

Delft University of Technology

Watermarking Graph Neural Networks based on Backdoor Attacks

Xu, Jing; Koffas, Stefanos; Ersoy, Oǧuzhan; Picek, Stjepan

DOI
10.1109/EuroSP57164.2023.00072
Publication date
2023
Document Version
Final published version
Published in
Proceedings - 8th IEEE European Symposium on Security and Privacy, Euro S and P 2023

Citation (APA)
Xu, J., Koffas, S., Ersoy, O., & Picek, S. (2023). Watermarking Graph Neural Networks based on Backdoor
Attacks. In Proceedings - 8th IEEE European Symposium on Security and Privacy, Euro S and P 2023 (pp.
1179-1197). (Proceedings - 8th IEEE European Symposium on Security and Privacy, Euro S and P 2023).
IEEE. https://doi.org/10.1109/EuroSP57164.2023.00072
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/EuroSP57164.2023.00072
https://doi.org/10.1109/EuroSP57164.2023.00072

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Watermarking Graph Neural Networks based on
Backdoor Attacks

Jing Xu
Delft University of Technology

Delft, Netherlands
j.xu-8@tudelft.nl

Stefanos Koffas
Delft University of Technology

Delft, Netherlands
s.koffas@tudelft.nl

Oğuzhan Ersoy
Radboud University

Nijmegen, Netherlands
oguzhan.ersoy@ru.nl

Stjepan Picek
Radboud University

Nijmegen, Netherlands
stjepan.picek@ru.nl

Abstract—Graph Neural Networks (GNNs) have achieved
promising performance in various real-world applications.
Building a powerful GNN model is not a trivial task,
as it requires a large amount of training data, powerful
computing resources, and human expertise. Moreover, with
the development of adversarial attacks, e.g., model stealing
attacks, GNNs raise challenges to model authentication.
To avoid copyright infringement on GNNs, verifying the
ownership of the GNN models is necessary.

This paper presents a watermarking framework for
GNNs for both graph and node classification tasks. We 1)
design two strategies to generate watermarked data for the
graph classification task and one for the node classification
task, 2) embed the watermark into the host model through
training to obtain the watermarked GNN model, and 3)
verify the ownership of the suspicious model in a black-
box setting. The experiments show that our framework can
verify the ownership of GNN models with a very high
probability (up to 99%) for both tasks. We also explore our
watermarking mechanism against an adaptive attacker with
access to partial knowledge of the watermarked data. Finally,
we experimentally show that our watermarking approach is
robust against a state-of-the-art model extraction technique
and four state-of-the-art defenses against backdoor attacks.

1. Introduction

Many real-world data can be modeled as graphs,
e.g., social networks, gene interactions, and transport
networks. Similar to the great success of deep learning
algorithms on, e.g., image recognition [20], [25], [42],
speech recognition [18], [21], and natural language pro-
cessing [16], deep graph models such as graph neural
networks (GNNs) [19], [23], [48] have also achieved
promising performance in processing graph data. Such
successful results can be attributed to their superior ability
to incorporate information from neighboring nodes in the
graph recursively [54]. Still, building and training a well-
performed graph neural network is not a trivial task, as it
usually requires a large amount of training data, effort in
designing and fine-tuning a model, and powerful comput-
ing resources, making the trained model have a monetary
value. For instance, the cost of training a machine learning
model can be more than one million USD [44].

As graph neural networks are more widely developed
and used, their security also becomes a serious concern.

For instance, the adversary can steal the model through a
model stealing attack. Recent works have shown the high
effectiveness of model stealing attacks on complex models
even without knowledge of the victim’s architecture or
the training data distribution [35], [37], [45], which leads
to model copyright infringement. Moreover, if the model
is intended to be released for commercial purposes, the
stolen model would even lead to financial loss. Therefore,
it is crucial to verify the ownership of a GNN model.

Digital watermarking is typically used to identify own-
ership of the copyright of media signals, e.g., audio, video,
and image data [26]. Multiple works discuss embedding
watermarks into DNN models to protect the IP of the
models [1], [12], [22], [32], [47], [61], [64]. For instance,
Uchida et al. [47] presented a framework to embed wa-
termarks into the parameters of DNNs via the parameter
regularizer during training leading to its white-box setting.
To address the limitations of watermarking DNNs in the
white-box setting, Adi et al. used random training in-
stances and random labels to watermark a neural network
in a black-box way [1]. The authors based their approach
on backdoor attacks. Additionally, Zhang et al. [64] ex-
tended the threat model to support black-box setting ver-
ification for DNN models. To enhance the robustness of
the watermarking, Yang et al. proposed to leverage the
concept of fault attack to embed a watermark into a DNN
model for IP protection [61], and Jia et al. presented an
approach to force the model to entangle representations for
legitimate task data and watermarks [22]. A robust black-
box watermarking scheme for self-supervised learning
pre-trained encoders was proposed by Cong et al. [12].
The general idea of watermarking a model in a black-
box setting is to train the model using specific samples so
that the model can memorize the watermark information
and be verified when predicting on these samples. The
discussed works focus on the image and audio domains,
not graph data, making the selection of datasets and neural
network models different and direct comparisons difficult.

The watermark generation methods and injecting po-
sition differ between image and graph data [56], [68].
Specifically, as non-Euclidean data, the graph has rich
structural information that can be used to generate the
watermark. In the image domain, the watermark injecting
position can be defined, which is impossible in graph
data as there is no position information one can exploit
in a graph. Thus, the discussed watermarking mechanism
cannot generate watermarks for graph data.

To the best of our knowledge, only one work considers

1179

2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P)

© 2023, Jing Xu. Under license to IEEE.
DOI 10.1109/EuroSP57164.2023.00072

20
23

 IE
EE

 8
th

 E
ur

op
ea

n
Sy

m
po

si
um

 o
n

Se
cu

rit
y

an
d

Pr
iv

ac
y

(E
ur

oS
&

P)
 |

97
8-

1-
66

54
-6

51
2-

0/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
Eu

ro
SP

57
16

4.
20

23
.0

00
72

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 12:03:25 UTC from IEEE Xplore. Restrictions apply.

watermarking graph data and GNNs. Zhao et al. presented
a watermarking framework for GNNs by generating a
random graph associated with features and labels as the
watermark [68]. However, this work only studies the
watermarking in GNNs for the node classification task
while neglecting other relevant settings, e.g., the graph
classification task. The applications of graph classification
are numerous and range from determining enzymes in
bioinformatics, categorizing documents in NLP, and ana-
lyzing social networks. Furthermore, the presented method
only works for the GNN models trained through inductive
learning. If the owner’s model is trained by transductive
learning, the proposed method in [68] is not feasible
as the graph structure of the training graph has been
changed. GNNs can take advantage of transductive learn-
ing, thanks to the natural way they make information flow
and spread across the graph, using relationships among
patterns [10]. Thus, various transductive approaches have
been widely applied and implemented in many domains,
such as natural language processing (NLP), surveillance,
graph reconstruction, and ECG classification [38]. In this
paper, we present the first watermarking framework for
GNNs suitable for both graph and node classification
tasks as well as models trained by both inductive and
transductive learning. Besides broadening the applicability
of watermarking in GNN settings, our framework has sig-
nificant improvements compared to state-of-the-art [68].
First, we present a statistical analysis for evaluating our
watermarking framework. Specifically, we apply Welch’s
t-test to verify the effectiveness of our watermarking
mechanism. We also calculate a threshold to ensure a
low false positive rate (FPR) and false negative rate
(FNR), i.e., less than 0.0001. Second, together with the
two backdoor defenses (model pruning and fine-tuning)
evaluated against the proposed watermarking mechanism
in [68], we show that our framework is robust against
a model extraction attack (knowledge distillation), two
more backdoor defenses (randomized subsampling, and
fine-pruning) and an adaptive attacker. Finally, in [68],
the experiments were conducted on only two node clas-
sification datasets and one model. In our work, we test
our framework with three datasets and three GNN models
for graph classification and two datasets and three GNN
models for node classification. The extensive experiments
show that our method is not limited to specific GNN
models. Our watermarking method can achieve higher
watermark accuracy than [68], i.e., up to 100%.

Following the idea of [1], our watermarking method
utilizes backdoor attacks. Backdoor attacks in GNNs aim
to misclassify graph data embedded with a trigger. In
our work, instead of considering backdoor attacks in
GNNs [52], [55], [66] for offensive purposes, we use them
to protect the IP of the GNN models. More precisely, we
use the backdoor triggers as digital watermarks to iden-
tify the ownership of a GNN model. Our watermarking
framework includes three phases:
• Watermarked data generation. We designed two

strategies to generate watermarked data for the graph
classification and one for the node classification.

• Watermark embedding. We train the host model
with the watermarked data. The intuition is to explore
the memorization capabilities of GNNs to learn the
trigger pattern of the watermarked data automatically.

• Ownership verification. Once the watermark is em-
bedded into the model, we can verify the ownership
of remote suspicious models by sending watermarked
data generated in the first phase. Only the models
protected by the watermarks are assumed to out-
put matched predictions. To address the limitations
of [68], we use the feature trigger as the watermark
pattern by modifying the feature information of the
graph instead of changing the graph’s structure.

We evaluate our watermarking framework with five
benchmark datasets: two for the node classification task
and three for the graph classification task. The results
show that our watermarking framework can verify the
ownership of suspicious models with high probability.
At the same time, the performance of the watermarked
GNN on its original task can be preserved. Our main
contributions can be summarized as follows:
• We propose a watermarking framework to verify the

ownership of GNN models for both the node and
graph classification tasks. It is the first watermarking
framework for GNNs on the graph classification task.

• We use hypothesis testing in our watermarking mech-
anism to provide statistical analysis for the model
ownership verification results.

• We propose two watermark generation mechanisms
to generate watermarked data for the graph classifica-
tion task. One strategy is based on classical backdoor
attacks, and the other is based on embedding the
watermark into random graphs, which experimentally
shows superior performance.

• For the node classification task, we propose a
training-agnostic framework that also applies to a
model trained by transductive learning. Specifically,
we only modify the feature information of the graph
in the watermarked data generation phase.

• We explore our watermarking mechanism against
an adaptive attacker who has knowledge of partial
watermarked data. The experiments show that it is
difficult to unlearn the watermark functionality with-
out influencing the main task for graph classification.

• We investigate the robustness of our method against
a model extraction attack and four defenses against
backdoor attacks. Experimental results show our wa-
termarked model is robust against these mechanisms.

We evaluate our watermarking framework with several
benchmark datasets and popular GNN models. Experi-
mental results show that the proposed method achieves
excellent performance, i.e., up to 99% accuracy, in IP
protection of the models while having a negligible impact
on the original task (less than 1% clean accuracy drop).

2. Background

2.1. Graph Neural Networks (GNNs)

GNNs take a graph G as an input (including its struc-
ture information and node features) and learn a represen-
tation vector (embedding) for each node v ∈ G, zv , or the
entire graph, zG. Modern GNNs follow a neighborhood
aggregation strategy, where one iteratively updates the rep-
resentation of a node by aggregating representations of its
neighbors. After k iterations of aggregation, a node’s rep-
resentation captures both structure and feature information

1180

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 12:03:25 UTC from IEEE Xplore. Restrictions apply.

within its k-hop network neighborhood. Formally, the k-th
layer of a GNN is (e.g., GCN [23], GraphSAGE [19], and
GAT [48]): Z(k) = AGGREGATE(A,Z(k−1); θ(k)).
Here, Z(k) represents the node embeddings in the ma-
trix form computed after the k-th iteration, and the
AGGREGATE function depends on the adjacency ma-
trix A, the trainable parameters θ(k), and the previous
node embeddings Z(k−1). Finally, Z(0) is initialized as
G’s node features.

For the node classification task, the node representa-
tion Z(k) of the final iteration is used for prediction, while
for the graph classification task, the READOUT function
pools the node embeddings from the final iteration K:
zG = READOUT (Z(K)). READOUT can be a simple
permutation invariant function or a more sophisticated
graph-level pooling function [62], [65].

The goal of the node classification task is that, given
a single graph with partial nodes being labeled and others
remaining unlabeled, GNNs can learn a robust model that
effectively identifies the class labels for the unlabeled
nodes [23]. In a node classification task, there are two
types of training settings - inductive and transductive. In
an inductive setting, the unlabeled nodes are not seen
during training, while in a transductive setting, the test
nodes (but not their labels) are also observed during the
training process. The node classification task is used in
many security applications, e.g., anomaly detection in
the Bitcoin transaction network or terrorist detection in
a social network [6]. The graph classification task aims
to predict the class label(s) for an entire graph [65]. One
practical application of the graph classification task is to
detect the mutagenic effect of chemical compounds [24].
Therefore, it is relevant to consider both classification
tasks when considering real-world applications.

2.2. Backdoor Attacks in GNNs

Deep Neural Networks (DNNs) are vulnerable to
backdoor attacks [27], [31]. A backdoored neural net-
work produces attacker-desired behaviors when a trigger
is injected into a test sample. Several studies showed that
GNNs are also vulnerable to backdoor attacks. Similar
to the idea of backdoor attack in DNNs, the backdoor
attack in GNNs is implemented by poisoning the training
data with a trigger, which can be a subgraph with/without
features [55], [66] or a subset of node features [56].
After training the GNN model with the trigger-embedded
data, the backdoored GNN would predict the test example
injected with a trigger as the pre-defined target label.

2.3. Digital Watermarking in Neural Networks

Digital watermarking is a technique that embeds cer-
tain watermarks in carrier multimedia data such as audio,
video, or images to protect their copyright [26]. The
information to be embedded in a signal is called a digital
watermark. The signal where the watermark is embedded
is called the host signal. A digital watermarking system
is usually divided into two steps: embedding and ver-
ification. The typical digital watermarking life cycle is
presented in Appendix A.

At first, the goal of digital watermarking was to protect
the copyright of multimedia data by embedding water-

Training data

(or random graphs)

Original graph

1. Generate watermarked

data

2. Embed watermark into

model by training

3. Ownership

verification

Host GNN Suspicious

GNN

Graph classification task Node classification task

Figure 1: GNN watermarking framework.

marks into the multimedia data. More recently, with the
development of deep neural networks, new watermarking
methods were designed to protect the DNN models by
embedding watermarks into DNN models [1], [8], [47].
The idea of watermarking neural networks is similar to
traditional digital watermarking in multimedia data. To
implement digital watermarking in neural networks, we
can assume the multimedia data that we want to protect
is the model, and the embedding and verification steps
of the watermarking correspond to the training and in-
ference phase of the protected model. A neural network
watermarking model should satisfy the following require-
ments [5], [28]: robustness, fidelity, capacity, integrity,
generality, efficiency, and secrecy (see Section 4.2).

3. GNN Watermarking

We propose a framework to generate watermarked
data, embed a watermark into GNNs, and verify the
ownership of GNNs by extracting a watermark from them.
The framework’s purpose is to protect the IP of the graph
neural networks by verifying the ownership of suspicious
GNNs with an embedded watermark. The framework first
generates watermarked data and trains the host GNNs with
the watermarked data. The GNNs automatically learn and
memorize the connection between the watermark pattern
and the target label through training. As a result, only the
model protected with our watermark can output prede-
fined predictions, i.e., the assigned target label, when the
watermark pattern is observed in the queries sent to the
suspicious model. Figure 1 illustrates the workflow of our
GNN watermarking framework.

3.1. Threat Model

In our threat model, we model two parties, a model
owner, who owns a graph neural network model m for a
certain task t, and a suspect, who sets up a similar service
t
′

from the model m
′
, where two services have a simillar

purpose t ≈ t
′
. In practice, there are multiple ways for

a suspect to get the model m. For example, it could be
an insider attack from the owner’s organization that leaks
the model, or it could be stolen by various model stealing
attacks, e.g., [3], [45]. Although the exact mechanism of
how a suspect obtains the model m is out of the scope
of this paper, we still evaluate our watermarking method
against a model extraction attack in Section 5. Our goal
is to help the model owner protect his/her model m, an

1181

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 12:03:25 UTC from IEEE Xplore. Restrictions apply.

intellectual property with a concrete value. Intuitively, if
model m is equivalent to m

′
, we can confirm that the

suspect is a plagiarizer and m
′

is a plagiarized model of
m.1 We define the owner’s model m as the host model
and the model m

′
, which is likely to be stolen from m as

the suspicious model. In this work, we assume that as an
IP protector, we can only query the suspicious model m

′

in a black-box manner. As the model owners, we have full
access to the model m, including its architecture, training
data, and the training process.

3.2. Watermarked Data Generation

Graph classification. Since most graph classification
tasks are implemented using GNNs to learn the network
structure, we focus on utilizing the subgraph-based back-
door attacks [55], [66] to verify the ownership of GNNs
for the graph classification task. Here, we investigate two
watermarking data generation strategies for GNNs on the
graph classification task.

Embedding watermark into original training data.
Specifically, we select a subset of samples in training
data and embed a generated random watermark (i.e., a
random graph) into it. A random graph including n nodes
and e edges is generally generated by starting with n
isolated nodes and inserting e edges between nodes at
random. A classical method to generate random graphs
is called Erdos-Renyi (ER) random graph model [15] in
which each possible edge occurs independently with a
probability p ∈ (0, 1). This paper utilizes ER random
graphs as the watermark graph for watermarking GNNs on
the graph classification task since ER model is commonly
used in the graph domain and has shown to be more
effective than the other models like Small World (SW)
model [51] and Preferential Attachment (PA) model [2].
Once the watermark graph is generated, we embed it into
each graph of the selected subset of training data by ran-
domly choosing n nodes in the graph and changing their
connections to be the same as the watermark graph. Since
we only change the graph’s structure, we do not modify
the node’s features. The watermark information is also
carried by the label of the watermark embedded graphs.
We assume the value of the label of the watermarked
graphs is in the range [0, C), where C is the number
of classes, and the label for watermarked graphs can be
determined in advance. We emphasize that the labels of
the sampled training data are different from the label
of the watermark-embedded graphs. In this way, three
parameters - r (proportion of training data selected to be
injected with the watermark graph), n (number of nodes
in the watermark graph), and p (the probability of the edge
existence in the watermark graph) would have a significant
impact on the watermark generation, then affecting the
watermark embedding and verification later.

Embedding watermark into generated random
graphs. In addition to embedding a watermark graph
into the original training data, we propose first gener-
ating random graphs and then embedding a generated
watermark into these random graphs. The intuition here
is that by embedding a watermark graph into the original

1. The chances that various entities created the same model indepen-
dently are small, especially when considering real-world applications.

training data, as discussed in the previous paragraph, the
watermark will have some side effects on the original
functionality of our watermarked graph neural networks.
We design this strategy to decrease the impact of water-
marking in the original task. First, we generate a number
of random graphs with the ER method, where we define
that number as a specific proportion (r) of the training
data. The number of nodes and edge existence probability
are the same as the average number of nodes and edges
of the training data. Then, we generate the watermark
graph in the same way described in the previous approach
and embed the watermark graph into the random graphs
generated in the first step. We use the node degree as the
node feature for the generated random graphs. We also
assign the label for the watermark-embedded graphs in
advance, similar to the first strategy. There are also three
parameters r, n, and p in this strategy.

The detailed comparison and analysis of these param-
eters in the above two strategies are given in Section 4.
Concerning the adversary capability, the first watermarked
data generation strategy requires access to a partial train-
ing dataset, and the second strategy requires none as it
uses extra random graphs to generate the watermarked
data.

Node classification. We apply the backdoor attack
as proposed in [56] to implement watermarking GNNs
for the node classification task, which can be applied in
not only inductive learning but also transductive learning-
based models. Specifically, we randomly select a propor-
tion r of the total number of nodes in the graph as the
watermark carrier nodes and change their subset node
features2 into a predefined fixed value3 to generate the
watermarked data. Given an arbitrary node in the graph, by
changing the value of a subset of its features as a feature
trigger and assigning a target label to it, the host model
m aims to learn and memorize the watermark pattern.

3.3. Watermark Embedding

Graph classification. Once the watermarked data are
generated, the next step in the framework is to embed the
watermark into the host GNN model m. Here, we explore
the intrinsic learning capability of graph neural networks
to embed the watermark. We first train a clean model
mc based on the original training data Dtrain and then
continue training the model using the watermarked data.
The detailed GNN watermark embedding process is shown
in Algorithm 1. The inputs are the pre-trained clean model
mc, original training data Dtrain and target label for the
watermarked data, and the outputs are the watermarked
GNN model mw and watermarked data Dwm. The model
owner defines the target label of the watermarked data. In
the main function, we sample data Dtmp from the original
training data uniformly at random. The data we sample
has a label that is different from the target label (Line 3
in Algorithm 1) so that we can avoid the influence of the
original label in the ownership verification phase. For the
second watermarking strategy for the graph classification
task, which is based on generating random graphs as

2. Here, the number of node features whose values are changed is
defined as watermark length l.

3. The fixed value is uniformly selected between 0 and 1.

1182

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 12:03:25 UTC from IEEE Xplore. Restrictions apply.

watermark carrier data, we utilize the ER method to
generate random graphs with an average number of nodes
and edges of the training data and proportion r (Line 5 in
Algorithm 1). Then, for each data in Dtmp, we add the
generated watermark to x and relabel it with yt (Lines 7-
11 in Algorithm 1). Therefore, we obtain the watermarked
data Dwm, which is later used in the verification process.
We train the pre-trained clean GNN model with both the
sampled original data Dtmp and Dwm (or just Dwm for
the second strategy).4 We assume that the GNN model will
learn the watermark pattern during the training process
and, thus, be protected against the model stealing attacks.

Algorithm 1: Watermark embedding for graph
classification task

Input: Pre-trained clean model mc, Training set
Dtrain = {xi, yi}Si=1, Target label yt ∈ [0, C)

Output: Watermarked GNN model mw , Watermark data Dwm

1 Function WATERMARK_EMBEDDING():
2 Dwm ← ∅
3 Dtmp ← sample(Dtrain, r, y �= yt) // strategy 1
4 // or
5 Dtmp ← GRAPH GENERATE(navg, pavg, r)) //

strategy 2
6 foreach d ∈ Dtmp do
7 xwm =

ADD WATERMARK(d[x], watermark)
8 ywm = yt

9 Dwm = Dwm ∪ {xwm, ywm}
10 end
11 End Function
12 mw = Train(mc, Dwm, Dtmp)
13 (or mw = Train(mc, Dwm))
14 return mw, Dwm

The watermarking embedding process for the node
classification is the same as the graph classification task.

3.4. Ownership Verification

After training our model with watermarked data, if
adversaries steal and further fine-tune the watermarked
model, they will likely set up an online service to provide
the AI service of the stolen model. Then, it is difficult to
access the architecture and parameters of the suspicious
model directly. As we have explained in Section 3.1, to
verify the ownership of the suspicious model m

′
in a

black-box manner, we can send Dwm, which is returned in
the previous watermark embedding process to the suspi-
cious model. If, for part of samples in Dwm, the suspicious
model outputs the target label ywm, we can assume that
m

′
is stolen (developed) from our watermarked model

mw. However, the premise of this assumption is that
our watermarked model has statistically different behavior
from the clean model, leading to different watermark
accuracy between these two models. To provide a sta-
tistical guarantee with the model ownership verification
results, we can adopt statistical testing with the ability
to estimate the level of confidence to determine whether
the watermark accuracy of our watermarked model is
significantly different from the clean model. We define
the null hypothesis H0 as follows:

H0 : Pr(mw(xwm) = ywm) ∼= Pr(mc(xwm) = ywm),

4. We use both the sampled original data and watermarked data for
the first strategy to decrease the impact of watermarking on the model’s
original main task.

where Pr(mw(xwm) = ywm) represents the water-
mark success probability of the watermarked model and
Pr(mc(xwm) = ywm) represents the watermark success
probability of a clean model.

The null hypothesis H0 states that the watermark
success probability of the watermarked model is equal
or approximate to the clean model, i.e., there are no
significant differences between the watermark accuracy
of the watermarked model and a clean model. On the
contrary, the alternative hypothesis H1 states that the
watermarked model has significantly different watermark
accuracy from the clean model, which verifies the effec-
tiveness of our watermarking mechanism. If we can reject
the null hypothesis H0 with statistical guarantees, we can
claim that our watermarking method successfully verifies
the ownership of the suspicious models.

Through querying a series of watermarked and clean
models with q watermarked samples, we can obtain their
prediction results for each watermarked model and clean
model, which can be used to calculate the watermark
accuracy, denoted as αk and βk, respectively:

αk =

∑q
i=1 I(y

wk
i = ywm)

q
, k ∈ [1, n] (1)

βk =

∑q
i=1 I(y

ck
i = ywm)

q
, k ∈ [1, n] (2)

where n is the number of watermarked and clean models.
We set n to 10 in our experiments.

The value of watermark accuracy can be considered
as an estimation of the watermark success probability.
We apply the Welch’s t-test [53]5 to test the hypothesis.
According to the watermark accuracy of n watermarked
models and clean models, denoted as {α1, · · ·αn} and
{β1, · · ·βn} respectively, we can calculate the t statistic:

t =
ᾱ− β̄√
s2α
n +

s2β
n

, (3)

where s2α and s2β are the unbiased estimators of the
population variance.

The degrees of freedom ν associated with variance
estimate is approximated using the Welch-Satterthwaite
equation [39], [53]:

ν ≈ (N − 1)(s2α + s2β)
2

s4α + s4β
. (4)

According to the theoretical analysis above, we can
formally state under what conditions the model owner
can reject the null hypothesis H0 at the significance level
1 − τ (i.e., with τ confidence) with watermark accuracy
of watermarked and clean models. Specifically, we take
the watermark accuracy results of NCI1 and DiffPool as
an example, as shown in Table 1. According to a Shapiro-
Wilk Test [41], the p-values [50] of these two populations,
i.e., watermark accuracy of clean and watermarked mod-
els, are 0.77 and 0.16, respectively. Given a significance
level of 0.05, these p-values indicate these two populations
can be assumed to be normally distributed, and a Welch’s

5. We use the Welch’s t-test since the watermark accuracy of clean and
watermarked models can be treated as normal distributions according to
a Shapiro-Wilk Test [41], and they may have different variances.

1183

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 12:03:25 UTC from IEEE Xplore. Restrictions apply.

t-test is applicable. With significance level 1− τ = 0.05,
and the degree of freedom calculated with Eq. (4), i.e.,
ν ≈ 16, the t critical value tτ is 2.120. Based on Eq. (3),
we calculate t statistic t = 45.82, which is significantly
larger than tτ = 2.120. Thus, we can reject the null
hypothesis H0 at the significance level 0.05 for the NCI1
dataset on the DiffPool model in our work. The watermark
accuracy of the watermarked models and clean models of
other datasets and models are presented in Appendix B.
For each setting, we can reject the null hypothesis H0 at
the significance level 0.05, which provides a statistical
guarantee for our watermarking method. Based on the
statistical analysis above, we can also calculate a threshold
for each dataset and model to ensure a low false positive
rate (FPR) and false negative rate (FNR), i.e., less than
0.0001, of our watermarking method. More details are
presented in Section 4.

If the watermark accuracy of clean and watermarked
models are not normally distributed, we can apply the
Mann-Whitney U test [33] to test the hypothesis. The U
statistic is calculated as:

U1 = R1 − n1(n1 + 1)

2
; U2 = R2 − n2(n2 + 1)

2
, (5)

where R1, R2 are the sums of ranks in watermark accuracy
of clean and watermarked models respectively, and n1, n2

are the numbers of two populations. Then, the smaller
value of U1 and U2 is used to check the significance
of the difference between the distributions. Here, we still
take the watermark accuracy results of NCI1 and DiffPool
as an example (Table 1 where n1 = n2 = 10). Based
on Eq. (5), we calculate U statistic and obtain U1 = 0
and U2 = 100. Thus, the value U1 = 0 is used for the
significance check. According to the reference table6, the
critical value is 23 with significance level 1 − τ = 0.05.
For our example, U1 = 0 is lower than the critical
value. Moreover, U = 0 is the lowest possible value and
implies the complete separation of the groups (watermark
accuracy of clean and watermarked models). For other
datasets and models, the calculated U statistics are all
less than the critical value. Thus, given the populations
of the watermark accuracy of clean and watermarked
models are not normally distributed, we can still reject
the null hypothesis H0 for a 0.05 significance level, which
indicates that our watermarking method is also valid for
the watermark accuracy of non-Gaussian distribution.

4. Evaluation

We run the experiments on a remote server with one
NVIDIA 1080 Ti GPU with 32GB RAM. We use PyTorch,
and each experiment is repeated ten times.

Dataset. For the graph classification task, we use three
publicly available real-world graph datasets (one chemical
dataset and two discussion datasets): (i) NCI1 [34] - a
subset of the dataset consisting of chemical compounds
screened for activity against non-small cell lung cancer,
(ii) COLLAB [60] - a scientific collaboration dataset,
derived from three public collaboration datasets, and (iii)
REDDIT-BINARY [60] - a dataset consisting of graphs
corresponding to online discussions on Reddit. For the

6. https://math.usask.ca/∼laverty/S245/Tables/wmw.pdf

node classification task, we use two real-world datasets:
(i) Cora [40] and (ii) CiteSeer [40]. These two datasets
are citation networks in which each publication is de-
scribed by a binary-valued word vector indicating the ab-
sence/presence of the corresponding word in the collection
of 1, 433 and 3, 703 unique words, respectively. Table 2
shows the statistics of all considered datasets.

Dataset splits and parameter setting. For each graph
classification dataset, we sample 2/3 as the training data
and the rest as the test data. We set the watermark graph
size as γ fraction of the graph dataset’s average number
of nodes. We then sample or generate an r fraction of
the training data (with an un-target label) to embed the
generated watermark. For each node classification dataset,
we use 20% of total nodes as the training data. We set
the size of the feature watermark to l and then sample r
fraction of the training data to embed the generated feature
watermark. The comparison of watermarking performance
under different variants is shown in Section 4.1.

Models. We use three state-of-the-art GNN models
for the graph classification task: DiffPool [62], GIN [57],
and GraphSAGE [19]. For the node classification task,
we use GCN [23], GAT [48], and GraphSAGE [19] as the
host models. The hyperparameters for the neural networks
(Table 22 in Appendix C)) are commonly used, see [55],
[57], [62].

Metrics. The main purpose of our watermarking
framework is to verify the ownership of the suspicious
GNN model successfully. According to the statistical anal-
ysis in Section 3.4, we can guarantee that our watermark-
ing method can successfully verify the ownership of the
suspicious models. Specifically, based on the watermark
accuracy distribution of our watermarked models and
clean models, we can calculate a threshold of watermark
accuracy for each dataset and model to ensure a low FPR
and FNR, i.e., less than 0.0001, as shown in Tables 3
and 4 for graph classification task and node classification
task, respectively. In Table 3, Dt

wm is the watermarked
data generated by embedding a watermark into sampled
training data, while Dr

wm is the watermarked data gener-
ated by embedding a watermark into the generated random
graphs. From Table 3, the watermark accuracy threshold
of the second strategy is obviously higher than the first
strategy. It can be explained that, in the first strategy,
the clean model will likely classify the watermarked data
into the original label since it is generated based on the
training data, and the clean model does not learn the wa-
termark pattern. In the second strategy, the watermarked
data is generated based on random graphs, and the clean
model is likely to classify it uniformly at random. Thus,
the watermark accuracy of the clean models in the first
strategy is nearly 0%, and that in the second strategy is
around 1/C (C is the number of classes). As a result,
the watermark accuracy of the watermarked models in the
second strategy should be higher than the first strategy to
ensure the distinguishable difference between the water-
marked models and the clean models. The dataset with
more classes (COLLAB) has a lower threshold than the
other datasets (i.e., two classes), as shown in Table 3. Once
the watermark accuracy threshold is defined, we send
queries of generated watermarked data to the suspicious
model m

′
. If the watermark accuracy of the suspicious

model is over the corresponding threshold, we can reach

1184

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 12:03:25 UTC from IEEE Xplore. Restrictions apply.

TABLE 1: Watermark accuracy of the watermarked and clean models on NCI1 with DiffPool (n = 10).

Models Watermark Accuracy (%)
Clean 0.70 6.49 4.27 9.77 14.85 7.43 1.59 5.71 14.09 10.94

Watermarked 94.98 94.88 99.32 92.67 92.11 99.73 99.58 89.52 99.78 97.50

TABLE 2: Datasets statistics.

Datasets # Graphs Avg. # nodes Avg. # edges Classes

NCI1 4, 110 29.87 32.30 2
COLLAB 5, 000 74.49 2, 457.78 3

REDDIT-BINARY 2, 000 429.63 497.75 2

Cora 1 2, 708 5, 429 7
CiteSeer 1 3, 327 4, 608 6

TABLE 3: Watermark accuracy threshold for each dataset
and model on the graph classification task.

Dataset
Watermark Acc. Threshold (%) (Dt

wm | Dr
wm)

DiffPool GIN GraphSAGE

NCI1 53.5|72.0 44.0|76.5 45.50|75.5
COLLAB 47.0|63.0 44.5|62.5 50.5|65.5
REDDIT-

49.5|71.0 46.5|68.0 48.5|76.0
BINARY

the conclusion that the suspicious model is stolen or
developed from the host model.

Besides a good performance on the ownership verifi-
cation task, a well-designed watermarking method should
have only slight side effects on the host model’s original
task. Thus, we check whether our watermarking frame-
work reduces the performance of the watermarked GNN
model on its original task. We compare watermarked and
clean models’ accuracy on the normal test data.

4.1. Experimental Results

Graph classification. As discussed in Section 3.2,
there are two strategies for generating watermarked data
Dwm. For each strategy, three parameters (watermarking
rate r, watermark graph size n, and watermark graph
density p) will affect the generated watermarked data
and the final watermarking performance. The watermark
accuracy of different datasets and models with different
variants (r, n, p) is shown in Figure 2. In Figure 2, the
watermark accuracy of the second watermarked data gen-
eration strategy is generally higher than the first strategy,
which means the watermark pattern in the random graphs
is more likely to be successfully learned by the model.
In the first strategy, the original feature pattern in the
graph may influence the learning of the watermark pattern,
whereas, in the second strategy, embedding the watermark
in random graphs can reduce this influence as it is the only
important feature in the graph.

TABLE 4: Watermark accuracy threshold for each dataset
and model on the node classification task.

Dataset
Watermark Accuracy Threshold (%)
GCN GAT GraphSAGE

Cora 50.0 51.0 48.0
CiteSeer 53.0 48.0 49.5

From Figure 2a, for both datasets, with the increase of
the watermarking rate, the watermark accuracy of all three
models based on the first strategy is generally increasing,
as well as for the second strategy. Indeed, with a higher
watermarking rate, more training data will be embedded
with the watermark so that the host model can learn the
watermark pattern better. However, even with the lowest
watermarking rate, the watermark accuracy on all models
and datasets is higher than the threshold in Table 3,
indicating that the model owner can use a very small
watermarking rate, e.g., 0.01 to watermark the models.
From Figure 2b, in terms of watermark graph size from
γ = 0.1 to γ = 0.20, the watermark accuracy of all
three models and datasets gradually increases, and then
there is no significant increase (even slight decrease in
some cases, e.g., REDDIT-BINARY) from γ = 0.20 to
γ = 0.25. When the watermark graph gets larger, it is
intuitive that the model can learn the watermark pattern
easier and better. With continuous growth in the size of
the watermark graph, there may not be enough model
capacity to learn the watermark pattern. From Figure 2c,
for the NCI1 and REDDIT-BINARY datasets, the wa-
termark accuracy grows slightly with the increase in the
edge existence probability of the watermark graph. For the
COLLAB dataset, the watermark accuracy first decreases
for the range p = 0.2 to p = 0.5 and then increases. The
reason may be that when the watermark graph density is
farther away from the graph density of the dataset, the
trained model is more likely to recognize the watermark
graph successfully. The watermark accuracy is the lowest
when p = 0.5 for the COLLAB dataset, which has a
density of 0.5089. Moreover, there is no apparent increase
for the other two datasets, which have a density of 0.0889
and 0.0218, respectively.

Based on the analysis of the results in Figure 2
and the later experimental results about the impact of
watermarking GNNs on the original task, we set the
parameters for the graph classification task as follows:
r = 0.15, γ = 0.2, p = 1.0. Specifically, Table 5 shows
the watermark accuracy of model mw for the graph
classification task with the selected parameters. For the
binary-class datasets (NCI1 and REDDIT-BINARY), the
accuracy on Dt

wm is around 90% while that of COLLAB
is around 80%. This can be explained since COLLAB is
a multi-class dataset, and it requires more model capacity
to learn the features of each class so that the model has
fewer redundant neurons to learn the watermark pattern
compared to the other datasets. The watermark accuracy
on Dr

wm can mostly reach around 95% for all datasets.

Node classification. For the node classification task,
the generated watermarked data is decided by two param-
eters (watermarking rate r and feature watermark length
l). The watermark accuracy of three GNN models, i.e.,
GCN, GAT, and GraphSAGE, for the node classification
task is shown in Figure 3. From Figure 3a, for all datasets
and models, the watermark accuracy has a dramatic rise

1185

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 12:03:25 UTC from IEEE Xplore. Restrictions apply.

(a) different watermarking rate r (γ = 0.2, p = 1.0)

(b) different fraction of average nodes γ (r = 0.15, p = 1.0)

(c) different edge existence probability p (r = 0.15, γ = 0.2)

Figure 2: Watermark accuracy on graph classification
task (DiffPool (left), GIN (center), GraphSAGE (right),
T: first watermarked data generation strategy, R: second
watermarked data generation strategy).

TABLE 5: Watermark accuracy for graph classification
task (r = 0.15, γ = 0.2, p = 1.0).

Dataset
Watermark Accuracy (%) (Dt

wm | Dr
wm)

DiffPool GIN GraphSAGE

NCI1 96.01|94.92 89.41|94.27 92.57|97.28
COLLAB 84.05|96.83 84.54|93.45 83.17|97.77

REDDIT-BINARY 90.43|97.01 87.57|95.81 98.02|97.61

(a) different watermarking rate r

(b) different watermark length l

Figure 3: Watermark accuracy on node classification task
(GCN (left), GAT (center), GraphSAGE (right)).

with r ranging from 0.01 to 0.1 and a slight increase
when r is in the range of [0.1, 0.15]. From Figure 3b, for

TABLE 6: Watermark accuracy for the node classification.

Dataset
Watermark Accuracy (%)

GCN GAT GraphSAGE

Cora 97.56 96.23 97.15
CiteSeer 98.05 97.73 99.22

the GCN and GAT models, there is a significant increase
between l = 5 and l = 20 and when l continues rising to
l = 50, there is no obvious effect for both datasets. For
the GraphSAGE model, the watermark accuracy gradu-
ally increases from l = 5 to l = 35 and stays steady.
This is expected since, with more nodes embedded in
the feature watermark, the GNN model can learn the
watermark pattern better. Additionally, the GNN model
can better memorize the watermark pattern with a larger
watermark. However, there is a decrease in the watermark
accuracy for all datasets, as shown in Figure 3b. We
believe this is because when the watermark size gets
too large, e.g., l = 50, the GNN model does not have
adequate capacity left to learn the watermark pattern well.
Moreover, for watermarks with a watermark length of
less than 35, the watermark accuracy for GCN and GAT
models is higher than the GraphSAGE model, indicating
that GCN and GAT models learn small watermarks better
than the GraphSAGE model. Since transductive learning
has the advantage of being able to directly use training
patterns while deciding on a test pattern [4], it is easier
for the GCN and GAT models (under transductive learning
setting) to learn the watermark pattern of specific size
than for the GraphSAGE model (under inductive learning
setting). Considering the results in Figures 3 and 6 (which
will be further analyzed later), we set the parameters for
the node classification task as follows: r = 0.15, l = 20
for the GCN and GAT models, and r = 0.15, l = 35
for the GraphSAGE model. Table 6 shows the watermark
accuracy of three models for the node classification task
with the selected parameters.

We also compare our watermarking mechanism on
node classification with the state-of-the-art [68], as shown
in Figure 4. With the increasing watermarking rate, the
watermark accuracy in that work declines to 79% and
38% for Cora and CiteSeer, respectively. Contrarily, in
our watermarking method, the watermark accuracy keeps
increasing to 100% for both datasets. The decline of
watermark accuracy is consistent and explained in [68].
Thus, our watermarking method can achieve similar or
higher watermark accuracy than the state-of-the-art.

Figure 4: Comparison between our method (left) and [68]
(right) on GraphSAGE model (inductive learning setting).

Impact on the original task. To measure the im-

1186

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 12:03:25 UTC from IEEE Xplore. Restrictions apply.

pact of our watermarking mechanism on the watermarked
model’s original task, we measure the accuracy of models
on the normal test data. The test data is not used to train
the host model. Figures 5 and 6 illustrate the testing accu-
racy of models with and without embedding watermarks
under different variants for graph and node classification
tasks, respectively. We use the testing accuracy of the
clean model as the baseline, i.e., if the testing accuracy of
the watermarked model is close to the baseline, we can
confirm that our watermarking mechanism will not affect
the watermarked model’s original task. From Figure 5,
for all three models and datasets, the testing accuracy of
the second watermarked data generation strategy is always
much closer to the baseline than the first strategy, which
means the second strategy has less impact on the model’s
original task. In the first strategy, the watermarked data
is generated by embedding a watermark into sampled
training data, so it is possible to embed a watermark
into a graph structure, which has a critical effect on the
final prediction. As a result, the watermarking process of
the first strategy will probably affect the parameters in
the networks used for the original task. In the second
strategy, random graphs are used as the watermark carrier
data, so the model will try to explore redundancy in the
network capacity to learn the watermark pattern while
not affecting the original task. On the other hand, in the
second approach, the watermark is embedded via random
graphs without affecting the distribution of the original
training dataset. Therefore, it has fewer side effects than
the first approach.

For node classification (Figure 6), the watermarking
rate has a negligible impact on the testing accuracy, while
when the watermark length is larger than 20, there is
a significant reduction in the testing accuracy for GCN
and GAT models. For GraphSAGE, the testing accuracy
fluctuates with the increase in watermark length. Referring
to the watermark accuracy in Figure 3b, one possible
reason is that if the watermark size continuously increases,
the model’s redundant capacity will be fully occupied,
and the model will use some neurons originally for the
main task to keep high watermark accuracy. Thus, the
testing accuracy for GCN and GAT decreases when the
watermark length is larger than 20. For GraphSAGE, the
testing accuracy does not reduce significantly because
the GraphSAGE model has more redundant neurons than
the other two models. Tables 7 and 8 show the testing
accuracy with the selected parameters for graph and node
classification tasks, respectively. For the graph classifica-
tion task, the testing accuracy of the first strategy is about
3% less than that of the second strategy. There is less than
1% clean accuracy drop for the node classification task.

Impact of adaptive attacker. In our threat model,
we assume that the watermarking-relevant data (the water-
marked data and the hyperparameters used to generate it)
is securely stored after the training, which can be achieved
through cryptographic techniques. Additionally, to the best
of our knowledge, there is no work on reversing back-
door triggers in GNNs, meaning that the attackers cannot
retrieve our watermarked data from the provided model.
Thus, we consider it safe to assume our watermarked data
is a secret that the adversaries have no access to, like
the private key in encryption schemes. Nonetheless, we
explore the performance of our watermarking mechanism

(a) different watermarking rate r (γ = 0.2, p = 1.0)

(b) different fraction of average nodes γ (r = 0.15, p = 1.0)

(c) different edge existence probability p (r = 0.15, γ =
0.2)

Figure 5: Testing accuracy on graph classification task
(DiffPool (left), GIN (center), GraphSAGE (right), T: the
first watermarked data generation strategy, R: the second
watermarked data generation strategy).

(a) different watermarking rate r

(b) different watermark length l

Figure 6: Testing accuracy on node classification task
(GCN (left), GAT (center), GraphSAGE (right)).

against an adaptive attacker that has access to different
percentages of our watermarked data and fine-tunes the
watermarked model with the stolen watermarked data
trying to remove the watermark functionality. Assuming
the adaptive attacker steals from 0% to 100% of our wa-
termarked data, we fine-tune the previously watermarked
GNN model with the stolen watermarked data using the
original labels. The results of watermarking performance
with different stolen watermarked data rates for the graph
and node classification tasks are shown in Figure 7 and 8,
respectively. For graph classification, gradually, with the
increase of the stolen watermarked data rate, the water-
mark accuracy decreases significantly, i.e., reducing to

1187

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 12:03:25 UTC from IEEE Xplore. Restrictions apply.

TABLE 7: Testing accuracy for graph classification task
(r = 0.15, γ = 0.2, p = 1.0).

(a) NCI1

Testing Accuracy (%) DiffPool GIN GraphSAGE

Clean Model 77.09 78.71 75.46
Dt

wm 74.80 75.18 72.01
Dr

wm 77.85 77.80 74.79

(b) COLLAB

Testing Accuracy (%) DiffPool GIN GraphSAGE

Clean Model 80.56 81.27 79.91
Dt

wm 77.86 78.96 77.09
Dr

wm 80.71 81.63 79.88

(c) REDDIT-BINARY

Testing Accuracy (%) DiffPool GIN GraphSAGE

Clean Model 86.30 87.65 77.23
Dt

wm 83.11 83.73 74.71
Dr

wm 86.55 87.08 77.95

TABLE 8: Testing accuracy for the node classification.

Dataset
Testing Accuracy (%) (CleanModel|Dt

wm)
GCN GAT GraphSAGE

Cora 87.21|86.82 87.94|86.98 84.04|83.88
CiteSeer 78.67|78.23 80.33|79.57 75.12|75.04

0%. There is also an obvious accuracy drop on the main
task, e.g., more than 30% decrease for DiffPool on the
NCI1 dataset. This phenomenon is known as catastrophic
forgetting in fine-tuning, i.e., after fine-tuning, the trained
model tends to perform poorly in the source domain [59].
Thus, it is difficult for the watermarked GNN model to
unlearn the watermark functionality without influencing
the main task, which can also be observed in [9]. In
contrast, for node classification (Figure 8), the watermark
accuracy drops dramatically with more than 10% stolen
watermarked data while the testing accuracy stays steady.
This can be explained since, in node classification, we
insert the watermark only to the feature vector, while in
graph classification, the watermark also alters the graph
structure. Thus, the watermark pattern in node classifica-
tion contains less information, and it is easier to remove it
from the trained model without affecting the performance
on the main task. We believe the performance difference in
watermark unlearning through fine-tuning between graph
and node classification tasks is an interesting finding, and
we plan to investigate it in the future.

4.2. On the Watermarking Requirements

Next, we explain the well-known watermarking re-
quirements for neural networks [5] and how our water-
marking framework achieves them.

Robustness: resistance of the watermarking against
the modifications that can be caused by malicious pertur-
bations7 or benign processing. A robust GNN watermark-
ing should be recoverable even after the model has been
modified by fine-tuning and network pruning. As shown
in Section 5, our watermarking model achieves robustness
against the modifications in the model.

7. In [28], this is separately defined as the security requirement.

(a) watermark accuracy

(b) testing accuracy

Figure 7: Watermarking performance for different stolen
watermarked data rates on graph classification task (Diff-
Pool (left), GIN (center), GraphSAGE (right)).

(a) watermark accuracy (b) testing accuracy

Figure 8: Watermarking performance for different stolen
watermarked data rates on node classification (Graph-
SAGE).

Fidelity: maintaining the quality of the watermarked
object while watermarking. A GNN watermarking model
satisfies the fidelity requirement if it does not significantly
degrade the performance of the GNN model. Our experi-
mental results presented in Tables 7 and 8 show that our
watermarking (with random graphs) on graph classifica-
tion and node classification tasks leads to a smaller than
1% decrease on the accuracy of the original task. Detailed
discussion is given in Section 4.1.

Capacity: the watermark’s capability to carry infor-
mation, and two watermarking schemes, zero-bit, and
multi-bit, are distinguished by it [5]. Our work applies
zero-bit watermarks because they do not carry additional
information, such that they solely serve to indicate the
presence or the absence of the watermark in a model.

Integrity: the correct classification of the watermark-
ing. A GNN watermarking mechanism satisfying integrity
should have low FPR and FNR.8 The false positive re-
quirement states that a benign model not copied from
the watermarked GNN model should not be seen as a
malicious copy. The false negative implies that a malicious
copy of the watermarked GNN model should be classified
as a copy. As mentioned in Sections 3.4 and 4, we select a
watermark accuracy threshold for each dataset and model
to make sure the FPR and FNR are less than 0.0001.

8. In [28], the false negative case is the reliability requirement.

1188

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 12:03:25 UTC from IEEE Xplore. Restrictions apply.

Generality: the generalization of the watermarking
method. A GNN watermarking would have generality if
it is not tailored to a specific model but can be applied to
other architectures or models. Our watermarking method
has been evaluated in several state-of-the-art GNN models.
In addition, our watermarking method does not depend on
the architectures of the GNN models and can be applied
to any other GNN models and graph datasets.

Efficiency: the overhead required for embedding and
verifying a watermark into an object. An efficient GNN
watermarking model should not add too much computa-
tional cost by adding the watermark. In our watermarking
method, according to the watermark embedding algo-
rithm 1 and the watermarking rate we set, the overhead in
embedding a watermark into a GNN model is retraining
a clean GNN model with 30% or 15% of the original
training data. The overhead in verifying the watermark is
the number of the watermarked data related to the water-
marking rate, i.e., between 0.01 and 0.15. As explained
in Section 4.1, in our watermarking method, the model
owners can use low watermarking rates, e.g., 0.01, to
watermark their models.

In [5], the authors also defined secrecy property con-
cerning the detectability of the presence of the watermark.
This property is out of scope for our watermarking frame-
work because we expect our watermarking mechanism
still works even if the adversaries know the existence of
the watermark. Nevertheless, the watermark itself should
be secret to the adversaries.

5. Robustness Against Backdoor Defenses

Our watermarking method is based on backdoor at-
tacks. If attackers suspect the model is protected by a
watermark based on backdoor attacks, they would like to
use backdoor removal techniques (defenses) to remove the
backdoor, i.e., our watermark. Consequently, it is intuitive
here to explore whether our watermarking method is resis-
tant to state-of-the-art defenses against backdoor attacks.
The state-of-the-art defenses against backdoor attacks can
be summarized in four categories: input reformation, input
filtering, model sanitization, and model inspection [36].
NeuralCleanse (NC) [49] is the most representative de-
fense in the model inspection defense category. However,
it is not feasible to be applied in this work because (1)
NC requires a large number of input samples to achieve
good performance [30] while in our work, the plagiarizer
has no access to the training data, and (2) NC cannot
reverse engineer large triggers [14], [30], [58], while in
our work, ideally, there is no restriction on the water-
mark size. Similarly, as one of the most representative
defenses in the input filtering defense category, Activation-
Clustering (AC) [7] is not applicable because it requires
access to poisoned training data to remove the backdoor,
but in our setting, the plagiarizer has no knowledge of
the watermarked data. On the other hand, Randomized-
Smoothing (RS) [11] (input reformation defense) can be
applied because it can only reform the input samples
without the requirement of knowledge of watermarked
data. Three model modifications (i.e., fine-tuning, model
pruning, and fine-pruning), which can be categorized into
the model sanitization defenses, are also applied in our
work to explore the robustness of our watermarked model.

Next, we investigate the robustness of our water-
marked model against a state-of-the-art model extraction
technique: knowledge distillation and four state-of-the-art
defenses against backdoor attacks: randomized subsam-
pling, fine-tuning, pruning, and fine-pruning.

Robustness against knowledge distillation. Knowl-
edge distillation aims at transferring knowledge from a
teacher model to a student [13]. It has been used in
the model extraction attacks where the teacher model is
the victim model, and the student model is the stolen
extracted model [46]. Here, we suppose the plagiarizer
applies knowledge distillation to extract the knowledge
from the host model to train the plagiarized model, and
we explore the robustness of our watermarking method
against this attack. Specifically, we follow the offline
distillation strategy in [17] since the host model is pre-
trained. We assume the student model has the same model
structure as the teacher model, and we use half of the test
data to be the training data for the knowledge distillation.9

We evaluate the distilled model, i.e., the student model,
with the second half of the test data.

Tables 9 and 10 show the watermark accuracy and
testing accuracy of the model after knowledge distillation
on the graph classification task. We can observe that the
watermark accuracy decrease is less than 3.25% for two
watermarked data generation strategies, for all datasets
and models, except 4.99% decline for the NCI1 dataset
with the GIN model. As for the testing accuracy, we
see that knowledge distillation has little impact on the
model’s original task. For the node classification task, the
watermarking performance after the knowledge distillation
is shown in Table 11. As we can see, the watermark
accuracy after the knowledge distillation even increases a
little on the node classification task. Since the knowledge
distillation can improve the generalization of the student
model [43], it may reduce the overfitting in the original
model. Moreover, the testing accuracy decreases negligi-
bly except for CiteSeer with the GAT and GraphSAGE
models. One possible explanation is that in our work, the
GAT and GraphSAGE models are more complex than
GCN, so it is more difficult for these two models to
transfer the knowledge completely from the teacher model
to the student model. Based on the observations above,
we can claim that knowledge distillation can transfer the
knowledge of the host model on the original task to the
student model successfully. Still, it can also transfer the
watermarking function, which means our watermarking
mechanism is robust against knowledge distillation.

TABLE 9: Accuracy on watermarked data after knowledge
distillation for graph classification task (r = 0.15, γ =
0.2, p = 1.0).

Dataset
Watermark Accuracy (%) (Dt

wm|Dr
wm)

DiffPool GIN GraphSAGE

NCI1 92.99|93.88 87.90|89.28 90.36|96.27
COLLAB 83.11|95.87 82.66|92.75 80.77|94.54

REDDIT-BINARY 87.74|96.92 89.71|97.45 97.53|97.67

Robustness against fine-tuning. As discussed be-
fore, training a well-performed GNN model from scratch

9. We assume that the plagiarizer has access to the testing data aiming
to explore the robustness of our method under a strong adversary.

1189

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 12:03:25 UTC from IEEE Xplore. Restrictions apply.

TABLE 10: Testing accuracy after knowledge distillation
for graph classification task (r = 0.15, γ = 0.2, p = 1.0).

Dataset
Testing Accuracy (%) (Dt

wm|Dr
wm)

DiffPool GIN GraphSAGE

NCI1 75.92|77.30 78.50|78.88 76.83|76.46
COLLAB 76.18|80.79 77.67|81.09 75.08|79.60

REDDIT-BINARY 83.63|86.35 83.82|87.54 77.65|78.25

TABLE 11: Watermarking performance after knowledge
distillation on the node classification task.

Dataset
Watermark Accuracy (%) | Testing Accuracy (%)

GCN GAT GraphSAGE

Cora 99.64|88.22 98.98|86.28 99.23|82.19
CiteSeer 99.51|78.26 99.59|73.65 99.30|73.54

requires a large amount of training data and powerful
computing resources. Fine-tuning is a practical attack on
GNNs since it can be used to apply existing state-of-the-
art models to other but similar tasks with less effort than
training a network from scratch when sufficient training
data is not available [63]. Therefore, fine-tuning is likely
to be used by a suspect to train a new model on top of the
stolen model using only a small amount of training data.

In this experiment, for each dataset, we use half of the
test data to fine-tune the previously trained watermarked
GNN model, and the second half is used to evaluate
the new model. Then, we use the watermark accuracy
to determine whether the watermark embedded in the
previously trained GNN model stayed effective in the
new model. Additionally, the testing accuracy is used to
evaluate the performance of the newly trained model on
its original task. Tables 12 and 13 show the watermark
accuracy and testing accuracy of the model after fine-
tuning for the graph classification task. Comparing the
results from Tables 5 and 12, we can see that fine-
tuning does not significantly reduce (less than 4.65%) the
watermark accuracy for all datasets and models. Triggers
rarely appear in the fine-tuning dataset; consequently,
the backdoor functionality will not be eliminated [67].
As for the testing accuracy, from Tables 7 and 13, we
can observe that after fine-tuning, the embedded water-
mark in the model still has only a slight effect on the
model’s original task. For the node classification task,
fine-tuning is not feasible for transductive learning-based
GNN models because, once the training data change, the
model should be retrained from scratch. Thus, we show
here the results for the GraphSAGE model (inductive
learning) for the node classification task, as shown in
Table 14, and the observations are similar to that for the
graph classification task. To compare our watermarking
mechanism with the state-of-the-art [68], we also present
the watermark performance for the method in [68] after
fine-tuning in Table 14. As we can observe, our method
achieves higher watermark accuracy after fine-tuning than
the state-of-the-art, e.g., more than 10% higher on the
CiteSeer dataset. Regarding the testing accuracy after fine-
tuning, the difference between our method and [68] is less
than 0.5% for both datasets.

Robustness against model pruning. Model pruning
is a technique to develop a neural network model that is

TABLE 12: Watermark accuracy after fine-tuning for
graph classification task (r = 0.15, γ = 0.2, p = 1.0).

Dataset
Watermark Accuracy (%) (Dt

wm|Dr
wm)

DiffPool GIN GraphSAGE

NCI1 94.00|93.69 88.71|89.64 91.92|97.17
COLLAB 83.71|96.50 82.96|91.83 80.48|94.11

REDDIT-BINARY 87.61|96.78 90.11|97.87 98.68|97.90

TABLE 13: Testing accuracy after fine-tuning for graph
classification task (r = 0.15, γ = 0.2, p = 1.0).

Dataset
Testing Accuracy (%) (Dt

wm|Dr
wm)

DiffPool GIN GraphSAGE

NCI1 73.61|77.15 75.05|77.84 71.92|74.89
COLLAB 76.10|80.67 77.63|80.92 75.93|78.31

REDDIT-BINARY 82.10|86.20 80.63|86.89 73.82|77.85

TABLE 14: Watermarking performance of GraphSAGE
model after fine-tuning on the node classification task.

Dataset
Watermark Accuracy (%) Testing accuracy (%)

Ours [68] Ours [68]

Cora 98.51 97.84 84.39 84.51
CiteSeer 99.45 86.36 75.10 75.41

smaller and more efficient by setting some parameters to
zero while maintaining the performance on the primary
task [64]. We apply the pruning algorithm used in [47],
which prunes the parameters whose absolute values are
very small. Specifically, for all the watermarked models,
we remove a certain number of parameters with the small-
est absolute values by setting them to zero. The ratio
between the number of pruned parameters and the total
number of parameters is the pruning rate (here from 10%
to 90%). Then, we measure the watermark and the testing
accuracy of the pruned watermarked model.

Tables 15 and 16 present the watermarking perfor-
mance after model pruning on the graph and node classi-
fication tasks, respectively. We take the results for NCI1
and Cora as examples (the results of other datasets are
shown in Appendix D.1). For the NCI1 dataset, even
when 40% of the parameters are pruned, our watermarked
model still has a high watermark accuracy, i.e., less than
1% drop in all models. Especially for the GraphSAGE
model, there is only a 0.68% drop even though 70% of
the parameters are pruned. We can also observe that when
90% of the parameters are pruned, the watermark accuracy
drops dramatically for all models, e.g., it drops to less than
10% for the DiffPool model. We also notice that in this
case, there is a significant testing accuracy drop for the
model (more than 20%), which means the plagiarizer has
to take the expense of dramatically degrading the model’s
performance on the original task to eliminate our water-
mark. As for the Cora dataset, the watermark accuracy
decreases gradually, as well as the testing accuracy for
GCN and GAT models. For the GraphSAGE model, model
pruning also leads to a more obvious watermark accuracy
drop, i.e., more than 60%, as well as an apparent testing
accuracy drop (more than 10%). Thus, our watermarking
mechanism is generally robust to model pruning. The
plagiarizer can only eliminate our watermarks with the
cost of a considerable accuracy drop in the main task.

1190

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 12:03:25 UTC from IEEE Xplore. Restrictions apply.

TABLE 15: Watermarking performance on graph classification task after model pruning (NCI1).

Pruning
DiffPool GIN GraphSAGE

Test Acc. Watermark Acc. Test Acc. Watermark Acc. Test Acc. Watermark Acc.
rate (Dt

wm|Dr
wm) (Dt

wm|Dr
wm) (Dt

wm|Dr
wm) (Dt

wm|Dr
wm) (Dt

wm|Dr
wm) (Dt

wm|Dr
wm)

10% 77.77%|77.86% 95.52%|95.40% 78.21%|77.81% 89.96%|90.38% 74.66%|74.83% 93.06%|97.65%
20% 77.72%|77.84% 95.47%|95.26% 77.79%|77.62% 89.82%|90.51% 74.77%|74.46% 92.83%|97.68%
30% 77.61%|77.69% 94.70%|95.48% 77.24%|76.95% 89.41%|90.63% 73.56%|73.93% 92.78%|97.55%
40% 76.79%|77.25% 94.68%|95.36% 72.93%|71.76% 89.33%|90.50% 73.32%|72.36% 92.71%|97.47%
50% 70.77%|74.71% 86.89%|95.21% 63.34%|61.31% 83.96%|90.23% 70.08%|70.12% 92.58%|97.54%
60% 60.17%|66.46% 68.92%|84.61% 57.60%|56.66% 76.53%|88.43% 61.62%|62.71% 92.65%|97.45%
70% 52.46%|55.14% 34.31%|75.71% 56.39%|52.79% 73.90%|89.45% 53.58%|52.91% 92.38%|97.48%
80% 50.66%|51.35% 7.58%|60.71% 54.11%|51.55% 62.71%|88.65% 50.26%|51.10% 89.17%|97.45%
90% 50.66%|50.36% 7.58%|51.00% 52.00%|50.47% 58.77%|89.54% 49.67%|49.07% 76.90%|82.74%

TABLE 16: Watermarking performance on node classification task after model pruning (Cora).

Pruning rate
GCN GAT GraphSAGE

Test Acc. Watermark Acc. Test Acc. Watermark Acc. Test Acc. Watermark Acc.
10% 86.51% 99.51% 85.23% 97.05% 83.40% 99.62%
20% 86.49% 98.50% 85.22% 96.80% 83.37% 99.58%
30% 86.24% 98.27% 85.26% 96.46% 83.24% 99.23%
40% 85.68% 98.20% 85.24% 95.80% 82.45% 98.12%
50% 83.63% 97.39% 85.29% 95.55% 82.35% 98.08%
60% 82.60% 97.14% 85.28% 94.80% 80.94% 98.04%
70% 82.52% 96.70% 85.25% 93.69% 80.37% 71.48%
80% 82.41% 96.40% 85.19% 93.46% 78.20% 42.48%
90% 82.20% 90.64% 84.97% 93.30% 72.00% 34.64%

Robustness against randomized subsampling. Ran-
domized smoothing [11] is a state-of-the-art technique
for building robust machine learning. For binary data, a
randomized smoothing method based on randomized sub-
sampling can achieve promising certified robustness [64].
Here, we explore the robustness of our watermarking
method against randomized subsampling [55]. In particu-
lar, we apply a subsampling function over a given graph
G to create a set of subsampled graphs Gs1 , Gs2 , . . . , Gsn
by keeping some randomly subsampled nodes in G and
removing the remaining nodes. We then feed the sub-
sampled graphs to the watermarked model and take a
majority voting of the predictions over such graphs as G’s
final prediction. In the randomized subsampling technique,
there is an important parameter β (subsampling ratio)
that specifies the randomization degree. For example, if
β = 0.2, for the graph classification task, we randomly
keep 20% of G’s nodes and remove the rest of the nodes,
and for the node classification task, we randomly keep
the 20% of the nodes’ features in the graph and set the
remaining features to 0. Similar to [55], in this paper, the
randomized subsampling is only used to work on graphs
instead of training smoothed models (thus, we use it to
make robust samples). Figures 9 and 10 show the water-
marking performance with different subsampling ratios in
the graph classification task and the node classification
task, respectively. We see that for the graph classification
task, a decrease of β decreases the watermark accuracy,
and in most cases, the testing accuracy is significantly
lower than the clean model’s. For the node classification
task, the reduction of the subsampling ratio leads to a
significant drop in watermark accuracy, but the testing
accuracy is still close to the clean model. Therefore,
randomized subsampling is not effective in attacking our
watermarking mechanism for the graph classification task,
as the penalty in the testing accuracy is unacceptable.

However, it is effective for the node classification task.

(a) watermark accuracy

(b) testing accuracy

Figure 9: Watermarking performance for different subsam-
pling ratios on graph classification task (DiffPool (left),
GIN (center), GraphSAGE (right), T: first watermarked
data generation strategy, R: second watermarked data gen-
eration strategy).

Robustness against fine-pruning. Fine-pruning is an
effective defense against backdoor attacks on deep neural
networks, combining two promising defenses, pruning and
fine-tuning [29]. As shown in the results for the two
defenses above, i.e., fine-tuning and pruning, neither is
sufficient to eliminate the watermarking function. There-
fore, we assume the plagiarizer applies fine-pruning, a
more effective defense, to train a new model on top of the
stolen model. We follow the settings in the experiments of
two defenses before, i.e., model pruning and fine-tuning.
The pruning ratio is set from 10% to 90%. We also take
the results for NCI1 and Cora as examples, as shown

1191

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 12:03:25 UTC from IEEE Xplore. Restrictions apply.

TABLE 17: Watermarking performance on graph classification task after fine-pruning (NCI1).

Pruning
DiffPool GIN GraphSAGE

Test Acc. Watermark Acc. Test Acc. Watermark Acc. Test Acc. Watermark Acc.
rate (Dt

wm|Dr
wm) (Dt

wm|Dr
wm) (Dt

wm|Dr
wm) (Dt

wm|Dr
wm) (Dt

wm|Dr
wm) (Dt

wm|Dr
wm)

10% 81.32%|77.20% 95.69%|95.44% 82.32%|79.18% 90.24%|90.61% 74.96%|75.71% 93.46%|97.92%
20% 81.00%|77.43% 94.46%|92.10% 82.01%|79.12% 90.19%|89.45% 75.00%|75.51% 93.39%|97.29%
30% 81.16%|77.52% 93.46%|88.64% 81.57%|78.99% 90.07%|89.46% 74.58%|75.50% 92.79%|97.62%
40% 80.35%|77.43% 93.38%|88.44% 81.12%|79.06% 90.05%|89.54% 73.74%|75.43% 92.90%|97.02%
50% 79.20%|77.58% 89.78%|87.61% 80.10%|78.98% 90.14%|89.32% 72.37%|75.66% 92.71%|96.80%
60% 76.83%|77.48% 88.36%|86.80% 78.93%|78.92% 90.03%|89.17% 68.01%|75.17% 93.10%|96.75%
70% 75.14%|77.48% 88.10%|83.30% 75.74%|78.70% 89.89%|89.10% 61.86%|74.25% 92.66%|96.82%
80% 69.73%|77.20% 81.67%|82.87% 72.01%|77.78% 89.93%|89.30% 55.62%|73.95% 93.05%|96.77%
90% 66.71%|75.21% 67.42%|82.45% 66.93%|75.89% 82.64%|83.06% 50.71%|66.37% 92.91%|73.55%

(a) watermark accuracy

(b) testing accuracy

Figure 10: Watermarking performance for different sub-
sampling ratios on node classification task (GCN (left),
GCN (center), GraphSAGE (right)).

TABLE 18: Watermarking performance on the node clas-
sification task after fine-pruning (GraphSAGE).

Pruning rate
Cora CiteSeer

Test Acc. Watermark Acc. Test Acc. Watermark Acc.
10% 84.04% 99.70% 72.12% 99.27%
20% 83.45% 99.83% 71.37% 99.49%
30% 83.06% 99.53% 71.00% 99.14%
40% 83.45% 99.23% 71.56% 99.59%
50% 83.26% 99.07% 71.93% 99.65%
60% 82.48% 98.06% 71.56% 88.96%
70% 83.06% 69.18% 71.19% 51.60%
80% 71.70% 36.24% 61.93% 16.75%
90% 64.87% 26.71% 56.55% 8.86%

in Tables 17 and 18, respectively. The results for other
datasets are presented in Appendix D.2. We can observe
that the test accuracy of the second watermarked data
generation strategy reduces slightly, which is different
from the model pruning, where the test accuracy drops
significantly. Thus, fine-pruning is a more powerful tech-
nique than model pruning for the plagiarizer to try to
steal the model while keeping the model’s performance
on the original task. As we can also see from the results
on the NCI1 dataset, with a pruning rate of 80%, the
watermark accuracy decreases less than 2% for the GIN
and GraphSAGE models. For the DiffPool model, with the
increasing of the pruning rate, the watermark accuracies
for two watermarked data generation strategies drop to
67.42% and 82.45%, respectively. Still, they are larger
than the corresponding thresholds, i.e., 53.5% and 72.0%,

respectively. As for the node classification task, based on
the explanation in the fine-tuning experiments, we show
the results for the GraphSAGE model. We can see from
Table 18 that when half of the parameters are pruned
in the fine-pruning, the drop on the watermark accuracy
is less than 1% for both datasets. With the pruning rate
continuously increasing to 70%, the watermark accuracy
decreases obviously, i.e., it drops to 69.18% and 51.60%
for Cora and CiteSeer respectively, but it is still higher
than the verification threshold. When the pruning rate is
higher than 70%, the watermark accuracy reduces below
the verification threshold, but simultaneously, the test
accuracy drops dramatically. Thus, even if the plagia-
rizer performs fine-pruning to train a new model, our
watermarking mechanism can verify the ownership of the
model.

6. Conclusions and Future Work

This paper proposed a watermarking framework for
GNNs, which includes generating watermarked data with
different strategies, embedding the watermark into the host
model through training, and verifying the ownership of the
suspicious model using previously generated watermarked
data. We designed a watermarking mechanism for two
GNN applications: the graph classification task and the
node classification task, and provided statistical analysis
for the model ownership verification results. We conducted
a comprehensive evaluation of our watermarking frame-
work on different datasets and models and demonstrated
that our method could achieve powerful watermarking
performance while having a negligible effect on the host
model’s original task. We also explored our watermarking
mechanism against an adaptive attacker who has knowl-
edge of the watermarked data. We further show that
our method is robust against a model extraction attack
and four state-of-the-art defenses for backdoor attacks:
randomized subsampling, fine-tuning, model pruning, and
fine-pruning. For future work, we are interested in explor-
ing methods that are more robust, e.g., against randomized
smoothing for the node classification task and studying
embedding watermarks into various types of GNNs be-
sides node and graph-level tasks.

References

[1] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and
Joseph Keshet. Turning your weakness into a strength: Watermark-
ing deep neural networks by backdooring. In 27th USENIX Security
Symposium (USENIX Security 18), pages 1615–1631, 2018.

1192

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 12:03:25 UTC from IEEE Xplore. Restrictions apply.

[2] Albert-László Barabási and Réka Albert. Emergence of scaling in
random networks. science, 286(5439):509–512, 1999.

[3] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. CSI
NN: reverse engineering of neural network architectures through
electromagnetic side channel. In Nadia Heninger and Patrick
Traynor, editors, 28th USENIX Security Symposium, USENIX Se-
curity 2019, Santa Clara, CA, USA, August 14-16, 2019, pages
515–532. USENIX Association, 2019.

[4] Monica Bianchini, Anas Belahcen, and Franco Scarselli. A com-
parative study of inductive and transductive learning with feedfor-
ward neural networks. In Conference of the Italian Association for
Artificial Intelligence, pages 283–293. Springer, 2016.

[5] Franziska Boenisch. A systematic review on model watermarking
for neural networks. Frontiers in big Data, 4, 2021.

[6] Anshika Chaudhary, Himangi Mittal, and Anuja Arora. Anomaly
detection using graph neural networks. In 2019 International
Conference on Machine Learning, Big Data, Cloud and Parallel
Computing (COMITCon), pages 346–350. IEEE, 2019.

[7] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Lud-
wig, Benjamin Edwards, Taesung Lee, Ian Molloy, and Biplav
Srivastava. Detecting backdoor attacks on deep neural networks
by activation clustering. arXiv preprint arXiv:1811.03728, 2018.

[8] Huili Chen, Bita Darvish Rouhani, Cheng Fu, Jishen Zhao, and
Farinaz Koushanfar. Deepmarks: A secure fingerprinting frame-
work for digital rights management of deep learning models. In
Proceedings of the 2019 on International Conference on Multime-
dia Retrieval, pages 105–113, 2019.

[9] Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias
Humbert, and Yang Zhang. Graph unlearning. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 499–513, 2022.

[10] Giorgio Ciano, Alberto Rossi, Monica Bianchini, and Franco
Scarselli. On inductive–transductive learning with graph neural
networks. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2021.

[11] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified ad-
versarial robustness via randomized smoothing. In International
Conference on Machine Learning, pages 1310–1320. PMLR, 2019.

[12] Tianshuo Cong, Xinlei He, and Yang Zhang. Sslguard: A water-
marking scheme for self-supervised learning pre-trained encoders.
In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, pages 579–593, 2022.

[13] Xiang Deng and Zhongfei Zhang. Graph-free knowledge distilla-
tion for graph neural networks. In The 30th International Joint
Conference on Artificial Intelligence, 2021.

[14] Bao Gia Doan, Ehsan Abbasnejad, and Damith C Ranasinghe.
Februus: Input purification defense against trojan attacks on deep
neural network systems. In Annual Computer Security Applications
Conference, pages 897–912, 2020.

[15] E. N. Gilbert. Random graphs. The Annals of Mathematical
Statistics, 30(4):1141–1144, December 1959.

[16] Yoav Goldberg. A primer on neural network models for natural
language processing. Journal of Artificial Intelligence Research,
57:345–420, 2016.

[17] Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng
Tao. Knowledge distillation: A survey. International Journal of
Computer Vision, 129(6):1789–1819, 2021.

[18] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton.
Speech recognition with deep recurrent neural networks. In 2013
IEEE international conference on acoustics, speech and signal
processing, pages 6645–6649. Ieee, 2013.

[19] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive repre-
sentation learning on large graphs. Advances in neural information
processing systems, 30, 2017.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–
778, 2016.

[21] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-
rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Van-
houcke, Patrick Nguyen, Tara N Sainath, et al. Deep neural
networks for acoustic modeling in speech recognition: The shared
views of four research groups. IEEE Signal processing magazine,
29(6):82–97, 2012.

[22] Hengrui Jia, Christopher A Choquette-Choo, Varun Chan-
drasekaran, and Nicolas Papernot. Entangled watermarks as a
defense against model extraction. In USENIX Security Symposium,
pages 1937–1954, 2021.

[23] Thomas N. Kipf and Max Welling. Semi-supervised classification
with graph convolutional networks. In International Conference
on Learning Representations (ICLR), 2017.

[24] Nils Kriege and Petra Mutzel. Subgraph matching kernels for
attributed graphs. arXiv preprint arXiv:1206.6483, 2012.

[25] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. Advances
in neural information processing systems, 25, 2012.

[26] Gerhard C Langelaar, Iwan Setyawan, and Reginald L Lagendijk.
Watermarking digital image and video data. a state-of-the-art
overview. IEEE Signal processing magazine, 17(5):20–46, 2000.

[27] Shaofeng Li, Minhui Xue, Benjamin Zi Hao Zhao, Haojin Zhu,
and Xinpeng Zhang. Invisible backdoor attacks on deep neural
networks via steganography and regularization. IEEE Transactions
on Dependable and Secure Computing, 18(5):2088–2105, 2020.

[28] Yue Li, Hongxia Wang, and Mauro Barni. A survey of deep neural
network watermarking techniques. Neurocomputing, 461:171–193,
2021.

[29] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-
pruning: Defending against backdooring attacks on deep neural
networks. In International Symposium on Research in Attacks,
Intrusions, and Defenses, pages 273–294. Springer, 2018.

[30] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma, Yousra
Aafer, and Xiangyu Zhang. Abs: Scanning neural networks for
back-doors by artificial brain stimulation. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications
Security, pages 1265–1282, 2019.

[31] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai,
Weihang Wang, and Xiangyu Zhang. Trojaning attack on neural
networks. In 25th Annual Network and Distributed System Security
Symposium, NDSS 2018, San Diego, California, USA, February
18-221, 2018. The Internet Society, 2018.

[32] Nils Lukas, Edward Jiang, Xinda Li, and Florian Kerschbaum. Sok:
How robust is image classification deep neural network watermark-
ing? In 2022 IEEE Symposium on Security and Privacy (SP), pages
787–804. IEEE, 2022.

[33] Henry B Mann and Donald R Whitney. On a test of whether one
of two random variables is stochastically larger than the other. The
annals of mathematical statistics, pages 50–60, 1947.

[34] Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kerst-
ing, Petra Mutzel, and Marion Neumann. Tudataset: A collection
of benchmark datasets for learning with graphs. arXiv preprint
arXiv:2007.08663, 2020.

[35] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Knockoff
nets: Stealing functionality of black-box models. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 4954–4963, 2019.

[36] Ren Pang, Zheng Zhang, Xiangshan Gao, Zhaohan Xi, Shouling
Ji, Peng Cheng, and Ting Wang. Trojanzoo: Everything you ever
wanted to know about neural backdoors (but were afraid to ask).
arXiv preprint arXiv:2012.09302, 2020.

[37] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha,
Z Berkay Celik, and Ananthram Swami. Practical black-box attacks
against machine learning. In Proceedings of the 2017 ACM on Asia
conference on computer and communications security, pages 506–
519, 2017.

[38] Alberto Rossi, Matteo Tiezzi, Giovanna Maria Dimitri, Monica
Bianchini, Marco Maggini, and Franco Scarselli. Inductive–
transductive learning with graph neural networks. In IAPR Work-
shop on Artificial Neural Networks in Pattern Recognition, pages
201–212. Springer, 2018.

1193

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 12:03:25 UTC from IEEE Xplore. Restrictions apply.

[39] Franklin E Satterthwaite. An approximate distribution of estimates
of variance components. Biometrics bulletin, 2(6):110–114, 1946.

[40] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian
Galligher, and Tina Eliassi-Rad. Collective classification in net-
work data. AI magazine, 29(3):93–93, 2008.

[41] Samuel Sanford Shapiro and Martin B Wilk. An analysis of
variance test for normality (complete samples). Biometrika,
52(3/4):591–611, 1965.

[42] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[43] Samuel Stanton, Pavel Izmailov, Polina Kirichenko, Alexander A
Alemi, and Andrew G Wilson. Does knowledge distillation re-
ally work? Advances in Neural Information Processing Systems,
34:6906–6919, 2021.

[44] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy
and policy considerations for deep learning in nlp. arXiv preprint
arXiv:1906.02243, 2019.

[45] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and
Thomas Ristenpart. Stealing machine learning models via pre-
diction {APIs}. In 25th USENIX security symposium (USENIX
Security 16), pages 601–618, 2016.

[46] Jean-Baptiste Truong, Pratyush Maini, Robert J Walls, and Nicolas
Papernot. Data-free model extraction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pages 4771–4780, 2021.

[47] Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi
Satoh. Embedding watermarks into deep neural networks. In
Proceedings of the 2017 ACM on international conference on
multimedia retrieval, pages 269–277, 2017.

[48] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Liò, and Yoshua Bengio. Graph Attention Net-
works. International Conference on Learning Representations,
2018. accepted as poster.

[49] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal
Viswanath, Haitao Zheng, and Ben Y Zhao. Neural cleanse:
Identifying and mitigating backdoor attacks in neural networks.
In 2019 IEEE Symposium on Security and Privacy (SP), pages
707–723. IEEE, 2019.

[50] Ronald L Wasserstein and Nicole A Lazar. The asa statement on
p-values: context, process, and purpose, 2016.

[51] Duncan J Watts and Steven H Strogatz. Collective dynamics of
‘small-world’networks. nature, 393(6684):440–442, 1998.

[52] Mark Weber, Giacomo Domeniconi, Jie Chen, Daniel Karl I
Weidele, Claudio Bellei, Tom Robinson, and Charles E Leiser-
son. Anti-money laundering in bitcoin: Experimenting with graph
convolutional networks for financial forensics. arXiv preprint
arXiv:1908.02591, 2019.

[53] Bernard L Welch. The generalization of ‘student’s’problem when
several different population varlances are involved. Biometrika,
34(1-2):28–35, 1947.

[54] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi
Zhang, and Philip S. Yu. A comprehensive survey on graph neural
networks. IEEE Transactions on Neural Networks and Learning
Systems, 32(1):4–24, January 2021.

[55] Zhaohan Xi, Ren Pang, Shouling Ji, and Ting Wang. Graph
backdoor. In 30th USENIX Security Symposium (USENIX Security
21), pages 1523–1540, 2021.

[56] Jing Xu, Minhui Xue, and Stjepan Picek. Explainability-based
backdoor attacks against graph neural networks. In Proceedings
of the 3rd ACM Workshop on Wireless Security and Machine
Learning, pages 31–36, 2021.

[57] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka.
How powerful are graph neural networks? arXiv preprint
arXiv:1810.00826, 2018.

[58] Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov, Carl A Gunter,
and Bo Li. Detecting ai trojans using meta neural analysis. In 2021
IEEE Symposium on Security and Privacy (SP), pages 103–120.
IEEE, 2021.

[59] Ying Xu, Xu Zhong, Antonio Jose Jimeno Yepes, and Jey Han
Lau. Forget me not: Reducing catastrophic forgetting for domain
adaptation in reading comprehension. In 2020 International Joint
Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2020.

[60] Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In
Proceedings of the 21th ACM SIGKDD international conference
on knowledge discovery and data mining, pages 1365–1374, 2015.

[61] Peng Yang, Yingjie Lao, and Ping Li. Robust watermarking for
deep neural networks via bi-level optimization. In Proceedings
of the IEEE/CVF International Conference on Computer Vision,
pages 14841–14850, 2021.

[62] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will
Hamilton, and Jure Leskovec. Hierarchical graph representation
learning with differentiable pooling. Advances in neural informa-
tion processing systems, 31, 2018.

[63] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How
transferable are features in deep neural networks? Advances in
neural information processing systems, 27, 2014.

[64] Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph
Stoecklin, Heqing Huang, and Ian Molloy. Protecting intellec-
tual property of deep neural networks with watermarking. In
Proceedings of the 2018 on Asia Conference on Computer and
Communications Security, pages 159–172, 2018.

[65] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen.
An end-to-end deep learning architecture for graph classification.
In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

[66] Zaixi Zhang, Jinyuan Jia, Binghui Wang, and Neil Zhenqiang
Gong. Backdoor attacks to graph neural networks. In Proceedings
of the 26th ACM Symposium on Access Control Models and
Technologies, pages 15–26, 2021.

[67] Zhengyan Zhang, Guangxuan Xiao, Yongwei Li, Tian Lv, Fanchao
Qi, Zhiyuan Liu, Yasheng Wang, Xin Jiang, and Maosong Sun. Red
alarm for pre-trained models: Universal vulnerability to neuron-
level backdoor attacks. arXiv preprint arXiv:2101.06969, 2021.

[68] Xiangyu Zhao, Hanzhou Wu, and Xinpeng Zhang. Watermarking
graph neural networks by random graphs. In 2021 9th International
Symposium on Digital Forensics and Security (ISDFS), pages 1–6.
IEEE, 2021.

A. Digital Watermarking Life Cycle

Figure 11 shows a typical digital watermarking life
cycle. In the embedding step, an embedding algorithm E
embeds the watermark into the host signal to generate the
watermarked data Sw. After embedding, the watermarked
data is transferred or modified (dashed frame, this part
is optional). During the watermark verification step, a
verification algorithm is applied to attempt to extract the
watermark from the watermarked signal. If the extracted
watermark is equal to or within the acceptable distance of
the original watermark, we can confirm that the signal is
the protected signal.

B. Statistic Guarantee of Ownership Verifica-
tion

The watermark accuracy of 10 watermarked models
and clean models for other datasets and models are shown
in Tables 19, 20, and 21. The corresponding t statistics
and t critical values are also presented in these tables. As
we can observe for each dataset and model, t statistic is
larger than the t critical value, which supports the rejection
of the null hypothesis H0 in 3.4.

1194

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 12:03:25 UTC from IEEE Xplore. Restrictions apply.

Host signal

S

Watermark

w

Embedding

Function

E

Verification

Function

V

Result
Modification

 Function

M

Figure 11: Digital watermarking life cycle.

TABLE 19: Accuracy of the watermarked models and clean models on Dt
w for graph classification task (n = 10).

Setting Models Watermark Accuracy (%) t ν tτ

NCI1 GIN
mc 0.21 3.17 8.00 13.78 14.47 8.27 16.00 9.02 8.44 12.69

26.04 14 2.145
mw 94.42 89.40 85.22 79.26 83.98 99.40 99.73 99.07 85.91 77.75

NCI1 .SAGE
mc 0.10 0.40 1.64 0.49 3.65 0.28 0.87 9.58 0.39 0.79

59.10 16 2.120
mw 94.21 93.16 93.43 87.50 89.99 99.98 95.40 87.47 94.54 90.02

COLLAB Diff.
mc 13.63 10.84 7.39 7.62 10.46 12.47 20.72 11.49 10.44 7.06

39.17 17 2.110
mw 76.19 83.51 85.16 92.91 82.83 87.42 84.53 80.84 84.51 82.66

COLLAB GIN
mc 14.17 9.88 9.01 16.89 21.23 17.65 19.71 14.37 7.67 16.82

25.41 15 2.131
mw 84.80 91.09 77.28 73.57 88.93 91.01 91.73 78.57 76.35 92.06

COLLAB .SAGE
mc 14.67 17.66 16.65 17.59 11.96 22.51 7.85 17.56 8.23 13.41

37.06 17 2.110
mw 85.60 80.34 83.54 79.68 82.83 77.78 81.52 83.11 88.24 89.05

REDDIT. Diff.
mc 11.99 11.08 8.65 7.33 9.61 0.87 5.70 3.96 9.57 12.35

49.70 18 2.101
mw 83.48 94.49 94.76 88.66 89.85 93.03 88.23 92.65 86.49 92.75

REDDIT. GIN
mc 13.64 15.99 10.24 13.19 11.27 11.55 4.79 14.16 11.98 2.04

32.86 16 2.120
mw 92.55 86.07 97.01 91.46 77.52 83.99 80.15 86.00 91.73 89.23

REDDIT. .SAGE
mc 0.05 0.04 0.21 2.52 1.64 1.18 2.74 0.79 0.40 0.52

164.02 15 2.131
mw 96.21 98.81 99.09 99.61 99.53 97.46 97.57 94.68 98.14 99.09

TABLE 20: Accuracy of the watermarked models and clean models on Dr
w for graph classification task (n = 10).

Setting Models Watermark Accuracy (%) t ν tτ

NCI1 Diff.
mc 51.03 47.51 43.06 51.30 43.81 48.01 39.36 52.08 41.38 42.92

26.37 17 2.110
mw 95.62 90.33 93.50 94.34 96.71 99.28 97.42 99.06 95.44 87.54

NCI1 GIN
mc 35.00 47.02 55.15 52.48 52.65 34.15 50.74 40.17 51.01 45.20

17.71 13 2.160
mw 89.76 96.34 89.76 95.44 99.48 88.53 95.14 91.87 99.27 97.11

NCI1 .SAGE
mc 48.61 50.85 41.02 55.53 47.87 51.62 46.47 44.07 44.18 50.62

30.15 15 2.131
mw 95.47 93.67 97.20 99.33 99.60 99.95 97.82 98.72 99.49 91.52

COLLAB Diff.
mc 26.90 30.49 30.46 26.37 28.61 34.08 25.72 24.33 27.63 30.37

54.22 17 2.110
mw 99.02 98.69 93.04 99.16 94.89 93.74 99.45 99.92 93.71 96.67

COLLAB GIN
mc 34.52 30.76 20.49 26.68 33.93 33.44 30.72 31.67 30.99 36.68

30.81 17 2.110
mw 91.82 88.00 99.25 88.16 89.55 99.52 92.86 93.51 99.26 92.53

COLLAB .SAGE
mc 23.07 29.23 24.54 24.79 28.36 32.10 34.99 28.20 31.53 25.01

49.00 14 2.145
mw 99.59 95.28 93.24 99.25 98.10 96.07 99.98 99.37 99.67 97.15

REDDIT. Diff.
mc 42.87 41.59 46.01 42.85 46.20 40.40 39.23 41.22 40.50 47.81

44.89 17 2.110
mw 95.58 95.79 99.27 94.36 97.29 92.61 99.16 99.74 99.95 96.39

REDDIT. GIN
mc 49.90 43.29 46.39 47.79 45.60 44.44 48.16 40.27 46.86 45.63

31.24 15 2.131
mw 86.38 92.03 97.16 99.92 98.44 99.27 99.39 95.35 92.99 97.14

REDDIT. .SAGE
mc 50.89 43.93 47.71 47.44 47.93 45.83 53.12 53.68 44.45 44.65

39.52 13 2.160
mw 93.85 99.33 97.34 96.49 97.49 96.15 97.42 99.39 99.17 99.47

TABLE 21: Accuracy of the watermarked models and clean models on watermarked data for node classification task
(n = 10).

Setting Models Watermark Accuracy (%) t ν tτ

Cora GCN
mc 0.33 0.17 6.25 3.23 6.17 3.83 4.03 0.20 0.93 2.96

88.78 17 2.110
mw 99.66 93.14 99.42 94.37 96.97 99.91 98.11 95.73 98.47 99.86

Cora GAT
mc 10.39 3.73 10.14 0.87 5.81 10.66 4.66 2.63 9.74 7.61

53.51 17 2.110
mw 92.30 99.90 99.73 87.90 97.98 95.01 99.24 95.55 99.57 95.16

Cora .SAGE
mc 1.15 4.94 1.61 4.57 3.12 4.81 0.67 0.22 0.52 1.25

89.19 15 2.131
mw 97.52 93.24 92.44 99.97 95.22 99.94 99.17 96.25 97.99 99.80

Cite. GCN
mc 0.92 2.06 3.22 10.08 0.72 1.26 4.11 6.76 7.70 0.23

78.00 13 2.160
mw 99.96 99.86 95.94 95.17 99.07 97.59 96.30 99.71 97.81 99.09

Cite. GAT
mc 2.50 0.55 0.86 3.32 0.61 2.03 1.41 2.56 0.37 0.37

129.83 13 2.160
mw 99.30 99.13 99.01 97.78 98.20 94.13 95.87 94.69 99.99 99.20

Cite. .SAGE
mc 0.99 1.05 0.73 1.14 0.81 0.35 0.34 0.28 1.33 0.22

381.65 14 2.145
mw 99.75 97.83 99.95 99.41 99.74 99.85 98.22 99.13 99.36 99.01

C. Hyperparameter Setting
Table 22 summarizes the default hyperparameter set-

ting in the model architecture and training.

D. Additional Experimental Results

D.1. Model Pruning

The watermarking performance after model prun-
ing on the COLLAB, REDDIT-BINARY, and CiteSeer

1195

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 12:03:25 UTC from IEEE Xplore. Restrictions apply.

TABLE 22: Default hyperparameter setting. G:
graph classification, N: node classification.

Type Hyperparameter Setting

DiffPool† Architecture 2 DIFFPOOL layers
GIN Architecture 2 aggregation layers

GraphSAGE
Architecture 2 aggregation layers
Aggregator Mean [19]

GCN Architecture 5 aggregation layers
GAT #Heads 3

Training

Learning rate 0.01
Optimizer Adam

Weight decay 5e-4
Dropout 0.5
Epochs 350 (G), 100 (N)

Batch size 32
† Here, the GNN model used for DiffPool is built on top of
the GraphSAGE architecture [62].

TABLE 23: Watermarking performance on graph classification task after model pruning (COLLAB).

Pruning
DiffPool GIN GraphSAGE

Test Acc. Watermark Acc. Test Acc. Watermark Acc. Test Acc. Watermark Acc.
rate (Dt

wm|Dr
wm) (Dt

wm|Dr
wm) (Dt

wm|Dr
wm) (Dt

wm|Dr
wm) (Dt

wm|Dr
wm) (Dt

wm|Dr
wm)

10% 80.36%|80.69% 85.30%|98.01% 81.39%|81.66% 85.24%|94.08% 79.65%|79.89% 82.89%|97.19%
20% 80.12%|80.55% 85.35%|97.88% 80.71%|81.49% 84.70%|94.02% 79.59%|79.90% 82.91%|97.10%
30% 79.89%|80.15% 84.71%|97.91% 79.28%|81.44% 83.49%|93.56% 79.37%|79.69% 82.90%|96.39%
40% 78.43%|79.28% 84.78%|97.53% 77.13%|80.84% 83.34%|92.46% 78.96%|79.57% 82.72%|96.50%
50% 70.29%|76.36% 70.79%|84.06% 73.46%|79.24% 78.70%|69.19% 76.97%|79.34% 81.45%|96.48%
60% 59.58%|64.80% 64.05%|63.23% 71.12%|76.55% 78.16%|43.72% 72.91%|77.91% 76.84%|96.43%
70% 50.64%|47.63% 61.47%|35.44% 67.22%|70.30% 75.53%|43.72% 62.64%|72.64% 62.68%|96.32%
80% 47.93%|36.60% 63.13%|35.44% 60.99%|63.52% 73.98%|43.72% 47.54%|57.77% 44.52%|82.91%
90% 47.90%|32.53% 63.09%|28.50% 55.86%|42.34% 74.33%|30.99% 35.17%|37.26% 36.40%|62.39%

TABLE 24: Watermarking performance on graph classification task after model pruning (REDDIT-BINARY).

Pruning
DiffPool GIN GraphSAGE

Test Acc. Watermark Acc. Test Acc. Watermark Acc. Test Acc. Watermark Acc.
rate (Dt

wm|Dr
wm) (Dt

wm|Dr
wm) (Dt

wm|Dr
wm) (Dt

wm|Dr
wm) (Dt

wm|Dr
wm) (Dt

wm|Dr
wm)

10% 86.75%|86.55% 90.05%|98.40% 87.41%|87.05% 91.81%|99.09% 78.30%|77.94% 99.35%|98.87%
20% 86.78%|86.58% 90.15%|97.99% 87.20%|87.11% 91.34%|98.84% 78.33%|77.89% 99.30%|99.09%
30% 86.79%|86.24% 89.98%|98.40% 87.30%|86.84% 91.14%|98.69% 78.33%|77.77% 99.48%|99.00%
40% 86.58%|86.42% 89.79%|98.41% 87.26%|85.92% 91.24%|98.78% 77.96%|77.74% 99.00%|98.82%
50% 86.91%|86.55% 89.10%|98.63% 84.76%|84.98% 91.75%|98.77% 77.70%|77.48% 99.05%|98.08%
60% 86.43%|85.70% 89.43%|97.73% 81.45%|83.57% 88.26%|96.09% 76.85%|77.56% 99.66%|98.91%
70% 82.61%|82.89% 88.94%|93.02% 77.99%|80.72% 77.11%|76.73% 73.40%|76.34% 99.43%|99.20%
80% 72.62%|74.39% 80.58%|87.82% 73.48%|76.22% 70.71%|82.72% 64.95%|72.43% 99.48%|98.81%
90% 60.69%|63.94% 31.76%|66.76% 68.11%|70.56% 67.31%|77.22% 53.79%|59.67% 98.36%|99.08%

TABLE 25: Watermarking performance on node classification task after model pruning (CiteSeer)

Pruning rate
GCN GAT GraphSAGE

Test Acc. Watermark Acc. Test Acc. Watermark Acc. Test Acc. Watermark Acc.
10% 74.50% 99.45% 78.55% 99.59% 80.25% 93.90%
20% 74.42% 99.42% 78.42% 99.55% 80.34% 93.82%
30% 74.47% 99.40% 78.57% 99.57% 80.24% 93.86%
40% 74.45% 99.35% 78.49% 99.60% 80.28% 93.90%
50% 74.41% 99.31% 78.51% 99.52% 80.45% 93.80%
60% 74.35% 99.24% 78.35% 99.59% 75.32% 82.79%
70% 74.22% 99.01% 78.32% 99.53% 74.27% 49.52%
80% 73.93% 99.74% 78.08% 99.43% 73.20% 16.02%
90% 72.93% 99.95% 77.59% 99.87% 72.00% 8.46%

datasets is shown in Tables 23, 24, and 25, respectively.
For the COLLAB dataset, when the pruning rate is less
than 50%, the watermark accuracy drops slightly. With a
pruning rate of more than 50%, the watermarking accuracy
decreases significantly, as well as the testing accuracy for
all models. The results for REDDIT-BINARY have the
same behavior. As for the CiteSeer dataset, even with

90% of the parameters pruned, the watermark accuracy
on the GCN and GAT models is still high, i.e., more
than 99%. On the other hand, with more than 50% of
the parameters pruned, the watermark accuracy on the
GraphSAGE model drops dramatically, but the testing
accuracy decreases significantly as well. Therefore, these
results further verify that our watermarking mechanism

1196

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 12:03:25 UTC from IEEE Xplore. Restrictions apply.

TABLE 26: Watermarking performance on graph classification task after fine-pruning (COLLAB).

Pruning
DiffPool GIN GraphSAGE

Test Acc. Watermark Acc. Test Acc. Watermark Acc. Test Acc. Watermark Acc.
rate (Dt

wm|Dr
wm) (Dt

wm|Dr
wm) (Dt

wm|Dr
wm) (Dt

wm|Dr
wm) (Dt

wm|Dr
wm) (Dt

wm|Dr
wm)

10% 71.77%|92.62% 85.37%|97.95% 69.55%|87.42% 85.21%|94.66% 69.07%|92.06% 82.93%|96.59%
20% 72.07%|92.71% 85.37%|80.59% 69.52%|87.56% 85.03%|88.29% 69.39%|91.98% 82.93%|95.19%
30% 70.50%|93.07% 85.33%|71.91% 68.04%|87.48% 83.97%|87.96% 69.20%|92.00% 82.91%|85.19%
40% 65.29%|93.08% 85.33%|71.88% 65.80%|87.07% 81.24%|87.77% 69.38%|91.93% 82.91%|87.12%
50% 60.62%|93.28% 85.31%|71.74% 62.80%|86.84% 81.08%|56.46% 69.20%|91.84% 82.90%|86.02%
60% 56.44%|93.25% 85.22%|71.66% 57.29%|86.10% 80.45%|50.09% 65.23%|91.87% 82.15%|85.77%
70% 53.53%|93.35% 84.73%|63.22% 53.28%|86.47% 79.86%|49.53% 60.01%|91.59% 82.00%|85.02%
80% 52.39%|93.16% 84.46%|63.14% 52.93%|85.95% 78.57%|43.72% 54.77%|91.00% 81.41%|83.92%
90% 52.45%|92.70% 84.20%|63.09% 52.44%|84.64% 78.04%|43.38% 51.94%|89.87% 80.23%|73.79%

TABLE 27: Watermarking performance on graph classification task after fine-pruning (REDDIT-BINARY).

Pruning
DiffPool GIN GraphSAGE

Test Acc. Watermark Acc. Test Acc. Watermark Acc. Test Acc. Watermark Acc.
rate (Dt

wm|Dr
wm) (Dt

wm|Dr
wm) (Dt

wm|Dr
wm) (Dt

wm|Dr
wm) (Dt

wm|Dr
wm) (Dt

wm|Dr
wm)

10% 83.29%|95.52% 90.20%|98.59% 84.83%|93.35% 92.14%|99.04% 73.76%|88.37% 99.51%|99.21%
20% 83.02%|95.52% 88.02%|96.13% 84.47%|93.03% 90.73%|96.31% 73.67%|87.86% 99.96%|98.90%
30% 83.20%|95.52% 87.54%|96.08% 85.97%|92.82% 86.78%|98.35% 73.85%|87.77% 99.28%|99.32%
40% 84.84%|95.67% 86.45%|95.65% 85.10%|93.06% 86.67%|97.62% 73.94%|87.83% 99.80%|99.20%
50% 84.45%|95.91% 86.11%|95.60% 84.65%|93.09% 87.13%|97.19% 73.88%|88.07% 99.68%|98.54%
60% 84.72%|96.15% 74.72%|94.74% 83.51%|93.20% 66.76%|82.40% 73.49%|87.86% 99.46%|98.80%
70% 83.62%|95.94% 74.04%|93.58% 83.00%|93.65% 65.47%|82.07% 72.60%|87.56% 99.40%|98.42%
80% 82.66%|95.73% 71.52%|92.76% 80.18%|93.71% 35.34%|81.18% 72.30%|88.58% 99.50%|98.33%
90% 78.17%|95.94% 54.68%|84.63% 73.74%|93.74% 28.87%|79.52% 69.07%|90.00% 99.52%|98.39%

is robust to model pruning, but the plagiarizer can still
eliminate our watermarks with the cost of high accuracy
drop in the main task.

D.2. Fine-pruning

The watermarking performance after fine-pruning on
the COLLAB and REDDIT-BINARY datasets is shown in
Tables 26 and 27, respectively. For the COLLAB dataset,
with the increase in the pruning rate, the watermark ac-
curacy gradually decreases. However, even with the 90%
pruning rate, most of the watermark accuracy is still higher
than the threshold in Table 3. The results for REDDIT-
BINARY follow the same behavior. Therefore, these re-
sults further verify that our watermarking mechanism is
robust to fine-pruning.

1197

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 12:03:25 UTC from IEEE Xplore. Restrictions apply.

