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Abstract 
 
 
 

Most decoding algorithms of linear codes, in general, are designed to correct or detect errors. However, 

many channels cause erasures in addition to errors. In principle, decoding over such channels can be 

accomplished by deleting the erased symbols and decoding the resulting vector with respect to a 

punctured code. For any given linear code and any given maximum number of correctable erasures, in the 

paper “Separating Erasures from Errors for Decoding”, [1], Abdel-Ghaffar and Weber introduced parity-

check matrices yielding parity-check equations that do not check any of the erased symbols and which are 

sufficient to characterize all punctured codes corresponding to this maximum number of erasures. This 

allows for the separation of erasures from errors to facilitate decoding. Typically, these parity-check 

matrices have redundant rows. To reduce decoding complexity, parity-check matrices with small number 

of rows are preferred. 

The minimum number of rows in a parity-check matrix separating all erasure sets of size at most l is 

called the lth separating redundancy. In [1], upper and lower bounds on the lth separating redundancy 

were presented. In this thesis, we give improvements on upper bounds from [1]. 
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Introduction 
 

1.1 Error-Correcting Codes 

A message generated by a source consists of symbols from an alphabet of a field of orderq , ( )GF q . 

Symbols can be erroneous due to noisy channel. Error means the received symbol is different from the 

transmitted symbol. In order to protect data against errors which can occur during transmission, channel 

coding techniques are required. In error correction techniques, a message of k  symbols will be encoded 

into a codeword of n  symbols ( )n k> . The collection of these codewords forms a code. 

Here, we consider an example in which a simplified scheme of a communication system consists of these 

terms: source, channel encoding, channel, channel decoding and destination. 

 

 

 

 

 

 

 

 

 

 

 

 

 

A source generates a message u containing two symbols from (2)GF , the binary alphabet. There are four 

possible messages: 00, 01, 10, and 11. Each message is encoded into a codeword x, in this example by 

adding other three symbols to u, leading to a sequence of five symbols, according to a code C as 

indicated. Assume that we send the codeword 01011 over a noisy channel. At the receiving side, the 

received word y is 00011. The second symbol is erroneous. The decoder needs to produce a message 

estimate v, based on its knowledge of the code C and the received word y. Here, the decoder chooses the 

codeword 01011, which resembles y the most, and thus v is 01, which is indeed the original message. 

Hence, the error has been corrected. 
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Note that without using a code, any error cannot be corrected or detected. Error-correcting codes are 

applied in situations where retransmissions are relatively costly or impossible. Using the code makes the 

system more reliable. However, transmitting more symbols results in the cost of higher bandwidth 

requirements.  

In recent years, due to the mergence of large-scale, high speed data networks for the exchange, 

processing, and storage of digital information in the commercial, governmental, and military spheres, 

error-correcting codes play an important role on improving the reliability of such communication systems. 

The use of a parity-bit as an error-detecting mechanism is one of the simplest and most well-known 

schemes used in association with computers and computer communication. Data is portioned into blocks. 

To each block, an additional bit is appended to make the number of bits which are 1 in the block, 

including the appended bit, an even number. If a single bit-error occurs, within the block, the number of 

1’s becomes odd. Hence, this allows for detection of single errors. 

The most applications of error-correcting codes are in telecommunications. Many early applications of 

coding were developed for deep-space and satellite communication systems. For example, satellite photos 

were taken in space and sent back to earth. The channel for such transmission is space and the earth’s 

atmosphere. These communication systems have limitations on their transmitted power. Solar activity and 

atmospheric conditions can introduce errors into weak signals coming from the spacecraft. Error-

correcting codes are an excellent mean of reducing power needs because the reliable communications can 

be achieved even when the information is weakly received at its destination. With the applications of 

error-correcting codes, most of the pictures sent could be correctly recovered here on earth. As examples, 

a binary (32,6,16) Reed-Muller code was used during the Mariner and Viking mission to Mars around 

1970 or a convolutional code was used on the Pioneer 10 and 11 missions to Jupiter and Saturn in 1972. 

The (24,12,8) Golay code was used in the Voyager 1 and Voyager 2 spacecrafts transmitting color 

pictures of Jupiter and Saturn in 1979 and 1980. When Voyager 2 went on to Uranus and Neptune, the 

code was switched to a concatenated Reed-Solomon code-Convolutional code for its substantially more 

powerful error correcting capabilities. 

The block and convolutional codes are also applied to the Global System for Mobile communications 

(GSM) which is the most popular digital cellular mobile communication system while CDMA2000 used 

turbo codes. Reed Solomon and Viterbi codes have been used for nearly 20 years for the delivery of 

digital satellite TV.   

Besides, these techniques may also be applied to most storage devices to protect against damage to the 

stored data. The transmission and storage of digital information have much in common. Both processes 

transfer data from an information source to a destination. However, instead of transporting data from one 

place to the other, storage may be considered as transport through time. As an example, in Compact (CD) 

system, the sound encoded into data bits and modulated into channel bits is sent along the “transmission 

channel” consisting of write laser, master disc, user disc and optical pickup. Imperfections on the disc will 
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produce errors in the recovered data. Block codes are often used in data storage applications. A "parity 

track" was present on the first magnetic tape data storage in 1951. The most notable is Reed-Solomon 

codes because of their widespread uses on the Compact disc, the DVD, and in computer hard drives. 

Hamming codes, which are single error-correcting or double error-detecting, is commonly used to correct 

NAND flash memory errors. Modern hard drives use CRC codes to detect and Reed-Solomon codes to 

correct minor errors in sector reads, and to recover data from sectors that have "gone bad" and store that 

data in the spare sectors. Computers have error-correcting capabilities built into their random access 

memories. 

Low-density parity-check codes (LDPC codes) are now used in a many recent high-speed communication 

standards, such as DVB-S2 (Digital video broadcasting), WiMAX (IEEE 802.16e standard for microwave 

communications), 10GBase-T Ethernet… 

In all cases, error-correcting codes ensure proper performance of the systems. They permit 

communication links to function reliably in the presence of noise, distortion, and interference. 

1.2 Linear Block Codes 

Let C  be an [ , , ]n k d  linear block code over ( )GF q . It means that C  is a k -dimensional subspace of the 

n -dimensional vector space over an alphabet of size q . The elements of the code C  are called 

codewords. Messages generated by the source are one-to-one mapped to codewords. Hence, the number 

of codewords, denoted by | |C , is also the number of messages. k  represents the length of the message 

generated by the source and n  represents the length of the codeword to be transmitted over the channel. 

d  is the Hamming distance of the code C  which is the smallest Hamming distance between any two 

different codewords. The Hamming distance between two vectors of the same length is defined as the 

number of positions in which these two vectors differ. The Hamming distance between a vector and the 

all-zero vector is called the weight of the vector. The Hamming distance d  is an important parameter of a 

code C . A code with Hamming distance d  can correct ( 1) / 2d −    or detect 1d −  errors. 

The set of codewords of C  can be defined as the null space of the row space of an r n×  parity-check 

matrix , )( i jH h=  of rank n k− . The row space of H  is the [ , , ]n n k d⊥−  dual code C⊥  of C . Because a 

q -ary x is a codeword of C  if and only if 0TH =x , where the superscript T  denotes the transpose, from 

the parity-check matrix H , we can form r  parity-check equations, denoted by 

 

 

An equation PCE ( )i x  is said to check x in position j  if and only if , 0i jh ≠ . 

1 ,PCE :  for 1,2,..., .0n
i j i j j i rh x= ==∑
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1.3 Erasures 

Sometimes, at the receiver, the demodulator cannot decide which symbol the received waveform 

represents. In this case, we declare the received symbol as an erasure. When the received codeword 

contains erasures instead of errors, exhaustive decoding or the concept of iterative decoding can be 

applied ([2]). 

Here, we consider an example of iterative decoding procedure using the (7,4,3) binary Hamming code 

with this parity-check matrix, 

1 0 1 1 1 0 0

0 1 0 1 1 1 0

0 0 1 0 1 1 1

H
 
 =  
 
 

. 

Because a binary vector 1 2 3 4 5 6 7( , , , , , , )x x x x x x x=x  is a codeword if and only if 0TH =x . Hence, any 

codeword satisfies three parity-check equations formed from the parity-check matrix,  

1 3 4 5

2 4 5 6

3 5 6 7

A: 0

B: 0

C: 0.

x x x x

x x x x

x x x x

+ + + =
+ + + =
+ + + =

 

Equation A is said to check on 1x , 3x , 4x  and 5x . If exactly one of these four symbols is erased, it can be 

retrieved from this equation. Here, we denote the erased symbol at the receiver side by the symbol *. For 

example, if the received vector is **010*0, it follows from the equation A that 1 1x =  because 3 0x = , 

4 1x =  and 5 0x = . Equation B checks two erased symbols in the position 2 and 6. Hence, none of these 

erased positions can be retrieved immediately. However, if one of these two erased symbols has been 

retrieved from the other equation, this equation can be used again to retrieve the one remaining erasure. In 

this example, equation C gives 6 0x = , and then by returning to equation B, we obtain 2 1x = . The 

transmitted codeword 1101000 has been retrieved by iterative decoding using equations A, B and C. In 

general, we could keep on using the parity-check equations iteratively until none of them checks on 

exactly one erased symbol (more information on iterative decoding can be found in [4], [6]). Erasure 

decoding is successful if and only if erasures do not fill the positions of a nonempty stopping set. A 

stopping set is a set of positions of symbol in which there is no parity-check equation that checks exactly 

one symbol in these positions. The performance of iterative decoding techniques for linear block codes 

correcting erasures depends on the sizes of the stopping sets associated with the parity-check matrix 

representing the code. The choice of the parity-check matrix of the code can affect the sizes of stopping 

sets. The parity-check matrix with redundant rows can benefit decoding performance while increasing 

decoding complexity. More information on stopping set can be found in [5], [9], [10].  
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1.4 Separation of Errors from Erasures 

Many channels cause erasures in addition to errors. In case errors combine with erasures, we can apply 

the algorithm, which is applicable to linear codes, use trials in which erasures are replaced by symbols in 

( )GF q  and the resulting vector is decoded using a decoder capable of correcting or detecting errors only. 

For binary code, two trials are sufficient for decoding. For example, if C  is a binary ( , )n k -code having 

distance # ?2 1d t t= + + , then C  can correct #t  errors and ?t  erasures. In the presence of no erasures, C  

will correct up to # ? / 2t t+     errors. Let r  be a received vector having at most #t  errors and at most ?t  

erasures. Suppose the decoder forms two vector 0r  and 1r , where ir  is obtained from r  by filling all 

erasure positions with the symbols , 0,1i i = . Since C  is binary, in one of  0r  and 1r , at least half the 

erasure locations have correct symbols. And hence at least one of 0r  and 1r  has distance at most 

# ? / 2t t+     from the transmitted codeword. Any standard error correction technique will now correct one 

of these vectors to the transmitted codeword. If the standard technique decodes both 0r  and 1r  to 

codewords, and these codewords are the same, then this is the transmitted codeword. If they are different, 

then that one (and there will be only one) requiring at most  #t  changes to non-erasure positions is the 

desired codeword. Because the number of trials, the steps of filling values in the erasure positions, 

depends on q , this algorithm is practical only for ?tq  relatively small. The trials increase rapidly with q  

restricting the application of this method to codes over large fields. In this thesis, we do not focus on this 

algorithm. More information on this algorithm can be found in [13].  

 [1] proposed another way of decoding over such channels. First, all erasures are deleted from the 

received message. Errors in the resulting codeword will be corrected or detected based on the punctured 

code whose codewords consist of symbols in positions which are not erased. After all errors have been 

corrected, the erasures will be recovered by iterative decoding.  

If the number of erasures, ?t , does not exceed 1d − , which is the maximum number of erasures allowed in 

a codeword, then at the decoder, we can choose two nonnegative integers t≠  and !t  satisfying 

? !2 1t t t d≠+ + ≤ −  such that the following is true. If the number of errors does not exceed t≠ , then the 

decoder can correct all errors and erasures. Otherwise, if the number of errors is greater than t≠  but at 

most !t t≠ + , then the decoder can detect the occurrence of more than t≠  errors. 

The decoder can compute a parity-check matrix for the punctured code after receiving the codeword. 

However, this leads to time delay which is unacceptable in some applications. To reduce time delay, we 

can store parity-check matrices of all punctured codes corresponding to all erasure patterns. The 

drawback of this solution is the requirement of huge memory storage at the decoder.  

[1] proposed a useful method which uses the separating matrix with possibly redundant rows, providing 

enough parity-check equations which do not check any of the erased symbols and are sufficient to form a 
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0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

H

 
 
 
 

=  
 
 
  
 

parity-check matrix for the punctured code obtained by deleting the erasures. Having these parity-check 

equations not checking any of the erased symbols lead to the concept of separation of errors from 

erasures.  

The basic concept of this decoding technique can be illustrated by an example as follows. 

We consider an [8,4,4]  binary extended Hamming code with parity-check matrix, 

 

 

 

 

 

 

 

In a normal parity-check matrix, we just have four rows as the first four rows in this matrix. In this 

example, we add two other rows. Allowing redundant rows simplifies the decoding of erasures in addition 

to errors. Assume that at the decoder, we receive a codeword r = 0*011000 with one erasure in the 

position two. Applying the decoding technique mentioned above, firstly we delete the erasure and obtain 

the resulting vector r’  = 0011000. We can consider r’  as a codeword of the (7,4,3) punctured code. In the 

parity-check matrix H , the first, the second and the sixth row have zeros in the position two. It means 

that three related parity-check equations do not check the erased symbol. From these three rows, we can 

form a parity-check matrix 'H  for the punctured code.  

 

 

 

 

 

 

 

Using 'H , we can decode r’  into (0011010). After updating r  to (0*011010), the third row of H , which 

checks the erased symbol, can be used to recover the erasure. The transmitted codeword corresponding to 

r  is (01011010).  

In this case, a normal parity-check matrix cannot be used for decoding of both errors and erasures. 

Decoding will be easier if we pay the price of storing parity-check matrix with more rows than necessary. 

In order to reduce memory storage as well as decoding complexity, parity-check matrices with small 

number of rows are preferred.  

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

H

 
 
 
 

=  
 
 
  
 

0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 1 0 1 0 1 0

'H
 
 
 
 
 

=
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1.5 Problem Statement 

For any given linear code and any given maximum number of correctable erasures, in the paper 

“Separating Erasures from Errors for Decoding” , [1], Abdel-Ghaffar and Weber introduce parity-check 

matrices yielding parity-check equations that do not check any of the erased symbols and which are 

sufficient to characterize all punctured codes corresponding to this maximum number of erasures. This 

allows for the separation of erasures from errors to facilitate decoding. These parity-check matrices 

typically have redundant rows. The authors of [1] also give two constructions of such matrices and prove 

general bounds on their minimum sizes. These techniques used are related to methods used to prove 

results on stopping sets ([9], [10]). 

The general upper bounds and lower bound on the minimum number of rows in a parity-check matrix 

with certain separation properties given in [1] are rather far apart. In this thesis, we give improvements on 

the upper bounds from [1]. The rest of this thesis is organized as follows. The summarization of important 

points in [1] is covered in Chapter 2. Besides, in this chapter, we also consider the number of useful rows 

in the matrices built by the second construction from [1]. Chapter 3 and Chapter 4 introduce two methods 

which can construct such matrices with a smaller total number of rows. Comparisons between upper 

bounds will be given in Chapter 5 while Chapter 6 concludes the thesis. 
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0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

H

 
 
 
 

=  
 
 
  
 

Chapter 2 

 

Separating Matrices and Separating Redundancy 
 

2.1 Set Separation 

Let ,( )i jhH =  of rank n k−  be an ( )r n×  parity-check matrix of C , r n k≥ − . Let S  be a subset of 

{ }1,2,...,n  and T  be a subset of { }1,2,...,r , define ,( )i jhH =T

S
 with i ∈T  and j ∈S , be a | | | |×T S  

submatrix of H . For the code C  of length n , define { }:C c c C= ∈
S S

be the punctured code consisting of 

all codewords of C  in which the symbols in positions indexed by S , { }1,2,..., \n=S S  are deleted. 

Clearly, C
S
 is a linear code over ( )GF q  of length ' || |n = S , dimension 'k k≤ , and Hamming distance 

' ||d d≥ − S .  Let � { },:1 , 0i ji i r h j= ≤ ≤ = ∀ ∈S S , define 
�

( )H H= S

S
S . 

Definition : A parity-check matrix H separates { }1,2,...,n⊆S  if and only if ( )H S  is a parity-check 

matrix of C
S
.  

Here, we consider again the example mentioned in Chapter 1. We consider an [8,4,4]  binary extended 

Hamming code with this parity-check matrix, 

 

 

 

 

 

 

 

Assume that at the decoder, we receive a codeword r = 0*011000 with one erasure in the position two. 

After deleting the erasure, we obtain the resulting vector r’  = 0011000. We can consider r’  as a codeword 

of the (7,4,3) punctured code. In the parity-check matrix H , the first, the second and the sixth row have 

zeros in the position two. It means that three related parity-check equations do not check the erased 

symbol. From these three rows, we can form a parity-check matrix 'H  for the punctured code.  
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Hence, we can say that the parity-check matrix H separates the set {2}.  

Theorem 1 ([1]): A parity-check matrix H  of an [ , , ]n k d  linear code C  separates a set S  of size 

| | 1d≤ −S  if and only if ( )H S  has rank | |n k− − S .  

2.2 Separating Matrix 

2.2.1 Definitions 

Let H  be a parity-check matrix of an [ , , ]n k d  linear code over ( )GF q . 

• H  is l-separating of C  if it separate every set S  of size | | 0,1,...,l=S  with 0 min{ , } 1l d n k≤ ≤ − − . 

• Let C  be an [ , , ]n k d  MDS linear code over ( )GF q , i.e., 1d n k= − + . Then any parity-check 

matrix, H , of C  separates all sets of size 1d − . In particular, any ( 2)d − -separating parity-

check matrix of  C  is ( 1)d − -separating.  

Theorem 2 ([1]): If H  separates all sets of size l  for a fixed min{ , } 1l d n k≤ − − , then it is l -separating. 

2.2.2 Characteristics 

If H  is an l-separating parity-check matrix of the code C , from H , we can form parity-check matrices 

of all codes punctured up to a fixed number of symbols, denotes by l . H  has two features: 

• H can separate erasures from errors because H  has enough parity-check equations which do not 

check any erased symbols and are sufficient to characterize the punctured code. It means that the 

punctured codeword, which is formed by deleting the erased symbols, can be corrected or 

detected errors in it by a sub-matrix of H .  

• In case 0 min{ , } 1l d n k≤ ≤ − − , H has no nonempty stopping set of size l  or less. For any pattern 

of l  or fewer erasures, not only are there enough parity-check equations not checking any of the 

erased symbols that characterize the punctured code, but also there is a parity-check equation that 

checks exactly one of the erased symbols. It means that after all errors have been corrected, the 

erasures can be recovered by iterative decoding procedure.  

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

H

 
 
 
 

=  
 
 
  
 

0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 1 0 1 0 1 0

'H
 
 
 
 
 

=
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2.2.3 The necessary and sufficient condition for a parity-check matrix to be 

an l-separating matrix 

Basing on definitions and theorems, we can conclude that H is an l -separating matrix of the code C  if 

• In case 2l d≤ −  or 1 1l d n k= − ≤ − − : ( )H S  has rank n k l− −  for each of all sets S  of size l , 

• In case 1, 1l d d n k= − = − + ,  ( )H S  has rank ( 1)n k l− − −  for each of all sets S  of size 1l − . 

2.3 The l-Separating Parity-Check Matrix Constructions 

2.3.1 The first construction 

• If 2l d≤ −  or 1 1l d n k= − ≤ − −  

Let 'H  be a full rank parity-check matrix, { }1,2,...,i n⊆S , where ( )1,2,..., n
li = , be the distinct subsets of 

{ }1,2,...,n  of size l . For each ( )1,2,..., n
li = , '

i
H
S

 has rank ( 1)l l d≤ − . By elementary row operations on 

'H , we can obtain an ( )n k n− ×  matrix, 1
iH , for each ( )1,2,..., n

li = , of rank n k−  such that its last n k l− −  

rows have zeros in the positions indexed by iS . 

 

 

 

 

 

 

 

 

 

 

 

Let IH  be the matrix whose set of rows is the union of the sets of the last n k l− −  rows in 1
iH  for 

( )1,2,..., n
li = . IH  is an l-separating matrix of the code C ,  ([1]), and it has at most ( ) ( )n

l n k l− −  rows. 

 

 

 

 

 

 

 

1
iH

 
 
 
 
 
 =  
 
 
 
 
 
 

l  

n k l− −  n k−  

n  

 (size )l lS  
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• If 1, 1l d d n k= − = − +  

Instead of iS  of size l , apply the same procedure with subsets { }1,2,...,i n⊆S , where ( )11,2,..., n
li −= , of 

size 1l − . In this case, IH  has at most ( ) ( )1 1( ( 1))n n
l ln k l− −− − − =  rows. 

2.3.2 The second construction 

Normalized vector: A nonzero vector 1 2( , ,..., )nx x x=x  over ( )GF q  is said to be normalized if its leading 

nonzero term is equal to 1. The weight of the vector x is | { : 0} |jj x ≠ . 

• If 2l d≤ −  or 1 1l d n k= − ≤ − −  

Let A  be a matrix over ( )GF q  whose rows are all the nonzero normalized vectors of length n k−  and 

weight at most 1l + . Define 'IIH AH= . IIH  is an l-separating matrix of the code C , ([1]), and it has 

( ) 11

1
( 1)il

i
n k

i q −+
=

− −∑  rows. 

• If 1, 1l d d n k= − = − +  

Apply the same procedure, but A  is a matrix over ( )GF q  whose rows are all the nonzero normalized 

vector of length n k−  and weight at most l . IIH  has ( ) 1

1
( 1)il

i
n k
i q −

=
− −∑  rows. 

2.4 Separating Redundancy and the Upper Bounds 

Define the thl separating redundancy, ls , of the code C  to be the minimum number of rows in an lth 

separating parity-check matrix of C . 

Therefore, the upper bounds can be derived from two above constructions.  

 

 

 

,

'
0i

n k l l

H
− −

 
=  
 

⋯ ⋯ ⋯

⋯ ⋯

iS

'iS

'
,

'
0i

n k l l

H
− −

 
=  
 

⋯ ⋯ ⋯

⋯ ⋯

( )n
l

,0

 I

n k l l

H

− −
= 



⋯

⋮

,0n k l l− −







⋯ ⋯

⋯

⋮ ⋮

,0i j  is the i j×  all-zero matrix 
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• The first construction 

 

                                     (2.1) 

                                                                                                                                                                                                                  

Basing on the first construction, in Chapter 3 and Chapter 4, we will introduce two methods which can 

construct l -separating matrices of the code C  with the smaller numbers of rows than in (2.1).  

• The second construction 

 

                                   (2.2) 

 

 
In the next part, we will consider the number of useful rows in an l -separating matrix built in the second 

construction. 

2.5 New Upper Bound in the Second Construction 

Here, we just consider the case 2l d≤ −  or 1 1l d n k= − ≤ − − . In case 1 and 1l d d n k= − = − + , the result 

can be derived similarly. In the second construction, 'H  is a full rank parity check matrix, A  is a matrix 

over ( )GF q  whose rows are all the nonzero normalized vectors of length n k−  and weight at most 1l + . 

'IIH A H= . The number of rows in IIH  is equal to the number of rows in A and is 11

1 ( 1)i
l

i
n k
i q −+

=
− 

 
 

−∑ . 

For each iS  of size l , let 
1 2
, , ... ,v v v

l
r r r 
 
 

be the set of rows in 'H  in which the set of  

1 2
( ) ,( ) , ... ,( )v v v

li i i
r r r

 
 
 

S S S
forms a basic for the l − dimensional vector space over ( )GF q .  

For each ( 1, ..., )
jv v j nr r =≠ , we can find a row in A , 1 2( , , ..., )la a a , which satisfies 

1 21 2
( ).( ) ( ) ( ) ... ( ) 0v v v vl li i i i
vectorr a r a r a r+ + + + =

S S S S
 

( )ia GF q∈ . The set { }1 2, , ..., la a a is unique. 

Now we consider the matrix A  

• Rows in A  are the nonzero normalized vectors of length n k−  and weight from 1 to 1l + . 

• Choose any i , 1 1i l≤ ≤ + , from n k− , we can form 1( 1)iq −−  rows. 

However, not all 1( 1)iq −−  rows play an useful role in IIH . We have ( )n
l

 subsets iS  (we can imagine that 

we have ( )n
l

 baskets). Now, we select rows in the set of 1( 1)iq −−  rows to put into ( )n
l

 baskets. 

1

( )

             
l

n
l

n
l

n k l
s

  
  
  

 
 −  

≤
− −

if 1, 1l d d n k= − = − + . 

 

if 2l d≤ −  or 1 1l d n k= − ≤ − − , 

 

1

1

1
1

1

( 1)

( 1)

i

l
i

l
i

l
i

n k
i

n k
i

q
s

q

−

−

 +  
  =  


 
  =
 

−

−
≤

−

−

∑

∑ if 1, 1l d d n k= − = − + . 

 

if 2l d≤ −  or 1 1l d n k= − ≤ − − , 
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• Row is put into one specific basket if and only if it has all zeros in the positions indexed by that 

basket. 

• One row can be put into more than one basket. 

• In the set of 1( 1)iq −−  rows, because the set { }1 2, , ..., la a a  is unique, there is maximum one row 

put into one basket. 

Hence, in case ( )1( 1)i n
lq −− ≥ , the maximum number of useful rows in IIH  is  

( )11

1 min ( 1) ,il

i
n k n
i l

q −+
=

−   
  

   
−∑ . 

Let ls  be the thl separating redundancy in the second construction, 

 
 

(2.3) 

 

2.6 Chapter Summary 

In this chapter, the reviews of the concept of separating matrices for decoding over channels causing both 

errors and erasures together with upper bounds on the minimum number of rows in such matrices were 

given. A new upper bound on the separating redundancy in the second construction was also introduced. 

In the next two chapters, we will propose two methods which can construct l -separating matrices with 

smaller total numbers of rows than in (2.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

( ){ }
( ){ }

1

1

1

1

1

min

min

( 1) ,

( 1) ,

i

i
l

l

i

l

i

n k n
i l

n k n
i l

q

q
s

−

−

+
=

=

−

−

  
 
 


     

−

−
≤
∑

∑ if 1, 1l d d n k= − = − + . 

 

if 2l d≤ −  or 1 1l d n k= − ≤ − − , 
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Chapter 3        

 

New Upper Bounds based on Covering Design 
 

3.1 The First Method 
 

In this chapter, we introduce a method (method 1) based on the first construction which can construct an 

l -separating matrix with a smaller total number of rows. Let 'H  be a full rank parity-check matrix of C  

which has the Hamming distance of d . It means that every 1d −  or less columns of 'H  are linearly 

independent.  

Method 1 

Step 1 

Let B  be a set of b -element subsets, jB , of {1,2,..., }n=N , 1 1l b d≤ ≤ ≤ − , such that every l -element 

subset iS  is contained in at least one member of B . Assign to each iS , ( )1,2,..., n
li = , an element jB  of 

B  such that iS  is contained in this jB . '
j

H
B

 has rank b . For any jB , by elementary row operations on 

'H , we can obtain an ( )n k n− ×  matrix of rank n k−  such that its last n k b− −  rows have zeros in the 

positions indexed by jB . After arranging columns, we obtain a matrix having this format.  We call it 1
jH , 

 

 

 

 

 

 

 

 

 

 

 

Step 2 

For any iS  assigned to a certain jB , again, by elementary row operations, the matrix 1
jH  can be further 

changed into an ( )n k n− ×  matrix '
iH , still of rank n k− , which rows 1l + , 2l + ,…, b  have zeros in the 

1
jH

 
 
 
 
 
 =  
 
 
 
 
 
 

b  

n k b− −  n k−  

n  

jB  
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positions indexed by iS , and  which rows 1b+ , 2b + ,…, n k−  have zeros in the position indexed by jB . 

After column arrangement, we obtain a matrix having this format, 

 

 

 

 

 

 

 

 

 

 

 

 

By this method, if iS  and 'iS  belong to the same jB , the set of the last n k b− −  rows in '
iH  and '

'iH  will 

be the same. From the proof of Theorem 2 in [1], it follows that the matrix whose set of rows is the union 

of the sets of the last n k b− −  rows in 1
jH  for |1,2,...,|j = B  and the rows 1l + , 2l + ,…,b  of '

iH  for 

( )1,2,..., n
li =  is an l -separating parity-check matrix of the code C . Let ( , , )B n b l  denote the minimum size 

of B , ( , , ) min | |B n b l = B . This matrix has at most ( )( ) ( , , ) ( )n
ln k b B n b l b l− − + −  rows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

'
iH

 
 
 
 
 
 =  
 
 
 
 
 
 

b  

n k b− −  n k−  

n  

jB  

b l−  

l  

l  

n k l− −  

iS

,

,0'

0
b

n k b b

li lH

−

−

−

 
 =  
 
 

⋯ ⋯ ⋯

⋯ ⋯

⋯

 

 
'iS

,

,' 0'

0
i

n k b

b l l

b

H

− −

−

 
 = 
 
 

⋯ ⋯ ⋯

⋯

⋯

⋯

 

1 ,0b lI lH −

 
 
 
 =
 
 
 
 

⋯

⋮ ⋯ ⋮

⋯ ⋯

⋯ ⋯

⋮ ⋯ ⋮

,0n k b b− −

,0b l l−

| |B

( )n
l

', ii jSS B⊆
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3.2 Covering Designs 

For 1 t u v≤ ≤ ≤ , a ( , , )v u t  covering design is a collection of u -element  subsets  of {1,2,..., }v=V , called 

blocks, such that every t -element subset of V  is contained in at least one block. 

We need to find ( , , )B v u t  which denotes the minimum size of a ( , , )v u t  covering design.  

Example 1: 8, 3, 2v u t= = = , 

All 2-element subsets (28 subsets): 

12 23 34 45 56 67 78.

13 24 35 46 57 68

14 25 36 47 58

15 26 37 48

16 27 38

17 28

18

 

 

All 3-element subsets (56 subsets): 

 

 

 

 

 

 

 

 

234 245 256 267 278

235 246 257 268

236 247 258

237 248

238

345 356 367 378 456 467 478

346 357 368 457 468

347 358 458

348

567 578 678

568  
 

 

123 134 145 156 167 178

124 135 146 157 168

125 136 147 158

126 137 148

127 138

128

 

from these 21 subsets of size 3, we 

can form all ( )8

2  subsets of size 2 
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From the elements in the subset { }1, 2, 3 , we can form { } { } { }1, 2 , 2, 3 , 3,1. If we try all 21 subsets of size 3 

in the box, we can form all 28 subsets of size 2. � 

The covering design problem has been investigated since many years ago. However, until now, there is no 

general formula of ( , , )B v u t  for all triples ( , , )v u t . The optimal solutions, which satisfy the Schonheim 

lower bound ([3]), were achieved for some special cases or some specific triples. In the website 

www.ccrwest.org ([7]), we can find optimal solutions for the ranges 100, 25, 8v u t≤ ≤ ≤ . Outside these 

ranges, optimal solutions have not been found yet. 

It is clear that in case u t= , ( )( , , ) v
uB v u t =  and in case 1t = , ( , , ) /B v u t v u=    . Here, we propose a 

covering design valid for all triples ( , , )v u t , 1 t u v< < < . This solution is not optimal but it can give a 

general upper bound for the covering number, ( , , )B v u t . We need at most 

)

/2

1
( 1/2

( ) ( ) 2
(2 1)

t

k
t

v u t v u t k
t t k

 
  

 
 
 

=
>

− − − − −
− −

  
   
   

− ∑  

u -element subsets of {1,2,..., }v=V , called blocks, such that every t -element subset of V  is contained in 

at least one block.  

Before achieving this result, we begin with the first approach in which we show that with at most 

( )( )v u t
t

− −  subsets of size u , we can form all ( )v
t  subsets of size t . 

3.2.1 Approach 1 

Step1: 

1. From the set {1,2,..., }v=V , we take the first u t−  elements out of {1,2,..., }v=V . 

2. The rest of the set is { 1, 2, 3,..., 1, }u t u t u t v v− + − + − + − . From these elements, we form all subsets 

of size t . The number of subsets is ( )( )v u t
t

− − . 

Step2: 

Now, we put the first u t−  elements into each subset of size t  to form subset of size u . With these 

( )( )v u t
t

− −  subsets of size u , it is easy to see that we can form all ( )v
t  subsets of size t . 

Example 2: 6, 4, 3v u t= = = , apply approach 1: 

• Take { }1  out of { }1, 2, 3, 4, 5, 6. The rest of the set is { }2, 3, 4, 5, 6 . 

• Form subsets of size 3 from { }2, 3, 4, 5, 6 . We obtain 10 subsets, 

234 245 256 345 356 456.

235 246 346

236

 

• Put { }1  into these subsets. 
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1234 1245 1256 1345 1356 1456.

1235 1246 1346

1236

 

From these 10 subsets of size 4, we can form all 20 subsets of size 3 as if we form subsets of size 3 from 

{ }1, 2, 3, 4, 5, 6, 

123 134 145 156 234 245 256

124 135 146 235 246

125 136 236

126

345 356 456.

346

 � 

If we take more than u t−  elements out of the set { }1, 2,...,v , such as taking the first 1u t− +  elements out 

and forming ( )( )
1

v u t
t

− −
−  subsets of size 1t − , we cannot form all ( )v

t  subsets of size t . 

Example 3: 6, 4, 3v u t= = = , 

• Take { }1, 2  out of { }1, 2, 3, 4, 5, 6. The rest of the set is { }3, 4, 5, 6 . 

• Form subsets of size 2 from { }3, 4, 5, 6 . We obtain 6 subsets, 

34 45 56.

35 46

36

 

• Put { }1, 2  into these subsets, 

1234 1245 1256.

1235 1246

1236

 

With these 6 subsets, we cannot form some subsets such as, 

345 356 456.

346
 � 

If we take less than u t−  elements out of the set {1,2,..., }v=V  and apply the same method, the number of 

subsets of size u  formed will be greater.  

Example 4:  

In example 2, 6, 4, 3v u t= = = , we need 10 subsets of size 4 to form all 20 subsets of size 3. 10 subsets 

of size 4 are 
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1234 1245 1256 1345 1356 1456.

1235 1246 1346

1236

 

However, we can merge some subsets in order to reduce the number of needful subsets to fewer than 

( )( )v u t
t

− − , 

 

 

 

 

 

With these 7 subsets of size 4, {1,2,3,4},{2,3,5,6},{2,4,5,6},{1,2,5,6},{3,4,5,6},{1,3,5,6},{1,4,5,6}, we still 

can form all 20 subsets of size 3.� 

3.2.2 Approach 2 

In the first approach, we show that we need at most ( )( )v u t
t

− −  subsets of size u  in order to form all ( )n
t  

subsets of size t  but we also show that we can merge some subsets in order to reduce | |B  . 

In order to get a better result than in approach 1, we come back Step1 of approach 1 and modify it. 

Step1: 

1. From the set {1,2,..., }v=V , we take the first u t−  elements out of {1,2,..., }v=V . 

2. The rest of the set is { 1, 2, 3,..., 1, }u t u t u t v v− + − + − + − . From these elements, we form all subsets 

of size t  and arrange them into columns based on these rules: 

� Elements in each subset are arranged in ascending order. 

� Subsets are arranged into columns. Subsets are in one column if and only if they have the 

same first 1t −  elements (except the special column). It means that subsets in one column 

are different from each other only in the last element. The subset with the smaller last 

element will be put above. 

� Special column: If 2t ≥ , we have the special column. The special column consists of 

subsets containing both elements ' 1', ' 'v v− . It is easy to see that there are ( )( ) 2
2

v u t
t

− − −
−  

subsets in this column. 

 

Example 5: 6, 4, 3v u t= = = , apply approach 2, Step1: 

• Take { }1  out of { }1, 2, 3, 4, 5, 6. The rest of the set is { }2, 3, 4, 5, 6 . 

• Form subsets of size 3 from { }2, 3, 4, 5, 6  and arrange them into columns, 

1234 1245 1256 1345 1356 1456.

1235 1246 1346

1236
these 2 subsets are 
merged into 2356 

3456 

2456 
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We call the column which contains the most subsets, {2,3,4},{2,3,5},{2,3,6} , the longest column 

(except the special column). � 

In all cases, the longest column always begins with the subset { 1, 2,..., 2, 1, }u t u t u u u− + − + − − . There 

are 1v u− +  subsets in this column. The first 1t −  elements in these subsets are the same.  

Example 6: 9, 5, 4v u t= = = , 

Put '1' out of {1,2,3,4,5,6,7,8,9}. Form all subsets of size 4 and arrange them into columns, except the 

special column, the longest column will be 

2345

2346

2347

2348

2349.

 

Basing on the first 1t −  elements in the first subset in the longest column, we can form all 1t −  second 

longest columns. We call this set the original set for these columns. The original set is the set from 

which we form new columns. 

The first 1t −  elements in the first subset in the longest column are 

 

 

 

 

Convention: the first place is the place of the last element among the first 1t −  elements. The second 

place is the place of the next element to the left and so on… 

The set of the first 1t −  elements in all subsets in the first second longest column is formed by 

choosing the element in the first place and increasing it by 1, ' 1' ' 'u u− → . We keep the first 2t −  

element as in the original set. The first subset in the first second longest column is 

 

 

 

 

{ 1, 2,...., 3, 2, 1}.u t u t u u u− + − + − − −

the first place (count from the last) 

the second place (count from the last) 

234 245 345 256

235 246 346 356

236 456.

special 
column 

the longest 
column 

{ 1, 2,..., 3, 2, , 1}.u t u t u u u u− + − + − − +

the chosen element 

the succeeding element is always 
greater than the preceding element 
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The set of the first 1t −  elements in all subsets in the second second longest column is formed by 

choosing the element in the second place and increase it by 1, ' 2 ' ' 1'u u− → − . It means that the first 

3t −  elements in all subsets in this column are kept the same as in the original set and the element in 

the first place must be automatically increased to be greater than the preceding element. The first 

subset in the second second longest column is 

 

 

 

 

The set of the first 1t −  elements in subsets in the next column is formed by choosing the next 

element in the next place and so on... The set of the first 1t −  elements in subsets in the last column is 

formed by choosing the element in the (1t − )th  place, which is also the first element in the original set 

and increasing it by 1,  ' 1 ' 2 ''u t u t+ − +− → . All the succeeding elements will be automatically 

increased. 

The first subset in the ( 1t − )th  second longest column is 

 

 

 

 

We can see that all the second longest columns and subsets in them have the same two features: 

• The last element in the first subset in each column is ' 1'u + . It means that the number of subsets 

in each column is one fewer than the number of subsets in the longest column. 

• The first 1t −  elements in all subsets are contained in the original set. 

Example 6 (cont): continue the above example, 9, 5, 4v u t= = = . 

The first subset in the longest column is {2,3,4,5} . Basing on the first three elements in this original 

set, we can form three second longest columns. 

The set of the first three elements in all subsets in the first second longest column is formed by 

choosing the element in the first place, ‘4’, and increasing it by 1. The first subset in this column 

is{2,3,5,6} . The entire column is 

2356

2357

2358

2359.

 

 

{ 2, 3,..., 2, 1, , 1}.u t u t u u u u− + − + − − +

the chosen element 

the succeeding element is always 
greater than the preceding element 

{ 1, 2,..., 3, 1, , 1}.u t u t u u u u− + − + − − +

the chosen element 

the succeeding element is always 
greater than the preceding element 



Chapter 3: New Upper Bounds based on Covering Design 

 22 

 

The set of the first three elements in subsets in the second second longest column is formed by 

choosing the element in the second place, ‘3’, and increasing it by 1. The first subset in this column is 

{2,4,5,6} . The entire column is 

2456

2457

2458

2459.

 

By similar way, the first subset in the third second longest column is {3,4,5,6} . The entire column is 

3456

3457

3458

3459.

 

We can see that the number of subsets in each second longest column is four which is one fewer than 

the number of subsets in the longest column and the first three elements in each subset are contained 

in the original set.� 

Now, we will form all the third longest columns by using the first subset in each of the second longest 

columns.  

The first subset in the first second longest column is  

 

 

 

We will use this subset to form new columns. This subset is their original set. The chosen element in 

the previous step is in the first place. The number of new columns depends on the place of this chosen 

element. From now, the rule is that we can choose the elements from the first place to the place of the 

chosen element in the previous step and increase each of them to form the set of the first 1t −  

elements for each new column. For example, if the chosen element in the previous step is in the fourth 

place, we can choose four elements from the first place to the fourth place and increase each of them 

to form four new columns.  

Therefore, with this original set, we can form only one third longest column by increasing the chosen 

element by 1, ' ' 1''u u+→ . The first subset in this column is  

 

 

The first subset in the second second longest column is  

 

{ 1, 2,..., 3, 2, 1, 2}.u t u t u u u u− + − + − − + +

the chosen element 

{ 1, 2,..., 3, 2, , 1}.u t u t u u u u− + − + − − +

the chosen element in the 
previous step 

{ 1, 2,..., 3, 1, , 1}.u t u t u u u u− + − + − − +

the chosen element in the 
previous step 
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The chosen element in the previous step is in the second place; hence we can use this subset to form 

other two third longest columns. Of course, this set is the original set for these two columns.  

The set of the first 1t −  elements in subsets in one new column is formed by choosing the element in 

the first place in the original set and increasing it by 1, ' ' 1''u u→ + . The first subset in this column is 

 

 

The set of the first 1t −  elements in subsets in the other new column is formed by choosing the 

element in the second place in the original set and increasing it by 1, 1' ' ''u u− → . The first subset in 

this column is 

 

 

Applying this procedure to the first subsets in all the second longest columns, we will form all the 

third longest columns. We can see that all the third longest columns and subsets in them have the 

same two features: 

• The last element in the first subset in each column is ' 2'u + . It means that the number of subsets 

in each column is one fewer than the number of subsets in second longest columns. 

• The first 1t −  elements in all subsets in each column are contained in its original set. 

Using the first subsets in all the third longest columns with the similar procedure, we will form all the 

fourth longest columns and so on…The shortest columns will have two subsets in each of them. In 

each step, all new columns and subsets in them have the same two features: 

• The number of subsets in each new column is one fewer than the number of subsets in the column 

containing its original set. 

• Except the longest column and the special column, the first 1t −  elements in all subsets in each 

new column are contained in its original set. 

Example 6 (cont): continue the above example, 9, 5, 4v u t= = = . 

The first subset in the first second longest column is {2,3,5,6}  with the chosen element in the first 

place. Hence, from this original set, we can form one new column. 

Choose the element in the first place and increase it by 1, '5 ' '6 '→ . The first subset in this new 

column is {2,3,6,7} . The entire column is 

2367

2368

2369.

 

{ 1, 2,..., 3, , 1, 2}.u t u t u u u u− + − + − + +

the chosen element 

{ 1, 2,..., 3, 1, 1, 2}.u t u t u u u u− + − + − − + +

the chosen element 
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The first subset in the second second longest column is {2,4,5,6}  with the chosen element in the 

second place. From this original set, we can form two new columns. 

The set of the first three elements in subsets in one new column is formed by choosing the element in 

the first place in the original set and increasing it by 1, '5 ' '6 '→ . The first subset in this column is 

{2,4,6,7} . The entire column is 

2467

2468

2469.

 

The first subset in other new column is {2,5,6,7} . The entire column is 

2567

2568

2569.

 

Applying a similar procedure to the first subset in the third second longest column with the chosen 

element in the third place, {3,4,5,6} , we can form three new third longest columns, 

3467 3567 4567

3468 3568 4568

3469 3569 4569.

 

We can see that the number of subsets in each third longest column is three which is one fewer than 

the number of subsets in the second longest columns and the first three elements in each subset are 

contained in its original set. 

Repeat the procedure until the number of subsets in all columns is two.  

With 9, 5, 4v u t= = = , the special column consists of subsets containing both ‘8’ and ‘9’. There are 

( ) ( ) ( )( ) 2 9 (5 4) 2 6
2 4 2 2 15v u t

t
− − − − − −

− − == =  subsets in this column. 

Finally, we can obtain this result: 
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 � 

Step2 

1. We put the first u t−  elements, {1,2,..., }u t− , into each subset. Now, size of each subset is u . 

2. If the number of subsets in the longest column is greater or equal to three and the special column 

exists, we can merge the last two subsets, which contain ' 1'v −  or ' 'v , in each column (except the 

special column) into one, the merged set, by this rule: 

� Eliminate the element '1' in one subset.  

� Put the last element of the other subset into it.  

We can merge the last two subsets in each column (except the special column) because: 

2345 2356 2367 2378 2389

2346 2357 2368 2379 2489

2347 2358 2369 2589

2348 2359 2478 2689

2349 2467 2479 2789

2468 3489

2456 2469 2578 3589

2457 2579 3689

2458 2567 3789

2459 2568 2678 4589

2569 2679 4689

4789

3467 3478 5689

3468 3479 5789

3469 6789

3578

3567 3579

3568

3456 3569 3678

3457 3679

3458

3459 4578

4579

4567

4568 4678

4569 4679

5678

5679

the special column the longest column 
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• The first 1u −  elements in each subset are contained in the original set. Therefore, any subset of 

size t  which is formed by using these 1u −  elements can be formed by the original set.  

• The last 1u −  elements in each subset are contained in the merged set. Therefore, any subset of 

size t  which is formed by using these 1u −  elements can be formed by the merged set. 

• Any subset of size t  containing {1, 1}v −  or {1, }v  can be formed by subsets in the special column. 

Special column: there are ( )( ) 2
2

v u t
t

− − −
−  subsets in this column. If 2t = , the special column has only one 

subset, {1,2,..., 2, 1, }u v v− − . If 3t ≥ , this column can be formed by this way: 

1. Put three elements '1', ' 1', ' 'v v− out of the set {1,2,3,..., }v=V . 

2. The remaining set is {2,3,..., 3, 2}v v− − . From these elements, applying approach 1, we form 

subsets of size 3u −  such as every ( 2)t − -element subset of {2,3,..., 3, 2}v v− −  is contained in at 

least one of them.  We obtain ( )( ) 2
2

v u t
t

− − −
−  subsets. 

3. Next, we put three elements '1', ' 1', ' 'v v−  into each subset of size 3u −  to form subset of size u . 

Now, we have all subsets in the special column and it is easy to see that with these ( )( ) 2
2

v u t
t

− − −
−  

subsets, we can form all subsets of size t  containing {1, 1}v− , {1, }v or {1, 1, }v v− . 

Example 6 (cont): continue the above example: 9, 5, 4v u t= = = . 

• Put ‘1’ into each subset. 

• Merge the last two subsets in each column (except the special column).  
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12345 12356 12367 12378 12389

12346 12357 12368 12379 12489

12347 12358 12369 12589

12348 12359 12478 12689

12349 12467 12479 12789

12468 13489

12456 12469 12578 13589

12457 12579 13689

12458 12567 13789

12459 12568 12678 14589

12569 12679 14689

14789

13467 13478 15689

13468 13479 15789

13469 16789

13578

13567 13579

13568

13456 13569 13678

13457 13679

13458

13459 14578

14579

14567

14568 14678

14569 14679

15678

15679

the special column the longest column 



Chapter 3: New Upper Bounds based on Covering Design 

 28 

The merged subsets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12378

12368 12379

12358 12369

12348 12359 12478

12349 12479

12468

12469 12578

12579

12458

12459 12568 12678

12569 12679

13478

13468 13479

13469

13578

13579

13568

13569 13678

13679

13458

13459 14578

14579

14568 14678

14569 14679

15678

15679

23489 
23589 

24589 

34589 

23689 

24689 

25689 

 

35689 

45689 

23789 

24789 

25789 

26789 

34789 

35789 

36789 

45789 

46789 

56789 
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The resulting subsets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With these subsets, we can form all subsets of size 4 as if we form all subsets of size 4 from {1,2,...,9}� 

 

The number of subsets which can be reduced is equal to the number of subsets containing the element 

' 1'v −  or ' 'v . Therefore, the number of reduced subsets is ( )( ) 2
1

v u t
t

− − −
− . 

12345 12356 12367 23789 12389

12346 12357 23689 12489

12347 23589 12589

23489 24789 12689

12467 12789

24689 13489

12456 25789 13589

12457 13689

24589 12567 13789

25689 26789 14589

14689

14789

13467 34789 15689

34689 15789

16789

35789

13567

35689

13456 36789

13457

34589

45789

14567

45689 46789

56789

the special column the longest column 
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Until now, we need at most ( ) ( ) 2
1

v u t v u t
t t

− − − − −
−

   
   
   

−  u -element subsets of V  in order to form all subsets 

of size t  from {1,2,..., }v=V . As in the above example, after merging some subsets, we need at most 

( ) ( )9 1 9 1 2
4 4 1 70 20 50− − −

−− = − =  subsets of size 5 in order to form all 126 subsets of size 4. 

However, if we look at the special column, in the design of subsets of size 3u −  in order to form all 

subsets of size 2t − , by approach 2, we can merge some subsets in this design. If 4t ≥ , the number of 

reduced subsets, which is ( ) 4
3

v u t
t

− − −
−

 
 
 

, is equal to the number of subsets containing the element ' 3'v−  or 

' 2 'v− . We continue with the special column in this design and so on… 

Finally, we need at most 

1)

/2

1
( /2

( ) ( ) 2
(2 1)

t

k
t

v u t v u t k
t t k

 
  

 
  

>
=

− − − − −
− −

  
   
   

− ∑ u -element subsets of {1,2,..., }v=V  such that every 

t -element subset of V  is contained in at least one member of them. The upper bound for k , / 2t   , can 

be determined by the condition of the existence of the special column in each design. 

3.3 New Upper Bounds Following Method 1 

In case 1 1l d< < − , for any 1l b d< ≤ − , we have 

1)

/2

1
( /2

( ) ( ) 2
(2 1)

( , , )
l

k
l

n b l n b l k
l l k

B n b l
 
  

 
  

>
=

− − − − −
− −

  ≤    
   

− ∑ .                   (3.1) 

Hence, 

                                (3.2) 

 

                                                                     (3.3) 

 

 

For a given value of l , we can choose an appropriate value of b  to get the best result. In general, in order 

to estimate a new upper bound for ls , we can choose 1b d= −  and the new upper bound is 

( ) ( )
1)

/2

1
( /2

( 1 ) ( 1 ) 2
(2 1)( ( 1)) ( 1 ).l

l

k
l

n
l

n d l n d l k
l l ks n k d d l

  

 > 

=

− − − − − − −
− −

 
  ≤ − − − − + − −    
 

∑                          (3.4) 

In case 1l d= − , we have the trivial result that ( )1( , 1, 1) n
d

B n d d −− − =  and we thus obtain the upper bounds  

from [1]. In case 1l = ,  

                           (3.5) 

                                    (3.6) 

 

1 / ( 1)

( ( 1)) / ( 1) ( 2).

( ) ( , ,1) ( 1) ( ) n b n b

n k d n d n d

s n k b B n b n b n k b + −  

≤ − − − − + −  

= − − + − = − −

( )

( )
1)

/2

1
( /2

( ) ( , , ) ( )

( ) ( ) 2( ) ( ).(2 1)

l
n
l

l
n
l

k
l

s n k b B n b l b l

n b l n b l kn k b b ll l k

 
 

 
  

>
=

≤ − − + −

 
    − − − − − ≤ − − + −   − −    
 
 

− ∑
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3.4 Chapter Summary 

In this chapter, a method which can construct an l -separating matrix with a smaller total number of rows 

in comparison with (2.1) was introduced. A general upper bound on the covering number was also given. 

The efficiency of this method on some popular codes will be presented in chapter 4. In the next chapter, 

another method which can reduce the upper bound on the thl separating redundancy given in (2.1) in case 

2l d≤ −  will be introduced.  
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Chapter 4    

 

Other Upper Bounds on the lth Separating Redundancy 
 

4.1 The Second Method 

In this chapter, we introduce another method (method 2) which can give a smaller upper bound in 

comparison with the value given in (2.1) in case 2l d≤ − .  Again, 'H  is a full rank parity check matrix 

and iS  is a subset of { }1,2,...,n of size l . '

i
H
S

 has rank l  and by elementary row operations on 'H , we 

can obtain an ( )n k n− ×  matrix of rank n k−  such that its last n k l− −  rows have zeros in the positions 

indexed by iS . After arranging columns, we obtain a matrix having this format,   

 

 

 

 

 

 

 

 

Taking the last n k l− −  rows in 1
iH  which have zeros in the positions indexed by iS  to form a new 

matrix, we call it 2
iH . In [1], IH , an l -separating matrix in the first construction, is the matrix whose set 

of rows is the union of all 2
iH  for ( )1,2,..., n

li = .  

Method 2 

By elementary row operations and column arrangement on 2
iH , we obtain a matrix, 3

iH , having the 

format, 

 

 

 

 

 

 

1

0 0

0 0

iH

 
 
 
 

=  
 
 
  
 

⋯

⋮ ⋱ ⋮

⋯

n  

n k l− −  
n k−  

l  

3

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

i

Y X

Y X

Y X

Y X

Y X

H

 
 
 
 

=  
 
 
  
 

⋯ ⋯ ⋯

⋯ ⋯ ⋯

⋯ ⋯ ⋯

⋮ ⋯ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

⋯ ⋯ ⋯

⋯ ⋯ ⋯

l  n k l− −  k  

n k l− −  

Group A Group B 
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Y: a non-zero symbol. 

X: an arbitrary symbol. 

We call: 

• Group A: set of l  positions in which each column contains all zero symbols. 

• Group B: set of n k l− −  positions in which each column contains only one non-zero symbol. 

Now, we consider jS  which consists of 1l −  positions in Group A and one position in Group B, for 

example: the last 1l −  positions in Group A and the first position in Group B. According to the first 

construction, we need 2
jH  of rank n k l− −  which has zero columns in the positions indexed by jS .  

 

 

 

 

 

 

 

 

However, if we look at 3
iH , 

 

 

 

 

 

 

 

 

3
iH  already has 1n k l− − −  rows which have zeros in the positions indexed by jS . Therefore, instead of 

using all n k l− −  rows of 2
jH , we need only one row accompanied with the set of 1n k l− − −  rows from 

3
iH . In other word, the last 1n k l− − −  rows in 3

iH  are also useful in case of jS . Let 'd  be the Hamming 

distance of the punctured code formed by deleting the symbols in positions belonging to the subset jS . 

Since 'd d l≥ − , in case 2l d≤ − , ' 2d ≥ . Therefore, in 2
jH  , except l  all-zero columns, each column 

must contain at least one non-zero symbol. The only row we need from 2
jH  should contain a non-zero 

symbol in the position which is in the subset iS  but not in the subset jS .  The set of 1n k l− − −  rows 

2

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

j

X X

X X

X X

X X

X X

H

 
 
 
 

=  
 
 
  
 

⋯ ⋯

⋯ ⋯

⋯ ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯ ⋯

⋯ ⋯

jS  

n k l− −  

iS  

3

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

i

Y X

Y X

Y X

Y X

Y X

H

 
 
 
 

=  
 
 
  
 

⋯ ⋯ ⋯

⋯ ⋯ ⋯

⋯ ⋯ ⋯

⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

⋯ ⋯ ⋯

⋯ ⋯ ⋯

n k l− −  

Group A Group B 

1n k l− − −  rows  
have zeros in the 
positions 
indexed by jS  
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from 3
iH , which are linear independent, has zeros in this position. Any row which has a non-zero symbol 

in this position will be linear independent with the rows in this set. 

In general, 3
iH  has 1n k l− − −  rows having zeros in the positions indexed by any jS  consisting of 1l −  

positions in Group A and one position in Group B. From l  positions in the Group A and n k l− −  

positions in the Group B, we can form ( )( )11 ( )l n k l
l l n k l− −
− = − −  subsets jS . For each of these ( )l n k l− −  

subsets jS , we need only one row. 

In 1H , for iS , we replace the set of n k l− −  rows of 2
iH  with 3

iH  and for each of ( )l n k l− −  subsets jS , 

we can remove 1n k l− − −  rows in each 2
jH . Since this new matrix belongs to the class of 1H  matrix, it is 

also an l -separating parity-check matrix of the code C .  

Now, we consider kS  consisting of 2l −  positions in Group A and two positions in Group B, for 

example, the last 2l −  positions in Group A and the first two positions in Group B. In 3
iH , we have 

2n k l− − −  rows which have zeros in the positions indexed by kS . 

 

 

 

 

 

 

 

 

 

In this case, we can remove 2n k l− − −  rows in 2
kH  if there are two rows in 2

kH  which are linearly 

independent with the set of 2n k l− − −  rows from 3
iH . However, 2

kH  can have this format 

 

 

 

 

 

 

 

 

In this case, we cannot find two rows in 2kH  to ensure that these two rows are linear independent with 

2n k l− − −  rows from 3
iH . It means that we cannot gain advantage in this case. Therefore, we can 

2

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

k

X

Y Y X

X

X

X

H

 
 
 
 

=  
 
 
  
 

⋯ ⋯

⋯ ⋯

⋯ ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯ ⋯

⋯ ⋯

iS  

kS  

3

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

i

Y X

Y X

Y X

Y X

Y X

H

 
 
 
 

=  
 
 
  
 

⋯ ⋯ ⋯

⋯ ⋯ ⋯

⋯ ⋯ ⋯

⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

⋯ ⋯ ⋯

⋯ ⋯ ⋯

n k l− −  

Group A Group B 

2n k l− − −  rows 
have zeros in the 
positions 
indexed by kS  
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conclude that this method is used only in case jS  differs iS  in only one position and this position is 

chosen from Group B. 

4.2 Application 

Now, we propose the ways applying this method to different values of l . We mention some important 

points of this method: 

• Size of Group A is l  and size of Group B is n k l− − . 

• Positions appearing in Group B depend on positions in Group A and structure of the parity-check 

matrix.  

• We gain advantage from subsets jS  consisting of one position in Group B and 1l −  positions in 

Group A.  

• Here, we define the couple (A| B) = {positions in A | positions in B}.  

For example: 3l = , 4n k l− − = , assume that Group A = {1, 2, 3}, Group B = {4, 6, 7, 9}, then  (A| B) 

= {1, 2, 3 | 4, 6, 7, 9}.  

• With each couple (A| B), we can form ( )l n k l− −  subsets jS  consisting of 1l −  positions in 

Group A and one position in Group B. For each of these ( )l n k l− −  subsets jS , we need only one 

row. 

For example: with the couple (A| B) = {1, 2, 3 | 4, 6, 7, 9}, we can form 12 subsets jS : 1 {1,2,4}=S , 

2 {1,2,6}=S , 3 {1,2,7}=S , 4 {1,2,9}=S , 5 {1,3,4}=S , 6 {1,3,6}=S , 7 {1,3,7}=S , 8 {1,3,9}=S , 

9 {2,3,4}=S , 10 {2,3,6}=S , 11 {2,3,7}=S , 12 {2,3,9}=S . 

• A new couple (A| B) is formed (valid) if and only if ( )l n k l− −  subsets jS  formed by this couple 

are totally different from all other jS  formed by all previous couples.  

For example: with Group A* = {1, 5, 6}, we suppose that Group B* is {2, 8, 10, 11}. In this case, the 

couple (A*| B*) cannot be formed because among 12 subsets formed by (A*| B*) = {1, 5, 6 | 2, 8, 10, 

11}, the subset {1,2,6}j =S  has been already formed by (A| B). Hence, the couple (A*| B*) is not 

valid. 

• More couples can be formed, more advantage we can gain. 

• Let m be the number of couples valid. From these m couples, we can form ( )ml n k l− −  subsets 

jS  for each of which, we need only one row. For each of the rest, ( ) ( )n
l ml n k l− − −  subsets, we 

still need n k l− −  rows. Let 2IH  be the matrix constructed by method 2. This matrix has at most 

( )( ) ( )( ) ( ) ( ) ( ) ( )( 1)n n
l lml n k l n k l ml n k l n k l ml n k l n k l− − − − − + − − = − − − − − − − −  rows. 
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0 0

0 0

0 0

''

Y X

Y X

Y X

H

 
 
 =
 
 
 

⋯ ⋯

⋯ ⋯

⋮ ⋮ ⋱ ⋮ ⋮ ⋮

⋯ ⋯

n k−  k  

n k−  

4.2.1  1l =  

In this special case, we slightly change method 2 to get a better result. From an ( )n k n− ×  parity-check 

matrix 'H  of C , by elementary row operations, we can obtain a full rank ( )n k n− ×  parity-check matrix 

''H  which contains an ( ) ( )n k n k− × −   submatrix D  with zeros in all entries outside the main diagonal.  

 

 

 

 

 

Hence, for all n k−  sets { }i i=S  corresponding to the column indices of D , the matrix ''H  has 1n k− −  

zeros in column i . For each of the remaining k  sets { }i i=S , by elementary row operations on 'H , we 

can obtain an ( )n k n− ×  matrix, '
iH , of rank n k−  such that its last 1n k− −  rows have zeros in the 

positions indexed by iS . Let 2IH  denote the matrix whose set of rows is the union of the last 1n k− −  

rows in these k  matrix '
iH  and the rows of the matrix ''H . The number of row in 2IH  is at most 

( 1) ( )k n k n k− − + − . Since the matrix 2IH  belongs to the class of IH  matrices, 2IH  is a 1-separating 

parity-check matrix of the code C . Then,  

1 ( 1)( 1) 1s k n k≤ + − − +  with 2, 2d n k≥ − ≥ .  

4.2.2  2l =  

The first couple: we can choose the first two positions to be Group A1 , 

 

 

 

 

 

 

 

The second couple: we choose any two positions in Group C1 (C = {1,2,…,n} \ (A∪ B) ) to be Group A2 . 

Because each of these two positions does not appear in 2( 2)n k− −  subsets formed by the first couple, 

without noticing Group B2 , we can assure that 2( 2)n k− −  subsets formed by (A2 | B 2 ) are totally 

different from all previous subsets. 

For example: 2, 12, 4l n n k l= = − − = , Group 1A = {1, 2}, we suppose that Group 1B  = {4, 5, 7, 8} 

3

1

0 0 0 0 0

0 0 0 0 0

.

0 0 0 0 0

0 0 0 0 0

Y X

Y X

H

Y X

Y X

 
 
 
 =
 
 
 
 

⋯ ⋯

⋯ ⋯

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

⋯ ⋯

⋯ ⋯

Group A 1  Group B 1  Group C1  
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The first couple (A1 | B1 ) = {1, 2 | 4, 5, 7, 8}. From this couple, we form 8 subset jS = {1, 4}, {1, 5}, {1, 

7}, {1, 8}, {2, 4}, {2, 5}, {2, 7}, {2, 8}. 

Group C1  = {3, 6, 9, 10, 11, 12}. Now, we choose any two positions in Group C1  to be Group A2 . 

Suppose that we choose Group A2  = {3, 6}. With this Group A2 , 8 subsets jS  formed by (A2 | B 2 ) 

contain either {3} or {6}, which is not in 8 previous subsets jS . Hence, we can guarantee that (A2 | B 2 ) 

is valid.� 

 

The third couple: we should choose any two positions which are in the intersection of Group C1  and 

Group C2 . Group A of the next couple is always chosen from the positions in the intersection of all 

previous Groups C. 

Now, we should compute the minimum number of couples can be formed. The worst case happens when 

positions in Group B of the next couple are also in the intersection of all previous Groups C. We can 

model roughly like this, 

 

 

 

 

 

 

If ( mod ( )) 1n n k− ≤ , the minimum number of couples can be formed is 
n

n k
 
 − 

 (   means taking the 

integer part, e.g. 2.7 2=    ). 

If ( mod ( )) 2n n k− ≥ , the minimum number of couples can be formed is 1
n

n k
  + − 

. 

If ( mod ( )) 1n n k− ≤ , there are at least 2( 2)
n

n k
n k
  − − − 

 subsets, for each of which, we need only one 

row. For each of the rest, 2( 2)
2

n n
n k

n k

   − − −   −  
sets, we need ( 2)n k− −  rows. 

The maximum number of rows in 2IH is 

2( 2) ( 2) 2( 2)
2

( 2) 2( 2)( 3).
2

n n n
n k n k n k

n k n k

n n
n k n k n k

n k

      − − − − − + − −       − −     

   = − − − − − − −   −  

 

0 0 0 0 0 0

0 0 0 0 0 0

Y Y X

Y Y X

 
 
 
 
 

⋯ ⋯ ⋯ ⋯

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

⋯ ⋯ ⋯ ⋯

n k−  n k−  

n  positions 

mod ( )n n k−  

2n k− −  

1 couple 
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If ( mod ( )) 2n n k− ≥ , there are at least 1 2( 2)
n

n k
n k

   + − −  −  
 subsets, for each of which, we need only 

one row. For each of the rest, 1 2( 2)
2

n n
n k

n k

    − + − −    −    
sets, we need ( 2)n k− −  rows. 

The maximum number of rows in 2IH is 

1 2( 2) ( 2) 1 2( 2)
2

( 2) 1 2( 2)( 3).
2

n n n
n k n k n k

n k n k

n n
n k n k n k

n k

         − + − − − − + + − −          − −         

    = − − − + − − − −    −    

 

 

4.2.3  3l ≥  

In this case, if Group A of each couple differs from each other in at least three positions, we can ensure 

that all jS  formed by each couple will be different from all other subsets. It means that we have to solve 

the problem: choose groups of l  positions from n  positions, each group must differ from the others in at 

least 3 positions. 

For example: if 5l = , {1, 2, 3, 4, 5} and {4, 5, 6, 7, 8} differ from each other in three positions while {1, 

2, 3, 4, 5} and {3, 4, 5, 6, 7} differ from each other only in two positions.  

Here, we propose a way to attain 
3

n 
 
 

 groups. 

1. Write n  positions in a line. 

2. Copy the first 3l −  positions to the end of the line. Now, the line has 3n l+ −  positions. 

3. The first group consists of the first l  positions. 

4. The next group is formed by choosing the last 3l −  positions in the previous group and the 

next three positions. 

5. Continue to the end of the line. 

For example: 10, 5n l= = , 

Step1:                1 2 3 4 5 6 7 8 9 10 

Step2:                1 2 3 4 5 6 7 8 9 10 1 2 

Step3, 4, 5:           

 

 

 

Three groups can be formed: (1,2,3,4,5), (4,5,6,7,8), (7,8,9,10,1). 

1 2 3 4 5 6 7 8 9 10 1 2

x x x x x

x x x x x

x x x x x
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We can choose these groups as Groups A to make 
3

n 
 
 

 couples.� 

By similar explanation, the total number of rows in 2IH  in case 3l ≥ , 

( ) ( ) ( )
3 3

( ) ( )( 1).
3

n n n
l n k l n k l l n k l

l

n n
n k l l n k l n k l

l

      − − − − − + − −            

   = − − − − − − − −   
  

 

4.3 New Upper Bounds Following Method 2 

Let ls  be the thl separating redundancy. 

•  1l = :  1 ( 1)( 1) 1k n ks ≤ + − − + .                                                                                                     (4.1) 

• 2, ( mod ( )) 1l n n k= − ≤ : 2 ( 2) 2( 2)( 3)
2

n n
s n k n k n k

n k

   ≤ − − − − − − −   −  
.                                 (4.2) 

• 2, ( mod ( )) 2l n n k= − ≥ : 2 ( 2) 1 2( 2)( 3)
2

n n
s n k n k n k

n k

    ≤ − − − + − − − −    −    
.                         (4.3) 

• 3 2l d≤ ≤ − : ( 3) ( ) ( )( 1)
3l l

n n
n k l l n k l n k l

l
s ≥

   ≤ − − − − − − − −   
  

.                                                  (4.4) 

4.5 Chapter Summary 

In this chapter, another method which can reduce the total number of rows in an l -separating matrix in 

the first construction in case 2l d≤ −  was introduced. In the next chapter, the efficiencies of method 1 and 

method 2 on some popular codes will be examined. Besides, comparisons between upper bounds will be 

also presented.  
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Chapter 5            

 

Comparisons 
 

 

In this part, we just consider the case in which the number of erasures, l , is at least 1 and at most 1d − . 

We denote 1h  as the number of rows of an l -separating matrix of the code C , IH , built by the first 

construction from [1], 

 

 

 

11h  denotes the number of rows of an l -separating matrix of the code C  constructed by method 1 

mentioned in Chapter 3 with 1b d= −  and 1 1l d< < − , 

( ) ( )11

1)

/2

1
( /2

( 1 ) ( 1 ) 2
(2 1)( 1 ) ( ( 1)).

l

k
l

n
l

n d l n d l k
l l kh d l n k d

  

 > 

=

− − − − − − −
− −

 
  = − − + − − − −    
 

∑  

In case 1l d= − , 11 1h h= . In case 1l = , 11 ( ( 1)) / ( 1) ( 1 )h n k d n d n d l= − − − − + − −   . 

12h  denotes the number of rows of an l -separating matrix of the code C  constructed by method 2 

mentioned in Chapter 4: 

• If 1l = , 12 ( 1)( 1) 1h k n k= + − − + . 

• If 2l =  and mod ( ) 1n n k− ≤ , 12 ( 2) 2( 2)( 3)
2

n n
h n k n k n k

n k

   = − − − − − − −   −  
. 

• If 2l =  and mod ( ) 2n n k− ≥ , 
12 ( 2) 1 2( 2)( 3)

2

n n
h n k n k n k

n k

    = − − − + − − − −    −    
. 

• If 3 2l d≤ ≤ − , 12 ( ) ( )( 1)
3

n n
h n k l l n k l n k l

l

   = − − − − − − − −   
  

. 

2h  denotes the number of rows of an l -separating matrix of the code C , IIH , built by the second 

construction from [1], ( ) 1

2

1

1 ( 1)il

i
n k
ih q −+

=
−= −∑ . 

21h  denotes the number of useful rows in IIH , ( ) ( ){ }1

21

1

1 min ( 1) ,il

i
n k n
i lh q −+

=
−= −∑ , discussed in Section 2.5. 

The upper bound on the thl separating redundancy can be determined by 11 12 21min{ , , }h h h . 

Here, we use Matlab to compute the upper bounds mentioned in the thesis for some special codes. 

1

1

( )

             

n
l

h
n

l

n k l
  
 
 = 
 
    −

− −

if 1, 1l d d n k= − = − + . 

 

if 2l d≤ −  or 1 1l d n k= − ≤ − − , 

 



Chapter 5: Comparisons 

 41 

5.1 Hamming Codes 

The class of Hamming codes is one of the oldest families of error-correcting codes. The codes are defined 

by: 

2 1,  ( 2)

2 1

3.

m

m

n m

k m

d

= − ≥
= − −
=

 

Hamming codes have been widely used for error control in digital communication and data storage 

systems over the years owing to their high rate and decoding simplicity. The Hamming distance of the 

code is three; hence the code is single error-correcting or double error-detecting. Here, we just examine 

codes with short lengths.  

Because 3d = , l  can be either 1 or 2. 

5.1.1  1l =  
Table 5.1  1h , 11h and 12h of Hamming codes in case 1l = . 

 
m 2 3 4 5 6 7 8 9 10 

1h  3 14 45 124 315 762 1785 4088 9207 

11h  3 11 31 79 191 447 1023 2303 5119 

12h  3 11 37 109 291 727 1737 4025 9127 

 
Figure 5.1  1h , 11h and 12h  of Hamming codes in log10 in case 1l = . 
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With Hamming codes, in case 1l = , 11h is always smaller than 12h . Based on values in Table 5.1, we 

sketch Figure 5.1. In this figure (and other figures in this section), x  axis denotes values of m while y  

axis denotes upper bounds in log10. From Table 5.1 and Figure 5.1, we can see that with greater values of 

m, method 1 shows strong efficiency compared with method 2. 

The values of 2h  and 21h  with different m and q  are given in Table 5.2 and Figure 5.2. Table 5.2 shows 

that 21h  is much smaller than 2h  with large q  and small m. 

 
Table 5.2 2h and 21h of Hamming codes in case 1l = . 

 

m 2 3 4 5 6 7 8 9 10 

2, 2h q =  3 6 10 15 21 28 36 45 55 

21, 2h q =  3 6 10 15 21 28 36 45 55 

2, 4h q =  5 12 22 35 51 70 92 117 145 

21, 4h q =  5 12 22 35 51 70 92 117 145 

2 , 8h q =  9 24 46 75 111 154 204 261 325 

21, 8h q =  5 24 46 75 111 154 204 261 325 

2 , 16h q =  17 48 94 155 231 322 428 549 685 

21, 16h q =  5 24 94 155 231 322 428 549 685 

2 , 32h q =  33 96 190 315 471 658 876 1125 1405 

21, 32h q =  5 24 94 315 471 658 876 1125 1405 

2 , 64h q =  65 192 382 635 951 1330 1772 2277 2845 

21, 64h q =  5 24 94 315 951 1330 1772 2277 2845 

2 , 128h q =  129 384 766 1275 1911 2674 3564 4581 5725 

21, 128h q =  5 24 94 315 951 2674 3564 4581 5725 

2 , 256h q =  257 768 1534 2555 3831 5362 7148 9189 11485 

21, 256h q =  5 24 94 315 951 2674 7148 9189 11485 
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Figure 5.2 2h and 21h of Hamming codes in log10 in case 1l = . 

 
Because 11 12 21 11 21min{ , , } min{ , }ls h h h h h≤ = , the upper bounds on the 1st separating redundancies of 

Hamming codes can be determined by the comparison between 11h  and 21h , which is illustrated in the next 

figure. 

 

Figure 5.3 11h and 21h of Hamming codes in log10 in case 1l = . 
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From Figure 5.3, we can see two important features. The first is that the role of 21h on the 1st separating 

redundancy is meaningless. Whenever the upper bounds are determined by 21h , 21 2h h= . In other words, 

whenever the condition ( )11( )i n
l

q −− ≥  satisfies, the new upper bounds are always determined by 11h . The 

second is that the role of 11h  on upper bounds on the separating redundancy increases with greater values 

of q .  

5.1.2  2l =  

In case 1 2l d= − = , m should be equal or larger than 3. If 2 3m n= ⇒ = , the punctured code has length 

equal to 1. Error (if it occurs) cannot be corrected or detected.  

In this case, method 2 cannot be applied and 11 1h h= . The values of 1h , 2h and 21h  of Hamming codes in 

case 2l =  are given in Table 5.3 while the comparison between 2h and 21h  is illustrated in Figure 5.4. 

 

Table 5.3 11h , 1h , 2h and 21h  of Hamming codes in case 2l = . 

 
m 3 4 5 6 7 8 9 10 11 

11 1h h=  21 210 1395 7812 40005 194310 912135 4182024 18846729 

2, 2h q =  7 14 25 41 63 92 129 175 231 

21, 2h q =  7 14 25 41 63 92 129 175 231 

2, 4h q =  21 58 125 231 385 596 873 1225 1661 

21, 4h q =  21 58 125 231 385 596 873 1225 1661 

2 , 8h q =  73 242 565 1091 1869 2948 4377 6205 8481 

21, 8h q =  45 242 565 1091 1869 2948 4377 6205 8481 

2 , 16h q =  273 994 2405 4731 8197 13028 19449 27685 37961 

21, 16h q =  69 514 2405 4731 8197 13028 19449 27685 37961 

2 , 32h q =  1057 4034 9925 19691 34293 54692 81849 116725 160281 

21, 32h q =  87 610 4965 19691 34293 54692 81849 116725 160281 

2 , 64h q =  4161 16258 40325 80331 140245 224036 335673 479125 658361 

21, 64h q =  87 802 5285 40011 140245 224036 335673 479125 658361 

2 , 128h q =  16513 65282 162565 324491 567189 906788 1359417 1941205 2668281 

21, 128h q =  87 1054 5925 40971 282709 906788 1359417 1941205 2668281 
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Figure 5.4 2h and 21h  of Hamming codes in log10 in case 2l = . 

 
Figure 5.5 1h and 21h of Hamming codes in log10 in case 2l = . 

 
Similar to the case 1l = , 21h  is much smaller than 2h  with large q  and small m. The comparison between 

1h  and 21h  , which is illustrated in Figure 5.5, will give information about the upper bounds on the 2nd 

separating redundancy. 
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Again, two features similar to the case 1l =  are repeated. 

5.2 Reed-Muller Code (32,6,16) 

Another class of linear block codes constructed in the early days for error correction and detection was 

the class of Reed-Muller codes. Reed-Muller codes were first invented for switching circuit design and 

error detection, but later on, they were reformulated for error correction and detection in communication 

and data storage systems. These codes, which are simple in construction and rich in structural properties, 

are useful for multiple random error correction.  

Here, we examine upper bounds on the separating redundancy of the famous (32,6,16) Reed-Muller code. 

This code was used in spacecrafts of NASA from 1969 to 1977. A very prominent mission was Mariner 

9, which was devoted to the photographic observation of the surface of Mars, [2]. It is a low rate code 

with good error correction capabilities. The Hamming distance of 16 is very high for a code of length 32. 

Because 16d = , l  can receive values from 1 to 15. 

In all figures from now, x  axis denotes the values of l  while y  axis denotes the upper bounds in log10. 

 
 

Table 5.4 The upper bounds for Reed-Muller code (32,6,16). 
 
 
l  1h  11h  12h  2 21, 2h h q= =  2 21, 4h h q= =  

1 800 481 176 351 1001 

2 11904 8142 9696 2951 24401 

3 114080 70377 98900 17901 428051 

4 791120 450549 772640 83681 5756231 

5 4228896 2248456 4207896 313911 61702121 

6 18123840 9031460 18101040 971711 541238321 

7 63951264 29858271 63927324 2533986 3.9579e+009 

8 189329400 82594013 189304920 5658536 2.4458e+010 

9 476829600 193696948 476805120 10970271 1.2901e+011 

10 1.0322e+009 389956198 1.0322e+009 18696431 5.8523e+011 

11 1.9354e+009 684918913 1.9353e+009 28354131 2.2961e+012 

12 3.1611e+009 1.0794e+009 3.1611e+009 38754731 7.8234e+012 

13 4.5159e+009 1.6101e+009 4.5158e+009 48412431 2.3221e+013 

14 5.6572e+009 2.4731e+009 5.6572e+009 56138591 6.0175e+013 

15 6.2229e+009 6.2229e+009  61450326 1.3639e+014 

 



Chapter 5: Comparisons 

 47 

From Table 5.4, we can see that with some values of l , method 1 can reduce more than half the numbers 

of rows in the matrices IH  while the values of 12h  are almost the same as 1h  except in case 1l = . The 

greater value of l  is, the more rows are reduced by method 1. In case 1l = , the upper bound following 

method 2 is extremely smaller than the one following method 1. The efficiencies of method 1 and method 

2 are illustrated in Figure 5.6.   

In case 2q =  or 4q = , 2 21h h= . It means that the condition ( )1( 1)i n
lq −− ≥  does not satisfy with 

1,..., 12,4; i lq = += . 

To have the upper bound on the thl separating redundancy, we should compare 11 12min{ , }h h  with 21h . The 

comparison is given in Figure 5.7.  

In case 2q = , the upper bound on the thl separating redundancy can be determined by 11 12 2min{ , , }h h h . 

From 4q =  to greater values of q , 21h  is extremely greater than 11 12min{ , }h h  which does not depend on q . 

It means that in case 4q ≥ , 11 12 21 11 12min{ , , } min{ , }h h h h h= . The upper bound is always equal to 11 12min{ , }h h . 

 

Figure 5.6 1h , 11h and 12h  of Reed-Muller code (32,6,16) in log10. 
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Figure 5.7 2h , 21h and 11 12min{ , }h h  of Reed-Muller code (32,6,16) in log10. 

 

5.3 LDPC (20,7,6) 

Low-density parity-check (LDPC) codes are the codes which achieve an error performance only a fraction 

of a decibel away from the Shannon limit, [2]. The main feature of this class of codes is that parity-check 

matrices have a small density of non-zero symbols. This class of code is applied to many communication 

and digital storage systems where high reliability is required.   

Here, we consider (20,7,6) LDPC code.  

Because 6d = , l  can receive values from 1 to 5. 

 

Table 5.5 The upper bounds for LDPC code (20,7,6). 
 
 
l  1 2 3 4 5 

1h  240 2090 11400 43605 124032 

11h  112 1538 7848 30293 124032 

12h  97 1650 9780 41877  

2 21, 2h h q= =  91 377 1092 2379 4095 

2 21, 4h h q= =  247 2821 22126 126373 543361 

 

 



Chapter 5: Comparisons 

 49 

 

Figure 5.8 1h , 11h and 12h  of LDPC code (20,7,6) in log10. 

 
 

 

Figure 5.9 2h , 21h and 11 12min{ , }h h  of LDPC code (20,7,6) in log10. 
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As in case of (32,6,16) Reed-Muller code, method 2 gives better result in comparison with method 1 just 

in case 1l = .  

In case 2q =  or 4q = , 2 21h h= . 

Figure 5.9 illustrates that in case 2q = , 2h  is always smaller than 11 12min{ , }h h . Hence, the upper bound on 

the thl separating redundancy is 2h . From 4q =  to greater values of q , 21h  is always greater than 

11 12min{ , }h h . Hence, the upper bound on the thl separating redundancy is 11 12min{ , }h h . 

5.4 Golay Code, (23,12,7) 

In this part, we consider the (23,12,7) Golay code which is constructed by M. J. E. Golay in 1949. This 

code has many interesting structural properties and has been extensively studied by many coding theorists 

and mathematicians. It has been used in many real communication systems for error control. More 

information on this code can be found in [11]. 

Because 7d = , l  can receive values from 1 to 6. 

 

Table 5.6 The upper bounds for Golay code (23,12,7). 
 
 
l  1 2 3 4 5 6 

1h  230 2277 14168 61985 201894 504735 

11h  135 1782 10248 42705 140329 504735 

12h  131 1989 12992 60809 200844  

2 21, 2h h q= =  66 231 561 1023 1485 1815 

2 21, 4h h q= =  176 1661 10571 47993 160259 400829 

2 , 8h q =  396 8481 121671 1230933 8995767 47819937 

21, 8h q =  396 8481 121671 1230933 8995767 42308277 
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Figure 5.10 1h , 11h and 12h  of Golay code (23,12,7) in log10. 

 
 

Figure 5.11 2h , 21h and 11 12min{ , }h h  of Golay code (23,12,7) in log10. 
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Because the values of n  and d  of this code are similar to (20,7,6) LDPC code, again, except 1l = , 

method 1 always gives better results in comparison with method 2. Figures 4.8 and 4.10 have the same 

features.  

Table 5.6 shows that in case 2q =  and 4q = , 2 21h h= . From 8q = , the values of 21h  and 2h  differ in great 

values of l .  

From Figure 5.11, we can see that in case 2q = , 2 11 12min{ , }h h h< . The upper bound is given by 2h . 

However, in case 4q = , we should compare the values of 2h  with 11 12min{ , }h h  to find the upper bound on 

the thl separating redundancy. 

From 8q =  to greater values of q , the upper bound is always determined by 11 12min{ , }h h . 

5.5 BCH Code, (63,45,7) 

The Bose, Chaudhuri, and Hocquenghem (BCH) codes form a practical class of powerful random error-

correcting codes, particularly if the expected number of errors is small compared with the length. For 

extensive information, we refer to [11], [12].  

Here, we choose the (63,45,7) BCH code to examine the new upper bounds on the separating redundancy 

of a code with long length but low Hamming distance.  

Because 7d = , l  can receive values from 1 to 6. 

 

Table 5.7 The upper bounds for BCH code (63,45,7). 
 
 
l  1 2 3 4 5 6 

1h  1071 31248 595665 8339310 91375011 815346252 

11h  447 27660 509937 7062798 78809415 815346252 

12h  783 29328 582435 8324022 91358631  

2 21, 2h h q= =  171 987 4047 12615 31179 63003 

2 21, 4h h q= =  477 7821 90441 784449 5295501 28495197 

2 21, 8h h q= =  1089 41073 1090653 21662421 333667569 4.0777e+009 
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Figure 5.12 1h , 11h and 12h  of BCH code (63,45,7) in log10. 

 
 

Figure 5.13 2h , 21h and 11 12min{ , }h h  of BCH code (63,45,7) in log10. 

 
We can see that the efficiencies of method 1 and method 2 depend on the relation between the values of l  

and n . In this case, method 1 always gives better results in comparison with method 2 but it does not 
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show strong efficiency as in (32,6,16) Reed-Muller code due to the great value of n  with respect to l . 

This is illustrated in Figure 5.12. 

Table 5.7 shows that in case 2q = , 4q =  and 8q = , 2 21h h= . On the other hand, in case 2q =  and 4q = , 

2 11h h< . Hence, the upper bound is given by 2h . From 8q =  to greater values of q , the upper bound is 

always determined by 11h . 

Similarly to all cases above, the role of 21h  on the separating redundancy is meaningless. 

5.6 Conclusions 

From the data above, we can conclude that for these codes: 

• Except some codes in case 1l = , method 1 always gives the smaller upper bounds in comparison 

with method 2. 

• The new upper bound in the second construction does not lead to the improvement because 

whenever the condition ( )1( 1)i n
lq −− >  satisfies, the upper bound on the thl separating redundancy 

is always determined by the new upper bound in the first construction. 
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Chapter 6 

 

Conclusions 
 

6.1 Contributions of the Thesis 

Separating parity-check matrices are useful for decoding over channels causing both errors and erasures. 

The separating parity-check matrices with small number of rows reduce not only decoding complexity but 

also memory storage at the en/decoders. In this thesis, we proposed two methods which can give the 

improved upper bounds on the separating redundancy being the minimum number of rows in a separating 

matrix. Besides, we also presented a covering design. This design is not optimal but it can give a general 

upper bound on the covering number being the minimum size of a covering design. Applying this result 

to the upper bound obtained from method 1, we can reduce more than half the upper bound given by (2.1) 

of some codes, i.e. the Reed-Muller code (32,6,16). In some cases, method 2 gives a better result in 

comparison with method 1 when the number of erasures is one. We also computed the upper bounds on 

the separating redundancies of some famous practical codes.  

6.2 Future directions 

The new upper bound derived from the argument of calculating the number of useful rows in an l -

separating matrix in the second construction does not lead to the improvement. The appropriate value of 

b  for each l  is still a question. Besides, there are still gaps between the upper and lower bounds. Hence, 

more research on bounding techniques for the separating redundancy is required. Our methods give the 

general upper bounds for all codes. However, the better bounds on the separating redundancy of codes 

with special characteristics can be achieved. In addition, the number of distinct rows in a separating 

matrix of a code relates to the weight distribution of its dual code. Therefore, the question of how to apply 

the weight distribution needs to be researched. Potential future work also includes the determination of 

the bounds for classes of codes of practical interest. 
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Appendix 
 
 
Some of the results presented in thesis have appeared in paper “New Upper Bounds on the Separating 

Redundancy of Linear Block Codes” of the 30th Symposium on Information Theory in the Benelux, which 

was held at the Eindhoven University of Technology at Eindhoven, The Netherlands, on May 28 and 29, 

2009. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 
 
 
 


