

Faculty of Electrical Engineering, Mathematics and Computer Science

Wireless and Mobile Communications

Master Thesis

New Upper Bounds on the Separating
Redundancy of Linear Block Codes

Ngo Minh Tri

Committee members:
Supervisor: Dr.ir. J.H. Weber
Members: Prof.dr.ir. I.G.M.M. Niemegeers, Dr.ir. R.E. Kooij

June, 2009

 i

Acknowledgements

First and foremost, I dedicate this thesis to my parents and my brother, who always give me support and

encouragement. They are the motivation for me to reach this far.

I would like to take this opportunity to express my appreciation to my supervisor Jos H. Weber. I am

grateful for his dedicated involvement in my thesis work. By frequent discussions and detailed

corrections, he helped me to judge both ideas and writing skills, which led to significant improvements in

my thesis.

I would like to thank the Netherlands Government who offered me the Netherlands Fellowship Programs

scholarship to pursue the Master’s degree at Delft University of Technology. These two years are

wonderful and unforgettable.

I also send special thanks to Minh and Dony, who have been the most loyal friends. They are simply

friends in need.

Besides, I also thank all students in Vietnamese community in Delft, especially Huy, Dang, Thuan…, for

having created warm, relaxed and friendly activities.

Ngo Minh Tri

Delft, 2009

 ii

Abstract

Most decoding algorithms of linear codes, in general, are designed to correct or detect errors. However,

many channels cause erasures in addition to errors. In principle, decoding over such channels can be

accomplished by deleting the erased symbols and decoding the resulting vector with respect to a

punctured code. For any given linear code and any given maximum number of correctable erasures, in the

paper “Separating Erasures from Errors for Decoding”, [1], Abdel-Ghaffar and Weber introduced parity-

check matrices yielding parity-check equations that do not check any of the erased symbols and which are

sufficient to characterize all punctured codes corresponding to this maximum number of erasures. This

allows for the separation of erasures from errors to facilitate decoding. Typically, these parity-check

matrices have redundant rows. To reduce decoding complexity, parity-check matrices with small number

of rows are preferred.

The minimum number of rows in a parity-check matrix separating all erasure sets of size at most l is

called the lth separating redundancy. In [1], upper and lower bounds on the lth separating redundancy

were presented. In this thesis, we give improvements on upper bounds from [1].

 iii

Contents

1 Introduction..1

1.1 Error-Correcting Codes..1
1.2 Linear Block Codes ...3
1.3 Erasures...4
1.4 Separation of Errors from Erasures ..5
1.5 Problem Statement...7

2 Separating Matrices and Separating Redundancy ..8
2.1 Set Separation..8
2.2 Separating Matrix ..9

2.2.1 Definitions ..9
2.2.2 Characteristics...9
2.2.3 The necessary and sufficient condition for a parity-check matrix to be an l-separating matrix 10

2.3 The l-Separating Parity-Check Matrix Constructions.. 10
2.3.1 The first construction .. 10
2.3.2 The second construction.. 11

2.4 Separating Redundancy and the Upper Bounds .. 11
2.5 New Upper Bound in the Second Construction... 12
2.6 Chapter Summary .. 13

3 New Upper Bounds based on Covering Design... 14
3.1 The First Method ... 14
3.2 Covering Designs .. 16

3.2.1 Approach 1 ... 17
3.2.2 Approach 2 ... 19

3.3 New Upper Bounds Following Method 1 ... 30
3.4 Chapter Summary .. 31

4 Other Upper Bounds on the lth Separating Redundancy ... 32
4.1 The Second Method... 32
4.2 Application.. 35

4.2.1 1l = ... 36
4.2.2 2l = .. 36
4.2.3 3l ≥ .. 38

4.3 New Upper Bounds Following Method 2 ... 39
4.5 Chapter Summary .. 39

5 Comparisons .. 40
5.1 Hamming Codes .. 41

5.1.1 1l = ... 41
5.1.2 2l = .. 44

5.2 Reed-Muller Code (32,6,16) .. 46
5.3 LDPC (20,7,6) ... 48
5.4 Golay Code, (23,12,7).. 50
5.5 BCH Code, (63,45,7) ... 52
5.6 Conclusions ... 54

6 Conclusions.. 55
6.1 Contributions of the Thesis .. 55
6.2 Future directions.. 55

References... 56
Appendix .. 57

 iv

List of Tables

Table 5.1 1h , 11h and 12h of Hamming codes in case 1l = 41
Table 5.2 2h and 21h of Hamming codes in case 1l = . .. 42
Table 5.3 1h , 2h and 21h of Hamming codes in case 2l = 44
Table 5.4 The upper bounds for Reed-Muller code (32,6,16).. 46
Table 5.5 The upper bounds for LDPC code (20,7,6). .. 48
Table 5.6 The upper bounds for Golay code (23,12,7).. 50
Table 5.7 The upper bounds for BCH code (63,45,7). .. 52

 v

List of Figures

Figure 5.1 1h , 11h and 12h of Hamming codes in log10 in case 1l = 41
Figure 5.2 2h and 21h of Hamming codes in log10 in case 1l = 43
Figure 5.3 11h and 21h of Hamming codes in log10 in case 1l = . .. 43
Figure 5.4 2h and 21h of Hamming codes in log10 in case 2l = 45
Figure 5.5 1h and 21h of Hamming codes in log10 in case 2l = .. 45
Figure 5.6 1h , 11h and 12h of Reed-Muller code (32,6,16) in log10... 47
Figure 5.7 2h , 21h and 11 12min{ , }h h of Reed-Muller code (32,6,16) in log10. .. 48
Figure 5.8 1h , 11h and 12h of LDPC code (20,7,6) in log10. ... 49
Figure 5.9 2h , 21h and 11 12min{ , }h h of LDPC code (20,7,6) in log10... 49
Figure 5.10 1h , 11h and 12h of Golay code (23,12,7) in log10. .. 51
Figure 5.11 2h , 21h and 11 12min{ , }h h of Golay code (23,12,7) in log10. .. 51
Figure 5.12 1h , 11h and 12h of BCH code (63,45,7) in log10... 53
Figure 5.13 2h , 21h and 11 12min{ , }h h of BCH code (63,45,7) in log10. .. 53

Chapter 1: Introduction

 1

SOURCE

ENCODING

DESTINATION

DECODING

CHANNEL

CODE C
00 000
01 011
10 101
11 110 Message u

01

Codeword x
01011

Received word y
00011

Message estimate v
01

Chapter 1

Introduction

1.1 Error-Correcting Codes

A message generated by a source consists of symbols from an alphabet of a field of orderq , ()GF q .

Symbols can be erroneous due to noisy channel. Error means the received symbol is different from the

transmitted symbol. In order to protect data against errors which can occur during transmission, channel

coding techniques are required. In error correction techniques, a message of k symbols will be encoded

into a codeword of n symbols ()n k> . The collection of these codewords forms a code.

Here, we consider an example in which a simplified scheme of a communication system consists of these

terms: source, channel encoding, channel, channel decoding and destination.

A source generates a message u containing two symbols from (2)GF , the binary alphabet. There are four

possible messages: 00, 01, 10, and 11. Each message is encoded into a codeword x, in this example by

adding other three symbols to u, leading to a sequence of five symbols, according to a code C as

indicated. Assume that we send the codeword 01011 over a noisy channel. At the receiving side, the

received word y is 00011. The second symbol is erroneous. The decoder needs to produce a message

estimate v, based on its knowledge of the code C and the received word y. Here, the decoder chooses the

codeword 01011, which resembles y the most, and thus v is 01, which is indeed the original message.

Hence, the error has been corrected.

Chapter 1: Introduction

 2

Note that without using a code, any error cannot be corrected or detected. Error-correcting codes are

applied in situations where retransmissions are relatively costly or impossible. Using the code makes the

system more reliable. However, transmitting more symbols results in the cost of higher bandwidth

requirements.

In recent years, due to the mergence of large-scale, high speed data networks for the exchange,

processing, and storage of digital information in the commercial, governmental, and military spheres,

error-correcting codes play an important role on improving the reliability of such communication systems.

The use of a parity-bit as an error-detecting mechanism is one of the simplest and most well-known

schemes used in association with computers and computer communication. Data is portioned into blocks.

To each block, an additional bit is appended to make the number of bits which are 1 in the block,

including the appended bit, an even number. If a single bit-error occurs, within the block, the number of

1’s becomes odd. Hence, this allows for detection of single errors.

The most applications of error-correcting codes are in telecommunications. Many early applications of

coding were developed for deep-space and satellite communication systems. For example, satellite photos

were taken in space and sent back to earth. The channel for such transmission is space and the earth’s

atmosphere. These communication systems have limitations on their transmitted power. Solar activity and

atmospheric conditions can introduce errors into weak signals coming from the spacecraft. Error-

correcting codes are an excellent mean of reducing power needs because the reliable communications can

be achieved even when the information is weakly received at its destination. With the applications of

error-correcting codes, most of the pictures sent could be correctly recovered here on earth. As examples,

a binary (32,6,16) Reed-Muller code was used during the Mariner and Viking mission to Mars around

1970 or a convolutional code was used on the Pioneer 10 and 11 missions to Jupiter and Saturn in 1972.

The (24,12,8) Golay code was used in the Voyager 1 and Voyager 2 spacecrafts transmitting color

pictures of Jupiter and Saturn in 1979 and 1980. When Voyager 2 went on to Uranus and Neptune, the

code was switched to a concatenated Reed-Solomon code-Convolutional code for its substantially more

powerful error correcting capabilities.

The block and convolutional codes are also applied to the Global System for Mobile communications

(GSM) which is the most popular digital cellular mobile communication system while CDMA2000 used

turbo codes. Reed Solomon and Viterbi codes have been used for nearly 20 years for the delivery of

digital satellite TV.

Besides, these techniques may also be applied to most storage devices to protect against damage to the

stored data. The transmission and storage of digital information have much in common. Both processes

transfer data from an information source to a destination. However, instead of transporting data from one

place to the other, storage may be considered as transport through time. As an example, in Compact (CD)

system, the sound encoded into data bits and modulated into channel bits is sent along the “transmission

channel” consisting of write laser, master disc, user disc and optical pickup. Imperfections on the disc will

Chapter 1: Introduction

 3

produce errors in the recovered data. Block codes are often used in data storage applications. A "parity

track" was present on the first magnetic tape data storage in 1951. The most notable is Reed-Solomon

codes because of their widespread uses on the Compact disc, the DVD, and in computer hard drives.

Hamming codes, which are single error-correcting or double error-detecting, is commonly used to correct

NAND flash memory errors. Modern hard drives use CRC codes to detect and Reed-Solomon codes to

correct minor errors in sector reads, and to recover data from sectors that have "gone bad" and store that

data in the spare sectors. Computers have error-correcting capabilities built into their random access

memories.

Low-density parity-check codes (LDPC codes) are now used in a many recent high-speed communication

standards, such as DVB-S2 (Digital video broadcasting), WiMAX (IEEE 802.16e standard for microwave

communications), 10GBase-T Ethernet…

In all cases, error-correcting codes ensure proper performance of the systems. They permit

communication links to function reliably in the presence of noise, distortion, and interference.

1.2 Linear Block Codes

Let C be an [, ,]n k d linear block code over ()GF q . It means that C is a k -dimensional subspace of the

n -dimensional vector space over an alphabet of size q . The elements of the code C are called

codewords. Messages generated by the source are one-to-one mapped to codewords. Hence, the number

of codewords, denoted by | |C , is also the number of messages. k represents the length of the message

generated by the source and n represents the length of the codeword to be transmitted over the channel.

d is the Hamming distance of the code C which is the smallest Hamming distance between any two

different codewords. The Hamming distance between two vectors of the same length is defined as the

number of positions in which these two vectors differ. The Hamming distance between a vector and the

all-zero vector is called the weight of the vector. The Hamming distance d is an important parameter of a

code C . A code with Hamming distance d can correct (1) / 2d −   or detect 1d − errors.

The set of codewords of C can be defined as the null space of the row space of an r n× parity-check

matrix ,)(i jH h= of rank n k− . The row space of H is the [, ,]n n k d⊥− dual code C⊥ of C . Because a

q -ary x is a codeword of C if and only if 0TH =x , where the superscript T denotes the transpose, from

the parity-check matrix H , we can form r parity-check equations, denoted by

An equation PCE ()i x is said to check x in position j if and only if , 0i jh ≠ .

1 ,PCE : for 1,2,..., .0n
i j i j j i rh x= ==∑

Chapter 1: Introduction

 4

1.3 Erasures

Sometimes, at the receiver, the demodulator cannot decide which symbol the received waveform

represents. In this case, we declare the received symbol as an erasure. When the received codeword

contains erasures instead of errors, exhaustive decoding or the concept of iterative decoding can be

applied ([2]).

Here, we consider an example of iterative decoding procedure using the (7,4,3) binary Hamming code

with this parity-check matrix,

1 0 1 1 1 0 0

0 1 0 1 1 1 0

0 0 1 0 1 1 1

H
 
 =  
 
 

.

Because a binary vector 1 2 3 4 5 6 7(, , , , , ,)x x x x x x x=x is a codeword if and only if 0TH =x . Hence, any

codeword satisfies three parity-check equations formed from the parity-check matrix,

1 3 4 5

2 4 5 6

3 5 6 7

A: 0

B: 0

C: 0.

x x x x

x x x x

x x x x

+ + + =
+ + + =
+ + + =

Equation A is said to check on 1x , 3x , 4x and 5x . If exactly one of these four symbols is erased, it can be

retrieved from this equation. Here, we denote the erased symbol at the receiver side by the symbol *. For

example, if the received vector is **010*0, it follows from the equation A that 1 1x = because 3 0x = ,

4 1x = and 5 0x = . Equation B checks two erased symbols in the position 2 and 6. Hence, none of these

erased positions can be retrieved immediately. However, if one of these two erased symbols has been

retrieved from the other equation, this equation can be used again to retrieve the one remaining erasure. In

this example, equation C gives 6 0x = , and then by returning to equation B, we obtain 2 1x = . The

transmitted codeword 1101000 has been retrieved by iterative decoding using equations A, B and C. In

general, we could keep on using the parity-check equations iteratively until none of them checks on

exactly one erased symbol (more information on iterative decoding can be found in [4], [6]). Erasure

decoding is successful if and only if erasures do not fill the positions of a nonempty stopping set. A

stopping set is a set of positions of symbol in which there is no parity-check equation that checks exactly

one symbol in these positions. The performance of iterative decoding techniques for linear block codes

correcting erasures depends on the sizes of the stopping sets associated with the parity-check matrix

representing the code. The choice of the parity-check matrix of the code can affect the sizes of stopping

sets. The parity-check matrix with redundant rows can benefit decoding performance while increasing

decoding complexity. More information on stopping set can be found in [5], [9], [10].

Chapter 1: Introduction

 5

1.4 Separation of Errors from Erasures

Many channels cause erasures in addition to errors. In case errors combine with erasures, we can apply

the algorithm, which is applicable to linear codes, use trials in which erasures are replaced by symbols in

()GF q and the resulting vector is decoded using a decoder capable of correcting or detecting errors only.

For binary code, two trials are sufficient for decoding. For example, if C is a binary (,)n k -code having

distance # ?2 1d t t= + + , then C can correct #t errors and ?t erasures. In the presence of no erasures, C

will correct up to # ? / 2t t+    errors. Let r be a received vector having at most #t errors and at most ?t

erasures. Suppose the decoder forms two vector 0r and 1r , where ir is obtained from r by filling all

erasure positions with the symbols , 0,1i i = . Since C is binary, in one of 0r and 1r , at least half the

erasure locations have correct symbols. And hence at least one of 0r and 1r has distance at most

? / 2t t+    from the transmitted codeword. Any standard error correction technique will now correct one

of these vectors to the transmitted codeword. If the standard technique decodes both 0r and 1r to

codewords, and these codewords are the same, then this is the transmitted codeword. If they are different,

then that one (and there will be only one) requiring at most #t changes to non-erasure positions is the

desired codeword. Because the number of trials, the steps of filling values in the erasure positions,

depends on q , this algorithm is practical only for ?tq relatively small. The trials increase rapidly with q

restricting the application of this method to codes over large fields. In this thesis, we do not focus on this

algorithm. More information on this algorithm can be found in [13].

 [1] proposed another way of decoding over such channels. First, all erasures are deleted from the

received message. Errors in the resulting codeword will be corrected or detected based on the punctured

code whose codewords consist of symbols in positions which are not erased. After all errors have been

corrected, the erasures will be recovered by iterative decoding.

If the number of erasures, ?t , does not exceed 1d − , which is the maximum number of erasures allowed in

a codeword, then at the decoder, we can choose two nonnegative integers t≠ and !t satisfying

? !2 1t t t d≠+ + ≤ − such that the following is true. If the number of errors does not exceed t≠ , then the

decoder can correct all errors and erasures. Otherwise, if the number of errors is greater than t≠ but at

most !t t≠ + , then the decoder can detect the occurrence of more than t≠ errors.

The decoder can compute a parity-check matrix for the punctured code after receiving the codeword.

However, this leads to time delay which is unacceptable in some applications. To reduce time delay, we

can store parity-check matrices of all punctured codes corresponding to all erasure patterns. The

drawback of this solution is the requirement of huge memory storage at the decoder.

[1] proposed a useful method which uses the separating matrix with possibly redundant rows, providing

enough parity-check equations which do not check any of the erased symbols and are sufficient to form a

Chapter 1: Introduction

 6

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

H

 
 
 
 

=  
 
 
  
 

parity-check matrix for the punctured code obtained by deleting the erasures. Having these parity-check

equations not checking any of the erased symbols lead to the concept of separation of errors from

erasures.

The basic concept of this decoding technique can be illustrated by an example as follows.

We consider an [8,4,4] binary extended Hamming code with parity-check matrix,

In a normal parity-check matrix, we just have four rows as the first four rows in this matrix. In this

example, we add two other rows. Allowing redundant rows simplifies the decoding of erasures in addition

to errors. Assume that at the decoder, we receive a codeword r = 0*011000 with one erasure in the

position two. Applying the decoding technique mentioned above, firstly we delete the erasure and obtain

the resulting vector r’ = 0011000. We can consider r’ as a codeword of the (7,4,3) punctured code. In the

parity-check matrix H , the first, the second and the sixth row have zeros in the position two. It means

that three related parity-check equations do not check the erased symbol. From these three rows, we can

form a parity-check matrix 'H for the punctured code.

Using 'H , we can decode r’ into (0011010). After updating r to (0*011010), the third row of H , which

checks the erased symbol, can be used to recover the erasure. The transmitted codeword corresponding to

r is (01011010).

In this case, a normal parity-check matrix cannot be used for decoding of both errors and erasures.

Decoding will be easier if we pay the price of storing parity-check matrix with more rows than necessary.

In order to reduce memory storage as well as decoding complexity, parity-check matrices with small

number of rows are preferred.

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

H

 
 
 
 

=  
 
 
  
 

0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 1 0 1 0 1 0

'H
 
 
 
 
 

=

Chapter 1: Introduction

 7

1.5 Problem Statement

For any given linear code and any given maximum number of correctable erasures, in the paper

“Separating Erasures from Errors for Decoding” , [1], Abdel-Ghaffar and Weber introduce parity-check

matrices yielding parity-check equations that do not check any of the erased symbols and which are

sufficient to characterize all punctured codes corresponding to this maximum number of erasures. This

allows for the separation of erasures from errors to facilitate decoding. These parity-check matrices

typically have redundant rows. The authors of [1] also give two constructions of such matrices and prove

general bounds on their minimum sizes. These techniques used are related to methods used to prove

results on stopping sets ([9], [10]).

The general upper bounds and lower bound on the minimum number of rows in a parity-check matrix

with certain separation properties given in [1] are rather far apart. In this thesis, we give improvements on

the upper bounds from [1]. The rest of this thesis is organized as follows. The summarization of important

points in [1] is covered in Chapter 2. Besides, in this chapter, we also consider the number of useful rows

in the matrices built by the second construction from [1]. Chapter 3 and Chapter 4 introduce two methods

which can construct such matrices with a smaller total number of rows. Comparisons between upper

bounds will be given in Chapter 5 while Chapter 6 concludes the thesis.

Chapter 2: Separating Matrices and Separating Redundancy

 8

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

H

 
 
 
 

=  
 
 
  
 

Chapter 2

Separating Matrices and Separating Redundancy

2.1 Set Separation

Let ,()i jhH = of rank n k− be an ()r n× parity-check matrix of C , r n k≥ − . Let S be a subset of

{ }1,2,...,n and T be a subset of { }1,2,...,r , define ,()i jhH =T

S
 with i ∈T and j ∈S , be a | | | |×T S

submatrix of H . For the code C of length n , define { }:C c c C= ∈
S S

be the punctured code consisting of

all codewords of C in which the symbols in positions indexed by S , { }1,2,..., \n=S S are deleted.

Clearly, C
S
 is a linear code over ()GF q of length ' || |n = S , dimension 'k k≤ , and Hamming distance

' ||d d≥ − S . Let � { },:1 , 0i ji i r h j= ≤ ≤ = ∀ ∈S S , define
�

()H H= S

S
S .

Definition : A parity-check matrix H separates { }1,2,...,n⊆S if and only if ()H S is a parity-check

matrix of C
S
.

Here, we consider again the example mentioned in Chapter 1. We consider an [8,4,4] binary extended

Hamming code with this parity-check matrix,

Assume that at the decoder, we receive a codeword r = 0*011000 with one erasure in the position two.

After deleting the erasure, we obtain the resulting vector r’ = 0011000. We can consider r’ as a codeword

of the (7,4,3) punctured code. In the parity-check matrix H , the first, the second and the sixth row have

zeros in the position two. It means that three related parity-check equations do not check the erased

symbol. From these three rows, we can form a parity-check matrix 'H for the punctured code.

Chapter 2: Separating Matrices and Separating Redundancy

 9

Hence, we can say that the parity-check matrix H separates the set {2}.

Theorem 1 ([1]): A parity-check matrix H of an [, ,]n k d linear code C separates a set S of size

| | 1d≤ −S if and only if ()H S has rank | |n k− − S .

2.2 Separating Matrix

2.2.1 Definitions

Let H be a parity-check matrix of an [, ,]n k d linear code over ()GF q .

• H is l-separating of C if it separate every set S of size | | 0,1,...,l=S with 0 min{ , } 1l d n k≤ ≤ − − .

• Let C be an [, ,]n k d MDS linear code over ()GF q , i.e., 1d n k= − + . Then any parity-check

matrix, H , of C separates all sets of size 1d − . In particular, any (2)d − -separating parity-

check matrix of C is (1)d − -separating.

Theorem 2 ([1]): If H separates all sets of size l for a fixed min{ , } 1l d n k≤ − − , then it is l -separating.

2.2.2 Characteristics

If H is an l-separating parity-check matrix of the code C , from H , we can form parity-check matrices

of all codes punctured up to a fixed number of symbols, denotes by l . H has two features:

• H can separate erasures from errors because H has enough parity-check equations which do not

check any erased symbols and are sufficient to characterize the punctured code. It means that the

punctured codeword, which is formed by deleting the erased symbols, can be corrected or

detected errors in it by a sub-matrix of H .

• In case 0 min{ , } 1l d n k≤ ≤ − − , H has no nonempty stopping set of size l or less. For any pattern

of l or fewer erasures, not only are there enough parity-check equations not checking any of the

erased symbols that characterize the punctured code, but also there is a parity-check equation that

checks exactly one of the erased symbols. It means that after all errors have been corrected, the

erasures can be recovered by iterative decoding procedure.

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

H

 
 
 
 

=  
 
 
  
 

0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 1 0 1 0 1 0

'H
 
 
 
 
 

=

Chapter 2: Separating Matrices and Separating Redundancy

 10

2.2.3 The necessary and sufficient condition for a parity-check matrix to be

an l-separating matrix

Basing on definitions and theorems, we can conclude that H is an l -separating matrix of the code C if

• In case 2l d≤ − or 1 1l d n k= − ≤ − − : ()H S has rank n k l− − for each of all sets S of size l ,

• In case 1, 1l d d n k= − = − + , ()H S has rank (1)n k l− − − for each of all sets S of size 1l − .

2.3 The l-Separating Parity-Check Matrix Constructions

2.3.1 The first construction

• If 2l d≤ − or 1 1l d n k= − ≤ − −

Let 'H be a full rank parity-check matrix, { }1,2,...,i n⊆S , where ()1,2,..., n
li = , be the distinct subsets of

{ }1,2,...,n of size l . For each ()1,2,..., n
li = , '

i
H
S

 has rank (1)l l d≤ − . By elementary row operations on

'H , we can obtain an ()n k n− × matrix, 1
iH , for each ()1,2,..., n

li = , of rank n k− such that its last n k l− −

rows have zeros in the positions indexed by iS .

Let IH be the matrix whose set of rows is the union of the sets of the last n k l− − rows in 1
iH for

()1,2,..., n
li = . IH is an l-separating matrix of the code C , ([1]), and it has at most () ()n

l n k l− − rows.

1
iH

 
 
 
 
 
 =  
 
 
 
 
 
 

l

n k l− − n k−

n

 (size)l lS

Chapter 2: Separating Matrices and Separating Redundancy

 11

• If 1, 1l d d n k= − = − +

Instead of iS of size l , apply the same procedure with subsets { }1,2,...,i n⊆S , where ()11,2,..., n
li −= , of

size 1l − . In this case, IH has at most () ()1 1((1))n n
l ln k l− −− − − = rows.

2.3.2 The second construction

Normalized vector: A nonzero vector 1 2(, ,...,)nx x x=x over ()GF q is said to be normalized if its leading

nonzero term is equal to 1. The weight of the vector x is | { : 0} |jj x ≠ .

• If 2l d≤ − or 1 1l d n k= − ≤ − −

Let A be a matrix over ()GF q whose rows are all the nonzero normalized vectors of length n k− and

weight at most 1l + . Define 'IIH AH= . IIH is an l-separating matrix of the code C , ([1]), and it has

() 11

1
(1)il

i
n k

i q −+
=

− −∑ rows.

• If 1, 1l d d n k= − = − +

Apply the same procedure, but A is a matrix over ()GF q whose rows are all the nonzero normalized

vector of length n k− and weight at most l . IIH has () 1

1
(1)il

i
n k
i q −

=
− −∑ rows.

2.4 Separating Redundancy and the Upper Bounds

Define the thl separating redundancy, ls , of the code C to be the minimum number of rows in an lth

separating parity-check matrix of C .

Therefore, the upper bounds can be derived from two above constructions.

,

'
0i

n k l l

H
− −

 
=  
 

⋯ ⋯ ⋯

⋯ ⋯

iS

'iS

'
,

'
0i

n k l l

H
− −

 
=  
 

⋯ ⋯ ⋯

⋯ ⋯

()n
l

,0

 I

n k l l

H

− −
= 



⋯

⋮

,0n k l l− −







⋯ ⋯

⋯

⋮ ⋮

,0i j is the i j× all-zero matrix

Chapter 2: Separating Matrices and Separating Redundancy

 12

• The first construction

 (2.1)

Basing on the first construction, in Chapter 3 and Chapter 4, we will introduce two methods which can

construct l -separating matrices of the code C with the smaller numbers of rows than in (2.1).

• The second construction

 (2.2)

In the next part, we will consider the number of useful rows in an l -separating matrix built in the second

construction.

2.5 New Upper Bound in the Second Construction

Here, we just consider the case 2l d≤ − or 1 1l d n k= − ≤ − − . In case 1 and 1l d d n k= − = − + , the result

can be derived similarly. In the second construction, 'H is a full rank parity check matrix, A is a matrix

over ()GF q whose rows are all the nonzero normalized vectors of length n k− and weight at most 1l + .

'IIH A H= . The number of rows in IIH is equal to the number of rows in A and is 11

1 (1)i
l

i
n k
i q −+

=
− 

 
 

−∑ .

For each iS of size l , let
1 2
, , ... ,v v v

l
r r r 
 
 

be the set of rows in 'H in which the set of

1 2
() ,() , ... ,()v v v

li i i
r r r

 
 
 

S S S
forms a basic for the l − dimensional vector space over ()GF q .

For each (1, ...,)
jv v j nr r =≠ , we can find a row in A , 1 2(, , ...,)la a a , which satisfies

1 21 2
().() () () ... () 0v v v vl li i i i
vectorr a r a r a r+ + + + =

S S S S

()ia GF q∈ . The set { }1 2, , ..., la a a is unique.

Now we consider the matrix A

• Rows in A are the nonzero normalized vectors of length n k− and weight from 1 to 1l + .

• Choose any i , 1 1i l≤ ≤ + , from n k− , we can form 1(1)iq −− rows.

However, not all 1(1)iq −− rows play an useful role in IIH . We have ()n
l

 subsets iS (we can imagine that

we have ()n
l

 baskets). Now, we select rows in the set of 1(1)iq −− rows to put into ()n
l

 baskets.

1

()

l

n
l

n
l

n k l
s

  
  
  

 
 −  

≤
− −

if 1, 1l d d n k= − = − + .

if 2l d≤ − or 1 1l d n k= − ≤ − − ,

1

1

1
1

1

(1)

(1)

i

l
i

l
i

l
i

n k
i

n k
i

q
s

q

−

−

 +  
  =  


 
  =
 

−

−
≤

−

−

∑

∑ if 1, 1l d d n k= − = − + .

if 2l d≤ − or 1 1l d n k= − ≤ − − ,

Chapter 2: Separating Matrices and Separating Redundancy

 13

• Row is put into one specific basket if and only if it has all zeros in the positions indexed by that

basket.

• One row can be put into more than one basket.

• In the set of 1(1)iq −− rows, because the set { }1 2, , ..., la a a is unique, there is maximum one row

put into one basket.

Hence, in case ()1(1)i n
lq −− ≥ , the maximum number of useful rows in IIH is

()11

1 min (1) ,il

i
n k n
i l

q −+
=

−   
  

   
−∑ .

Let ls be the thl separating redundancy in the second construction,

(2.3)

2.6 Chapter Summary

In this chapter, the reviews of the concept of separating matrices for decoding over channels causing both

errors and erasures together with upper bounds on the minimum number of rows in such matrices were

given. A new upper bound on the separating redundancy in the second construction was also introduced.

In the next two chapters, we will propose two methods which can construct l -separating matrices with

smaller total numbers of rows than in (2.1).

(){ }
(){ }

1

1

1

1

1

min

min

(1) ,

(1) ,

i

i
l

l

i

l

i

n k n
i l

n k n
i l

q

q
s

−

−

+
=

=

−

−

  
 
 


     

−

−
≤
∑

∑ if 1, 1l d d n k= − = − + .

if 2l d≤ − or 1 1l d n k= − ≤ − − ,

Chapter 3: New Upper Bounds based on Covering Design

 14

Chapter 3

New Upper Bounds based on Covering Design

3.1 The First Method

In this chapter, we introduce a method (method 1) based on the first construction which can construct an

l -separating matrix with a smaller total number of rows. Let 'H be a full rank parity-check matrix of C

which has the Hamming distance of d . It means that every 1d − or less columns of 'H are linearly

independent.

Method 1

Step 1

Let B be a set of b -element subsets, jB , of {1,2,..., }n=N , 1 1l b d≤ ≤ ≤ − , such that every l -element

subset iS is contained in at least one member of B . Assign to each iS , ()1,2,..., n
li = , an element jB of

B such that iS is contained in this jB . '
j

H
B

 has rank b . For any jB , by elementary row operations on

'H , we can obtain an ()n k n− × matrix of rank n k− such that its last n k b− − rows have zeros in the

positions indexed by jB . After arranging columns, we obtain a matrix having this format. We call it 1
jH ,

Step 2

For any iS assigned to a certain jB , again, by elementary row operations, the matrix 1
jH can be further

changed into an ()n k n− × matrix '
iH , still of rank n k− , which rows 1l + , 2l + ,…, b have zeros in the

1
jH

 
 
 
 
 
 =  
 
 
 
 
 
 

b

n k b− − n k−

n

jB

Chapter 3: New Upper Bounds based on Covering Design

 15

positions indexed by iS , and which rows 1b+ , 2b + ,…, n k− have zeros in the position indexed by jB .

After column arrangement, we obtain a matrix having this format,

By this method, if iS and 'iS belong to the same jB , the set of the last n k b− − rows in '
iH and '

'iH will

be the same. From the proof of Theorem 2 in [1], it follows that the matrix whose set of rows is the union

of the sets of the last n k b− − rows in 1
jH for |1,2,...,|j = B and the rows 1l + , 2l + ,…,b of '

iH for

()1,2,..., n
li = is an l -separating parity-check matrix of the code C . Let (, ,)B n b l denote the minimum size

of B , (, ,) min | |B n b l = B . This matrix has at most ()() (, ,) ()n
ln k b B n b l b l− − + − rows.

'
iH

 
 
 
 
 
 =  
 
 
 
 
 
 

b

n k b− − n k−

n

jB

b l−

l

l

n k l− −

iS

,

,0'

0
b

n k b b

li lH

−

−

−

 
 =  
 
 

⋯ ⋯ ⋯

⋯ ⋯

⋯

'iS

,

,' 0'

0
i

n k b

b l l

b

H

− −

−

 
 = 
 
 

⋯ ⋯ ⋯

⋯

⋯

⋯

1 ,0b lI lH −

 
 
 
 =
 
 
 
 

⋯

⋮ ⋯ ⋮

⋯ ⋯

⋯ ⋯

⋮ ⋯ ⋮

,0n k b b− −

,0b l l−

| |B

()n
l

', ii jSS B⊆

Chapter 3: New Upper Bounds based on Covering Design

 16

3.2 Covering Designs

For 1 t u v≤ ≤ ≤ , a (, ,)v u t covering design is a collection of u -element subsets of {1,2,..., }v=V , called

blocks, such that every t -element subset of V is contained in at least one block.

We need to find (, ,)B v u t which denotes the minimum size of a (, ,)v u t covering design.

Example 1: 8, 3, 2v u t= = = ,

All 2-element subsets (28 subsets):

12 23 34 45 56 67 78.

13 24 35 46 57 68

14 25 36 47 58

15 26 37 48

16 27 38

17 28

18

All 3-element subsets (56 subsets):

234 245 256 267 278

235 246 257 268

236 247 258

237 248

238

345 356 367 378 456 467 478

346 357 368 457 468

347 358 458

348

567 578 678

568

123 134 145 156 167 178

124 135 146 157 168

125 136 147 158

126 137 148

127 138

128

from these 21 subsets of size 3, we

can form all ()8

2 subsets of size 2

Chapter 3: New Upper Bounds based on Covering Design

 17

From the elements in the subset { }1, 2, 3 , we can form { } { } { }1, 2 , 2, 3 , 3,1. If we try all 21 subsets of size 3

in the box, we can form all 28 subsets of size 2. �

The covering design problem has been investigated since many years ago. However, until now, there is no

general formula of (, ,)B v u t for all triples (, ,)v u t . The optimal solutions, which satisfy the Schonheim

lower bound ([3]), were achieved for some special cases or some specific triples. In the website

www.ccrwest.org ([7]), we can find optimal solutions for the ranges 100, 25, 8v u t≤ ≤ ≤ . Outside these

ranges, optimal solutions have not been found yet.

It is clear that in case u t= , ()(, ,) v
uB v u t = and in case 1t = , (, ,) /B v u t v u=    . Here, we propose a

covering design valid for all triples (, ,)v u t , 1 t u v< < < . This solution is not optimal but it can give a

general upper bound for the covering number, (, ,)B v u t . We need at most

)

/2

1
(1/2

() () 2
(2 1)

t

k
t

v u t v u t k
t t k

 
  

 
 
 

=
>

− − − − −
− −

  
   
   

− ∑

u -element subsets of {1,2,..., }v=V , called blocks, such that every t -element subset of V is contained in

at least one block.

Before achieving this result, we begin with the first approach in which we show that with at most

()()v u t
t

− − subsets of size u , we can form all ()v
t subsets of size t .

3.2.1 Approach 1

Step1:

1. From the set {1,2,..., }v=V , we take the first u t− elements out of {1,2,..., }v=V .

2. The rest of the set is { 1, 2, 3,..., 1, }u t u t u t v v− + − + − + − . From these elements, we form all subsets

of size t . The number of subsets is ()()v u t
t

− − .

Step2:

Now, we put the first u t− elements into each subset of size t to form subset of size u . With these

()()v u t
t

− − subsets of size u , it is easy to see that we can form all ()v
t subsets of size t .

Example 2: 6, 4, 3v u t= = = , apply approach 1:

• Take { }1 out of { }1, 2, 3, 4, 5, 6. The rest of the set is { }2, 3, 4, 5, 6 .

• Form subsets of size 3 from { }2, 3, 4, 5, 6 . We obtain 10 subsets,

234 245 256 345 356 456.

235 246 346

236

• Put { }1 into these subsets.

Chapter 3: New Upper Bounds based on Covering Design

 18

1234 1245 1256 1345 1356 1456.

1235 1246 1346

1236

From these 10 subsets of size 4, we can form all 20 subsets of size 3 as if we form subsets of size 3 from

{ }1, 2, 3, 4, 5, 6,

123 134 145 156 234 245 256

124 135 146 235 246

125 136 236

126

345 356 456.

346

 �

If we take more than u t− elements out of the set { }1, 2,...,v , such as taking the first 1u t− + elements out

and forming ()()
1

v u t
t

− −
− subsets of size 1t − , we cannot form all ()v

t subsets of size t .

Example 3: 6, 4, 3v u t= = = ,

• Take { }1, 2 out of { }1, 2, 3, 4, 5, 6. The rest of the set is { }3, 4, 5, 6 .

• Form subsets of size 2 from { }3, 4, 5, 6 . We obtain 6 subsets,

34 45 56.

35 46

36

• Put { }1, 2 into these subsets,

1234 1245 1256.

1235 1246

1236

With these 6 subsets, we cannot form some subsets such as,

345 356 456.

346
 �

If we take less than u t− elements out of the set {1,2,..., }v=V and apply the same method, the number of

subsets of size u formed will be greater.

Example 4:

In example 2, 6, 4, 3v u t= = = , we need 10 subsets of size 4 to form all 20 subsets of size 3. 10 subsets

of size 4 are

Chapter 3: New Upper Bounds based on Covering Design

 19

1234 1245 1256 1345 1356 1456.

1235 1246 1346

1236

However, we can merge some subsets in order to reduce the number of needful subsets to fewer than

()()v u t
t

− − ,

With these 7 subsets of size 4, {1,2,3,4},{2,3,5,6},{2,4,5,6},{1,2,5,6},{3,4,5,6},{1,3,5,6},{1,4,5,6}, we still

can form all 20 subsets of size 3.�

3.2.2 Approach 2

In the first approach, we show that we need at most ()()v u t
t

− − subsets of size u in order to form all ()n
t

subsets of size t but we also show that we can merge some subsets in order to reduce | |B .

In order to get a better result than in approach 1, we come back Step1 of approach 1 and modify it.

Step1:

1. From the set {1,2,..., }v=V , we take the first u t− elements out of {1,2,..., }v=V .

2. The rest of the set is { 1, 2, 3,..., 1, }u t u t u t v v− + − + − + − . From these elements, we form all subsets

of size t and arrange them into columns based on these rules:

� Elements in each subset are arranged in ascending order.

� Subsets are arranged into columns. Subsets are in one column if and only if they have the

same first 1t − elements (except the special column). It means that subsets in one column

are different from each other only in the last element. The subset with the smaller last

element will be put above.

� Special column: If 2t ≥ , we have the special column. The special column consists of

subsets containing both elements ' 1', ' 'v v− . It is easy to see that there are ()() 2
2

v u t
t

− − −
−

subsets in this column.

Example 5: 6, 4, 3v u t= = = , apply approach 2, Step1:

• Take { }1 out of { }1, 2, 3, 4, 5, 6. The rest of the set is { }2, 3, 4, 5, 6 .

• Form subsets of size 3 from { }2, 3, 4, 5, 6 and arrange them into columns,

1234 1245 1256 1345 1356 1456.

1235 1246 1346

1236
these 2 subsets are
merged into 2356

3456

2456

Chapter 3: New Upper Bounds based on Covering Design

 20

We call the column which contains the most subsets, {2,3,4},{2,3,5},{2,3,6} , the longest column

(except the special column). �

In all cases, the longest column always begins with the subset { 1, 2,..., 2, 1, }u t u t u u u− + − + − − . There

are 1v u− + subsets in this column. The first 1t − elements in these subsets are the same.

Example 6: 9, 5, 4v u t= = = ,

Put '1' out of {1,2,3,4,5,6,7,8,9}. Form all subsets of size 4 and arrange them into columns, except the

special column, the longest column will be

2345

2346

2347

2348

2349.

Basing on the first 1t − elements in the first subset in the longest column, we can form all 1t − second

longest columns. We call this set the original set for these columns. The original set is the set from

which we form new columns.

The first 1t − elements in the first subset in the longest column are

Convention: the first place is the place of the last element among the first 1t − elements. The second

place is the place of the next element to the left and so on…

The set of the first 1t − elements in all subsets in the first second longest column is formed by

choosing the element in the first place and increasing it by 1, ' 1' ' 'u u− → . We keep the first 2t −

element as in the original set. The first subset in the first second longest column is

{ 1, 2,...., 3, 2, 1}.u t u t u u u− + − + − − −

the first place (count from the last)

the second place (count from the last)

234 245 345 256

235 246 346 356

236 456.

special
column

the longest
column

{ 1, 2,..., 3, 2, , 1}.u t u t u u u u− + − + − − +

the chosen element

the succeeding element is always
greater than the preceding element

Chapter 3: New Upper Bounds based on Covering Design

 21

The set of the first 1t − elements in all subsets in the second second longest column is formed by

choosing the element in the second place and increase it by 1, ' 2 ' ' 1'u u− → − . It means that the first

3t − elements in all subsets in this column are kept the same as in the original set and the element in

the first place must be automatically increased to be greater than the preceding element. The first

subset in the second second longest column is

The set of the first 1t − elements in subsets in the next column is formed by choosing the next

element in the next place and so on... The set of the first 1t − elements in subsets in the last column is

formed by choosing the element in the (1t −)th place, which is also the first element in the original set

and increasing it by 1, ' 1 ' 2 ''u t u t+ − +− → . All the succeeding elements will be automatically

increased.

The first subset in the (1t −)th second longest column is

We can see that all the second longest columns and subsets in them have the same two features:

• The last element in the first subset in each column is ' 1'u + . It means that the number of subsets

in each column is one fewer than the number of subsets in the longest column.

• The first 1t − elements in all subsets are contained in the original set.

Example 6 (cont): continue the above example, 9, 5, 4v u t= = = .

The first subset in the longest column is {2,3,4,5} . Basing on the first three elements in this original

set, we can form three second longest columns.

The set of the first three elements in all subsets in the first second longest column is formed by

choosing the element in the first place, ‘4’, and increasing it by 1. The first subset in this column

is{2,3,5,6} . The entire column is

2356

2357

2358

2359.

{ 2, 3,..., 2, 1, , 1}.u t u t u u u u− + − + − − +

the chosen element

the succeeding element is always
greater than the preceding element

{ 1, 2,..., 3, 1, , 1}.u t u t u u u u− + − + − − +

the chosen element

the succeeding element is always
greater than the preceding element

Chapter 3: New Upper Bounds based on Covering Design

 22

The set of the first three elements in subsets in the second second longest column is formed by

choosing the element in the second place, ‘3’, and increasing it by 1. The first subset in this column is

{2,4,5,6} . The entire column is

2456

2457

2458

2459.

By similar way, the first subset in the third second longest column is {3,4,5,6} . The entire column is

3456

3457

3458

3459.

We can see that the number of subsets in each second longest column is four which is one fewer than

the number of subsets in the longest column and the first three elements in each subset are contained

in the original set.�

Now, we will form all the third longest columns by using the first subset in each of the second longest

columns.

The first subset in the first second longest column is

We will use this subset to form new columns. This subset is their original set. The chosen element in

the previous step is in the first place. The number of new columns depends on the place of this chosen

element. From now, the rule is that we can choose the elements from the first place to the place of the

chosen element in the previous step and increase each of them to form the set of the first 1t −

elements for each new column. For example, if the chosen element in the previous step is in the fourth

place, we can choose four elements from the first place to the fourth place and increase each of them

to form four new columns.

Therefore, with this original set, we can form only one third longest column by increasing the chosen

element by 1, ' ' 1''u u+→ . The first subset in this column is

The first subset in the second second longest column is

{ 1, 2,..., 3, 2, 1, 2}.u t u t u u u u− + − + − − + +

the chosen element

{ 1, 2,..., 3, 2, , 1}.u t u t u u u u− + − + − − +

the chosen element in the
previous step

{ 1, 2,..., 3, 1, , 1}.u t u t u u u u− + − + − − +

the chosen element in the
previous step

Chapter 3: New Upper Bounds based on Covering Design

 23

The chosen element in the previous step is in the second place; hence we can use this subset to form

other two third longest columns. Of course, this set is the original set for these two columns.

The set of the first 1t − elements in subsets in one new column is formed by choosing the element in

the first place in the original set and increasing it by 1, ' ' 1''u u→ + . The first subset in this column is

The set of the first 1t − elements in subsets in the other new column is formed by choosing the

element in the second place in the original set and increasing it by 1, 1' ' ''u u− → . The first subset in

this column is

Applying this procedure to the first subsets in all the second longest columns, we will form all the

third longest columns. We can see that all the third longest columns and subsets in them have the

same two features:

• The last element in the first subset in each column is ' 2'u + . It means that the number of subsets

in each column is one fewer than the number of subsets in second longest columns.

• The first 1t − elements in all subsets in each column are contained in its original set.

Using the first subsets in all the third longest columns with the similar procedure, we will form all the

fourth longest columns and so on…The shortest columns will have two subsets in each of them. In

each step, all new columns and subsets in them have the same two features:

• The number of subsets in each new column is one fewer than the number of subsets in the column

containing its original set.

• Except the longest column and the special column, the first 1t − elements in all subsets in each

new column are contained in its original set.

Example 6 (cont): continue the above example, 9, 5, 4v u t= = = .

The first subset in the first second longest column is {2,3,5,6} with the chosen element in the first

place. Hence, from this original set, we can form one new column.

Choose the element in the first place and increase it by 1, '5 ' '6 '→ . The first subset in this new

column is {2,3,6,7} . The entire column is

2367

2368

2369.

{ 1, 2,..., 3, , 1, 2}.u t u t u u u u− + − + − + +

the chosen element

{ 1, 2,..., 3, 1, 1, 2}.u t u t u u u u− + − + − − + +

the chosen element

Chapter 3: New Upper Bounds based on Covering Design

 24

The first subset in the second second longest column is {2,4,5,6} with the chosen element in the

second place. From this original set, we can form two new columns.

The set of the first three elements in subsets in one new column is formed by choosing the element in

the first place in the original set and increasing it by 1, '5 ' '6 '→ . The first subset in this column is

{2,4,6,7} . The entire column is

2467

2468

2469.

The first subset in other new column is {2,5,6,7} . The entire column is

2567

2568

2569.

Applying a similar procedure to the first subset in the third second longest column with the chosen

element in the third place, {3,4,5,6} , we can form three new third longest columns,

3467 3567 4567

3468 3568 4568

3469 3569 4569.

We can see that the number of subsets in each third longest column is three which is one fewer than

the number of subsets in the second longest columns and the first three elements in each subset are

contained in its original set.

Repeat the procedure until the number of subsets in all columns is two.

With 9, 5, 4v u t= = = , the special column consists of subsets containing both ‘8’ and ‘9’. There are

() () ()() 2 9 (5 4) 2 6
2 4 2 2 15v u t

t
− − − − − −

− − == = subsets in this column.

Finally, we can obtain this result:

Chapter 3: New Upper Bounds based on Covering Design

 25

 �

Step2

1. We put the first u t− elements, {1,2,..., }u t− , into each subset. Now, size of each subset is u .

2. If the number of subsets in the longest column is greater or equal to three and the special column

exists, we can merge the last two subsets, which contain ' 1'v − or ' 'v , in each column (except the

special column) into one, the merged set, by this rule:

� Eliminate the element '1' in one subset.

� Put the last element of the other subset into it.

We can merge the last two subsets in each column (except the special column) because:

2345 2356 2367 2378 2389

2346 2357 2368 2379 2489

2347 2358 2369 2589

2348 2359 2478 2689

2349 2467 2479 2789

2468 3489

2456 2469 2578 3589

2457 2579 3689

2458 2567 3789

2459 2568 2678 4589

2569 2679 4689

4789

3467 3478 5689

3468 3479 5789

3469 6789

3578

3567 3579

3568

3456 3569 3678

3457 3679

3458

3459 4578

4579

4567

4568 4678

4569 4679

5678

5679

the special column the longest column

Chapter 3: New Upper Bounds based on Covering Design

 26

• The first 1u − elements in each subset are contained in the original set. Therefore, any subset of

size t which is formed by using these 1u − elements can be formed by the original set.

• The last 1u − elements in each subset are contained in the merged set. Therefore, any subset of

size t which is formed by using these 1u − elements can be formed by the merged set.

• Any subset of size t containing {1, 1}v − or {1, }v can be formed by subsets in the special column.

Special column: there are ()() 2
2

v u t
t

− − −
− subsets in this column. If 2t = , the special column has only one

subset, {1,2,..., 2, 1, }u v v− − . If 3t ≥ , this column can be formed by this way:

1. Put three elements '1', ' 1', ' 'v v− out of the set {1,2,3,..., }v=V .

2. The remaining set is {2,3,..., 3, 2}v v− − . From these elements, applying approach 1, we form

subsets of size 3u − such as every (2)t − -element subset of {2,3,..., 3, 2}v v− − is contained in at

least one of them. We obtain ()() 2
2

v u t
t

− − −
− subsets.

3. Next, we put three elements '1', ' 1', ' 'v v− into each subset of size 3u − to form subset of size u .

Now, we have all subsets in the special column and it is easy to see that with these ()() 2
2

v u t
t

− − −
−

subsets, we can form all subsets of size t containing {1, 1}v− , {1, }v or {1, 1, }v v− .

Example 6 (cont): continue the above example: 9, 5, 4v u t= = = .

• Put ‘1’ into each subset.

• Merge the last two subsets in each column (except the special column).

Chapter 3: New Upper Bounds based on Covering Design

 27

12345 12356 12367 12378 12389

12346 12357 12368 12379 12489

12347 12358 12369 12589

12348 12359 12478 12689

12349 12467 12479 12789

12468 13489

12456 12469 12578 13589

12457 12579 13689

12458 12567 13789

12459 12568 12678 14589

12569 12679 14689

14789

13467 13478 15689

13468 13479 15789

13469 16789

13578

13567 13579

13568

13456 13569 13678

13457 13679

13458

13459 14578

14579

14567

14568 14678

14569 14679

15678

15679

the special column the longest column

Chapter 3: New Upper Bounds based on Covering Design

 28

The merged subsets

12378

12368 12379

12358 12369

12348 12359 12478

12349 12479

12468

12469 12578

12579

12458

12459 12568 12678

12569 12679

13478

13468 13479

13469

13578

13579

13568

13569 13678

13679

13458

13459 14578

14579

14568 14678

14569 14679

15678

15679

23489
23589

24589

34589

23689

24689

25689

35689

45689

23789

24789

25789

26789

34789

35789

36789

45789

46789

56789

Chapter 3: New Upper Bounds based on Covering Design

 29

The resulting subsets

With these subsets, we can form all subsets of size 4 as if we form all subsets of size 4 from {1,2,...,9}�

The number of subsets which can be reduced is equal to the number of subsets containing the element

' 1'v − or ' 'v . Therefore, the number of reduced subsets is ()() 2
1

v u t
t

− − −
− .

12345 12356 12367 23789 12389

12346 12357 23689 12489

12347 23589 12589

23489 24789 12689

12467 12789

24689 13489

12456 25789 13589

12457 13689

24589 12567 13789

25689 26789 14589

14689

14789

13467 34789 15689

34689 15789

16789

35789

13567

35689

13456 36789

13457

34589

45789

14567

45689 46789

56789

the special column the longest column

Chapter 3: New Upper Bounds based on Covering Design

 30

Until now, we need at most () () 2
1

v u t v u t
t t

− − − − −
−

   
   
   

− u -element subsets of V in order to form all subsets

of size t from {1,2,..., }v=V . As in the above example, after merging some subsets, we need at most

() ()9 1 9 1 2
4 4 1 70 20 50− − −

−− = − = subsets of size 5 in order to form all 126 subsets of size 4.

However, if we look at the special column, in the design of subsets of size 3u − in order to form all

subsets of size 2t − , by approach 2, we can merge some subsets in this design. If 4t ≥ , the number of

reduced subsets, which is () 4
3

v u t
t

− − −
−

 
 
 

, is equal to the number of subsets containing the element ' 3'v− or

' 2 'v− . We continue with the special column in this design and so on…

Finally, we need at most

1)

/2

1
(/2

() () 2
(2 1)

t

k
t

v u t v u t k
t t k

 
  

 
  

>
=

− − − − −
− −

  
   
   

− ∑ u -element subsets of {1,2,..., }v=V such that every

t -element subset of V is contained in at least one member of them. The upper bound for k , / 2t   , can

be determined by the condition of the existence of the special column in each design.

3.3 New Upper Bounds Following Method 1

In case 1 1l d< < − , for any 1l b d< ≤ − , we have

1)

/2

1
(/2

() () 2
(2 1)

(, ,)
l

k
l

n b l n b l k
l l k

B n b l
 
  

 
  

>
=

− − − − −
− −

  ≤    
   

− ∑ . (3.1)

Hence,

 (3.2)

 (3.3)

For a given value of l , we can choose an appropriate value of b to get the best result. In general, in order

to estimate a new upper bound for ls , we can choose 1b d= − and the new upper bound is

() ()
1)

/2

1
(/2

(1) (1) 2
(2 1)((1)) (1).l

l

k
l

n
l

n d l n d l k
l l ks n k d d l

  

 > 

=

− − − − − − −
− −

 
  ≤ − − − − + − −    
 

∑ (3.4)

In case 1l d= − , we have the trivial result that ()1(, 1, 1) n
d

B n d d −− − = and we thus obtain the upper bounds

from [1]. In case 1l = ,

 (3.5)

 (3.6)

1 / (1)

((1)) / (1) (2).

() (, ,1) (1) () n b n b

n k d n d n d

s n k b B n b n b n k b + −  

≤ − − − − + −  

= − − + − = − −

()

()
1)

/2

1
(/2

() (, ,) ()

() () 2() ().(2 1)

l
n
l

l
n
l

k
l

s n k b B n b l b l

n b l n b l kn k b b ll l k

 
 

 
  

>
=

≤ − − + −

 
    − − − − − ≤ − − + −   − −    
 
 

− ∑

Chapter 3: New Upper Bounds based on Covering Design

 31

3.4 Chapter Summary

In this chapter, a method which can construct an l -separating matrix with a smaller total number of rows

in comparison with (2.1) was introduced. A general upper bound on the covering number was also given.

The efficiency of this method on some popular codes will be presented in chapter 4. In the next chapter,

another method which can reduce the upper bound on the thl separating redundancy given in (2.1) in case

2l d≤ − will be introduced.

Chapter 4: Other Upper Bounds on the lth Separating Redundancy

 32

Chapter 4

Other Upper Bounds on the lth Separating Redundancy

4.1 The Second Method

In this chapter, we introduce another method (method 2) which can give a smaller upper bound in

comparison with the value given in (2.1) in case 2l d≤ − . Again, 'H is a full rank parity check matrix

and iS is a subset of { }1,2,...,n of size l . '

i
H
S

 has rank l and by elementary row operations on 'H , we

can obtain an ()n k n− × matrix of rank n k− such that its last n k l− − rows have zeros in the positions

indexed by iS . After arranging columns, we obtain a matrix having this format,

Taking the last n k l− − rows in 1
iH which have zeros in the positions indexed by iS to form a new

matrix, we call it 2
iH . In [1], IH , an l -separating matrix in the first construction, is the matrix whose set

of rows is the union of all 2
iH for ()1,2,..., n

li = .

Method 2

By elementary row operations and column arrangement on 2
iH , we obtain a matrix, 3

iH , having the

format,

1

0 0

0 0

iH

 
 
 
 

=  
 
 
  
 

⋯

⋮ ⋱ ⋮

⋯

n

n k l− −
n k−

l

3

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

i

Y X

Y X

Y X

Y X

Y X

H

 
 
 
 

=  
 
 
  
 

⋯ ⋯ ⋯

⋯ ⋯ ⋯

⋯ ⋯ ⋯

⋮ ⋯ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

⋯ ⋯ ⋯

⋯ ⋯ ⋯

l n k l− − k

n k l− −

Group A Group B

Chapter 4: Other Upper Bounds on the lth Separating Redundancy

 33

Y: a non-zero symbol.

X: an arbitrary symbol.

We call:

• Group A: set of l positions in which each column contains all zero symbols.

• Group B: set of n k l− − positions in which each column contains only one non-zero symbol.

Now, we consider jS which consists of 1l − positions in Group A and one position in Group B, for

example: the last 1l − positions in Group A and the first position in Group B. According to the first

construction, we need 2
jH of rank n k l− − which has zero columns in the positions indexed by jS .

However, if we look at 3
iH ,

3
iH already has 1n k l− − − rows which have zeros in the positions indexed by jS . Therefore, instead of

using all n k l− − rows of 2
jH , we need only one row accompanied with the set of 1n k l− − − rows from

3
iH . In other word, the last 1n k l− − − rows in 3

iH are also useful in case of jS . Let 'd be the Hamming

distance of the punctured code formed by deleting the symbols in positions belonging to the subset jS .

Since 'd d l≥ − , in case 2l d≤ − , ' 2d ≥ . Therefore, in 2
jH , except l all-zero columns, each column

must contain at least one non-zero symbol. The only row we need from 2
jH should contain a non-zero

symbol in the position which is in the subset iS but not in the subset jS . The set of 1n k l− − − rows

2

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

j

X X

X X

X X

X X

X X

H

 
 
 
 

=  
 
 
  
 

⋯ ⋯

⋯ ⋯

⋯ ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯ ⋯

⋯ ⋯

jS

n k l− −

iS

3

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

i

Y X

Y X

Y X

Y X

Y X

H

 
 
 
 

=  
 
 
  
 

⋯ ⋯ ⋯

⋯ ⋯ ⋯

⋯ ⋯ ⋯

⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

⋯ ⋯ ⋯

⋯ ⋯ ⋯

n k l− −

Group A Group B

1n k l− − − rows
have zeros in the
positions
indexed by jS

Chapter 4: Other Upper Bounds on the lth Separating Redundancy

 34

from 3
iH , which are linear independent, has zeros in this position. Any row which has a non-zero symbol

in this position will be linear independent with the rows in this set.

In general, 3
iH has 1n k l− − − rows having zeros in the positions indexed by any jS consisting of 1l −

positions in Group A and one position in Group B. From l positions in the Group A and n k l− −

positions in the Group B, we can form ()()11 ()l n k l
l l n k l− −
− = − − subsets jS . For each of these ()l n k l− −

subsets jS , we need only one row.

In 1H , for iS , we replace the set of n k l− − rows of 2
iH with 3

iH and for each of ()l n k l− − subsets jS ,

we can remove 1n k l− − − rows in each 2
jH . Since this new matrix belongs to the class of 1H matrix, it is

also an l -separating parity-check matrix of the code C .

Now, we consider kS consisting of 2l − positions in Group A and two positions in Group B, for

example, the last 2l − positions in Group A and the first two positions in Group B. In 3
iH , we have

2n k l− − − rows which have zeros in the positions indexed by kS .

In this case, we can remove 2n k l− − − rows in 2
kH if there are two rows in 2

kH which are linearly

independent with the set of 2n k l− − − rows from 3
iH . However, 2

kH can have this format

In this case, we cannot find two rows in 2kH to ensure that these two rows are linear independent with

2n k l− − − rows from 3
iH . It means that we cannot gain advantage in this case. Therefore, we can

2

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

k

X

Y Y X

X

X

X

H

 
 
 
 

=  
 
 
  
 

⋯ ⋯

⋯ ⋯

⋯ ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯ ⋯

⋯ ⋯

iS

kS

3

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

i

Y X

Y X

Y X

Y X

Y X

H

 
 
 
 

=  
 
 
  
 

⋯ ⋯ ⋯

⋯ ⋯ ⋯

⋯ ⋯ ⋯

⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

⋯ ⋯ ⋯

⋯ ⋯ ⋯

n k l− −

Group A Group B

2n k l− − − rows
have zeros in the
positions
indexed by kS

Chapter 4: Other Upper Bounds on the lth Separating Redundancy

 35

conclude that this method is used only in case jS differs iS in only one position and this position is

chosen from Group B.

4.2 Application

Now, we propose the ways applying this method to different values of l . We mention some important

points of this method:

• Size of Group A is l and size of Group B is n k l− − .

• Positions appearing in Group B depend on positions in Group A and structure of the parity-check

matrix.

• We gain advantage from subsets jS consisting of one position in Group B and 1l − positions in

Group A.

• Here, we define the couple (A| B) = {positions in A | positions in B}.

For example: 3l = , 4n k l− − = , assume that Group A = {1, 2, 3}, Group B = {4, 6, 7, 9}, then (A| B)

= {1, 2, 3 | 4, 6, 7, 9}.

• With each couple (A| B), we can form ()l n k l− − subsets jS consisting of 1l − positions in

Group A and one position in Group B. For each of these ()l n k l− − subsets jS , we need only one

row.

For example: with the couple (A| B) = {1, 2, 3 | 4, 6, 7, 9}, we can form 12 subsets jS : 1 {1,2,4}=S ,

2 {1,2,6}=S , 3 {1,2,7}=S , 4 {1,2,9}=S , 5 {1,3,4}=S , 6 {1,3,6}=S , 7 {1,3,7}=S , 8 {1,3,9}=S ,

9 {2,3,4}=S , 10 {2,3,6}=S , 11 {2,3,7}=S , 12 {2,3,9}=S .

• A new couple (A| B) is formed (valid) if and only if ()l n k l− − subsets jS formed by this couple

are totally different from all other jS formed by all previous couples.

For example: with Group A* = {1, 5, 6}, we suppose that Group B* is {2, 8, 10, 11}. In this case, the

couple (A*| B*) cannot be formed because among 12 subsets formed by (A*| B*) = {1, 5, 6 | 2, 8, 10,

11}, the subset {1,2,6}j =S has been already formed by (A| B). Hence, the couple (A*| B*) is not

valid.

• More couples can be formed, more advantage we can gain.

• Let m be the number of couples valid. From these m couples, we can form ()ml n k l− − subsets

jS for each of which, we need only one row. For each of the rest, () ()n
l ml n k l− − − subsets, we

still need n k l− − rows. Let 2IH be the matrix constructed by method 2. This matrix has at most

()() ()() () () () ()(1)n n
l lml n k l n k l ml n k l n k l ml n k l n k l− − − − − + − − = − − − − − − − − rows.

Chapter 4: Other Upper Bounds on the lth Separating Redundancy

 36

0 0

0 0

0 0

''

Y X

Y X

Y X

H

 
 
 =
 
 
 

⋯ ⋯

⋯ ⋯

⋮ ⋮ ⋱ ⋮ ⋮ ⋮

⋯ ⋯

n k− k

n k−

4.2.1 1l =

In this special case, we slightly change method 2 to get a better result. From an ()n k n− × parity-check

matrix 'H of C , by elementary row operations, we can obtain a full rank ()n k n− × parity-check matrix

''H which contains an () ()n k n k− × − submatrix D with zeros in all entries outside the main diagonal.

Hence, for all n k− sets { }i i=S corresponding to the column indices of D , the matrix ''H has 1n k− −

zeros in column i . For each of the remaining k sets { }i i=S , by elementary row operations on 'H , we

can obtain an ()n k n− × matrix, '
iH , of rank n k− such that its last 1n k− − rows have zeros in the

positions indexed by iS . Let 2IH denote the matrix whose set of rows is the union of the last 1n k− −

rows in these k matrix '
iH and the rows of the matrix ''H . The number of row in 2IH is at most

(1) ()k n k n k− − + − . Since the matrix 2IH belongs to the class of IH matrices, 2IH is a 1-separating

parity-check matrix of the code C . Then,

1 (1)(1) 1s k n k≤ + − − + with 2, 2d n k≥ − ≥ .

4.2.2 2l =

The first couple: we can choose the first two positions to be Group A1 ,

The second couple: we choose any two positions in Group C1 (C = {1,2,…,n} \ (A∪ B)) to be Group A2 .

Because each of these two positions does not appear in 2(2)n k− − subsets formed by the first couple,

without noticing Group B2 , we can assure that 2(2)n k− − subsets formed by (A2 | B 2) are totally

different from all previous subsets.

For example: 2, 12, 4l n n k l= = − − = , Group 1A = {1, 2}, we suppose that Group 1B = {4, 5, 7, 8}

3

1

0 0 0 0 0

0 0 0 0 0

.

0 0 0 0 0

0 0 0 0 0

Y X

Y X

H

Y X

Y X

 
 
 
 =
 
 
 
 

⋯ ⋯

⋯ ⋯

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

⋯ ⋯

⋯ ⋯

Group A 1 Group B 1 Group C1

Chapter 4: Other Upper Bounds on the lth Separating Redundancy

 37

The first couple (A1 | B1) = {1, 2 | 4, 5, 7, 8}. From this couple, we form 8 subset jS = {1, 4}, {1, 5}, {1,

7}, {1, 8}, {2, 4}, {2, 5}, {2, 7}, {2, 8}.

Group C1 = {3, 6, 9, 10, 11, 12}. Now, we choose any two positions in Group C1 to be Group A2 .

Suppose that we choose Group A2 = {3, 6}. With this Group A2 , 8 subsets jS formed by (A2 | B 2)

contain either {3} or {6}, which is not in 8 previous subsets jS . Hence, we can guarantee that (A2 | B 2)

is valid.�

The third couple: we should choose any two positions which are in the intersection of Group C1 and

Group C2 . Group A of the next couple is always chosen from the positions in the intersection of all

previous Groups C.

Now, we should compute the minimum number of couples can be formed. The worst case happens when

positions in Group B of the next couple are also in the intersection of all previous Groups C. We can

model roughly like this,

If (mod ()) 1n n k− ≤ , the minimum number of couples can be formed is
n

n k
 
 − 

 (  means taking the

integer part, e.g. 2.7 2=  ).

If (mod ()) 2n n k− ≥ , the minimum number of couples can be formed is 1
n

n k
  + − 

.

If (mod ()) 1n n k− ≤ , there are at least 2(2)
n

n k
n k
  − − − 

 subsets, for each of which, we need only one

row. For each of the rest, 2(2)
2

n n
n k

n k

   − − −   −  
sets, we need (2)n k− − rows.

The maximum number of rows in 2IH is

2(2) (2) 2(2)
2

(2) 2(2)(3).
2

n n n
n k n k n k

n k n k

n n
n k n k n k

n k

      − − − − − + − −       − −     

   = − − − − − − −   −  

0 0 0 0 0 0

0 0 0 0 0 0

Y Y X

Y Y X

 
 
 
 
 

⋯ ⋯ ⋯ ⋯

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

⋯ ⋯ ⋯ ⋯

n k− n k−

n positions

mod ()n n k−

2n k− −

1 couple

Chapter 4: Other Upper Bounds on the lth Separating Redundancy

 38

If (mod ()) 2n n k− ≥ , there are at least 1 2(2)
n

n k
n k

   + − −  −  
 subsets, for each of which, we need only

one row. For each of the rest, 1 2(2)
2

n n
n k

n k

    − + − −    −    
sets, we need (2)n k− − rows.

The maximum number of rows in 2IH is

1 2(2) (2) 1 2(2)
2

(2) 1 2(2)(3).
2

n n n
n k n k n k

n k n k

n n
n k n k n k

n k

         − + − − − − + + − −          − −         

    = − − − + − − − −    −    

4.2.3 3l ≥

In this case, if Group A of each couple differs from each other in at least three positions, we can ensure

that all jS formed by each couple will be different from all other subsets. It means that we have to solve

the problem: choose groups of l positions from n positions, each group must differ from the others in at

least 3 positions.

For example: if 5l = , {1, 2, 3, 4, 5} and {4, 5, 6, 7, 8} differ from each other in three positions while {1,

2, 3, 4, 5} and {3, 4, 5, 6, 7} differ from each other only in two positions.

Here, we propose a way to attain
3

n 
 
 

 groups.

1. Write n positions in a line.

2. Copy the first 3l − positions to the end of the line. Now, the line has 3n l+ − positions.

3. The first group consists of the first l positions.

4. The next group is formed by choosing the last 3l − positions in the previous group and the

next three positions.

5. Continue to the end of the line.

For example: 10, 5n l= = ,

Step1: 1 2 3 4 5 6 7 8 9 10

Step2: 1 2 3 4 5 6 7 8 9 10 1 2

Step3, 4, 5:

Three groups can be formed: (1,2,3,4,5), (4,5,6,7,8), (7,8,9,10,1).

1 2 3 4 5 6 7 8 9 10 1 2

x x x x x

x x x x x

x x x x x

Chapter 4: Other Upper Bounds on the lth Separating Redundancy

 39

We can choose these groups as Groups A to make
3

n 
 
 

 couples.�

By similar explanation, the total number of rows in 2IH in case 3l ≥ ,

() () ()
3 3

() ()(1).
3

n n n
l n k l n k l l n k l

l

n n
n k l l n k l n k l

l

      − − − − − + − −            

   = − − − − − − − −   
  

4.3 New Upper Bounds Following Method 2

Let ls be the thl separating redundancy.

• 1l = : 1 (1)(1) 1k n ks ≤ + − − + . (4.1)

• 2, (mod ()) 1l n n k= − ≤ : 2 (2) 2(2)(3)
2

n n
s n k n k n k

n k

   ≤ − − − − − − −   −  
. (4.2)

• 2, (mod ()) 2l n n k= − ≥ : 2 (2) 1 2(2)(3)
2

n n
s n k n k n k

n k

    ≤ − − − + − − − −    −    
. (4.3)

• 3 2l d≤ ≤ − : (3) () ()(1)
3l l

n n
n k l l n k l n k l

l
s ≥

   ≤ − − − − − − − −   
  

. (4.4)

4.5 Chapter Summary

In this chapter, another method which can reduce the total number of rows in an l -separating matrix in

the first construction in case 2l d≤ − was introduced. In the next chapter, the efficiencies of method 1 and

method 2 on some popular codes will be examined. Besides, comparisons between upper bounds will be

also presented.

Chapter 5: Comparisons

 40

Chapter 5

Comparisons

In this part, we just consider the case in which the number of erasures, l , is at least 1 and at most 1d − .

We denote 1h as the number of rows of an l -separating matrix of the code C , IH , built by the first

construction from [1],

11h denotes the number of rows of an l -separating matrix of the code C constructed by method 1

mentioned in Chapter 3 with 1b d= − and 1 1l d< < − ,

() ()11

1)

/2

1
(/2

(1) (1) 2
(2 1)(1) ((1)).

l

k
l

n
l

n d l n d l k
l l kh d l n k d

  

 > 

=

− − − − − − −
− −

 
  = − − + − − − −    
 

∑

In case 1l d= − , 11 1h h= . In case 1l = , 11 ((1)) / (1) (1)h n k d n d n d l= − − − − + − −   .

12h denotes the number of rows of an l -separating matrix of the code C constructed by method 2

mentioned in Chapter 4:

• If 1l = , 12 (1)(1) 1h k n k= + − − + .

• If 2l = and mod () 1n n k− ≤ , 12 (2) 2(2)(3)
2

n n
h n k n k n k

n k

   = − − − − − − −   −  
.

• If 2l = and mod () 2n n k− ≥ ,
12 (2) 1 2(2)(3)

2

n n
h n k n k n k

n k

    = − − − + − − − −    −    
.

• If 3 2l d≤ ≤ − , 12 () ()(1)
3

n n
h n k l l n k l n k l

l

   = − − − − − − − −   
  

.

2h denotes the number of rows of an l -separating matrix of the code C , IIH , built by the second

construction from [1], () 1

2

1

1 (1)il

i
n k
ih q −+

=
−= −∑ .

21h denotes the number of useful rows in IIH , () (){ }1

21

1

1 min (1) ,il

i
n k n
i lh q −+

=
−= −∑ , discussed in Section 2.5.

The upper bound on the thl separating redundancy can be determined by 11 12 21min{ , , }h h h .

Here, we use Matlab to compute the upper bounds mentioned in the thesis for some special codes.

1

1

()

n
l

h
n

l

n k l
  
 
 = 
 
    −

− −

if 1, 1l d d n k= − = − + .

if 2l d≤ − or 1 1l d n k= − ≤ − − ,

Chapter 5: Comparisons

 41

5.1 Hamming Codes

The class of Hamming codes is one of the oldest families of error-correcting codes. The codes are defined

by:

2 1, (2)

2 1

3.

m

m

n m

k m

d

= − ≥
= − −
=

Hamming codes have been widely used for error control in digital communication and data storage

systems over the years owing to their high rate and decoding simplicity. The Hamming distance of the

code is three; hence the code is single error-correcting or double error-detecting. Here, we just examine

codes with short lengths.

Because 3d = , l can be either 1 or 2.

5.1.1 1l =
Table 5.1 1h , 11h and 12h of Hamming codes in case 1l = .

m 2 3 4 5 6 7 8 9 10

1h 3 14 45 124 315 762 1785 4088 9207

11h 3 11 31 79 191 447 1023 2303 5119

12h 3 11 37 109 291 727 1737 4025 9127

Figure 5.1 1h , 11h and 12h of Hamming codes in log10 in case 1l = .

Chapter 5: Comparisons

 42

With Hamming codes, in case 1l = , 11h is always smaller than 12h . Based on values in Table 5.1, we

sketch Figure 5.1. In this figure (and other figures in this section), x axis denotes values of m while y

axis denotes upper bounds in log10. From Table 5.1 and Figure 5.1, we can see that with greater values of

m, method 1 shows strong efficiency compared with method 2.

The values of 2h and 21h with different m and q are given in Table 5.2 and Figure 5.2. Table 5.2 shows

that 21h is much smaller than 2h with large q and small m.

Table 5.2 2h and 21h of Hamming codes in case 1l = .

m 2 3 4 5 6 7 8 9 10

2, 2h q = 3 6 10 15 21 28 36 45 55

21, 2h q = 3 6 10 15 21 28 36 45 55

2, 4h q = 5 12 22 35 51 70 92 117 145

21, 4h q = 5 12 22 35 51 70 92 117 145

2 , 8h q = 9 24 46 75 111 154 204 261 325

21, 8h q = 5 24 46 75 111 154 204 261 325

2 , 16h q = 17 48 94 155 231 322 428 549 685

21, 16h q = 5 24 94 155 231 322 428 549 685

2 , 32h q = 33 96 190 315 471 658 876 1125 1405

21, 32h q = 5 24 94 315 471 658 876 1125 1405

2 , 64h q = 65 192 382 635 951 1330 1772 2277 2845

21, 64h q = 5 24 94 315 951 1330 1772 2277 2845

2 , 128h q = 129 384 766 1275 1911 2674 3564 4581 5725

21, 128h q = 5 24 94 315 951 2674 3564 4581 5725

2 , 256h q = 257 768 1534 2555 3831 5362 7148 9189 11485

21, 256h q = 5 24 94 315 951 2674 7148 9189 11485

Chapter 5: Comparisons

 43

Figure 5.2 2h and 21h of Hamming codes in log10 in case 1l = .

Because 11 12 21 11 21min{ , , } min{ , }ls h h h h h≤ = , the upper bounds on the 1st separating redundancies of

Hamming codes can be determined by the comparison between 11h and 21h , which is illustrated in the next

figure.

Figure 5.3 11h and 21h of Hamming codes in log10 in case 1l = .

Chapter 5: Comparisons

 44

From Figure 5.3, we can see two important features. The first is that the role of 21h on the 1st separating

redundancy is meaningless. Whenever the upper bounds are determined by 21h , 21 2h h= . In other words,

whenever the condition ()11()i n
l

q −− ≥ satisfies, the new upper bounds are always determined by 11h . The

second is that the role of 11h on upper bounds on the separating redundancy increases with greater values

of q .

5.1.2 2l =

In case 1 2l d= − = , m should be equal or larger than 3. If 2 3m n= ⇒ = , the punctured code has length

equal to 1. Error (if it occurs) cannot be corrected or detected.

In this case, method 2 cannot be applied and 11 1h h= . The values of 1h , 2h and 21h of Hamming codes in

case 2l = are given in Table 5.3 while the comparison between 2h and 21h is illustrated in Figure 5.4.

Table 5.3 11h , 1h , 2h and 21h of Hamming codes in case 2l = .

m 3 4 5 6 7 8 9 10 11

11 1h h= 21 210 1395 7812 40005 194310 912135 4182024 18846729

2, 2h q = 7 14 25 41 63 92 129 175 231

21, 2h q = 7 14 25 41 63 92 129 175 231

2, 4h q = 21 58 125 231 385 596 873 1225 1661

21, 4h q = 21 58 125 231 385 596 873 1225 1661

2 , 8h q = 73 242 565 1091 1869 2948 4377 6205 8481

21, 8h q = 45 242 565 1091 1869 2948 4377 6205 8481

2 , 16h q = 273 994 2405 4731 8197 13028 19449 27685 37961

21, 16h q = 69 514 2405 4731 8197 13028 19449 27685 37961

2 , 32h q = 1057 4034 9925 19691 34293 54692 81849 116725 160281

21, 32h q = 87 610 4965 19691 34293 54692 81849 116725 160281

2 , 64h q = 4161 16258 40325 80331 140245 224036 335673 479125 658361

21, 64h q = 87 802 5285 40011 140245 224036 335673 479125 658361

2 , 128h q = 16513 65282 162565 324491 567189 906788 1359417 1941205 2668281

21, 128h q = 87 1054 5925 40971 282709 906788 1359417 1941205 2668281

Chapter 5: Comparisons

 45

Figure 5.4 2h and 21h of Hamming codes in log10 in case 2l = .

Figure 5.5 1h and 21h of Hamming codes in log10 in case 2l = .

Similar to the case 1l = , 21h is much smaller than 2h with large q and small m. The comparison between

1h and 21h , which is illustrated in Figure 5.5, will give information about the upper bounds on the 2nd

separating redundancy.

Chapter 5: Comparisons

 46

Again, two features similar to the case 1l = are repeated.

5.2 Reed-Muller Code (32,6,16)

Another class of linear block codes constructed in the early days for error correction and detection was

the class of Reed-Muller codes. Reed-Muller codes were first invented for switching circuit design and

error detection, but later on, they were reformulated for error correction and detection in communication

and data storage systems. These codes, which are simple in construction and rich in structural properties,

are useful for multiple random error correction.

Here, we examine upper bounds on the separating redundancy of the famous (32,6,16) Reed-Muller code.

This code was used in spacecrafts of NASA from 1969 to 1977. A very prominent mission was Mariner

9, which was devoted to the photographic observation of the surface of Mars, [2]. It is a low rate code

with good error correction capabilities. The Hamming distance of 16 is very high for a code of length 32.

Because 16d = , l can receive values from 1 to 15.

In all figures from now, x axis denotes the values of l while y axis denotes the upper bounds in log10.

Table 5.4 The upper bounds for Reed-Muller code (32,6,16).

l 1h 11h 12h 2 21, 2h h q= = 2 21, 4h h q= =

1 800 481 176 351 1001

2 11904 8142 9696 2951 24401

3 114080 70377 98900 17901 428051

4 791120 450549 772640 83681 5756231

5 4228896 2248456 4207896 313911 61702121

6 18123840 9031460 18101040 971711 541238321

7 63951264 29858271 63927324 2533986 3.9579e+009

8 189329400 82594013 189304920 5658536 2.4458e+010

9 476829600 193696948 476805120 10970271 1.2901e+011

10 1.0322e+009 389956198 1.0322e+009 18696431 5.8523e+011

11 1.9354e+009 684918913 1.9353e+009 28354131 2.2961e+012

12 3.1611e+009 1.0794e+009 3.1611e+009 38754731 7.8234e+012

13 4.5159e+009 1.6101e+009 4.5158e+009 48412431 2.3221e+013

14 5.6572e+009 2.4731e+009 5.6572e+009 56138591 6.0175e+013

15 6.2229e+009 6.2229e+009 61450326 1.3639e+014

Chapter 5: Comparisons

 47

From Table 5.4, we can see that with some values of l , method 1 can reduce more than half the numbers

of rows in the matrices IH while the values of 12h are almost the same as 1h except in case 1l = . The

greater value of l is, the more rows are reduced by method 1. In case 1l = , the upper bound following

method 2 is extremely smaller than the one following method 1. The efficiencies of method 1 and method

2 are illustrated in Figure 5.6.

In case 2q = or 4q = , 2 21h h= . It means that the condition ()1(1)i n
lq −− ≥ does not satisfy with

1,..., 12,4; i lq = += .

To have the upper bound on the thl separating redundancy, we should compare 11 12min{ , }h h with 21h . The

comparison is given in Figure 5.7.

In case 2q = , the upper bound on the thl separating redundancy can be determined by 11 12 2min{ , , }h h h .

From 4q = to greater values of q , 21h is extremely greater than 11 12min{ , }h h which does not depend on q .

It means that in case 4q ≥ , 11 12 21 11 12min{ , , } min{ , }h h h h h= . The upper bound is always equal to 11 12min{ , }h h .

Figure 5.6 1h , 11h and 12h of Reed-Muller code (32,6,16) in log10.

Chapter 5: Comparisons

 48

Figure 5.7 2h , 21h and 11 12min{ , }h h of Reed-Muller code (32,6,16) in log10.

5.3 LDPC (20,7,6)

Low-density parity-check (LDPC) codes are the codes which achieve an error performance only a fraction

of a decibel away from the Shannon limit, [2]. The main feature of this class of codes is that parity-check

matrices have a small density of non-zero symbols. This class of code is applied to many communication

and digital storage systems where high reliability is required.

Here, we consider (20,7,6) LDPC code.

Because 6d = , l can receive values from 1 to 5.

Table 5.5 The upper bounds for LDPC code (20,7,6).

l 1 2 3 4 5

1h 240 2090 11400 43605 124032

11h 112 1538 7848 30293 124032

12h 97 1650 9780 41877

2 21, 2h h q= = 91 377 1092 2379 4095

2 21, 4h h q= = 247 2821 22126 126373 543361

Chapter 5: Comparisons

 49

Figure 5.8 1h , 11h and 12h of LDPC code (20,7,6) in log10.

Figure 5.9 2h , 21h and 11 12min{ , }h h of LDPC code (20,7,6) in log10.

Chapter 5: Comparisons

 50

As in case of (32,6,16) Reed-Muller code, method 2 gives better result in comparison with method 1 just

in case 1l = .

In case 2q = or 4q = , 2 21h h= .

Figure 5.9 illustrates that in case 2q = , 2h is always smaller than 11 12min{ , }h h . Hence, the upper bound on

the thl separating redundancy is 2h . From 4q = to greater values of q , 21h is always greater than

11 12min{ , }h h . Hence, the upper bound on the thl separating redundancy is 11 12min{ , }h h .

5.4 Golay Code, (23,12,7)

In this part, we consider the (23,12,7) Golay code which is constructed by M. J. E. Golay in 1949. This

code has many interesting structural properties and has been extensively studied by many coding theorists

and mathematicians. It has been used in many real communication systems for error control. More

information on this code can be found in [11].

Because 7d = , l can receive values from 1 to 6.

Table 5.6 The upper bounds for Golay code (23,12,7).

l 1 2 3 4 5 6

1h 230 2277 14168 61985 201894 504735

11h 135 1782 10248 42705 140329 504735

12h 131 1989 12992 60809 200844

2 21, 2h h q= = 66 231 561 1023 1485 1815

2 21, 4h h q= = 176 1661 10571 47993 160259 400829

2 , 8h q = 396 8481 121671 1230933 8995767 47819937

21, 8h q = 396 8481 121671 1230933 8995767 42308277

Chapter 5: Comparisons

 51

Figure 5.10 1h , 11h and 12h of Golay code (23,12,7) in log10.

Figure 5.11 2h , 21h and 11 12min{ , }h h of Golay code (23,12,7) in log10.

Chapter 5: Comparisons

 52

Because the values of n and d of this code are similar to (20,7,6) LDPC code, again, except 1l = ,

method 1 always gives better results in comparison with method 2. Figures 4.8 and 4.10 have the same

features.

Table 5.6 shows that in case 2q = and 4q = , 2 21h h= . From 8q = , the values of 21h and 2h differ in great

values of l .

From Figure 5.11, we can see that in case 2q = , 2 11 12min{ , }h h h< . The upper bound is given by 2h .

However, in case 4q = , we should compare the values of 2h with 11 12min{ , }h h to find the upper bound on

the thl separating redundancy.

From 8q = to greater values of q , the upper bound is always determined by 11 12min{ , }h h .

5.5 BCH Code, (63,45,7)

The Bose, Chaudhuri, and Hocquenghem (BCH) codes form a practical class of powerful random error-

correcting codes, particularly if the expected number of errors is small compared with the length. For

extensive information, we refer to [11], [12].

Here, we choose the (63,45,7) BCH code to examine the new upper bounds on the separating redundancy

of a code with long length but low Hamming distance.

Because 7d = , l can receive values from 1 to 6.

Table 5.7 The upper bounds for BCH code (63,45,7).

l 1 2 3 4 5 6

1h 1071 31248 595665 8339310 91375011 815346252

11h 447 27660 509937 7062798 78809415 815346252

12h 783 29328 582435 8324022 91358631

2 21, 2h h q= = 171 987 4047 12615 31179 63003

2 21, 4h h q= = 477 7821 90441 784449 5295501 28495197

2 21, 8h h q= = 1089 41073 1090653 21662421 333667569 4.0777e+009

Chapter 5: Comparisons

 53

Figure 5.12 1h , 11h and 12h of BCH code (63,45,7) in log10.

Figure 5.13 2h , 21h and 11 12min{ , }h h of BCH code (63,45,7) in log10.

We can see that the efficiencies of method 1 and method 2 depend on the relation between the values of l

and n . In this case, method 1 always gives better results in comparison with method 2 but it does not

Chapter 5: Comparisons

 54

show strong efficiency as in (32,6,16) Reed-Muller code due to the great value of n with respect to l .

This is illustrated in Figure 5.12.

Table 5.7 shows that in case 2q = , 4q = and 8q = , 2 21h h= . On the other hand, in case 2q = and 4q = ,

2 11h h< . Hence, the upper bound is given by 2h . From 8q = to greater values of q , the upper bound is

always determined by 11h .

Similarly to all cases above, the role of 21h on the separating redundancy is meaningless.

5.6 Conclusions

From the data above, we can conclude that for these codes:

• Except some codes in case 1l = , method 1 always gives the smaller upper bounds in comparison

with method 2.

• The new upper bound in the second construction does not lead to the improvement because

whenever the condition ()1(1)i n
lq −− > satisfies, the upper bound on the thl separating redundancy

is always determined by the new upper bound in the first construction.

Chapter 5: Conclusions

 55

Chapter 6

Conclusions

6.1 Contributions of the Thesis

Separating parity-check matrices are useful for decoding over channels causing both errors and erasures.

The separating parity-check matrices with small number of rows reduce not only decoding complexity but

also memory storage at the en/decoders. In this thesis, we proposed two methods which can give the

improved upper bounds on the separating redundancy being the minimum number of rows in a separating

matrix. Besides, we also presented a covering design. This design is not optimal but it can give a general

upper bound on the covering number being the minimum size of a covering design. Applying this result

to the upper bound obtained from method 1, we can reduce more than half the upper bound given by (2.1)

of some codes, i.e. the Reed-Muller code (32,6,16). In some cases, method 2 gives a better result in

comparison with method 1 when the number of erasures is one. We also computed the upper bounds on

the separating redundancies of some famous practical codes.

6.2 Future directions

The new upper bound derived from the argument of calculating the number of useful rows in an l -

separating matrix in the second construction does not lead to the improvement. The appropriate value of

b for each l is still a question. Besides, there are still gaps between the upper and lower bounds. Hence,

more research on bounding techniques for the separating redundancy is required. Our methods give the

general upper bounds for all codes. However, the better bounds on the separating redundancy of codes

with special characteristics can be achieved. In addition, the number of distinct rows in a separating

matrix of a code relates to the weight distribution of its dual code. Therefore, the question of how to apply

the weight distribution needs to be researched. Potential future work also includes the determination of

the bounds for classes of codes of practical interest.

 56

References

[1] K.A.S. Abdel-Ghaffar and J.H. Weber, “Separating erasures from errors for decoding,” Proceedings of

the IEEE International Symposium on Information Theory, Toronto, Canada, pp. 215-219, July 6-11,

2008.

[2] J. H. Weber, Lecture Notes: Error-Correcting Codes, Delft University of Technology, 2007.

[3] Jeffrey H. Dinitz, Douglas R. Stinson, Contemporary Design Theory, A Collection of Surveys, A

Wiley-Interscience Publication, 1992.

[4] C. Di, D. Proietti, I. E. Telatar, T. J. Richardson, and R. L. Urbanke, “Finite-length analysis of low-

density parity-check codes on the binary erasure channel,” IEEE Trans. Inform. Theory, vol. 48, no. 6, pp.

1570-1579, June 2002.

[5] J. Han and P. H. Siegel, “Improved upper bounds on stopping redundancy,” IEEE Trans. Inform.

Theory, vol. 53, no. 1, pp. 90-104, January 2007.

[6] H. D. L. Hollmann and L. M. G. M. Tolhuizen, “On parity check collections for iterative erasure

decoding that correct all correctable erasure patterns of a given size,” IEEE Trans. Inform. Theory, vol.

53, no. 2, pp. 823-828, February 2007.

[7] La Jolla Covering Repository, http://www.ccrwest.org/cover.html.

[8] R. M. Roth, Introduction to Coding Theory. Cambridge, UK: Cambridge University Press, 2006.

[9] M. Schwartz and A. Vardy, “On the stopping distance and the stopping redundancy of codes,” IEEE

Trans. Inform. Theory, vol. 52, no. 3, pp. 922-932, March 2006.

[10] J. H. Weber and K. A. S. Abdel-Ghaffar, “Results on parity-check matrices with optimal stopping

and/or dead-end set enumerators,” IEEE Trans. Inform. Theory, vol. 54, no. 3, pp. 1368-1374, March

2008.

[11] S. Lin and D. J. Costello, Jr. , Error Control Coding, Pearson Education International, 2004.

[12] F. J. Mac Williams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland

Publishing Company, 1977.

[13] S. A. Vanstone and P. C. van Oorschot, An Introduction to Error-Correcting Codes with

Applications, Norwell, MA: Kluwer, 1989.

 57

Appendix

Some of the results presented in thesis have appeared in paper “New Upper Bounds on the Separating

Redundancy of Linear Block Codes” of the 30th Symposium on Information Theory in the Benelux, which

was held at the Eindhoven University of Technology at Eindhoven, The Netherlands, on May 28 and 29,

2009.

