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Abstract

Most decoding algorithms of linear codes, in gehense designed to correct or detect errors. Howeve
many channels cause erasures in addition to errongrinciple, decoding over such channels can be
accomplished by deleting the erased symbols andditeg the resulting vector with respect to a
punctured code. For any given linear code and amgngnaximum number of correctable erasures, in the
paper ‘Separating Erasures from Errors for Decodinfi], Abdel-Ghaffar and Weber introduced parity-
check matrices yielding parity-check equations tttahot check any of the erased symbols and whiegh a
sufficient to characterize all punctured codes egponding to this maximum number of erasures. This
allows for the separation of erasures from errordatilitate decoding. Typically, these parity-ckec
matrices have redundant rows. To reduce decodinmplexity, parity-check matrices with small number
of rows are preferred.

The minimum number of rows in a parity-check maseparating all erasure sets of size at rhast
called thelth separating redundancy. In [1], upper and lowaurds on théth separating redundancy
were presented. In this thesis, we give improvementupper bounds from [1].
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Chapter 1: Introduction

Chapter 1

Introduction

1.1 Error-Correcting Codes

A message generated by a source consists of syrfiooisan alphabet of a field of ordgrGF(q).
Symbols can be erroneous due to noisy channelr Breans the received symbol is different from the
transmitted symbol. In order to protect data agadnsors which can occur during transmission, cleéann
coding techniques are required. In error correct@mmniques, a message lofsymbols will be encoded
into a codeword ofi symbols(n> k) . The collection of these codewords forms a code.

Here, we consider an example in which a simpliiedeme of a communication system consists of these
terms: source, channel encoding, channel, chamelding and destination.

CODE C
00 000
SOURCE 01011 DESTINATION
10101
Messageu 11110 Message estimav
01 01
ENCODING DECODING
A
Codewordx Received worty
01011 00011
CHANNEL

A source generates a messagmntaining two symbols fronsF(2), the binary alphabet. There are four

possible messageB0, 01, 10, and11 Each message is encoded into a codewpid this example by
adding other three symbols tg leading to a sequence of five symbols, accordin@ code C as
indicated. Assume that we send the codew@it@l1 over a noisy channel. At the receiving side, the
received wordy is 00011 The second symbol is erroneous. The decoder rteepoduce a message
estimatev, based on its knowledge of the code C and thevetevordy. Here, the decoder chooses the
codeword01011 which resembley the most, and thug is 01, which is indeed the original message.
Hence, the error has been corrected.
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Note that without using a code, any error cannottected or detected. Error-correcting codes are
applied in situations where retransmissions aiaively costly or impossible. Using the code matkes
system more reliable. However, transmitting morenlsgis results in the cost of higher bandwidth
requirements.

In recent years, due to the mergence of large-sdafth speed data networks for the exchange,
processing, and storage of digital information e tommercial, governmental, and military spheres,
error-correcting codes play an important role opriowing the reliability of such communication syate

The use of a parity-bit as an error-detecting meisna is one of the simplest and most well-known
schemes used in association with computers anddempommunication. Data is portioned into blocks.
To each block, an additional bit is appended to entile number of bits which are 1 in the block,
including the appended bit, an even number. lingleibit-error occurs, within the block, the numibér

1's becomes odd. Hence, this allows for detectfamingle errors.

The most applications of error-correcting codesiartelecommunications. Many early applications of
coding were developed for deep-space and satedlitenunication systems. For example, satellite ghoto
were taken in space and sent back to earth. Theneh&or such transmission is space and the earth’s
atmosphere. These communication systems have tiiomsaon their transmitted power. Solar activitglan
atmospheric conditions can introduce errors intaakvsignals coming from the spacecraft. Error-
correcting codes are an excellent mean of redyminger needs because the reliable communications can
be achieved even when the information is weaklyiked at its destination. With the applications of
error-correcting codes, most of the pictures sentccbe correctly recovered here on earth. As exesnp

a binary (32,6,16) Reed-Muller code was used duttmegMariner and Viking mission to Mars around
1970 or a convolutional code was used on the Pial@and 11 missions to Jupiter and Saturn in 1972.
The (24,12,8) Golay code was used in the Voyagand Voyager 2 spacecrafts transmitting color
pictures of Jupiter and Saturn in 1979 and 1980emMMoyager 2 went on to Uranus and Neptune, the
code was switched to a concatenated Reed-Solonue@onvolutional code for its substantially more
powerful error correcting capabilities.

The block and convolutional codes are also appiethe Global System for Mobile communications
(GSM) which is the most popular digital cellular bile communication system while CDMA2000 used
turbo codes. Reed Solomon and Viterbi codes haea lsed for nearly 20 years for the delivery of
digital satellite TV.

Besides, these techniques may also be applied $b shorage devices to protect against damage to the
stored data. The transmission and storage of tigfiamation have much in common. Both processes
transfer data from an information source to a datitn. However, instead of transporting data fiame
place to the other, storage may be consideredasgort through time. As an example, in Compact)(CD
system, the sound encoded into data bits and nteduiato channel bits is sent along the “transroissi
channel” consisting of write laser, master diserusc and optical pickup. Imperfections on theediill
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produce errors in the recovered data. Block codeofien used in data storage applications. A tyari
track" was present on the first magnetic tape dedeage in 1951. The most notable is Reed-Solomon
codes because of their widespread uses on the Cbrga, the DVD, and in computer hard drives.
Hamming codes, which are single error-correctingaurble error-detecting, is commonly used to cadrrec
NAND flash memory errors. Modern hard drives useQCéddes to detect and Reed-Solomon codes to
correct minor errors in sector reads, and to recdeéa from sectors that have "gone bad" and shate
data in the spare sectors. Computers have errogatiorg capabilities built into their random access
memories.

Low-density parity-check codes (LDPC codes) are need in a many recent high-speed communication
standards, such as DVB-S2 (Digital video broadngktiWiMAX (IEEE 802.16e standard for microwave
communications), 10GBase-T Ethernet...

In all cases, error-correcting codes ensure properformance of the systems. They permit
communication links to function reliably in the pesmce of noise, distortion, and interference.

1.2 Linear Block Codes

Let C be an[n, k, d] linear block code oveGF(q). It means thatC is a k -dimensional subspace of the
n-dimensional vector space over an alphabet of &zeThe elements of the code are called

codewords. Messages generated by the source atte-one mapped to codewords. Hence, the number
of codewords, denoted hig |, is also the number of messagesrepresents the length of the message

generated by the source andrepresents the length of the codeword to be trateshrover the channel.

d is the Hamming distance of the code which is the smallest Hamming distance between tay
different codewords. The Hamming distance betw&en ectors of the same length is defined as the
number of positions in which these two vectorsatififThe Hamming distance between a vector and the
all-zero vector is called the weight of the veclidtnie Hamming distance is an important parameter of a
codeC . A code with Hamming distanag can correcf (d-1)/2| or detectd -1 errors.

The set of codewords af can be defined as the null space of the row sphea r xn parity-check

matrix H =(h ;) of rank n-k. The row space oH is the[n, n-k d] dual codeC” of C. Because a

g-aryx is a codeword ofC if and only if xH™ =0, where the superscrifit denotes the transpose, from

the parity-check matribH , we can formr parity-check equations, denoted by

PCE Y[ h ;% =0 fori=12,.r

An equationPCE ) is said to check in position j if and only ifh ; #0.
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1.3 Erasures

Sometimes, at the receiver, the demodulator cadectde which symbol the received waveform
represents. In this case, we declare the receiyedba as an erasure. When the received codeword
contains erasures instead of errors, exhaustivediteg or the concept of iterative decoding can be
applied ([2]).

Here, we consider an example of iterative decogirggedure using the (7,4,3) binary Hamming code
with this parity-check matrix,

10111
H=/01 011
0 0101

=)
o

Because a binary vectot=(x, %, %, X,, %, %, %) iS a codeword if and only ikH" =0. Hence, any
codeword satisfies three parity-check equationsméar from the parity-check matrix,

Arx + X%+ X%+ %=0

B:x,+Xx,+%x+%=0

Cixg+X+X%+x=0.
Equation A is said to check oR, x,, x, and x; . If exactly one of these four symbols is erasedan be
retrieved from this equation. Here, we denote tlasex symbol at the receiver side by the symbBbt.
example, if the received vector is **010*0, it fols from the equation A that =1 becausex, =0,

X, =1 and x, =0. Equation B checks two erased symbols in the ijpos and 6. Hence, none of these

erased positions can be retrieved immediately. Wewef one of these two erased symbols has been
retrieved from the other equation, this equatiam loa used again to retrieve the one remaining erabu
this example, equation C giveg =0, and then by returning to equation B, we obtain=1. The

transmitted codeword 1101000 has been retrieveitebgtive decoding using equations A, B and C. In
general, we could keep on using the parity-cheakatigns iteratively until none of them checks on
exactly one erased symbol (more information orattee decoding can be found in [4], [6]). Erasure
decoding is successful if and only if erasures dofill the positions of a honempty stopping set. A
stopping set is a set of positions of symbol inakhthere is no parity-check equation that checkethx
one symbol in these positions. The performanceaenétive decoding techniques for linear block codes
correcting erasures depends on the sizes of thmpietp sets associated with the parity-check matrix
representing the code. The choice of the paritgicmeatrix of the code can affect the sizes of situpp
sets. The parity-check matrix with redundant rowas benefit decoding performance while increasing
decoding complexity. More information on stoppirg san be found in [5], [9], [10].
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1.4 Separation of Errors from Erasures

Many channels cause erasures in addition to eriorsase errors combine with erasures, we can apply
the algorithm, which is applicable to linear codese trials in which erasures are replaced by sisriho
GF(q) and the resulting vector is decoded using a deatajable of correcting or detecting errors only.

For binary code, two trials are sufficient for ddicw. For example, ilC is a binary(n, k) -code having
distanced =2t, +t,+1, thenC can correctt, errors andt, erasures. In the presence of no erasutes,
will correct up tot, +|t,/2| errors. Letr be a received vector having at megterrors and at most,
erasures. Suppose the decoder forms two vegt@nd r,, wherer, is obtained fronr by filling all
erasure positions with the symbdls =0,1. Since C is binary, in one ofr, andr,, at least half the
erasure locations have correct symbols. And hemdeast one ofr, and r, has distance at most
t, +|t,/2] from the transmitted codeword. Any standard ecarection technique will now correct one
of these vectors to the transmitted codeword. & $fiandard technique decodes bethand r, to

codewords, and these codewords are the same hisas the transmitted codeword. If they are ddfey
then that one (and there will be only one) reqgirt most t, changes to non-erasure positions is the

desired codeword. Because the number of trials,steps of filling values in the erasure positions,
depends oy, this algorithm is practical only forqt-’ relatively small. The trials increase rapidly wigh

restricting the application of this method to codeer large fields. In this thesis, we do not foousthis
algorithm. More information on this algorithm cam found in [13].

[1] proposed another way of decoding over suchneéks. First, all erasures are deleted from the
received message. Errors in the resulting codewdde corrected or detected based on the pundture
code whose codewords consist of symbols in positighich are not erased. After all errors have been
corrected, the erasures will be recovered by iteratecoding.

If the number of erasures,, does not exceed -1, which is the maximum number of erasures allowed i

a codeword, then at the decoder, we can choosenbwmegative integers, and t, satisfying
t,+2t, +t,<d -1 such that the following is true. If the numberesfors does not exceed, then the

decoder can correct all errors and erasures. Oibenif the number of errors is greater thanbut at
mostt, +t,, then the decoder can detect the occurrence af thant, errors.

The decoder can compute a parity-check matrix lier gunctured code after receiving the codeword.
However, this leads to time delay which is unacakletin some applications. To reduce time delay, we
can store parity-check matrices of all puncturedieso corresponding to all erasure patterns. The
drawback of this solution is the requirement of éagemory storage at the decoder.

[1] proposed a useful method which uses the sepgratatrix with possibly redundant rows, providing
enough parity-check equations which do not chegkaddrthe erased symbols and are sufficient to farm
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parity-check matrix for the punctured code obtaibgdeleting the erasures. Having these parityichec
equations not checking any of the erased symbald te the concept of separation of errors from
erasures.

The basic concept of this decoding technique catiustrated by an example as follows.

We consider an [8,4,4] binary extended Hammingeowith parity-check matrix,

000O0T111 1]
0011001 1
H:01010101
11110000
11001100
1010101090

In a normal parity-check matrix, we just have foaws as the first four rows in this matrix. In this
example, we add two other rows. Allowing redundamis simplifies the decoding of erasures in additio
to errors. Assume that at the decoder, we receigedawordr = 0*011000 with one erasure in the
position two. Applying the decoding technique memtid above, firstly we delete the erasure and mbtai
the resulting vector = 0011000. We can considéras a codeword of the (7,4,3) punctured code.édn th
parity-check matrixH , the first, the second and the sixth row have z@iahe position two. It means
that three related parity-check equations do netklhe erased symbol. From these three rows, we ca
form a parity-check matrid ' for the punctured code.

10001111
0O O[1 1 0 0 1 1 0O 00 1 1 1 1
o001 010101 —— H=0110011
11110000 1101010
11001100
ﬂ0101o1()

Using H', we can decodg into (0011010). After updatingto (0*011010), the third row oH , which
checks the erased symbol, can be used to recaveralsure. The transmitted codeword corresponding t
r is (01011010).

In this case, a normal parity-check matrix cannetused for decoding of both errors and erasures.
Decoding will be easier if we pay the price of sigrparity-check matrix with more rows than necegsa

In order to reduce memory storage as well as dagodomplexity, parity-check matrices with small
number of rows are preferred.
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1.5 Problem Statement

For any given linear code and any given maximum lmemof correctable erasures, in the paper
“Separating Erasures from Errors for Decodind1], Abdel-Ghaffar and Weber introduce paritiyeck
matrices yielding parity-check equations that do clweck any of the erased symbols and which are
sufficient to characterize all punctured codes egponding to this maximum number of erasures. This
allows for the separation of erasures from errordacilitate decoding. These parity-check matrices
typically have redundant rows. The authors of [&bajive two constructions of such matrices and/@ro
general bounds on their minimum sizes. These tgdesi used are related to methods used to prove
results on stopping sets ([9], [10]).

The general upper bounds and lower bound on thé&rmim number of rows in a parity-check matrix
with certain separation properties given in [1] eather far apart. In this thesis, we give improeets on

the upper bounds from [1]. The rest of this thés@rganized as follows. The summarization of intgat
points in [1] is covered in Chapter 2. Besideghis chapter, we also consider the number of usefus

in the matrices built by the second constructi@mf{1]. Chapter 3 and Chapter 4 introduce two masho
which can construct such matrices with a smalléail toumber of rows. Comparisons between upper
bounds will be given in Chapter 5 while Chapten@daudes the thesis.
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Chapter 2

Separating Matrices and Separating Redundancy

2.1 Set Separation

Let H=(h,) of rank n—k be an(rxn) parity-check matrix ofC, r>n-k. Let S be a subset of
{1.2,..n} and 7 be a subset of1,2,...r}, define H] =(h;) with i07 and jOS, be a|T|x|S|
submatrix ofH . For the codeC of lengthn, defineC, :{c‘§ :cO C} be the punctured code consisting of
all codewords ofC in which the symbols in positions indexed sy, S={1,2,...n} \S are deleted.
Clearly, C, is a linear code oveGF(q) of lengthn'= ||§ |, dimensionk'< k, and Hamming distance
d'>d-|S|. LetS={i:1<i<rh,; =0 OS}, defineH(s)=H?.

Definition: A parity-check matrixH separatesS 0{1,2,..n} if and only if H(S) is a parity-check
matrix of C. .

Here, we consider again the example mentioned &pteh 1. We consider an [8,4,4] binary extended
Hamming code with this parity-check matrix,

000O0T111 1]
0011001 1
H:01010101
11110000
11001100
1010101090

Assume that at the decoder, we receive a codewer@*011000 with one erasure in the position two.
After deleting the erasure, we obtain the resultiegtorr’ = 0011000. We can consideras a codeword

of the (7,4,3) punctured code. In the parity-chetwltrix H , the first, the second and the sixth row have
zeros in the position two. It means that threeteelgarity-check equations do not check the erased
symbol. From these three rows, we can form a pahigck matrixH ' for the punctured code.
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10001111
0ojo[1 1001 1 0001111
H=/010101 0% —— H=0110011
11110000 1101010
11001100
ﬂ010101c;

Hence, we can say that the parity-check malttigeparates the set {2}.
Theorem 1 ([1]): A parity-check matrixH of an [n k d] linear code C separates a seS of size

|S|cd-1if and only if H(S) has rankn-k-|S].
2.2 Separating Matrix

2.2.1 Definitions

Let H be a parity-check matrix of gn, k, d] linear code oveGF(q).
* H isl-separating ofC if it separate every se&§ of size|SE 0,1,...1 with 0<I < min{d,n-k} -1.
» Let C be an[nk,d MDS linear code ovelGF(g), i.e., d=n-k+1. Then any parity-check
matrix, H , of C separates all sets of siz&-1. In particular, any (d -2) -separating parity-
check matrix ofC is (d -1) -separating.

Theorem 2([1]): If H separates all sets of sizefor a fixedl <min{d,n-K -1, then it isl -separating.

2.2.2 Characteristics

If H is anl-separating parity-check matrix of the code from H , we can form parity-check matrices
of all codes punctured up to a fixed number of syisldenotes by. H has two features:

* H can separate erasures from errors bec&lideas enough parity-check equations which do not
check any erased symbols and are sufficient toackexize the punctured code. It means that the
punctured codeword, which is formed by deleting #rased symbols, can be corrected or
detected errors in it by a sub-matrix idf.

* Incase0<l<min{d,n-k -1, H has no nonempty stopping set of sizer less. For any pattern

of | or fewer erasures, not only are there enoughypelniéck equations not checking any of the
erased symbols that characterize the punctured botalso there is a parity-check equation that
checks exactly one of the erased symbols. It mtwisafter all errors have been corrected, the
erasures can be recovered by iterative decodirgefdme.
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2.2.3 The necessary and sufficient condition for a parity-check matrix to be
an |l-separating matrix

Basing on definitions and theorems, we can condhaeH is an| -separating matrix of the code if
* Incasel<d-2 orl=d-1<n-k-1: H(S) has rankn-k-1I for each of all sets of sizel,

* Incasel =d-1,d=n-k+1, H(S) has rankn-k-(1-1) for each of all sets of sizel -1.

2.3 The |-Separating Parity-Check Matrix Constructions

2.3.1 The first construction

e Ifl<sd-2orl=d-1<sn-k-1
Let H' be a full rank parity-check matrixg 0{1.2,...n} , wherei :1,2,...(|”), be the distinct subsets of

{1,2,..n} of sizel. For eachi :1,2,...(|”), H's has rankl (| <d -1). By elementary row operations on

H', we can obtain afn-K)x n matrix, H, for eachi =1,2,...7"), of rankn-k such that its last— k- |

rows have zeros in the positions indexedSy

A
v

S, (sizel)

n-k () n-k-I

Let H, be the matrix whose set of rows is the union ef sets of the lash-k-1 rows in H} for

i=1,2,..(7). H, is anl-separating matrix of the code, ([1]), and it has at mogt’)(n-k~-1) rows.

1C
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S,
H'= On—k—l,l‘ J}/’ n—k—I,IO n
n—-k-1,l (' )
s,
H.'= ‘On—k—lJ ‘ J} 0, istheix| all-zero matrix

e Ifl=d-1,d=n-k+1
Instead ofS, of sizel, apply the same procedure with subss,tﬁ{l,z,...n} , wWherei :1,2,...(,?1), of

sizel -1. In this caseH, has at mos(l'_‘l)(n—k—(l—l))z(Ifl) rows.

2.3.2 The second construction

Normalized vector. A nonzero vecto = (x, x,,...,X, ) over GF(q) is said to be normalized if its leading

nonzero term is equal to 1. The weight of the vexis |{j: x, Z0}| .

e Iflsd-2o0orl=d-1<n-k-1
Let A be a matrix ovelGF(qg) whose rows are all the nonzero normalized veabiength n-k and

weight at mostl +1. Define H, = AH'. H, is anl-separating matrix of the code, ([1]), and it has
Z:j("i‘k)(q—l)“l rows.

e Ifl=d-13,d=n-k+1

Apply the same procedure, bt is a matrix overGF(q) whose rows are all the nonzero normalized

vector of lengthn -k and weight at most. H, hasz:ﬂ( ”i"‘)(q—l)“1 rows.

2.4 Separating Redundancy and the Upper Bounds

Define thelth separating redundancy,, of the codeC to be the minimum number of rows in &h

separating parity-check matrix af.
Therefore, the upper bounds can be derived fromafyave constructions.

11
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* The first construction

[p](n—k—n if lsd-2 orl=d-1<n-k-1,
<

3 = () if | =d-1,d = n-k+1.

2.1)

Basing on the first construction, in Chapter 3 &idhpter 4, we will introduce two methods which can
constructl -separating matrices of the codewith the smaller numbers of rows than in (2.1).

 The second construction

< Z::l[n'_k](q_l)i_l if 1=d-1,d=n-k+1.

. Z::i[n'—k](q_l)i—l if lsd-2orl=d-1<n-k-1, (2.2)

In the next part, we will consider the number aéfusrows in anl -separating matrix built in the second
construction.

2.5 New Upper Bound in the Second Construction

Here, we just consider the cased -2 or | =d -1<n-k-1. In casel =d -1 andd = n— k+ J, the result
can be derived similarly. In the second constructid' is a full rank parity check matrixQ is a matrix

over GF(q) whose rows are all the nonzero normalized veabtength n-k and weight at mosit+1.

H, = AH'. The number of rows i, is equal to the number of rows & and |SZ:2( ”i‘k)(q—l)“l.

For each & of size I, let {rvl,rvz, }be the set of rows inH' in which the set of

Ty

{(r\,l)é;I ’(r"z)S. e ,(\1 )5| }forms a basic for thé- dimensional vector space oveF(q).

For eachr, ¢er (j=1,...n), we can find a row iM, (a, a,, ..., 8 ), which satisfies
(rV)SI +a1(rV1)s| +az(r\,2)8| t...+q (I’VI )5I :9 (vecton.

8 OGF(q). The sefa;,a,, ..., 3} is unique.
Now we consider the matriA
* Rows in A are the nonzero normalized vectors of lengttk and weight fromi to | +1.

e Choose any, 1<i <l +1, from n-k, we can form(q—1)" rows.

However, not all(q-1)"* rows play an useful role i, . We have(ln) subsetsS, (we can imagine that

we have(ln) baskets). Now, we select rows in the sefepf1)™ rows to put into(ln) baskets.

12
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* Row is put into one specific basket if and onljt ifias all zeros in the positions indexed by that
basket.
* One row can be put into more than one basket.

« In the set of(g—1)" rows, because the s{fml,az, q} is unique, there is maximum one row

put into one basket.

Hence, in cas¢q-1)" > (I”) the maximum number of useful rowsHh, is

3¢ min{(a-2y 1)}

Let 5 be thel th separating redundancy in the second construction,

Z:j(”;k)min[(q—li‘l,(|n)] if l<d-2orl=d-1<n-k-1, (2.3)

Z:zl(”_ik)min[(q—li‘l,(ln)] if 1=d-1,d=n-k+L1.

2.6 Chapter Summary

§<

In this chapter, the reviews of the concept of sajpag matrices for decoding over channels caukoth
errors and erasures together with upper bounds@minimum number of rows in such matrices were
given. A new upper bound on the separating redundamnthe second construction was also introduced.
In the next two chapters, we will propose two mdthavhich can construdt-separating matrices with
smaller total numbers of rows than in (2.1).

13
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Chapter 3

New Upper Bounds based on Covering Design

3.1 The First Method

In this chapter, we introduce a method (methodaEgeH on the first construction which can constanct
| -separating matrix with a smaller total numberafis. LetH' be a full rank parity-check matrix «f

which has the Hamming distance df It means that every -1 or less columns oH' are linearly

independent.

Method 1

Step 1

Let B be a set ob-element subsetd3., of M ={1,2,...,n}, 1<l <b<d-1, such that every-element

subsetsS, is contained in at least one member®f Assign to eaclhs,, i :1,2,...(|”), an elememBj of

B such thatS, is contained in thid3, . H', has rankb. For anyBB;, by elementary row operations on
]

H', we can obtain arin-k)x n matrix of rankn-k such that its lash-k-b rows have zeros in the

positions indexed byB; . After arranging columns, we obtain a matrix havhis format. We call iHjl,

A
v

A
v

Step 2
For any S assigned to a certaiy;, again, by elementary row operations, the maktixcan be further

changed into arfn—k)x n matrix H;, still of rank n-k, which rowsl| +1, 1+2,..., b have zeros in the

14
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positions indexed bys,, and which rows+1, b+2,..., n—k have zeros in the position indexed By

After column arrangement, we obtain a matrix hathig format,

n
< s >
«—  »
A |
| i b
| ———>

By this method, ifS; and S. belong to the samBj , the set of the lasti—k-b rows in Hi' and Hi', will
be the same. From the proof of Theorem 2 in [¥hlibws that the matrix whose set of rows is tinéon

of the sets of the last—-k-b rows in Hjl for j=1,2,..,B] and the rows +1, 1+2,...,b of H; for

i :1,2,...(|”) is anl -separating parity-check matrix of the code Let B(n, b, I) denote the minimum size

of B, B(n b, 1)=min|B |. This matrix has at mogh-k-b B n b D+(|”)(b— ) rows.

—
H'=| 0y, |- }><' n: k bb : IIBI
0., i :
N kbi Wy )} HI1: Ob—l,l (n)
|
3.9 UB S Op-1,
—

Hi,': OD—I,I }

15
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3.2 Covering Designs

For 1<st<u<v, a (v,u,t) covering design is a collection of-element subsets a?={,2,....v}, called

blocks, such that every-element subset @ is contained in at least one block.
We need to findB(v, u, t) which denotes the minimum size of\au,t) covering design.

Example - v=8,u=3,t= 2,
All 2-element subsets (28 subsets):

12 23 34 45 56 67 Tt
13 24 35 46 57 68
14 25 36 47 58

15 26 37 48

16 27 38

17 28

18

All 3-element subsets (56 subsets):

from these 21 subsets of size 3, we
/can form all(3) subsets of size 2

123 134 145 156 167 1:
124 135 146 157 168
125 136 147 158

126 137 148

127 138

128

234 245 256 267 278
235 246 257 268
236 247 258

237 248

238

345 356 367 378 456 467 478
346 357 368 457 468

347 358 458

348

567 578 678
568

16
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From the elements in the subg&t2, 3 , we can form{1, 3 {2,3 { 3. If we try all 21 subsets of size 3
in the box, we can form all 28 subsets of sizg 2.

Thecovering desigmproblem has been investigated since many yeard-agyeever, until now, there is no
general formula ofB(v,u,t) for all triples (v,u,t). The optimal solutions, which satisfy the Schonhei
lower bound ([3]), were achieved for some speciaées or some specific triples. In the website
www.ccrwest.org([7]), we can find optimal solutions for the rasge<100,u< 25,t< & Outside these

ranges, optimal solutions have not been found yet.
It is clear that in casei=t, B(v,u, t):([’,) and in caset=1, B(v,u, t):(v/ u]. Here, we propose a
covering desigrvalid for all triples (v,u,t), 1<t<u<v. This solution is not optimal but it can give a

& |t

12|
general upper bound for tlwvering numberB(v,u,t). We need at mos(t"_(t”_t)j— i ("_(“'t)_z kj
(WZJﬂ)

u-element subsets o ={1,2,...,v}, called blocks, such that everyelement subset of is contained in

at least one block.
Before achieving this result, we begin with thestfiapproach in which we show that with at most

(V'(;H)) subsets of size, we can form al(;’) subsets of size.

3.2.1 Approach 1

Stepl:
1. Fromthe seV ={1,2,...,v}, we take the firsu—t elements out oV ={1,2,...,v}.

2. The rest of the set k-t+1, u-t+2,u-t+3,...,v— 1,v}. From these elements, we form all subsets
of sizet. The number of subsets(ié_(t’_t)) :
Step2:
Now, we put the firstu—t elements into each subset of stzéo form subset of size. With these
("_(;’_t)) subsets of siza, it is easy to see that we can form(qYl) subsets of sizé.
Example 2 v=6,u=4,t= 3, applyapproach 1
« Take{1} outof{123,4,5p. Therestof the set{2,3,4,5,4.
+ Form subsets of size 3 frofa, 3, 4,5, §. We obtain 10 subsets,

234 245 256 345 356 45
235 246 346
236

« Put{g} into these subsets.

17
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1234 1245 1256 1345 1356 14!
1235 1246 1346
1236

From these 10 subsets of size 4, we can form adluP@ets of size 3 as if we form subsets of sizer
{11 21 3! 4! 5! pl

123 134 145 156 234 245 2!
124 135 146 235 246
125 136 236
126

345 356 456.

346

| |
If we take more tham —t elements out of the s{a:t, 2,...,v} , such as taking the first-t+1 elements out

v—(u-t)

and forming( Ao

) subsets of size-1, we cannot form al(;’) subsets of size.
Example 3 v=6,u=4,t= 3,

« Take{L 2 outof{1,23,4,58§. The rest of the set {8,4,5,4 .

« Form subsets of size 2 frof8, 4,5, § . We obtain 6 subsets,

34 45 56
35 46
36

« Put{1 3 into these subsets,

1234 1245 125¢
1235 1246
1236

With these 6 subsets, we cannot form some suhsetsas,

345 356 456.
346

|
If we take less tham —t elements out of the s82 ={1,2,...,v} and apply the same method, the number of

subsets of size formed will be greater.
Example 4:
In example 2y =6,u=4,t= 3, we need 10 subsets of size 4 to form all 20 dalsfesize 3. 10 subsets

of size 4 are

18
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1234 1245 1256 1345 1356 141
1235 1246 1346
1236

However, we can merge some subsets in order taceethe number of needful subsets to fewer than

(v—(u—t) )
t )

2456

X
1234 | 1245 1256 134% 1356 14!
1235|| 1246 1344

1236
these 2 subsets are
merged into2356

Y
3456

With these 7 subsets of size {,2,3,4},{2,3,5,6},{2,4,5,6},{1,2,5,6}{3,4,5,6},{L,3,5,6},{1,4,5,6}, we still

can form all 20 subsets of sizgg3.

3.2.2 Approach 2

In the first approach, we show that we need at r(ub’éft)) subsets of size in order to form all({‘)

subsets of sizé but we also show that we can merge some subsetdén to reducegB|.

In order to get a better result tharajpproach 1 we come backteplof approach land modify it.
Stepl:
1. Fromthe sety ={1,2,...,v}, we take the firsu—t elements out o ={,2,...,v}.
2. The rest of the set ig1—-t+1, u-t+2,u-t+3,...,v— 1,v}. From these elements, we form all subsets

of sizet and arrange them into columns based on these rules
» Elements in each subset are arranged in ascendieg 0
= Subsets are arranged into columns. Subsets areioaumn if and only if they have the
same firstt —1 elements (except thepecial colump It means that subsets in one column
are different from each other only in the last edam The subset with the smaller last
element will be put above.

» Special columnlf t=2, we have thespecial columnThe special columrconsists of

subsets containing both elements-1','v'. It is easy to see that there a(rﬁ(tﬂ‘zt)‘z)

subsets in this column.

Example 5 v=6,u= 4,t= 3, applyapproach 2Step1
« Take{l} outof{1,23,4,5§. The rest of the set {2,3,4,5, 4.

« Form subsets of size 3 fro{ﬂ, 3,4,5, $ and arrange them into columns,

19
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20

special
234 | 245 345 25@” column
235 | 246 346 356

thelongest A 236 456.
column

We call the column which contains the most subsgts, 4},{2,3,5},{2,3,6}, the longest column
(except thespecial columj g

In all cases, théongest columralways begins with the subsgt-t+1, u-t+2,...,u- 2,u- L,u}. There
arev-u+1 subsets in this column. The finst1 elements in these subsets are the same.
Example 6 v=9,u=5,t= 4,

Put'1' out of {1,2,3,4,5,6,7,8,9. Form all subsets of size 4 and arrange themcioliamns, except the

special columnthelongest colummvill be

2345
2346
2347
2348
2349.

Basing on the first -1 elements in the first subset in tloagest columpwe can form alt -1 second
longest columnsWe call this set theriginal setfor these columns. Theriginal setis the set from
which we form new columns.

The firstt -1 elements in the first subset in floagest colummare

thefirst place(count from the last)

I’4
{u=-t+,, u-t+2,....,u- 3,u- 2,u- 1.

thesecond placécount from the last)

Convention: the first place is the place of the last elementignthe firstt -1 elements. The second
place is the place of the next element to theatedtso on...

The set of the first -1 elements in all subsets in the fistcond longest columis formed by
choosing the element in thHigst place and increasing it by 1u-1'- 'u'. We keep the first -2

element as in theriginal set The first subset in the firsecond longest colunis

the succeeding element is always
greater than the preceding element

I'4
{u-t+l, u—-t+2,...,u-3,u- 2,u,+ 1}

thechosen elemerﬁ'
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The set of the first -1 elements in all subsets in the secaedond longest columis formed by
choosing the element in tlsecond placend increase it by Iu-2'- 'u-1'. It means that the first
t-3 elements in all subsets in this column are keptstme as in thariginal setand the element in
the first place must be automatically increased to be greater tharpreceding element. The first
subset in the secors@cond longest colunis

the succeeding element is always
greater than the preceding element

{u-t+, u—-t+2,..,u-3, - Lu,u+ 1
Pl

thechosen element

The set of the first-1 elements in subsets in the next column is formgdhoosing the next
element in the next place and so on... The séteofitstt -1 elements in subsets in the last column is
formed by choosing the element in the-{)™ place which is also the first element in theginal set
and increasing it by 1,'u-t+1' - 'u-t+2'. All the succeeding elements will be automatically
increased.

The first subset in thet £1)™ second longest colunis

the succeeding element is always
greater than the preceding element

{u-t+2, u-t+3,...,u-2,u- L u,u+ 1},
Pl

thechosen element

We can see that all tleecond longest columasid subsets in them have the same two features:

* The last element in the first subset in each colisrin+1'. It means that the number of subsets
in each column is one fewer than the number ofetslia thdongest column

* Thefirstt-1 elements in all subsets are contained irotiginal set

Example 6(cont): continue the above examples 9,u=5,t= 4.

The first subset in thiwngest columns {2,3,4,5}. Basing on the first three elements in thigginal

set we can form thresecond longest columns

The set of the first three elements in all subgetthe first second longest columis formed by
choosing the element in thist place, ‘4’, and increasing it by 1. The first subsetthiis column
is{2,3,5,6}. The entire column is

2356
2357
2358
2359.
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22

The set of the first three elements in subsetshensecondsecond longest columis formed by
choosing the element in tisecond place'3’, and increasing it by 1. The first subsethirs column is
{2,4,5,6}. The entire column is

2456
2457
2458
2459.

By similar way, the first subset in the thBdcond longest coluniga{3,4,5,6}. The entire column is

3456
3457
3458
3459.

We can see that the number of subsets in sacbnd longest colunia four which is one fewer than
the number of subsets in tl@ngest columrand the first three elements in each subset armioed
in theoriginal setyy

Now, we will form all thethird longest columnby using the first subset in each of #szond longest
columns

The first subset in the firsiecond longest colums

{u-t+, u-t+2,..., u-3,u- 2, u,u+ 1

thechosen elemeimn the
previous step

We will use this subset to form new columns. Thiss®t is theioriginal set Thechosen elemerii
the previous step is in tHiest place The number of new columns depends on the platEsadthosen
elementFrom now, the rule is thate can choose the elements from the first plateet@lace of the
chosen element in the previous step and increash efthem to form the set of the finst1
elements for each new colunifor example, if thehosen elemeiith the previous step is in thieurth
place we can choose four elements from fiin&t placeto thefourth placeand increase each of them
to form four new columns.

Therefore, with thiriginal set we can form only onthird longest columty increasing thehosen

elementby 1, 'u' - 'u+1'. The first subset in this column is

{u=t+L, u—t+2,...,u-3,u- 2,u+ L+ 2}

thechosen elemer{
The first subset in the secosdcond longest colunis

{u—t+L, u—t+2,...,u-3,u- Lu,u+ 1}

thechosen elemer the
previous step
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Thechosen elemerih the previous step is in tleecond placehence we can use this subset to form
other twothird longest column<Of course, this set is tlogiginal setfor these two columns.
The set of the first -1 elements in subsets in one new column is formechiopsing the element in

thefirst placein theoriginal setand increasing it by 1y’ . 'u+1'. The first subset in this column is

{u-t+, u-t+2,...,u-3,u- Lu+ Lu+ 2}

thechosen element
The set of the first -1 elements in subsets in the other new column ismdadr by choosing the

element in thesecond placén theoriginal setand increasing it by Tu-1'- 'u'. The first subset in

this column is
{u-t+l, u-t+2,...,u-3,u,u+ L, u+ 2}

thechosen element

Applying this procedure to the first subsets inth# second longest columnae will form all the
third longest columnsWe can see that all ththird longest columnand subsets in them have the
same two features:

» The last element in the first subset in each colisnin+2'. It means that the number of subsets
in each column is one fewer than the number ofetgbiasecond longest columns

» Thefirstt-1 elements in all subsets in each column are cogddimitsoriginal set

Using the first subsets in all thigird longest columnwith the similar procedure, we will form all the
fourth longest columnand so on...Thahortest columnsyill have two subsets in each of them. In
each step, all new columns and subsets in themthav@ame two features:

» The number of subsets in each new column is onerfévan the number of subsets in the column
containing itsoriginal set

» Except thelongest columrand thespecial columnthe firstt—-1 elements in all subsets in each
new column are contained in dsiginal set

Example 6(cont): continue the above examples 9,u=5,t= 4.

The first subset in the firsecond longest columis {2,3,5,6} with the chosen elemerih thefirst

place Hence, from thigriginal set we can form one new column.
Choose the element in tHigst place and increase it by 15' - '6'. The first subset in this new

column is{2,3,6,7}. The entire column is

2367
2368
2369.
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The first subset in the secomsécond longest columis {2,4,5,6} with the chosen elemerih the

second placeFrom thisoriginal set we can form two new columns.
The set of the first three elements in subsetsqierew column is formed by choosing the element in
thefirst placein theoriginal setand increasing it by 15' - '6'. The first subset in this column is

{2,4,6,7}. The entire column is

2467
2468
2469.

The first subset in other new column{2s5, 6,7}. The entire column is

2567
2568
2569.

Applying a similar procedure to the first subsethie thirdsecond longest columaith the chosen

elemenin thethird place {3,4,5,6}, we can form three nethird longest columns,

3467 3567 4567
3468 3568 456¢
3469 3569 456¢

We can see that the number of subsets in #aahlongest columrs three which is one fewer than
the number of subsets in tBecond longest columrand the first three elements in each subset are
contained in itoriginal set

Repeat the procedure until the number of subseth aolumns is two.

With v=9,u=5,t= 4, thespecial columrconsists of subsets containing both ‘8" and ‘%efle are

(V'(t”_'zt)'z) = (9“4(524*2) =(5) =15 subsets in this column.

Finally, we can obtain this result:
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thelongest column

2345 2356 2367 2378 23t
2346 2357 » 2368 > 2379 24
2347 2358 2369 25¢
2348 2359 2478 26¢
2349 2467////' 2479 27¢
2468 348¢
2456 2469 2578 35¢
2457 2579 368
2458 2567 378
2459 2568 2678 45¢
2569 2679 468
4789
3467 3478 568
3468 — * 3479 578
3469 678¢
3578
3567 3579
3568
3456 3569 3678
3457 3679
3458
3459 4578
4579
4567
4568 4678
4569 4679
5678
5679
[
Step2

thespecial column

1. We put the firstu-t elements{l, 2,...,u—t}, into each subset. Now, size of each subset is

2. If the number of subsets in tlengest columns greater or equal to three and #ipecial column
exists, we can merge the last two subsets, whintago'v-1' or 'v', in each column (except the
special columpinto one, thanerged setby this rule:
» Eliminate the element' in one subset.
= Put the last element of the other subset into it.

We can merge the last two subsets in each colureee thespecial columhbecause:

25
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» The firstu-1 elements in each subset are contained imtiginal set Therefore, any subset of
sizet which is formed by using these-1 elements can be formed by thginal set
» The lastu-1 elements in each subset are contained imtbeyed setTherefore, any subset of
sizet which is formed by using these-1 elements can be formed by timerged set.

* Any subset of sizé containing{l,v-1} or {1,\} can be formed by subsets in #pecial column.

v—(u-t)-2

Special columnthere are( ro ) subsets in this column. tf=2, thespecial columrhas only one

subsetfl, 2,....u- 2v-1v}. If t =3, this column can be formed by this way:
1. Putthree elementd’,'v—-1','v'out of the sety ={1,2,3,...v}.
2. The remaining set i$2,3,....v—3yv- 2}. From these elements, applyiapproach 1 we form

subsets of size&i—3 such as everyt -2)-element subset d®,3,...,v—3,v- 2} is contained in at
least one of them. We obtaﬁﬁ‘(t‘fzt)‘z) subsets.
3. Next, we put three elements,'v—1','v' into each subset of size-3 to form subset of siza.

Now, we have all subsets in tepecial columrand it is easy to see that with the(é’é(t‘fzt)_z)

subsets, we can form all subsets of gizntaining{l, v-1}, {1, \} or {1, v-1,\}.
Example 6(cont): continue the above example=9,u=5,t= 4.

e Put ‘1 into each subset.

* Merge the last two subsets in each column (extepecial colump
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thelongest column thespecial column
12345 12356 12367 12378 123
12346 12357 »| 12368 »| 12379 124
1234 12358 12369 125¢
12348 12359 12478 126¢
12349 12467 12479 127¢
12468 1348¢
12456 12469 12578 135¢
12457 12579 1368
12458 12567 1378
12459 12568 12678 145¢
12569 12679 14689
14789
13467 13478 1568
13468 *| 13479 1578
13469 1678¢
13578
13567 13579
13568
13456 13564 13678
13457 13679
13458
13459 14578
14579
14567
14568 14678
14569 14679
15678
15679
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Themerged subsets

23689 12378
23589 12368 1237923789
23489 12358 12369
12348 12359 12478
24789
12349 24689 12479
12468
12469 12578
24589 12579 25789
12458 25689
12459 12568 1267
12569 1267';1?‘26789
13478
13468 1347934789
13469
13578
35689 13579 35789
13568
13569 13678
34589 13679 36789
13458
13459 14578
14579 45789
45689
14568 14678 46789
14569 14679
15678
15679 56789
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The resulting subsets

thelongest column thespecial column
12345 12356 12367+—» 23789 123
12346 12357 > 23689 124¢
1234 23589 1258
2348 24789 1268
12467///)' 1278¢
24689 1348¢
12456 25789 1358
12457, 1368¢
24589 12567 1378
25689 26789 1458
14689
14789
13467 —>» 34789 1568
34689 1578¢
16789
35789
13567
35689
13456 36789
1345
34589
45789
14567
45689 46789
56789

With these subsets, we can form all subsets ofsseif we form all subsets of size 4 fr@he,..., 9} g

The number of subsets which can be reduced is ¢guake number of subsets containing the element

'v-1' or 'v'. Therefore, the number of reduced subse#ﬂ#_‘lt)_z).
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Until now, we need at mo{tv'(f_t))—("'(t”_'l‘)'z) u-element subsets & in order to form all subsets

of sizet from V ={1,2,...v}. As in the above example, after merging some dspse need at most
(9;1) —( 9‘;_}12) =70- 20= 5(C subsets of size 5 in order to form all 126 subsksize 4.

However, if we look at thepecial columnin the design of subsets of sime-3 in order to form all

subsets of siz&é-2, by approach 2 we can merge some subsets in this desighz ¥, the number of

reduced subsets, which Eé’_(f__;)_d'j, is equal to the number of subsets containingetement'v-3' or
'v=2'. We continue with thepecial columnn this design and so on...

U2
Finally, we need at mo{tV (u= t)) i [V;(_‘(Jél'()__lz)kj u-element subsets a9 ={1,2,...,v} such that every
k=1

([1/2J>1)
t-element subset 0P is contained in at least one member of them. Tagpeubound fork, Ltlzj, can

be determined by the condition of the existencine$pecial columrin each design.

3.3 New Upper Bounds Following Method 1

In casel<| <d -1, for anyl <b<d -1, we haveB(n,b, |)< n (b") ? ”'Eb")_'ZK (3.1)
2AREE 1)
|/2J>l)
Hence,
s<(n-k-HEnb)+(])(b) (32)
[0 )- 2 e b-n-2k) |/ - (3.3)
<(n-k-b 2 | 1= +(") -,

(12

For a given value of, we can choose an appropriate value db get the best result. In general, in order

to estimate a new upper bound for we can choose = d-1 and the new upper bound is

s <(n- k-(d-1)) (”‘(‘1‘1"))— “k/zj (r*fﬁ‘(‘;'_gzkj +(|”)(d ~1-1). (3.4)
(LI/2J>1)

In casel =d -1, we have the trivial result th&(n, d-1,d-1)= (dﬂl) and we thus obtain the upper bounds

from [1]. In casd =1,

s=(n-k-BEnbl)+ tbL)=(r k ¥n/b]+n(b-1) (3.5)
<(n-k=(d=1)[ n/(d-D]+ n(d-2). (3.6)
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3.4 Chapter Summary

In this chapter, a method which can construct aeparating matrix with a smaller total numberafis

in comparison with (2.1) was introduced. A genergber bound on theovering numbewas also given.
The efficiency of this method on some popular codiisbe presented in chapter 4. In the next chapte
another method which can reduce the upper bouneoith separating redundancy given in (2.1) in case

| <d -2 will be introduced.
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Chapter 4

Other Upper Bounds on the I™

Separating Redundancy
4.1 The Second Method

In this chapter, we introduce another method (ntktBb which can give a smaller upper bound in
comparison with the value given in (2.1) in cased -2. Again, H' is a full rank parity check matrix

and S is a subset 0f1,2,...n} of sizel . H's has ranki and by elementary row operations bh, we

can obtain anin—-k)x n matrix of rankn-k such that its lash—k-1 rows have zeros in the positions

indexed bysS, . After arranging columns, we obtain a matrix havinis format,

n

A

v

Hi=
0 --- 0
s n-k-1
n_k . . .
0 .- 0
«—>

Taking the lastn-k-1 rows in H' which have zeros in the positions indexed &yto form a new
matrix, we call itH?. In [1], H,, an| -separating matrix in the first construction, ie thatrix whose set
of rows is the union of alH? for i :1,2,...(F).

Method 2

By elementary row operations and column arrangement?, we obtain a matrixH?>, having the

format, I n-k-1I k
—> ——————————— > ——>
0O - 0lY OO 0 0 X
O - 00O0Y O« 0 0O X
3 0O - 00 OY 0 0 X n-k-1

Hi = - :
O - 00 O O-Y 0 X
O .- 0 0 0 O - YI X
— - — )
Group A Group B
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Chapter 4: Other Upper Bounds on thé&Eparating Redundancy

Y: a non-zero symbol.
X: an arbitrary symbol.
We call:
» Group A: set oft positions in which each column contains all zgmnlsols.
» Group B: set olh—k-1 positions in which each column contains only oar-nero symbol.
Now, we considers; which consists of -1 positions in Group A and one position in Groupf@;

example: the last-1 positions in Group A and the first position in @poB. According to the first

construction, we neelsHj2 of rank n- k-1 which has zero columns in the positions indexedspy

S
f_%
X0 -~ 0]10] X
X[ 0 00| X
He= | X0 0 99X n-k-I
X[ 0 00| X
X{Oo -« 0l0] X
H/_J
Sj
However, if we look atH?,
00--0Y 0O0- 0 0X *
0/j0 - 00 QY O0-.-- 0 OX
Heo [0]0 0 g OY 00X - n—k-1
i - . . : . . . . . .
010 o0 q o Y 0O X
//0' ... 00 Q 0 0-- 0OYIX
n—k-1-1rows \ M
have zeros in theGlroup A G B
positions roup
indexed bys,

H? already has-k-1-1 rows which have zeros in the positions indexedshy Therefore, instead of
using alln-k-1 rows of HJ.Z, we need only one row accompanied with the set-ok—1-1 rows from

H2. In other word, the last-k-1-1 rows in H® are also useful in case &f . Let d' be the Hamming

distance of the punctured code formed by deletrggstymbols in positions belonging to the subset
Sinced'=d-1, in casel <d -2, d'=2. Therefore, inH].2 , exceptl all-zero columns, each column

must contain at least one non-zero symbol. The onlywe need fromH].2 should contain a non-zero

symbol in the position which is in the subsgtbut not in the subses;. The set ofn—k-1-1 rows
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from H?, which are linear independent, has zeros in tbgtion. Any row which has a non-zero symbol
in this position will be linear independent withketfows in this set.

In general,H? hasn-k-1-1 rows having zeros in the positions indexed by ayconsisting ofl -1
positions in Group A and one position in Group Bor | positions in the Group A and-k-1
positions in the Group B, we can for(ﬁ_l)(”‘f") =l(n-k-I) subsetss,. For each of thesgn-k-1)
subsetssj , we need only one row.

In H,, for 5, we replace the set af- k-1 rows of H? with H® and for each of(n-k-1) subsetss, ,
we can removen—Kk—-1-1 rows in eacthz. Since this new matrix belongs to the clas$Hofmatrix, it is

also anl -separating parity-check matrix of the code

Now, we considers, consisting ofl -2 positions in Group A and two positions in Group fBy

example, the last-2 positions in Group A and the first two positioms Group B. InH?, we have

n-k-1-2 rows which have zeros in the positions indexedspy

00 Oy 0O 0 o X -
00 O o0Y O 0 0 X
0 O

o
o
o
)
o
<

X o n-k-I

o
o
o
o
o
o
<
o
x

o
o
o
o
o
o
o
<
x

n-k—-1-2 rows
have zeros in the Y

positions Group A Group B
indexed bys,

In this case, we can remowe-k-1-2 rows in sz if there are two rows ier2 which are linearly

independent with the set af- k—1-2 rows from Hi3. However,Hk2 can have this format

o
o
o
o
(@)
(e
X

N

0 0/{0 - 0 0 ¢
0 0|0 - O 0 QX

S
In this case, we cannot find two rows H\f to ensure that these two rows are linear independith

n-k-1-2 rows from H?. It means that we cannot gain advantage in thie.c@herefore, we can

34



Chapter 4: Other Upper Bounds on thé&Eparating Redundancy

conclude that this method is used only in c&ediffers S in only one position and this position is

chosen from Group B.

4.2 Application

Now, we propose the ways applying this method ffeint values ofl . We mention some important
points of this method:

» Size of Group A id and size of Group B ia—k-1.

» Positions appearing in Group B depend on positioriiaroup A and structure of the parity-check
matrix.

* We gain advantage from subsess consisting of one position in Group B ah€l positions in
Group A.

» Here, we define the couple (A| B) = {positions irj positions in B}.

For examplel =3, n-k-1=4, assume that Group A = {1, 2, 3}, Group B = {4,769}, then (A| B)

={1,2,3]4,6,7,9}.

« With each couple (A| B), we can formin-k-1) subsetssS; consisting ofl -1 positions in
Group A and one position in Group B. For each es#i(n-k-1) subsetss;, we need only one
row.

For example: with the couple (A| B) = {1, 2, 3 64,7, 9}, we can form 12 subses: S, ={1,2,4},

S, ={L,2,6}, S, ={,2,7}, S§,={,2,9, & ={,34, S ={36, S =37, S ={1329,

S, ={2,3,4}, S, ={2,3,6}, S,={2,3,7}, §,={2,3,9}.

* A new couple (A| B) is formed (valid) if and onlyliin -k -1) subsetss; formed by this couple

are totally different from all othes; formed by all previous couples.

For example: with Group A* = {1, 5, 6}, we suppdbat Group B* is {2, 8, 10, 11}. In this case, the
couple (A*| B*) cannot be formed because amongutissts formed by (A*| B*) = {1, 5, 6 | 2, 8, 10,
11}, the subsets, ={1,2,6} has been already formed by (A| B). Hence, the leo(#*| B*) is not

valid.
* More couples can be formed, more advantage we &ian g

* Let m be the number of couples valid. From theseouples, we can forrmi(n- k- 1) subsets
S, for each of which, we need only one row. For eafkcthe rest,(ln)—ml(n— k—1) subsets, we
still needn-k-1 rows. LetH,, be the matrix constructed loyethod 2This matrix has at most

((7)-mitn=k=D)(n=k=+ m(n= k= ) = () (= ke )= mi e ke Y me ke 1) rows.
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421 1=1

In this special case, we slightly changethod 2to get a better result. From gn-k)x n parity-check
matrix H' of C, by elementary row operations, we can obtain laréuk (n-k)x n parity-check matrix

H" which contains arin—k)x(n- K submatrixD with zeros in all entries outside the main diagona

n-k k
«—p> «—>
Y 0O - 0| X

He=| O 0 2
0O 0 -«- Y[|X
Hence, for alln-k setsS, ={} corresponding to the column indices bf, the matrixH" hasn-k-1
zeros in column . For each of the remaining setssS, ={i} , by elementary row operations di', we
can obtain an(n-k)xn matrix, H;, of rank n—k such that its lash-k-1 rows have zeros in the
positions indexed bys . Let H,, denote the matrix whose set of rows is the unibthe lastn-k-1
rows in thesek matrix H, and the rows of the matrix{". The number of row inH , is at most
k(n-k-1)+(n- K. Since the matrixH,, belongs to the class dfi, matrices,H,, is a 1-separating

parity-check matrix of the code . Then,
s < (k+1)(n— k-1)+1with d =2, n- k= 2.

422 1=2

The first couple: we can choose the first two posg to be Group A

0 o]y 0 .- 0 O|X
0 0/0Y - 0 0|X
0 0|0 O - Y O0O|X
0 0|0 O - O0Y|X

N
GroupA, GroupB, GroupC,

The second couple: we choose any two positiongausC (C = {1,2,...,n}\ (AOB) ) to be Group A.
Because each of these two positions does not ajipern-k-2) subsets formed by the first couple,
without noticing Group B, we can assure tha(n-k-2) subsets formed by (4 B,) are totally

different from all previous subsets.
For exampleil =2,n=12,n-k~1= 4, GroupA, = {1, 2}, we suppose that Group, = {4, 5, 7, 8}
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The first couple (A| B,) ={1, 2 | 4, 5, 7, 8}. From this couple, we forsubsets, = {1, 4}, {1, 5}, {1,
7} {1, 8}, {2, 4}, {2, 5}, {2, 7}, {2, 8}.

Group C = {3, 6, 9, 10, 11, 12}. Now, we choose any twasiions in Group C to be Group A.
Suppose that we choose Group A {3, 6}. With this Group A, 8 subsetss, formed by (A| B,)
contain either {3} or {6}, which is not in 8 previts subsetss, . Hence, we can guarantee that, /3 ,)

is valid g

The third couple: we should choose any two positiaich are in the intersection of Group @nd
Group C,. Group A of the next couple is always chosen fritv@ positions in the intersection of all
previous Groups C.

Now, we should compute the minimum number of cosipgkn be formed. The worst case happens when
positions in Group B of the next couple are alsdhia intersection of all previous Groups C. We can
model roughly like this,

n positions
0O Oly --- 0|l0 OlY - X
S T I I oo : n-k-2
0 0ol0 --- YIO OFO - YI - X
\ ~ J ~ J
7k n-k nmod (n- k)

1 couple

If (nmod (n-k))< 1, the minimum number of couples can be forme%—nisﬂ—kJ ([ Jmeans taking the
integer part, e.g.2.7|= 2).

If (nmod (n—k))= 2, the minimum number of couples can be forme{d—us—n'ﬂ kJ+1.

If (nmod (n—k))< 1, there are at Iea%thJ 2(n-k-2) subsets, for each of which, we need only one
n_
tn

row. For each of the res{2

The maximum number of rows iH , is

n n n
[(ZJ_[EJ 2(n—k—2)] (n- k- 2)+[ — kJ 2(n- k= 2)

=[Mn-k=2)-| - | 2(n- k= 2)(n- k- 3
= 2( ) [mJ ( ) ).

J{Lsz(n_ k-2)sets, we nee¢h-k-2) rows.
n—
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If (nmod (n-k))= 2, there are at Ieaﬂ nkJHj 2(n— k- 2) subsets, for each of which, we need only

n—

2

The maximum number of rows iH , is

(NP
:@(”"“”‘unﬁ kJﬂ] 2(n- k- 2)(n- k- 3).

one row. For each of the regp]—ﬂ n kJ+1] 2(n—- k- 2)sets, we neeh—-k-2) rows.

423 123

In this case, if Group A of each couple differsnfr@each other in at least three positions, we canren
that all §; formed by each couple will be different from ather subsets. It means that we have to solve
the problemchoose groups df positions fromn positions, each group must differ from the otherat
least 3 positions

For example: ifl =5, {1, 2, 3, 4, 5} and {4, 5, 6, 7, 8} differ fromaeh other in three positions while {1,
2,3,4,5}and {3, 4, 5, 6, 7} differ from eachhet only in two positions.

.n
Here, we propose a way to att%gJ groups.
Write n positions in a line.

Copy the firstl -3 positions to the end of the line. Now, the ling ha | -3 positions.
The first group consists of the firstpositions.

A D P

The next group is formed by choosing the las8 positions in the previous group and the
next three positions.

5.  Continue to the end of the line.
For examplen=10,1 =5,
Stepl:
Step2:

1234567891
123 4567 89 101
Step3, 4, 5: 1 2 3 456 7 8 9 101
X X X X X
X X X X X
X X X X X

Three groups can be formed: (1,2,3,4,5), (4,5,B,7783,9,10,1).
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We can choose these groups as Groups A to rirv%ﬂ{e:ouples-

By similar explanation, the total number of rowsHp, in casel =3,

e

= m(n—k— |)—EJ|(n— k-I)(n- k- 1-1).

4.3 New Upper Bounds Following Method 2

Let § be thel th separating redundancy.

« 1=1: §<(k+)(n-k-1)+1. 4.1)
e 1=2 (modf-k)< I s, s@(n— k—2)—LﬁJ 2(n k= 2)(n- ke 3). 4.2)
e 1=2, (hmodp-k))= 2 s, S[EJ(n— k—2)—u TkJ+1j 2(n- k= 2)(n- k= 3). (4.3)
e 3<l<d-2: 31(lzs)s[?](n—k—|)—EJ|(n—k—|)(n— k=1-1). (4.4)

4.5 Chapter Summary

In this chapter, another method which can reduedadtal number of rows in an-separating matrix in
the first construction in cade<sd —2 was introduced. In the next chapter, the effidenofmethod land
method 2on some popular codes will be examined. Besidasparisons between upper bounds will be
also presented.
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Chapter 5

Comparisons

In this part, we just consider the case in whieghitbmber of erasures, is at least 1 and at most-1.

We denoteh as the number of rows of dnseparating matrix of the code, H,, built by the first
construction from [1],

[,ﬂj(n—k—n if l<d-2 orl=d-1<n-k-1,
h1:

(Ir_ll) if I=d-1,d=n-k+L1.
h, denotes the number of rows of &rseparating matrix of the codeé constructed bymethod 1
mentioned in Chapter 3 with=d-1 andi<I <d -1,

hn=(,”)(d—1— 1)+ (n—(dl—l—l))_ %ZJ (ml(id(—illy)zk) (= k= (d-1).

=)
(112

In casel =d -1, h, =h. In casel =1, h, =(n-k-(d-1))[ n/(d-1)|+ r(d-1- ).
h, denotes the number of rows of &mrseparating matrix of the code constructed bymethod 2
mentioned in Chapter 4.

o If 1 =1, h, =(k+1)(n- k-1)+1.

n

e If I=2 andnmod (n- k)< 1, hlz:[2

J(n— k- 2)—LLJ 2(n- k= 2)(n- k- 3).
n-k

n

 If I=2 andnmod (n-k)= 2, h, :KEJ(n— k—2)—u kJ+1j 2(n- k= 2)(n- k- 3).

n n
e If 3<sl<d-2, h, :[I j(n— k- |)—[§J I((n— k= )(n- k- 1-1).
h, denotes the number of rows of &rseparating matrix of the code, H,, built by the second

construction from [1]h, = Z:j("-_k) (q-1™.

i=1\ 1

h, denotes the number of useful rowsHn) , h, :z!*l(“.‘k) min{(q—l)"l,(ln)} , discussed in Section 2.5.

The upper bound on theh separating redundancy can be determineehloyh , h,, h} .

Here, we use Matlab to compute the upper boundsiomexl in the thesis for some special codes.
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5.1 Hamming Codes

The class of Hamming codes is one of the oldestliizsrof error-correcting codes. The codes arengeffi

by:

n=2"-1 (M= 2)
k=2"-1-m
d=3.

Hamming codes have been widely used for error obmir digital communication and data storage
systems over the years owing to their high rate dewbding simplicity. The Hamming distance of the

code is three; hence the code is single error-ctnge or double error-detecting. Here, we just exam
codes with short lengths.

Becaused =3, | can be either 1 or 2.

511 I=1
Table 5.1 h, h,and h,of Hamming codes in cade=1.
2 3 4 5 6 7 8 10
h 3 14 45 124 315 762 1785 4088 9207
h, 3 11 31 79 191 447 1023 2303 5119
h, 3 11 37 109 291 727 1737 4025 9127
Figure 5.1 h, h,andh, of Hamming codes in log10 in case 1.

Harnrning code, 1=1

The upper hounds in log10
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With Hamming codes, in case=1, h,is always smaller tham,. Based on values in Table 5.1, we
sketch Figure 5.1. In this figure (and other figuie this section)x axis denotes values ofi while y

axis denotes upper bounds in log10. From TablebddlFigure 5.1, we can see that with greater valties
m, method Ishows strong efficiency compared wittethod 2.

The values ot, and h,, with differentm and q are given in Table 5.2 and Figure 5.2. Table G@\s
that h,, is much smaller thah, with largeq and smallm.

Table 5.2 h,and h,, of Hamming codes in cade=1.

m 2 4 5 6 7 8 9 10
h.q=2 |3 10 15 21 28 36 45 55
h.q=2 |3 6 10 15 21 28 36 45 55
h.q=4 |5 12 22 35 51 70 92 117 145
h,q=4 |5 12 22 35 51 70 92 117 145
h,q=8 |9 24 46 75 111 154 204 261 325
h,q=8 |5 24 46 75 111 154 204 261 325
h,q=16 |17 48 94 155 231 322 428 549 685
h.q=16 |5 24 94 155 231 322 428 549 685
h,q=32 | 33 96 190 315 471 658 876 1125| 1405
h,q=32 |5 24 94 315 471 658 876 1125 1405
h,q=64 |65 192 382 635 951 1330 | 1772| 2277] 284§
h,q=64 |5 24 94 315 951 1330 | 1772 | 2277| 2845
h,q=128 | 129 384 766 1275 | 1911 | 2674| 3564] 4581 5725
h,q=128 | 5 24 94 315 951 2674 | 3564 | 4581 5725
h,q=256 | 257 768 1534 | 2555 | 3831 | 5362| 7148] 918§ 11485
h,q=256 | 5 24 94 315 951 2674 | 7148 | 9189 11485
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Figure 5.2 h,and h,,of Hamming codes in log10 in ca$e 1.

Hamming codes, =1
445 T T

—&—h2 g=2
—&---h21, g=2
—8—h2, g=4
—&--h1, g=4
——h2 =8
—w—-h21, g=6
——h2, g=16
— 121, g=16
——h2, =32
—t=--h21, g=32
——h2, =64
—4=--h21, g=h4
——h2 =128
—-g—-h21, g=128
—%—h2, g=256 |7
— % --h21, g=256
I

The upper bounds in log10

2 5| 4 a B & g 9 10

Because s <min{h, h, h} =min{ h, h, , the upper bounds on the" keparating redundancies of
Hamming codes can be determined by the comparistvelenh, andh,., which is illustrated in the next

figure.

Figure 5.3 h, and h,, of Hamming codes in log10 in case 1.

Hamming code, =1

45 T T T T T T T
—h11
4+ | —&—h21, =2 - i
—H—h21, =4 T
a5k | ——h2l, g=0 4
—+—h21, =16
2 G| | ——h2, =2 T
s —+—h21, =64
= —&—h21, =128
2 250 | —m—p21, =256
E s
2 o 0
5 2 s = i
= H
o
= £
2 15+ - = -
i
1 _ ]
050 .
1] | | | | | | |
2 3 4 5 B 7 & 9 10
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From Figure 5.3, we can see two important featuFas. first is that the role ofi,,on the ' separating

redundancy is meaningless. Whenever the upper soareddetermined bi,,, h,, = h,. In other words,
whenever the conditiofig-1)'* > (I”) satisfies, the new upper bounds are always detedrbyh,. The

second is that the role of, on upper bounds on the separating redundancyasesewith greater values

of q.

512 =2

In casel =d -1=2, m should be equal or larger than 3.nlf=2= n= 3, the punctured code has length
equal to 1. Error (if it occurs) cannot be corrdabe detected.

In this casemethod 2cannot be applied and, = h. The values oth, h,and h, of Hamming codes in

casel =2 are given in Table 5.3 while the comparison betwigand h,, is illustrated in Figure 5.4.

Table 5.3 h,, h, h,and h, of Hamming codes in cade= 2.

m 3 4 5 6 7 8 9 10 11

h,=h 21 210 1395 7812 40008 194310 912135 41820p24 183467
h,q=2 7 14 25 41 63 92 129 175 231
h,,q=2 7 14 25 41 63 92 129 175 231
h,q=4 21 58 125 231 385 596 873 1225 1661
h,,q=4 21 58 125 231 385 596 873 1225 1661
h,q=8 73 242 565 1091 1869 2948 4377 6205 8481
h,q=8 45 242 565 1091 1869 2948 4377 6205 8481

h,q=16 | 273 994 2405 4731 8197 13028 19449 2768 37961

T

h, q=16 | 69 514 2405 4731 8197 13028 19449 2768% 37961

h,q=32 | 1057 | 4034 9925 19691 34293 54692 81849 116725 16028

h, q=32 | 87 610 4965 19691| 34293 54692 81849 116725 160281

h,q=64 | 4161 | 16258 | 40325 80331 14024324036 | 335673 | 479125 658361

h, q=64 | 87 802 5285 40011 14024224036 | 335673 | 479125 658361

h,q=128 | 16513| 65282 | 162563 324491| 567189| 906788 | 1359417 1941206 266828

=

h,,q=128 | 87 1054 5925 40971 28270906788 | 1359417 1941205 266828

=Y
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Figure 5.4 h,and h,, of Hamming codes in log10 in cabe 2.
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i — 42, =64
] : —+—h21, =64 | |
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The upper bounds in log10

I
& 4 3 b i g 9 10 1"

Figure 5.5 h and h,,of Hamming codes in log10 in case 2.

Hamming codes, =2
g T T T T T

The upper hounds in log10

Similar to the casé=1, h, is much smaller thah, with large g and smallm. The comparison between

h and h, , which is illustrated in Figure 5.5, will givefarmation about the upper bounds on thg 2

separating redundancy.
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Again, two features similar to the calsel are repeated.

5.2 Reed-Muller Code (32,6,16)

Another class of linear block codes constructetheearly days for error correction and detectias w
the class of Reed-Muller codes. Reed-Muller codegeviirst invented for switching circuit design and
error detection, but later on, they were reformadafor error correction and detection in commuimicat
and data storage systems. These codes, whichngpéesin construction and rich in structural projeest
are useful for multiple random error correction.
Here, we examine upper bounds on the separatinopdaticy of the famous (32,6,16) Reed-Muller code.
This code was used in spacecrafts of NASA from 1®868977. A very prominent mission was Mariner
9, which was devoted to the photographic obsermadiothe surface of Mars, [2]. It is a low rate eod
with good error correction capabilities. The Hamgnitistance of 16 is very high for a code of lerigzh

Becaused =16, | can receive values from 1 to 15.

In all figures from now,x axis denotes the values lofwhile y axis denotes the upper bounds in log10.

Table 5.4The upper bounds for Reed-Muller code (32,6,16).

' h h, h, h=h,q=2 | h=h,q=4
1 800 481 176 351 1001
2 11904 8142 9696 2951 24401
3 114080 70377 98900 17901 428051
4 791120 450549 772640 83681 5756231
5 4228896 2248456 4207896 313911 61702121
6 18123840 9031460 18101040 971711 541238321
7 63951264 29858271 63927324 2533986 3.9579e+0P9
8 189329400 82594013 189304920 5658536 2.4458e+010
9 476829600 193696948 476805120 10970271 1.2901e+01
10 1.0322e+009 389956198 1.0322e+009 18696431 3e8521
11 1.9354e+009 684918913 1.9353e+009 28354131 Pe2032
12 3.1611e+009 1.0794e+009 3.1611e+009 38754731 2348012
13 4.5159e+009 1.6101e+009 4.5158e+009 48412431 2223013
14 5.6572e+009 2.4731e+009 5.6572e+009 56138591 17%0013
15 6.2229e+009 6.2229e+009 61450326 1.3639e+0L4
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From Table 5.4, we can see that with some valugs wfethod Ican reduce more than half the numbers
of rows in the matricesd, while the values oh, are almost the same &s except in casé =1. The

greater value of is, the more rows are reduced fagthod 1In casel =1, the upper bound following
method 2s extremely smaller than the one followimgthod 1The efficiencies ofmethod landmethod
2 are illustrated in Figure 5.6.

In caseq=2 or q=4, h,=h,. It means that the conditim(]q—l)“lz(ln) does not satisfy with

g=2,4;i=1..)+1

To have the upper bound on the separating redundancy, we should compangh, h} with h,. The
comparison is given in Figure 5.7.

In caseq=2, the upper bound on thigh separating redundancy can be determinednnfh,, h,, h}.

From g =4 to greater values of, h,, is extremely greater thamin{h_, h} which does not depend an

It means that in casg@=4, min{h, h, h} =min{ h, h} . The upper bound is always equalnin{h_, h} .
Figure 5.6 h, h,and h, of Reed-Muller code (32,6,16) in log10.

Reed-Muller code, (32 5,16)
10

The upper bounds in log10
o
T
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Figure 5.7 h,, h,and min{h,, h} of Reed-Muller code (32,6,16) in log10.
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The upper bounds in logl0

5.3 LDPC (20,7,6)

Low-density parity-check (LDPC) codes are the cadleish achieve an error performance only a fraction
of a decibel away from the Shannon limit, [2]. Thain feature of this class of codes is that parfitgek

matrices have a small density of non-zero symbidiss class of code is applied to many communication

and digital storage systems where high reliabigitsequired.
Here, we consider (20,7,6) LDPC code.
Becaused =6, | can receive values from 1 to 5.

Table 5.5The upper bounds for LDPC code (20,7,6).

| 1 2 3 4 5

h 240 2090 11400 43605 124032
h, 112 1538 7848 30293 124032
h, 97 1650 9780 41877

h=h,q=2 |91 377 1092 2379 4095
h=h,q=4 |247 2821 22126 126373 543361
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BisEy

The upper bounds in log10

Figure 5.8 h, h,and h, of LDPC code (20,7,6) in log10.

LDPC code, (20,7 6

1ig 2 25 3 34 4 4.5 L

Figure 5.9 h,, h,and min{h, h} of LDPC code (20,7,6) in log10.

LDPC code, (20,7 &)
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As in case of (32,6,16) Reed-Muller codesthod 2gives better result in comparison wittethod ljust

in casel =1.

Incaseq=2 orq=4, h,=h,.

Figure 5.9 illustrates that in casg= 2, h, is always smaller thamin{h,, h} . Hence, the upper bound on
the Ith separating redundancy is,. From q=4 to greater values of}, h, is always greater than

min{h, h} . Hence, the upper bound on thieseparating redundancy isin{h_, h} .

5.4 Golay Code, (23,12,7)

In this part, we consider the (23,12,7) Golay cathéch is constructed by M. J. E. Golay in 1949.sThi
code has many interesting structural propertiesha@sdbeen extensively studied by many coding thesori
and mathematicians. It has been used in many @ainunication systems for error control. More
information on this code can be found in [11].

Becaused =7, | can receive values from 1 to 6.

Table 5.6The upper bounds for Golay code (23,12,7).

| 1 2 3 4 5

h 230 2277 14168 61985 201894 504735
h, 135 1782 10248 42705 140329 504735
h, 131 1989 12992 60809 200844

h=h,q=2 |66 231 561 1023 1485 1815
h=h,q=4 |176 1661 10571 47993 160259 400829
h.q=8 396 8481 121671 1230933 8995767 4781993
h,q=8 396 8481 121671 1230933 8995767 4230827
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Figure 5.10 h, h,and h, of Golay code (23,12,7) in log10.

Golay code, (23,127)
B T T T T

The upper hounds in log10

Figure 5.11 h,, h,,and min{h,, h} of Golay code (23,12,7) in log10.

Golaycode, (23,1271
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Because the values of and d of this code are similar to (20,7,6) LDPC codeaiag exceptl =1,
method lalways gives better results in comparison witethod 2 Figures 4.8 and 4.10 have the same
features.

Table 5.6 shows that in cage=2 andq=4, h, =h,. From q=8, the values oh,, and h, differ in great
values ofl .

From Figure 5.11, we can see that in case2, h, <min{h, h}. The upper bound is given bl,.
However, in case =4, we should compare the valuestpfwith min{h, h} to find the upper bound on
the Ith separating redundancy.

From g =8 to greater values af, the upper bound is always determinedntigi{h , h} .

5.5 BCH Code, (63,45,7)

The Bose, Chaudhuri, and Hocquenghem (BCH) codes éopractical class of powerful random error-
correcting codes, particularly if the expected nambf errors is small compared with the length. For
extensive information, we refer to [11], [12].

Here, we choose the (63,45,7) BCH code to exarhia&¢w upper bounds on the separating redundancy
of a code with long length but low Hamming distance

Becaused =7, | can receive values from 1 to 6.

Table 5.7The upper bounds for BCH code (63,45,7).

[ 1 2 3 4 5

h 1071 31248 595665 8339310 91375011 815346252
h, 447 27660 509937 7062798 78809415 8153462p2
h, 783 29328 582435 8324022 91358631

h=h,q=2 171 987 4047 12615 31179 63003

h =h,q=4 ar7 7821 90441 784449 5295501 28495197
h,=h,,q=8 1089 41073 1090653 21662421 333667569  4.0777et+009
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Figure 5.12 h, h,and h, of BCH code (63,45,7) in log10.

ECH code, (52 45 7)

The upper bounds in log10

2 | | | | | | | | |
1 15 2 25 3 35 4 45 5 55 B
|
Figure 5.13 h,, h,,and min{h,, h} of BCH code (63,45,7) in log10.
BCH code, (53 45.7)
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The upper bounds in log10

We can see that the efficienciesnoéthod landmethod 2epend on the relation between the values of

and n. In this casemethod lalways gives better results in comparison witbthod 2but it does not
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show strong efficiency as in (32,6,16) Reed-Mutlede due to the great value ofwith respect ta .

This is illustrated in Figure 5.12.
Table 5.7 shows that in cage=2,q=4 andq=8, h, =h,. On the other hand, in cage=2 andq=4,

h, < h,. Hence, the upper bound is given by From q=8 to greater values of, the upper bound is

always determined by, .

Similarly to all cases above, the roletgf on the separating redundancy is meaningless.

5.6 Conclusions

From the data above, we can conclude that for tbedes:
» Except some codes in cakel, method lalways gives the smaller upper bounds in compariso

with method 2
» The new upper bound in the second construction do¢dead to the improvement because

whenever the conditiofg-1)" >(|”) satisfies, the upper bound on thieseparating redundancy

is always determined by the new upper bound iditsieconstruction.
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Chapter 6

Conclusions

6.1 Contributions of the Thesis

Separating parity-check matrices are useful foodiry over channels causing both errors and erasure
The separating parity-check matrices with small bermof rows reduce not only decoding complexity but
also memory storage at the en/decoders. In theEighee proposed two methods which can give the
improved upper bounds on the separating redundagicyg the minimum number of rows in a separating
matrix. Besides, we also presentecbaering designThis design is not optimal but it can give a gahe
upper bound on theovering numbebeing the minimum size of @vering designApplying this result

to the upper bound obtained fronethod 1we can reduce more than half the upper boundchdiye2.1)

of some codes, i.e. the Reed-Muller code (32,6,t6k0me casesnethod 2gives a better result in
comparison withmethod lwhen the number of erasures is one. We also caughe upper bounds on
the separating redundancies of some famous prhctidas.

6.2 Future directions

The new upper bound derived from the argument &futating the number of useful rows in an
separating matrix in the second construction datdead to the improvement. The appropriate value o
b for eachl is still a question. Besides, there are still gapisveen the upper and lower bounds. Hence,
more research on bounding techniques for the sépgneedundancy is required. Our methods give the
general upper bounds for all codes. However, thetbbounds on the separating redundancy of codes
with special characteristics can be achieved. itih, the number of distinct rows in a separating
matrix of a code relates to the weight distributadrits dual code. Therefore, the question of howply

the weight distribution needs to be researchecerféial future work also includes the determinatidn

the bounds for classes of codes of practical istere
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Appendix

Some of the results presented in thesis have aggbéarpaper New Upper Bounds on the Separating
Redundancy of Linear Block Codes the 33" Symposium on Information Theory in the Beneluxjakh
was held at the Eindhoven University of Technolag¥indhoven, The Netherlands, on May 28 and 29,
20009.
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