, 94].
Equation (1.39) is discretized directly rather than being first split into its Cartesian
components, followed by the discretization of the one-dimensional subproblems.
The result of this multi-dimensional approach is:

il (5¢),_ =g + juloca) (150

-
-
-
-
-

I k streamline

k-11 e k1
i @ points used in first-order
S(? dimensionally-split upwind scheme
o additional point used in first-order
.~ multi-dimensional upwind scheme
- Oin

Figure 1.15: Computational stencil for the dimensionally-split upwind scheme and
multi-dimensional upwind scheme, both first order.
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b = min(u, v)@r-1,4-1 + max(0, u — v)¢p—11 + max(0,v — u)di, -1 (1.51)
" max(u, v) )
and
Ag= 1l (1.52)

~ max(u,v)

The min and max functions are used in equations (1.51) and (1.52) to obtain a

formula which is valid for both u > v, corresponding to figure 1.15, and u < v.

Note that the interpolation is either between ¢y_; -1 and ¢x_1 ;1 (u > v), or between

$k—1,-1 and @i —1 (u < v). A similar argument holds for the length A¢.
Substituting (1.51) and (1.52) into equation (1.50) gives:

lull (Z—ﬁ) = llulloAg)+

max(u, v)¢r; — min(u, v)Pr-1i-1 — m:«;lx(O, U — v)Pg—11 — max(0,v — u)dr 1

(u 4 v)prg — udk-1,1 — VP11

= : : : 1.53

lulioag) + : : (1.5)
Discr. error Dim. split scheme

hmin(u,v) (¢r1 — Pk-11 — Pri-1 + Pr-1,-1)
— h2 .
Correction term

-

So the first-order multi-dimensional upwind discretization equals the first-order
dimensionally-split scheme minus a correction term, in which X _¢"“"_";";""+¢""1"“

is a second-order approximation to a%z% at point (k — %,l - %) As

S
- (L& o(h), 1.54
(6:c6y k-La-4 0z0y k,1+ *) 150
and thus:
. *¢ . 0%¢
h min(u,v (—-———-——) = hmin(u,v) (————) + O(R?), 1.55
) O0zdy k-1i-) ( 0z0y /., (1.55)

the first-order multi-dimensional upwind discretization (1.53) of equation (1.39) is
a second-order approximation to the equation:

3% , 0 .mpd¢ _ .mp 0% _ mpd¢ _
ug- +vay ~ V2 o7~ Vo 520y o 97 0. (1.56)
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The numerical diffusion coefficients 7P and #MP are identical to £, and iy, of

the first-order dimensionally split scheme, equation (1.43), and

oMP = hmin(u,v). (1.57)

By performing the transformation to the streamline coordinate system, see fig-
ure 1.12, the numerical streamline, 77, mixed, 77, and crosswind, #MP, diffu-
sion coefficients are obtained:

Zr ||112Hh {cos3 6 + sin® 0 + 2 cos #sin 6 min(sin 6, cos 0)} (1.58)
AMD_”u”h in 20 (sin § 0 min(sin 8 /]

Uy = —2—{sm2 (sin & — cos 8) + 2 cos 26 min(sin 8, cos #)} (1.59)

Q%D = Hl12||h cos 8 sin @ {sin @ + cos — 2min(sin @, cos §)} . (1.60)

These coefficients are plotted in figure 1.14. Comparison with the dimensionally-
split scheme, figure 1.13, shows that the important crosswind diffusion coefficient
yn is much smaller for the multi-dimensional scheme and consequently the latter
is more accurate if the flow is not aligned with the grid. Moreover, as shown by
Roe [97], the dimensionally-split upwind scheme is the worst possible choice among
all monotonic first-order schemes and the multi-dimensional upwind scheme is the
best.

The price paid for minimizing the crosswind diffusion is the increase in the
streamline diffusion. As explained earlier this is not an issue for advection domi-
nated flows,.but it may have some effect for advection with strong source terms, for
example the equations for turbulence modeling or chemical reacting flows, where
the variables do change along the streamline. However in general this change is
still less than the change normal to the streamline.

1.5 Structured and unstructured grids

In multiple space dimensions the numerical simulation of a flow field consists of
three almost independent disciplines:

1: The geometry definition.

2: The grid generation: (a) surface grid.
(b) volume grid.

3: The flow solver.

In 2D the geometry definition is a rather trivial task. Usually a set of coordinates
is given, which are used to define the geometry by splines. In 3D it is more
complicated and normally CAD tools are used for complex configurations.
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The third discipline involves the discretization of the governing equations and
their solution, the subject of this work, on the computational grid generated by
the second discipline.

The grid generation process is split into a surface part and a volume part. In
two space dimensions the surface grid generation is the creation of a point distri-
bution on the boundaries, based on several criteria like curvature, discontinuities
in the slope, proximity of other bodies etc. In 3D it is a generation of a two-
dimensional grid on the given geometries, also with the possibility to take the
criteria mentioned above into account. The volume grid is built starting from the
surface grid.

A distinction may be made between structured and unstructured grids, see
figure 1.16. For the former every point is uniquely determined by two indices in
2D and three in 3D. In an unstructured grid, as the name implies, such a structure
is absent and both the nodes and the cells are numbered. In addition the cell
connectivity, the node numbers of the vertices of each cell, must be given as well.
This implies that for unstructured grids more information must be stored, but this
is negligible compared to the storage requirements of an implicit solver, as will be
shown later chapter 4.

Structured grids of the type of figure 1.16(a) are very restrictive from the
geometrical point of view and usually a multi-block approach is used for more
complicated geometries. This means that the domain is split into a small number
of subdomains, or blocks, in an unstructured way, while the grids inside these
blocks are structured. An example is shown in the left picture of figure 1.17. It
is clear that this type of grids require a large human input, especially in 3D, and
consequently it takes a lot of time to generate them, one of the main bottlenecks
which currently prevents the use of Euler and RANS simulations in the early design
stages. On the other hand, unstructured grid generation is highly automatic and
thus potentially able to reduce the grid generation time considerably. For viscous

(a) structured grid (b) unstructured grid

Figure 1.16: (a)Structured quadrilateral grid and (b) unstructured triangular grid.
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Figure 1.17: Multi-block structured grid (obtained from [104]) and unstructured
grid, for multi-element airfoil configurations.

computations it is possible to use a hybrid approach [20, 4], i.e. a structured layer
of stretched quadrilaterals in the boundary layer combined with triangles in the
rest of the domain. An example is given in the right picture of figure 1.17. Hassan
et al.[90] claim that this approach is too restrictive in 3D and advocate a fully
unstructured method.

Another advantage of unstructured grids is that points can be put where they
are needed and the grid can be coarsened in less significant regions. So local
refinements, e.g. near separation points, do not influence the grid in the far field.
On the contrary for structured grids, all local refinements are ”transported” to the
far field where these points are not needed and consequently more points are used
than strictly necessary. This is clearly visible in figure 1.17.

Despite these advantages of unstructured grids, the vast majority of the current
RANS computations are performed on structured grids, because (1) the expertise
of generating such grids for these problems is more developed than for unstructured
viscous grid generation, although the situation is changing [20, 4, 90], and (2) the
current dimensionally-split upwind algorithms perform very badly in the stretched
triangles in the boundary layer, because the upwind directions are completely
misaligned with the flow.

1.6 Objectives and structure of the thesis

The main objective of this thesis is to improve the multi-dimensional upwind dis-
cretization technique for non-commuting hyperbolic systems. The new method
will be applied to the Euler and Navier-Stokes equations on unstructured grids,
both in 2D and 3D. Only steady state problems will be considered and time step-
ping is used as an iterative tool to solve the set of nonlinear algebraic equations.
Consequently accuracy in time is not important, an argument which will be used
frequently.
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Started by Roe [95], the present multi-dimensional upwind method was de-
veloped further in collaboration with Deconinck, Struijs, Pailléere and Bonfligioli
(118, 119, 116, 84, 16]. Second-order monotonic scalar advection schemes on trian-
gles (in 2D) and tetrahedra (in 3D) were developed. These schemes have a compact
support (only the immediate neighbors are involved in the computational stencil)
and are more accurate than standard finite-volume/finite-difference methods. A
review of these schemes is given in chapter 2.

The extension of scalar schemes to non-commuting hyperbolic systems is straight-
forward for dimensionally split algorithms, where the multi-dimensional problem
is split into a set of one-dimensional subproblems, usually in the direction normal
to the faces of the control volume. As in one dimension there is only one Jacobian
matrix, the characteristic form of the equations is a set of one-dimensional scalar
equations and the scalar schemes can be applied directly in the case that the Ja-
cobian is constant. For nonlinear conservation laws this is not the case and the
generalization is given by a, usually approximate, solution to the one-dimensional
Riemann problem in the direction of the normals. Attempts have been made to
solve the true multi-dimensional Riemann problem [43, 3] and to use this solu-
tion as a building block for finite-volume upwind solvers. However, the solution
to this problem, where three or more states interact with each other is extremely
complex and expensive to compute and therefore probably not suited for practical
computations.

As shown in section 1.4 the dimensional splitting introduces an unnecessary
amount of numerical diffusion. In the multi-dimensional upwind approach this
amount is reduced by not splitting the problem into one-dimensional subproblems.
Consequently the extension to systems is more difficult, unless the Jacobians of the
system commute. In this case the characteristic form is a set of two or three dimen-
sional scalar advection equations and again what is needed is the scalar schemes.
However it is well-known that the Jacobian matrices of the Euler equations do not
commute and something else must be done.

One possibility, used by Roe, Deconinck and co-workers, is based on an ap-
proximate diagonalization approach, i.e. trying to find a characteristic form of the
Euler equations which is as close as possible to a set of scalar advection equations.
Then the scalar schemes are applied to this set of equations. The characteristic
form can be written as:

ow ow aw
e, e’

[S——
Advection terms Coupling terms

Here W is the set of characteristic variables, D; are diagonal matrices and C; off-
diagonal matrices. The intention of the approximate diagonalization approach is
to minimize the number of elements in the matrices C;, also called coupling terms.
The early attempts were based on the direction of flow-variable gradients [26],
and stability problems inevitably occurred. Later, Paillére et al.[85] based their
characteristic form on physical directions, streamline, Mach lines, etc., rather than
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flow variable gradients at the price of more coupling terms. This cured some of
the stability problems and very good results have been obtained for subsonic and
transonic flows with relatively weak shocks and not too high aspect ratio cells [84].
However, as it is impossible to obtain a complete diagonalization (except for a
2D steady supersonic flow, where the characteristic set of equations is identical
to the equations of the method of characteristics), coupling terms will always be
present. These terms cannot be treated with monotonic schemes and consequently
instabilities occur near strong discontinuities, which leads to failure of the method.

In this thesis a completely different approach is used. Following the work of
Sidilkover [109, 108, 110], the scalar advection schemes are extended to system
schemes for coupled hyperbolic systems. This completely solves the instability
problems near strong discontinuities and a very robust discretization technique is
obtained. The system schemes are discussed in general in chapter 3 and some
specific issues for the Euler equations in chapter 5. The implicit time integration
method and its parallelization (probably necessary to tackle large 3D problems)
are given in chapter 4.

Chapter 6 deals with the (Reynolds-Averaged) Navier-Stokes equations. It
will be shown that a Galerkin finite-element discretization of the viscous fluxes is
consistent on linear triangles and tetrahedra, the only control volumes considered.
Two types of turbulence models are used, the one-equation Spalart-Allmaras model
and two-equation k—w type models, such as Menter’s SST and BSL models and the
k —w model itself. The last chapter contains the conclusions and some suggestions
for future developments.




Chapter 2

Review of the scalar schemes

In this chapter numerical schemes for scalar advection are reviewed. The governing
advection equation is given by

i) 0

5? + ui-a—;é =0, (2.1)
and attention is restricted to schemes on Pl elements, linear triangles in 2D
and linear tetrahedra in 3D. This review includes the multi-dimensional upwind
schemes developed by Roe, Deconinck, Sidilkover, Struijs, Paillére and Bonfligioli
[118, 119, 116, 84, 111, 16}, the SUPG finite-element scheme {19, 57} and more clas-
sical schemes like the dimensionally-split first-order upwind scheme on the dual
grid, the Galerkin finite-element scheme and the Lax-Wendroff scheme.

In the first three paragraphs the advection speed u; is assumed to be piecewise
constant. Section 2.4 introduces a local linearization of equation (2.1), which is a
way to treat non-constant advection speeds.

It will be shown that all second-order schemes can be interpreted as Petrov-
Galerkin finite-element schemes, which allows a straightforward extension to the
discretization of the advection-diffusion equation, section 2.5. As the latest devel-
opments of these schemes have been known for some years, this chapter has been
kept as brief as possible and should be seen as an introduction to the next chapter,
the discretization of non-commuting hyperbolic systems. A much more detailed
overview of the scalar schemes is given in chapter 2 of reference [84], on which
parts of this chapter are based, see also [27], chapter 1.

For reasons of simplicity, the main part is restricted to two space dimensions.
The extension to 3D is given in section 2.6 and it will become clear that the
formulae describing the different schemes are completely analogous with their 2D
counterparts. First some general concepts are introduced.

2.1 General concepts

Consider the scalar advection equation (2.1) on the domain Q with (piecewise)
constant advection speed u;. This is an initial, boundary value problem, where for

23
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well-posedness the initial conditions:

¢(:c;,t = 0) = ¢y (:L',) , Vz; € Q (2.2)
and the boundary conditions:
- ¢(zit) = ¢r+ (zi,t), YV, €T, VE>0 (2.3)

must be given [65]. Here I't is the inlet boundary of (2, i.e. the part of I' where.
the advection vector & = u.-i‘,,., which is the characteristic of equation (2.1), enters
the domain. Conversely on I'~ = I'\I'*, called the outlet boundary, where the
characteristic leaves the domain, no boundary conditions have to be specified.

Assume that the 2D spatial domain § is triangulated with triangles of the type
given in figure 2.1, where 1 — 2 — 3 are local node numbers. The inward scaled
normals, i.e. normals with the length of the corresponding face, are defined for a
counter clockwise numbering of the nodes by:

iy = (y2 = ys) Lo + (23 — @2) I, (2.4)
= (y3— 1) Lo + (21 — 23) I, (2.5)
iz = (11— y2) Lz + (22 — 1) L, (2.6)

where for convenience z and y are used to indicate the independent variables. In
case the node numbering is clockwise the subscripts in the definitions (2.4) to (2.6)
must be reversed. It is obvious that:

iy + fig + 7y = 0. (2.7)

The Petrov-Galerkin discretization at node /, see section 1.1.3, of equation (2.1)
becomes:

#nodes

/ f w 2 Nka¢kdﬂ+ / / wi U #nidﬁﬁj—v%k df = 0. (2.8)

Here wy; is the Petrov-Galerkin weight function at node [, which should obey certain

conditions, see [56]. In practice this means that w; and its first order derivatives

must be square integrable. Consequently w; is bounded. N is the basis function
3

—_

y n,

Figure 2.1: A generic triangle with inward scaled normals
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of node k, see figure 1.4, and ¢, the value of ¢ in node k. Usually the global

system (2.8) is built as a summation over the individual triangles T:

; {//:r wlg:l Nka¢de + // wy u, —¢k dT} =0, (2.9)

where the sum inside every triangle runs from 1 to 3, the number of nodes of the
triangle. The first integral leads to the product of the so called mass matrix M,
whose element Mj;. is defined as

My = ;/‘/T wy N dT, (2.10)

and the time derivatives of ¢y.

For time dependent problems the mass matrix must be taken into account
to obtain an accuracy in time higher than first order. Note that the mass ma-
trix (2.10) results in a relation between nodes ! and k and consequently a linear
system must be solved every time step, even if an explicit time integration method
is used.

However in this work only steady problems are considered and therefore the
w; in the mass matrix can be chosen differently from the w; in the spatial part of
equation (2.9). It was found that the lumped Galerkin mass matrix leads to the
most stable formulation. The Ga.lerki_n, w; = N;, mass matrix is given by:

MG Z/_/ N;N,dT, (2.11)

and its lumped version is obtained by summing the row elements and storing it in
the diagonal entry:

Mgal lumped = E &611‘ = Slfslk- (212)
TeQ; 3

Here St is the area of triangle T', & the Kronecker delta function and S; the area
of the median dual cell of node /, see figure 2.2. ; indicates all triangles which
belong to neighborhood of node [, see figure 2.3.

The approximation (2.12) does not change the steady-state solution and, be-
cause it is a diagonal matrix, it avoids the solution of a linear system for explicit
time integrators. Moreover the full mass matrix is usually not positive-definite
and causes the positive schemes, see section 2.2.2 for the definition of positivity, to
loose that property in the transient phase, which can lead to failure of the method.
The approximation (2.12), a diagonal matrix with positive coeflicients, which is
positive-definite, does not affect the positivity.

For a linear triangle it can easily be verified that the following relation holds
inside triangle T:

ONy _ ny




26 CHAPTER 2. REVIEW OF THE SCALAR SCHEMES

Figure 2.2: Node [, its immediate Figure 2.3: The neighborhood §,
neighbors and its median dual cell S; shaded region, of node /.
(shaded region)

where ny, is the component of 7y in the z; direction, i.e. ng, = iy - Tx‘.. Conse-
quently the second integral of equation (2.9) for triangle T, from now on called
RT, simplifies to:

RF = (TS'};//:; w;dT) Rr. (2.14)

Here Rt is the cell residual:

1 3 3
Ry = D) E Uit $p = 3 Koy, (2.15)
p=1 p=1
where the upwind parameters k, are defined as:
1
kp = Suing,. (2.16)

4

Note that in equation (2.15) use has been made of the assumption that w; is
(piecewise) constant.

The form (2.14) can be simplified even further by introducing of the distribution
coefficient BF for triangle T,

1
T —_— e
o =5 / /T widT, (2.17)
leading to
RY = gT Ry. (2.18)

The 37 are called distribution coefficients, because they distribute parts of the cell
residual Rr to the 3 nodes of triangle 7. For consistency the local nodal residuals
RT should sum up to Ry, which is equivalent to:

BL+B; +55 =1 (2.19)
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Combining equations (2.9), (2.12) and (2.18) results in:

d 1
{;—‘ +g ETj BT Rr = 0. (2.20)

The conclusion of this exercise is that any Petrov-Galerkin finite-element scheme
for equation (2.1) with piecewise constant advection speed u; on linear triangles
can be written in the residual distribution form (2.18). The condition that the
weight functions w; are bounded, has as a consequence that the distribution co-
efficients 37 are bounded. This implies that every Petrov-Galerkin finite-element
scheme is linearity preserving, see section 2.2.3.

2.2 Properties of the distribution schemes

The properties of the different schemes depend on the definition of the 37 (or equiv-
alently w;). The only restriction that they must obey is given in equation (2.19),
and consequently degrees of freedom remain to adapt the scheme such that it has
the desired properties. The following properties will be discussed in detail in the
next sections:

o Multi-dimensional upwind (MU)
e Positivity (P)

e Linearity Preservation (LP)

¢ Continuity (C)

They correspond with different aspects, which are discussed below.

As mentioned in section 1.4, the multi-dimensional upwind scheme minimizes
the amount of crosswind diffusion within the class of upwind schemes and conse-
quently gives the most accurate results.

The positivity property guarantees that existing discontinuities are captured
monotonically (if the initial solution does not contain overshoots).

Within the class of schemes considered, i.e. assuming a linear variation of the
solution per element, at most linear varying solutions can be reproduced exactly
by the numerical scheme. This ability is called Linearity Preservation.

Continuity of the schemes is required to obtain a smooth convergence to the
steady-state solution.

The optimal numerical scheme, again within the class considered, for advection
problems with discontinuities should have all four properties.
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3

2 1
Figure 2.4: One-inflow triangle (left) and two-inflow triangle (right). In both cases
the arrow indicates the direction of the streamline.

2.2.1 Multi-dimensional upwind (M)

The motivation for multi-dimensional upwinding has become clear from the anal-
ysis in section 1.4. However this was carried out for the finite-difference method
on a structured Cartesian grid, while the intended discretization technique is a
finite-element method on an unstructured triangular grid. Consequently a condi-
tion must be found which guarantees multi-dimensional upwinding for this kind of
schemes.

For scalar advection one can distinguish two types of triangles, one-inflow and
two-inflow triangles, of which examples are shown in figure 2.4. For one-inflow
triangles only one of the dot products of the advection vector with the inward scaled
normals, the upwind parameters k, (2.16), is positive; for two-inflow triangles two
of the k,’s are positive. As equation (2.7) holds, and thus:

kl + kz + k3 = 0, (221)

it is obvious that these are the only configurations possible. A scheme is now said
to be multi-dimensional upwind if:

MU B =0 ifk <0, (2.22)

i.e. nothing is distributed to inflow nodes. By using the expression (2.15) for
Ry, one can show that this condition leads to an exact steady-state solution of
equation (2.1) if the advection vector is aligned with one of the faces of the tri-
angle. The multi-dimensional upwind finite-difference scheme on quadrilaterals,
section 1.4, reproduces the exact steady solution if the advection vector is aligned
with one of the faces or diagonals. This implies that the discretization technique
on triangles is less accurate than on quadrilaterals [125, 88], the price paid for
using unstructured grids of triangles. However, the first-order multi-dimensional
upwind method on triangles is in general more accurate than the standard first-
order dimensionally-split upwind method on quadrilaterals.

2.2.2 Positivity (P)

In a compressible flow, discontinuities like shocks and slip lines can be present. It
is desirable that the numerical method captures these phenomena monotonically,
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i.e. without under- and overshoots. One way to achieve this is to require the
scheme to be positive. Consider the semi-discrete version of equation (2.1) at
node [, in which only the spatial part has been discretized:

S m (1= ) =0 (223)

Note that for the schemes considered only the immediate neighbors have non-zero
coefficients ci,. A scheme is said to be positive [89, 98] if:

P cm>0 Viim,l#m, (2.24)

which is identical to Jameson’s LED (Local Extremum Diminishing) criterion [54,
52]. This ensures that no new extrema are created. It is clear from equation (2.23)
and (2.24) that ¢; cannot increase/decrease for a local maximum/minimum. Clearly
the positivity property does not guarantee existing overshoots to vanish. Therefore
it is possible that there are several (numerical) steady-state solutions depending
on the initial conditions, especially for nonlinear schemes and/or problems.

From the positivity concept it is possible to derive a time step restriction. For

example, equation (2.23) integrated with the forward Euler time integrator results

m:

?-H = ¢T - At Z (clm (¢l - ¢m))n ) (2.25)

where n and n + 1 indicate consecutive time levels. To guarantee that overshoots
cannot arise at the new time level, it is sufficient to require that the new solution
is a convex sum of the values at the previous level:

&t =Y Emdl, Em 20, Vi,m. (2:26)

For consistency one has ) _ &m = 1. When combining equations (2.25) and (2.26),

m
the condition é&; > 0 leads to the restriction:

Ay < (2.27)
Clm
m#El
For a general time integrator this becomes:
F
At < CFL ) (2.28)
z Clm
m#l

where CFL is a typical constant for the time integration method used.

The positivity condition (2.24) is grid dependent and consequently difficult to
impose. Therefore the local positivity property is introduced. This requires that
condition (2.24) is obeyed for each individual element. Obviously this is more
restrictive, but it has the advantage of being grid independent and thus easy to
impose.
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2.2.3 Linearity Preservation (LP)

Linearity preservation is the ability of the numerical scheme to reproduce steady
linear solutions of equation (2.1) exactly. Within the class of schemes considered,
linear variation of the solution over the elements, this is the highest possible order
of polynomials, which can be calculated exactly. The condition imposed on the
residual distribution schemes (2.18) can easily be determined.

Consider node ! and its immediate neighbors, figure 2.2. The numerical steady-
state solution is given by, see equation (2.20):

déy 1 T

# =73 ;5, Ry =0, (2.29)
where S is the area of the median dual cell of node [, see figure 2.2, which enters
the formulation due to the mass matrix approximation (2.12). One of the cells T of
figure 2.2 is depicted in more detail in figure 2.5. Suppose that the exact solution
is given by ¢f, ¢¢, and ¢Z, where the subscript indicates the node number, see
figure 2.5. The values of ¢, and ¢;, can be computed from a Taylor series expansion
around node I:

_ 06 N
O =i (ax)zn"” (31/) (2.30)

o d 1 (0%\°
(a f) (nny)2 (ax;ﬁy) n nTz + 9 (3_;:)‘ ("Iz)z +0 (h3)

e (00\ 71 96\° 1
=ii- (32) .+ (30), 7
(2.31)

1 (8%*\° ¢ 1 (8%*\°
() 6ny -3 (Zg) et +3 (B2, G2 0 )

1

Figure 2.5: Cell T which shares node [ and its inward scaled normals
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or in streamline coordinates (€,7m), see figure 1.12:
3¢ 1 (8%
O ( n) ety (a 2) (%) +0 (K, (2.32)
it (Z¢) ime ¥ 3 (g f) (nh)" +0 (). (2.33)
M/

The components of the Cartesian inward scaled normals of the equations (2.30)
and (2.31) are given in their local form in equations (2.4), (2.5) and (2.6), while
in streamline coordinates the following expressions hold:

T _,7T T
nme—rlﬂ.—nl

T

(2.34)
nl =g —n.

Furthermore in equations (2.32) and (2.33) use is made of the fact the exact steady
state solution of equation (2.1) is only a function of 7, the coordinate normal to the
streamline. If the equations (2.32) and (2.33) are substituted into equation (2.15)
for the cell residual Ry, after some manipulations the following expression is ob-

tained:

llull (0°¢\° 7 1 1 4
RT = —-4— —a';;'z' l n,s‘nMen"e + (0] (h ) ) (2-35)
where ||u|| = /&;u;. Substituting this into equation (2.29) gives:
ul| [ 9?
L8l (29)' 4 5 g o, +0 () =0 20

If the scheme has to be exact for linear solutions, both (53?): and the terms

appearing in O (h?) are zero, #7 must be bounded to make equation (2.36) into
an identity. Consequently a sufficient condition for linearity preservation is:

LP BF is bounded. (2.37)

Struijs [116] proved that linear schemes cannot have both the positivity and
linearity preservation property, which is an equivalent formulation of the famous
Godunov theorem [44]. A scheme is called linear if R], the part of the residual Ry

Figure 2.6: Uniformly triangulated structured grids
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Figure 2.7: Isentropic triangulated structured Figure 2.8: Regular
grids unstructured grid

of cell T which is sent to node [, is a linear function of the unknowns ¢, i.e. the
coefficients ¢, in equation (2.23) are independent of ¢y,.

The relation of linearity preservation with second-order truncation error is grid
dependent. On triangulated structured grids with a uniform choice of the diago-
nals, see figure 2.6, it can be proved that linear linearity-preserving schemes are
second-order accurate for constant advection speed u; [84]. However a similar
analysis for isotropic triangulated structured grids, figure 2.7, and a regular un-
structured grid, figure 2.8, only shows first-order accuracy for linearity preserving
schemes. However this local truncation analysis is too pessimistic, for Petrov-
Galerkin finite-element methods, which are linearity preserving by definition, can
be proved to be at least O(h'®) accurate, see [83, 58, 59]. In practice second-order
accuracy is found for sufficiently smooth solutions on all types of grids, as long as
the scheme is linear [21]. For nonlinear schemes a numerical convergence study
shows results closer to the theoretical O(h'®), see [84].

2.2.4 Continuity (C)

Convergence towards steady-state solutions by means of iterative methods are
hampered if the distributions to the nodes discontinuously change from one it-
eration to the other. Usually a cyclic behavior, known as a limit cycle, is then
observed and therefore it is desirable that the schemes are continuous. Two kinds
of continuity are distinguished:

e Continuity with respect to the solution ¢,

e Continuity with respect to the advection vector u;.
(Only important for non-constant advection speeds.)

2.3 Numerical schemes

2.3.1 The N-scheme (MU, P,()

The N-scheme is the residual distribution formulation of the first-order multi-
dimensional upwind method, see section 1.4. For the triangle shown in figure 2.1,
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Figure 2.9: Two target case for the N-scheme with zero cell residual.

the distributions to the nodes are defined by:

R = kit (¢ — in) » (2.38)
where
1 3
bin=—5— 3 knbn (2.39)
Z k; m=1
m=1

is the (linearly interpolated) state at the inflow point of the triangle, point 1 in
figure 2.9 for a two inflow triangle, see also figure 2.4. The parameters k" and
k; are defined as max(0, k;) and min(0, ;) respectively, in which &; is the upwind
parameter, see equation (2.16). The multi-dimensional upwind property is easily
checked, as only nodes with k; > 0 receive a contribution due to the multiplication
with k;.

If equation (2.39) is substituted in (2.38) the following alternative formulation
of the N-scheme is obtained:

3 ktk-
R? = Z Cim (¢l - ¢m) y Cim = - m, (240)

3
>k
p=1
This form is identical to the one used in the positivity definition, equation (2.24).
From the formulation (2.40) it is obvious the coefficients ¢, > 0 and thus the
N-scheme is positive. Clearly, the scheme is linear as well.

The distribution coefficients 8 are not bounded. This can be seen in the case
that two of the upwind parameters k; are positive. Without loss of generality it
is assumed that these are k; and ka. Furthermor_g assume the total cell residual
Rr = 0, i.e. the advection vector is normal to V¢. This situation is shown in
figure 2.9. For this case the distribution of the N-scheme is equivalent to splitting
the advection vector into two parts, as shown in figure 2.9, which results in B =
Sritrs - V¢ and RY = Srpilys - V. Both are clearly non-zero and consequently
for this case the B} and BY are not bounded. This means that the N-scheme is
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only first order accurate, which is in agreement with Godunov’s theorem. Due
to this non-boundedness of B, and consequently of the weight function wj, see
equation (2.17) , the N-scheme does not belong to the class of Petrov-Galerkin
finite-element schemes.

The operations ki = max(0,%;) and k' = min(0, k;) are continuous at k; = 0
and therefore the continuity of the scheme is ensured.

2.3.2 The PSI or limited N-scheme (MU, LP,P,(C)

The PSI (Positive Streamwise Invariant) scheme [119] was the first scheme, which
had all the properties defined at the beginning of section 2.2. Earlier attempts,
like the Petrov-Galerkin scheme of Mizukami-Hughes [79], the NN-scheme [117]
and the Level scheme [101], all failed the continuity requirement and consequently
convergence to steady-state solutions could be hampered. The original formulation
of the PSI-scheme is given in [119]:

0, 8N
B = 3max( ) : (2.41)
Zmax (0,,8,’:)
m=1
where
RN
N _ M
B = Br (2.42)

Later Sidilkover and Roe [111] showed that a linearity-preserving, positive scheme
could be constructed from any first-order, positive scheme by applying a symmetric
limiter function (with some additional constraints) to the distributions of the first-
order scheme.

If the first-order scheme is the N-scheme, the limiter must be applied only
if two inflow parameters k; are positive, as in the one-target case the N-scheme
contributions are both positive and linearity preserving. Again assume that &, and
ks are the positive inflow parameters and the corresponding N-scheme distributions
are given by RY and RY respectively. Then the limited N-scheme is defined as:

RN = R} [1 - ('R? )] , (2.43)
RN = RY [1 - ("RI?)] , (2.44)

where ¥(r) is a limiter function with the following properties:
- consistency: ¥(1) =1

1)=g’_(_g

- try: ¥ (—-
§ymme ry - "
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The consistency property ensures linearity preservation, for the argument r of the
limiter ¥ equals 1 if RY = —RY which is the case if the cell residual Ry = 0.
If the limiters are applied, see equations (2.43) and (2.44), it is clear that RLN
and RSN are zero only if ¥(1) = 1. The symmetry property ensures conservation,
1.€. Rg‘N + R{;’N = Rr.

From equations (2.43) and (2.44) it can be seen that the N-scheme distribution
is multiplied by a factor. To ensure that the limited scheme is locally positive,
this factor must be positive. In combination with the consistency and symmetry
condition, this gives an additional condition for the limiter function:

0<U(r) < 1. (2.45)

Sidilkover and Roe [111] showed that this condition can be relaxed somewhat for
global positivity, for example for linear advection with a constant advection speed
on a uniformly triangulated structured grid, see figure 2.6, the global positivity
condition becomes:

0< U(r), @ <2 (2.46)

However in general this is not the case and in practice condition (2.45) is used.
If the minmod limiter is chosen,

¥ (r) = max [0, min(r,1)], (2.47)

the expressions (2.43) and (2.44) can be simplified, if use is made of the typical
property of the minmod limiter:

¥(r)+¥(1l-r)=1. (2.48)

The distribution to node 2 then becomes:
e[ ]
A-poE e e
N
= (%) Rr =V () By

A similar analysis for REN gives:

RN
RN = (—3) Rr =¥ (BY) Rr. (2.50)

Rr
This form of the limited N-scheme shows that a linearity preserving, positive
scheme can be obtained by simply limiting the distribution coefficients of the
N-scheme. Moreover, if the expressions (2.49) and (2.50) are compared with the
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original formulation of the PSI-scheme, equation (2.41), one can see both schemes
are identical. However, the formulation with a limiter function is more general,
because other limiters than minmod can be chosen.

Since both the limiter and its arguments are continuous functions, the PSI-
scheme, or limited N-scheme, is continuous.

2.3.3 The upwind finite-volume scheme (P,C)

The upwind finite-volume scheme is the scheme used in finite-volume upwind
solvers on unstructured grids, see e.g. [11, 13]. Usually it is combined with a
nonlinear reconstruction phase to obtain second or higher-order accuracy and to
maintain the positivity property [15, 12, 133, 33]. There are several variants of the
scheme, for example cell-centered, vertex-centered on the median dual and vertex-
centered on the centroid dual. Here only the residual distribution formulation of
the vertex-centered scheme on the median dual cell is discussed. It is easy to verify
that this scheme is identical to the finite-volume scheme on the median dual grid.

Consider the cell T and the scaled normals of the dual grid, see figure 2.10.
These normals are given by:

- 1 - -
Ni2 = -6 (nz - nl) 1y (251)
L 1 .
nas = ¢ (s — 72), (2.52)
- 1 g -
a1 = g (7 — 7i3), (2.53)

where the scaled normals 7, fi; and 7i3 are defined in (2.4), (2.5) and (2.6) respec-
tively. The corresponding upwind parameters k;3, k23 and ks, are given by:

kim = uinim, . (2.54)
The cell residual can be rewritten as:

Ry = k12 (¢2 — 1) + ks (¢3 — ¢2) + ka1 (¢1 — ¢3) - (2.55)
The distribution to the three nodes is given by:

RYY = ki3 (¢ — 1) + ki (b1 — ¢3), (2.56)

RV = k3, (¢3 — ¢2) + Kz (62— 41) (2.57)

RyY = k3, (61 — ¢s) + kifz (¢3 — 2) - (2.58)

As before the superscripts * and ~ mean max(0, .) and min(0, .) respectively. Posi-
tivity and continuity are clearly seen, as well as the fact the scheme is not linearity
preserving and not multi-dimensional upwind.

A linearity preserving version of the scheme can be obtained by applying the
limiter function described in section 2.3.2 to the first-order scheme.
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3 3
L2
------- 1
L3
1
2 2
Figure 2.10: Cell T and scaled nor- Figure 2.11: LDA scheme in case of
mals of the dual grid. two positive inflow parameters.

2.3.4 The LDA-scheme (MU, LP,C)

The distribution coefficients for the LDA (Low Diffusion A) scheme [119] are given
by:

LDA kit
wa - K (2.59)
2 ka
mz=1
where k" has the same meaning as in section 2.3.1. The definition (2.59) shows
that BFPA is bounded between 0 and 1 and is independent of the solution ¢y,.
Consequently the LDA-scheme is a linear multi-dimensional upwind scheme, which
satisfies the linearity preservation property. As a result of Godunov’s theorem the
scheme therefore cannot be positive.

Note that if only one inflow parameter &, is positive, the LDA, the PSI and the
N-scheme are identical and the contributions of such triangles satisfy both the lin-
earity preservation and the positivity property. However, if two inflow parameters
are positive, the schemes differ. The geometrical interpretation of the LDA-scheme
for this case is depicted in figure 2.11, where it is assumed that k; is negative and

ks and ks are positive. BLPA and BEPA are defined by:

L L
LDA _ 2 LDA _ 3
2 Ly+ Ly 7 Ly + Ly’ (2.60)

in which L, and L3 are the lengths of the line segments shown in figure 2.11. For
the continuity property the same argument holds as for the N-scheme.

2.3.5 The Galerkin-scheme (LP,C)

The Galerkin finite-element scheme is obtained by choosing the weight function
w; in equation (2.9) identical to the nodal basis function N;. For linear advec-
tion on a linear triangle it has been shown in section 2.1 that any finite-element
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scheme can be written in a residual distribution form. For the Galerkin method
the distribution coefficients are:

GAL _ % (2.61)
In section 1.2 it has been shown that a central discretization of the advection
terms, which is identical to the Galerkin method, is unstable for pure advection,
and artificial dissipation terms must be added, as is done in the Lax-Wendroff and
the SUPG schemes discussed below, to stabilize it.

2.3.6 The Lax-Wendroff-scheme (LP,C)

Roe [100] showed that the Lax-Wendroff scheme could be interpreted as a residual
distribution scheme with distribution coefficients:

1 At
LW _ s+ Eg;k" (2.62)
where St is the area of the triangle, k; the upwind parameter and At a cell time
step, which introduces some arbitrariness into the scheme. The cell time step
should not be confused with the nodal time steps (2.28). The former defines the
distribution to the 3 nodes, while the latter is used to progress in time. In this
work the cell time step is taken according to Rudgyard’s definition [103]:

Ai = Vc-fﬁ—, (263)

3 |km
m=1
which leads to:

1 k . ‘ :
W . (2.64)

3
S kol
m=1
In equations (2.63) and (2.64) v, is the cell CFL number, usually chosen between ;
and 1. The choice v, = 2 makes the scheme (2.64) identical to the Upwind Control
Volume scheme of Giles et al.[42].

2.3.7 The SUPG-scheme (LP,()

Two different types of methods can be identified to stabilize the Galerkin method
for advection problems. The first type is the Discontinuous Galerkin (DG) method
in which a Riemann flux function along element edges is used for stabilization.
Consider the scalar conservation law

¢  8f; '
w+ o =0 (2.65)
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on a computational domain subdivided into arbitrary elements §2;. In the spatial
DG method the solution inside each element is approximated by the expansion:

= }A'L‘ wed, 4(t). (2.66)
k=0

A usual, but not necessary, choice for the degrees of freedom ¢q,  is such that
equation (2.66) is a Taylor series expansion around the centroid of {};. The idea
of using the gradient of the solution as an additional unknown has also been
used in finite difference schemes, see [130]. The classical Galerkin formulation of
equation (2.65) becomes:

{ j /ﬂ w (Zwka“s"f"‘ ai)dn} (2.67)

In contrast to the standard method, DG uses integration by parts on the divergence
term. In combination with the fact that the basis functions w; are only nonzero
in element €};, equation (2.67) becomes:

I/ .szwka"S“’ an - | fn Our S fidf + f w fRds; = 0. (2.68)
5k

Here ds; are the components of the outward pointing surface normal and fF is
an (approximate) Riemann flux function, which enters the formulation, because
the expansions (2.66) are in general discontinuous over the element boundaries.
This Riemann flux function ensures stability due to the upwind biasing. Note
that for N = 0 in the expansion (2.66), the spatial DG method is identical to the
first-order, cell-centered finite-volume method. The DG method is not used in this
work and the interested reader is referred to [24, 5] and references therein or to
[69, 70] for a space-time DG method.

A different approach for stabilizing the Galerkin method is to introduce upwind
biasing in the Petrov-Galerkin weight function w;, see equation (2.8). Here only the
Streamline Upwind Petrov Galerkin (SUPG) method is discussed. An overview of
other stabilized Galerkin methods can be found in [80, 81]. In the SUPG method
[19, 57] the weight function w; is defined as:

w; = N+ Tu.'aa—l.:;‘-, (2.69)
where 7 is the SUPG intrinsic time scale, which for pure advection is given by:
h
= . 2.70
2l (270

For advection-diffusion problems this expression is multiplied by a function [80],
such that it returns to the Galerkin discretization in the case that the cell Peclet
number is less than one. This is equivalent to the hybrid approach, described in
section 1.3.2.
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For linear triangles, use can be made of the relation (2.13), which results in the
following distribution coefficients:

1 hk

SUPG !

== ——, 2.71
! 3 2 ||uHST ( )

Both in this equation and in equation (2.70) A is a typical length scale of the cell.
The usual definition is the maximum side length, although different definitions can
be used in practice [80]. Comparing (2.71) with the distribution coefficient of the
Lax-Wendroff scheme, equation (2.62), shows that both schemes are identical if
the following time step definition for the Lax-Wendroff scheme is used:

At=-T (2.72)

|ful]

From equation (2.71) it is clear that the SUPG-scheme is linear and the fUF¢
is bounded. Consequently the scheme is not positive and an artificial dissipation
term can be added to overcome this problem [60]. When certain simplifications
are made, the scheme can still be cast into the residual distribution form:

1 hk; i e
SUPG+AV _ L K2
B; 3ol S T B S (2.73)
where the artificial viscosity & is defined as:
i sgn(Rr)
— = Coh———. 2.74
R Z (274)

For reasons of clarity the vector notation has been used in equations (2.73) and (2.74)
instead of the tensor notation with the summation convention. The sgn function
in (2.74) is given by:

-1 ifr<0
sgn(r)=¢ 0 ifr=0 (2.75)
{ 1 ifr>0

The constant C; in the artificial viscosity A is usually set to 0.5. A numerical
accuracy study of a smooth advection problem [84] shows that the addition of
the artificial dissipation term degrades the order of accuracy from 2.2 to 1.6, the
consequence for demanding monotonicity. The same study showed slightly less
accuracy and stability for the SUPG-scheme with artificial dissipation compared
to the PSI-scheme.
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2.4 Treatment of non-constant advection speeds

From the definition of the schemes in the previous section it is clear they use a
constant advection speed per cell and especially the positivity property heavily re-
lies on this fact. However, most problems have non-constant advection speeds and
a way must be found to overcome this contradiction. This section introduces the
conservative linearization technique, which locally linearizes the advection speed
in such a way that the schemes are still conservative.

Consider the scalar conservation law:

9¢ 3

3 + B2, =0, (2.76)
where f; = fi(¢) are the flux functions. The cell residual Rr is given by:

Rr = / / zf dT = }4 Fntdr, (2.77)

where T is the edge of T' and n$** the component in the z;-direction of its outward
normal. The expression for Ry of equation (2.1) in case of a constant advection
speed 1is:

Rr =u; / /T GdT = u }4 éngdl. (2.78)

As ¢ is assumed to vary linearly over the triangle, only P1 elements being consid-
ered in this work, the integral in equation (2.78) is fixed and equals the expression
given in (2.15). The idea now is to find a cell-average advection speed u; such that

. ext e 1y EXE
&; }f $ns*tdl = fi fne<tdr, (2.79)

i.e. equations (2.77) and (2.78) are required to be equal under the assumption of a
constant advection speed @; per cell. Note that the conservation constraint (2.79)
does not completely determine @; in multiple space dimensions and usually equa-
tion (2.79) is applied dimension by dimension. The degree of freedom left is the
quadrature rule for the flux integral in equation (2.79). If f; is a nonlinear function
of ¢ usually a different quadrature rule than the trapezium rule must be used to
avoid instabilities. In general it is quite cumbersome to find a cell-average state
ii; which obeys (2.79). However, if f; is a quadratic function of ¢ a very simple
analytical expression can be obtained. This is a severe restriction, but as will be
shown in chapter 5, the perfect gas Euler system belongs to the class of equations
having quadratic flux-functions.
In this case the cell residual Rr, equation (2.77), can be rewritten as:

J) - [l
([ 2 s (st 2

(2.80)
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Here use is made of (1): ¢ varies linearly with z;, (2): u; = %% is a linear function
of ¢ and (3): the integral of a linear function over a triangle is the arithmetic
average of that function times the area.

As an example, consider the two-dimensional Burgers equation in conservation

form:

o 0i8 04 _

5" ox T = (2.81)
and its quasi-linear version:

¢ 04 3¢ _

Sttt o, =0 (2.82)

It is obvious that only the z-component needs to be considered. Assuming a linear
variation of ¢ over the triangle depicted in figure 2.1 results in:

iy fr ¢ngdl' = %ﬁz (111, + Pana, + dans,) (2.83)
and:
§ stnsar=—rz [41 +4(45%)
o [+ 4(24%) + 4]
=2z (42 - dado) + 2= (6] — dudr) + 2= (83 — duhn)
=4 (61 + b2 + 3) (171, + dana, + dana,),

where relation (2.7) and the Simpson quadrature rule, which is exact for this case,
have been used. Comparing equations (2.83) and (2.84) it is clear that 4, is given

by:

ol - [0+ a(212) + g

(2.84)

Be= 5 (i +atd), (285)

i.e. the arithmetic average of the 3 nodal values.

2.5 The advection-diffusion equation

The Petrov-Galerkin interpretation of the residual distribution schemes allows a
straightforward extension of the discretization technique to the advection-diffusion

equation:
9¢ + u,-—(?—(?i 9 (ug—j) = 0. (2.86)

ot dz; Ox;

.
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Here u; is the advection vector and v the positive diffusion coefficient. Multiplying
equation (2.86) by the weight function w; and integrating over the computational
domain { results in:

[ [[wmuiin- [[wZ(vit)am=0 @

Defining the neighborhood € as the part of the domain where w; is not zero, see
figure 2.3, making use of the relation:

a¢ a a¢ 8w¢ aqS
s ( ax,) 0z (w’”?‘)—x?) ~ 92" B, (2.88)

and using the Gauss theorem, equation (2.87) becomes:

// wla¢dﬂ+2//w1u, o 0+

TG“ (2.89)

% ) e - f g0

Tey

The first two integrals in equation (2.89) are known, for their discretization has
already been discussed in previous sections and will not be repeated here. In this
work either Dirichlet or homogeneous Neumann boundary conditions are assumed
and consequently the contour integral, which enters the formulation through the
integration by parts, vanishes.

The residual distribution analogy of the Petrov-Galerkin discretization, sec-
tion 2.1, provides a relation between the weight function w} and the distribution
coefficient 3, see equation (2.17). Here the superscript T has been used to in-
dicate that this relation is only valid for triangle T'. The integral equation (2.17)
does not determine w{ uniquely and an assumption must be made about its shape.
Following the SUPG scheme, where for P1 elements the weight function is equal
to the Galerkin weight function plus a constant, see section 2.3.7, w; becomes:

wizy)= ¥ wl(@y) = Nizu)+ 3 (67 - 3) o (z,). (2.90)
TeQ Tey
Here Ny(z,y) is the nodal basis function (= Galerkin weight function) and
a®(z,y) = 1 inside triangle T and 0 outside.

As can be seen in equation (2.89), only the derivatives of w; appear in the dis-
cretization of the diffusion term. As a result of the form chosen in equation (2.90)
for w;, this reduces to the gradient of the Galerkin weight function. This leads,
together with the discrete advection term, to the complete semi-discrete form of
equation (2.87) at point {:

d¢l Z ( ,mv lvta) = 0’ (2’91)

Te,
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in which
R, = 6] Rr (2.92)
and
Bl = siti-v Za: G (2.93)
’ 2 257

m=1
In (2.93) use has been made of equation (2.13).

To determine the condition which ensures the local positivity for pure diffusion,
RY,;, is rewritten as:

Bl iy = =5t (8= fm) im + (61— ) ], (2.94)
T

wherein [,m,n are a cyclic permutation of 1,2,3. Comparison with the positiv-
ity definition (2.24) shows the Galerkin discretization for pure diffusion is locally
positive if the scalar products between the inward scaled normals are negative or
zero, a condition which is met by triangles whose maximum angle does not ex-
ceed 90°. This is a severe restriction for the grid generator, especially in three
space dimensions. In practice this condition is relaxed quite a lot for two reasons:
(1) global positivity is less restrictive than its local form, see [11] where it has
been demonstrated that the Galerkin discretization for diffusion is globally posi-
tive for a Delaunay triangulation, and (2) the viscous applications in this work are
advection-dominated flows and so the overall coefficient ¢, in equation (2.24) is
mainly determined by the advection part, which, for a positive scheme, is positive
for any kind of triangle.

The diffusion term also has an influence on the time-step restriction, which
becomes:

CFLS; _ 1

b
Aty 7%, restriny! + restry;s’

(2.95)

where restr;,,’ is the inviscid time step restriction per triangle, obtained by apply-
ing equation (2.27) for each cell, and restry;s' is the diffusive time-step restriction,
which is given by:

= 112
v|n
restrvis' = u Slql-l

This is the result of applying the alternative positivity definition (2.26) in combi-
nation with the forward Euler time integrator to Ry s, equation (2.93).

To maintain the second-order accuracy for low cell Peclet numbers, a blending
between an upwind (biased) and the central discretization of the advection term
should be applied, as described in section 1.3.2 or reference[80]. However for the
high Reynolds number applications of this work, chapter 6, the solutions did not
show any improvement due to this blending and therefore all results are computed
without it.

(2.96)
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Figure 2.12: A generic tetrahedron with inward scaled normals.

2.6 Advection schemes in 3D

This section extends the schemes presented in section 2.3 to three space dimensions
on linear tetrahedra, see figure 2.12. The inward scaled normals for this node

numbering are given by:

iy = %(54 — &) % (#s - F), (2.97)
iy = %(53 _E) X (Fa—F1)s (2.98)
i3 = %(“4 — &) x (&2 — &), (2.99)
iy = % (o= 1) x (32— ). (2.100)

Here 7; is the position vector of node .
As stated earlier, the distribution formulae to the nodes are identical in form to

their 2D counterparts. However, the geometrical interpretation, especially for the
N- and LDA-schemes, become more complicated and configurations occur which
do not have a 2D counterpart. Earlier publications about these 3D advection
schemes are [17, 30, 31, 16, 87].

The upwind parameters in three space dimensions take the form:

k, = %u.-np,.. (2.101)

Compared to the 2D case, equation (2.16), the factor 3 is replaced by %, a conse-
quence of the integration over the faces of the tetrahedron. The expression for the
3D cell residual, for constant advection speed u;, and assuming a linear variation

of ¢, becomes:

8 4
Rr = u; / /T E%dT = k. (2.102)

mz=1
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2.6.1 The N-scheme (MU,P,()

The general formula for the N-scheme distribution to the nodes is

Rl = kf (61— ¢in), , (2.103)
where
1 4
Gin = —5—— 3, kmm. (2.104)

2 k; m=1 .-
m=1

Depending on the situation, one, two or three nodes receive a contribution. The ge-
ometrical interpretation for the three and two target cases are shown in figure 2.13.
Starting from the inflow point, the advection vector is split into the necessary num-
ber of components and the residual for the target node is obtained by replacing
the true advection vector by one of these components in equation (2.102). In the
case of two target nodes, and consequently also two inflow nodes, the inflow point
is located on the line segment connecting the inflow nodes, see figure 2.13(b). The
coordinates of the inflow point, Z;,, are determined by:

Tin = 22— (2.105)

where &, is the position vector of node m.

=4

(a) three target (b) two target

Figure 2.13: N-scheme configuration for (a) three target and (b) two target nodes.

R



2.6. ADVECTION SCHEMES IN 3D 47

2.6.2 The PSI or limited N-scheme (MU, LP,P,C)

For the nonlinear schemes the limiting approach is followed, see section 2.3.2, in
which a positive, first-order scheme is converted into a nonlinear, positive, linearity-
preserving scheme. As the N-scheme is the most accurate of these first-order
schemes, attention will be restricted to nonlinear schemes based on the N-scheme,
although the following limiting technique can be applied to any positive, first-order
scheme.

The situation in three dimensions is more complicated than in two, because the
N-scheme can have three targets, see previous section. The analysis in section 2.3.2
is only valid for two targets and consequently the theory must be extended. This
was done by Sidilkover [110] for three targets. Below the extension to an arbitrary
number of targets is given.

Suppose the N-scheme has n targets and the corresponding sub-residuals are
given by RY, 1 <! < n. Define the quantity @ as:

SR

k=1

Q=—2 (2.106)
RY + L [R]S
e
where
RY, if sgn(EY) = sgn(BY)
[Relf = (2.107)
, otherwise
and
0, if sgn(R}) = sgn(RY)
[Re]; = (2.108)
—RY, otherwise
or
[Ri]; = [R]f - BY. (2.109)

The sgn function is defined in equation (2.75). Then the limited subresiduals are
given by:

RN = RY + Y ¥ (Qx) R, (2.110)
ey
where ¥(r) is a limiter, for which identical conditions apply as in 2D. See [110] for
the details about the proofs of positivity and linearity preservation for a general
limiter. )
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If the minmod limiter (2.47) is used, equation (2.110) can be simplified. With-
out loss of generality suppose that the residual of target nodes 1 to p have the same
sign and opposite to the sign of the residuals of the targets p+1 to n. Furthermore,
assume that the following relation holds:

)4 n
D RI|>| 3 R
k=1

k=p+1
It is easily verified that in this case the quantities @), equation (2.106), simplify
to:

> . (2.111)

> B
k=p+1
Q,:—-—-—zg-:—-—N— =qa, [|= l.p (2112)
R
k=1 .

P
> RY
Q=—-+t =

> Rk

k=p+1

R |m

, l=p+1ln (2.113)

Due to the assumption (2.111), a is bounded between 0 and 1 and consequently:

yminmed (QN—q, [=1.p (2.114)
lI’min'mOd (Ql)=1’ l =p + l..n. (2115)
The limited subresiduals, equation (2.110) then become:
p n N
RN=R +Y aR{+ Y R =R'(1-a)= ,’3' Ry, l=1.p (2.116)
el ik > B
k=1
P n
RN=R+> aRy+ > Ry =0, I=p+1l.n (2.117)
k=1 k;;-iil
The cell-residual Ry is given by:
Rr=)_Rj. (2.118)
k=1

Equations (2.116) and (2.117) can be combined, resulting in:
N
R})SI - max (0’ ﬁl ) R

= (2.119)
E max (0, ﬂ,rf)
k=1

Ty
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identical to the original PSI-scheme formulation (2.41). Clearly the distribution
coefficients are bounded between 0 and 1 and the scheme is linearity preserving.
Also the positivity proof is straightforward. Equation (2.119) is rewritten as:

PSI
RPS = PSR, = _ﬂlﬁ— RY. (2.120)
0< l<1

Thus the distribution of the PSI-scheme is obtained by multiplying the positive
N-scheme distribution by a nonlinear factor, which lies between 0 and 1.

2.6.3 The upwind finite-volume scheme (P,()

As in 2D, the normals of the dual grid can be constructed from the inward scaled
normals, given in (2.97) to (2.100):

1
i = — (i, — 71) - 121
ny 12(n 'nz) (21 )

The cell residual Ry in terms of these dual grid normals reads:

4 4
Rr=Y 3 kim(¢m—9), (2.122)
I=1 m=i+1
where
kim = uittim;.. (2.123)

The distribution to the nodes for the upwind finite-volume scheme is then

4
B =3 ki ($m — 1), (2.124)
il
where use has been made of the fact that ki, = —kmi.

2.6.4 The LDA-scheme (MU, LP,C)

The distribution coefficients for the LDA-scheme in three space dimensions are
defined as:

K

4
> kn

=1

LDA — (2.125)

3

3

From this definition it is seen that BMPA is bounded between 0 and 1. As for
the 3D N-scheme the possible number of targets is 1, 2 and 3. The geometrical
interpretation for the last two cases is shown in figure 2.14 and 2.15 respectively.
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[

Figure 2.14: LDA-scheme configuration for two target nodes

In these figures &y, is the inflow point, equation (2.105), and Z,y¢ the outflow point,
for which a similar formula exists:

4
> Kl im
m=1
— (2.126)
k

m

g —
Tout =

m=1

The distribution coefficient AFPA is equal to the ratio of subvolume V}, see fig-
ures 2.14 and 2.15, and the volume of the entire tetrahedron.

2.6.5 The Lax-Wendroff scheme (LP,()

The distribution coefficients of the 3D Lax-Wendroff scheme are:

1 At
w_ 1, Aty .
i 1 + YA (2.127)
where At is the cell time step and V7 the volume of the tetrahedron. As in two
space dimensions, Rudgyard’s definition [103] of the time step is used, which in

Figure 2.15: LDA-scheme configuration for three target nodes
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3D becomes:
3IV;
At = vy —. (2.128)
> kml
m=1
This results in:
1 k
= e — (2.129)
> lkm
m=1

Again v, is the cell CFL number, which must be chosen between % and 1.

2.6.6 The SUPG-scheme (LP,C)

Exactly the same modification to the Galerkin weight function is used as in 2D,
see section 2.3.7. The result in the residual distribution form is:

1 hk;
SUPG
==+ . 2.130
e T (2.130)
The addition of the nonlinear artificial dissipation term leads to:
1 hk; i1V

(2.131)

SUPG+AV
=2+ +— :
A 1T oS TR v

where the definition of the artificial viscosity & is identical to the definition in two
dimensions, equation (2.74).

2.7 Summary of the advection schemes

Table 2.1 summarizes the properties of the scalar schemes discussed in this chapter.
It is clear that, of the schemes considered, only the PSI-scheme obeys all design
criteria of section 2.2.

Multi-dimensional | Positive | Linearity | Continuous
upwind preserving
N-scheme yes yes no yes
PSI-scheme yes yes yes yes
Finite Volume scheme no yes no yes
LDA-scheme yes no yes yes
Lax-Wendroft scheme no no yes yes
SUPG-scheme no no yes yes

Table 2.1: Properties of the scalar schemes.
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Chapter 3

System schemes

The goal of this work is the development of a robust multi-dimensional upwind
discretization technique for non-commuting hyperbolic systems in general and the
compressible Euler and high-Reynolds-number Navier-Stokes equations in partic-
ular. The former set of equations is hyperbolic in time, while the latter becomes
hyperbolic in time in the limit Re — co. Consequently the discretization technique
for scalar advection, given in the previous chapter, must be extended to systems.

The early attempts of Roe, Deconinck and co-workers [26, 117, 120, 29, 85]
were based on characteristic decompositions, i.e. finding characteristic forms of
the governing equations which minimize the coupling terms, see equations (1.61).
Next, the scalar schemes were applied to this ”characteristic set” of advection
equations where the coupling terms were treated as source terms. As it is impos-
sible to discretize these terms, which are only zero for a commuting system, in a
positive manner, instabilities inevitably occur at places of steep gradients. This
leads to failure of the method and therefore the characteristic decompositions do
not provide a very robust discretization technique.

A different approach has been followed here. Based on the observation that
system generalizations of the scalar Lax-Wendroff and SUPG schemes exist since
a long time [103, 49], an attempt has been made to extend the multi-dimensional
upwind scalar schemes to systems. This is the main contribution of this thesis
towards the development of a robust multi-dimensional upwind method. In this
respect also the work of Sidilkover [109, 108, 110] must be mentioned, although
his schemes are not multi-dimensional upwind in the sense of the definition given
in section 2.2.1.

3.1 General concepts

Consider the hyperbolic system in time:

au au

53
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Here U is a vector with NV elements and the N x N Jacobian matrices 4; do not
commute. As system (3.1) is hyperbolic in time, the generalized upwind parame-
ters K,

=1
~ 4

where d is the number of spatial dimensions, have a complete set of real eigenvalues
and eigenvectors. Consequently K; can be written as:

Kl Ainl.'a (3.2)

K = RIAL, (3.3)

where the columns of R; contain the right eigenvectors, A; is a diagonal matrix of
the eigenvalues and L; = R'. The matrices K;* and K|, generalizing the scalar
coefficients k;" and k&, are defined as:

K = RAYL, Ki = RA7L. (3.4)

Here A} contains the positive and A the negative eigenvalues: AF = 1(A; % |A)).

As for the scalar case, the cell residual Ry, which is a vector now, is obtained by
integrating the spatial part of equation (3.1) over the control volume T, a triangle
or a tetrahedron, resulting in:

Rr= / fT A;g—ZdT s
= }g _Am UOT. (39)

Assuming A; constant per cell, and a linear variation of the elements of U (or
equivalently integrating the contour integral of equation (3.5) with the trapezium
rule) gives:
d+1
Ry =3 K. (3.6)
=1
Exactly as for the scalar case, fractions of Ry are distributed to the nodes and the

nodal updates are obtained by assembling the contributions of all cells, leading to
the semi-discretization:

dU{ 1 T
Also for the system case the mass matrix approximation (2.12) has been used. The
coefficients 37 are now matrices and for consistency E BL = I (although this is

not entirely true as will be shown in section 3.3.2), where the summation extends
over the d + 1 vertices of the cell.
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3.2 Properties of the system schemes

This section generalizes the scalar properties of Positivity and Linearity Preser-
vation to systems and introduces the new property of Invariance for similarity

transformations.

e Positivity
The generalization of the scalar property, described in section 2.2.2, is straight-
forward. Rewrite the semi-discrete form (3.7) of equation (3.1) as

dg‘ + 3 Cin (Ui = Un) =0, (38)

Then the scheme is positive if all the matrices Cj,, are non-negative, i.e. all
their eigenvalues are positive or zero.

e Linearity Preservation
This is the ability to reproduce linear steady-state solutions exactly, also
called k-exactness for linear polynomials. As in the scalar case this is satisfied
if no updates are sent to the nodes when the cell residual Ry is zero. This
implies that the eigenvalues of the distribution matrices 3] are bounded.

e Invariance for similarity transformations
An important design property of the system distribution schemes is that
the residual sent to the nodes in conservative variables U, RY, is indepen-
dent of the choice of variables for which the actual distribution is performed.
Consider a set of characteristic variables W, defined by the similarity trans-
formation:
ow

OW = —=7-0U. (3.9)

The hyperbolic system (3.1) transforms into:
ow ow

vy + B‘?x_,- =0, (3.10)
where
ow  oU
B; = 30 A i (3.11)
The invariance property requires that the following relation between the
residual in conservative variables, RY = S/ RY, and in characteristic vari-

ables, R} = B}V RY , is satisfied:

aUu
RV = a—WR,W. (3.12)
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From equations (3.1), (3.6), (3.10) and (3.11) it is clear that the following
must hold:

Rl = g—g/}?}” ) (3.13)

Combining this with equation (3.12) results in the following requirement for
distribution matrices for the different set of variables:

ﬂW_B_W_ﬂUB_U ﬁU_a_U UQ_VK
toauTtow TP T awtt au

For a commuting system, this property has as result that the discretization
of the system (3.1) by system schemes equals the discretization of the charac-
teristic system (3.10), which is a set of scalar advection equations, by scalar
schemes and transforming the result back the the conservative variables U.

(3.14)

For the non-commuting case, the consequence of this invariance property
is that characteristic decompositions, the early attempts to discretize the
Euler equations, based on similarity transformations, such as the pseudo-
Mach angle model [85] or the Deconinck-Hirsch decomposition [26] all lead
to the same result. Furthermore, if in a certain set of characteristic variables
an equation is fully decoupled, for example the entropy equation in the Euler
equations, this is automatically detected by the system scheme and there
is no need to transform the governing equations to this particular form,
although in practice this is usually done for reasons of efliciency.

3.3 System schemes

This section presents the expressions for the system versions of the scalar schemes
presented in the previous chapter. This generalization turns out to be straight-
forward for linear schemes, but it poses some severe problems for the nonlinear
limited schemes.

3.3.1 The system N-scheme

This scheme, see [126, 128, 127], has been developed to overcome the stability
problems of the characteristic decompositions near strong discontinuities and on
high aspect ratio cells. For the system (3.1) the distribution to node ! of the
scheme is defined as:

Rl;l = K,+ (U — Urn), (3.15)
where U,

d+1 -1 441
Ui = (Z K,;) > K Un, (3.16)
m=1

m=1
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is the generalized inflow state, see equation (2.39) for the scalar case. The matrices
K and K[ are defined in (3.4). An alternative formulation is obtained when
equations (3.15) and (3.16) are combined:

d+1 d+1 -1
= E Cim (U[ - Um) , Cim= KI+ (E Kk—) K, (3.17)
m=1 k=1

-1
Well-posedness of the scheme, that is the existence of (Z Ky ) , is easy to

prove for any hyperbolic system, see appendix A. Positivit; though, that is that
all eigenvalues of Ci,, are positive or zero, is not so evident for a non-commuting
system, as the argument that the product of three positive matrices is also positive
does not necessarily hold. However Barth [14] showed that the N-scheme is energy
stable, which implies positivity. Liu and Lax [68] proved that the energy functional
is the only functional which can possibly be bounded for discretizations of multi-
dimensional hyperbolic systems. This proof, given in appendix B for completeness,
is only valid for a linear, symmetrizable system. Consequently, the system N-
scheme can be used for any hyperbolic system, but it may not be positive if the
system is not symmetrizable. Most systems, which model a physical conservation
law, possess a convex entropy function, and can be symmetrized by their entropy
variables [45]. The Euler equations equations belong to this class of symmetrizable
systems, see e.g. [45] and appendix C.

The invariance for similarity transformations is easily shown. As the system
N-scheme is a first-order scheme, it is more natural to show that equation (3.12)
holds rather than (3.14). For the generalized upwind parameters of equation (3.10),
KV, a similar relation holds as for its Jacobian matrices B;, see equation (3.11).
Consequently

BW Ku:t aU
ToUuT! awr
Hence, the update in conservative variables U, when the distribution is calculated
in characteristic variables W, is given by:

Kz (3.18)

RF gg,K ( - m)
ouU KW+ oW oU (Wi = W) (3.19)

T W aUu aw
= K" (Ui - Usn).

This is identical to equation (3.15), which is obtained by applying the scheme
directly to the variables U.
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3.3.2 The system PSI-scheme

As explained in section 3.2, the consequence of the similarity transformation in-
variance property is that for commuting systems the result of the system schemes
equals the transformed result of the scalar schemes applied to the characteristic
form (3.10). Consequently the following relation must hold for A7

PSI ey N+ 7 N+
; =(Zﬂm) Nt (3.20)

m=1
where
oU 8W
N _
Dis a diagonal matrix with the k** element df given by:
I*. RN
k
di = Ry (3.22)

I¥ are the rows of 2% and Jehd 7 is the matrix based on the positive eigenvalues of the
distribution matrix ,3, Note that the elements of D; are the scalar distribution
coefficients of the the characteristic system (3.10).

For a non-commuting system the limiting procedure (3.20) can be applied as
well. However the B are now implicitly defined by:

RY = gNRy, (3.23)

where the expressions for RN and Rr are given in equations (3.15) and (3.6)
respectively. As B is a matrix and RY and Rr are vectors, equation (3.23) does
not provide enough equations to determine B uniquely and a certain form must
be chosen. A logical extension of equation (3.21) is:

= RiD\Ly, (3.24)

where R; and L; contain respectively the right and left eigenvectors of the general-
ized upwind parameter K;. The k*" element dF of the diagonal matrix D is given
by:

Ik - RN

d = ¥ Ry’

(3.25)

where IF is the k*" row of L;. In general, for this definition Z AR will not sum up to

m
I. In principle this is not necessary, because to be consistent the only requirement
is:

(; ﬂ:) Rr = Ry, (3.26)

’ -
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expressing that ¥°,, B must have at least one eigenvalue equal to one, with Ry the
corresponding eigenvector. However, for the limiting procedure (3.20) the matrix

d+1
(Z ,Bf‘:) must not be singular and for the formulation (3.24) this is not the case.

m=1
Therefore a correction term is added to equation (3.24),

BN = RiDiL; + B{°, (3.27)

such that ﬁ” = ]. Consequently £f°" must satisfy the following requirement:
m 1 g
m

d+1 d+1
Y B =1-3 RnDpLn. (3.28)
m=1 m=1

Again this is not sufficient to determine 5" completely, but it can be used as a
constraint in a minimization problem, which leads to the following form for 8N:

1 d+1
N = R\D\L; + 71 (1 -Y RmDmLm) : (3.29)
+ 1 m=1

It can be proved that for symmetrizable systems formulation (3.29) has real eigen-
values, because the formulation (3.29) is symmetric for symmetric systems. Fur-
thermore it is invariant for similarity transformations (and therefore it obeys the
one-dimensional limit), it gives the correct expression if a system is diagonalizable
and it is continuous. However its convergence behavior is not satisfactory - it
usually stalls after a reduction in the residual of only two orders of magnitude.

As the limiting procedure (3.20) is expensive (numerical determination of the
eigenvectors and eigenvalues of 8}'), an alternative is to apply scalar limiting in
characteristic residuals, where the characteristic variables must be chosen by the
user. Of course this approach is not invariant for similarity transformations, but
the results are (at the moment) comparable with the matrix limiting approach.
The scalar limiting also suffers from convergence problems.

3.3.3 The upwind finite-volume scheme

The system version of the upwind finite-volume scheme is easily obtained from its
scalar counterpart, see sections 2.3.3 and 2.6.3. The distribution to the nodes is
given by:
d+1
Ri=)Y K, (Un-U), (3.30)

m=1

m#l

where K, are the generalized upwind parameters based on the normals of the
dual grid 7ii,. These normals are defined in equations (2.51) to (2.53) for the
two-dimensional case and in equation (2.121) for three space dimensions.
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3.3.4 The system LDA-scheme

The system LDA-scheme is a straightforward extension of its scalar equivalent,
section 2.3.4:

d+1 1
RIP* = BIPARy = K} (Z K,;*) Rr. (3.31)
k=1

-1
Existence of (Z Kt ) is proved in appendix A for any hyperbolic system. It
k

is easy to verify that for a similarity transformation of the type (3.9) the distri-
bution matrices ﬂ,L DAV and ﬂ,L DAW obey the condition of invariance for similarity

transformations, equation (3.14).

3.3.5 The system Lax-Wendroff scheme

The generalization of the Lax-Wendroff scheme with the time-step definition of
Rudgyard, equation (2.64), reads:

d -1
R{"W = ﬁILwRT = [LI + I/CK,‘ (f IKm|) RT, (3.32)

d+1 m=1

in which v, is the cell CFL number, chosen between % and 1. Note that the time
step definition (2.63) effectively introduces a matrix time step for a system, which

ensures that the scheme is invariant for similarity transformations.

3.3.6 The system SUPG-scheme

The main difficulty of the extension of the SUPG finite-element method to non-
commuting hyperbolic systems is the generalization of the scalar intrinsic time
scale 7, equation (2.70). This generalized stabilization matrix © is easily con-
structed for commuting systems by discretizing the characteristic form with the
scalar SUPG scheme and transforming the result back to the conservative formu-
lation. A consistent approach for non-commuting systems, which for a commuting
system reduces to the previously defined form, was first given in [49]:

o=

0= g(A,-A,-)' . (3.33)

Harten [45] proved that the matrix A;A; is a symmetric positive-definite matrix
and consequently the inverse square root, needed for O, exists.
For linear triangles and tetrahedra the scheme, without nonlinear artificial
dissipation, can be put in distribution form:
supG _ _ 1 K:©

B =gt o (3.34)
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Here St is either the volume of the tetrahedron (3D) or the surface of the triangle
(2D). The addition of the nonlinear artificial dissipation is usually done in a scalar
way, as explained in section 2.3.7. Note that this approach violates the invariance
for similarity transformations.






Chapter 4

The time integration method

The spatial discretization for either the scalar equation, chapter 2, or the coupled
system, chapter 3, leads to a system of ordinary differential equations in time:

dau

= RW), (4.1)
where U = (U;, Uy, ..., Ut ...)T is the vector of nodal states and R(U) the discretized
spatial part. Note that for systems, the nodal states U; are themselves vectors,
with each N elements. In this work, only steady-state problems are considered and
the time dependent equations are just used in an iterative framework to reach this
state. Consequently the accuracy of the time discretization is not important, see
also section 2.1, and time integration methods can be chosen for their robustness
and steady-state convergence behavior properties, rather than accuracy.

A distinction is made between explicit and implicit methods: the former are
straightforward to implement and are quite robust, however the time step is lim-
ited, see equation (2.28), and therefore the convergence to the steady-state can be
slow, especially for high-Reynolds-number turbulent flows. The family of Runge-
Kutta explicit time integration schemes are discussed in section 4.1. On the other
hand, certain implicit methods do not have the time step limitation, at least not
for linear model problems, and the steady-state solution can be reached much
faster. The disadvantage of implicit methods is that at every time step a linear
system must be constructed and solved, which seriously complicates the imple-
mentation. Only one implicit method is used, backward Euler, which is explained
in section 4.2.

For large 3D computations the resources of a single processor are often not
enough to handle the problem and it must be solved in parallel to obtain a solution
within a reasonable amount of time. The parallelization technique, ¢.e. the method
to distribute the load over the processors, is based on domain decomposition and
is discussed in section 4.3.

63
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4.1 Runge-Kutta methods

The m-stage Runge-Kutta time integrator for equation (4.1) is defined by the
following algorithm:

v =yr
UR=UO + o+ AR (UFD), k=1, ,m (4.2)
Untl — U(m)

Here n is the counter of consecutive time levels and o* are constants between
0 and 1, characteristic of the method used. At is the time step and to speed
up the convergence to the steady-state, local time stepping is used, i.e. for every
node equation (2.28) determines the time step. Consequently the time integration
process is not time accurate. Local time stepping is especially effective in cases
where the differences in cell sizes are large.

Furthermore, the coefficients o* can be chosen to optimize the smoothing prop-
erties rather than accuracy. The values given in table 4.1 provide optimal damping
for the scalar N-scheme in combination with multigrid, see [22], and are used in
this work for single grid computations.

Despite the local time stepping technique and the optimal coefficients o, ex-
plicit time stepping is still much too time consuming, especially for high-Reynolds-
number turbulent flows. Therefore, in general, implicit methods are preferred.
There is an exception, namely inviscid supersonic flow with shocks, for which ex-
plicit time integrators become competitive with implicit methods, see section 5.4.2.

m=1a'=1.0

m=2a'=07 |a?=1.0

m=3al=028|a?=061]|a>=1.0
m=4|e'=016a?=032|a>=057|a*=1.0
m=5c'=010|a2=0.21]0>=034 | a*=0.55|a®*=1.0
m=6)a'=007|02=014]0>=023|a*=034|a®*=053 | a®=1.0

Table 4.1: Coefficients for the multi-stage Runge-Kutta time integrators.

4.2 The backward Euler method

The main cause of the slow convergence of the Runge-Kutta methods is the time
step restriction due to stability reasons. If unconditionally stable time integration
methods, i.e. methods which are stable independent of the time step, are used,
a tremendous decrease in computation time can be expected. Unfortunately un-
conditional stability can only be achieved with certain implicit methods, see [25],
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and then only for linear equations discretized with linear schemes. For nonlin-
ear equations, such as the Euler and Navier-Stokes equations, or linear equations
discretized with nonlinear numerical schemes, the information obtained from the
stability analysis is limited and in practice the time step must still be restricted,
albeit to a much higher value than for explicit methods.

A whole class of unconditionally stable time-integration methods can be de-
rived, see [25, 51], which are at most second-order accurate in time. As the time
integration is used as a relaxation method to obtain the steady-state solution,
stability is preferred over accuracy and only the most stable method, backward
Euler, is considered here. Applying this method to the semi-discrete equation (4.1)
results in:

Un+l - Un

At
Again local time stepping is used. If the governing equations and/or the numerical
schemes are nonlinear, equation (4.3) gives a set of nonlinear algebraic equations

for the nodal state vectors U™*!, which must be solved in an iterative manner. If
Newton’s method is chosen, U™*! is obtained by the algorithm below:

v =y~

=R(U™). (4.3)

I _OR (4 -
35~ 00| (00 0) - m
R (V%) 'ZIY(U(k_l)_U(O))’ k=1, ,m

Un+1 = U(m)

Here I is the identity matrix and m is the number of Newton steps to solve
equation (4.3) to a desired accuracy. In every step of the method (4.4) a linear
system of equations must be solved. This can be done by either direct solvers,
based on Gaussian elimination, or by iterative solvers. For the problems considered
in this work, direct solvers are too expensive in both memory and computation
time and iterative solvers must be used, see section 4.2.2. The result is that three
nested loops can be distinguished to solve the steady-state problem R(U) = 0,
see figure 4.1. The first loop is the time-integration process, the second is the
Newton loop to solve the nonlinear system (4.3) for every time step and the third
is the loop to solve the linear system (4.4) for every Newton step. It must be

do m = 1, #time-steps Time loop
do k = 1, #Newton steps Non-linear iterative loop in backward Euler
do 1 = 1, #linear steps Linear iterative loop to solve linear system

Figure 4.1: The three nested loops in the iteration process.
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mentioned that normally the second and the third loop are solved approximately,
because only the outer loop should reach full convergence. To be more specific,
in the second loop usually only one Newton step is taken and the so-called linear
backward Euler scheme is obtained:
I OR

- n n+l _ ) — n

[At 7 (U )] (u Um) = R(U"). (4.5)
Equation (4.5) is a linear system of equations for U™*!, which must be (approx1~
mately) solved.

4.2.1 Jacobian computation

Implicit methods such as backward Euler! require the use of a so-called Jacobian
matrix ZZ(U), which contains the derivatives of the nodal residuals with respect to
the nodal state vectors. For reasons of clarity, the following notation is introduced:
R,(U;,U,,) denotes the nodal residual at node [, which is a function of the state
vector at node I, U;, and of U, all the state vectors at the nodes m, being the
nearest neighbors of /. Due to the compactness of the stencil of the spatial dis-
cretization, see chapters 2 and 3, only the nearest neighbors need to be considered.
The backward Euler method in node [ then reads:

I BRI(UI,U BR,(U,,
|2 - 22 av- 5

where AU, = Ut — U2, Note that, because U, is a vector, %‘: is a dense
matrix whose number of rows and columns equals the number of elements of U,
and U,, respectively. Consequently the global Jacobian matrix & aR 7 is a sparse block
matrix.

The most convenient way to construct the entries g—% in the global Jacobian is

)AU = Ry(Ui,Un), (4.6)

to construct g—U’% locally at the cell level first, simultaneously with the distribution
of the cell residual Ry to the nodes, and next to put them in the correct place in the
global Jacobian. In this work, these local Jacobians, or element stiffness matrices
in finite-element terminology, are determined either analytically or numerically.

Analytical Jacobians

The exact derivatives of the spatial discretization with respect to the nodal states
can be computed analytically. However, given the complexity of both the governing
equations and the numerical schemes, the exact expressions become very compli-
cated and errors are easily introduced in both the analytical derivation and the
computer coding. Therefore only approximate analytical Jacobians are considered

11f in the rest of this work it is mentioned that the backward Euler method is used, it is meant
the linear backward Euler method.
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here. In this approximation a distinction is made between first and second-order
schemes.

For the hyperbolic system (3.1) the first order N-scheme distribution is given
by equation (3.17). For a nonlinear system, the generalized upwind parameters
K; (3.2) are a function of the solution variables because of the conservative lin-
earization, see sections 2.4 and 5.1. Consequently the K;" and K| matrices, oc-
curring in the N-scheme distribution (3.17), should be differentiated to obtain the
correct expressions for the Jacobians. However, if it is assumed that the differences
between nodal states (in space) are small, these quantities are multiplied with a
small vector and can therefore be neglected. Although this assumption is violated
near discontinuities, it turns out to be that the resulting approximate Jacobian is
more stable than the exact Jacobian, especially for moving discontinuities. The
approximate Jacobian, also called the Picard Jacobian, is identical in form to the
Jacobian of a linear system:

d+1 -1
e (Z: K;) K;, m#l (4.7
m k=

d+1 -1
gﬁ’—K, [ - (;1{;) K,‘]. (4.8)

For the Euler equations, the conservative linearization, section 5.1, slightly com-
plicates the situation, although the principle of assuming small differences between
nodal states remains. The N-scheme distribution in combination with the conser-
vative linearization is given in equation (5.15). The Picard Jacobians with respect
to the Z- vana.bles, a;, are easily obtained and must be multiplied with the trans-
formation matrix WL to get the desired expressions a . If the algebra is properly
carried out, equations (4.7) and (4.8) are multiplied by the term 3 (Z)?-ZL
though not done here, this term could be approximated by 7, the 1dent1ty matrlx,
which would be consistent with the assumption of small differences between nodal
states.

For the finite-volume scheme, section 3.3.3, a similar analysis can be done,
which results in:

OR,

o Ky ml (49)
SR d+1

aU: Zl K, (4.10)
m#l

For second-order schemes the distribution to the nodes is given by:

= BiRr, (4.11)

where the distribution matrices §; are bounded. Assuming that the product of the
derivatives of §5; and the cell residual Rr is small and the upwind parameters K;
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are constant, the Jacobians become:
= BiKn. (4.12)

Here use is made of equation (3.6) for the cell residual Ry. For all linear second-
order schemes the approximation (4.12) works quite satisfactorily, but for the
nonlinear PSI-scheme, the N-scheme Jacobians (4.7) and (4.8) must be used for
stability reasons. Numerical experience has resulted in the observation that the
Picard Jacobians work most efficiently for CFL numbers around 100.

Numerical Jacobians

As a result of the approximations of the analytical Jacobians discussed in the
previous paragraph, Newton convergence, even if possible, can never be obtained.
On the other hand, the expressions of the exact Jacobians become very complicated
and an alternative is to compute them numerically. An extensive study by Issman
[51] has shown that a first-order numerical approximation is accurate enough to
keep Newton convergence.

Consider the local Jacobian B—RL Its kth column, ¢.e. the derivatives of R; with
respect to the kP element of Um, can be approximated by truncating the Taylor
series after the first-order term:

OR\ _ Ri(Un+eli) = Ri(Un)
Un), € '

(4.13)

Here (;’—U&-)k indicates the k** column of g%@""— and U, + efk is the state vector U,,,

whose k! element has been perturbed by a small quantity ¢. The value of ¢ is
taken as:

€ = 107 "sign (U, &) max (|Up x| ,0.01), (4.14)
where Up, ; is the k* element of Uy, and the sign function is given by:

. -1 ifr<0
sngn(r):{ I ;fZZO' (4.15)

Equation (4.13) shows that one column of a—[’;‘- can be calculated with one
extra residual evaluation. Consequently, N additional residual computations are
required to determine 5@% completely, where N is the number of elements of U,,.
Due to the compactness of the stencil of the spatial discretization, the Jacobians
can be determined simultaneously with the distribution of the cell residual to the
nodes at the price of N extra residual evaluations per nodal state vector. As the
control volumes, triangles and tetrahedra, have d+ 1 nodes, where d is the number
of spatial dimensions, the complete local Jacobians can be computed numerically

with (d 4+ 1)N additional residual computations. For the 2D Euler equations this
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number equals 12, but for the 3D turbulent Navier-Stokes equations with a two-
equation turbulence model it is already 28. These numbers would be acceptable
if indeed Newton convergence could be achieved. However, in practice this is not
the case when the PSI-scheme is used and also not for turbulent problems, which
require a special treatment to remain stable, see section 6.2.1. Consequently the
numerical evaluation of the Jacobians is too expensive for these kinds of prob-
lems and the approximate forms are used, except for axisymmetric problems, see
section 6.3.1.

4.2.2 Linear iterative solvers

At every time step a linear system of the type Az = b must be solved, see equa-
tion (4.5). The available memory of current computers excludes the use of direct
solvers for the problems considered and iterative solution methods must be used.
As the main interest of this thesis is the development and application of the multi-
dimensional upwind discretization technique and not iterative solution methods for
linear systems, attention will be restricted to general information and the reader
is referred to the references [106, 105, 124, 112, 51] for the details. Moreover, the
linear systems arising in the backward Euler method are solved by the AZTEC
library [50] of Sandia National Laboratories and this library is used more or less
as a black box in the computer code.

The Jacobian matrix of the spatial discretization is not symmetric definite and
therefore algorithms for the solution of general matrices must be used. For this
purpose AZTEC has been equipped with the so-called Krylov subspace methods
such as GMRES [106], Bi-CGstab [124], CGS [112] and TFQMR [40]. Usually
GMRES is the most stable of all methods, but it is also the most expensive in
terms of memory. Bi-CGstab and TFQMR are compromises between stability and
required memory, while the convergence behavior of CGS is normally too erratic
to be a stable method, unless very low CFL numbers (< 10) are used. In this work
GMRES is used in all the implicit computations.

For the efficient solution of realistic linear systems, it is essential to combine
the Krylov method with a preconditioning technique, which transforms the original
system Az = b into the better-conditioned system:

MAz = Mb, (4.16)

where M is a non-singular preconditioning matrix. The M = A~! preconditioner
leads to the solution of the problem in one iteration, but this is not feasible, because
the computation of A~! is more expensive than the solution of the linear system
itself. Therefore M should approximate A~! as closely as possible, while still being
reasonably cheap to compute. At the present time, a standard preconditioner
giving quite good results is the ILU(0) preconditioner, which is also available
in AZTEC. It is constructed from the exact factorization formula of the matrix
A, see e.g. [51], under the condition that the sparsity pattern of the original
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isolines f = constant

Figure 4.2: Method of steepest descent for the function f(z,y) = f;— + {;, a>b.
The arrows indicate one iteration step.

matrix is maintained. This immediately explains the name, as ILU stands for
Incomplete Lower Upper and the 0 means that no additional entries, compared
with the original matrix, are allowed. For systems, for example the Euler and
Navier-Stokes equations, the Jacobian matrix is a block matrix and to be efficient
also the preconditioner should be a block matrix. To make a distinction with the
scalar case, the preconditioner is now called BILU(0), where the B indicates Block.

The BILU(0) method requires the storage of an additional matrix of the size
of the original matrix, which can be too memory intensive for large 3D problems.
Therefore a modified version of BILU(0), BMILU(0), has been implemented in
AZTEC, which only requires the storage of an additional block diagonal, while the
performance only slightly decreases.

To illustrate the effect of preconditioning, the following example is given. Con-
sider the function:

2?2 P

flz,y) = oz + 2 a>>b, (4.17)
for which a minimum must be determined. One way to do this numerically is the
method of steepest descent, shown graphically in figure 4.2. A starting point for
this method is chosen randomly. A step starts off in the direction of the local
gradient, i.e. normal to the isolines, and terminates if a local minimum of f(z,y)
on the line in that direction is reached. This point is the starting point of the next
step and so on, until the gradient vanishes. If a > b, the isolines of f(z,y) are
ellipses with high eccentricity, see figure 4.2, and many iterations must be taken
to reach the minimum. However if one considers the variables:

* = %, ¥ = %, (418)
the function f(z*,y*) reads:
fle*,y) = (=) + (). : (4.19)

The isolines in this transformed coordinate system are concentric circles, see fig-
ure 4.3 and consequently the method of steepest descent converges in one iteration,
independent of the starting point. So by simply scaling the problem, the numerical
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Figure 4.3: Method of steepest descent for the modified function f(z*,y*) = (z*)*+
(y"‘)2 . The algorithm converges in one iteration, indicated by the arrow.

algorithm converges much faster and this is exactly the intention of precondition-
ing. Note that in this particular example the coordinate transformation (4.18)
corresponds with the preconditioner M = A~!, because the preconditioned prob-
lem converges in one iteration, independent of the starting point.

To improve the performance of the preconditioner for the system Az = b, a
node renumbering scheme is used to approximately minimize the bandwidth of
the Jacobian matrix. A simple method with fairly good results is the reverse
Cuthill-McKee algorithm [67]. An example is seen in figure 4.4, which shows
the Jacobian entries of the original numbering, obtained from the grid generator,
and the reordered numbering respectively. The given matrices correspond to a
grid consisting of 4626 nodes for a subsonic channel with a circular bump. The
convergence histories, L2 norm of the density residuals as function of CPU time on
a DEC alpha workstation (EV5.6 processor, 500 MHz), for the system N-scheme
directly applied to the Euler equations are shown in figure 4.5. The linear systems

Figure 4.4: Jacobian entries for the original (left) and reordered (right) node num-
bering.
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——e—— original node numbering
——a— reordered node numbering
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Figure 4.5: Convergence histories for the channel flow for the original and reordered
node numbering.

of the backward Euler time integrator are solved with BMILU(0) preconditioned
GMRES. As can be seen in figure 4.5 the CPU-time is more than halved if the
bandwidth is minimized, so it is definitely worthwhile. This gain in performance is
even more impressive if one realizes that the time to build the Jacobian matrix and
the right-hand side are identical for both problems and the saving only originates
from the linear solver. The heuristic explanation of this observation is simple.
The ILU(0) and MILU(0) preconditioners are obtained by ignoring the fill-in in
the standard LU decomposition. As this fill-in only occurs within the bandwidth,
it can be expected that ILU(0) and MILU(0) are better approximations of LU if
the bandwidth is minimized. Consequently better preconditioners are obtained,
which results in fewer GMRES iterations to solve to linear system.

Two remarks must be made. First, the saving in CPU-time in 3D is less
spectacular than in 2D, because even the minimized bandwidth is still rather
large, although it is always worthwhile. Indeed the Cuthill-McKee algorithm uses
about 2 minutes of CPU-time on the same alpha workstation for a one million
node grid. Second, if the performance of the preconditioner is independent of the
bandwidth, e.g. Jacobi, minimization does not make sense, because the Krylov
solver also performs independently of the bandwidth.
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4.2.3 Memory requirements

From the previous sections it is clear that the fully-implicit backward Euler method
requires the storage of the full Jacobian matrix and, at best, an additional block
diagonal for the preconditioning. Furthermore the Krylov solver itself needs to
store some vectors. Consequently the method can be very memory consuming and
one might question if not too much so.

First consider the 2D case. For a regular grid, be it triangulated structured,
figures 2.6 and 2.7, or unstructured, figure 2.8, the number of nearest neighbors
is 6 and therefore the number of entries in the Jacobian matrix is 7 per node.
Add the additional storage of a block diagonal for the BMILU(0) preconditioner,
some memory for the linear solver itself and miscellaneous things (e.g. nodal state
vectors), one gets roughly 8N? + 35N floating-point values that must be stored per
node. In double precision a floating-point variable is 8 bytes long and therefore
64N? + 280N bytes of RAM are needed per node. For the Euler or laminar
Navier-Stokes equations, N = 4 in 2D, this means 2.1 kbytes per node. Nowadays
a workstation has easily 256 Mbytes of RAM and suppose that 200 can be used for
the actual computation. Consequently on this type of workstations grids up till
about 100,000 nodes can be treated, usually enough for practical computations.
The conclusion of this exercise is that in 2D the memory requirement for the
fully implicit backward Euler method is not an issue to be concerned about. If
the turbulence equations are solved in a decoupled manner, see section 6.2.1, the
additional memory overhead for turbulent computations is in the order of 10% and
almost the same analysis applies.

In 3D the situation is different. The average number of nearest neighbors is
15 and about 17N? + 35N floating-point values must be stored per node, which
requires 136 N2 + 280N bytes. For N = 5, Euler or Navier-Stokes equations, this
results in 4.7 kbytes per node, and consequently roughly 225,000 nodes can be
used per Gbyte of available RAM memory. Jameson [53] concludes that 107 nodes
are needed to obtain a grid-converged turbulent solution for a transonic wing and
thus about 45 Gbytes of RAM would be needed if the fully implicit backward
Euler method is used for such problems. Issman [51] mentions that it is sufficient
to store the Jacobians in single precision (4 bytes), which leads to something like 25
Gbytes for 107 nodes. This amount of memory is only available at a few parallel
supercomputers, which makes the method (at the moment) not practical for so
many nodes. In this work a maximum number of 1 million nodes is used for 3D
computations, and for those problems it is nowadays possible to use a fully implicit
method, albeit in parallel, see next section.

4.3 The parallelization technique

The latest generation of supercomputers, Cray T3, IBM SP2, Intel Paragon etc.
are parallel machines with distributed memory. In order to be able to use them, the
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domain decomposition technique is used. This means that the grid is decomposed
into subdomains and every processor is responsible for at least one subdomain.
Communication is used to exchange information between processors. The AZTEC
library, which has been designed to solve linear systems on parallel computers,
completely hides the details of the communication for the user. The only restriction
is that every processor has one subdomain, i.e. the grid must be decomposed
into the same number of subdomains as processors. This is easily achievable on
unstructured grids as used in this work. The actual decomposition is done with
the graph partitioning software METIS [61], which is public domain software.
AZTEC requires that the domain decomposition is done with the so-called
Vertex Oriented Decomposition (VOD) technique, see figure 4.6. As a result, the
separation between neighboring partitions occurs at the edge-level and nodes are

processor p < processor q

L 4 )

® Update node of processor p
(@ Update node of processor p, external node of processor q
O Update node of processor q
© Update node of processor q, external node of processor p

Figure 4.6: VOD, Close-up of the overlapping stripe and respective mapping onto
processors p and q, update and external nodes.
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assigned to a particular processor, which form its update set. The cut cell is stored
on all partitions/processors, which have at least one node of the cell in their update
set. So in figure 4.6 the shaded cells are stored on both processor p and processor
q. The nodes belonging to cut cells, but not to the update set of a certain processor
are called external nodes, see figure 4.6, and are also stored. These nodes of course
belong to update sets of other processors and communication is needed to obtain
their new values after every time step. As long as these external nodes have the
correct value, all operations to build the residuals and Jacobians for the update
nodes can be carried out in the same way as in the sequential algorithm. As
soon as these operations have been completed, AZTEC solves the linear system in
parallel, in which computation and communication overlap as much as possible,
resulting in a smaller parallel overhead.

The only sequential bottleneck in the parallel Krylov algorithm is the inversion
of the BILU(0) and BMILU(0) preconditioners. For this reason the parallel version
of those preconditioners is modified by ignoring the interdomain links, the symbols
x in figure 4.7. The modified preconditioner can now be inverted domain by
domain and the whole algorithm is fully parallel again. As a result of ignoring
the interdomain links, the preconditioner will perform worse than its sequential
counterpart and the linear solver is expected to need more Krylov iterations to
reach the same level of convergence.

To determine the speed-ups on a different number of processors, Délery’s test

Figure 4.7: Ignorance the interdomain links, indicated by x, for the parallel
BILU(0) and BMILU(0) preconditioners.
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# procs | CPU-time (s) | Speed up | Speed up

w.r.t. w.r.t.
1 procs | N/2 procs

1 2.3910 - 10* - -

2 1.3414 - 104 1.78 1.78

4 7.2687 - 10° 3.29 1.85

8 3.8505-10° | 6.21 1.89

16 2.1043.10° | 10.90 1.75

32 1.2863-10° | 18.44 171

Table 4.2: Speed-ups for the Délery test case C.

case C, a turbulent shock wave boundary layer interaction, see section 6.3.2, has
been computed on 1, 2, 4, 8, 16 and 32 processors of the Cray T3E of the Delft
University of Technology. For comparison, 1500 fully-implicit backward Euler time
steps are taken for the first-order N-scheme, starting from a uniform flow field. To
keep the CPU-times within limits, especially for one processor, a relatively coarse
grid of 10,420 nodes has been used. The results are given in table 4.2. In every
time step the Krylov solver has been terminated as soon as it has converged 2
orders of magnitude.

The following observations can be made. The speed-up from 1 to 2 processors
is 1.78, quite far below the linear speed-up value of 2. This is almost entirely
caused by the decreasing performance of the parallel preconditioner compared to
its sequential counterpart, as on two processors £25% more GMRES iterations
were needed than one processor to reach the same level of accuracy for the linear
solver. This effect is also present when more processors are used, although the
relative decrease in performance of the preconditioner becomes less. For example,
the speed-up from 4 to 8 processors is 1.89 and only +10% more GMRES iterations
were needed.

Furthermore, the grid is too coarse for execution on 16 or 32 processors. In the
latter case only 325 nodes belong to the update set of each subdomain and therefore
the relative amount of external nodes, see figure 4.6, is high. Consequently, the
parallel overhead becomes rather large and the speed-ups decrease again - 1.71
when going from 16 to 32 processors.

Taking both the factors mentioned above into account, the values given in
table 4.2 are quite satisfactory.



Chapter 5

The Euler equations

In this chapter the spatial discretization technique, described in detail in chapter 2
and 3, is applied to the Euler equations, written in conservation form as:

U | OF;
8t Bzc,-_’

where the conservative variables U and the flux-vectors F; are defined as:

U= (p’;,-) , (5.2)
pE

puU;
Fj=| puiv; + pdi; | . (5.3)
pHu;

(5.1)

Here §;; is the Kronecker delta function and all other symbols have their usual

meaning. Furthermore the thermally and calorically perfect gas assumption is
made, for which the following relations hold:

H=E+§, (5.4)

p= ('y - 1) (pE - %pu;u;):l-;y_—l (pH - %pu;u;) y (5.5)

where the specific heat ratio v is assumed to be constant and equal to 1.4. The
corresponding quasi-linear form of (5.1) is:

au oUu OF;

5 Aj oz, 0, A= ik (5.6)
The outline of this chapter is as follows: First the conservative linearization,

which links the conservative form (5.1) with the quasi-linear form (5.6), is given,

followed by the treatment of the boundary conditions. Following this, the Euler

equations are written in the most optimal decoupled form by means of precondi-

tioning, which improves the accuracy of the spatial discretization, as will be shown

in the result section concluding this chapter.

77
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5.1 Conservative linearization

The discretization technique described in this work, see chapter 2 and 3, needs the
quasi-linear form of the equations. To retain conservation and hence capturing
of discontinuities with their correct jump relations, a particular quasi-linear form
is used, which is simultaneously conservative. The constraint it must obey is
obtained in the same way as for the scalar equation, see section 2.4: integrate the
spatial part of the conservative form (5.1) over a control volume T' and perform
the same operation for the quasi-linear form (5.6) with the assumption of constant
Jacobian matrices per cell and require both forms to be equal. If Gauss’ theorem
is used, this results in:

e — 4. ext
B ngtddT = A; § U n5dol, (5.7)

where A; is a cell average of A;. To be sure that the cell average Jacobians A;
have the same properties as A;, a sufficient condition is:

/L' = 4; (U) ’ (5.8)

i.e. A; is evaluated at a cell average state U. An additional degree of freedom
can be introduced by noting that in the right-hand side of equation (5.7) it is not
necessary to use the conservative variables U. Any set of independent variables,
from now on called Z, can be used. This results in the following constraint for the
cell-average state Z:

§ F;ngdoT = 9% (2) § 7 ngdor (5.9)

ar 7 T 0z o ' )
The distribution schemes require a linear variation of the components of Z along
the edges of the control volume, which for triangles and tetrahedra is equivalent to
a linear variation over the entire control volume. This completely fixes the value of
the contour integral on the right hand side of equation (5.9) and leaves the choice
of variables Z and the integration rule for the fluxes as degrees of freedom.

In general it can be quite difficult to determine Z. As for the scalar case,
section 2.4, the situation drastically simplifies if a set of variables Z can be found
for which the fluxes F; are quadratic expressions in the elements of Z, the so-called
Roe parameter vector [99]. For the Euler equations, this parameter vector exists
and is given by:

1
Z=\/p|uil. (5.10)
H
As explained for the Burgers equation, see equations (2.83) to (2.85), it can be
verified [28] that the linearization (5.9) based on the arithmetic average of the Z
variables,

_ 1 d+1
Z=——=) 7, 5.11
d+1k2=:l * (5.11)



5.2. BOUNDARY CONDITIONS , 79

is conservative, where d is the number of spatial dimensions and Z the value of Z
in vertex k. Equation (5.9) might suggest that the generalized upwind parameters

K;, equation (3.2), have to be based on the Jacobians 571 This is not necessary,

as the right hand side of equation (5.9) can be rewritten as:

aF z) §, zwrdor = 4,(2) 57 90 ( (2) §,_2z nsaor, (5.12)
where the conservative flux Jacobians A; are defined in equation (5.6). The ma-
trices K; are based un these Jacobians while consistent nodal values of the conser-

vative variables U;, Dgemsistt  are introduced:

Uconmstent gg (Z_) ZI, (513)
satisfying

8Uconsistent aU _ a VA

AT (14

at the cell level. To illustrate this procedure, the nodal distribution of the system
N-scheme (section 3.3.1) for the Euler equations is given by:

di:l Cim (Z) (Ulconsistent _ U;:ﬂonsistent)
] ou (5.15)

=3 Cm(2) 5 57 (2) (2 - Za),

d+1 -1
m = K (Z[ ) K. (5.16)

5.2 Boundary conditions

The conservative linearization and the system schemes of chapter 3 completely
determine the discretization of an interior node, i.e. a node which does not belong
to the boundary of the computational domain. However, for nodes that do belong
to the boundary, the contribution from the boundary conditions must be taken
into account. For well-posedness of a hyperbolic problem, the number of imposed
boundary conditions should be equal to the number of characteristics which enter
the computational domain, see [136, 46]. This number is identical to the number
of positive eigenvalues of the upwind parameter K; based on the normal pointing
into the domain. For the Euler equations these eigenvalues are:

A= N+ a, 1x  acoustic wave
A=U-N-—a, 1x  acoustic wave (5.17)

2 u
M=u#-N, 3<k<d+2 dx entropy and shear waves
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where a is the speed of sound,

a= 2 (5.18)

/)

N the unit normal pointing into the domain and d again the number of spatial
dimensions. The following boundary conditions may be identified for the Euler
equations:

e Supersonic inlet

e Supersonic outlet

e Subsonic inlet

e Subsonic outlet

o Far field

o Impermeable wall

e Symmetry plane, with the axisymmetric centerline as a special case

These will be discussed in the following sections.

5.2.1 Supersonic inlet

For a supersonic inlet all characteristics (5.17) enter the domain and consequently
the complete state vector must be prescribed. In practice this means that nodes
belonging to a supersonic inlet boundary are not updated in the time integration
loop.

5.2.2 Supersonic outlet

All characteristics leave the domain and therefore no boundary condition must
be prescribed. This makes the treatment of supersonic outlet nodes identical to
interior nodes.

5.2.3 Subsonic inlet

A subsonic inlet boundary is characterized by a velocity less than the speed of
sound and consequently the eigenvalue Ay, see equation (5.17), is negative. There-
fore imposing the entire state vector is not permitted. The usual choice is to
prescribe the total pressure p;, total density p; and the flow direction. In two
space dimensions this flow direction is completely determined by the angle of in-
cidence a; in three space dimensions both the angle of incidence o and the side
slip angle 3 must be prescribed, see figure 5.1. To complete the state vector, one
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Figure 5.1: Definition of the angle of incidence « in 2D and the angle of incidence
« and side slip angle 8 in 3D.

variable must be extrapolated from the computational domain. Theoretically this
should be the characteristic variable corresponding to A;. However this variable
depends on the unit interior normal N and only exists in differential form, which
gives some practical problems. Therefore in this work simply the Mach number,
M = \/u;u;/a?, is extrapolated.

In general there are two possibilities to impose the above boundary conditions:
(1) strongly - every node on the boundary exactly obeys the imposed conditions, or
(2) weakly - the effect of the boundary conditions is taken into account by means
of an additional flux through the boundary faces. The strongly-enforced, nodal,
boundary condition is solved by a one-dimensional flow problem in the direction
of the nodal normal, see [84]. However, nodal normals are not well-defined if the
boundary is not smooth, for example at sharp trailing edges or corners. Conse-
quently imposing the boundary conditions becomes somewhat arbitrary. This is
especially true in three space dimensions. Therefore only weakly-enforced bound-
ary conditions, which use the well-defined face normals, are used in this work, ex-
cept for supersonic inlets and outlets (sections 5.2.1 and 5.2.2), symmetry planes
(section 5.2.7), and walls with no-slip boundary conditions, which are treated in
the next chapter.

Consider the boundary face I'; with nodes 1 and 2 and the scaled inward normal
i, see figure 5.2. The ghost nodes 1* and 2* have the same geometrical position as
1 and 2 respectively, but their state vector is determined by the imposed boundary
conditions completed with the extrapolated variables from the domain. In case
of the subsonic inlet p;, p; and the flow direction are prescribed and the Mach
number is taken equal to values in nodes 1 and 2 for 1* and 2*. This procedure
leads to a flux difference between the ghost nodes and the ordinary nodes, whose
integral along I'; is given by:

[\ U N; - F ) N dr, (5.19)
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Figure 5.2: Boundary face I' with nodes 1 and 2, ghost nodes 1* and 2*, and
scaled inward normal 7.

where F; are the flux functions of the Euler equations, see equation (5.3), and N;

is the component of N in the z; direction. N is the corresponding unit normal of
ii. A discrete approximation of equation (5.19) using the trapezium rule results
into:

S HE; (Use) nj = F3 (U3) 3} + {F; (Uae) s — Fy (U2) 3} (5:20)

As for the Euler equations both the fluxes Fj and the conservative variables U are
quadratic expressions in the elements of the Roe parameter vector Z, the following

relation is valid [99]:
Fj (Um) n; — Fj (Ul) n; = 2I(ml (Um - Ul) 3 (521)

where Ky, is the generalized upwind parameter based on 7, see equation (3.2), and
evaluated at the Roe averaged state Z = 1(Z,,+Z;). Consequently equation (5.20)
can be written as:

Koy (Ure — Uy) + Kaez (Uze — U2). (5.22)

To take into account that only information corresponding to incoming characteris-
tics is used, the matrices K in equation (5.22) are replaced by K+. Therefore the
following term must be added to the discretization of the cell to which I'; belongs:

K&, (U - Uh) + K}, (Uy — Uy) (5.23)
and distributed to the nodes 1 and 2. This distribution is done as follows:

RBC = oK, (Us = U1) + (1 — @) Ky (Uze ~ Ua) (5.24)

REC = aK}, (Up — Us) + (1 — a) Kfy (Ure = Uy) (5.25)

where a is a coeflicient between % and 1. It was found that for subsonic inlets
the results were virtually identical for different choices of & and therefore a =1 is
used in all computations, because this results in the most stable algorithm.
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In three space dimensions the treatment of a boundary face, which is a triangle,
is completely analogous with the two-dimensional case. The distribution to the

three nodes 1s given by:
R]130= CYK;I;I (Up - U[)

1 (5.26)
+5 (1= @) [Kihy (Une = Us) + Ky (Use = Us)]
R?CZ al\’;-2 (Ug- - Uz)
1 (5.27)
+5 (1= @) [Kiy (Ure = U1) + Ky (Use = Us)]
R§c= aK:,‘,'Z3 (Uga — U3)
(5.28)

1
+5 (1= o) [Kfhy (Ve = V1) + Ky (U2 — U3)]

Again for subsonic inlets a = 1 is chosen.

5.2.4 Subsonic outlet

For a subsonic outlet the eigenvalue A;, equation (5.17), is the only positive eigen-
value and thus one boundary condition must be imposed. The usual choice is
to prescribe the static pressure and to extrapolate the density p and the veloc-
ity components u; from the domain. This completely determines the states in the
ghost nodes and exactly the same procedure is applied as described in the previous
section.

5.2.5 Far field

The states U* in the ghost nodes are taken equal to the far field conditions. This
looks like an overspecification of the number of boundary conditions, because no
distinction is made between inflow and outflow. However the replacement of K
by K, see equation (5.23), which can be interpreted as a multiplication with
the characteristic projector K* K1, see [9], leads to ignorance of the superfluous
conditions.

5.2.6 Impermeable wall

The impermeable wall boundary condition is treated in a slightly different way than
what is described in section 5.2.3. The impermeability condition, un, = u;N; = 0,
should be imposed for this kind of boundary face, leading to the desired flux
function:

0
(F (U) Nj) gy = (PQ’J‘) , (5.29)
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where again N is the corresponding unit normal of the inward scaled normal 7,
see figure 5.2. Usually the actual flux function, F;(U) N;, does not obey the
impermeability condition and therefore a discrete approximation of

fr F& (U) NydTy, (5.30)
1
is added to the discretization, where
Pun
Fe™ (U) Ny = (F; (U) N;) g = F5 (U) Ny = ~ | prisun | . (5.31)
pHu,

Again the trapezium rule is used to approximate (5.30) and the distribution to
nodes in two space dimensions is:

RBC — _2_ Fcorr (U ) . (1 _ a) chorr (Uz) nj} (532)

RBC = {aF°°" Uz)nj + (1 — a) F" (Un) ny} (5.33)

Together with equations (5.26) to (5.28) the distribution to the nodes for a three-
dimensional problem is obvious. The coefficient « is taken equal to 0.75, which is
a compromise between accuracy and stability.

5.2.7 Symmetry plane

Usually a symmetry plane (symmetry line in two dimensions) corresponds to a flat
plane and the nodal normals are well-defined, a fact which will be used later on.
The boundary conditions for such a plane are:

7] ( dp _Op _
= on on  on
An elegant way to impose these conditions is the introduction of a layer of finite
ghost cells, see figure 5.3. The states in the ghost nodes k* can be determined by

i —u.N) = (5.34)
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a second-order approximation to the boundary conditions (5.34),
Unye = —tn,, (- unN)k_ = (it‘— u,.N)k, Prs = Pky Pk* = Pk, (5.35)

and the ghost cells can be treated as if they were ordinary cells.

The implementation of the symmetry boundary conditions described above
works well, but it is quite cumbersome due to the introduction of the layer of
ghost cells. The situation can be drastically simplified by the following observa-
tion: suppose that the normal velocities u,, at the nodes on the symmetry plane
are identically zero. Then, for reasons of symmetry, the contribution of the ghost
cells to the density, tangential momentum and energy residuals of these nodes is
equal to their corresponding cells on the other side of the symmetry plane and
the contribution to the normal momentum residual is reversed and thus their sum
is zero. By the introduction of the ghost cells, the area of the median duals, see
figure 2.2, of the nodes on the symmetry plane has been doubled. Consequently
in the semi-discretized equations (3.7) both the median duals S; and the nodal
residuals ) BT Rr of the density, tangential momentum and energy equation are

multipliedTby a factor two and effectively the same semi-discrete system is ob-
tained as if the contributions from the ghost cells would not have been taken into
account. This of course is only valid if the normal velocities on the symmetry plane
are zero. Reversing this reasoning results in the conclusion that the boundary con-
ditions (5.34) are automatically satisfied if the normal velocities u,, at the nodes
on the symmetry plane are strongly enforced to be zero, which is much simpler
than the procedure with the layer of ghost cells.
A special case of this type of boundary condition is the centerline of an

axisymmetric problem. So the only thing necessary to do in this case is simply to
require the radial velocities to be zero at the centerline nodes.

5.2.8 Implicit boundary conditions

The boundary conditions add terms to the discretization. To avoid stability prob-
lems, these terms must also be treated in an implicit manner for the backward
Euler time integrator. A distinction is made between strongly and weakly en-
forced boundary conditions.

In the former case, (some of) the nodal values at the new time level are
known and this information must be incorporated in the Jacobian matrix, see
equation (4.5). Consider for example the symmetry plane. As explained in sec-
tion 5.2.7, this boundary condition is satisfied if the normal velocities, u, = u;N;,
at the nodes on the symmetry plane are zero, where N; is the component in z;
direction of the unit normal vector of the symmetry plane, see figure 5.3. Conse-
quently the following relation holds:

pu;"N;j =0, Vi (5.36)
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Assume that at the current time level equation (5.36) is satisfied. To assure that
it also holds at the next time level, the updates of pu; are related:

ApuF™ N; = 0. (5.37)

The entry of one of the momentum equations in the Jacobian matrix must be
replaced by equation (5.37). To avoid problems, the entry corresponding to the
largest component (in absolute size) of N is selected.

A similar treatment is applied to the supersonic inlet nodes, section 5.2.1, and
nodes belonging to a no-slip wall, section 6.1.

For weakly enforced boundary conditions, the extra added terms, see e.g. equa-
tions (5.24) and (5.25), must be treated implicitly. For the impermeable wall
boundary condition, section 5.2.6, these terms have a relatively simple form and
the determination of the derivatives is straightforward. For the subsonic inlet, sub-
sonic outlet and far field boundary conditions, it is assumed that the differences
between the states in the ghost nodes and the corresponding ordinary nodes are
small, such that their product with the derivatives of K, see equations (5.24)
and (5.25), can be neglected. In that case, a simple expression is obtained as well.

5.3 Preconditioning

Roe et al.[102, 86, 77] observed that the preconditioning technique of van Leer
et al.[131], originally developed for speeding up convergence, also results in the
most decoupled form of the Euler equations and that space discretizations based
on this form are superior to discretizations of the original equations. First the
preconditioning in two space dimensions is explained, which leads to a conservative
form of the method of characteristics for supersonic flow, followed by the extension
to three dimensions.

5.3.1 The two-dimensional case

Consider the set of variables:
Q= 5 | (5.38)

where the tensor notation has been dropped for reasons of clarity. The last com-
ponent of 9Q) is the differential form of the unscaled entropy s = In £. For this
set of variables the Euler equations take a relatively simple form:

ual0 v0al0

aQ au00]aQ 0v00]|aQ _

S tloowo|amt|aovo|a =" (5-39)
000u 000w



5.3. PRECONDITIONING 87

Note that the last equation is fully decoupled from the others, showing that entropy
is advected along streamlines. An even simpler form is obtained in the streamline

coordinate system (¢,7), see figure 1.12:

) M10 0y 0010y _
4 1 Moo |8d, [ooo00]|8d
St 7% 0o oMo BT 10003 =" (540)
0 0 0 M 0000
45 By
where 00,
1 0 0 0 %
~ 0 cosf sinf 0 ot
0Q = 0 —sinf cosf 0 0Q = 8 ! (5.41)
0 0 0 1 %‘Z—ﬁe
p

is the set of JQ variables in the (£,7) system and @ is the flow direction with
respect to the Cartesian coordinate system.

The idea of preconditioning is to change the transient behavior of (5.40) while
keeping the same steady-state equation. To accomplish this, the spatial part
of (5.40) is multiplied by a matrix P, which results in:

d 3 e
a? +P (AQ a? + By ) =0. (5.42)

To assure that the character of the original system is conserved, the sign of the
eigenvalues of the preconditioned Euler equations must be identical to the sign of
the eigenvalues of the original system. Therefore a necessary condition is that the
preconditioning matrix is positive-definite. Van Leer et al.[131] give the follow-
ing formulation with the goal of clustering the eigenvalues of the preconditioned
system:

ZM? ZFEM 0 0
P= ‘ﬁ%;M pz;;1 z 8 (5.43)
0 0 0 1
The parameters 8 and x are defined as:
B = \/max (&, |M? - 1)) (5-44)
A (5.45)

x= max (M,1)’
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where ¢ is a small value, typically 0.05, to avoid the sonic point singularity. Intro-
ducing the ”steady-state” characteristic variables dW,

B0 MO B2 + Mds
B0 -MoO| ~ |BZ-Md
W=|1m o of%9| & moul (5.46)
00 0 1 9 _ 1%
P P
transforms the system (5.42) into:
; xvt xv~ 00 3 ¥ 000 )
oW | xv- xytoo0|oW _|0=x00}0W
— —_— 8 — =
ot tu 0 0 10 a¢ tu 0 0 00 17 0, (5.47)
0 0 01 0 000
Ay By,
where vt and v~ are functions of the Mach number,
2 _ 2 2_1_22
vt = uﬁ_, v = _‘M_lé_, (5.48)

232 242
which are bounded between [0, 1] and [~1,0] respectively. Clearly the third and
fourth equations are decoupled and their quantities advected along the streamline.
These correspond to entropy, the fourth variable, and total enthalpy. Indeed it is
straightforward to show that the following relation holds:

2

OH = adWs + . oW, (5.49)

a

(v-1)
where W5 and W, are the third and fourth components of 8W. Furthermore for
supersonic flow, M > 1, v+ = 1 and v~ = 0, also the first and second equations of

the system (5.47) are decoupled, and the Euler equations reduce to a set of scalar
advection equations, also used in the method of characteristics [66]). The advection

Machline

streamline

=

Machline

Figure 5.4: Streamline and Mach lines for a two-dimensional supersonic flow.
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direction of W, and W, are the Mach lines, see figure 5.4, where the Mach angle
p is the angle between the streamline and the Mach lines:

4 = arctan (é) . | (5.50)

For an isentropic (potential) flow the so-called acoustic variables, AW, and oW,
can be integrated to give the well-known Prandtl-Meyer functions [66].

For a subsonic flow, M < 1, v* = 0 and v~ = —1, the acoustic variables form
a Cauchy-Riemann type subsystem, which explains the partially elliptic nature of
the steady, subsonic Euler equations.

As at the characteristic level the entropy and enthalpy equations are always
decoupled, it is possible to use a combination of different schemes, for example the
PSI-scheme for the advection of entropy and total enthalpy along the streamline
and the system Lax-Wendroff scheme for the acoustic subsystem. It will be shown
in section 5.4.1 that this particular combination gives the best results in terms of
spurious entropy production for subcritical flows.

Once again it is stressed that, despite the fact that the characteristic form (5.47)
is used to define the upwind parameters, the method is conservative and the con-
servative variables are updated at every time step. As explained earlier in equa-
tion (5.13), this is accomplished by the introduction of consistent nodal values of
the characteristic variables,

~ . o _

Wconstatent _ alZ/ (Z) Z, (551)
for the discretization of the system (5.47). The update of the conservative vari-
ables is then obtained by inverting the steps (5.39), (5.40), (5.42) and (5.47) in
reversed order. These steps correspond to the transformation of the conservative
variables U to the Q variables, to the transformation to the streamline frame, to
the multiplication with the preconditioning matrix P and to the transformation
of the Q variables into the characteristic variables W. Mathematically this means
that the quasi-linear form (5.6) is written in a very special way:

Q ow oW

v , 00
AU LA Mg + By 0. (5.52)

T3 aQ
\_—-—v—d
evaluated at Z \Used to deﬁne upwmd parameters

P‘

The transformation matrix from the @ variables in the Cartesian frame to the
streamline frame, 5%, is given by:
1 0 0 o
oQ 0 cosd —sinf 0
55 | 0 sinf cosf® O]’ (5.53)
0 o 0 1
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which is the inverse of the matrix given in equations (5.41).

The introduction of consistent nodal values of the characteristic variables leads
to an additional error compared to a direct discretization of the quasi-linear sys-
tem (5.39) or even (5.47). This is a consequence of requiring conservation and is
only needed if discontinuities are present. For subcritical flow, it is possible to
discretize the non-conservative form, see [39].

Note that in the formulation (5.52) P~! appears. The inverse of the precon-
ditioning matrix given in equation (5.43) has a quadratic singularity at M = 0,
and therefore stability problems can be expected when solving the system (5.52)
for low Mach number flows or if stagnation points are present. This is indeed the
case if an explicit time integration method is used, but the fully implicit back-
ward Euler method avoids these problems for the Euler equations. However, for
the Navier-Stokes equations this stability problem could not be overcome and the
preconditioner (5.43) could not be used for viscous flows. Some viscous precondi-
tioners exist, see [122, 37], but these are more heuristic.

5.3.2 The three-dimensional case

In three dimensions the same procedure is followed and the preconditioning matrix
of van Leer et al.[131] in the streamline coordinate system (£, 7,(), see figure 5.5,
for the set of variables 8Q = (%2—, o1, 8%, 0w, 0s)T is:

EM* FEM 0 0 0
FM %+1 0 0 0
P= 0 0 x 0 0 (5.54)
0 0 0 x 0
0 0 0 0 1

The definitions of § and x are identical to those in 2D, see equations (5.44)
and (5.45).

<

PPy g —



5.3. PRECONDITIONING 91

Introduction of the characteristic variables W, see [16],

ﬁgf + M cos 0% + M sin 900
B22 — M cos Y09 — M sin Y ow

W = M sin 0% — M cos YO0 , (5.55)
% + Mu
op _ 2%
P o

where ¥ is an arbitrary angle in the crossflow plane (9, ), leads to the characteristic
system:

oW oW oW oW

rr + Aj—+ T + Byr—5— Bn CWWzO, (5.56)
xvt xv= 000 %cosw 0 %simﬁ 00
xv~ xvt 000 0 Zcosy §singy 00
Ap=a| 0 0 x00|,By=u| Xsiny Fsingp 0 00|,
0 0 010 0 0 0 00
0 0 001 0 0 0 00
(5.57)
%sinz[) 0 —lcosd) 00
0 Fsiny —2‘~cos<¢Y 00
Co =1 %costp 2ﬁcoszb 0 001,
0 0 0 00
0 0 0 00

where v* and v~ are defined in equation (5.48). As in two space dimensions, total
enthalpy and entropy (the fourth and fifth equations of system (5.56)) always de-
couple and are advected along the streamline. In contrast to the two-dimensional
case, the acoustic equations never decouple and form a 3 x 3 subsystem, even for
supersonic flow. Through the property of invariance for similarity transformations,
section 3.2, the nodal residuals of the conservative variables are independent of the
choice of the angle 1. Exceptions are the scalar limited system PSI-scheme, sec-
tion 3.3.2, and the system SUPG-scheme with artificial dissipation, section 3.3.6,
because these schemes do not possess this property.
The 3D counterpart of the special quasi-linear form (5.52) is:

Q oW ow oW

U BUBQ s Ang + By + Cuge | =0 (5.58)

Bt BQ aQ BW
evaluated at Z \Used to define upwxnd parameters
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where the transformation matrix Z—g is given by:

1 0 0 0 0
9Q | 0 cosfcos¢ —sin# —cosfsing 0
B_Q;— 0 sinfcos¢ cosf —sinfsing 0 |’
0 sing 0 cos ¢ 0

(5.59)

in combination with the following definitions of the angles § and ¢, see also fig-
ure 5.5:

u Vvu? + v?

cosf = ———= Cos¢p = ———=——v

1/.u'2+v2 1/u2_+_fv2_}_1'02 (560)
. v . w ’

sinf = ——— sing = ————=

U + v2 Vi + 02 + w?
Here u, v and w are the velocity components in the Cartesian frame, where for
clarity the tensor notation has not been used. Note that by this definition ¢ is

bounded between —% and 7.

5.4 Results

This section presents results for three different test cases: (1) subsonic flow over a
NACA-0012 airfoil, (2) supersonic flow in a channel with a smoothly varying cross-
section and (3) transonic flow over an M6-wing. The purpose of the first test case
is to found out what (combination of) scheme(s) gives the most accurate result
for flows without discontinuities. The channel flow has been used to demonstrate
the very good shock-capturing capabilities of the discretization technique and the
M6-wing shows that the extension to three space dimensions does not give any
problems.

5.4.1 Subsonic flow over a NACA-0012 airfoil

This subcritical flow, M., = 0.63, a = 2°, has been used for a detailed comparison
of the results of several schemes. The grid shown in figure 5.6 has been generated
with a frontal Delaunay method [82] and consists of 2355 nodes, with 140 nodes
on the airfoil and 33 nodes on the far field boundary, which is located 20 chords
away from the airfoil. Figure 5.7 shows a convergence history for this test case,
where the preconditioned Euler equations are discretized with the system Lax-
Wendroff scheme for the coupled acoustic subsystem and the scalar PSI-scheme
for the entropy and total enthalpy equations. An initial solution is obtained by
applying the system N-scheme directly to the Euler equations. This first-order
solution itself is obtained in 9 Newton iterations (CFLmax = 10°), as shown in the
first part of figure 5.7. This solution is compared with the first-order upwind finite-
volume scheme on the median dual grid in figure 5.8, showing a clear improvement
in accuracy for the N-scheme.
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Figure.5.6: Part of th? gr'id for the Figure 5.7: Convergence history for
subsonic NACA-0012 airfoil, the nonlinear discretized precondi-
M, =063, a=2° tioned Euler equations.

been replaced by the N-scheme in the implicit part. Due to this inconsistency, New-
ton convergence cannot be obtained and the CFL number has been restricted to a
maximum value of 100. As the second-order discretization uses multiple schemes,
it is difficult to compute the (approximate) analytical Jacobian and therefore the
numerical version has been used. The convergence history shown in figure 5.7 is
typical for nonlinear schemes. For linear schemes, both first and second-order,

To enhance stability for the second-order computation, the PSI-scheme has
Newton convergence was always obtained for this test case.

0.00 0.33 0.67 1.00

Figure 5.8: Mach number distribution on the airfoil, N-scheme (symbols indicating
mesh points) and system finite-volume scheme (straight line).
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Figure 5.9: Mach number (left) and entropy (right) isolines for the Lax-Wendroff
scheme directly applied to the Euler equations

The solutions of several (combinations of) schemes are compared. They have
been applied either directly to the Euler equations or to the preconditioned Euler
equations. Mach number and entropy (defined as In(Z) —In(2%)) isolines for some
solutions are depicted in the figures 5.9 to 5.13. In all these ﬁgures the step between
the Mach number isolines is 0.02 and between the entropy isolines 0.002, so that
a fair comparison is possible. The results are summarized in table 5.1, giving the
minimum and maximum Mach number, the minimum and maximum entropy level
and the lift and drag coefficients. Both the entropy level and the drag coefficient
are zero for the exact solution. For the reference solution a relatively fine grid of
8975 nodes has been used, in combination with the Lax-Wendroff scheme for the

_acoustic subsystem and the scalar PSI-scheme for the advection of entropy and
total enthalpy along the streamline, i.e. the preconditioned Euler equations have

Figure 5.10: Mach number (left) and entropy (right) isolines for the PSI-scheme
directly applied to the Euler equations



5.4. RESULTS 95
Min | Mmax Smin | Smax C Cy
Euler (N) 0.01 | 0.87 | 0.0000 | 0.0213 | 0.2756 | 0.0178
Euler (LDA) 0.05 | 0.97 | -0.0076 | 0.0145 | 0.3245 | 0.0005
Euler (LW) 0.05 | 0.97 |-0.0031 | 0.0087 | 0.3223 | 0.0008
Euler (PSI) 0.05 | 0.94 | 0.0000 { 0.0200 | 0.3085 | 0.0042
Prec. Euler (N) 0.02 | 0.88 | 0.0000 [ 0.0152 | 0.2785 | 0.0182
Prec. Euler (LDA) 0.04 | 0.97 | -0.0026 | 0.0055 | 0.3201 | 0.0012
Prec. Euler (LW) 0.03 | 0.98 |-0.0014 | 0.0019 | 0.3215 | 0.0010
Prec. Euler (PSI) 0.03 [ 0.95 | 0.0000 { 0.0115 | 0.3098 | 0.0042
Prec. Euler (LDA+PSI) 0.04 | 0.97 |-0.0006 | 0.0039 | 0.3210 | 0.0012
Prec. Euler (LW+PSI) 0.05 | 0.98 |-0.0006 | 0.0008 | 0.3219 | 0.0011
Ref. Sol. (20 chord lengths) 0.01 | 0.98 |-0.0009 | 0.0001 | 0.3221 | 0.0004
Rel Sol. (120 chord lengths) || 0.01 | 0.9 | -0.0009 ] 0.0001 | 0.3314 | 0.0001

Table 5.1: Results for the subsonic NACA-0012 airfoil (M = 0.63, 0 = 2°).

been

discretized. The second reference solution has the same number of nodes

near the airfoil, but the far field location is now 120 chord lengths away from the

body,

instead of 20. The following conclusions can be drawn:

the fully nonlinear PSI-scheme performs worse than the linear second-order
schemes, especially Lax-Wendroff. Partially this is explained by the fact
that the monotonicity requirement leads to more diffusive schemes. Another
reason is that the system PSI-scheme used in this work is not entirely satisfac-
tory yet from the theoretical point of view, see the discussion in section 7.1.1,
and improvements may be expected if a better formulation is found. How-
ever it is clear that monotonic (system) schemes should only be used if they
are required, and not for smooth solutions like this test case.

for the same scheme, the discretization based on the preconditioned Euler
equations is consistently more accurate than that without preconditioning.
This is clear from the table, and also from the isolines plots, see for example
figures 5.9 and 5.11 for the Lax-Wendroff scheme.

for the same set of equations (preconditioned or ordinary Euler), the Lax-
Wendroff scheme performs better than the LDA-scheme, see table 5.1. This
can be explained by the smaller dissipation of the Lax-Wendroff scheme at
the stagnation point, where the error is created. For the standard Euler
equations it can be proved that at the stagnation point the system LDA-,
PSI- and N-schemes are identical.

the hybrid scheme Lax-Wendroff/PSI has improved accuracy over the pure
linear Lax-Wendroff scheme and is in fact remarkably accurate (Smin =
—0.0006, Smax = 0.0008), figure 5.13. Clearly, using a positive scheme for
entropy (and enthalpy) is beneficial to remove spurious entropy oscillations.
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Figure 5.11: Mach number (left) and entropy (right) isolines for the Lax-Wendroff
scheme applied to the preconditioned Euler equations.

o there is no clear relation between the spurious entropy production and the
drag, as can be seen in table 5.1. One of the worst schemes (LDA directly
on Euler, not shown in the isolines) actually has the lowest drag coefficient.
This observation was also made in [35]. The explanation is the cancellation
of errors in integrating the pressure over the profile.

e all solutions on the grid of figure 5.6 underpredict the lift coefficient compared
to the fine grid solution with the far field at 120 chord lengths away. As
the reference solution, with the far field location at 20 chord lengths, also
underpredicts the lift, see table 5.1, it can be concluded that the far field
is located too close to the airfoil. A possible solution would be to apply a
vortex correction, but this has not been done.

— =

Figure 5.12: Mach number (left) and entropy (right) isolines for the PSI-scheme
applied to the preconditioned Euler equations.
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1

Figure 5.13: Mach number (left) and entropy (right) isolines for the mixed
Lax-Wendroff/PSI-scheme applied to the preconditioned Euler equations: Lax-
Wendroff on acoustic subsystem and PSI on entropy and enthalpy.

e the fully nonlinear PSI-scheme, which is the only second-order positive scheme
in this set, is too dissipative in the stagnation point, figures 5.10 and 5.12.
However, it is the only scheme, apart from the first-order N-scheme, that
maintains positive entropy. It keeps monotone the entropy error originating
at the stagnation point, and confined in a narrow layer around the profile.

5.4.2 Supersonic channel flow

The geometry of this channel with a smoothly varying cross section is defined in
figure 5.14. The lower wall is formed by two quadratic polynomials, such that
the wall is continuous and differentiable at the matching point (z,y) = (1.0,0.1).
The inflow Mach number is 2.0 and consequently the flow is fully supersonic. The
numerical solutions obtained with the multi-dimensional upwind method are com-
pared with a method of characteristics (with constant entropy and total enthalpy)
in combination with shock-fitting [123].

Three grids, denoted as coarse, medium and fine, have been created with a
frontal Delaunay method [82]. They contain 6636, 26,263 and 114,990 nodes re-
spectively. The coarse version is shown in figure 5.15. First a comparison is made

y
1.0
08|

8:3 [ quadratic polynomials

0.2
0.5 10 2.0 3.0 7.0 5.0 6.0 70 %

Figure 5.14: Geometry definition of the channel.

-
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Figure 5.15: Coarse grid (6636 nodes) for the supersonic channel flow.

between the preconditioned and non-preconditioned solutions, both with the PSI-
scheme on the coarse grid. The Mach number isolines are shown in figure 5.16.
It is clear that the solution based on the preconditioned equations looks much
smoother than the solution obtained by applying the discretization technique di-
rectly to the Euler equations. The latter even shows some wiggles. The difference
between the two discretizations has two causes: (1) the preconditioning technique
uses the most optimal form of the steady equations and (2) for 2D supersonic
flow the characteristic form of the preconditioned equations become four decou-
pled scalar advection equations, while for the standard Euler equations only the
entropy is decoupled and the system scheme is applied to the 3 x 3 subsystem. As
already explained in section 3.3.2, the current version of the system PSI-scheme
is certainly not optimal and has convergence problems. This is clearly visible in
figure 5.17, which shows the convergence histories for both computations. Due to
stability reasons, the second order scheme could not be used directly and therefore
an initial solution has been computed first. For the preconditioned Euler equations
this initial solution is obtained with first the N-scheme directly on the Euler equa-
tions followed by the N-scheme on the preconditioned equations. In both cases
Newton convergence was obtained using numerical Jacobians. The starting CFL

Preconditioned Euler
U

g T

Euler

«

Figure 5.16: Mach number isolines on the coarse grid for the preconditioned (top)
and standard (bottom) Euler equations, PSI-scheme.




5.4. RESULTS 99

0
L 1 : Euler, N-scheme
i I : Prec. Euler, N-scheme
r IO Prec. Euler, PSI-scheme
i 1: Euler, N-scheme
S - IE; Euler, PSI-scheme
g $ |
R 10 =
Pt VvV = \4
(1 1 m 1 n
_15....|....|....|....| .45 ot i e
0 50 100 150 200 0 50 100 150 200
#iter fiter

Figure 5.17: Convergence histories for the supersonic channel on the coarse grid
for the preconditioned (left) and standard (right) Euler equations.

number was 1 and multiplied every time step by 10 until the maximum of 108
was reached. The second-order solution was computed with numerical N-scheme
Jacobians with a CFL number of 100. As can be seen in the lefthand picture in
figure 5.17, the nonlinear scheme converges approximately 6 orders of magnitude,
relative to the restart, before it stalls.

Also for the discretization of the standard Euler equations the first-order N-

scheme solution is used as initial solution for the second-order computation. The
righthand picture in figure 5.17 clearly shows the convergence problems of the
system PSI-scheme (with approximate N-scheme Jacobians and CFL = 40).
" On the medium and fine grids only the solution of the preconditioned Euler
equations has been computed, because on the coarse grid it has been shown to
be superior to the solution of the standard Euler equations. The convergence
histories (not shown) in terms of number of iterations are similar to the coarse
grid, see figure 5.17, and is thus independent of the mesh size for this test case.
Mach number isolines are depicted in figure 5.18, where the solutions are compared
with a method of characteristics combined with shock fitting (roughly 15,000 data
points) [123]. It shows that the medium and fine grid solutions are nearly identical,
which can also be seen in the cross section plots, figure 5.19. Both predict a slip
line, which originates from the place where the compression waves start to form
the shock. The method of characteristics does not predict this slip line, because
it assumes constant entropy (and also, correctly, total enthalpy). Also the coarse
grid solution, figure 5.16, does not show this slip line, which indicates that this
grid is not fine enough for the capturing of this phenomenon.

Mach number distributions at y = 0.3 and at y = 0.7 are shown in figure 5.19.
The coarse grid solution slightly deviates in the compression fan and near the
shocks, but in general it agrees well with the medium and fine grid solutions and
the method of characteristics. Solution adaptivity, see e.g. [20], is probably the
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Medium grid, 26263 nodes

Fine grid, 114990 nodes

Method of characteristics, roughly 15000 data-points

///J%JJJ/////

S

Figure 5.18: Mach number isolines on the medium (top) and fine grid (middle) for
the preconditioned Euler equations and the method of characteristics (bottom).

only way to capture the previously mentioned slip line without using extremely
fine grids.

Also entropy distributions at the same cross-sections have been made. These
are shown in figure 5.20. The method of characteristics has been omitted in these
plots, because it assumes constant entropy. It is clear that the entropy is not
captured entirely monotonically, typically an overshoot occurs in one point. These
cuts however should be interpreted with care, because the data points do not
correspond with grid points, but are linearly interpolated between the three closest
nodes. Apparently the correct prediction of the entropy is a difficult task, as,
especially for the distribution at y = 0.7, the three solutions differ quite a bit.

The cut at y = 0.3 can be used to estimate the accuracy of the discretization
technique. In the first part, < 5, the entropy difference should be zero, because
the flow experiences isentropic expansions and compressions. The entropy levels
for the coarse, medium and fine grid at z = 2.5 (after the isentropic compression)
are 14.2-107%,4.0-107* and 0.92-10~* respectively. As the spacing is approximately
reduced by a factor 2 from the coarse to medium and from the medium to fine
grid, it can be concluded that the discretization is second order accurate.

In order to illustrate that, for fully supersonic flow, explicit time integration
can be competitive with the fully implicit method, figure 5.21 shows the conver-
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Figure 5.19: Mach number distributions at y = 0.3 and y = 0.7 for the coarse,
medium and fine grid solution of the preconditioned Euler equations compared
with the method of characteristics.

gence histories for the coarse grid as a function of the CPU-time on a DEC alpha
workstation, equipped with a 500 MHz EV5.6 processor. For the implicit compu-
tation the CFL strategy and the strategy to obtain an initial solution has been
described earlier in this section. The 4-stage Runge-Kutta time integrator, m = 4
in section 4.1, with CFL = 1.5 has been used for the explicit computation. For this
method the PSI-scheme could be used immediately. It is clear from the righthand
picture in figure 5.21 that also the explicit time integrator does not prevent the
system PSI-scheme from stalling; on the contrary, the implicit method even con-

Cutaty=0.3 Cutaty=0.7
0. .020
ozp —Je— cparsegrid o020r — rse grid
F ——— medium grid t — edium grid
[ —o—— fihe grid — fine grid

0.016

r/

X } 4
Figure 5.20: Entropy distributions at y = 0.3 and y = 0.7 for the coarse, medium
and fine grid solution of the preconditioned Euler equations.
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Figure 5.21: Convergence histories for the supersonic channel on the coarse grid
for the preconditioned (left) and standard (right) Euler equations. Comparison
between the explicit and implicit method.

verges a little better. For the preconditioned case the convergence history is quite
good, but the the system PSI-scheme is not needed here, because the Euler equa-
tions are written as four scalar advection equations, see equation (5.47). As shown
in the left picture of figure 5.21, both the explicit and implicit methods converge
about 7 orders of magnitude in 300 seconds before they stall. The reasons why, for
this test case, the explicit time integrators are competitive, are (1): explicit time
integrators converge much faster for supersonic flow than for subsonic, and (2):
the inability of the implicit method to obtain Newton convergence in combination
with nonlinear schemes.

5.4.3 M6 wing

The ONERA M6 wing is a well documented test case for three-dimensional flows
from low to transonic speeds [1]. The selected conditions, M, = 0.84, o = 3.06°,
correspond to the transonic speed regime. The grid, consisting of 273,653 nodes
and 1,664,160 tetrahedra, has been created with the grid generator of the Univer-
sity of Swansea [90]. The surface mesh of the wing and part of the symmetry plane
is shown in figure 5.22. The far field boundary is half a sphere with a radius of
12.5 root-chord lengths. Its origin is located half way the root chord.

The solution has been computed on 32 processors of the Cray T3E of the
University of Delft. As can be seen in figure 5.23, Newton convergence has been
obtained for the first-order N-scheme directly applied to the Euler equations, after
an initial solution had been computed with 20 iterations in combination with
analytical Jacobians and a CFL number of 100. These initial iterations are needed
to place the shocks in a more or less correct position, so that they do not need to
move any more when the numerical Jacobians are selected; moving shock waves
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Figure 5.22: Surface grid of the M6 wing; 25371 nodes on the wing and 6101 nodes
on the symmetry plane.

cause failure of the exact Newton method, unless very low CFL numbers (5-10)
are used. As soon as the shocks are in position, the CFL number can be triggered
to a maximum value of 106 in combination with numerical Jacobians.

The second-order computation, PSI-scheme applied directly to the Euler equa-

N-schems
PSkscheme 1 E,*, prec PStkscheme, preconditioned Euler
i
v

B P T EETEETEET N SRS | abiaa 1 TS SRR W |
0 50 100 150 200 0 50 100 150#"’ 200 250 300 350

Figure 5.23: Convergence history for the M6 wing; left: Euler equations, right:
preconditioned Euler equations.
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Figuré 5.24: Mach number isolines for the two first-order N-scheme solutions, left:
Euler equations, min = 0.17, max = 1.41, step = 0.02, right: preconditioned Euler
equations, min = 0.13, max = 1.48, step = 0.02.

tions, analytical N-scheme Jacobians, CFL = 100, starts from the fully converged
first-order solution and, as before, the convergence stalls after two orders of mag-
nitude, see figure 5.23. The total CPU-time for this computation is approximately
2% hours.

The first-order N-scheme solution has also been used as starting solution for the
preconditioned Euler equations, first in combination with the N-scheme, followed
by the PSI-scheme, see the right picture of figure 5.23. Newton convergence is
obtained for the preconditioned first-order solution, while again the second-order
scheme stalls, but in this case only after 3} orders of magnitude. The total CPU-
time, including both first-order computations, is roughly 8 hours.

To illustrate the beneficial effect of preconditioning, Mach number isolines of
both first-order solutions are shown in figure 5.24. The shock is clearly captured
much more sharply for the preconditioned Euler equations and the expansion near
the tip reaches a higher value, indicating that the solution is less diffusive.

Mach number isolines on the wing upper surface and in the symmetry plane
for the second-order solution of the preconditioned Euler equations are depicted
in figure 5.25. A shock originates from the root leading edge and interacts with
the ”standard” transonic shock at approximately 85% of the span. This "leading
edge” shock is not predicted by two-dimensional theory and is caused by the three-
dimensional effects introduced by the 30° sweep angle of the M6 wing. Near the
tip a lambda-shock structure is observed.

Experimental surface pressure distributions at several spanwise cross-sections
are available [1] and figures 5.26 to 5.32 show the comparison between the ex-
periments and the computation of the preconditioned Euler equations with the
PSI-scheme. Due to the absence of shocks on the pressure side, the pressure
distribution on this part of the wing is mainly determined by inviscid phenomena.
Consequently, the results of the computation and experiments should be almost
identical. This is indeed the case, except at the tip, where the grid, see figure 5.22,
is too coarse to capture the vortex correctly.

The prediction of the location of the first shock on the suction side is rather
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Figure 5.25: Mach number isolines on the wing upper surface and in the symmetry
plane, preconditioned Euler equations, PSI-scheme, min = 0.10, max = 1.64,

step = 0.02.

good, see figures 5.26, 5.27 and 5.28. Only near the position where it interacts
with the second shock, the first shock is predicted too far downstream, figure 5.29.

125

0.00 ¥
025§
050}
075
A E o
19865 198 65 0.25 55 075 T.00

Figure 5.26: Computed and experimen- Figure 5.27: Computed and experimen-
tal pressure distribution, z/b = 0.20 tal pressure distribution, z/b = 0.44
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Figure 5.28: Computed and experimen- Figure 5.29: Computed and experimen-
tal pressure distribution, z/b = 0.65 tal pressure distribution, z/b = 0.80

The consequence of neglecting the viscous terms (the Reynolds number based
on the mean aerodynamic chord in the experiments is 11.72 - 10°) is that the
second shock is computed too far downstream and therefore it is too strong. Con-
sequently the pressure downstream of the shock is too high in the computation.
Figures 5.26, 5.27 and 5.28 show this phenomenon particularly clearly.

Taking into account that the computation is inviscid, the agreement between
computation and experiment is quite good, except at the tip, but the reason for
this has already been mentioned.

To give an indication how the results of the unstructured multi-dimensional up-
wind discretization compare with a standard structured grid method, this test case

1 PSP PR S —— 1.08#..J|_....L..|_L...
08.00 0.25 (;’iﬂ 0.75 1.00 .00 0.25 Ox'.'i-ﬂ 0.75 1.00

Figure 5.30: Computed and experimen- Figure 5.31: Computed and experimen-
tal pressure distribution, z/b = 0.90 tal pressure distribution, z/b = 0.95
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Figure 5.32: Computed and experimental pressure distribution, z/b = 0.99

has been computed with the DASA EUFLEX solver on a H-type grid with in total
267,960 nodes. The discretization technique used is a cell-centered finite-volume
method in combination with MUSCL interpolation and a linearized Riemann solver
[36].

Plots for the relative total pressure losses, (1 — p;/p;.,), at four spanwise cross-
sections are shown in figures 5.33 to 5.36. For the finite-volume solver the points
in these figures correspond to grid points, while for the unstructured grid method
these values have been linearly interpolated. This also explains the slightly wiggly
behavior of the corresponding curves, compared to the finite-volume solution. As
in isentropic flow the total pressure is constant, the relative loss of this quantity is
a measure of the quality of the numerical solution. The negative losses predicted
by the EUFLEX code near the leading edge of the wing are caused by the fact
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Figure 5.33: Computed relative total Figure 5.34: Computed relative total
pressure losses, z/b = 0.27 pressure losses, z/b = 0.42
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Figure 5.35: Computed relative total Figure 5.36: Computed relative total
pressure losses, z/b = 0.56 pressure losses, z/b = 0.73

that the limiter in the MUSCL reconstruction phase has been switched off in that
part of the flow. The losses for the multi-dimensional upwind discretization are
positive, due to the discretization with the monotonic system PSI-scheme.

From these figures it is clear that both discretization techniques have difficulties
predicting the leading edge correctly. As there are no discontinuities present in
this part of the flow, the total pressure loss should be zero. Grid refinement near
the leading edge is the only solution to obtain better results.

After the leading edge the multi-dimensional upwind method gives slightly
better results than the finite-volume method. This can especially be seen in fig-
ures 5.34 and 5.35, where the total pressure loss after the leading edge region is
more constant for the multi-dimensional upwind discretization. Also the transonic
shock is captured monotonically for this method, except in figure 5.35, while the
finite-volume method shows an overshoot in all cross-sections.

The conclusion of this comparison is that the multi-dimensional upwind dis-
cretization shows the same deficiencies as a standard structured finite-volume
method in the leading edge region of the wing, while after this region it shows
improved accuracy. However, it must be said that, although they have a com-
parable number of nodes, the grids for the two discretization techniques are not
identical and this must be kept in mind.



Chapter 6

The Navier-Stokes equations

In this chapter numerical results for the compressible Navier-Stokes equations are
given. In conservation form these equations read:
v
a—U- —a—@ = Q-Fi (6.1)
ot  Oz; Oz;
The conservative variables U and the inviscid flux vectors Fj are given in equa-
tion (5.2) and (5.3), while the viscous flux vectors F} are defined as:

0
Fy = Tij . (6.2)
uijk - qJ

Here 7 is the viscous stress tensor and q the heat flux vector. The set of Navier-
Stokes equations (6.1) is closed if these quantities can be written as a function
of the elements of U. In this work air is considered, which is assumed to be
a Newtonian fluid for which the Stokes hypothesis is valid. Then 7 is a linear
function of the velocity gradients:
u; Ou; 20u

Tii = H (g‘_,;f + ‘a?j - 567:25“) , (6.3)
where y is the molecular viscosity coefficient. According to kinetic theory [23, 47],
p is only a function of temperature for monatomic gases. Although air is a mixture
of mainly diatomic gases, this result is also valid for air at moderate temperatures
and pressures. In all computations, the semi-empirical formula of Sutherland [134]
is used:

p T >% To+ S
F_ (- . 4
Ho (To T+S (6.4)
The constants for air are:
po=1.716 - 10~°kg m~' s71, (6.5)
To=273.15K, (6.6)
S=110.55K. ‘ (6.7)
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The heat flux is modeled according to Fourier’s law:

_ 9T 6.8

q9; = amj’ (6.8)

where the thermal conductivity coefficient « is related to g and the specific heat
capacity at constant pressure, c,, by the non-dimensional Prandtl number:

_ o
Pr = pe (6.9)

For air the Prandtl number is approximately constant for temperatures between
200 and 600 K and equal to 0.72. This approximation is used in all the computa-
tions presented in this chapter.

To be sure that all variables are approximately O(1) and thus reducing the
errors due to the finite precision of computers (and also decreasing the condition
number of the linear systems in the implicit time integration method), the gov-
erning equations (6.1) are solved in their non-dimensional form. For this purpose
the following reference quantities are introduced:

o reference density: p

o reference velocity: Uy

e reference length: L,.s

¢ reference temperature: T,
o reference viscosity: e

The subscript oo indicates the freestream value. These reference conditions directly
define the non-dimensional density g, velocities #;, coordinates Z;, temperature T
and viscosity . Other desired non-dimensional quantities are:

Ust P H a

§ = —_— 4= —. 6.10
,-e_f’ P PUgo 3 Ugo ’ Uoo ( )
If these expressions are substituted into the Navier-Stokes equations (6.1), its
non-dimensional equivalent is obtained. The state vector and inviscid fluxes are
form-identical to their dimensional counterparts, but the viscous terms have been

slightly changed:

. . E _
t = E=_ZZ>2:’ H=

t~

_ 1 _ (ou 61_1_,' 2 dux .
T et (a_f,- t o 3azk‘5") ’ (6.11)
N S L (6.12)

Y= Rew Gy = 1P7 05,

where Re,, is the freestream Reynolds number:

Re,, = ”_°2%°_;L_f (6.13)
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In the following the bars to indicate non-dimensional quantities are omitted and
all variables are assumed to be dimensionless.

In section 2.5 it was shown that for the advection-diffusion equation a Galerkin
discretization of the viscous terms is consistent with the multi-dimensional upwind
schemes for the advective part. A similar analysis holds for the viscous fluxes of
the Navier-Stokes equations and therefore it will not be repeated here. The only
issue left to be discussed for the laminar Navier-Stokes equations is the treatment
of the walls with no-slip boundary conditions, which is given in section 6.1. For
the other types of boundary conditions it is assumed that the viscous terms can
be neglected and the Euler boundary conditions, section 5.2, are applied.

However most aeronautical flows are turbulent, which complicates the problem
significantly. In principle the turbulent flow field is a solution of the Navier-
Stokes equations (6.1), but the number of grid points needed to resolve properly
all turbulent length scales for high Reynolds number flows is beyond current and
foresee-able computer resources. Again, consider the airliner of section 1.2 in cruise
condition with Re., = 107. The ratio between the large turbulent scale and the
Kolmogorov micro scale is Ret [121]. Consequently O(Re?) points are needed per
dimension to resolve all length scales. As turbulence is essential three-dimensional,
at least O(Re%) grid points are needed. For the Reynolds number of the airliner
this gives O(10'®) grid points, far beyond the resources of current and near-future
computers.

The approach described above is called Direct Numerical Simulation (DNS) of
the turbulence and gives all the details of the flow field. Engineers do not need all
this information and one can try to model the turbulence. A possibility is to divide
the turbulence length scales in two categories: (1) small scales which cannot be
resolved and must be modeled and, (2): large scales which can be resolved. This
approach is Large Eddy Simulation (LES) and for the airliner of this example it
needs O(10°) grid points. Again this number is too large for current computers,
but it might come within the range of near-future (10-20 years) supercomputers
[53].

Nowadays the only practical possibility for computing such a high Reynolds
number turbulent flow is to model the influence of the turbulence on the mean
flow. This is Reynolds averaging (or better, for compressible flows, Favre averaging
[38]) and the resulting set of equations are called the Reynolds Average Navier-
Stokes (RANS) equations. These equations are identical to (6.1) but the laminar
viscous stress temsor T in equation (6.2) is replaced by the sum of 7 and the
turbulent or Reynolds stress tensor o and similarly for the heat flux. The Reynolds
stresses must be modeled by a so-called turbulence model. One can distinguish
zero-equation or algebraic models, e.g. Baldwin-Lomax [7], one-equation models,
which solve a transport equation for the eddy-viscosity (to be defined later), e.g.
Baldwin-Barth [6] or Spalart-Allmaras [113], two-equation models, which model
the eddy-viscosity by two additional transport equations and second-order closure
models, which solve a transport equation for every element of the Reynolds stress
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tensor . The zero-equation models are non-local in nature, typically information
along a line crossing the boundary layer is needed, and therefore they are difficult
to implement on unstructured grids. For this reason and the fact that their results
are not as good as the results of one- and two-equation models they are not used
in this work. The second-order closure models are very much an area of ongoing
research [132] and will therefore not be considered either. Section 6.2 describes
the four models used for the computations.

The last section of this chapter contains results of both laminar and turbulent
test cases.

6.1 Walls with no-slip boundary conditions

For these walls the no-slip boundary condition u; = 0 must be prescribed in com-
bination with a boundary condition for the temperature, either an isothermal
(T = Tyeu) or an adiabatic wall (% = 0). The no-slip and isothermal wall condi-
tions are enforced strongly, i.e. every node belonging to a wall exactly obeys the
imposed conditions. When explicit time integration is used, this can be done after
every time step. However, for an implicit method this is not the correct approach,
because this corresponds with an explicit treatment of the boundary conditions,
see section 5.2.8. Therefore in the Jacobian matrix 28 the rows corresponding
with the momentum updates of no-slip walls are replaced by the relation:

Apuloslip wall _ o (6.14)

For the isothermal wall condition the implicit treatment is more complicated. Ty
and thus E,.; is prescribed, but not zero and therefore the conservative variable
pE changes. Consequently the rows of % corresponding with the energy equation
of no-slip wall nodes are replaced by:

Ap E)?o-slip wall _ Eian AP?o—slip wall, (6.15)

which directly links the update of pE to the update of p.

The adiabatic wall boundary condition %% = 0 is a homogeneous Neumann
boundary condition, which is automatically satisfied within the finite-element
framework by omitting the boundary integral in the partial integration of the
viscous terms. Therefore nothing additional needs to be done for this boundary

condition.

6.2 Turbulence models

The turbulence models used in this work are either one-equation or two-equation
models, which refers to number of additional transport equations added to the
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Navier-Stokes equations to model the turbulent flow field. The generic form of
these additional equations is:

06, 0 _ 0 ( 00\, 5.y
-(‘)_t_+u15x—;_a:z;,- (Vd’az',')-"z + X", (616)

Here ¢ stands for any of the turbulent quantities, v4 is a diffusion coefficient
corresponding to ¢, £+ the production source term and X~ the destruction source
term. Note that the turbulent variables are always advected along the streamlines.
First it is explained how this type of equation is discretized, followed by the models
used in the computations.

6.2.1 Discretization of the turbulent transport equations

Equation (6.16) is an advection-diffusion equation with source terms. The dis-
cretization of the advection-diffusion part has already been treated in chapter 2
and will therefore not be repeated here. As it is essential that the turbulent quan-
tity ¢ remains positive, the advective part must be discretized with a positive
scheme. In practice this means that either the N- or PSI-scheme is used.

In principle the Petrov-Galerkin interpretation of the schemes, see section 2.1,
leads to a straightforward discretization of the source terms ¥ and X~. If these
terms are assumed to be constant per control volume, the distribution to node [

of cell T is:
Rl,aource = ﬂlST (Z+ + 2_) ) (6.17)

where S7 is the area/volume of the triangle/tetrahedron and f; the distribution
coefficient of the advection scheme. The distribution (6.17) shows that the source
term must be upwinded (in practice upwind schemes are used) to have a consistent
discretization. Numerical experiments however showed that this approach was not
very stable and a point wise discretization of the source terms has been used. This
leads to the following semi-discrete version of equation (6.16) at node I:

S,d?;lt51 + T%:z, (R + BlLi) = S (S +27) - (6.18)

Here S; is the area of the median dual cell of node I, see figure 2.2, (}; indicates
all triangles which belong to neighborhood of node /, see figure 2.3, and R];,, and
RT,;, are the result of the discretization of the advection and the diffusion term
over each cell respectively. Although formally first-order accurate, a study on a
model equation showed that the reduction in accuracy due to this inconsistent
source term discretization is negligible. If £} or £, contain gradients, these are
reconstructed with the Galerkin scheme:

L5~ 57 gyt (6.19)

Vi == 3 2L vl
! SIT€Q|d+1
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where V9, is the gradient of a certain quantity ¥ in node {, V97 the constant
gradient in cell T' and d the number of spatial dimensions.

In general the source terms L% and X~ are stiff, which makes explicit time
integration impossible and some kind of implicit algorithm must be used. To
increase stability, Patankar [89] proposed to treat only the destruction source term
L~ in an implicit manner. Usually £~ does not contain derivatives and is only
a function of the nodal state U;. Consequently an implicit treatment of £; in
combination with the explicit forward Euler time integrator, m = 1 in section 4.1,
for the other terms leads to the following point-implicit method:

1 axr il um
(- r-a-n

As %E—‘!- is negative, the update is under-relaxed compared to the fully explicit
algorithm. This makes the use of semi-explicit time integrators even less attractive
for turbulent flows than for laminar ones and consequently implicit methods are
considered.

For the fully implicit backward Euler method, section 4.2, the Jacobian matri-
ces of the entire residual R; must be computed. As the turbulent quantities are
advected along the streamline, there is a coupling with the Navier-Stokes equa-
tions. This coupling however is neglected for two reasons, (1): due to the explicit
treatment of the production source term X, Newton convergence cannot be ex-
pected anyway and therefore the relatively weak coupling with the Navier-Stokes
equations does not have much influence, and (2): it was found, see also e.g. [74],
that neglecting these terms was beneficial for stability. For two-equation models
even the coupling between the two turbulent quantities is neglected. An extra
advantage of this approach is a saving of a factor two in memory (for two-equation
models), which especially in 3D is not negligible.

6.2.2 The Spalart-Allmaras model

The Spalart-Allmaras model [113] is an empirical one-equation model, especially
developed for aerodynamic flows. It employs a transport equation for &, which is
a variable related to the kinematic eddy-viscosity v:. This eddy-viscosity is used
to model the turbulent stress tensor o:

1 611,,' au,- 2 a'uk
5= e (e 5o~ 53%9) (62

with u; = pvy. Note that the non-dimensional form of & is used, so y: (and also
v;) is the ratio of the eddy-viscosity and freestream viscosity. The turbulent heat
flux is modeled as:

(6.22)
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where the turbulent Prandtl number Pr; is taken constant and equal to 0.90. The
non-dimensional form of the Spalart-Allmaras model reads:

O 2t - L 1[8 (( + )66:.)4‘062@-—6—11‘]"‘

QL ' Oz, \Re Oz; 5 dz; ax,J
roon 1 me (6.23)
<. ¢ 7
e (1 — fi2) SO — E (cwlfw - %ftz) (B) + Reo, f AUZ.
147 ~ ‘7 o vI

Term I is the time-derivative, which forms together with the advective part 17 the
Lagrangian derivative. The diffusion term II1 is partially auto-diffusive, i.e. the
diffusion coefficient appearing in term I/1 is ¥ itself. The production term is given
by IV, where

2D2 gl (6.24)

] is the magmtude of the vorticity and D the distance to the nearest wall.
Term V is the destruction term and VI the so-called trip term, which triggers the
transition. AU is the velocity difference with respect to the nearest trip point, see
later. The kinematic eddy-viscosity v; is given by:

=2+ 5—

Vs = i;ful- (6.25)
The definition of the model is completed by the functions:

1

{1+ a\?®
fw“g (ga + cswa) b (626)
g=r+ecu (r®~7), (6.27)

—mi v 10 2
r=min m ’ (6 8)
3 1
fo=—s"—73" Fra X (6.29)
X

v2=1 — ——— 6.30
f ? 1 + Xful ( )

02
fa=cug: exp( ct2AU2 [D2 2Dﬂ) , (6.31)

=min (0 1 i-)
9= A

ft2_=013 exp (—C:4X2) . (6.33)

(6.32)
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The function f;; is designed to keep a laminar solution laminar such that the model
does not trigger transition to turbulence itself. Consequently, the trip points (or
lines in 3D), i.e. the points where the flow becomes turbulent, must be specified by
the user and the function fi;, equation (6.32), starts the transition. In this function
|| is the magnitude of the vorticity at the nearest trip point and D, the distance
to this point. The tangential grid spacing at the trip point Az;, equation (6.32),
is used for numerical reasons, see [113]. The Spalart-Allmaras model is closed by
the constants:

2
cpr = 0.1355, ¢ =0.622, o= 3 k=041,

cn 1+ cp
Cpl = — +———,
K o

Cy = 10, Cip = 20, Ci3 = 12, Cig = 0.5.

Cu2 = 03’ Cy3 = 20, Cy1 = 71, (634)

It is possible that for some cases the constants of the c,-series must be changed to
enforce transition. Spalart and Allmaras [113] recommend a maximum freestream
value of ¥ of 0.1. The boundary condition on a no-slip wall is simply ¥ = 0.

The full model requires the knowledge of the transition points, either by an
educated guess or by knowing the experimental trip points. However it is possible
to use the model in "full turbulent mode” by simply setting fi1 = f;2 = 0. In this
case the transition takes places due to numerical reasons and it is hoped that this
is close enough to, for example, the leading edge of the airfoil. If this does not
happen, the prediction of the transition point should not be trusted and a separate
prediction model must be used, see e.g. [115].

6.2.3 The k —w model

Experience indicates that, unlike many other two-equation models, the k—w model
[135] does not require damping functions in the viscous sublayer. Therefore, it is
numerically easier to handle than for example the low-Reynolds version of the k—¢
model [64]. The two additional transport equations for %, the turbulent kinetic
energy, and w, its specific dissipation rate, written in non-dimensional (k is made
dimensionless by U2 and w by g=) conservation form are given by:

apk apku, 1 3 ok “(?u.- o

9" i Rew 0m (B +onpm) 5- | ¥ %%, Gok (6.35)
N’ - —— v

T I Ii%

Opu | Gpos_ 10 00) | pe b, B4 g o
It (‘):,;1 Rewa (#+0u1ltt)a +fiq,o p % ﬂlsw (6.36)

T I v

Here the terms I indicate the time-derivatives, II the advection parts, 111 the
diffusion terms, IV the production terms and V the destruction terms. Compared
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with the Reynolds stress tensor for the Spalart-Allmaras model, equation (6.21),
the definition of o;; for two-equation models has now slightly changed:

1 au,' 8u5 2 Buk 2

— | — 4+ =2 — o8 | — pkdy;. 6.37
Re'" (axj T % 30m,0) T3P (6.37)
The last term is present due to the fact that the turbulent normal stresses must
some up to —2pk. In one-equation models this effect is ignored, since there is no
separate equation for k. The modeling of the turbulent heat flux, equation (6.22),
remains unchanged. The non-dimensional eddy viscosity is defined as:

et
pe = Re = (6.38)

gi; =

The modeling constants are:
Ok = 05, Oyl = 0.5, ﬂl = 0.075

ﬁl aw1ﬁ2 (6.39)
ﬂ* = 009, K= 041, Y1 = 57 — .
! ﬁ* \/,8*

Menter [75] recommends the following boundary conditions:

10-(2-5) o
Free stream: we, = (1 = 10), koo = 0 e
Reoo 6.40
Nowslip wall: w= 0 8 x_p (6.40)
-sli tw= , k=
P Rew pB1(Ap1)?

where Ay, is the normal grid spacing at the wall.
Due to the introduction of the turbulent kinetic energy k, the definition of the

total energy becomes:
1
pE = —L— 4 —puu; + pk, (6.41)
¥y-1 2

i.e. the turbulence is taken into account in the conservation of energy, although
this effect is of secondary importance.

Of more concern is the presence of the term -—-32-pk in the turbulent normal
stresses, see equation (6.37). This term, when discretized with the Galerkin
method, could lead to instabilities, because it appears in the Navier-Stokes equa-
tions as a first derivative. Therefore it is incorporated in the pressure by the
introduction of an effective pressure p/,

2
Y =p+ ook, (6.42)

and discretized in an upwind manner. This and the contribution of k to the total
energy changes the acoustic eigenvalues of the inviscid Jacobians A;, equation (5.6).
Instead of u; + a these are now given by u; %+ a’, where

ad = \/(7—— 1) (H - %u;u;) + (1 - %) k. (6.43)

Also this effect has been taken into account when the k — w or any other two-
equation turbulence model was used.




118 CHAPTER 6. THE NAVIER-STOKES EQUATIONS

6.2.4 The BSL model

The main disadvantage of the k —w model is its sensitivity to the rather arbitrary
freestream values of k and w, equation (6.40), in the outer part of the boundary
layer. Menter’s idea [75]) was to combine the good properties of the k — w model,
i.e. no need for wall functions and accurate prediction in the near wall region of the
boundary layer, with the good properties of the k — ¢ model, mainly its freestream
independence, and to avoid the bad properties of both models. The result is the
Baseline (BSL) model, which is a blending between the k — € and k — w models,
expressed in k — w formulation:
0

apk apk‘u,,' _ i ﬁ B Us "
W + a:r,' - Reoo 6m,~ l:('u + Uk#t) 61,] + i a:tj - ﬂ pwk (6'44)

Ow 1 0k Ow
[+ oo 22] 4200 - Py ol 2 2

+Reoo UtJ gU, - Bpw? ,

Opw + Opwu; 1 0
at 31:, Reco a Ty

(6.45)

where the blending function F] has been defined as:

Fi=tanh (argf) (6.46)

. VE 1 500u\ 4po.k
argi=min [ma" (o.ong’ Few pDzw) ! CDkaz] (6.47)
_ 1 Ok 6w —20

In equation (6.48) D is the distance to the nearest wall.

The constants appearing in the BSL model are actually not constants any more,
but a blending between those appearing in the k£ — w model, equation (6.39), and
those appearing in the k — € model:

o2 = 1.0, o,,=0.856, [,=0.0828
B2 Uuzﬂz (6.49)
B VB
If any of the k — w constants are indicated by ¢; and any of the k — £ constants
by &2, then the "constants” of the BSL model, indicated by ¢, are given by:

¢ = Fid1 + (1 — F1)s. (6.50)

Here Fj is defined in equation (6.46). The freestream and wall boundary conditions
are identical to the k — w model, see equation (6.40).

B* =009, k=041, 1=
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6.2.5 The SST model

The Shear-Stress Transport (SST) model [75] uses the same transport equations
for k and w and the same blending function F; as the BSL model, equations (6.44),
(6.45) and (6.46), but the k — w constants have been slightly changed:

ox = 0.85, o0, =05, F =0.075
By onk’ (6.51)
*=0.09, =041, == .
ﬁ . TN ﬁ* \/B:

A second modification is the definition of the eddy-viscosity:

_ alpk
pe=Hew max (ayw, ] F3) (6:52)
Fy=tanh (arg}) (6.53)
vk 1 500 A
= 2 .
argz=max ( 0.09wD’ Rey, pD*w (6.54)

where |Q}] is again the magnitude of the vorticity vector. The constant a, is taken
equal to 0.31. Comparison with the definition (6.38) of the BSL model shows that
the eddy-viscosity of the SST-model is at most equal to, but usually less than,
that of the BSL model. This reduces the overprediction of ¢ in adverse pressure
gradient flows and improves the model’s performance for such flows [75, 76, 104].

6.3 Results

In this section results are given for four test cases: (1) laminar, hypersonic flow
over a hyperboloid flare, (2) transonic, turbulent shock-wave/boundary-layer in-
teraction in a channel, (3) interaction of the base flow and an exhaust plume of a
rocket model in a supersonic flow and (4) laminar and turbulent flow over an ogive
cylinder at angle of attack. Two of these test cases, (1) and (3), are axisymmetric
problems and consequently the axisymmetric source terms X,

()

(6.55)

1
u
v
H

must be discretized. Due to the singularity at the centerline, the very stable point-
wise treatment of these source terms, see section 6.2.1, is not possible and at the
moment the LDA-scheme is the best of all possible options to discretize these terms
for axisymmetric problems.
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6.3.1 Hyperboloid flare

This axisymmetric problem is the low Reynolds number case for the hyperboloid
flare of the MSTP Workshop 1996 [107], for which a laminar flow can be assumed.
The flow conditions are given in table 6.1. The geometry, shown in figure 6.1,

M 6.73
T 59.65 K
Ty 310 K

Re,,/m | 3.50 - 10%/m
Rey, 2.073 - 105
L 0.05924 m

Table 6.1: Flow conditions for the hyperboloid flare test case

where the coordinates are dimensionless with the body length L = 0.05924 m, is
an approximation of the windward side of the HERMES 1.0 contour at 30° angle
of attack and 20° flap deflection. The hyperboloid part of the body is given by a
combination of two fourth-order polynomials, see [107]. The grid is a 400 x 100
triangulated structured grid, taken from [18)]; a coarsened version is shown in
figure 6.2. Mach number and C, isolines for the system PSI-scheme are depicted
in figures 6.3 and 6.4 respectively. The Mach number isolines are smooth and
clearly show the separated region between the separation and the reattachment
shocks. Also the slip lines, which originate at the interaction points between those
shocks and the bow shock can be seen in figure 6.3. In contrast to the Mach
number, the pressure is wiggly, especially in the nose region. Albeit to a lesser
extent, these wiggles are even present in the first-order N-scheme solution (not
shown). Therefore the cause of these wiggles is probably a combination of the

|

1.00

Figure 6.1: Geometry definition of Figure 6.2: Triangulated 100 x 25
the hyperboloid flare. grid (Real grid is 400 x 100).
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Figure 6.3: Mach number isolines for
the hyperboloid flare, system PSI-
scheme: min = 0.0, max = 6.73,

Figure 6.4: Cp isolines for the hy-
perboloid flare, system PSI-scheme:
min = 0.0, max = 1.8, step = 0.04.

step = 0.1.

distribution of the axisymmetric source terms with the system LDA-scheme and
the non-optimal performance of the current system PSl-scheme.

The convergence history is shown in figure 6.5. Due to the discretization of
the axisymmetric source terms, only numerical Jacobians could be used and con-
sequently the CFL-strategy was very heuristic. An initial solution (N-scheme) has
been computed on the triangulated 200 x 50 grid, the first part of figure 6.5. As
can be seen, Newton convergence has been obtained after a number of initial iter-
ations. The maximum CFL number was 10%. The solution on this grid has been
transferred to the 400 x 100 grid and used as initial solution for the first-order
computation. Also on this grid the residuals could be driven to “machine zero”.
Finally, the second-order computation was started from this solution, in combina-
tion with N-scheme Jacobians and CFL = 100. As can be seen in figure 6.5, the
second-order scheme converges approximately 2 orders relative to the first-order
solution and then it stalls. The total amount of CPU time is 13 hours on a DEC
alpha workstation (EV5.6 processor operating at 500 MHz).

For this test case surface pressure and heat transfer have been measured in the
RWG tunnel of the DLR in Gottingen [63, 62]. Figures 6.7 and 6.8 show compar-
isons between the experimental data and numerical solutions obtained with the
multi-dimensional upwind discretization technique of this thesis and a standard
finite-volume solver on structured grids [73]. Although not measured, the numer-
ical skin friction coefficients are computed and shown in figure 6.6 The pressure
distribution of the current discretization technique agrees slightly better with the
experiments than the standard finite-volume solver, see figure 6.7.

The two experimental runs for the Stanton number, figure 6.8, differ quite a bit,
especially in the separation region, which shows that the experimental uncertainty
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Figure 6.5: Convergence history for Figure 6.6: Computed skin friction
the hyperboloid flare. coefficients for the hyperboloid flare.

is rather high. The values of run 15 fit quite well both computations, although
the agreement with the multi-dimensional discretization is again slightly better.
However, due to the uncertainties in the measurements, no decisive conclusions
can be drawn.

Finally, the location of the first separation point has been determined experi-
mentally using pressure data, oil flow visualization and liquid crystals. Numerically
this location has been determined by means of the pressure distribution, figure 6.7,
the skin friction coefficient, figure 6.6, and the Stanton number, figure 6.8. The re-
sults are summarized in table 6.2, where L,ep = Thinge — Zsepy Thinge = 0.0493667 m.

14 0.025

™ experiment
multi-D upwind solver

12

——+——  Finlte Volume soiver

0.020
0.015
7
0.010
0.005
%5 0.2 Y3 0.8 08 0 000z """63 0§ 0B o 92z
xL XL
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.
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Experimental L,e,/L | Numerical (MD) L,.,/L | Numerical (FV) L,e,/L
pressure 0.25 C,p 0.23 Cyp 0.22
oil 0.92 C; 0.20 C; 0.19
liquid crystals  0.22 St 0.23 St 0.20

Table 6.2: Experimental and numerical location of the first separation point;
MD = multi-dimensional upwind solver, FV = finite-volume solver.

The most reliable is the separation prediction based on the skin friction, because
it is very easy to check where it becomes zero. Also here the multi-dimensional
upwind discretization technique is closer to the experimental values.

The main conclusion for this test case is that laminar flows can be predicted
quite accurately with numerical methods, even if complex phenomena, like multiple
separations, occur.

6.3.2 Transonic turbulent channel, Délery’s Experiment C

The aim of this test case is to investigate the behavior of the turbulence models
considered for a transonic shock-wave/boundary-layer interaction and the perfor-
mance of the multi-dimensional upwind discretization technique for such problems.
It has been investigated experimentally in the early 1980s by Délery [34].

The geometry of the channel is shown in figure 6.9 and the flow conditions
are given in table 6.3. The turbulent boundary layer is subjected to a shock-
wave, which terminates the supersonic region downstream of the throat. Due to

Top Wall
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Figure 6.9: Geometry description for Délery bump (case C).
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Mo: 0.615 Model | Back pressure

Ty 300 K SA 62.5 kPa

B 96 kPa k—w 63.0 kPa

Wall: adiabatic BSL 63.0 kPa

Reoo/m | 10.96 - 10°/m SST 61.5 kPa
Table 6.3: Flow conditions for the Table 6.4: Back pressures for the dif-
Délery bump (case C) ferent turbulence models

this shock-wave, the boundary-layer separates and a lambda shock structure is
formed, see figure 6.10. At the (computational) inlet the incoming boundary layer
is assumed to have zero thickness. As the interaction region is located far away
from the inlet, this assumption does not influence the results in this region. In the
experiments [34] an adjustable second throat was used to position the shock at the
desired location. This is numerically a very difficult task and the usual approach is
to adapt the back pressure at the outlet such that the location of the pressure jump
at the lower wall coincides with the experiments. This depends strongly on the
length of the computational domain and the turbulence model used. The outlet
has been chosen at £ = 0.4261 m and the correct back pressures, in combination
with this computational domain, for the different turbulent models are given in
table 6.4.

Two grids were created to compute the solution: a relatively coarse mesh,
10,420 nodes, which has been used to determine the speed-up’s, see section 4.3,
and a finer grid consisting of 41,231 nodes. Both are shown in figure 6.11 and have
been created with the hybrid structured/unstructured approach of Carette [20].
For both grids the normal spacing on the walls is variable: 1.0-107¢ m at the inlet
and 5.5-107® m at the outlet. The stretching factor in the viscous region is 1.2.




6.3. RESULTS

125

AVaV,

\VAVATAVAVAYAY,
VAVAVAVAV,Y,

Kl
5
%
v
d
S
dl
5
Kl
)
b
]
S
i
5
3%

Vaal
500

X
2525
TaVLYaTAvas
QOO0

Figure 6.11: Fine grid (upper), 41,231 nodes, and coarse grid (lower), 10,420 nodes,
for the Délery bump.

To improve the resolution in the interaction region, the grids are locally refined,
which is clearly visible in figure 6.11.

The convergence histories on the fine grid for the four turbulence models con-
sidered are given in figure 6.12. For all cases approximate N-scheme Jacobians are
used in combination with a CFL number of 100, both for the first-order N-scheme
and the second-order PSI-scheme. For the two-equation turbulence models, the
CPU time on 8 processors of the Cray T3E was approximately 12 hours. The
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Figure 6.12: Convergence histories for the Délery bump on the fine grid.
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Spalart-Allmaras solution could be obtained in roughly 60% of this time, i.e. 71
hours. For the first-order scheme, all two-equation models converge quite well, es-
pecially the SST model, while the Spalart-Allmaras stalls, see figure 6.12. For the
second-order scheme all models stall after one order of magnitude relative to the
restart. However the maximum value of the eddy-viscosity did not change more
than 0.2% between iteration 4000 and 5000 and the solutions have been assumed
to be converged.

Mach number isolines for the four turbulence models can be found in figure 6.13.
The k — w and BSL solutions look very similar and fail both to predict the lambda
shock observed in the experiment, see figure 6.10. The SST and, albeit to a much
smaller extent, the Spalart-Allmaras model do show the lambda shock structure
and therefore it can be expected that these two solutions will agree better with
the experimental results. From figure 6.13 it is clear that the SST model also
predicts a small lambda shock on the upper wall, which has not been observed in
the experiments. This might be an indication that for this test case the limiting of
the eddy-viscosity, equation (6.52), is too strong. Note that especially the solution
of the SST-model shows quite a few wiggles downstream of the normal shock. As
these wiggles are also present in the first-order solution, although less pronounced,
figure 6.14, they are probably caused by the shock-capturing of the method. The
wiggly behavior after shocks is also observed for the standard Roe scheme [91],
which in one space dimension is equivalent to the upwind residual distribution
scheme. A zoom of the grid superimposed on the Mach isolines in the region of
interest for the SST and Spalart-Allmaras solution is shown in figure 6.15. The
shocks are captured with either one or zero internal nodes and especially for the
normal shock in the SST-solution it alternates between these two values. Clearly
the wiggles originate from here. It must be said that on coarser grids this effect is
less evident, because of more numerical cross diffusion.

Figures 6.16 and 6.17 show the computed and experimental pressure distribu-
tions on the lower and upper walls respectively. The coarse and fine grid solutions
are nearly identical and therefore it is assumed that especially the fine grid re-
sults are grid converged. As the pressure distribution in front of the shock-wave
is determined by inviscid phenomena, all models give identical results in these
parts of the flow field. It is clear that the SST-model gives the best agreement
with the experimental data, although it does not fit exactly. Especially the pres-
sure plateau between the two legs of the lambda-shock on the lower wall is not
predicted. The Spalart-Allmaras model predicts something that looks like such
a plateau, but at too high a level, probably caused by the higher back pressure
(Spalart-Allmaras: 62.5 kPa, SST: 61.5 kPa). The BSL and the ¥ — w models
are nearly identical and give the worst agreement with the experimental pressure
distribution, mainly due to the inability to generate the lambda shock. Also at the
upper wall the SST-model agrees best with the experimental data, again followed
by the Spalart-Allmaras model.

Apart from the deficiencies in the turbulence models, there is another possible
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Figure 6.13: Mach number isolines for the solutions of the four turbulence models
on the fine grid for the Délery bump, PSI-scheme.

cause for the differences between computation and experiment, namely the treat-
ment of the outlet boundary. As described earlier, the constant back pressure at
the outlet has been adjusted such that the shock on the lower wall is located at the
correct position. In the experiments an adjustable second throat is used to choke
the flow, which allows a pressure variation over the computational outlet. As can
be seen in figures 6.16 and 6.17, the experimental pressure at the location of the
computational outlet is indeed different for the lower and upper walls. However
the result of an SST computation with an outlet located much further downstream,
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Figure 6.14: Mach number isolines for the SST solution on the fine grid for the
Délery bump, N-scheme.

at £ = 0.7 m, did not show a significant change in the wall pressure distributions
and therefore it has been assumed that the differences between computation and
experiments are not caused by the outlet boundary treatment.

Apart from the wall pressure distributions, also the velocity profiles in the
flow at several z-locations have been measured [34]. The results are shown in fig-
ures 6.18 to 6.21. Figures 6.18 and 6.19 clearly show the separated region after
the first shock, which approximately ends at ¢ = 0.33 for the Spalart-Allmaras
model, the SST-model and the experiments , see figure 6.20. This region is shorter
for both the BSL and the k —w model, as can be seen in figure 6.20. Although the
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Figure 6.15: Zoom of figure 6.13 in the region of interest for the SST model (left)
and the Spalart-Allmaras model (right).
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Figure 6.16: Computed and experimental pressure distribution on the lower wall,
left: coarse grid, right: fine grid.

recirculation region is predicted by all turbulence models considered, the quan-
titative numerical results are far from the experimental values, especially in the
cross-section z = 0.29, see figure 6.19. Note that the SST-model does not give
a better velocity profile than the other models, although its wall pressure distri-
bution is closer to the experiment, especially on the lower wall. At z = 0.38,
figure 6.21, the flow is fully reattached for all turbulence models.

From the numerical point of view, the conclusion for this test case is that the
discretization technique developed here, in combination with the implicit integra-
tion method results in a very stable algorithm: starting from a uniform flow did
not pose any problem for the solver.
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Figure 6.17: Computed and experimental pressure distribution on the upper wall,
left: coarse grid, right: fine grid.
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As can be expected for such a complicated flow, none of the considered turbu-
lence models is able to predict the flow field very accurately. The wall pressure
distributions of especially the SST-model agree reasonably well with the experi-
mental data, but for more sensitive quantities like velocity profiles the difference
between computation and experiment can be as large as a factor 2, especially in
and after separation regions.
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6.3.3 Rocket model with exhaust nozzle

This axisymmetric blunted cone-cylinder configuration with exhaust nozzle, whose
geometry is defined in figure 6.22, has been investigated experimentally in the Delft
University transonic/supersonic TST 27 windtunnel [8]. The main interest of this
experiment is the influence of the exhaust plume on the base flow.

Experimental data is available for a whole set of conditions (8], but only one
case has been computed here, see table 6.5. Here P,,J. and Ty, indicate the total

M. [ T: (K) | P. (MPa) Reoo/m P, (MPa) | Ts, (K) | Twat (K)
2.98 285 0.5751 46.5714-106/m 3.13 285 263

Table 6.5: Flow conditions for the rocket model.

pressure and the total temperature of the jet respectively. Note that the value
of T;, corresponds with a cold plume. The conical nozzle inside the model has
been designed such that the jet exit Mach number is approximately 4. Together
with the conditions of table 6.5, this corresponds to an underexpanded jet. The
interior nozzle has been computed assuming a zero radial velocity at the subsonic
inlet. In combination with the total conditions given in table 6.5, this completes
the information needed to treat the subsonic inlet boundary, see section 5.2.3.
In the numerical simulations the shape of the nozzle upstream of the throat has
_been slightly changed, such that the inlet Mach number is approximately 0.2. It
is assumed that the influence of this approximation on the solution in the base
region is negligible. In the experiments the exterior boundary layer has been
tripped near the nose, see figure 6.22, and a fully turbulent flow has been assumed
in the computations.

The hybrid structured/unstructured approach [20] has been used to generate
two grids. The coarse version, shown in figure 6.23, has 15,505 nodes, of which
approximately 12,000 are located in the structured part near the walls. Due to the
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Figure 6.22: Geometry definition of the rocket model and location of the pressure
taps.
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Figure 6.23: Coarse grid (15,505 nodes) for the rocket model.

high Reynolds number the initial normal spacing is 10~° m, leading to aspect ratios
of more than 4000. As can be seen in figure 6.23, the unstructured part of the grid is
quite coarse and in fact much too coarse to predict the flow field downstream of the
exhaust nozzle accurately. Therefore a very fine grid consisting of 119,519 nodes
has been created. The grid in the base region is shown in figure 6.24. To investigate
the solution in this base region even in more detail, it has been computed separately
on a 925 x 481 triangulated structured grid, which is on an average 5 times finer in
each coordinate direction than the grid shown in figure 6.24. The computational
domain is a rectangular box, where the z-coordinate varies between 0.18681 m and
0.23 m and the y-coordinate between 0.0085 m and 0.029 m. On the inflow parts of

Figure 6.24: Base region of the fine grid (119,519 nodes) of the rocket model.
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the boundaries ¢ = 0.18681 m, y = 0.0085 m and y = 0.029 m a supersonic inlet
has been assumed - the flow variables have been linearly interpolated from the
second-order solution of the fine grid. The outflow boundary = 0.23 m has been
chosen such that the flow is supersonic and consequently no boundary conditions
need to be described there.

An initial solution on the fine grid has been obtained by interpolating the first-
order coarse grid solution to this fine grid. The convergence history, starting from
this solution, for the SST model, computed on 16 processors of the Cray T3E, is
given in figure 6.25, which, again, shows the stalling of the second-order scheme.
Due to stability reasons, the CFL number had to be restricted to 20, for both
the first- and second-order computations in combination with numerical N-scheme
Jacobians. At first glance this seems very low, but the explicit Runge-Kutta
time integrators were unstable, regardless of the CFL number. These explicit
schemes even failed for the first-order, laminar case, when restarting from the fully
converged (implicit) solution. The total CPU-time for the two-equation models
is approximately 19 hours. As for the Délery bump, the solution in combination
with the Spalart-Allmaras model could be obtained in 60% of this time.

Mach number isolines for the fine grid SST solution are depicted in figure 6.26.
As the main characteristics of the flow are determined by inviscid phenomena,
except in the base region, the solutions of the other turbulence models look very
similar and are therefore not shown. The plume and barrel shock and the slip line
in between are clearly visible, as well as the fact that the nozzle is underexpanded.

Computational and experimental pressure distributions for the coarse and fine
grids on the cylindrical part of the model are shown in figure 6.27. It can be seen
that the boundary layer thickness has some influence near the corners (compare
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Figure 6.25: Convergence history for the rocket model on the fine grid, SST model.
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Figure 6.26: Mach number isolines for the rocket model, fine grid, SST turbulence
model, PSI-scheme; min = 0.0, max = 6.3, step = 0.15.

is mainly determined by the inviscid equations. All results are nearly identical and
fit the experimental data quite well. On the cylindrical part the solutions are grid
converged, as both grids give the same results for all turbulence models.

As explained earlier, the main interest of this experiment is the flow in the base
region. An indication of the flow field can be seen in figure 6.28, which shows the

the turbulent and laminar solutions), but the pressure in this part of the flow field
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Figure 6.27: Computed and experimental pressure distribution on the cylindrical
part for the rocket model, left: coarse grid, right: fine grid.
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Figure 6.28: Computed streamlines in the base region of the rocket model for the
SST turbulence model on the fine grid, PSI-scheme.

computed streamlines based on the numerical solution of the SST model. Theoret-
ically these streamlines must be closed because of mass conservation reasons, but
due to integration errors this is numerically not possible. It is observed that four
counter-rotating vortices are present in the base region. Consequently the flow is
extremely complex and together with the fact that the Mach number is rather low
in that area, this makes the problem very difficult to compute for a compressible
flow solver.

Despite this, results have been obtained and the calculated pressure distri-
butions in this region are compared with the experimental results in figure 6.29
and 6.30, see figure 6.22 for the location of the pressure taps.

The following conclusions can be drawn.

e especially from figure 6.30 it is clear that the laminar solution is completely
wrong. On the triangulated structured grid it is highly unsteady and con-
sequently the pressure distribution shown only serves as illustration - it can
be quite different some time steps later. Numerically Von Karman vortex
sheets are observed. On the coarse and fine grid, see figure 6.29, the solution
is steady, due to numerical diffusion. Note that the computed pressure distri-
butions on these grids are a factor 3 too low compared with the experimental
data.

e all solutions on the coarse grid are not grid converged in the base region,
as the computed pressures are lower than on the fine grid. The pressure
distribution in the base region of the solution obtained with the Spalart-
Allmaras model on the fine grid is identical to the distribution computed on
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Figure 6.29: Computed and experimental pressure distribution in the base region
for the rocket model, left: coarse grid, right: fine grid.

the triangulated structured grid in the base region, see figures 6.29 and 6.30.
Consequently this solution is grid converged. However, it is clear that the

solutions of the two-equation

models on the fine grid are not grid converged,

as the base pressure distribution on the triangulated structured grid is 25 to

50% higher.

e all turbulence models predict the base pressure too low compared to the

experimental values. Taking

into account the conclusion mentioned above,

this difference is caused by the deficiency of the turbulence model in case of
the Spalart-Allmaras model. For the two-equation models the situation is not
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Figure 6.30: Computed and experimental pressure distribution in the base region

for the rocket model, triangulated

925 x 481 structured grid in base region.
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so evident. As the base pressure distributions on the grids used differ quite a
lot, the solutions cannot be assumed grid converged and it might be possible
that on even finer grids the base pressure increases further. Furthermore, it
is not clear what is the effect of imposing the entire solution (interpolated
from the fine grid solution) on the inflow boundaries of the triangulated
structured grid in the base region. There are indications that, especially in
the interaction region between the exhaust plume and the base region, the
solution changes quite a bit and thus a wrong solution is imposed there.

e on the triangulated structured grid, figure 6.30, the k¥ — w model predicts
a significantly higher pressure in the base region than the BSL and SST-
models, whose formulations are almost identical to the k — ¢ model in this
part of the flow field, see sections 6.2.4 and 6.2.5. Due to the limiting of
the eddy-viscosity, equation (6.52), the pressure distribution of the SST-
model is slightly lower than the distribution obtained with the BSL-model.
Furthermore, all two-equation models give a much higher pressure than the
Spalart-Allmaras model on this grid.

The main conclusion is that the correct prediction of the base flow character-
istics is a difficult problem, which requires extremely fine grids, especially for the
two-equation models. The result obtained with the k—w model on the triangulated
925 x 481 structured grid in the base region is surprisingly good, as it is believed
that the base flow characteristic cannot be predicted accurately by eddy-viscosity
turbulence models. Apparently this is not the case here, as long as sufficiently
fine grids are used. However, it might be a coincidence and more cases should be
computed to draw a decisive conclusion.

The computational effort to obtain a converged solution on the triangulated
structured grid is enormous - 100 CPU hours on 16 processors of the Cray T3E
for the two-equation models. The one-equation Spalart-Allmaras model does not
need such fine grids, but the computed base pressure is almost a factor two too
low.

It should be noted that only pressure distributions have been compared. An
even more important, and probably also more difficult problem is the correct pre-
diction of the heat flux in the base region, especially for hot plumes.

6.3.4 Ogive cylinder

In this section the results of the laminar and turbulent computation over an ogive
cylinder are discussed. The geometry definition is shown in figure 6.31. It has been
investigated experimentally by ONERA [2] for a whole set of incidence angles, but
only @ = 10° has been computed here. The flow conditions are given in table 6.6.
In the experiments two cases are distinguished: the case where the boundary layer
undergoes natural transition and the case where the boundary layer has been
tripped near the apex. For the numerical computation fully laminar and fully
turbulent flow have been assumed respectively.
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Figure 6.31: Geometry definition of the ogive cylinder.

M, 2.0

@ 10°

T; 330 K

Wall adiabatic
Rey,/m | 5.33 - 10°/m
Pt 50 kPa

Table 6.6: Flow conditions for the ogive cylinder test case.

The laminar case

The mesh has been created with the grid generator of the University of Swansea
[90] and consists of 390,965 nodes and 2,302,869 tetrahedra. Due to limitations

Figure 6.32: Surface grid of the ogive cylinder (17,893 nodes), entire and zoom

near the apex.
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Figure 6.33: Surface grid of the outflow plane, entire (left) and zoom (right) (5480
nodes).

of the grid-generation software, a symmetry plane could not be used and the full
problem had to be computed. The surface mesh of the ogive-cylinder and of the
outflow plane are shown in figure 6.32 and 6.33 respectively. In the boundary layer
26 viscous layers are used with an initial normal spacing of 10~° m and a stretching
factor of 1.2. This guarantees a smooth transition to the isotropic part of the grid,
as can be seen in figure 6.33.

To meet the memory requirement for the implicit solver, the code base been
run on 32 processors of the Cray T3E. Newton convergence has been obtained for
the first-order scheme in 15 iterations, in combination with numerical Jacobians,
see figure 6.34. The starting CFL number was 1.0 and was multiplied every time
step by 5.0, until a maximum of 10°. The second-order scheme, with approximate

o PSl-scheme oghh-ach PSi-scheme

ol L ] 5 " n L L 1 L . i
9 100 200 300 400 0 250
#iter #lter

Figure 6.34: Convergence history for  Figure 6.35: Convergence history for
the laminar ogive cylinder, coarse grid.  the laminar ogive cylinder, fine grid.
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Figure 6.36: Mach number isolines for the laminar ogive cylinder, system PSI-
scheme, min = 0.0, max = 2.1, step = 0.02.

N-scheme Jacobians and CFL = 100, stalls after 2% orders relative from the restart.
The total CPU time is roughly 5 hours, of which 90% is taken by the second-order
scheme.

Mach number isolines in the outflow plane (z = 0.27 m) and in the plane
z = (0.08 m are shown in figure 6.36. In the outflow plane the primary vortices
are clearly visible and also the bow shock can be identified. The plane £ = 0.08 m
does not correspond with a set of cell faces, and therefore the tetrahedra are cut
and the solution must be interpolated. This is the cause that the isolines in this
plane do not look as smooth as in the outflow plane.

The skin friction lines are depicted in figure 6.37. Two separation lines can
be distinguished and consequently two counter-rotating vortices are present (on
each side of the body). The primary separation line shows a wavy behavior, an
indication that this solution is not stable and most likely unsteady.

The laminar solution has also been computed on the grid used for the turbulent
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h_,

Figure 6.37: Computed skin friction lines for the laminar ogive cylinder, system
PSI-scheme.

case. The convergence history is shown in figure 6.35. The initial normal spacing
of this grid is 10 times smaller than the coarse grid and thus the aspect ratios of
the cells near the body are much larger (maximum value +£1500). Consequently,
the nonlinear problem is more difficult too solve and no Newton convergence could
be obtained for the first-order scheme. Therefore both the first and the second-
order solutions are computed in combination with analytical N-scheme Jacobians
and CFL = 100. On this fine grid, the second-order solution only converges one
order of magnitude relative from the restart, figure 6.35. Also this indicates that
the laminar solution is probably unsteady. The total CPU-time on 64 processors
of the Cray T3E is approximately 7 hours.

Figures 6.39 to 6.43 compare the computed surface pressure distributions on
the two grids with the experimental values in several crossflow planes. The angle
0 is defined in figure 6.38. In the first two cross-sections, figures 6.39 and 6.40,
the agreement is quite good, but further downstream it becomes worse. In the
plane z = 0.135 m, figure 6.41 the numerical solutions start to deviate from the
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Z
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: Figure 6.39: Surface pressure distri-
Figure 6.38: Definition of angle 8. bution, x = 0.045 m, laminar case.
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Figure 6.40: Surface pressure distri-
bution, x = 0.09 m, laminar case.
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Figure 6.41: Surface pressure distri-
bution, x = 0.135 m, laminar case.

experimental values, but on both grids the pressure distribution is still symmetric.
This is not the case anymore in figures 6.42 and 6.43. Especially on the fine grid,
the solution is asymmetric. The probable explanation for this is that the flow in
the experiment is transitional, while in the computation laminar conditions have
been assumed. Apparently the transition to turbulence stabilizes the flow field,
such that the experimental flow field is steady.
Note that the asymmetry is found, only because the full problem is computed.
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Figure 6.42: Surface pressure distri-
bution, x = 0.18 m, laminar case.
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Figure 6.43: Surface pressure distri-
bution, x = 0.225 m, laminar case.
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The turbulent case

Also this mesh has been created with the grid generator from the University of
Swansea [90] and has also been used as the fine grid for the laminar case. It consists
of 850,196 nodes (5,048,481 tetrahedra), the initial normal spacing is 107® m and 38
viscous layers with a stretching factor of 1.2 have been used to guarantee a smooth
transition from the viscous layers to the isotropic part of the grid. The surface
grid is slightly finer than the laminar grid, 23,187 nodes on the ogive cylinder and
12,758 in the outflow plane.

The convergence history, analytical N-scheme Jacobians and CFL = 100 for
both the N- and PSI-scheme, for the SST-model is shown in figure 6.44. To meet
the memory requirements for the implicit solver, the computation must be done on
64 processors of the Cray T3E and it took approximately 36 CPU-hours. The first-
order N-scheme is converging quite well and probably more orders of magnitude
can be reached than the approximately 6 orders where it has been stopped. The
PSI-scheme converges about 3 orders relative from the restart, which is much more
than the laminar solution on this grid, see figure 6.35. As the maximum value of
the eddy-viscosity did not change more than 0.1% between iteration 700 and 750,
it has been assumed that the solution was converged. Consequently, the turbulent
case is steady.

Mach number isolines in the outflow plane for the laminar and turbulent so-
lution are shown in figure 6.45 and 6.46 respectively. Clearly, for the turbulent
solution the vortices are located more above the body than for the laminar com-
putation. This is caused by the fact that a turbulent boundary layer can sustain
adverse pressure gradients better than a laminar one. consequently, the primary
separation line has been shifted in leeward direction of the model - compare fig-

0¢r N-scheme PSl-scheme

1 . L 5 1 I N L 1 L . I L i
0 250 . 500 750
#iter

Figure 6.44: Convergence history for the turbulent ogive cylinder, SST-model.
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Figure 6.45: Mach number isolines Figure 6.46: Mach number isolines
in the outflow plane for the lam- in the outflow plane for the turbu-
inar solution, PSI-scheme, min = lent SST solution, PSI-scheme, min
0.0, max = 2.08, step = 0.04 = 0.0, max = 2.09, step = 0.04

ures 6.37 and 6.47. The primary separation line is much straighter for the turbulent
case, indicating that the solution is more stable than the laminar solution.

Figures 6.48 to 6.53 show the computed and measured surface pressure distri-
butions in several = cross-sections for the PSI-scheme solution in combination with
the SST turbulence model. The agreement with the experimental data is good,
although there are some slight deviations, especially when the vortex is present,
see figures 6.51 and 6.52. This might be a grid effect and in principle computations
on a finer grid and with other turbulence models should be performed to verify
grid convergence and the effect of the turbulence model. However this has been
omitted, because of the large computational effort (36 hours on 64 processors) to
obtain a solution for this problem.

Also experimental field data is available in certain z cross-sections [2]. To

h_,

Figure 6.47: Computed skin friction lines for the turbulent ogive cylinder, system
PSI-scheme, SST-model.
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Figure 6.48: Surface pressure distri-
bution, x = 0.045 m, turbulent case,
SST-model.
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Figure 6.49: Surface pressure distri-
bution, x = 0.09 m, turbulent case,

SST-model.

compare the position of the primary vortex, p; isolines are shown in figures 6.54
and 6.55 for both the computation and the experiment. No measurements have
been performed in the boundary layer and therefore this layer is not visible in the
experimental isolines. From figures 6.54 and 6.55 it is clear that the computation
predicts a larger and weaker vortex than the experiments. Also the core is much
less pronounced in the computation. The cause for these differences will be a
combination of the deficiencies of the turbulence model and the fact that the
solution is not grid converged, especially for field data. Indeed the grid outside
the boundary layer is rather coarse. As the isotropic part of the turbulent grid is
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Figure 6.50: Surface pressure distri-
bution, x = 0.135 m, turbulent case,
SST-model.
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Figure 6.51: Surface pressure distri-
bution, x = 0.18 m, turbulent case,

SST-model.



146 CHAPTER 6. THE NAVIER-STOKES EQUATIONS
0.5~ computation 015 computation
e  experiment ! «  experiment

0.125 -
&
&
o1 p
i
” dededdi A e N ) —llllllllll J
R —T 100 200 007566 36 R T pa——
© (degrees) O (degrees)
Figure 6.52: Surface pressure distri- Figure 6.53: Surface pressure distri-
bution, x = 0.225 m, turbulent case, bution, x = 0.255 m, turbulent case,
SST-model. SST-model.

almost identical to that of the laminar grid, an indication of the coarseness of the
inviscid part of the mesh can be seen in figure 6.33. Consequently, the computed
vortex is smeared due to numerical diffusion and becomes weaker.

This test case shows that the multi-dimensional upwind discretization tech-
nique is able to solve 3D viscous flows. In combination with the backward Euler
time integration method, the algorithm is very stable. Starting from a uniform
flow field, also for the turbulent quantities, did not pose any problems for the flow
solver. Arguments have been given for the unsteadiness of the laminar case. The

Computation Experiment

Figure 6.54: Computed and experimental p; isolines (dimensionless by p;,, ) in the
cross-section x = 0.21 m, SST-model.
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Computation Experiment

Figure 6.55: Computed and experimental p; isolines (dimensionless by p;,,) in the
cross-section x = 0.24 m, SST-model.

solution of the turbulent problem shows good agreement with the experimental
surface pressures, although from the turbulence modeling point of view, this flow
is simpler than the shock-wave/boundary-layer interaction, section 6.3.2 or the
base flow problem, section 6.3.3. The agreement with the measured field data, p;,
is less good, which is caused by a combination of the deficiencies of the turbulence
model and the coarseness of the grid outside the boundary layer.
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Chapter 7

Conclusions and future prospects

7.1 Conclusions

The general conclusion is that in this work probably an important step has been
taken in the development of a robust multi-dimensional upwind discretization tech-
nique for non-commuting hyperbolic systems on unstructured grids. It is also clear
that the method is not working perfectly yet. The following sections summarize
the conclusions of this work.

7.1.1 The spatial discretization

An attempt has been made to extend the previously developed multi-dimensional
upwind scalar schemes [118, 119, 116, 84, 111] to non-commuting hyperbolic sys-
tems in general and to those representing the Euler equations in particular. It has
been shown that the generalization of linear schemes, e.g. N-scheme, is straight-
forward and that the discretization based on them is very robust even for high
aspect-ratio triangles, traditionally the problem area for "standard” upwind al-
gorithms on unstructured grids. Positivity of the system N-scheme can only be
proved for linear hyperbolic systems which can be symmetrized, see appendix B.
Fortunately most systems which model a physical conservation law possess the
symmetrizing property, although they are not linear.

The generalization of the nonlinear schemes, which combine second-order ac-
curacy with monotonicity, is more difficult. The present form of the system PSI-
scheme, see section 3.3.2, gives acceptable results, but its convergence behavior
is far from optimal. Also from the theoretical point of view the presented sys-
tem PSI-scheme is not entirely correct. Consider for example a supersonic flow
for which all eigenvalues of the generalized upwind parameter K; are negative for
the most upwind node. Consequently the matrix K is identical to zero and it is
to be expected that the corresponding distribution matrix of the N-scheme, Br,
which is needed for the limiting procedure (3.20), is zero as well. However in the
current formulation this is not the case, see equation (3.29), and consequently the
number of zero eigenvalues of A and of K;' differ. Ideally one would like to have
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these numbers equal, but for all the attempted formulations with this property,
the matrix (Zﬂff , see equation (3.20), could become singular and the system

m
PSl-scheme was not defined. Note that, although in the current formulation B!
is not zero if K;' is zero, the limited scheme is still consistent, i.e. the product of
BFS! with Ry is zero. This is caused by the sequence of the matrix multiplications
in equation (3.20).

7.1.2 Time integration and parallelization

Most results presented in the chapters 5 and 6 have been computed with the
fully implicit backward Euler time integrator. Except for fully supersonic, inviscid
flow, see section 5.4.2, this method reduces the CPU-time by at least an order
of magnitude compared to explicit time integration schemes. This is especially
true for turbulent flows. However the large amount of memory required for 3D
computations, section 4.2.3, forms a serious bottleneck and therefore it is worth-
while to consider other iterative methods to obtain the steady-state solution, see
section 7.2.2.

The memory requirement is partially fulfilled by using multiple processors in
the computation. As the stencil of the spatial discretization only involves the
nearest neighbors, the parallelization algorithm is rather easy to implement. The
use of the AZTEC library [50], which has been especially designed for the parallel
solution of linear systems arising in finite-element type problems, simplifies it even
further, because the communication pattern and the local node renumbering is
done by this library and the "only” task left for the user is the proper definition of
the Jacobian matrix. The speed-up’s up to 32 processors on a quite coarse grid,
10,420 nodes, are satisfactory.

The linear systems arising in the backward Euler method are solved with Krylov
subspace methods, like GMRES, BiCGstab etc., all available in AZTEC. Although
these algorithms perform independently of the bandwidth of the matrix, it was
found beneficial to minimize this bandwidth, because the efficiency of the BILU
and BMILU preconditioners depends very much on this bandwidth. In this way,
the CPU-time could be reduced with a factor two for certain two-dimensional
problems.

7.1.3 Euler results

The solutions presented in chapter 5 clearly show the gain in accuracy if the
spatial discretization is applied to the preconditioned Euler equations instead of
the standard Euler equations. The reason is that by means of preconditioning
the Euler equations are written in their optimal decoupled form, which makes it
possible to use the optimal scalar PSI-scheme instead of the "unfinished” system
PSI-scheme.
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For a subcritical flow, section 5.4.1, the best results, in terms of spurious en-
tropy production, were obtained if the nonlinear, monotonic PSI-scheme was used
for the decoupled scalar equations, i.e. entropy and total enthalpy, and the Lax-
Wendroff system scheme for the acoustic subsystem. This is quite surprising, be-
cause it is well-known that nonlinear second-order schemes are more diffusive than
linear ones. Apparently the extra diffusion of the scalar PSI-scheme is beneficial
for the entire solution.

For the supersonic channel flow, section 5.4.2, fine grids are needed to capture
all the physical phenomena involved in a complex shock system. This example
really showed the need for solution adaptive grid techniques as described in [20] to
obtain a grid-converged solution with an acceptable number of nodes. Although
the coarse grid solution cannot be considered as grid converged (the weak slip
line is not predicted), the Mach number distributions in the cross-sections agree
remarkably well with the finer grids and the method of characteristics. The en-
tropy distributions for the coarse, medium and fine grid showed that the correct
prediction of this variable is much more difficult than the Mach number. Fur-
thermore, slight overshoots have been observed, although these results should be
interpreted with care, because interpolated solutions have been shown and not the
actual values in the nodes.

The comparison of the computed inviscid pressure distribution for the M6 wing,
section 5.4.3, shows a fairly good agreement with the experiments. The location
of the shock, which originates from the root leading edge, is predicted accurately.
Due to the omission of the viscous terms, the second shock is computed too far
downstream, the usual error of a conservative Euler solution. The largest deviation
between computation and experiment occurs at the wing tip, because the grid in
this part of the flow field is too coarse to capture the tip vortex correctly. A com-
parison with a standard structured grid finite-volume code shows that the accuracy
of the two algorithms is comparable, which is a distinct improvement, as standard
upwind algorithms on unstructured grids are known to be more diffusive than
their structured grid counterparts. Both the solution of the unstructured multi-
dimensional upwind algorithm and the solution of the structured finite-volume
solver show the difficulties that both algorithms have in order to solve the leading
edge correctly. Grid refinement is one way to obtain better results in this region.
Another possibility would be to use a combination of Lax-Wendroff/PSI in the
stagnation region, as this has been shown to reduce the spurious entropy produc-
tion in the 2D case. The amount of CPU-time needed to compute the solution on
a 275,000 node grid, 2 % hours for the standard Euler equations and 8 hours for the
preconditioned equations both on 32 processors of the Cray T3E, indicates that
the fully implicit method is reasonably efficient for the nonlinear system schemes,
but improvements can certainly be made.
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7.1.4 Navier-Stokes results

It has been shown that the Petrov-Galerkin finite-element interpretation of the
residual distribution schemes allows a straightforward extension of the discretiza-
tion technique to the Navier-Stokes equations. For linear triangles and tetrahedra
this effectively results in a Galerkin discretization for the viscous terms.

The laminar solution for the hyperboloid flare, section 6.3.1, agrees well with
the experiments and probably the experimental uncertainty is larger than the error
in the numerical results. Also this test case was used to compare the accuracy of
the present unstructured grid algorithm with a standard finite-volume method
on structured grids. The multi-dimensional upwind method seems slightly more
accurate, but certainly comparable with the structured grid algorithm, just as for
the M6-wing.

The laminar results for the ogive cylinder, section 6.3.4, are somewhat dis-
appointing. Although the coarse grid solution showed some agreement with the
experiments, the finer grid predicted an "unsteady”, asymmetric solution. As the
experimental results give a symmetric solution it is to be expected that the flow in
the experiments is of the transitional type. This expectation is confirmed first by
the observation that the computed and measured pressure distributions at the first
two cross-sections agree quite well, but further downstream the deviation between
computation and experiment becomes larger, secondly that the turbulent solution
on the same grid converges two orders of magnitude more than the laminar so-
lution, and that the primary separation line shows a wavy behavior, which is an
indication that the solution is unstable.

The modeling of turbulent flows has been done with the Reynolds-Averaged
Navier-Stokes equations, which must be closed by a suitable turbulence model.
The one- and two-equation models considered in this thesis are discretized in a
consistent manner with the mean flow equations. Only the turbulent source terms
are treated in a special way, see section 6.2.1, such that a stable numerical method
is obtained. The consequence of this treatment, which can be interpreted as an
automatic under-relaxation, is that it is impossible to obtain Newton convergence
for turbulent problems and clearly stability has been preferred over efficiency.

For the turbulent shock-wave/boundary-layer interaction, section 6.3.2, the
SST model clearly outperforms the & — w, the BSL and the Spalart-Allmaras
model for the wall pressure distributions, although also the SST result does not
exactly fit the experiments. However, the computed velocity profiles in and after
the recirculation region are far off from the measured ones and the SST-model
does certainly not perform better than the other models for this quantity.

The solution on the fine grid showed a few wiggles in the Mach number behind
the normal shock. These wiggles, which are also present in the first order N-
scheme solution, are probably caused by the very sharp shock-capturing of the
method, typically zero or one internal node. On coarser grids the wiggles are less
pronounced, because of more numerical cross-wind diffusion. This phenomena is
also present in the Roe scheme [91], which is identical to the multi-dimensional



7.1. CONCLUSIONS 153

upwind scheme in one space dimension.

The most difficult test case discussed in this thesis, both from a numerical
and a fluid dynamical point of view, is definitely the prediction of the base flow
characteristics of the axisymmetric rocket model with exhaust plume, section 6.3.3.
The complicated flow in this part, four counter-rotating vortices, combined with
the low Mach number, makes the problem very difficult to solve and extremely
fine meshes are needed to obtain a grid converged solution - even the presented
results of the two-equation models on the triangulated 925 x 481 structured grid
in the base region might not be grid converged.

All turbulence models consistently underpredict the values of the base pressure
- the best numerical result (k —w model) gives a pressure, which is approximately
90 % of the experimental value. The result of the k — w model is significantly
better than the results obtained with the BSL and SST-models. The Spalart-
Allmaras model predicts an even lower base pressure than these two-equation
models. However, almost a factor two is saved in terms of CPU-time for this
one-equation model, and it has been shown to be grid-converged - something that
could not be shown for the two-equation models. The conclusion for the turbulence
models considered is that the Spalart-Allmaras model is not able to predict the
physical phenomena in the base region correctly, while especially the k — w model
gives a surprisingly good result. However extremely fine grids are needed to obtain
this result, which makes it practically not applicable. Furthermore, other cases
should be computed in order to find out whether this result is a coincidence or
not.

Numerically, the supersonic expansion from the cylindrical part of the model
to the base region turned out to be a problem for the discretization technique in
combination with the explicit Runge-Kutta time integrators, which could not be
overcome. Even when a fully converged, laminar, first-order solution was used
as starting solution, the code blew up in a few iterations. The actual number
depended on the selected CFL number, but it always failed - even in the case CFL
— 105 it is not stable. On the other hand, the fully implicit approach is able
to give results, although the maximum CFL number must be restricted to 20 for
stability reasons. These stability problems are not only caused by the base region,
but also by the very high aspect ratio cells (£4000), which are needed because
of the high Reynolds number of the flow. The total amount of CPU-time for the
two-equation models, 19 hours on 16 processors of the Cray T3E for the fine grid
and 100 hours on the same number of processors for the triangulated 925 x 481
structured grid in the base region, is very high for an axisymmetric problem.

The turbulent solution (SST model) of the ogive cylinder, section 6.3.4, shows
that the discretization technique developed in this thesis can be applied to 3D tur-
bulent flows without any problem. Comparison with experimental surface pressure
distributions in several crossflow planes shows good agreement - only some slight
deviations were found, especially in the regions where the main vortices are present.
These deviations are caused by a combination of a grid resolution problem (the
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grid may be too coarse in those particular regions) and the turbulence model. Due
to the large memory requirement, a finer grid could not be used and a grid con-
vergence study could not be performed. The comparison with the experimental
field data (total pressure) shows that the grid outside the boundary layer is indeed
too coarse for an accurate prediction of the vortices. Consequently, the computed
total pressure distributions in several cross-sections differ considerably from the
measured values. As far as the turbulence model is considered, this low does not
contain adverse pressure gradients and it is to be expected that the performances
of the kK — w, BSL and SST models are very similar.

The CPU-time of 36 hours on 64 processors of the Cray T3E is more or less
standard for a 3D turbulent flow field computation. If the results of the 2D com-
putations can be extrapolated to three space dimensions, the Spalart-Allmaras
solution can be obtained in approximately 20 hours on the same number of pro-
Cessors.

7.2 Prospects

7.2.1 The spatial discretization

The main obstacle at the moment for the use of the multi-dimensional upwind
method presented in this work is the performance of the nonlinear system PSI-
scheme. A more stable version of this scheme has to be developed in order to
make the method really competitive with existing finite-volume and finite-element
methods. It is possible that the limiting approach presented in section 3.3.2 is
not the correct way to obtain second-order accuracy while keeping the mono-
tonicity property. A different approach for system schemes has been proposed by
Sidilkover {109, 108, 110], although his method is neither continuous nor invariant
for similarity transformations. Furthermore, if the basic first-order scheme is the
N-scheme, his method is not straightforward to apply. However the convergence
behavior is much better than the theoretically more consistent method presented
in section 3.3.2 of this work.

Another future extension of the spatial discretization can be the use of hybrid
grids to combine the accuracy of structured grids with the geometrical flexibility of
unstructured grids. Indeed it has been shown in the introduction that the multi-
dimensional upwind discretization on quadrilaterals is even more accurate than on
triangles.

7.2.2 The nonlinear iterative solver

The fully backward Euler method with full storage of the Jacobian matrix is very
memory consuming. A reduction in the required memory is given by the Jacobian
free method, where the Jacobian matrix 2 is not stored [51]. This can be done,
because in the Krylov subspace algorithms [106, 105, 124, 112] % always occurs
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in a matrix-vector product. This matrix-vector product can be interpreted as a
Fréchet derivative, which can be approximated by a finite-difference formulation
[51]. However this approach, which must be repeated in every Krylov step, is
about four times as expensive as an ordinary matrix-vector product and therefore
only feasible if just a few Krylov iterations are used. Of course the Jacobian
matrix is not built, which saves CPU-time compared to full storage. The memory
requirements can be reduced by a factor 10 or more (depending on the number of
governing equations) in three space dimensions.

At first glance the Jacobian free method looks very attractive, but there are
two disadvantages. First, as a finite-difference method is used to approximate
the matrix-vector product, the corresponding matrix is the exact Newton matrix,
which has been shown to be less stable than the Picard matrix. This can particu-
larly become an issue in the first few iterations for problems with moving shocks. It
is probably possible to approximate the Picard matrix in the Jacobian free method,
but this will certainly require some tricky programming. The second disadvantage
is of a more fundamental nature. In section 4.2.2 it has been explained that the
Krylov method must be used in combination with a good preconditioner to obtain
an efficient algorithm. As the Jacobian is not stored in the matrix free method,
it is impossible to use the BILU and BMILU preconditioners. The Block Jacobi
preconditioner, based for example on the Picard matrix, would be a possibility,
because it only requires the additional storage of a block diagonal, which is ac-
ceptable. However, the performance of this preconditioner is only acceptable for
diagonal dominant matrices and consequently only low CFL numbers can be used
(1-5).

A better option would be a multi-level preconditioner (51], where information
on coarser grid levels is used to approximate the fine grid solution. Currently at
Sandia both the Jacobian free method and multi-level preconditioners are being
implemented in the AZTEC library.

A completely different approach to speed up convergence would be full multi-
grid. This has already been done for unstructured grids [51, 72, 71} and results are
encouraging. Probably semi-coarsening and wall functions on the coarser grid lev-
els must be used in order to make the method suitable for high Reynolds number,
turbulent problems, but this should be possible. Work in this direction has already
started in the framework of a Brite-Euram program, starting from the software

developed in this thesis.

7.2.3 Euler/Navier-Stokes solutions

Solution adaptive grid algorithms will be essential to obtain grid converged solu-
tions in a reasonable amount of time, especially for transonic and supersonic flow
fields with complex shock-wave/boundary-layer and shock-shock interactions. In
two space dimensions a lot of work has been done by Carette [20], who showed
that for inviscid computations solution adaptation of the grid is feasible, but for
viscous computations adaptive regridding is to be preferred.
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To improve the turbulence modeling, it may be worthwhile to implement
second-order closure models. Although numerically much more difficult to handle
than the one- and two-equation models used in this thesis, the method described
in section 6.2.1 should be able to deal with this. There are even plans [32] to start
LES with the current discretization technique. Due to limitations in computer
resources LES will be restricted to two space dimensions and assuming a periodic
behavior in the third, but it will be very interesting to see if the current method
is accurate enough.

If this is not, higher-order methods should be considered. In the finite-element
framework the Galerkin Least Squares (GLS) method [80, 81] offers this possi-
bility. This GLS method is identical to the SUPG method on linear triangles
and tetrahedra, but is slightly different on higher-order elements. The design of
a higher-order, monotonic method in the multi-dimensional upwind framework is
extremely difficult, even for scalar advection.

Another issue is viscous preconditioning. As shown in chapter 5, precondition-
ing improves the quality of the spatial discretization. However the Euler precon-
ditioner used in that chapter does not work for the Navier-Stokes equations and
also in this area a lot of work remains to be done.



Appendix A

Existence proof of (757:% Kn_%)—l

The system versions of the, N-, PSI- and LDA-scheme require the existence of

-1 -1
the matrices (Z K;L) and (Z K;) , see chapter 3. This proof is quite

m

straightforward.
Equations (2.7) and (3.2) give:

S K, =0, (A.1)

Together with the splitting of K; in K;' and K",
K = K+ K[, (A.2)

this results in:
1
S Kn=-3 K5 =33 |Knl, | (A3)

where |Kj| is the absolute value of K;. As |K| is at worst non-negative, Y _ |Kp|

m
is only singular if all |K;|’s have at least one eigenvalue zero. However this would
mean that all matrices A;’s in equation (3.1) have an eigenvalue zero and that
the corresponding eigenvector is identical for all A;’s. In practice these conditions
never occur and even if they would occur, this equation can be decoupled from the

system and the system scheme could be used on the remaining part. Consequently
-1

-1 -1
the matrices (E K,;) , (E K;’,;) and (Z lel) exist for any hyperbolic

system.
Furthermore, the matrices E K} and ) |K,,| have strictly positive and S K,
m m m

strictly negative eigenvalues.
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Appendix B
Energy-stability of the N-scheme

This appendix contains the energy-stability proof of the system N-scheme. Barth

[14] proved this property and it is included in this thesis for completeness. The

proof is given for two space dimensions, but the extension to 3D is trivial.
Consider the hyperbolic system

aUu ou ou
A—+B—=0. B.1

bt + Oz + Oy (B.1)

In this appendix it is assumed that the Jacobians A and B are symmetric, possibly

through the introduction of entropy variables, see appendix C. Friedrichs [41]

showed that in this case the L? norm of a solution, also called the energy functional,

is of bounded growth, i.e.

5 ([ oo <e (B2)

where ct is a constant. It is desirable that the numerical solution possesses a

discrete analogue of this property.
The discretization of equation (B.1) in operator form is:

dau
DE+£(U)U=O, (B.3)
where D is the approximate mass-matrix, see equation (2.12) and £L(U) the spatial

operator of the scheme considered. Using the relation

¢ (U;DU) - dgtT DU+ UTD%%]- (B.4)
and the fact that the transpose of equation (B.3) is given by

dg:p +UTLT(U) =0, (B.5)
results in the following equation for the discrete energy functional:

%fl%)ﬂ +UTLU =0. (B.6)
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Here L is the spatial energy operator, defined as
1
=§(£an+zTany (B.7)

A numerical scheme is called energy stable if the operator L is positive semidefinite,
i.e. UTLU > 0 and thus 4229 < 0. As Disa diagonal matrix with positive
ot dt =
coefficients, the addition of the mass-matrix in the formulation does not matter.
The operators £ and L are grid dependent and therefore it is more logical
to look at the local operators at the element level, indicated by £¢ and L¢. As
the global energy operator is the sum of the local ones, a sufficient condition for
positive semidefiniteness of L is that L® is positive semidefinite. Note that this
condition is more restrictive than positive semidefiniteness of L itself.
For the N-scheme distribution, equation (3.17), £ is given by:

Kt + KfNtK[ K{N‘K; K}YN*K3
L£U)=| KFIN*K{ K}+KiNtK; KiN‘K; |, (B.8)
KIN*tKS KiN*tK; K+ KiN*K;
where

Nt = (; K,;")—l - (E K;)_l | (B.9)

In appendix A it has been proved that N* is positive definite. The local energy
operator becomes:

2K} + K} NYKT + KUNtK}P  KiN*K; + KTNYK} K}INtK;7 + KT N*K}
1 1 1 1 1 1 1 2 1 2 1+ 3 1 3
Le=; KiN*'Kl‘ + K;N+K§ 2K} + KINtK; + KT NtK}  KIN‘K; + K N+K; (B.10)
KiNtK + Ky NtK] KIN*K; + Ky NYK} 2K} + KINVYK; + Ky N+K}

where use has been made of the relation:
T

(KfN*K;) = K N*K}, (B.11)
which is valid because the system (B.1) is symmetric.

First consider the scalar case. According to Gerschgorin, L° is positive semidef-
inite if:

1 Diagonal terms > 0.

2 Off-diagonal terms < 0.

3 Sum of row/column elements > 0.

L¢ clearly obeys the first and second criterion, but it fails the third, as the sum
of the elements of row [ is 1 K;, which can be both positive and negative. Conse-
quently L® does not seem to be positive semidefinite. However, the spatial operator
L can be modified as follows:

K, 0 0
0 K, O
0 0 K;

‘ 1

£ =L 2 (B.12)
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For constant Jacobians A and B in equation (B.1), the added term is identical to

zero when accumulated over all triangles belonging to the neighborhood €, see

figure 2.3. For non-constant Jacobians this is not the case and for such problems

the analysis is not valid from here on. However, it might still give a good indication.
The modified energy operator based on £° becomes:

.1 [E+KINTKRT + K[N+K} KIN*K; + K NtK} KiN"'Ka‘ + K;N+K3:
L =z K§N+K; +K;NtK} K|+ KfN*K; + K;NTKF  KINYKT + Ko NYKG (B.13)
KIN+*K  +K; NtK{ KINTK; + Ky NtK}  |Ks)+ KiNtK; + Ky N*K3

Now the row/column sum is identically zero and L¢ is positive semidefinite for

the scalar case.
For the system case the proof is more complicated. After some manipulations

L¢ can be rewritten as:

, 1| K"
L = 7 | Ky [N*] |Ka| +L% 4L, (B.14)
Ks Ks
where
Sl Kf k"
1 1
L=z | 0 Kf o |~ K} [NY] K (B.15)
0 K§ Kf K3
and
KT 0 0 -K; k717
1 1
L=5| 0 -K; 0 |—5|-K; [V+] [-Kz (B.16)
0 0 —Kj; K5 ~K;

L is positive semidefinite if each of the three suboperators in equation (B.13) is
positive semidefinite. For the first suboperator the proof is trivial, as it is obvious
that

LK K"
V7 | K [V*] |Ka| V20, WV (B.17)
Ks Ks

The proof for Lt and L~ is less straightforward and the so-called Golub lemma is

used.
Lemma: The matrix

A0 DO A1 141"
L=|0BO0|-|B|N|B|, N=(A+B+0)" (B.18)
00C cl |C

is positive semidefinite for all 4, B,C € R™*™ symmetric positive definite.
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Proof: Define

Z =

A0 O
0 B0 (B.19)
00C |

and the transformation
T

= Ian - M- (B20)

RE5
=
QW

N R

Here the abbreviation M has been introduced for convenience. The eigenvalues
of M can be determined by using a standard result for Kronecker products: let
u,v G R™™ m < n, then the m nonzero eigenvalues of the Kronecker product
u @ v7 equal the eigenvalues of v7u. For the matrix M this implies that

Eigenvalues M = Eigenvalues (N :(A+ B+C)N 5) + 2n zeros

= Eigenvalues (I,) + 2n zeros. (B.21)

Consequently the eigenvalues of I3, — M, equation (B.20), are zeros and ones and
thus I3, — M is positive semidefinite. This implies that

VI (Isn— M)V >0 YV. (B.22)
Rewriting this equation to
VIZEZ4 (I — M) 27428V = VT (23) L2EV 20 W, (B.23)

where use has been made of the fact that Z7 is symmetric, and introducing V =
z 2V gives:

VILV >0 wV. (B.24)

As Z?% is invertible, V is arbitrary. Equation (B.24) clearly shows that L is positive
semidefinite.
End proof.

In case A, B and C, equation (B.18), are positive semidefinite, the lemma is
still valid by considering the perturbed matrices A, = A+ ¢l, B, = B + eI and
C. = C + &l and letting € — 0.

Back to the problem of the positive semidefiniteness of L¢'. It is clear that
L*, equation (B.15), and L~, equation (B.16), are matrices of the form given in
equation (B.18), and thus all three suboperators in equation (B.14) are positive
semidefinite. Consequently L' is positive semidefinite as well.

For the PSI-scheme energy stability cannot be shown, even not for the scalar
case [14].



Appendix C

Symmetrizability of the Euler
equations

From appendix B it is clear that the energy stability, and thus the positivity,
of the N-scheme heavily relies on the fact that the system B.1 is symmetric. In
this appendix it is shown that a sufficient condition is that the system can be
symmetrized. The Euler equations are given as an example.

The conclusions from Harten [45] are summarized. Consider the hyperbolic

system:
aUu ou
Fl + Aia_:l:,- = 0. (C.1)
Assume that for this system a convex entropy function S(U) exists, such that
s
T=- = C.2
where V is a set of variables with the same number of elements as U. The sys-

tem (C.1) is called symmetrizable if the function S exists.
It can be proved that then in the transformed system

i1 /1%
BO‘E + Bi_@?,- =0, (C3)
the matrix By = g% is symmetric positive definite and the matrices B; = A; B, are

symmetric. The set of variables V, also called entropy variables, is given by:

aS
T T= e
VT == (C.4)

1
Furthermore, the similarity transformation 8W = B, 20U, which transforms equa-
tion (C.1) into

ow ow

Ft— -+ Cga_"z' = 0, C.' = B;%A.Bé, (C.5)
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also results in a symmetric system.

As the eigenvalues of the energy operator of the discretization of the symmet-
ric system (C.5) are identical to the eigenvalues of the same operator applied to
equation (C.1), a sufficient condition for energy stability of the N-scheme is that
the system (C.1) can be symmetrized.

For the Euler equations an infinite number of entropy functions S exists, see
[45, 9]. Hughes et al.[49] showed that if it is required that S also symmetrizes
the Navier-Stokes equations, this arbitariness is reduced to the requirement that

S should be a linear function of the thermodynamic entropy s = In ;)p?) The
choice
S = - ps (C’G)

v—1
results in the entropy variables
——s_ g4 ytl _ pE
y-1 + y—1 P
V= £

o

(C.7)

o
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Summary

In this thesis an attempt has been made to extend previously developed multi-
dimensional upwind schemes for scalar advection to non-commuting hyperbolic
systems in general and the compressible Euler and Navier-Stokes equations in
particular.

In chapter 1 the motivation for the use of multi-dimensional upwind schemes is
given by comparing the numerical diffusion coefficients of the standard first-order
upwind scheme and the multi-dimensional scheme. It is shown that the latter is
less diffusive, especially when the advection direction is not aligned with the grid.
Furthermore it is explained that unstructured grids are used for their ability to
reduce the grid generation time for complex geometries.

Chapter 2 gives a review of the scalar schemes, also including more classical
schemes like Lax-Wendroff and the upwind finite-volume scheme. A local lineariza-
tion is explained, which links the conservative formulation with the quasi-linear
version of the governing equations. Especially the positivity property heavily relies
on the existence of such a ”conservative” quasi-linear form. Due to the Petrov-
Galerkin finite-element analogy of these schemes, the extension of the discretization
method to advection-diffusion problems is straightforward. For linear triangles and
tetrahedra, the only elements considered in this work, this effectively means that
the viscous term is discretized with the Galerkin method.

The extension of the scalar schemes to non-commuting systems is described in
chapter 3. This is straightforward for linear schemes, because the scalar parameters
in these schemes generalize to matrices. However for the nonlinear schemes, which
combine second-order accuracy and monotonicity, some parameters generalize to
vectors and consequently the extension to systems poses some severe problems. A
formulation for the nonlinear system PSI-scheme is presented, which gives quite
good results, but its convergence behavior is far from optimal.

The iterative framework to solve the set of nonlinear algebraic equations, which
is the result of the spatial discretization, is the contents of chapter 4. Both the
explicit Runge-Kutta time integrators and the implicit backward Euler method are
discussed. For the latter method the full Jacobian matrix is stored and the linear
systems are solved by the parallel, iterative solver library AZTEC of Sandia. The
parallelization of the computer code has been done for two reasons. First, it is
necessary to compute the solution in a reasonable amount of time and second, it is
needed to obtain the required memory for the fully implicit algorithm, especially
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in three space dimensions.

Chapter 5 shows some applications for the Euler equations. First a conser-
vative linearization for these equations is given, followed by a detailed discussion
about preconditioning, both in two and three space dimensions. This technique
splits off the entropy and total enthalpy equation and for 2D supersonic flows
the Euler equations are even written as four scalar advection equations, like the
method of characteristics. The results presented in this chapter show the improved
quality if the multi-dimensional upwind discretization technique is applied to the
preconditioned Euler equations rather than to the standard equations.

An additional feature for the Navier-Stokes equations, chapter 6, is the dis-
cretization of the turbulence models, which must be added to these equations to
model the influence of the turbulence on the mean flow. A stable method is ob-
tained if the advection terms are discretized with one of the positive schemes and
the source terms are treated in a pointwise manner. Furthermore, to enhance
stability, only the destruction source terms are treated implicitly, which can be
interpreted as a kind of under-relaxation of the turbulence equations. To keep the
method at an acceptable efficiency level, only the fully implicit backward Euler
time integrator is used for turbulent problems, albeit in combination with ap-
proximate Picard Jacobians for the advective parts. Results of this chapter show
that the method can be applied without any problem to high Reynolds number
turbulent problems.



Samenvatting

Dit proefschrift beschrijft een poging om de eerder ontworpen multi-dimensionale
upwind schema’s voor scalaire advectie uit te breiden naar niet-commuterende
hyperbolische systemen in het algemeen en de compressibele Euler- en Navier-
Stokes-vergelijkingen in het bijzonder.

De motivatie voor het gebruik van multi-dimensionale upwind schema’s wordt
in hoofdstuk 1 gegeven door de numerieke diffusie-coefficienten van het standaard
eerste orde upwind schema met het multi-dimensionale schema te vergelijken. Er
wordt aangetoond dat de laatste minder diffuus is, met name wanneer de advectie-
richting niet samenvalt met de richting van de roosterlijnen. Verder wordt er
uitgelegd dat niet-gestructureerde roosters gebruikt worden, omdat deze in staat
zijn de benodigde tijd voor de roostergeneratie van gecompliceerde geometrieén te
reduceren.

Hoofdstuk 2 geeft overzicht van de scalaire schema’s. Dit overzicht bevat
tevens meer klassieke schema’s zoals Lax-Wendroff en het "upwind” eindige volume
schema. Een lokale linearisatie wordt uitgelegd, die de conservatieve formulering
verbindt met de quasi-lineaire versie van de beschrijvende vergelijkingen. Met
name de positiviteits-eigenschap hangt sterk af van het bestaan van zo’n ”con-
servatieve” quasi-lineaire vorm. Dankzij de Petrov-Galerkin eindige elementen
analogie van deze schema’s is de uitbreiding van de discretisatic methode naar
advectie-diffusie problemen eenvoudig. Voor lineaire driehoeken en tetraéders, de
enige elementen die worden beschouwd in dit werk, betekent dit effectief dat de
viskeuze term gediscretiseerd wordt met de Galerkin methode.

De uitbreiding van de scalaire schema’s naar niet-commuterende systemen
wordt beschreven in hoofdstuk 3. Dit is eenvoudig voor lineaire schema’s, om-
dat de scalaire parameters in deze schema’s generaliseren tot matrices. Echter
voor niet-lineaire schema’s, die tweede orde nauwkeurigheid combineren met mono-
toniciteit, generaliseren sommige parameters tot vektoren en dientengevolge levert
de uitbreiding naar systemen een paar problemen op. Een formulering voor het
system PSI-schema, dat vrij goede resultaten geeft, wordt gepresenteerd, maar
helaas is het convergentiegedrag verre van optimaal.

Het iteratieve raamwerk voor het oplossen van het stelsel van niet-lineaire al-
gebraische vergelijkingen, dat het resultaat is van de ruimtelijke discretisatie, is
het onderwerp van hoofdstuk 4. Zowel de expliciete Runge-Kutta tijdsintegratie-
methoden als de impliciete "backward” Euler methode worden besproken. Voor
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de laatstgenoemde wordt de volledige Jacobiaan matrix opgeslagen en de lineaire
stelsels worden opgelost door middel van de software bibliotheek AZTEC van San-
dia. De parallellisatie van het computer programma is gedaan om twee redenen.
Ten eerste is het nodig om de oplossing binnen een redelijke tijdsduur te berekenen
en ten tweede is het noodzakelijk om het benodigde geheugen voor het volledig
impliciete algoritme te verkrijgen, vooral in drie ruimtelijke dimensies.

Hoofdstuk 5 laat een paar toepassingen voor de Euler vergelijkingen zien. Ten
eerste wordt de conservatieve linearisatie voor deze vergelijkingen gegeven, gevolgd
door een gedetailleerde beschrijving van preconditionering, zowel in twee als drie
ruimtelijke dimensies. Deze techniek splitst de entropie- en totale enthalpie-
vergelijking af en voor 2D supersone stromingen worden de Euler vergelijkingen
zelfs geschreven als vier scalaire advectie vergelijkingen, zoals dit ook het geval is
in de karakteristicken-methode. De getoonde resultaten in dit hoofdstuk laten de
verbeterde kwaliteit zien als de multi-dimensionale upwind discretisatie toegepast
wordt op de gepreconditioneerde Euler vergelijkingen i.p.v. de gewone vergelijkin-
gen.

Een bijkomend verschijnsel voor de Navier-Stokes vergelijkingen, hoofdstuk 6,
is de discretisatie van de turbulentie-modellen, die toegevoegd moeten worden aan
deze vergelijkingen om de invloed van de turbulentie op de gemiddelde stroming
te modelleren. Een stabiele methode wordt verkregen indien de advectie-termen
worden gediscretiseerd met een van de positieve schema’s en de brontermen per
roosterpunt worden behandeld. Verder wordt om de stabiliteit te vergroten alleen
de destructie bronterm impliciet behandeld, wat geinterpreteerd kan worden als
een soort onderrelaxatie van de turbulentie vergelijkingen. Om de methode op een
acceptabel efficientie-niveau te houden wordt alleen de volledig impliciete "back-
ward” Euler tijdsintegratie-methode gebruikt voor turbulente stromingsproble-
men, maar in combinatie met benaderende Picard Jacobianen voor de advectie
termen. Resultaten van dit hoofdstuk laten zien dat de methode zonder problemen
kan worden toegepast voor turbulente stromingen met een hoog Reynolds-getal.
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