
Computing the Rooted Triplet
Distance for Phylogenetic Trees
and Caterpillars

L. van Eeuwijk

Computing the
Rooted Triplet
Distance for
Phylogenetic
Trees and
Caterpillars

by

L. van Eeuwijk
to obtain the degree of Bachelor of Science

at the Delft University of Technology,
to be defended publicly on Thursday July 6, 2023 at 02:00 PM.

Student number: 5391342
Project duration: May 1, 2023 – July 6, 2023
Thesis committee: Y. Murakami, TU Delft, supervisor

Dr. B. J. Meulenbroek, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

In phylogenetics, it is important to figure out what method to obtain a phylogenetic tree, a tree showing how
species evolve from one another, is more reliable. A phylogenetic tree is a mathematical tree, where every
internal vertex has at least 2 children, and the leaves are labeled bijectively with a set X . One useful tool to help
determine what method is more reliable is to find the rooted triplet distance between two trees. If the distance
from a newly developed tree is far from what we know to be reliable trees, then this method is probably
unreliable. For this distance, one should look at how many triplets the trees do not have in common. In this
report, we will look at a specific algorithm to compute the rooted triplet distance between two special rooted
phylogenetic trees, caterpillars, by checking how many triplets these two caterpillars have in common. In this
report, we will map the leaves into N3 and Nd , to determine how many triplets 3 or d trees have in common.
Especially forNd it becomes complicated to decide for what regions ofNd the leaves need to be counted, and
for which ones not. After finding the closed-form notation for this, we will also discuss how many terms there
are in the sum of this equation. Lastly, we will talk about the time complexity of this algorithm. The idea is
that this algorithm will work faster than the naive approach, which runs in O(n3) time. Due to complications
in the third and higher dimensions, this faster running time may or may not be accomplished, depending
on whether another algorithm can be found to resolve these complications, which will not be done in this
report. A closed-form notation can be found to express the number of triplets two caterpillars do not have in
common, and the number of terms this equation has will also be discussed in Chapter 5.

iii

Contents

Abstract iii

1 Introduction 1

2 Preliminaries 3
2.1 Definitions . 3

2.2 DividingNd . 3

3 The Algorithm 5
3.1 How Does the Algorithm Work? . 5

3.1.1 Resolved Triplets . 5
3.1.2 Unresolved Triplets . 6

3.2 Time Complexity . 6

4 The Third Dimension 9
4.1 DividingN3 . 9
4.2 Counting Good Triplets . 9

4.2.1 Resolved Triplets . 9
4.2.2 Unresolved Triplets . 10

5 The dth Dimension 15
5.1 d-Dimensional Sum . 15
5.2 Amount of Subcases when there are k Long Triplets . 17

5.2.1 Structure . 17
5.2.2 Amount Of Subcases . 18

5.3 Amount Of Subcases For d Caterpillars . 18
5.4 Time Complexity . 18

6 Conclusion 21

Bibliography 23

v

1
Introduction

Phylogenetics is a study focusing on the evolutionary relationship among species. It helps us understand
the evolutionary history by establishing connections between species. This allows us to classify and name
species so that we can understand their similarities and differences. A very common way to display these
connections is in the form of a tree, but how do we know what this tree should look like? There are many
methods to determine what species should be connected to other species within the tree, and all of these
methods will result in different trees. That begs the question; How valid are these methods? We can compare
the looks of the trees and if one tree differs very much from most of the other trees one could conclude that
the method that created this distant tree might not be that favorable.

But simply looking at the tree is not very exact, in 1975 A. J. Dobson published a paper [2] in which he
came up with a method to determine a numerical distance between two phylogenetic trees, which is a useful
tool to determine how closely related two trees are. The way we compute this distance is by looking at every
combination of three leaves in a tree and whether these triplets have the same form in these two trees or
not. We count how often they are not the same, and that is defined as the distance. However, computing
this distance naively between two rather large trees can cost a lot of time, which is why many researchers
have tried to find algorithms to compute this distance faster. The latest improvement in theoretical time
complexity was found in 2013 by Brodal et al [4]. They managed to compute the rooted triplet distance in
O(nlog (n)) time. Later in 2017 Jansson and Rajaby [5] found an algorithm that in practice ran faster, but
theoretically was slower, namely O(nlog 3(n)).

Another way to find faster algorithms would be to restrict what the tree can look like. For caterpillars,
trees where all vertices have a neighbor on a central path, an algorithm was found by J. Jansson and W. L.
Lee [1], which is the algorithm that will be examined and expanded in this paper. While Jansson and Lee
used the algorithm to compute the number of triplets two caterpillars have in common, this paper will focus
more on computing the number of triplets more than two caterpillars have in common, by expanding the
2-dimensional algorithm from Jansson and Lee to 3- and eventually d-dimensional. The 2-dimensional al-
gorithm maps the leaf of a caterpillar into N2, after which the number of leaves in specific regions of N2 get
counted and summed up, which gives the rooted triplet distance. To the knowledge of the author, no research
has been done on computing the amount of triplets d caterpillars have in common.

After giving some definitions in Chapter 2, Chapter 3 will give a fast algorithm to compute this distance be-
tween two caterpillars, which was found in [1]. This algorithm works by mapping all leaves of the caterpillars
toN2, then all the triplets that these two caterpillars have in common will be counted using this mapping into
N2, which gives us the rooted triplet distance by subtracting this number from the total amount of triplets.
Chapter 4 will expand this algorithm to the third dimension, where we simply look for the number of triplets
3 caterpillars do not have in common, and Chapter 5 will expand this to the dth dimension.

1

2
Preliminaries

2.1. Definitions
To further understand the problem, some terms need to be defined;

A graph is a pair (V ,E), where V is a set of vertices and E is a set of edges. A tree is a connected acyclic
graph. A leaf is a vertex that has only one edge connected to it. An internal vertex is a vertex that has two
or more edges connected to it. A rooted tree is a tree in which one vertex has been designated the root, and
all vertices are directed away from this root. A rooted phylogenetic tree is a rooted tree, where every internal
vertex has at least 2 children, and the leaves are labeled bijectively with a set X . A caterpillar is a tree where all
vertices are on a central path or have a neighbor on the central path. In this paper, only rooted phylogenetic
caterpillars will be looked at. A rooted triplet or triplet is a rooted phylogenetic tree with precisely three
leaves, which has one of the three forms in Figure 2.1. When talking about a triplet in a tree with more than 3
leaves, the triplet is the tree obtained as a result of removing all other leaves, as well as removing all internal
nodes that have no leaf as a neighbor, such that only 3 leaves and at most 2 internal vertices are left. A vertex
u is a parent of another vertex v if a directed edge goes from u to the child v . An internal vertex x is lower
than an internal vertex y if there is a path from y to x in the caterpillar, here y is higher than x. A leaf x is
lower than a leaf y if there is a path from the parent of y to the parent of x in the caterpillar, here y is higher
than x. A resolved triplet is a triplet where two leaves share a parent, which is not a parent of the third leaf.

Figure 2.1: All possible triplets on a leaf-set {a,b,c}, the first two are resolved, the third is unresolved

An unresolved triplet is a triplet where all three leaves have the same parent. A good triplet is a triplet that
has the same form in two trees. A bad triplet is a triplet that has a different form in two trees. The rooted
triplet distance is the number of all bad triplets. There are

(leaves
3

)
triplets and all have to be checked to see if

they are of the same form in the two trees, or of a different form.

2.2. DividingNd

In chapter 3 of this report, an algorithm gets used, that splitsNd into sections. Let us first define this division
forN2;

Take a point (p1, p2) in N2, we call this region A0,0. Now we define the region [1, p1 −1]× {p2} to be region
A1,0 and define the region {p1}× [1, p2 −1] to be region A0,1. Finally, we call the region [1, p1 −1]× [1, p2 −1]
A1,1. So for every point inN2, We create four regions, which the algorithm can then use for certain points.

3

4 2. Preliminaries

We can expand this definition of the regions to Nd . Let (p1, ..., pd) be a point in Nd . If the i th coordinate
of a point is in [1, pi −1], it will be in a region where the i th subscript of A is 1, whereas if the i th coordinate
is pi , it will be in a region where the i th subscript of A is equal to 0. To properly define the regions A, we first
need to define a function f that maps leaves into Nd and we also define a function f ′ that maps triplets into
Nd , which will get used later for better efficiency.

Definition 2.2.1. Let T1, ...,Td be d caterpillars with n leaves from a set X having
(n

3

)
triplets. Label all internal

vertices of all caterpillars, such that the lowest internal vertex has label 1 and the vertex above it has label 2, etc.
We define a leaf map f that maps leaves intoNd .

f : X →Nd ;x → f (x)

f (x) = (Label of parent of x in caterpillar T1,...,Label of parent of x in caterpillar Td)

We also define a triplet map f ′ that maps triplets intoNd . This function will be used by the algorithm.

f ′ : X ×X ×X →Nd ;τ→ f ′(τ)

f ′(τ) = (Label of root of τ in T1,...,Label of root of τ in Td)

Example 2.2.2. Let T1 and T2 be as in Figure 2.2. Here we see that f (a) = (3,1), f (b) = (3,1), f (c) = (2,1),
f (d) = (3,2), f (e) = (1,3) and f (f) = (3,3).

Figure 2.2: An example of how the map f works

Definition 2.2.3. Let (p1, ..., pd) be a point inNd . For this point we define 2d regions:

Ab1,b2,...,bd
=

d∏
i=1

Ci ,where Ci =
{ {pi }, if bi = 0[

1, pi −1
]

, if bi ̸= 0

Definition 2.2.4. Let (p1, ..., pd) be a point inNd . For this point we define the following numbers, which tell us
how many leaves are in each region, which the algorithm can use:

ab1,b2,...,bd
= |{x ∈ X : f (x) ∈ Ab1,b2,...,bd

}|

3
The Algorithm

3.1. How Does the Algorithm Work?
The goal is to find the rooted triplet distance between two caterpillars. There are many ways to calculate
the distance between caterpillars, one way is to look at all triplets in both caterpillars and count how many
bad triplets there are. The time complexity for this naively is O(n3), as we consider every leaf 3 times, which
is rather slow. For this report, the second algorithm from the paper Fast Algorithms for the Rooted Triplet
Distance Between Caterpillars by Jesper Jansson and Wing Lik Lee [1] will be looked further into, which can
compute the rooted triplet distance faster.

For a proper proof of the algorithm, one should consult the paper by Jansson and Lik Lee. In this section,
we discuss how the algorithm works.

The idea is that we count the number of good triplets, and then we calculate the number of bad triplets,
the rooted triplet distance, by subtracting the number of good triplets from the total amount of triplets. We
count the number of good triplets by iterating over every point in the image of f ′(x). First divideN2 into four
regions, as done in Section 2.2, which are different for each point in the image of f ′(x); a0,0 is the number of
leaves in region {p1}× {p2}, a0,1 is the number of leaves in region {p1}× [1, p2 −1], a1,0 is the number of leaves
in region [1, p1−1]×{p2} and a1,1 is the number of leaves in region [1, p1−1]×[1, p2−1]. This is also illustrated
in Figure 3.1.

Figure 3.1: Division of [1, p1]× [1, p2] into four regions.

3.1.1. Resolved Triplets
For resolved triplets, one can observe that the triplet must look the same in both caterpillars, as in Figure 3.2.
We must have one leaf with a higher vertex as parent in both caterpillars, and the other two leaves must have
a lower vertex as parent, thus the higher leaf will be in region A0,0, and the lower two leaves will be in region
A1,1. Therefore we have a0,0 ·

(a1,1
2

)
good triplets of this form.

5

6 3. The Algorithm

Figure 3.2: A good unresolved triplet {i , j ,k}

3.1.2. Unresolved Triplets
One can count the number of unresolved triplets similarly, but it would have to be split up into 4 cases, as
was done by Janssen and Lik Lee, which is also visualized in Figure 3.3.

Define a short unresolved triplet as a triplet where all three leaves have the same parent and define a
long unresolved triplet as a triplet where two leaves share a parent, and the other leaf has a lower vertex as a
parent. An unresolved triplet is a good triplet if it is unresolved in both caterpillars, which can happen in all
combinations of long and short triplets. However in the different combinations of long and short, the leaves
will be in other regions ofN2, thus we need to count all combinations separately;
Case 1 (short, short): all leaves have the same parent in both caterpillars, so all leaves are in region A0,0.
count:

(a0,0
3

)
Case 2 (short, long): all leaves have the same parent the first caterpillar, but one has a different parent in the
second caterpillar, so two leaves are in region A0,0, and the other is in region A0,1.
count:

(a0,0
2

) ·a0,1

Case 3 (long, short): all leaves have the same parent in the second caterpillar, but one has a different parent
in the first caterpillar, so two leaves are in region A0,0, and the other is in region A1,0.
count:

(a0,0
2

) ·a1,0

Case 4 (long, long): one leaf has a different parent from the other two in both caterpillars, but this can happen
in two ways;
Case 4a: the same leaf is separate in both caterpillars, thus this leaf is in A1,1, while the other two are in A0,0.
count:

(a0,0
2

) ·a1,1

Case 4b: in the two caterpillars a different leaf is separated, thus one leaf is in A0,0, one leaf is in A0,1 and one
leaf is in A1,0.
count: a0,0 ·a0,1 ·a1,0

Now all good unresolved and resolved triplets have been counted, thus the rooted triplet distance can be
computed:

dr t (T1,T2) =
(

n

3

)
− ∑

p∈Im(f ′)
(a0,0 ·

(
a1,1

2

)
+

(
a0,0

3

)
+

(
a0,0

2

)
(a0,1 +a1,0 +a1,1)+a0,0 ·a0,1 ·a1,0).

3.2. Time Complexity
In the paper it was proven that this algorithm has a time complexity of O(n

√
logn), which is theoretically

faster than was previously found, and also definitely faster than O(n3). In the rest of the report, this algorithm
will be expanded to the third and dth dimension, which will allow us to compute of the number of bad triplets
in three or d caterpillars.

3.2. Time Complexity 7

Figure 3.3: Counting unresolved good triplets. The first two columns indicate what triplets look like in caterpillar 1 and caterpillar 2, the
third column indicates what region the leaves are in, and the fourth column indicates how many good triplets there are for this case.

4
The Third Dimension

Now that the distance between two caterpillars has been discussed, let us look at how many bad triplets there
are in T1, T2 and T3. Define a bad triplet as a triplet that is not consistent in all 3 caterpillars, meaning that
the triplet must have a different form in at least one of the three caterpillars. For this chapter we will expand
the idea of Chapter 3 to have more inputs, and thus a higher dimension. Similarly to Chapter 3, we will first
count the good triplets and then subtract that number from all possible triplets.

4.1. DividingN3

To reiterate we divideN3 in 8 parts per point in the image of f ′(x), just like in section 2.2:

• a0,0,0 is the number of leaves in region {p1}× {p2}× {p3}.

• a0,0,1 is the number of leaves in region {p1}× {p2}× [1, p3 −1].

• a0,1,0 is the number of leaves in region {p1}× [1, p2 −1]× {p3}.

• a1,0,0 is the number of leaves in region [1, p1 −1]× {p2}× {p3}.

• a0,1,1 is the number of leaves in region {p1}× [1, p2 −1]× [1, p3 −1].

• a1,0,1 is the number of leaves in region [1, p1 −1]× {p2}× [1, p3 −1].

• a1,1,0 is the number of leaves in region [1, p1 −1]× [1, p2 −1]× {p3}.

• a1,1,1 is the number of leaves in region [1, p1 −1]× [1, p2 −1]× [1, p3 −1].

This is visualized in Figure 4.1, where A1,1,1 is the largest region, behind the surfaces.

4.2. Counting Good Triplets
4.2.1. Resolved Triplets
In Chapter 3 we saw that resolved triplets only occurred when one leaf was in A0,0 and the other two were
in A1,1. In the third dimension we can observe that something similar happens, namely one leaf must be
in A0,0,0, while the other two are in A1,1,1. We have that these triplets must look like Figure 3.2 in all three
caterpillars, thus one leaf is on the higher node three times, and thus in region A0,0,0, while the other two
leaves are on lower nodes in all three caterpillars, thus these are in region A1,1,1. This makes the count for
resolved triplets a0,0,0 ·

(a1,1,1
2

)
. One might think that one leaf in A0,0,0 and the other two in for example A0,1,1

would also lead to a good resolved triplet, but that is not the case as that would mean the triplet is unresolved
in T1.

9

10 4. The Third Dimension

Figure 4.1: Division of [1, p1]× [1, p2]× [1, p3] into eight regions.

4.2.2. Unresolved Triplets
Just like in Fast Algorithms for the Rooted Triplet Distance Between Caterpillars [1], we will have to split up
the unresolved section into cases, all combinations of long and short (each triplet can be short or long, as in
Chapter 3), thus we have 8 cases, and cases with at least two longs will have subcases.
Case 1 (short, short, short): all leaves have the same parent in all caterpillars, so all leaves are in region A0,0,0.
count:

(a0,0,0
3

)
Case 2 (short, short, long): all leaves have the same parent in the first and second caterpillar, but one has a
different parent in the third caterpillar, so two leaves are in region A0,0,0, and the other is in region A0,0,1.
count:

(a0,0,0
2

) ·a0,0,1

Case 3 (short, long, short): all leaves have the same parent in the first and third caterpillar, but one has a
different parent in the second caterpillar, so two leaves are in region A0,0,0, and the other is in region A0,1,0.
count:

(a0,0,0
2

) ·a0,1,0

Case 4 (long, short, short): all leaves have the same parent in the second and third caterpillar, but one has a
different parent in the first caterpillar, so two leaves are in region A0,0,0, and the other is in region A1,0,0.
count:

(a0,0
2

) ·a1,0,0

Case 5 (short, long, long): one leaf has a different parent from the other two in the second and third caterpil-
lars, but this can happen in two ways;
Case 5a: the same leaf is separate in both caterpillars, thus this leaf is in A0,1,1, while the other two are in
A0,0,0.
count:

(a0,0,0
2

) ·a0,1,1

Case 5b: in the two caterpillars a different leaf is separated, thus one leaf is in A0,0,0, one leaf is in A0,0,1 and
one leaf is in A0,1,0.
count: a0,0,0 ·a0,0,1 ·a0,1,0

Case 6 (long, short, long): one leaf has a different parent from the other two in the first and third caterpillars,
but this can happen in two ways;
Case 6a: the same leaf is separate in both caterpillars, thus this leaf is in A1,0,1, while the other two are in
A0,0,0.
count:

(a0,0,0
2

) ·a1,0,1

Case 6b: in the two caterpillars a different leaf is separated, thus one leaf is in A0,0,0, one leaf is in A0,0,1 and
one leaf is in A1,0,0.
count: a0,0,0 ·a0,0,1 ·a1,0,0

Case 7 (long, long, short): one leaf has a different parent from the other two in the first and second caterpil-
lars, but this can happen in two ways;
Case 7a: the same leaf is separate in both caterpillars, thus this leaf is in A1,1,0, while the other two are in
A0,0,0.
count:

(a0,0,0
2

) ·a1,1,0

Case 7b: in the two caterpillars a different leaf is separated, thus one leaf is in A0,0,0, one leaf is in A1,0,0 and

4.2. Counting Good Triplets 11

one leaf is in A0,1,0.
count: a0,0,0 ·a1,0,0 ·a0,1,0

Case 8 (long, long, long): one leaf has a different parent from the other two in all caterpillars, but this can
happen in five ways;
Case 8a: the same leaf is separate in all caterpillars, thus this leaf is in A1,1,1, while the other two are in A0,0,0.
count:

(a0,0,0
2

) ·a1,1,1

Case 8b: in the first and second caterpillars the same leaf is separated, but in the third another one is, thus
one leaf is in A0,0,0, one leaf is in A1,1,0 and one leaf is in A0,0,1

count: a0,0,0 ·a1,1,0 ·a0,0,1.
Case 8c: in the first and third caterpillars the same leaf is separated, but in the second another one is, thus
one leaf is in A0,0,0, one leaf is in A1,0,1 and one leaf is in A0,1,0

count: a0,0,0 ·a1,0,1 ·a0,1,0.
Case 8d: in the second and third caterpillars the same leaf is separated, but in the first another one is, thus
one leaf is in A0,0,0, one leaf is in A0,1,1 and one leaf is in A1,0,0

count: a0,0,0 ·a0,1,1 ·a1,0,0.
Case 8e: in all caterpillars a different leaf is separated, thus one leaf is in A1,0,0, one leaf is in A0,1,0 and one
leaf is in A0,0,1.
count: a1,0,0 ·a0,1,0 ·a0,0,1

All of these cases are also represented in Figure 4.2 and Figure 4.3.
Now that all good triplets have been found, the number of bad triplets between the three caterpillars can be

computed:

dr t (T1,T2,T3) =
(

n

3

)
− ∑

p∈Im(f ′)
(a0,0,0 ·

(
a1,1,1

2

)
+

(
a0,0,0

3

)
+

(
a0,0,0

2

)
(a0,0,1 +a0,1,0 +a1,0,0 +a0,1,1 +a1,0,1 +a1,1,0 +a1,1,1)+

a0,0,0 · (a0,0,1a0,1,0 +a0,0,1a1,0,0 +a0,1,0a1,0,0 +a0,0,1a1,1,0 +a0,1,0a1,0,1 +a1,0,0a0,1,1)+a0,0,1a0,1,0a1,0,0).

12 4. The Third Dimension

Figure 4.2: Counting unresolved good triplets. The first three columns indicate what triplets look like in caterpillar 1 and caterpillar 2
and caterpillar 3, the fourth column indicates what region the leaves are in, and the fifth column indicates how many good triplets there
are for this case.

4.2. Counting Good Triplets 13

Figure 4.3: Counting unresolved good triplets. The first three columns indicate what triplets look like in caterpillar 1 and caterpillar 2
and caterpillar 3, the fourth column indicates what region the leaves are in, and the fifth column indicates how many good triplets there
are for this case.

5
The dth Dimension

Now that the second and third dimensions have been covered, we want to know how many bad triplets there
are in d caterpillars. As with the third dimension, define a bad triplet as a triplet that is not the same in all d
caterpillars.

5.1. d-Dimensional Sum
When one looks at the terms of the sum for the third dimension one can see that every term is the product
of the cardinality of three regions, and in particular the indices of these regions follow a certain rule; every
combination of three regions ab1,b2,b3 , ac1,c2,c3 , ad1,d2,d3 appears, such that bi + ci +di is either equal to 1 or
equal to 0 and anagrams get avoided (if a0,0,1a0,1,0a1,0,0 is in the sum, a0,1,0a0,0,1a1,0,0 will not be in the sum,
as it would count those triplets twice). The claim is that this also works for d dimensions, now it just needs
a proof. Recall that f ′ refers to the triplet mapping. Let (X ,Y , Z) be an arbitrary triplet, with X ,Y and Z in
regions Ax1,x2,...,xd , Ay1,y2,...,yd and Az1,z2,...,zd respectively for the point f ′((X ,Y , Z)).

Lemma 5.1.1. Let T1, ...,Td be caterpillars on the same set of taxa. Let X, Y and Z be leaves in the caterpillars.
A triplet (X ,Y , Z) is a good unresolved triplet if xi + yi + zi = 0 or xi + yi + zi = 1,∀i = 1,2, ...,d.

Proof. For unresolved triplets, we need that the triplet is unresolved in every caterpillar, for which the order
does not matter. All we need is that this triplet is unresolved in every caterpillar, so we look at xi , yi and zi d
times.
If xi + yi + zi = 0 all three leaves are on the same internal vertex in caterpillar Ti , thus are unresolved in
caterpillar Ti .
If xi + yi +zi = 1 then two leaves are on the same internal vertex in caterpillar Ti , while one leaf is lower in the
caterpillar, which still makes this triplet unresolved in caterpillar Ti . This means they are unresolved in every
caterpillar, thus they are a good unresolved triplet

Lemma 5.1.2. Let T1, ...,Td be caterpillars on the same set of taxa. If a triplet τ = (X ,Y , Z) is good and unre-
solved, then there exists exactly one point p ∈ Im(f ′) such that at that point, xi + yi + zi = 0 or xi + yi + zi = 1
for all caterpillars Ti . This point is f ′(τ).

Proof. Let us look at the point p = f ′(τ). By definition of f ′ we have for this triplet that xi + yi + zi = 0,
xi +yi +zi = 1 or xi +yi +zi = 2. If xi +yi +zi = 3, it implies that none of the three leaves are mapped to the i th
coordinate of f ′(τ), which is a contradiction. If xi + yi + zi = 2 for caterpillar Ti , then in this particular cater-
pillar we have that one leaf is on a higher internal vertex than the other two, meaning the triplet is resolved
in this caterpillar, thus the triplet cannot be a good unresolved triplet. If xi + yi + zi = 0 or xi + yi + zi = 1
for all i we have that this is a good unresolved triplet by Lemma 5.1.1, thus for point f ′(τ): xi + yi + zi = 0 or
xi + yi + zi = 1.

If we look at another point q ∈ Im(f ′) such that X ,Y and Z are in some region Ab1,...,bd
, it implies that

at least one coordinate of q is greater than it was for p and none are less than they were for p. If q had a
coordinate that was less than that coordinate in p X ,Y and/or Z would not be in any region Ab1,...,bd

, and so
xi + yi + zi is not defined here. Assume that the j th coordinate of q got increased, then in caterpillar j we
will have that the label of the parents of X ,Y and Z is now lower than the j th coordinate of q , and therefore

15

16 5. The dth Dimension

x j + y j + z j = 3. This means that there cannot be more than one point p ∈ Im(f ′) such that at that point,
xi + yi + zi = 0 or xi + yi + zi = 1 for all caterpillars Ti .

Lemma 5.1.3. Let T1, ...,Td be caterpillars on the same set of taxa. Let X, Y and Z be leaves in the caterpillars.
A triplet (X ,Y , Z) is a good resolved triplet in Ti if xi + yi + zi = 2, for all i = 1,2, ...,d and xi = x j , yi = y j , zi =
z j , for all i = 1,2, ...,d , for all j = 1,2, ...,d

Proof. We have that xi+yi+zi = 2, for all i = 1,2, ...,d and xi = x j , yi = y j , zi = z j , for all i = 1,2, ...,d , for all j =
1,2, ...,d , which means there is one leaf, let’s assume leaf Z without loss of generality, that is at the root of the
triplet in every caterpillar, while leaves X and Y are lower than Z in all caterpillars. Because of this, the triplet
is resolved in every caterpillar, with Z as the higher leaf, making this a good resolved triplet.

Lemma 5.1.4. Let T1, ...,Td be caterpillars on the same set of taxa. If a triplet τ= (X ,Y , Z) is good and resolved,
then there exists exactly one point p ∈ Im(f ′) such that at that point, xi + yi + zi = 2 for all caterpillars Ti . This
point is f ′(τ).

Proof. As the triplet is good and resolved, we have that one leaf, let’s assume leaf Z without loss of generality,
which is always a child of the root of the triplet, while X and Y are lower in the caterpillar. If we look at the
regions for f ′(τ) = f (Z), we see that Z ∈ A0,...,0 and X ,Y ∈ A1,...,1. Therefore xi = yi = 1, for all i = 1,2, ...,d and
zi = 0, for all i = 1,2, ...,d , making xi + yi + zi = 2 for all caterpillars Ti at f ′(τ)

If we look at another point q ∈ Im(f ′) such that X ,Y and Z are in some region Ab1,...,bd
, it implies that

at least one coordinate of q is greater than it was for p and none are less than they were for p. If q had a
coordinate that was less than that coordinate in p Z would not be in any region Ab1,...,bd

, and so zi is not
defined here. Assume that the j th coordinate of q got increased, then in caterpillar j we will have that the
label of the parents of Z is now lower than the j th coordinate of q , and therefore z j = 1 ⇒ xi + yi + zi = 3.
This means that there cannot be more than one point p ∈ Im(f ′) such that at that point, xi + yi +zi = 2 for all
caterpillars Ti .

Theorem 5.1.5. Let T1, ...,Td be d caterpillars with n leaves from a set X . The number of bad triplets dr t (T1,T2, ...,Td)
can be computed in the following way:

dr t (T1,T2, ...,Td) =
(

n

3

)
− ∑

p∈Im(f ′)
(a0,0,...,0 ·

(
a1,1,...,1

2

)
+

(
a0,0,...,0

3

)
+

(
a0,0,...,0

2

)
· ∑
β∈B

β+
(

a0,0,...,0

1

)
· 1

2

∑
γ∈C

γ+ 1

6

∑
δ∈D

δ),

(5.1)
where

• B = {ab1,b2,...,bd
|∑d

i=1 bi ≥ 1},

• C = {ab1,b2,...,bd
·ac1,c2,...,cd |

∑d
i=1 bi ≥ 1,

∑d
i=1 ci ≥ 1 and ∀i = 1,2, ...,d ,bi + ci ≤ 1},

• D = {ab1,b2,...,bd
·ac1,c2,...,cd ·ad1,d2,...,dd

|∑d
i=1 bi ≥ 1,

∑d
i=1 ci ≥ 1,

∑d
i=1 di ≥ 1 and ∀i = 1,2, ...,d ,bi +ci +di ≤

1}.

Proof. This follows closely with how we have determined the distance for the d = 2 and d = 3 cases. We count
all good triplets, then the number of bad triplets is the number of triplets minus the number of good triplets.
Good triplets get counted per point p in Im(f ′). To count the good triplets per point p, we first divide them
into resolved and unresolved triplets.

Resolved triplets have been covered in Lemma 5.1.3 and Lemma 5.1.4; by Lemma 5.1.3 a triplet (X ,Y , Z)
is a good resolved triplet if xi + yi + zi = 2 and xi = x j , yi = y j , zi = z j for all i , j . And by Lemma 5.1.4 every
good resolved triplet (X ,Y , Z) will have exactly one point in Im(f ′), f ′((X ,Y , Z)) such that xi + yi + zi = 2,
thus this triplet gets counted exactly once. We also see from Lemma 5.1.4 that, without loss of generality,
Z ∈ A0,...,0 and X ,Y ∈ A1,...,1 when looking at the point f ′((X ,Y , Z)), thus the number of good resolved triplets
for f ′((X ,Y , Z)) is a0,0,...,0 ·

(a1,1,...,1
2

)
.

Unresolved triplets have been covered in Lemma 5.1.1 and Lemma 5.1.2; by Lemma 5.1.1 a triplet (X ,Y , Z)
is a good unresolved triplet if xi + yi + zi ≤ 1 for all i . And by Lemma 5.1.2 every good unresolved triplet
(X ,Y , Z) will have exactly one point in Im(f ′), f ′((X ,Y , Z)) such that xi + yi + zi ≤ 1, thus this triplet gets
counted exactly once. To write the number of unresolved triplets in closed-form notation they are split up
into four parts; The number

(a0,0,...,0
3

)
is the number of good unresolved triplets where all three leaves are in

region A0,0,...,0. The number
(a0,0,...,0

2

) ·∑β∈B β is the number of good unresolved triplets where two leaves are in

5.2. Amount of Subcases when there are k Long Triplets 17

region A0,0,...,0, and the third leaf is in another region, where B is the set of numbers of leaves in other regions.
The number

(a0,0,...,0
1

) · 1
2

∑
γ∈C γ is the number of good unresolved triplets where one leaf is in region A0,0,...,0,

and the other two leaves are in two other regions. C is a set of products, we multiply ab1,b2,...,bd
and ac1,c2,...,cd ,

where both have at least one index 1 (so they are not a0,0,...,0), and they do not have a 1 on the same index (so
that they are a good triplet). The way C is defined all products of numbers of leaves will be counted twice,
thus we need to divide this sum by 2. The number 1

6

∑
δ∈D δ is the number of good unresolved triplets where

no leaf is in region A0,0,...,0. D is a set of products, we multiply ab1,b2,...,bd
, ac1,c2,...,cd and ad1,d2,...,dd

, where all
three have at least one index 1 (so they are not a0,0,...,0), and they do not have a 1 on the same index (so that
they are a good triplet). The way D is defined all products of numbers of leaves will be counted six times, thus
we need to divide this sum by 6.

Now every good triplet has been found per point p, so if we sum over all p ∈ Im(f ′) we will count all good
triplets. Finally, subtract this number from all possible triplets, and out comes the number of bad triplets.

5.2. Amount of Subcases when there are k Long Triplets
In previous chapters, we looked at combinations of long and short triplets to count the amount of unresolved
good triplets. A case where k caterpillars had a long triplet had a certain amount of subcases, there was
a different subcase for each possible combination of regions, such that there are k caterpillars with a long
triplet. One might wonder how many subcases there are. The amount of subcases depends on the number
of long triplets in that case, for two longs we saw 2 subcases in Chapter 3 and Chapter 4, and for three longs
we saw 5 subcases in Chapter 4. In this section, we will first discuss how these cases are structured when a
caterpillar with a long triplet gets added, then we will show how many subcases there exactly are.

5.2.1. Structure
Lemma 5.2.1. If there are d caterpillars, and we look at the case of a long triplet in k caterpillars, where k < d,
the counts of the subcases are as depicted below:
The count of one subcase is

(a0,0,...,0
2

) ·ab1,...,bd
, where bi = 1 if the triplet is long for caterpillar Ti and 0 otherwise.

The counts of all other subcases are a combination of three different regions, such that the triplet is still long
and unresolved.

Proof. As we have a long triplet in k caterpillars, we need that the k indices (that represent these caterpillars)
of the regions of Ab1,b2,...,bd

, Ac1,c2,...,cd and Ad1,d2,...,dd
are 1 exactly once, in other words: for all i where Ti has a

long triplet, bi +ci +di = 1. There are two ways this can happen; either the same leaf is on a lower vertex than
the root of the triplet in all k caterpillars, or at least two leaves are on a lower vertex in different caterpillars.
If the same leaf is on a lower vertex than the root of the triplet in all k caterpillars, then the count for this
subcase would be

(a0,0,...,0
2

) · ab1,...,bd
, where bi = 1 if the triplet is long for caterpillar Ti and 0 otherwise. If at

least two leaves are on a lower vertex in different caterpillars, we get that at most one leaf is in region A0,0,...,0,
and the other two cannot be in the same region, as then they would both need to have a 1 in the same index,
which is not possible by Lemma 5.1.1. However, we need all k indexes to be 1 exactly once, thus the three
leaves would be in three different regions.

Let us define #k to be the number of subcases for a long triplet in k caterpillars, with d caterpillars as
input.

Observation 5.2.2. If we now look at the case of a long triplet in k+1 caterpillars by adding another caterpillar
to the input, we can build that from the case of a long triplet in k caterpillars with d caterpillars as input. We
append a 1 to the subscript of one of the three regions that were in the subcase and a 0 to the other two regions.
Only in the subcase with

(a0,0,...,0
2

)·a1,1,...,1 do we not get three new subcases, but only two instead, because adding
a 1 to either of the a0,0,...,0 will give the same result, thus the number of subcases in the case of k +1 long triplets
will be #k ·3−1. This is further illustrated in Example 5.2.3.

Example 5.2.3. Let us look at case 4 from Figure 3.3. If we want to go from two long triplets to three long triplets,
we add another triplet, where any of the three leaves can be on the lower vertex. The leaf that is on the lower
vertex in the new triplet will have a 1 appended to its region, while the other two leaves will have a 0 appended.
In subcase 4a, if the region of either j or k gets a 1 appended, it will result in the same count, while if a 1 gets
appended to the region of i , it will result in a different count from the other two. Thus subcase 4a will result in
only two new subcases if we add another long triplet. In subcase 4b it does not matter where we append the 1,
because for all three options, we get a different count, so subcase 4b will result in three new subcases when we
add another long triplet.

18 5. The dth Dimension

5.2.2. Amount Of Subcases
Lemma 5.2.4. If there are d caterpillars with a long triplet in k caterpillars, where k < d, the number of sub-

cases is 3k−1+1
2 for k ≥ 1.

Proof. Let us prove this by induction: For 1 long triplet, we have 1 subcase. For 2 long triplets we have 2 =
31−1+1

2 subcases as seen in Chapter 3.

Assume for a long triplet in k caterpillars the number of subcases is equal to 3k−1+1
2 . By our observation in

section 5.2.1. we have that the number of subcases for k +1 is equal to #k ·3−1.

#k ·3−1 = 3k−1 +1

2
·3−1 = 3k +3

2
− 2

2
= 3k +1

2
= 3(k+1)−1 +1

2
= #k+1

5.3. Amount Of Subcases For d Caterpillars
Now that we know how many subcases one gets when one has a long triplet in k caterpillars, we can look at
the total number of subcases one gets when there are d caterpillars. We have d positions where a triplet can

be long, we want k to be long, so we have
(d

k

)
combinations of k long triplets. This means we have

(d
k

) 3k−1+1
2

subcases for k long triplets, now we just need to add up all k’s.

Lemma 5.3.1. The total number of subcases when comparing d caterpillars is
(d

0

)+∑d
k=1

(d
k

) 3k−1+1
2 for d ≥ 2.

Proof. As discussed above, for k long triplets we get
(d

k

) 3k−1+1
2 subcases. Add all of these up for all k between

1 and d and all subcases with at least one long triplet have been counted, now just add the subcase for all
shorts and all subcases have been counted.

5.4. Time Complexity
The purpose of finding this algorithm was to be able to calculate the number of bad triplets d caterpillars
have faster than naively checking every triplet. The part that takes the most amount of time is computing
how many leaves are in each region Ab1,...,bd

for each point in Im(f ′). An algorithm to find this faster can

be found in [3], which tells us counting one region for n leaves takes O(n logd−2+1/d (n)) time, we count for
2d regions, giving us a time complexity of O(2d n logd−2+1/d (n)) (if d = 2 we get O(n log1/2(n)), which we had
before). The biggest issue with this counting algorithm is that it counts for every triplet τ ∈ Im(f ′), which
works out in the 2-dimensional case, as there we have Im(f ′) ⊂ Im(f). However, In the third dimension and
higher Im(f ′) ̸⊂ Im(f). This is due to the fact that the third dimension has ghost points.

Definition 5.4.1. A ghost point g is a point such that g ∈ Im(f ′) and g ̸∈ Im(f).

Example 5.4.2. Let us look at the caterpillars and triplet τ = (i , j ,k) from Figure 5.1. Here we see that f (i) =
(1,4,2), f (j) = (3,3,2) and f (k) = (3,4,1) and with that we can read that f ′(τ) = (3,4,2). It is also observable
that neither a, nor b, nor c maps to (3,4,2). In this example, (3,4,2) ∈ Im(f ′), but (3,4,2) ̸∈ Im(f), so (3,4,2) is
a ghost point. The 3-dimensional visualization of this is illustrated in Figure 5.2.

Figure 5.1: Example of three caterpillars with a ghost point

If we now run the algorithm from [3] we have that we will not cover these ghost points and thus we will
not count all good triplets. One solution would be to not count for every leaf, but instead for every triplet,
but if we count for every triplet we first need to determine f ′(τ) for each triplet τ which already takes O(dn3)

5.4. Time Complexity 19

Figure 5.2: Illustration of a ghost point

time, which is the same time complexity as comparing all triplets naively. Another potential solution would
be to use some other algorithm to determine all the ghost points, this way we can use the algorithm from [3].
If this ghost point finding algorithm finds χ ghost points in O(γ) time, our new algorithm would have a time
complexity of O(ν logd−2+1/d (ν)+γ), where ν = n +χ. Such a ghost point finding algorithm that has a time
complexity lower than O(dn3) could be formed in further research, but will not be discussed anymore in this
report.

6
Conclusion

In this report, we tried to compute the number of bad triplets there are in a set of d caterpillars in a fast way.
This was done by expanding an algorithm designed by Jansson and Lee to work for higher dimensions. First,
we map the leaves to a point in the dth dimension, after which we iterate over every point in f ′ to compute
the number of good triplets. This can be done using a closed-form equation, where the number of terms

for which the number of leaves needs to be computed is
(d

0

)+∑d
k=1

(d
k

) 3k−1+1
2 for d ≥ 2. This works fine in

the second dimension and gives us O(n
√

logn) as the time complexity, but in higher dimensions, we find an
issue due to ghost points. Because we no longer have that Im(f ′) ⊂ Im(f), we cannot use the algorithm from
[3] directly, so unless we find a way to find all ghost points in less than O(n3) time, this algorithm will not have
a better time complexity than computing the difference naively. Therefore one of the most obvious future
steps for this research is to find or develop an algorithm that can find these ghost points as fast as possible.

Another step this research could take is to expand the algorithm to work for other types of trees. One could
look at double caterpillars, a tree that can be split up into two caterpillars, or one could look at the distance
between a caterpillar and a non-caterpillar, or maybe even the distance between two non-caterpillars. Cater-
pillars are of course a very specific type of tree, and if we can compute the distance between more generic
trees in a faster way, that would be even more useful.

A third way to expand this research is to look at the practicality of the algorithms. If we look at the 2-
dimensional algorithm we see that this is theoretically faster than checking all triplets naively, but we of
course do not know whether this will be the case in practice. Someone could create a program that applies
this algorithm and time it to see if the program computes the distance faster using the naive approach or
using the created algorithm.

21

Bibliography

[1] Jansson, J. & Lee, W.L. (2021). Fast algorithms for the rooted triplet distance between caterpillars. Depart-
ment of Computing, The Hong Kong Polytechnic University.

[2] Dobson, A. J. (1975). Comparing the shapes of trees. Springer, Berlin.

[3] Chain, T. M. & Pǎtraşcu, M. Counting Inversions, Offline Orthogonal Range Counting,and Related Prob-
lems.

[4] Brodal, G. S. & Fagerberg, R. & Mailun, T. & Pedersen, C. N. S. & Sand, A. (2013). Efficient Algorithms for
Computing the Triplet and Quartet DistanceBetween Trees of Arbitrary Degree.

[5] Jansson, J. & Rajaby, R. (2017). A more practical algorithm for the rooted triplet distance.

23

	Abstract
	Introduction
	Preliminaries
	Definitions
	Dividing Nd

	The Algorithm
	How Does the Algorithm Work?
	Resolved Triplets
	Unresolved Triplets

	Time Complexity

	The Third Dimension
	Dividing N3
	Counting Good Triplets
	Resolved Triplets
	Unresolved Triplets

	The dth Dimension
	d-Dimensional Sum
	Amount of Subcases when there are k Long Triplets
	Structure
	Amount Of Subcases

	Amount Of Subcases For d Caterpillars
	Time Complexity

	Conclusion
	Bibliography

