
D E S I G N A N D E VA L U AT E T H E O G C W E B S E R V I C E S A R C H I T E C T U R E
O F A G E O H A Z A R D S U S C E P T I B I L I T Y A N A LY S I S TO O L

A thesis submitted to the Delft University of Technology in partial fulfillment
of the requirements for the degree of

Master of Science in Geomatics for the Built Environment

by

Ioanna Micha

October 2019

Ioanna Micha: Design and evaluate the OGC Web Services architecture of a geohazard
susceptibility analysis tool (2019)
cb This work is licensed under a Creative Commons Attribution 4.0 International
License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

The work in this thesis was carried out in the:

Supervisors: Prof.dr.ir. P.J.M. van Oosterom
Drs. ME de Vries
Drs. Ing. Gerrit Hendriksen (Deltares), Mike Woning (Deltares)

Co-reader: Dr.ir. P. (Pirouz) Nourian

http://creativecommons.org/licenses/by/4.0/

A B S T R A C T

Open standards like Open Geospatial Consortium (OGC) standards can be used
to improve interoperability and re-usability among geospatial tools, datasets and
services across the web. Today more than six thousands commercial and non com-
mercial implementations of the OGC Web Services (OWS) are available, and more
and more Geographical Information Systems (GIS) web applications, platforms and
datasets are being published from organizations in the global geospatial community.
This thesis explores if the GIS standards, their implementations, and the organiza-
tions themselves are mature enough to support quality decision making in sectors
like the risk management, by developing GIS web applications with up-to-date spatial
datasets and complex geo-processes.

Motivation for this research has been the Risk Indicators for Infrastructure in Data
scarce Environments (RI2DE) GIS web tool of Deltares institution, a tool that performs
GIS analysis based on datasets with global coverage, in order to detect areas around
road infrastructures that are susceptible against climate related geohazards, and its
need to provide quality risk maps and more friendly to the user Graphical User
Interface (GUI) through status reporting messages and control of the processes. The
tool is developed with open source technology components, OWS and standard data
formats (such us Geographic JavaScript Object Notation (JSON) (GeoJSON), JSON and
eXtensible Markup Language (XML).

Having as case study the RI2DE tool, within this research the OGC Web Process-
ing Service (WPS) 2.0.2 standard that is responsible for publishing geoprocesses as
web services and its free and open source PyWPS 4.0.0 implementation has been
evaluated according to the new operations for job monitoring and job control that the
standard offers, in order to assess if it is feasible to have status report messages
and control of the processes. Moreover it has be assessed how easy is to find and
access up-to-date datasets, services and tools from distributed Spatial Data Infrastruc-
tures (SDI)s that implement the Catalogue Service for the Web (CSW) standard, and
how flexible are the WPS to accept different inputs.

From an early stage of this research it has been clear that the status reporting and
the control of the process would have been difficult to be implemented, since the
PyWPS implementation of the WPS 2.0.2 is still undergoing until the delivery of this
thesis. While the standard has been published since 2015, the only available full
implementation of it is from the ZOO-Project, which arise question regarding the
complexity of the standard specification and the currently state-of-the-art technol-
ogy.

The greatest achievement of this thesis has been the integration of the distributed
searching for services at different CSW catalogues, at the RI2DE tool web browser.
While the implementation was achieved, many question were arise concerning the
sharing of the produced geospatial information from organizations and countries.

iii

A C K N O W L E D G E M E N T S

I would like first to thank my supervisor from Deltares, Drs Gerrit Hendriksen for
always being there for me and also for providing the idea for this research.

I would also like to thank my thesis supervisors, Prof.dr.ir. Peter van Oosterom
and Drs. Marianne de Vries for their guidance and their ideas on the research.

I would also like to acknowledge Dr.ir. Pirouz Nourian as the co-reader of this
thesis, for his very valuable comments.

I would also like to thank my other supervisor from Deltares, Mike Woning for
providing the RI2DE tool for this research.

Also, sincere thanks to my family and especially to my sister for their love and
support these two years that I am abroad.

Last, but not least, I need to thank my friends, here in Netherlands who have
always been there for me !!

v

C O N T E N T S

1 introduction 1

1.1 Motivation and case study . 2

1.2 Objectives & research questions . 3

1.3 Research scope . 4

1.4 Methodology . 5

1.4.1 Project initiation . 5

1.4.2 Analysis framework . 7

1.4.3 Design . 7

1.4.4 Implementation . 7

1.4.5 Publishing & Evaluation . 8

1.5 Thesis outline . 8

2 ogc web services and other standards 9

2.1 JSON . 9

2.2 GeoJSON . 9

2.3 OGC Web Map Service (WMS) . 9

2.4 OGC Web Coverage Service (WCS) . 10

2.5 OGC Web Processing Service (WPS) . 10

2.5.1 OGC WPS 1.0.0 . 10

2.5.2 OGC WPS 2.0.2 . 12

2.6 OGC Catalogue Services . 14

2.7 OGC Catalogue Services for the Web (CSW) 17

2.7.1 Query predicate language at CSW 18

2.7.2 Core queryable & returnable realization 18

2.7.3 GetRecords operation . 18

2.8 Metadata schemes . 20

2.8.1 ISO metadata schema . 20

2.8.2 Dublin Core . 20

3 technology framework 21

3.1 PyWPS . 21

3.1.1 PyWPS-4 . 21

3.2 GeoNetwork . 24

3.3 GeoServer . 25

3.4 Vue.js and Vuex . 25

3.5 OWSLib . 26

4 related work 27

4.1 WPS implementations . 27

4.1.1 ArcGIS Server . 27

4.1.2 Degree . 27

4.1.3 52
◦ North . 28

4.1.4 GeoServer . 28

4.1.5 ZOO-Project . 28

4.2 E-Government Standard Framework of South Korea 29

4.3 OpenEarth initiative . 29

4.3.1 MI-SAFE Viewer . 30

4.4 RI2DE GIS Web tool . 31

4.4.1 Roadapt Vulnerability Assessment methodology 31

4.4.2 OGC Web Services Architecture of the RI2DE tool 34

4.4.3 Technology components of the tool 35

vii

viii Contents

4.4.4 Input datasets & services . 35

4.4.5 Web Processin Services . 37

4.4.6 Configuration files . 46

4.4.7 GUI and workflow of the user actions in the RI2DE client . . . 47

5 requirements 51

5.1 Discover, retrieve, display and use services 51

5.2 Status reporting of the processes . 52

5.3 Control of the processes . 53

5.4 Translate to risk . 53

5.5 Extra functionalities outside of the scope of this research 55

6 implementation 57

6.1 System setup . 57

6.1.1 Example execute requests to the RI2DE back-end 58

6.2 Search, retrieve, display, select and use services 60

6.2.1 Geoportals and services . 60

6.2.2 GetRecords implementation . 62

6.2.3 Web Processing Service for the discovery and retrieve of the
records from distributed catalogue services 65

6.2.4 Client processing . 68

6.2.5 Reprojection . 69

6.3 Test of status reporting . 70

6.4 Translate to risk functionality . 74

6.4.1 Translate to risk back-end . 74

6.4.2 Front-end: translate to risk . 75

6.5 New GUI and workflow of user actions 77

6.6 New OGC architecture . 80

7 discussion and conclusions 81

7.1 Conclusions on the research questions 82

7.2 Contribution to the field of Geomatics 85

7.3 Discussion . 85

7.3.1 Discover, retrieve, display, select and use services from dis-
tributed catalogues . 85

7.3.2 Job monitor and job control . 86

7.3.3 Translate to risk . 86

7.3.4 Evaluation of the tool . 86

7.4 Future work . 86

a system setup 93

a.1 Setting up PyWPS 4.0.0 in a Linux environment 93

a.2 Setting up RI2DE web browser in a Linux environment 93

L I S T O F F I G U R E S

Figure 1.1 Web Services Framework of OGC Geoprocessing standards,
Source: OSGeo . 1

Figure 1.2 Methodology steps . 5

Figure 1.3 Analysis of methodology steps 6

Figure 2.1 Mandatory operations of WPS in synchronous communication 11

Figure 2.2 WPS 2.0.2 Conceptual Model, Source: OGC WPS 2.0.2 Inter-
face Standard: Corrgendum 2 12

Figure 2.3 Synchronous process execution, Source: OGC WPS 2.0.2 In-
terface Standard: Corrgendum 2 14

Figure 2.4 Asynchronous process execution, Source: OGC WPS 2.0.2
Interface Standard: Corrgendum 2 14

Figure 2.5 Common returnable properties, Source: OpenGIS Catalogue
Services Specification 2.0.2 . 16

Figure 2.6 Mapping of Dublin Core names to XML element names, Source:
OpenGIS Catalogue Services Specification 3.0 19

Figure 3.1 PyWPS logo . 21

Figure 3.2 GeoNetwork logo . 24

Figure 3.3 GeoServer logo . 25

Figure 3.4 Schematic representation of Vuex philosophy, Source: Vuex
[2019] . 25

Figure 4.1 ESRI logo . 27

Figure 4.2 degree project logo . 28

Figure 4.3 52
◦ North logo . 28

Figure 4.4 GeoServer, status report of the process, Source:GeoServer
[2019] . 29

Figure 4.5 Application of the satellite image processing: (a) running
process: GetStatus request, (b) completed process and result
GetResult request (c) multiprocessing and results 30

Figure 4.6 Vulnerability scores for threat Erosion 33

Figure 4.7 Final vulnerability map for the Erosion threat 33

Figure 4.8 OGC Web Services Architecture of RI2DE tool 35

Figure 4.9 Technology components of RI2DE tool 36

Figure 4.10 Susceptibility factors default classes boundaries 38

Figure 4.11 Schematic view of WPS: Initial loading of hazards’ informa-
tion . 39

Figure 4.12 Schematic view of WPS: Selection of the roads 39

Figure 4.13 Schematic view of WPS: Custom process for classification of
datasets . 41

Figure 4.14 Schematic view of WPS: classification process of distance to
water . 41

Figure 4.15 Schematic view of WPS: classification process of soil 42

Figure 4.16 Schematic view of WPS: classification process of land use . . 43

Figure 4.17 Schematic view of WPS: classification process of slope 43

Figure 4.18 Schematic view of WPS: classification process of culverts . . 44

Figure 4.19 Schematic view of WPS that provides the final susceptibility
analysis . 45

Figure 4.20 GUI of RI2DE tool, part 1 . 48

Figure 4.21 GUI of RI2DE tool, part 2 . 49

Figure 5.1 Asynchronous execution of the process 54

Figure 6.1 MI-SAFE Catalogue . 61

ix

x List of Figures

Figure 6.2 RI2DE Catalogue, Albania DEM 62

Figure 6.3 Process for search, retrieve and return records from distributed
Catalogue Services (WPS) . 66

Figure 6.4 Polygon that was created in Beira city of Mozambique, with
QGIS . 67

Figure 6.5 Schematic view of the client actions to display and change
the source . 69

Figure 6.6 Selected area in Albania . 70

Figure 6.7 Schematic view of the Translate to risk process 75

Figure 6.8 Client processing: Translate to risk 76

Figure 6.9 RI2DE GUI, part 1 . 77

Figure 6.10 RI2DE GUI, part 2 . 78

Figure 6.11 RI2DE GUI, part 3 . 79

Figure 6.12 New OGC Web Services Architecture of RI2DE 80

L I S T O F TA B L E S

Table 2.1 Possible values of status element in Status Info Document . . 13

Table 2.2 Common queryable elements, Source: OpenGIS Catalogue
Services Specification 2.0.2 . 17

Table 2.3 General model to CSW mapping 18

Table 2.4 Part of the Parameters fot GetRecords operation request . . . 19

Table 2.5 Search result parameters in GetRecords response 20

Table 4.1 RI2DE Susceptibility Factors for each threat 34

Table 4.2 ri2de configuration . 46

Table 4.3 RI2DE susceptibility factors setup JSON 47

Table 6.1 Geoportals . 61

Table 6.2 Initation of CatalogueServiceWeb object 64

Table 6.3 Parameters of getrecords method 65

xi

A C R O N Y M S

DEM Digital Elevation Model . 2

GIS Geographical Information Systems . iii

GUI Graphical User Interface . iii

W3C World Wide Web Consortium . 1

WCS Web Coverage Service . 3

WPS Web Processing Service . iii

WMS Web Map Service . 3

CSW Catalogue Service for the Web . iii

OWS OGC Web Services . iii

OGC Open Geospatial Consortium . iii

XML eXtensible Markup Language . iii

JSON JavaScript Object Notation . iii

GeoJSON Geographic JSON . iii

GML Geography Markup Language . 1

ISO International Organization for Standardization . xiii

CRS Coordinate Reference System . 32

EPSG European Petroleum Survey Group. .62

WGS84 World Geodetic System 1984 . 52

HTTP Hypertext Transfer Protocol .1

ISO/TC International Organization for Standardization (ISO) Technical Committee . 1

URL Uniform Resource Locator . 2

RI2DE Risk Indicators for Infrastructure in Data scarce Environments iii

DSR Design Science Research . 5

ROADAPT VA Roads for today, adapted for tomorrow Vulnerability Assessment . . . 2

API Application Programming Interface . 28

SOAP Simple Object Access Protocol .9

KVP Key-Value Pair . 9

KML Keyhole Markup Language . 22

OSM Open Street Map . 34

SVN SubVersion Repository . 35

MERIT Multi-Error Removed Improved Terrain . 36

SRTM Shuttle Radar Topography Mission . 36

ISRIC International Soil Reference and Information Centre . 37

ESA European Space Agency . 37

JRC Joint Research Centre . 40

SDI Spatial Data Infrastructures . iii

EU European Union . 30

FAST Foreshore Assessment using Space Technology . 30

SVG Scalable Vector Graphics . 10

CQL Common Query Language . 18

BNF Backus Naur Form . 18

xiii

1 I N T R O D U C T I O N

Geospatial data is an increasingly important information asset for decision making
process. GIS are being used in many sectors, such as transportation, environmen-
tal monitoring and risk management. More reliable and up-to date spatial data and
tools are required for proper decision making. Worldwide, governments at differ-
ent levels and organizations have put a lot of effort into disseminating geo-spatial
data and applications of GIS via the web for wide reuse van den Brink [2018]. But
as more geographic data and related GIS web applications become available, orga-
nizations have been formed to answer the problem of interoperability between data
and processes. International organizations within the geo-spatial community set
standards and specifications for spatial data formats, metadata and services in or-
der to reduce misunderstanding, to optimize operations, to improve the quality and
promote re-usability of GIS tools and products Gistandards [2018].

Within this context the OGC, a non for profit organization that started in 1994 as
the OpenGIS project, sets as goal to make quality open communication standards
for the global geospatially community. To ensure consistency across the internet
and web ecosystem, the OGC has alliance partnerships with many other standards
development organizations, like the World Wide Web Consortium (W3C) (founded
in 1994 by Tim Berners-Lee and offers a variety of standards like XML for encoding
documents) and the ISO Technical Committee (ISO/TC) 211 (formed within ISO in
order to provide standards that cover the area of digital geographic information,
like the ISO 19115 and ISO 19139 for the context and the schema of the Geographic
information metadata) OGC [2019b].

On that terms OGC offers standard interfaces and encodings for spatial data
formats (like the Geography Markup Language (GML), an XML representation for
geographical features) and geo-services (the OWS). OWS are self-contained, self-
describing, modular geo-spatial functionalities for data access, data display and
data processing, that can be published and invoked across the web, using famil-
iar communication technologies and data encodings, such as Hypertext Transfer
Protocol (HTTP), JSON, and XML.

Figure 1.1: Web Services Framework of OGC Geoprocessing standards, Source: OSGeo

Within OGC vision it is possible to build complex GIS web applications, based
on an OGC Web Services Oriented Architecture, where the components are free,

1

2 introduction

dynamic and web distributed services. In Figure 1.1 it is depicted a general archi-
tectural schema of the different OGC Web Services and standard encodings. The
publish-find-bind paradigm describes the relations and functions that the OGC stan-
dards and services can offer. In the paradigm, OGC services providers publish their
spatial datasets and processes as OWS services in public registries. These services are
accessible by an endpoint (Uniform Resource Locator (URL) address), and geo-spatial
organizations and consumers can find them and reuse them at any time.

More than six thousands approved and not approved OGC implementation stan-
dards are available in the geospatial community, either commercial or free and open
source OGC [2019a], and more and more GIS web geoprocessing products are being
developed from organizations and institutions around the world.

The idea of this thesis is to evaluate if the standards, their implementations and the or-
ganizations/institutions that produce spatial (datasets and tools), are mature enough
to support the development of GIS web applications that demands up-to-date spatial
datasets and complex geo-processes, for quality decision making. Motivated and hav-
ing as case study the same time, the RI2DE GIS Web tool of Deltares institution, that is
used for susceptibility analysis in areas around road infrastructures against climate
triggered geohazards, and that is developed with free and open source technology
components in an OGC Web Services environment, this thesis will explore:

• The OGC CSW standard that publish catalogues of geospatial records (meta-
data about gespatial data or services) and the ISO and Dublin core metadata
schemas that are used for the registration of the different records, in order to
assess how easy is to find and access up-to-date datasets and services, and how
mature are the organizations on publishing and registering the datasets they
produce.

• The OGC WPS 2.0.2 version of the standard that publish geospatial processing
services as web services and the newly developed free and open source Py-
WPS 4.0.0 implementation of it, in order to assess what is its status regarding
the GetStatus, GetResult and Dismiss operations in an asynchronous execution
of the process.

1.1 motivation and case study
Modern societies are highly depended on their network infrastructures for their
social and economic activities and disruptions in one of these infrastructures may
have serious consequences. Depending on the local site environment and on the
extreme weather conditions, different geohazards can potentially threaten the net-
work infrastructure integrity and serviceability. Within the Deltares institution the
RI2DE GIS Web tool that helps to determine the susceptibility of infrastructures (e.g.
a road) for different climate triggered geo-hazards (e.g landslides) that affects it, has
been developed on the GIS based Roads for today, adapted for tomorrow Vulnera-
bility Assessment (ROADAPT VA) methodology. In this methodology various types
of available information, such as Digital Elevation Model (DEM) and land use maps,
become the susceptibility factors, and when they are combined they produce vul-
nerable locations against specific geohazards.

RI2DE tool base its GIS analysis on global coverage datasets with low resolution and,
is developed and published as a project of the OpenEarth initiative of Deltares in-
stitution. OpenEarth is an initiative to deal with Data, Models and Tools in earth
science engineering projects. To be an effective and sustainable paradigm solution
in the development of GIS web products, OpenEarth adapts international standards
for exchange of data and tools over the web, such as OGC and ISO and development
of the OpenEarth tools, datasets and services is based mainly on free and open source
technologies van Koningsveld and den Heijer [2014]. Being a project of this initia-
tive RI2DE main components are OGC web services, and known GIS data formats are

1.2 objectives & research questions 3

used for the exchange of the information between the client and the server, such as
GeoJSON and JSON. Also free and open source GIS packages and services’ implemen-
tations are used. More specifically:

• All the geoprocesses that assess the susceptibility of the infrastructures are
published as WPS

• The input datasets to the geoprocesses are transnational Web Coverage Service
(WCS)

• The temporary results and the final vulnerability maps are published as Web
Map Service (WMS) at the RI2DE GeoServer for visualization purposes

• The implementation of the WPS is based on the free and open source PyWPS
4.0.0 implementation

The target audience of the RI2DE GIS web tool is either road infrastructure owners
or governmental/local stakeholders that are deeply involved with the construction
and conservation of national or local infrastructure networks. For them it is essential
to conduct quality decision making regarding the road segments that are vulnerable
to geohazards, in order to take appropriate preventative measures and perform
good cost benefit analysis.

So far the input datasets to the GIS analysis of the tool are transnational services
with low resolution. The need for quality decision making makes it necessary to use
apart from the predefined services, higher quality and resolution services that de-
rive from regional or national databases, and to have final vulnerability assessment
on the road segments instead of simple raster maps. Increasing the resolution of
the datasets, changing the sources, and having more complex processes might arise
issues concerning the processing time or cause incompatibility errors that could col-
lapse the web tool. Based on these needs there is a vision for a new version of the
tool where:

1. The users will be able to discover and retrieve distributed services that are
registered on regional or national SDIs and select them as the inputs of the
vulnerability processes.

2. Status report message, probably in the form of a progress bar will be sent to
the user while the processes are running.

3. The users will be able to stop the process if it takes too long to complete.

4. There will be a new section on the tool where the user can translate the vul-
nerability raster maps into classified road lines based on the vulnerability of
the surrounded area.

1.2 objectives & research questions
The main objective of this MSc thesis research is to try to create a new version of
the RI2DE tool, under the concept of an free and open source OGC Web Services
Architecture. In order to reach to such an objective, a thorough research should be
made on the efficiency of the latest versions and the state-of-the-art implementations
of the OWS to support the development of a tool with theses requirements, and
on the appropriate design of an interface that offers a good user experience. At
the end of this research the tool will have a new OGC Web Services architecture
and a different GUI and workflow of the user actions. Therefore the main research
question of this research is:

”What will be the new OGC Web Services Architecture of the tool”, and is fol-
lowed by a set of five sub-questions, that helps to achieve the main objective of this
research.

4 introduction

1. How flexible are the Web Processing Services of the tool?

The first sub-question aims to answer to the question if the susceptibility factor
Web Processing Services of the tool are able to accept different inputs from
the default ones. The first new requirement of the tool that concerns the
discovery, retrieval and selection of the source service for the susceptibility
factor processes, requires flexible WPS.

2. How to get the metadata of the Web Services from the distributed Catalogues?

Governmental and local organizations and institutions that advertise the open-
ness of the datasets, tend to publish them as OWS and register them as records
with attached metadata in their SDIs (geoportals). The aim of the second sub-
question is to find the way to retrieve the metadata (OWS URL of the server that
they are published and layer name of the services that concerns their location.

3. How to establish the connection between the Catalogue Services and Web Processing
Service ?

The core of the discover, retrieve, display, select and use the sources as in-
puts of the susceptibility factors processes requirements is to succeed the co-
existence of the CSW and the WPS in the same architecture schema. The aim of
this sub-question is to define how these standards are going to be ”connected”,
in order to pass from the metadata to the data itself, and to input them to the
Web Processing Services.

4. What is the status of the PyWPS 4.0.0 with respect to the Web Processing Services
2.0.2 version (test of asynchronous job control and job monitor)?

The free and open-source implementation of the Web Processing Service, Py-
WPS, has recently released the PyWPS 4.0.0 version, which has been devel-
oped in order to implement the WPS 2.0.2 version of the standard. Since the
PyWPS is a volunteer community the aim of this sub-question is to review
this new version of the PyWPS regarding its status with the respect to the new
operations of the standard (GetStatus, GetResult, Dismiss).

5. What will be the GUI and work flow of the user actions?

This sub-question concerns the design of a new GUI and a new sequence of
actions that a user of the tool can take, in order to provide the new function-
alities, achieving high level user experience.

1.3 research scope
The main scope of this research will be the evaluation of the existing OGC Ser-
vices and technology framework, with final goal to develop an efficient and self-
descriptive new version of the RI2DE GIS web tool. The tool was the motivation to
assess how the standards, the implementations and the organization themselves can
support these new functionalities. So by trying to implement the functionalities that
were set at the Motivation section this thesis will:

• Research and implement the WPS with the PyWPS 4.0.0, in order to test imple-
mentation in asynchronous execution and the state of it regarding the GetSta-
tus, GetResult, Dismiss operations of the WPS

• Assess the flexibility of the WPS of the tool on accepting other services apart
the default ones

• Assess the CSW standard and how much the organizations implement it by
publishing their datasets, tools and services

1.4 methodology 5

• Find a solution for distributing search in the RI2DE platfrom through the CSW

standard

• Design an as much as possible, user friendly and self descriptive new GUI for
the tool

In the practical phase of this project, I will work both on the back-end and the
front-end on the tool, trying to implement all the requirements. The tool will be
evaluated from the developers, TU Delft mentors, stakeholders, in order to assess
its usability and functionality. This MSc thesis project is happening in collaboration
with TU Delft and Deltares institution, and together with this research, another
group of developers of the OpenEarth initiative of Deltares, works on some extra
functionalities of that the new version of the tool will provide.

1.4 methodology
The objective of this section is to outline the general methodology that is going to
be followed in order to conduct this research, aiming to answer all the research
questions and achieve the scope of this project. This research project applies to the
information systems field, and the methodology steps it was selected to follow the
Design Science Research (DSR) approach as it was presented by Hevner and Chat-
terjee [2010] DSR approach aims at designing artifacts, such as tools, methods, and
techniques that make information systems more effective and efficient. Following
a problem solving approach DSR results in innovative artifacts tools, based on the
state-of-the-art of the relative application context.

Figure 1.2: Methodology steps

The complete step-by-step process that is going to be followed is depicted in the
Figure 1.2 and Figure 1.3 will outline how the artifact is going to be designed and
how the relative research is going to be conducted. This process is consisted of a
number of sequential phases, namely, Project conception and initiation, Analysis
framework, Design, Implementation, and Publishing and Evaluation. Due to the
multi-disciplinary nature of web design the whole procedure is iterative, which
means that a phase can be refined multiple times before the delivery of the final
research product. A detailed description of each phase will be given in the following
sections.

1.4.1 Project initiation

This MSc thesis started when the supervisors/ stakeholders from Deltares insti-
tution, provided the first version of the tool for research purposes, and the first
meeting with the mentors from TU Delft, took place. After several discussions on
the gaps of the first version, the possible improvements on it, and the state-of-the
art publications and implementations of the OGC Web Services, the research topic
was defined. At the end of the first phase, the research questions and scope of the
project, together with the new functionalities were set.

6 introduction

Figure 1.3: Analysis of methodology steps

1.4 methodology 7

1.4.2 Analysis framework

The research framework phase is the most important part of this research project,
where a thorough research on the tool, the OGC Web Services and the state-of-the-
art technology is being carried out. The result of this research will set the base for
answering the sub-research question 2, 3, 4 and 5, and will examine the feasibility to
implement the new functionalities under the existed technology framework. More
specifically in this phase it has been carried out:

• A detailed overview of the first version of the tool, in order to review its’
current architecture, the services that comprise, their flexibility, and the tech-
nology that it uses.

• A thorough research concerning the different OGC Web Services that can be-
come components of a publish-find-bind OGC Web Service Architecture, fo-
cusing on the Catalogue Service for the Web communication protocol and the
new operation of the Web Processing Service 2.0.2 version, GetStatus, GetRe-
sult, Dismiss.

• An examination on the new version of the free and open-source implementa-
tion of the Web Processing Service, PyWPS 4.0.0. The PyWPS has been mainly
analyzed and tested in order to assess its’ status with respects to the new
operations GetStatus, GetResult, Dismiss of the WPS 2.0.2.

• A research on other WPS implementations in order to create a benchmark for
the PyWPS implementation and to assess what is the state-of-the-art regarding
the WPS 2.0.2 standard.

The final product of the research framework phase is a functional require-
ments list for every new functionality.

1.4.3 Design

The design phase is the “skeleton” of this research project, as it describes how the
new version of the tool is going to be, based on the functional and the high-level
requirements. Together with the supervisors and stakeholders from Deltares, the
mentors from TU Delft, and the developer’s team it has been designed:

• The new OGC Web Services Architecture of the tool

• The new GUI of the tool.

• The new workflow of the user actions

The designed phase products are refined multiple times, according to the feasi-
bility to have the requirements and the functionality/ usability of the tool. The
final architecture of the tool is also the answer to the main research question of this
project and is presented as a result in the implementation chapter (Section 6.6).

1.4.4 Implementation

The implementation phase comprise the practical part of this project, and involves
the developing part of the tool, where the back-end and the front-end of the tool
are constructed based on the designed OGC Web Services architecture and on the
desired GUI of the tool. The implementation phase apart from the coding part,
involves also the tests of the different versions of the tool from the developer team,
regarding the functionality. In more details the implementation phase is comprised
by the following steps:

8 introduction

• Firstly the RI2DE environment has been set up for development purposes. Both
the back-end and the front-end of the tool has been set up and run at my
personal laptop. At the end of this step, there is ready the environment for
the development of the new services, and interface of the tool.

• The next step of the implementation phase has been the discovery of several
OGC WCS that are registered in distributed geoportals, in order to be used for
testing purposes for the functionality, disover, retrieve, display, select and use
other services. The services should be appropriate inputs for the susceptibility
factor WPS, and to be registered with all the necessary information for their
retrieval and use.

• The most important step of the implementation phase is the integrate of the
new functionalities, one by one according to the feasibility to implement them
within the state-of-the-art technology framework. For an organized implemen-
tation procedure, the development is being carried out by trying to implement
the functional requirements as they are described in the Chapter 5 chapter. Ev-
ery time one functionality is implemented the tool is tested by the developers
and then refined if needed.

1.4.5 Publishing & Evaluation

The last step of this research project, involves the publishing and evaluation of
the tool. The publishing of the tool will be made each time a new tested version
of it (tested from the developers) is also assessed from the stakeholders during
a presentation, where the new functionalities are presented and new ideas and
comments on the functionalities and usability of the interface are proposed. After
the publishing of the tool an evaluation session should be carried out, in order to
assess the workflow of the user actions, and how easy is for someone who is not
part of the stakeholders and developers team, to understand the whole concept of
the tool. Due to time constraints the usability session of the tool will future work.

1.5 thesis outline
The report of this thesis is organized as follows: Chapter 2 carries out a research
on the different OGC standars that comprise the architecture of the tool, and more
thorough one on the WPS 2.0.2 and the CSW standards. Chapter 3 present the tech-
nology framework that is behind the implementation of the back-end and on the
front-end of the tool, focusing on the PyWPS 4.0.0 implementation of the WPS stan-
dard. Chapter 4 chapters explores different WPS implementations in order to create
a benchmark for PyWPS, a GIS project that publish its processes with the WPS 2.0
standard, the OpenEarth initiative of Deltares and the gives an overview of the
ri2d! (ri2d!) tool. Chapter 5 describes the requirements that need to be fulfilled in
order to have the new desired functionalities, in an OGC Web Services Architecture.
Chapter 6 present the different steps that were followed for the development of the
new functionalities, the new GUI and the new architecture. Chapter 7 concludes this
research by answering to the research questions, outlining the issues, limitations
and the achievements and giving some ideas for future work.

2 O G C W E B S E R V I C E S A N D OT H E R
S TA N DA R D S

Following the broader context of web wervices and standardization, the OGC sets
the rules for publishing geo-datasets and tools as web services with standard re-
quest and response interfaces. Within OGC general guidelines, an OWS oriented
architecture is promoted for developing GIS web tools in an interoperable and open
environment.

For every OWS service, OGC specifies unique rules and standard operations that
the services may be called to execute. In order to request the execution of one of
these operations, the HTTP communication protocol is used. More specifically, there
are two ways to request an operation of an OWS:

• The GET method: Key-Value Pair (KVP) is used to encode the operation re-
quests

• The POST method: XML encoding is used for operation requests or contained
in the body of a Simple Object Access Protocol (SOAP) message

OGC has alliance with other international organizations that provides standards,
such as ISO. At this section of the report are going to be presented the different stan-
dard file formats and the OWS that compose the OGC Web Services Architecture of
the RI2DE tool. More specifically at Section 2.1 and Section 2.2 will describe the JSON

and GeoJSON data formats respectively. Section 2.3 describes the Web Map Service
that deals with the visualization of the datasets. Section 2.4 describes the Web Cov-
erage Services that deals coverages. Section 2.5 describe the different version and
operation of the Web Processing Service that deals with GIS processes. Section 2.6
describes the Catalogue Services specification for the development of catalogues.
Section 2.7 describes the CSW binding protocol. Section 2.8 describes the ISO and
Dublin core metadata schemas.

2.1 json
JSON is an open-standard file format that uses human-readable text to transmit data
objects consisting of attribute-value pairs and array data types. JSON was derived
from JavaScript and is language independent data format. While JSON is a data
format, it is being used frequently as a configuration file Wikipedia [2019e].

2.2 geojson
GeoJSON is JSON based open standard format designed for representing simple ge-
ographical features, along with their non spatial attributes. The features include
points, lines, polygons and multipart collections Wikipedia [2019a].

2.3 ogc web map service (wms)
The WMS specification provides guidelines for the publishing of geo referenced
maps for visualization purposes. A map is not the data itself. WMS produced

9

10 ogc web services and other standards

maps are generally rendered in a pictorial format such as PNG, GIF or JPEG, or
occasionally as vector-based graphical elements in Scalable Vector Graphics (SVG)
or Web Computer Graphics Metafile (WebCGM) formats Beaujardiere [2006]. The
OGC released the first version of the WMS in 2000, and the latest release is the WMS

1.3.0 in 2006.
The Web Map Service defines three operations:

• GetCapabilities (Mandatory): The purpose of GetCapapilities operation is to
retrieve the service metadata.

• GetMap (Mandatory): The purpose of a Get Map operation is to returns a
map whose geographic and dimensional parameters are well-defined.

• GetFeatureInfo (Optional) : The GetFeature operation returns information
about particular features shown on a map. It is only supported for those
layers for which the attribute queryable equals to true.

2.4 ogc web coverage service (wcs)
The WCS defines standard interfaces for the publication of coverages (digital geospa-
tial information representing space/time-varying phenomena) as web services. Un-
like the WMS, which deals with static maps for only visualization purposes (just
pictures), WCS deals in theory with spatio-temporal regular and irregular grids,
point clouds, and general meshes, but in practice only grids, and is possible to
get the original data for further processing Baumann [2010]. The latest release of
the standard is the WCS 2.1 in 2018.

• GetCapabilities : The purpose of GetCapabilities is to retrieve the service
metadata and coverages offered by a WCS server.

• DescribeCoverage: The purpose of this operation is to retrieve the description
of specific coverages that are included in the request.

• GetCoverage: The GetCoverage operation allows a client to request the cover-
age itself or a part of it.

2.5 ogc web processing service (wps)
WPS is the OGC standard, that defines how geo-spatial processes, algorithms, and
calculations can be published and invoked over the web. WPS provides rules for
standardizing requests and responses (inputs and outputs), between a client and
a WPS server. The input datasets to a Web Processing Service can be delivered
either across a network or they can be available at the same server as the processing
service. Since the first WPS specification published from OGC, several changes and
improvements have been made. Currently the WPS 2.0.2 is the latest version of the
standard and it has been modified from the previous one (WPS 1.0.0) with added
functionalities (job control and job monitoring) two important operations for the
complex and long time processes.

2.5.1 OGC WPS 1.0.0

• GetCapabilities: The GetCapabilities operation, request for an XML response
that provides the WPS server properties. In these properties are included the
names of the Web Processing Services that the server offers, and general de-
scription concerning them.

2.5 ogc web processing service (wps) 11

• The DescribeProcess: The DescribeProcess operation, request and receives
information, in an XML form, concerning the description of one or more Web
Processing Services that the server offers, and are executable.

• The Execute: The Execute operation allows WPS clients to trigger the execution
of a specific Web Processing Service. The inputs to the process can be either
included directly in the Execute request, or reference web accessible resources.
The result to the Execute request is either embedded in the response XML

document or stored in as accessible resource, and the URL of the stored output
in referred in the response document.

In order to invoke the execution of a Web Processing Service according to the 1.0.0
version of the standard, inside the Execute request should be given the following
properties Schut [2007].

• Service type identifier

• Operation name

• Version of the service

• Identifier of the process

• List of inputs provided to this process execution Data type: Complex data,
Literal Data, Bounding Box data

• Response form of the result (It can be set either to ”Raw Data output” which
indicates that the output shall be returned directly as raw data, without a WPS

response document, or ”Response Document” which indicates that the output
shall be returned as part of a WPS response document

• Language

Figure 2.1: Mandatory operations of WPS in synchronous communication

While the Job monitoring (status reporting of the process) was formally intro-
duced as an operation from the WPS 2.0.2 version of the standard, there was already

12 ogc web services and other standards

Figure 2.2: WPS 2.0.2 Conceptual Model, Source: OGC WPS 2.0.2 Interface Standard: Cor-
rgendum 2

a way to have ongoing reporting of the processing from WPS 1.0.0, by setting the
Response Form property of the Execute response to ”Response Document” and the
”store” and ”status” elements of the property to ”true”.

More specifically setting the ”store” element to true, indicates that the Execute
response document shall be stored at a web accessible URL (third party server), and
if the ”status” element is true, this document shall be updated while the process is
running. In this document the ”status” element can have the following values Schut
[2007] :

• ”Process Accepted” : The first time the document is returned

• ”Process Started”: While the process is running this message is being send

• ”Process Paused”

• ”Process Finished” : When the process finish without a problem

• ”Process Failed” : If the process execution fails for some reason

2.5.2 OGC WPS 2.0.2

The WPS 2.0.2 version of the standard has been released in 2015, almost 10 years
later from the previous version. In addition to the mandatory operations that the
WPS 1.0.0 version of the standard offers, the WPS 2.0.2 version introduced three new
operations and asynchronous execution of the process, in order to provide job mon-
itoring and job controlling. The WPS conceptual model of the 2.0.2 version of the
standard, as it is illustrated in the Figure 2.2, defines that every time a process runs
on the server, a job is created with unique id. This job has a result, has a status
and can be controlled by the service. Having this model as baseline the WPS 2.0.2
version of the standard, extra to the three mandatory operations, GetCapabilities,
DescribeProcess and Execute, offers three new optional operations:

• GetStatus: This operation allows a client to query status information of a
processing job (Can be invoked only when the process runs on asynchronous
mode)

• GetResult: This operation allows a client to query the results of a processing
job (Can be invoked only when the process runs on asynchronous mode)

• Dismiss This operation offers control of the job in an asynchronous mode

2.5 ogc web processing service (wps) 13

Table 2.1: Possible values of status element in Status Info Document
Status Definition
”Accepted” The job is queued for execution
”Running” The job is running
”Succeeded” The job has finished with no errors
”Failed” The job has finished with errors
”Dismissed” The job has been canceled

As it is outlined above, the GetResult and the GetStatus operation can be invoked
only when the process runs on asynchronous mode, which is a new functionality
of the WPS that was introduced from the 2.0.2 version of the standard. More specif-
ically in the Execute operation properties of the WPS 2.0.2 there is a property that
indicates if the process will run on synchronous or on asynchronous mode (See
below a list with the Execute operation properties of WPS 2.0.2).

• Service

• Version

• Extension

• Response format: Result Document, StatusInfo Document, Raw data

• Execution mode: synchronous or asynchronous

• Input

• Output

In the synchronous case, which is suggested when the processes don’t demand
too much time to complete, the client submits an execute request to the WPS server
and the connection between them stays ”open” until the processing job finish (Fig-
ure 2.3) Mueller and Pross [2016]. In the asynchronous case the client send an
execute request to the WPS server and immediately receives a status information
response (the Status Info document) which indicates that the request has been ac-
cepted and that a processing job has been created and will be run in the future,
then the connection ”closes”. In the StatusInfo document there is also information
regarding the Id of the job and the URL location. Now that the process runs on
asynchronous mode there is the option to monitor the job by sending GetStatus
requests using the job Id. The response to a GetStatus request is a StatusInfo docu-
ment which contains:

• JobID

• Status: See Table 2.1

• Expiration Data of the job

• An estimation of the completion

• Next poll

• Percentage Completed

When the process finishes, the client can send a GetResult request, in order to
receive a Result Document with the output of the process.

Moreover to the job monitoring, as it is already mentioned, the WPS 2.0.2 version
of the standard offers also the option to control the job, using the Dismiss operation.
The Dismiss operation, request from the WPS server to erase the Job Id of the process,
even if the process is still running, which means that the execution is cancelled. The
result to Dismiss request is StatusInfo document with status ”Dismissed”. The
Dismiss operation is usable for long-time running processes and in order to release
server resources Mueller and Pross [2016].

14 ogc web services and other standards

Figure 2.3: Synchronous process execution, Source: OGC WPS 2.0.2 Interface Standard: Cor-
rgendum 2

Figure 2.4: Asynchronous process execution, Source: OGC WPS 2.0.2 Interface Standard:
Corrgendum 2

2.6 ogc catalogue services
One of the most essential part of an SDI is its catalogue server. The catalogue of the
geo-portal, is like an online library of geo-datasets and processes, where the user
can discover them through their descriptive characteristics e.g. data of creation, title,
geographic area. These descriptions of geospatial data are called metadata (“data
about data”). In order to promote the sharing of geoghraphic information through-
out the maximum number of users, it is necessary to create distributed networks
of catalogs that are developed under common rules, and that use a standardized
mechanism for catalog querying Nogueras-Iso et al. [2005]. Web catalogues like
that could improve geospatial information sharing between organizations and their
users, using the capacities of the Internet, reduce duplication, and enhance informa-
tion consistency and data preparedness.

2.6 ogc catalogue services 15

On that spirit the Open Geospatial Consortium published the OGC Catalogues Ser-
vices specification that provides rules and guidelines for the development and pub-
lishing of Catalogues Services, that have standard interfaces for the discovery, acces-
sibility, maintenance and organization. In a more formal definition, OGC Catalogue
Services support the ability to “publish” and “search” collections of descriptive in-
formation (metadata) for data, services, and related information objects Nebert et al.
[2016b]. OGC Catalogue Services guidelines have evolved and improved through
years. The latest releases of the standard are the OGC Catalogue Services 2.0.2 (re-
leased in 2007) and the OGC Catalogue Services 3.0 (released in 2016). Since the
difference between these specifications are minor for the purpose of this research,
the guidelines of the OGC Catalogue Services 3.0 are going to be used in order to
describe the service.

In OGC Catalogue Services specification it is defined a general architecture that
specifies an abstract information and interface model that every catalogue should
have. The information model involves Nebert et al. [2007]:

• A minimal query language

The interoperability goal is supported by the specification of a minimal ab-
stract query (predicate) language that is called OGC Common Catalogue Query
Language. This minimal query language shall be supported by all compliant
OGC Catalogue Services and should assist the consumer in the discovery of
datasets of interest at all sites that support the OGC Catalogue Services spec-
ification. OGC Common Catalogue Query Language supports Boolean queries,
text matching operations, temporal data types, and geospatial operators and
its’ language syntax is based on the SQL WHERE clause in the SQL SELECT
statement Nebert et al. [2007].

• A set of queryable attributes (names, definitions, conceptual datatypes)

The goal of defining core queryable properties is to offer query interoperability
among catalogues, which means that the same queries can be executed against
any catalogue service without modification and without detailed knowledge
of the catalogue’s information model. Table 2.2 defines the set of the abstract
queryables Nebert et al. [2007].

• A set of core returnable properties

A set of core properties returned from a metadata search i encouraged to per-
mit the minimal implementation of a catalogue service. The set of metadata
that is going to be returned is defined from the chosen group (the Common
Element Set). There are three groups: ”brief”, ”summary”, and ”full”. The
returnable properties are expressed using the syntax of Dublin Core metadata
elements (Figure 2.5).

• A common record format

A common record format is defined in the OGC Catalogue Services specifica-
tion, that outlines the minimal set of elements that should be returned in the
brief and summary element sets Nebert et al. [2007].

The general interface model provides a set of abstract interfaces (classes) that
support the discovery, access, maintenance and organization of the catalogues. OGC

Catalogue Services specifies for every interface, operations that provide function-
ality on a specific area of interest (e.g. discover the datasets). More specifically
the general Catalogue Service class as it is described by the Catalogue Service 3.0
version of the specification can be associated with the:

• OGC Service class: Provides the getCapabilites operation to retrieve the Cata-
logue service metadata and the getResourceById operation that will retrieve
an object by query on its identifier only.

16 ogc web services and other standards

Figure 2.5: Common returnable properties, Source: OpenGIS Catalogue Services Specifica-
tion 2.0.2

2.7 ogc catalogue services for the web (csw) 17

Table 2.2: Common queryable elements, Source: OpenGIS Catalogue Services Specification
2.0.2

Name Definition
Subject The topic of the content of the resource
Title A name given to the resource
Abstract A summary of the content of the resource

AnyText
A target for full-text search of character data types in a
catalogue

Format The physical or digital manifestation of the resource
Identifier An unique reference to the record within the catalogue

Modified
Date on which the record was created or updated within the
catalogue

Type
The nature or genre of the content of the resource.
Type can include general categories, genres or aggregation
levels of content.

BoundingBox A bounding box for identifying a geographic area of interest
CRS Geographic Coordinate Reference System for the Bounding Box
Association Complete statement of a one to one relationship

• Discovery class: Provides the query operation for searching the catalogues
metadata and retrieve a set of all the resources that satisfy the query, the
describeRecordType operation retrieves the type definition used by metadata
of one or more registered resource types, the getDomain operation retrieves
information about the valid values of one or more named metadata properties.

• Manager class: Provides the transaction operation that performs a specified
set of ”insert”, ”update”, and ”delete” actions of metadata items stored by
a Catalogue Service implementation and the harverstResrouce operation that
requests the Catalogue Service to retrieve resource metadata from a specified
location.

While OGC Catalogue Services specifies a general architecture for the informa-
tion and the interface model that every digital catalogue should provide, it does
not require the use of a specific metadata schema. Where a catalogue service ad-
vertises a specific application schemas, catalogues that handle geographic dataset
descriptions should conform to published metadata standards and encodings of
this schema.

The abstract information and interface model that the OGC Catalogue Services
defines, is implemented by protocol bindings. Each protocol binding includes a
mapping from the general interfaces, operations and parameters that were specified
in this section, to the constructs available in the chosen protocol. For the purpose
of this research project the HTTP (OGC Catalogue Services for the Web) protocol
binding has been research thorough (see Section 2.7).

2.7 ogc catalogue services for the web (csw)

At this section the CSW protocol binding is going to be presented. Having as base-
line the HTTP protocol binding the CSW sends the requests to the catalogue and
receives the responses, using the GET or POST methods. This standard builds on
the general model of the Catalogue Services and offers seven operations: GetCapabil-
ities, GetRecordsById, GetRecords, GetDomain, Transaction, Harvest and Unharvest. . In
the Table 2.3 the CSW operations are mapped to the Catalogue Services operations.

18 ogc web services and other standards

Table 2.3: General model to CSW mapping
General Model Operation CSW Operation
OGC Service.getCapabilities GetCapabilities
OGC Service.GetResourceById GetRecordById
Discovery.query GetRecords
Discovery.getDomain GetDomain
Manager.transaction Transaction
Manager.harvestRecords Harvest
Manager.harvestRecords UnHarvest

2.7.1 Query predicate language at CSW

As it was already mentioned in the OGC Catalogue Services section, the abstract
information model indicates the need for a common predicate language but it does
not specifies the encoding to be used. The OGC CSW defines two predicate languages
Nebert et al. [2016a]:

• Common Query Language (CQL) TEXT: Is a text encoding of the Backus Naur
Form (BNF).

• FILTER: Is an XML encoding of the BNF grammar and is defined in the Filter
Encoding Implementation Specification Vretanos [2005].

All CSW implementations that implement the XML filter encoding syntax as de-
fined in the OGC Filter Encoding Implementation Specification, shall support at
least the following operators Vretanos [2010]:

• Logical operators: (And, Or, Not)

• Comparison Operators: (PropertyIsEqualTo, PropertyIsNotEqualTo, Property-
IsLessThan, PropertyIsGreaterThan, PropertyIsLessThanOrEqualTo, Property-
IsGreaterThanOrEqualTo, PropertyIsLike, PropertyIsBetween

• Spatial operators: BBOX

• Temporal operators: TOverlaps

2.7.2 Core queryable & returnable realization

The CSW protocol binding, specifies the csw:AbstractRecord for the realization of the
abstract record that the general information model demands. The csw:AbstractRecord
represents all the three groups (”brief”: csw:BriefRecord, ”summary”:csw:SummaryRecord,
”full”:csw:SummaryRecord) of the Common Element Set and its’ syntax is an XML-
based encoding based on the Dublin Core metadata (see Section 2.8.2). Figure 2.6
maps the Dublin Core element names of the OGC query and response elements spec-
ified in general model, to the concrete XML elements specified in this standard.

2.7.3 GetRecords operation

The GetRecords operation of the CSW binding protocol, maps to the Discover.query
operation of the general model. The GetRecords request implements a search op-
eration in the Catalogue, based on a query, and retrieves the resources that fulfills
the query. In the Table 2.4, the a part of the most important to this research input
parameters of a GetRecords request are presented.

The response to a GetRecords request is an XML that contains the result of the
search operation, on the selected XML schema. An overview of the elements that are
contained in the GetRecords result response, is offered in the Table 2.5.

2.7 ogc catalogue services for the web (csw) 19

Figure 2.6: Mapping of Dublin Core names to XML element names, Source: OpenGIS Cata-
logue Services Specification 3.0

Table 2.4: Part of the Parameters fot GetRecords operation request
Parameter Description
REQUEST Name of the operation: GetRecords (Mandatory)
Service Name of the service: CSW (Mandatory)
Version Version of the standard (Mandatory)
NAMESPACE Prefixes of the elements (Optional)
outputFormat Default value is xml (Optional)

outputSchema
Specifies the XML schema - default value is http://www.opengi
s.net/cat/csw/3.0 (Optional)

maxRecords The maximum number of records to be returned from the search
typeNames The typenames to query against, e.g csw:Record (Optional)
ElementSetName ”full’, ”summary” or ”brief” (Optional)
CONSTRAINTLANGUAGE CQL TEXT or FILTER (Optional)
Constraint The query (Optional)

20 ogc web services and other standards

Table 2.5: Search result parameters in GetRecords response
Result Parameters Description
result id A server generated identifier for

the result.
element set The element set that have been

returned: ”brief”, ”summary”,
”full”

record schema A reference to the type or
schema of the records returned

number of records matched Number of the records found by
the GetRecords operation

number of records reuterned Number of records actually re-
turned to client

next record Start position of next record
expires Indicates when the result will

expire

2.8 metadata schemes
In order to be useful, metadata needs to be standardized. This includes agreeing on
natural language, spelling, date format, etc. If everyone uses a different standard, it
can be very difficult to compare data to other data UNC [2019].

A key component of metadata is the schema. Metadata schemes are the overall
structure for the metadata. It describes how the metadata is set up, and usually
addresses standards for common components of metadata like dates, names, and
places. There are also discipline-specific schemes used to address specific elements
needed by a discipline UNC [2019]. For the purpose of this project, two meta-
data schemes have been researched, that are usually used for the description of the
records in the different catalogue services. At this section is given a small descrip-
tion of the ISO and Dublin Core metadata schemes. .

2.8.1 ISO metadata schema

ISO is the International Organization for Standardization. They develop and publish
International Standards. ISO [2019]. ISO creates documents that provide require-
ments, specifications, guidelines or characteristics that can be used consistently to
ensure that materials, products, processes and services are fit to the general pur-
pose of standardization ISO [2019]. The geomatics standardization activity in ISO

Technical Committee 211 include formal schemes for geospatial metadata that are
intended to apply to all types of information.

These metadata standards, ISO 19115:2003 and ISO 19115-1:2014 include proposals
for core (discovery) metadata elements in common use in the geospatial commu-
nity. ISO/TC 19139:2007 defines a formal encoding and structure of ISO 19115:2003

metadata for exchange.

2.8.2 Dublin Core

Dublin Core is a general standard first used by libraries, and can be adapted for
specific disciplines. The Dublin Core Metadata Element Set is one of the simplest
and most widely used metadata schema. Originally developed to describe web
resources, Dublin Core has been used to describe a variety of physical and digital
resources. Dublin Core is comprised of 15 “core” metadata elements, whereas the
”qualified” Dublin Core set includes additional metadata elements to provide for
greater specificity and granularity UNC [2019]. :

3 T E C H N O LO GY F R A M E W O R K

This section will give an overview of the technology framework that the RI2DE GIS

web tool use for the back-end implementation of the OWS and for the client-side pro-
gramming (RI2DE web browser). The different technology components that the tool
use are free and open source. More specifically Section 3.1 will present the PyWPS
implementation of the WPS standard, focusing on the current situation, regarding
the implementation of the GetStatus, GetResult and Dismiss operations of the ver-
sion 2.0.2 of the standard, and its ability to perform asynchronous execution of the
process. Section 3.2 will describe the GeoNetwork implementation for the creation of
catalogues that support the CSW binding protocol. Section 3.3 will briefly present
the GeoServer software that was used for publishing the raster datasets of the tool as
WMS and WCS. Section 3.4 will give an overview of the Vue.js framework of JavaScript
and its’ state management library, Vuex, that were used for the development of the
RI2DE web browser. Section 3.5 will describe the OwsLib client programming python
library that was used for the implementation of the GetRecords request.

3.1 pywps
PyWPS is the server side implementation of the OGC WPS standard, written in the
Python programming language PyWPS [2019b]. It was one of the first implemen-
tations of the OGC WPS and tries to connect to all existing tools for geospatial data
analysis, available on the Python platform. PyWPS is taking care of security, data
download, request acceptance, process running and final response construction.

In 2006 PyWPS 2.0.0 was released supporting the WPS 0.4.0 version of the standard,
and as the standard evolves, PyWPS implementation adjust to the newest version
of the protocol. PyWPS- 3 series supported the WPS 1.0.0 version of the standard,
and currently the PyWPS- 4 version has been developed and released in order to
support eventually the WPS 2.0.0 of the standard.

PyWPS is a free and open source solution for the implementation of the WPS

standard, and its development depends mainly on volunteers work and on students
project. For that reason it is essential at this part of the research to outline the current
situation of PyWPS, what it offers, and how complete is the implementation of the
GetStatus, GetResult and Dismiss operations.

3.1.1 PyWPS-4

PyWPS 4.3 is the most current version of the PyWPS, and it has been developed al-
most one decade after the previous one. The PyWPS community decided to rewrite

Figure 3.1: PyWPS logo

21

22 technology framework

the PyWPS code from scratch, based on new knowledge and new technologies,
having as main goal to fully implement eventually the WPS 2.0.0 version of the stan-
dard, and more specifically to support asynchronous execution and the GetStatus,
GetResult, and Dismiss operations. The major changes in the PyWPS 4 are PyWPS
[2019b]:

• PyWPS is written in Python 3 and runs on Python 2.7, 3.3 or higher.

• It utilizes native Python binding to existing projects (GRASS GIS)

• Supports GeoJSON, Keyhole Markup Language (KML) or TopoJSON

• OWSLib library is used for some data types

• PyWPS project has changed the licence from GNU/GPL to MIT

• Lxml library is used to handle XML files

PyWPS functionality

PyWPS does not come with any predefined processes. The processes has to be
developed by the user. The essential functions of a PyWPS Čepickỳ and de Sousa
[2016] are:

• Provide the WPS communication bridge

• Read the input data that are in the Execute request

• Calling the Execute function of the process

• Provide progress reports

• Create and communicate the results to the client

• Run up to a determined number of processes in parallel

• Save a number of processes on queue for future execution

PyWPS processes and services

PyWPS works with processes and services. In PyWPS there is a service instance
under which a collection of selected processes is published. A process is a Python
class that contains a handler method and a list of input and outputs. PyWPS recog-
nize all the defined inputs of WPS (LiteraData, ComplexData, BoundingBox). In order
to code a PyWPS process, it needs to be created a new class that inherits from the
PyWPS process class and needs the following attributes and functions in order to
be configured:

• Identifier: Unique identifier of the process in order to be used in the execute
request

• Title: Corresponding title of the process

• Abstract: A small abstract that defines the functionality of the process

• Metadata: Reference to more metadata about this process

• Inputs: A list of the inputs that needs to be contained in the Execute request

• Outputs: A list of the outputs of the process

• Store supported: Boolean (True for enabling the store of the output)

• Status supported: Boolean (True for enabling the status reporting functionality
of the PyWPS)

• Handler method: The handler method accepts as inputs the request and the
response objects of the process, and contains all the processing.

3.1 pywps 23

PyWPS configuration

The PyWPS instance comes with a configuration file that use the ConfigParser format.
This configuration file contains the following sections PyWPS [2019b]:

• Metadata: contains the metadata of the service (like provider name and con-
tact information)

• Server: contains information regarding the server (such as the maximum num-
ber of processes to run parallel or the output URL to store the results)

• Processing: configures the back end processing. Possible values: multiprocess-
ing, scheduler and default which is the same as multiprocessing.

• Logging: for logging configuration

• Grass: for optional configuration to support GRASS GIS

PyWPS status reporting

Although PyWPS does not support the GetStatus and the GetResult operations yet,
there is way for getting status report messages similar to the way that WPS 1.0.0
offers status report.

The status report messaging in the PyWPS can be enabled with the following
steps:

1. Set the store supported attribute in the PyWPS process instance to ”true”

2. Set the status supported attribute in the PyWPS process instance to ”true”

3. Set process status in the handler method using the WPSResponse.update status
function.

4. Set the output URL location in the configuration file

By setting the status supported and the store supported to ”true” and sending an
execute request where the ”ResponseFormat” parameter is equal to ”ResponseDoc-
ument”, the asynchronous request of the process is enabled. In the Listing 3.1 it is
depicted the part of the Execute request that enables the asynchronous execution
and in the Listing 3.2 it is presented, how the process status has been defined (using
the response.update status function, in a WPS that creates buffer of multiple features.

Listing 3.1: The part of the Execute request that enables asynchronous processing

1 . . .
2 <wps:ResponseForm>
3 <wps:ResponseDocument>
4 <wps:Output asReference=” true ”>
5 <o w s : I d e n t i f i e r>output</ o w s : I d e n t i f i e r>
6 <o w s : T i t l e>Some Output</ o w s : T i t l e>
7 </wps:Output>
8 </wps:ResponseDocument>
9 </wps:ResponseForm>

10 . . .

The response document is stored in the output URL, and the client can have access
to it with the HTTP-GET method. In this document the status is described either with
PyWPS [2019b]:

• ProcessAccepted: Process was accepted by the server and the process execu-
tion will start soon

• ProcessStarted: Process calculation has started. The status also contains re-
port about the percentage that is already done, and a status message (text
reporting about the calculation state)

24 technology framework

• ProcessFinished: Process instance performed the calculation successfully and
the final Execute response is returned to the client or stored on final location

• ProcessFailed: There was something wrong with the instance and the server
reports server exception.

Listing 3.2: Buffer multiple features process: Status report

def handler (s e l f , request , response) :
. . .

while index < fea tureCount :

inFeature = inLayer . GetNextFeature ()
inGeometry = inFeature . GetGeometryRef ()

. . .
index += 1

response . update s ta tus (’ Buf fer ing ’ ,
100∗ (index/featureCount))

. . .

PyWPS Dismiss

PyWPS 4.3 does not support yet the Dismiss operation of the WPS 2.0.2 version of the
standard. From the PyWPS GitHub repository it seems that there is an undergoing
implementation by multiple PyWPS community members, with the most interest
the master thesis of Laza [2018]. In this thesis the student tries to implement Docker
Container isolation in PyWPS in order to isolate each process execution. The goal
of this was to provide some mechanisms to control the execution of the process,
which is essential for the Dismiss operation of the WPS 2.0.2 standard. Several issues
prevented the integration of the Docker extension into the official PyWPS repository.
At the time of submitting this thesis project the Docker Container remains still on the
wish list of the PyWPS community PyWPS [2019a].

3.2 geonetwork

GeoNetwork is an open source catalog application to manage spatially referenced
resources. It is written in Java and its’ latest stable release is the GeoNetwork 3.4.4.
GeoNetwork is a standardized and decentralized system based on the concept of
distributed data and information ownership, and is designed to enable access to
geospatial datasets through descriptive metadata. GeoNetwork provides creating
and editing of metadata and offers search functions as well as embedded interactive
web map viewer. GeoNetwork offers support of OGC CSW 2.0.2 with the CSW opera-
tions, GetCapabilities, DescribeRecord, GetRecordsById, GetRecords, Harvest, Transaction
GeoNetwork [2019].

Figure 3.2: GeoNetwork logo

3.3 geoserver 25

3.3 geoserver

GeoServer is an open source server written in Java that allows users to share, process
and edit geospatial data. Designed for interoperability, it publishes data from any
major spatial data source using open standards Wikipedia [2019b]. GeoServer imple-
ments OGC protocols such as WMS and WCS. Additional formats and publications
are available as extensions including the WPS GeoServer [2019a].

Figure 3.3: GeoServer logo

3.4 vue.js and vuex

Vue.js or commonly vue is an open-source framework of JavaScript for building user
interfaces of web applications. This framework offers an adoptable architecture that
focuses on declarative rendering and component composition. For complex appli-
cations creation with vue, the Vuex state management library can be used Wikipedia
[2019f]. The state management refers to the management of the state of one or
more user interface controls such as text fields or radio buttons in a GUI Wikipedia
[2019d].

Vuex library is a great solution for web applications that manipulate a big amount
of datasets, that change all the time. It serves as a centralized store for all the
components in an application, with rules ensuring that the state can only be mutated
in a predictable fashion Vuex [2019]. A schematic representation of Vuex philosophy
is depicted in the Figure 3.4. The mutations are the functions that are responsible
for changing the values of the state, and the actions exist in order to commit the
mutations. The DevTools is a set of web developer tools built directly in the web
browsers in order to diagnose on-the-fly problems of the web application.

Figure 3.4: Schematic representation of Vuex philosophy, Source: Vuex [2019]

26 technology framework

3.5 owslib
OWSLib is a Python package for client programming with OWS. More simple
OWSLib creates simple OWS clients in the form of python scripts. It implements the
interfaces of the different operations that the standards offers, creating the XML re-
quests, sending them and reading the responses. OWSLib has simple requirements.
Needs only a python interpreter, as well as ElementTree or lxml python libraries for
XML parsing Kralidis [2019] .

4 R E L AT E D W O R K

As it was already mentioned this thesis focus on researching the WPS standard,
its free and open source python implementation PyWPS, and the CSW protocol for
developing catalogues. In this chapter, at Section 4.1 several projects that implement
the OGC WPS standard are going to be presented in order to have an overview of the
different solutions that exist for the publishing of geoprocesses as WPS, and what
is the state of them regarding the version 2.0.2 of the standard. Then at Section 4.2
an example implementation of the WPS 2.0 standard with the ZOO-Project is given,
from the e-government standard framework of South Korea. At Section 4.3 the
OpenEarth initiative of Deltares is presented, and the MI-SAFE Viewer which has
been an inspiration for the integration of the CSW at the RI2DE architecture. Finally at
Section 4.4 a detailed overview of the architecture components and the technology
behind the RI2DE tool.

4.1 wps implementations
The WPS is the standard that provides rules for standardizing requests and re-
sponses, for the publishing of geospatial processing. The most recent version of
the standard is the WPS 2.0 that was released in 2015 and revised at the WPS 2.0.2
version in 2018. In the global geospatial community there are several projects that
implement this standard in different ways and programming languages.

4.1.1 ArcGIS Server

ArcGIS Enterprise is a full-featured GIS system, powered by ESRI, offering the tech-
nology that makes possible to visualize, analyze and manage geospatial informa-
tion. One of ArcGIS Enterprise products is the ArcGIS server, which makes possible
to publish geospatial datasets and geoprocesses as services (either OWS or as other
ESRI services ESRI [2019b]. With ArcGIS server it is possible to publish geopro-
cesses that were created within an ArcGIS environment (e.g. geospatial tasks that
were developed with the ArcPy python package of ESRI, that offers a variety of spa-
tial functions), as an WPS service. ArcGIS server support only the WPS 1.0.0 version
of the standard ESRI [2019a]. For someone to use the ArcGIS products needs to
purchase a licence.

Figure 4.1: ESRI logo

4.1.2 Degree

Degree is an open source software for spatial data infrastructures and the geospatial
web, that is written in Java. The software is build on the standards of the OGC and

27

28 related work

the ISO, and among the OWS that implements, it implements also the WPS standard
1.0.0 (offers GetCapabilities, DescribeProcess and Execute operations). Degree supports
KVP, XML, and SOAP requests, asynchronous executions (with polling of process status)
and provides Application Programming Interface (API) for implementing processes
in Java Degree [2019].

Figure 4.2: degree project logo

4.1.3 52 ◦ North

The 52 ◦ North is a non-profit organization that provides free and open-source in-
novative software for the spatial information infrastructures. One of this projects is
the implementation of the OGC WPS specification 52 North [2019a]. The implemen-
tation is based in Java and offers full implementation of the back-end side of WPS

1.0.0 standard, and a basic client implementation for accessing the WPS including
the complete XML encoding 52 North [2019b]. The 52

◦ North client side implemen-
tation besides the requests against the WPS 1.0.0, supports also requests for the WPS

2.0.0 (GetCapabilities, DescribeProcess, Execute, GetStatus, GetResult) 52 North [2019c].
52

◦ North supports synchronous and asynchronous invocation with both HTTP-
GET and HTTP-POST requests, and is possible to store the execution results 52 North
[2019b].

Figure 4.3: 52
◦ North logo

4.1.4 GeoServer

As it was already mentioned in the Section 3.3, GeoServer can support, besides the
other OWS also the WPS as an extension. The main advantage of GeoServer WPS imple-
mentation over a standalone WPS, is its direct integration with the other GeoServer
services and the data catalog, making possible to get the input datasets and store
the input datasets from and at the GeoServer directly GeoServer [2019c].

GeoServer implements the WPS 1.0.0 version of the standard and supports the
GetCapabilities, DescribeProcess and Execute operations. Apart of these, GeoServer
offers as a pseudo-operations the GetExecutionStatus operation which generates an
executionsId. This id can be used by the Dismiss operation in order to cancel the
execution of the process GeoServer [2019b]. In Figure 4.4 an example of how the
status report of the process is given in the GeoServer. The progress of the report is
given as the number of lines that have been buffered.

4.1.5 ZOO-Project

ZOO-Project is a WPS implementation written in C, Python and JavaScript. It is an
open source platform which implements the WPS 1.0.0 and WPS 2.0.0 standards of
OGC (GetCapabilities, DescribeProcess,Execute, GetStatus and Dismiss. ZOO-Project is
the first and perhaps the only full implementation of the WPS 2.0.0 version of the
standard. It supports synchronous and asynchronous execution and provides in

4.2 e-government standard framework of south korea 29

Figure 4.4: GeoServer, status report of the process, Source:GeoServer [2019]

general a developer friendly environment for the creation of WPS. The ZOO-Project
platform is made up of the following components team [2019]:

• ZOO-Kernel: A WPS server able to manage and chain WPS services

• ZOO-Services: A collection of ready to use WPS built on top of reliable open-
source libraries such as GDAL, GRASS GIS e.t.c.

• ZOO-API: : A server-side JavaScript API for creating, chaining and orchestrat-
ing the available WPS.

• ZOO-Client: A client side JavaScript API for interacting with WPS servers and
executing standard requests from web applications

4.2 e-government standard framework of south
korea

Apart from the ZOO-Project the full implementation of the WPS 2.0 standard is still
undergoing for almost all the available free or commercial software implementa-
tions, and it was difficult to find GIS web projects that publish their geoprocesses
under the WPS 2.0 version of the standard. Nonetheless, the e-Government Standard
Framework of South Korea that provides a basic environment standards required
for the development of web services systems for public projects, has developed a
trial system that follows the WPS 2.0 standard. The implementation of the WPS has
been made with the ZOO-Project. In this system a WPS that performs satellite image
processing has been developed. In Figure 4.5 an example asynchronous execution
of the process is given, with the status report Gooseon et al. [2017].

4.3 openearth initiative
As it was mentioned during the motivation of this research, the RI2DE tool is a
project of the OpenEarth initiative of Deltares institution. OpenEarth (https://www.
openearth.nl/) started together with TU Delft, and motivated by the need of earth
science and hydraulic engineering problems for accessibility to high quality data,
models and tools. By providing a platform based on open standards and free
and open-source technology components, OpenEarth succeeds to disseminate and
archive high quality datasets, state-of-the-art model systems and well tested tools
for practical analysis, breaking that way the artificial boundaries among projects
and organizations De Boer [2019].

Aiming to long-term collaboration projects, to re-usability and to developing
projects that heritages from others, OpenEarth use open standards like the OGC and

https://www.openearth.nl/
https://www.openearth.nl/

30 related work

Figure 4.5: Application of the satellite image processing: (a) running process: GetStatus re-
quest, (b) completed process and result GetResult request (c) multiprocessing and
results

ISO, and promotes the use of free and open source softwares (such as the PyWPS
implementation of the WPS, the GeoServer for publishing raster and vector datasets
as services, and the GeoNetwork that supports the CSW for creating the Deltares
institution different Geoportals).

4.3.1 MI-SAFE Viewer

MI-SAFE tool is a project of the OpenEarth initiative of Deltares, and a product of
the Foreshore Assessment using Space Technology (FAST) European Union (EU) FP
7 project. The tool is build ub with several opens srouce components according to
OpenEarth philosophy. These components are a GeoServer, a GeoNetwork and a
Viewer de Boer and Smits [2017]. The free online tool gives a first indication of the
presence and potential flood risk reducing effects of foreshores. The philosophy of
the tool is to provide better results in the field sites, by using dataset with high res-
olution that are extracted from national open data centers. The datasets are already
hardcoded in the processes, and when the user selects an area the regional dataset is
used Calero [2017]. The philosophy of the MI-SAFE to use regional datasets was the
inspiration for the CSW integration in the RI2DE architecture, in order to have a non
fixed solution, but a configurable choice of the selection of the dataset according to
the user needs.

4.4 ri2de gis web tool 31

4.4 ri2de gis web tool
As it was mentioned at Section 1.1 the RI2DE GIS web tool of Deltares institution,
which is a project of the OpenEarth initiative is the motivation and the case study for
this research. The RI2DE tool performs GIS analysis based on global spatial datasets
in order to indicate which areas around road infrastructures are going to be in
danger against climate-related geohazards. RI2DE is a tool that targets network
infrastructure authorities and consultants that are involved in the designing and
maintenance of national or local infrastructure networks. The main idea behind
the creation of the tool was to create an open GIS-web platform easily accessible
to any stakeholder worldwide that produce geo-hazard analysis maps for detailed
susceptibility assessment in regions around the infrastructure network. When this
research started, the Deltares institution had already developed a first prototype of
the RI2DE and produced it online under the OpenEarth initiative. The tool is available
at (https://ri2de.openearth.eu). Since this research project is over, at the URL

link of the tool it is now available the new version of it.
As the design and development of a new improved version of the RI2DE tool is

going to be the main goal of this research, it is necessary to describe in detail the
technology, the methodology, and the architecture components behind the tool, in
order to address the gaps and the problems of the first version of the tool, that made
this research a necessity. Section 4.4.1 will describe the m! (m!)etroadapt hodology,
that the vulnerability analysis steps of the RI2DE were based. Section 4.4.2 will out-
line the OGC Web Services Architecture of the RI2DE tool and the components that
comprise it. Section 4.4.4 describes the datasets and WCS that the tool uses, while
Section 4.4.5 illustrates with schemas and detailed descriptions the WPS that com-
prise the GIS analysis part of the tool. Section 4.4.6 explains how the configuration
files of the tool work. Section 4.4.7 present the GUI and the workflow of the user
actions on the tool.

4.4.1 Roadapt Vulnerability Assessment methodology

Within the Deltares team Climate Resilient Infrastructures, a new vulnerability as-
sessment method for climate-related geo-hazards has been developed, as a part
of the ROADAPT (Roads for today, adapted for tomorrow) project. The basis of this
methodology is that the geo-hazards presents a great variety of related vulnerabil-
ity factors, and by analyzing and mapping these factors in a GIS environment, we
can have as output spatially distributed geo-hazard maps with vulnerability index
scores along a section of an infrastructure network, for a specific area Falemo et al.
[2015].

The vulnerability factors can be separated to contextual site factors and infras-
tructure intrinsic factors. The contextual site factors create vulnerability according
to the site conditions, vegetation, topography, geology, hydrography etc., while
the infrastructure intrinsic factors describe the infrastructure related vulnerability,
e.g pavement, road embankment, drainage systems. According to the geo-hazard,
some of the factors are a prerequisite for the vulnerability, while others are potential
aggravating factors that can increase the vulnerability Falemo et al. [2015].

The ROADAPT VA methodology propose three steps for the creation of the final
vulnerability map. But the starting point of this methodology is the selection of the
type of the geo-hazard that the vulnerability analysis will be made on and the se-
lection of the study area. An outline of the three methodology steps of ROADAPT VA

is presented below:

1. STEP 1: Defining vulnerability factors

The aim of this step is to define what vulnerability factors are going to be
used, for the vulnerability analysis assessment of the selected geohazard, from
a proposed table of both contextual site and infrastructure intrinsic factors for

https://ri2de.openearth.eu

32 related work

a variety of geo-hazards, as it was defined from the ROADAPT project team.
The definition of the factors should not be restricted to this list, other factors
can be selected or the proposed ones can be modified. In an example derived
from the ROADAPT PART C documentation, the threat Erosion of road bases
will be assessed based on the Geology, slope angle, Observed erosion, Exist-
ing erosion protection barriers, Land cover, culvert, inspection interval and
hydrography (see Figure 4.6).

2. STEP 2: Data collection

The aim of this step is to discover and collect the necessary datasets for the
GIS analysis (STEP 3). The number of the datasests (layers) will be the same
as the number of the vulnerability factors. For instance for the slope angle
vulnerability factor, an elevation map should be collected. The format of the
datasets is not restricted, so for the elevation someone can use a DEM or con-
tours. The quality of the selected datasets depends on many factors, e.g on the
availability, the demands on resolution, the scale, the kind of the threat, the
size of the selected area. For transnational studies it is recommended to use
either the transnational GIS datasets proposed from the ROADAPT project or
datasets provided by INSPIRE directive. For local or national studies, datasets
with higher resolution and with more attributes data can be found. The source
of the dataset is based also on the kind of the vulnerability factor. Datasets
for contextual site factors can be provided from international or governmen-
tal organizations, regional authorities or private companies, while datasets
for infrastructure intrinsic factors are most often produced and owned by the
infrastructure network owners and its associated organizations.

3. STEP 3: GIS analysis

The core of the ROADAPT VA is the third step where the datasets are analyzed
in order to display their respectively contribution to the overall vulnerabil-
ity. Prerequisite for the analysis is that all datasets should be in the same
Coordinate Reference System (CRS) and to be in a raster format. If the datasets
don’t have the same grid size the highest resolution is kept and the calculation
happen based on that. The GIS analysis is happening in two parts. In the first
part the datasets of each vulnerability factor are processed and reclassified in
three different vulnerability classes:

• +2 for considerably increased vulnerability

• +1 increased vulnerability

• 0 does not increase vulnerability

For instance in order to produce the raster map with the vulnerability scores
of the slope of angle factor, the elevation datasets should be processed and
transformed to slope, and later reclassified into the three vulnerability scores
according to the desired classes boundaries (e.g less that 1:3 is 0, between 1:15

and 1:3 is +1 and more than 1:1.5 is +2). An example vulnerability scores table
for the Erosion of road bases example that was given in the Step 1 is presented
in the Figure 4.6

The second part of the GIS analysis aims to produce the final vulnerability map
of the selected geo-hazard. An overlay process of the classified factor layers is
proposed, where each raster cell is formulated according to the Equation 4.1.
It is possible to weigh the calculation by adding weights to each vulnerability
factor layer. The weights should be from 0 to 1.

VI = ∑n
i=1 VSn

∑n
i=1 VSmaxn

∗ 100 (4.1)

4.4 ri2de gis web tool 33

Figure 4.6: Vulnerability scores for threat Erosion

Where:

VI = vulnerability index (0 ≤ VI ≤ 100)

VSn = vulnerability score for layer n

VSmaxn = maximal possible vulnerability score for layer n

n = number of vulnerability factor layers

Final the output of all the steps is a colored vulnerability map with values
varying from 0 to 100. An example final vulnerability map of the erosion of
road bases threat that was presented in the Step 1, is depicted in the Figure 4.7.

Figure 4.7: Final vulnerability map for the Erosion threat

34 related work

Threats Susceptibility Factor
Erosion of culverts Slope

Culverts presence
Distance to water
Soil type

Landslides Slope
Land use
Distance to water
Soil type

Table 4.1: RI2DE Susceptibility Factors for each threat

4.4.2 OGC Web Services Architecture of the RI2DE tool

The starting point for the development of the RI2DE tool has been to decide for which
type of geohazards and for what areas susceptibility analysis will be offered. The
first idea was to create a prototype of the tool, that will offer susceptibility analysis
in the Albania country with the use of regional datasets, but when the tool started to
be developed, the scientific and developers team of the tool decided to make it more
generic and work in a global scale. Keeping in line with the steps of the ROADAPT VA

methodology the first version of the RI2DE tool offers GIS processes for susceptibility
analysis based on transnational datasets for the geohazards, Erosion of culverts and
Landslides. The datasets are open and free disseminated from the organizations as
WCS, while the GIS processes (classification of the datasets and susceptibility analy-
sis) are open source and published as WPS from Deltares Institution. In Table 4.1 are
presented the susceptibility factors for each type of geohazard.

In the architecture schema that is depicted in the Figure 4.8 we can see that the
RI2DE tool is composed from many levels of components. In the base level we can
see the distributed repositories of the organizations where the raster datasets are
stored and the database with the Open Street Map (OSM) features. In the second
level are placed the WCS of the rasters and above of them we can see a temporary
level of WMS, for the visualization of the result of the processes. The WPS levels
represents the top levels of the architecture, as the tool sends request mainly to
them. It should not be neglected the most important piece of the RI2DE tool, the
configuration files level, where all the information regarding the credential of the
database, and the necessary information regarding the location of the distributed
WCS is stored. The concept behind the configuration files, is to provide a tool easily
configurable and adjustable to the needs of the user.

The depicted architecture of the RI2DE tool can become also a good conceptual
flowchart of the functionalities of the tool. More specifically we can see that the
client (web-browser) firstly sends request to the ”WPS initial” and the ”WPS for the
selection of Infrastructures”, which read the configuration file and connect to the
road database respectively, in order to send to the client the information that needs
to call the rest WPS. In a second level of actions, according to the selected threat,
the client calls simultaneously all the classification WPS of the threat, and the clas-
sified maps are stored temporary as WMS at the RI2DE GeoServer, where the client
(web-browser) access them for visualization purposes. The last step of the RI2DE

functionality is to call the WPS of the selected hazard, with inputs the temporary
WMS of the classified WCS, and publishes the resulted susceptibility map as WMS to
the RI2DE GeoServer. Then the client connect to the GeoServer in order to get the WMS

of the susceptibility map for visualization.

Detailed information regarding the datasets and coverage services, the geopro-
cessing services, and the configuration files is offered respectively to the Section 4.4.4,
Section 4.4.5, Section 4.4.6.

4.4 ri2de gis web tool 35

Figure 4.8: OGC Web Services Architecture of RI2DE tool

4.4.3 Technology components of the tool

In Chapter 3 the different technology components of the tool are being analyzed in
detail. At this section it will be briefly referred what technology tool has been used
for the implementation of the the RI2DE architecture.

All the WPS of the tool are stored in an SubVersion Repository (SVN) repository
and the codes for the client side (web browser) are uploaded on GitHub. The
datasets are mainly provided by other global organizations, but those that comes
from the Deltares institution are stored also on the SVN repository of the project that
were created for. For the development of the WPS, the PyWPS 4.0.0 has been used.
For the publishing of the temporary results of the different GIS analysis processes,
as WMS, the GeoServer has been used. The GeoServer runs on an Apache server. The
OSM datasets are stored in a PostGIS database. Finally the client side (web browser)
has been developed with the Vue.js/Vuex JavaScript framework, and runs on a nodejs
server. In the Figure 4.9 are depicted the different technology components of the
ri2de tool.

4.4.4 Input datasets & services

At this section the different services and datasets that were used as inputs to the GIS

susceptibility analysis is going to be presented. All the datasets and services that
were selected are open and disseminated from international organization, easily
accessible to anyone. Below a list with the datasets and services is presented with
information regarding, their resolution, origin and location to find them.

• BASE MAP

36 related work

Figure 4.9: Technology components of RI2DE tool

The base map of the RI2DE client (web browser) derives from the Mapbox. Map-
box is a provider of custom online maps and libraries for websites and appli-
cations. The data that the Mapbox uses are mainly open source, such as OSM

and NASA Mapbox [2019].

• INFRASTRUCTURE NETWORK

The basic dataset for the RI2DE tool is the infrastructure network. All the GIS

susceptibility analysis that the tool offers starts from the selection of the in-
frastructures of the desired area. For that reason a detailed and frequently
updated infrastructure network with global coverage was needed. OSM, a vol-
untary open content map initiative, offers feature datasets, open and publicly
available to download as points, polylines and polygons Wikipedia [2019c].
Within the Deltares, features concerning the different infrastructures (roads,
railways) have been downloaded queried and stored in the Deltares PostGIS
database as shapefiles. The road network is used for the GIS analysis directly
from the database.

• CULVERTS DATASETS

In order to classify the area according to the distance to culverts, information
regarding the culverts in the area is needed. The culverts dataset that the RI2DE

tool use as input in the culverts classification process, are the global culvert
lines of OSM. With similar procedure as the infrastructure network, the culvert
lines were extracted and stored in the Deltares PostGIS database as shapefiles.
The dataset is used directly from the database.

• ELEVATION DATASETS

For the slope susceptibility factor reclassify process, raster elevation informa-
tion is needed. For the slope classification the MeritGebco DEM was used, a
product of the combination of two different datasets MERIT DEM and GEBCO
bathymetry dataset. The Multi-Error Removed Improved Terrain (MERIT) DEM

was created and released in 2017 from the University of Tokyo, by removing
multiple error components from the existing DEM (Shuttle Radar Topography
Mission (SRTM) and AW3D). It has global coverage and the resolution is 90

4.4 ri2de gis web tool 37

m YAMAZAKI [2018]. The GEBCO global gridded bathymetric datasets are
global terrain models for ocean and land, at 15 arc-second intervals Gebco
[2019]. For the needs of Deltares’ Fast OpenEarth project, these datasets were
processed and combined, and the MeritGebco DEM was created, with global
elevation coverage in both ocean and land, and resolution in 90 m. The Merit-
Gebco is published as WCS at Fast OpenEarth GeoServer of Deltares.

• SOIL DATASETS

For the soil susceptibility factor reclassify process, raster soil information is
needed. For that reason soil datasets were used with global coverage and
resolution at 250 m from International Soil Reference and Information Centre
(ISRIC) organization. ISRIC is a world organization with a vision to provide
reliable and free soil information. In ISRIC data portal, which is compatible to
the CSW protocol, someone can find soil datasets and services. For the purpose
of the acri2de project the SoilGrids datasets were used. SoilGrids provides
predictions for percentage of type of soils (Silt, Sand, Clay) in seven depth
layers.The datasets are available for download at ISRIC repository system, but
they are also available as WCS Hengl et al. [2017].

• LAND USE DATASETS

For the land use susceptibility factor reclassify process, two different land
use WCS were used an inputs, depending on the location. If the desired area
for susceptibility analysis is in Europe the Corine 2012 is used, while if it is
somewhere in the rest of the world the GlobCover 2009 is used. Both of the
datasets are products of European Space Agency (ESA) and are published for
free use. More specifically the GlobCover products have been processed by the
ESA together with the Université Catholique de Louvain, and provides land cover
map with global coverage, generated by an automate process chain from the
300 m MERIS time series ESA [2019].

• WATER DATASETS

For the water classification process, the input dataset is a surface water raster
with 25 m resolution, from the JRC water portal. The JRC water portal pro-
vides access (for view and download) to water data.

4.4.5 Web Processin Services

The functionality of the RI2DE tool is based on a number of WPS that perform:

• Loading of the hazards’ information

• Selection of the roads

• Classification of the datasets

• Susceptibility analysis

At this section a detailed overview of the different processes will be carried out,
by analyzing the way they work, the inputs they accept, and the outputs they pro-
duce. All the processes are published as WPS. This analysis will give a good insight
on the flexibility and performance of the services. For the GIS analysis that is per-
formed in the processes is used the on thFor the presentation of every WPS a small
description will be given on the way they perform, followed by a schematic view
for better understanding.

38 related work

Figure 4.10: Susceptibility factors default classes boundaries

Process for the initial loading of the hazards’ information

All the information that concerns the hazards and their susceptibility factors, is
stored in a JSON configuration file on the same repository with the processes. This
WPS is the process that reads this configuration file and sends it back to the client.
In the Figure 4.11 it is depicted a schematic view of this process. The configuration
file is stored in the same directory as the WPS.

At this point it should be mentioned that for the codes of the different processes
the tool offers were created with the python packages:

• The open source GDAL/OGR python package for the different raster and vec-
tor GIS analysis.

• The OWSLib in order to implement the different OWS operations that were
needed in the processes (e.g. GetCoverage in order to get the raster datasets
from the WCS.

• The geojson package in order to manipulate the GeoJSON (The polygon and the
lines are sent between the client and the server in the inputs and the outputs
of the WPS as GeoJSON.

• The sqlalchemy package in order to connect to the PostGIS database and query
for the roads and the culverts

Process for the selection of the infrastructures

The WPS for the selection of the road infrastructures, is a process that accepts as
input the polygon around the study area in a GeoJSON format, and according to this,
it connects to the PostGIS database that has the OSM roads and extract the buffered
roads and the lines of the roads that falls in this polygon. The size of the buffer is
configured in the configuration file. The buffered roads are stored in the temporary
directory, while the road lines together with a random roads id that is created in
the process, are registered to the response. In the Figure 4.12 a schematic view of
the process is depicted.

4.4 ri2de gis web tool 39

Figure 4.11: Schematic view of WPS: Initial loading of hazards’ information

Figure 4.12: Schematic view of WPS: Selection of the roads

40 related work

Processes for the classification of the datasets

Every classification WPS has been developed on a base of a custom classification WPS.
The idea was to have the same sequential steps for all the classification processes.
But in some susceptibility factors the classification process is highly dependable on
the dataset. For that reason every WPS will be analysed separately, starting from
describing the WPS custom steps, and then examining each WPS on its’ flexibility.

custom classification process: The WPS custom is not a real process but just
a skeleton of the desired steps for the classification of the datasets. An ideal flexible
WPS accepts as input the identifier of the road, and a layer setup that provides: the
boundaries of the classes, the layer name of the WCS on the GeoServer, and the OWS URL

of the server. The first step of the custom process is to read these inputs. Then with
the roads identifier gets from the the temporary repository the GeoJSON of the roads,
and with it creates a bounding box. Using the layer name and the OWS URL, in the
next step it connects to the GIS Server and implements the GetCoverage operation
cutting only the area of the coverage service that fell in the bounding box. With
the downloaded coverage (raster), applies the reclassification function according to
the input classes boundaries. In the last step publish the reclassified coverage as
WMS to the temporary repository of the GeoServer. In the output are registered in a
JSON file the style of the GeoSerer, the layer name and the OWS URL of the temporary
WMS. In the Figure 4.13 is depicted a schematic view of the custom WPS. In this
schema the different steps of the whole classification procedure have numbers in
order to help the reader to understand from which point and after the susceptibility
factor WPS of the tool decline from the custom steps. Every susceptibility factor WPS

have the same JSON output format and accepts the same format of inputs (roads id,
and layer setup), but depending on the susceptibility factor flexibility, in the layer
setup either the classes, or the layer name and the OWS URL are empty, as they are
not configurable. In Figure 4.10 the default classes boundaries of each classification
process are presented. The classes that are configurable have default values in the
configuration file of the tool, that can be altered from the web browser later, while
the one that have fixed boundaries, have them hardcoded in the process.

distance to water classification process: The WPS that classifies the dis-
tance to water susceptibility factor follows the same procedure steps as the custom
WPS apart from the part of the classification function. After the 3rd step of the WPS

custom, where theWPS connects to the GeoServer with the layer name and the OWS

URL, and gets the part of the coverage that fell in the bounding box, the WPS water
reclassify the downloaded coverage, with a dilation image technique. This classify
function demands the resolution of the dataset, and the resolution is hard coded to
25m, equal to the resolution of the Global Water Joint Research Centre (JRC) coverage
service (see water datasets at Section 4.4.4). In order to consider the WPS distance
to water as a flexible procedure, an extra function should be added that reads the
resolution of the downloaded coverage and provides it to the classification function.
In the schematic view Figure 4.14 it is depicted the classification function for the
distance to water.

soil classification process: The WPS for the soil susceptibility factor is highly
dependable on the input soil dataset, as the classification is applied on the different
soil categories that the dataset offers. The soil classification process was developed
based on the global coverage soil dataset of ISRIC organization. ISRIC provides pre-
dictions for percentage of type of soil (Silt, Sand, Clay) in seven level depths. In
the classification process the 7 depths layers of the three datasets (Silt, Sand, Clay),
meaning 21 coverages, are downloaded based on the bounding box. Then the reclas-
sification is applied according to the classes, as they are presented on the Figure 4.10,
on the overlay of the three soil coverages that has the mean soil values of the seven

4.4 ri2de gis web tool 41

Figure 4.13: Schematic view of WPS: Custom process for classification of datasets

depths. The schematic view of the soil classification process, is depicted on the Fig-
ure 4.15. On that image we can see that theWPS has empty values on the layer name,
OWS URL and classes, as they are hard coded in the process, and after the creation of
the bounding box the procedure declines from the custom process.

Figure 4.14: Schematic view of WPS: classification process of distance to water

42 related work

Figure 4.15: Schematic view of WPS: classification process of soil

land use classification process: Similar to the soil classification, the land
use classification declines from the custom process from the step 3 and after, and
the classification function is developed based on the land used datasets Corine 2012
and GlobCover 2009. In the Figure 4.10 are presented the land used categories that
were used for the classification, and in the Figure 4.16 it is depicted a schematic
view of the land use classification procedure after the creation of the bounding box.

culverts classification process: The classification of the culverts differs a
lot from the custom WPS. The dataset that was used for the culverts susceptibil-
ity factor, is the acosm culverts lines, which are stored in the PostGIS database of
Deltares. So after the creation of the bounding box, the classification algorithm, con-
nects to the PostGIS database, and extract the buffered culvert lines that fell into the
bounding box. The buffer size depends on the distance values of the class 2 and 3.
Then according to the resolution value (is extracted from the configuration file), the
buffered lines are rasterized, and then combined with the masked road in order to
create the classified culverts raster. In the Figure 4.18 it is depicted a schematic view
of the classification procedure of the culvert lines. The layer name and the OWS URL

are empty in the layer setup input, but the classes are provided. The default classes
are presented in the Figure 4.10.

slope classification process: The slope classification WPS has exactly the
same skeleton as the WPS custom. After the download of the elevation coverage, it
transforms it to slope with degrees values, and then reclassifies it according to the
given classes boundaries. The default classed boundaries are presented in the Fig-
ure 4.10, while in the Figure 4.17 it is depicted a schematic view of the classification
process. The slope classification process needs all the values of the layer setup, as it
accepts any DEM.

4.4 ri2de gis web tool 43

Figure 4.16: Schematic view of WPS: classification process of land use

Figure 4.17: Schematic view of WPS: classification process of slope

44 related work

Figure 4.18: Schematic view of WPS: classification process of culverts

4.4 ri2de gis web tool 45

Figure 4.19: Schematic view of WPS that provides the final susceptibility analysis

46 related work

Susceptibility analysis process

The final susceptibility analysis is a process that is based on the classified datasets
for each susceptibility factor, and is the same for every hazard. The WPS that im-
plements it accepts as inputs the road identifier, for the creation of the bounding
box, and a layer setup, which contains the layer name, OWS URL, and weight of every
classified dataset. The final susceptibility analysis is developed on the concept that
every susceptibility factors has a weight on the calculation of the final susceptibility
map, and the values vary from 0 to 1. In the WPS, with the use of the layer name and
the OWS URL, every classified dataset is downloaded. Since the raster datasets don’t
have the same grid size, the raster with finest resolution is selected and based on
its’ resolution the rest of the raster are re-sampled in order to create the final raster
with grid size equal to the finest resolution.Then the total weight of all the raster
is calculated and every raster is multiplied with each relative weight (weight/total
weight). At the end all the raster layers are summed in order to get the classified
susceptibility layer, and it is published to the GeoServer as WMS. The output of the
WPS is a JSON file with the style of the GeoServer, the layer name and the OWS URL

of the WMS. In the Figure 4.19 is depicted a schematic view of the susceptibility
analysis WPS.

4.4.6 Configuration files

At this section they are described in detail the two configuration files of the RI2DE

tool. The concept behind the use of configuration files, is to provide a tool easily
configurable and adjustable to any system and to the specific needs of the user
and to avoid hard coding in the software. The two configuration files are stored
in the same SVN repository as the WPS. The first configuration file is called ”ri2de
configuration.txt” and contains more generic information concerning the system
and some original settings. Detailed description on what information of the RI2DE

system the user can configure is presented in the Table 4.2.

Table 4.2: ri2de configuration
Geoserver

host
Credentials of the Geoserver where the temporal
Web Map Coverages are stored/published

ows url
wms url
rest url
pass
PostGIS

host
Credentials of the PostGIS database where the
OSM infrastructure network and the culverts
shapefiles are stored

user
pass
db
port
Settings

area limit
The limit of the size of the area that the user is
able to select infrastructures

buffer dist
This value indicates the size of the buffer of the area
that is going to be studied around the infrastructure

res culverts
The resolution for the creation of the culverts raster
in the culverts Web Processing Service

tempdir The temporal directory to store the GeoJSON of the roads

4.4 ri2de gis web tool 47

Table 4.3: RI2DE susceptibility factors setup JSON
E.G. Landslides

Susceptibility
factor i

title

The name of the
susceptibility
factor is a basic
information for the client

compulsory

WPS
function id

The id of the classification
WPS of the factor is a
basic information
for the request of the
WPS from the client

compulsory

classes
The original values of the
boundaries of the classes.

optional (In some
processes it is empty.
Some of the
classification
processes have
the classes boundaries
hardcoded)

layer name
The layer name of the
WCS on the GIS
Server

optional (In some
processes it is empty.
Some of the classification
processes dont work
with WCS).

OwsUrl
The endpoint url of
the GIS Server in order
to connect.

optional (In some
processes it is empty.
Some of the classification
processes don’t work with
Web Coverage Services)

The second configuration file is written is a JSON file in order to be sent easily at
the client, and is like a library with all the information concerning the geohazards
and their susceptibility factors. More specifically this file contains for every sus-
ceptibility factor information concerning the title, the name of its classification WPS,
the boundaries of the classes, and the layer name and OWS URL of the server that
is published.The knowledge of the client on the threats and the factors is based on
this file. An example format of the file is presented on the Table 4.3.

4.4.7 GUI and workflow of the user actions in the RI2DE client

At the last section of the RI2DE tool description it is important to outline the work-
flow of the user actions with the tool in order to reach to the result of the suscep-
tibility analysis. For the better understanding of the workflow, together with the
description a series of snapshots of the GUI of the web browser are depicted.

1. Selection of the infrastructures

When the user open the web page of the tool, there is a start screen with the
global map. In this first screen the user can navigate either with the mouse
or by the search bar, to the area that has the infrastructures that want to do
the hazard analysis, and then zoom in and wait a while for the infrastructures
to load. In order to select the infrastructures, the user should click on the
polygon tool, create a polygon around them, and then either press enter or
double click for saving it. On the left of the screen the user can see in the
infrastructure tab the name of the selection that made. The default name is
Selection 1, but it can be altered. There is also the option for the user to make
extra selections (create more polygon selections on the same way) in order to

48 related work

assess the vulnerability of multiple areas on the same time. After that the
user should click next in order to go to navigate to the next step of the hazard
analysis (Figure 4.20).

Figure 4.20: GUI of RI2DE tool, part 1

2. Selection of the type of the hazard

In the RI2DE tool web page now at the left it is open the Hazard window tab.
At this window there is a list with the available hazards for analysis. The tool
offers analysis for the Erosion of culverts and landslide geohazards. The user
can select the hazard to do susceptibility analysis and then click next in order
to navigate to the next tab with the susceptibility factors of the selected hazard
IFigure 4.21).

3. Configure the susceptibility factors

In the new tab now on the left of the RI2DE tool there is a list with all the
susceptibility factors for the final hazard analysis. The user can either click
straight the calculate button in order to produce the final susceptibility map
of the selected hazard, with the default settings of the factors, as they are
provided from the JSON configuration file that was loaded with the ”WPS initial
loading of the hazards’ information” or alter these setting on a windows that
appears by clicking each factor separately. At this window the user can either

4.4 ri2de gis web tool 49

adjust the weighting of the factor (the values vary from 0 to 1), or change the
boundary of the classes (this option is not available for all the factors) which
reclassifies the susceptibility factor map and shows itFigure 4.21.

Figure 4.21: GUI of RI2DE tool, part 2

4. Susceptibility map

After the calculation button is clicked the final susceptibility map of the hazard
is produced and the user can zoom in and navigate to the area in order to
assess the danger around the infrastructure. From that final step the user is
able to click either the infrastructure tab in order to create a new selection, or
the hazard tab, in order to change either change the hazard to analyze or stay
on the same and alter the susceptibility factor settings.

5 R E Q U I R E M E N T S

When this research started, a set of new functionalities were decided to be added
to the new version of the RI2DE tool, in order to have a susceptibility analysis tool
more flexible to the user needs, with a logical workflow to reach to the final result,
and that communicates the results or problems-errors better to the user. In order to
assess the feasibility to have these new functionalities under an OGC Web Services
Architecture, during the analysis framework phase, a thorough research has been
carried out:

1. On the WPS standard and its’ PyWPS implementation that the RI2DE use

2. On the CSW standard and the different metadata formats

The WPS 2.0.2 version of standard offers the GetStatus, GetResult and the Dismiss
operation, which under an asynchronous execution can provide status reporting and
control of the process. Unfortunately the PyWPS implementation of these opera-
tions is still undergoing.

This indicates from an early phase of the project that it will be difficult and some
times also not feasible to implement all the functionalities that were set at the be-
ginning of the project. For that reason at this point of the research it is essential
to outline the ideal set of functional requirements that are necessary for the devel-
opment of the new functionalities, based on the OGC Web Services research. For
every functionality it will be indicated if they are going to be developed during the
implementation phase of the project or if they are going to a future work.

As it was already mentioned at the research scope of this project, this research is
happening simultaneously with the development of some extra functionalities on
the RI2DE tool, from the OpenEarth developers team. For that reason it is important
to make a quick reference on the new functionalities that they are going to add
to the tool. Section 5.1 will describe the ideal requirements in order to discover
services from the web viewer of the tool, and then use them as inputs to the different
processes. Section 5.2 will describe the changes that should be made to the tool in
order to support status reporting according to the WPS standard.

5.1 discover, retrieve, display and use services

Public authorities, governments, organizations and institutions in all parts of the
world, driven by the concept of open data for everyone, have established SDI (geo-
portals) in order to freely offer their datasets, tools, and services. One of the most
essential parts of an SDI is its catalogue server where they register information about
their datasets, processes and services (metadata).

The idea behind the discover, retrieve, display, select and use services function-
ality, is to connect to different local and national geoportals (e.g INSPIRE) that are
developed under the standard rules of the CSW and find and access the services they
offer, in order to use them as source inputs in the different classification processes
of the RI2DE tool. The idea is to create somehow a ”market of datasets” in which the
users can see and select according to their needs of quality and resolution.

51

52 requirements

Follows a list of the functional requirements that are needed in order to develop
this new functionality with a brief explanation.

• Discover & Retrieve: Implement the GetRecords operation of the CSW commu-
nication protocol.

Implementing the GetRecords operation makes feasible to discover resources
registered in a catalogue that fulfils the CSW specification, and it will allow
us to make a search operation and retrieve the records that we want. The
most important part of the GetRecords implementation will be the query con-
struction, which should be developed in a way that can be used to search for
metadata at any catalogue and to be used by all the susceptibility factors.

• Display, select and use: After the records are retrieved, they need to be dis-
played to the users in order to select one of them as the new source to the
classification process.

The display part belongs more to the design phase, where the appropriate way
to show the records should be decided (e.g. like a market of datasets) , while
the select and use part demands to find a way to change the original state (see
Section 3.4) of the OWS URL and the layer name on the client (web browser) in
order to re-send the request to the classification process with the OWS URL and
the layer name of the new service.

• Reprojection: The changing of the source of the classification process, created
an extra requirement.

So far the services that were used, were projected on the World Geodetic
System 1984 (WGS84). Using services from different regional servers that are
on the local projection system, arise the need for a reprojection process in the
back-end of the tool, in order to have all the services on the same projection
system.

5.2 status reporting of the processes
In the first version of the RI2DE tool the different processes that it offers (selection of
the roads or classification of the datasets), don’t take long time to finish, since there
is:

• a maximum limit on the size of the selected area, in order to avoid long time
running of the process that selects the infrastructures

• the input datasets have global coverage with very low resolution, resulting on
fast classification processing

Resetting the limit of the size of the selected area, letting the user to select even
whole countries for susceptibility analysis, and offering the option to alter the in-
put datasets to the classification processes, with local high-resolution datasets, may
result to long time processing and on the same time, long time of waiting from the
user perspective.

For that reason the continuous reporting of the status of the processes to the
user, is important for the new version of the RI2DE tool, and the best solution to
have status reporting under an OGC Web Services Architecture, is through the new
operations (GetStatus and GetResult) of the WPS 2.0.2 standard.

The functional requirements that need to be fulfilled in order to succeed status
reporting through WPS are outlined in the list below, but since the PyWPS imple-
mentation of the the WPS 2.0.2 is still undergoing, these requirements are not going
to be implemented at this project. The implementation ca be a future work, if the
PyWPS eventually implements them or if the WPS of the tool published with the
ZOO-Project which offers a full implementation of the standard.

5.3 control of the processes 53

• Alter the Execute request :

The Job monitoring in the WPS standard is allowed only in the asynchronous
execution of the process. In the first version of the RI2DE the execution of
all the WPS is happening synchronously, so the first requirement is to alter
the execution to asynchronously. This can be succeeded through the Execute
request, if we set the ResponseFormat parameter to ”StatusInfoDocument” and
the Execution parameter to ”asynchronous”. On that way when the execute
request is going to be invoked from the client, a job id will be created in the
WPS server and a StatusInfoDocument will be returned containing the job id,
the URL to poll the different StatusInfoDocument and the final result location.

• Implement the GetStatus operation

The next requirement is to construct a GeStatus request that it will be sent
from the web browser to the WPS server, from which the StatusInfoDocument
will be returned every time, with information regarding the status of the job.

• Implement the GetResult operation

The final step is to construct a GetResult request and send it from the client,
when the processing is done. The GetResult request has as a response, the
ResultDocument which contains the output of the process.

5.3 control of the processes
The same reasons that arose the need for status reporting of the process in the RI2DE

tool, arose also the need for control. So far when a process starts, the user has to
wait until it finishes, as there is no way to stop it, apart from refreshing the page
and loosing all the parameters that were set. The new version of WPS standard
introduced a way to control the process, with the Dismiss operation. So the way to
stop a process in an OGC Web Services architecture is through this operation. The
Dismiss operation will not be implemented, since the PyWPS does not support it
yet. The implementation can be future work, through the ZOO-Project or when the
PyWPS finish the implementation. The requirements in order to achieve that are the
following:

• Implement the Dismiss operation

Create a base XML request for the Dismiss operation on the client(web browser),
having as variable the job id. When the process starts to run in asynchronous
mode and sends the job id, if the user select to stop the process, create the
Dismiss request with this job id.

A schematic overview of the desired asynchronous execution is presented in the
Figure 5.1

5.4 translate to risk
As it was already mentioned, the target audience of the RI2DE tool is infrastructure
network owners or governmental/ local stakeholders that are deeply involved to
the maintenance of roads. For them the main goal for a geo-hazard susceptibility
analysis, is to estimate the cost to repair or to take measures for the parts of the
roads that have been or is possible to be damaged. For that reason the vulnerability
raster maps that the tool produce, around the infrastructure network are not enough.
It is needed to go the process a step further and see the possible danger on the
infrastructure network lines.

54 requirements

Figure 5.1: Asynchronous execution of the process

In order to develop the translate to risk functionality the steps that should be
followed are:

• Back-end: Develop a process in the back of the tool for the translate to risk
analysis.

In the back end of the tool, a new service should be developed that calculates the
average values of the vulnerability raster around the infrastructure network, and
attach them as properties in the road lines. The process should be published as a
service.

• Front-end: Develop the functions to call the process

In order to call the process, the XML request should be created and send to the
process. Functions that create and send the response should be developed.

• Front-end: Develop the functions to read and display the response.

The response to the process (GeoJSON that contains the road lines with properties
that indicates the average susceptibility value), should be read and displayed from
the client.

• Front-end: Reclassify the road lines

The road lines are displayed with the colors that were sent from the back-end.
These colors are result of the classification that happened on the back end.
This requirement demand to enable reclassification of the road lines, on the
client side.

• Front-end: Interface design and development of the translate to risk function-
ality

The final step is the design and development of an easy to use interface that helps
the user to understand how the translate to risk functionality works, and enhance
the flexibility of the process.

The translate to risk process has been developed from the main back-end devel-
oper of the tool. So the work on this new functionality will be done on the front-end
(web browser programming) of the tool.

5.5 extra functionalities outside of the scope of this research 55

5.5 extra functionalities outside of the scope
of this research

• Save the project and load it

In order to produce the final susceptibility map, the user needs to select dif-
ferent parameters through the whole procedure (susceptibility factors’ weight,
classes, input sources etc.), and sometimes the user wants to save the work
with these parameters for later analysis. For that reason, it is important the
tool to offer the possibility to save the project and load it.

• Add a new classified layer

So far the tool offers susceptibility analysis based on the standard susceptibil-
ity factors. The motivation for this new functionality was to offer the option
to the user to add an extra layer, a classified susceptibility factor, that can be
used for the final susceptibility analysis.

6 I M P L E M E N TAT I O N

This chapter describes the implementation details, regarding the new functionalities
of the RI2DE tool. Decisions that were made and issues that were faced during the
development of the new version of the tool will be outlined. The development
of the new version of the tool, has been carried out in sequential steps, following
the functional requirements of that were described in the previous chapter. At
this point it is important to remind that the status reporting and the control of the
process as the WPS 2.0.2 standard sets them will not be implemented. Although
PyWPS implementation of the GetStatus, GetResult operations is still undergoing,
PyWPS offers a way of status reporting that is going to be tested to see if it can be
applied in the RI2DE tool.

The implementation phase includes the development of codes both at the back-
end and the front-end of the tool, tests on the functionality of the new developed
version each time, and refinement of the codes if necessary. The structure of this
chapter will be: Section 6.1 will briefly describe the setup of the RI2DE environment
for development purposes, and will illustrate some examples on the functionality of
the back end. Section 6.2 will outline the steps that were followed for the develop-
ment of the search, retrieve, display, select and use services functionality. Section 6.3
describes an effort that have been made for status reporting. Section 6.4 describes
the steps that were followed for the implementation of the translate to risk function-
ality on the front-end. Section 6.5 describes and illustrates with figures the new GUI

and workflow of the user actions. Section 6.6 present the new OGC Web Services
Architecture of the tool after adding the CSW.

6.1 system setup
The first step for every web engineering project is to setup the back-end and front-
end environment for development purposes. For that reason:

• The codes of the RI2DE front-end has been downloaded from RI2DE GitHub
page and a NodeJs/npm server has been setup in order to run it in develop-
ment mode. For the debugging of the front-end the Vue-Devtools has been
used.

• The WPS of the tool have been downloaded from Deltares SVN repository and
a PyWPS 4.0.0 service implementation that runs on a python- flask server has
been setup on at the Linux/Ubuntu subsystem of Windows.

• A GeoServer has been setup, that runs on an Apache TomCat server, in order
to upload the temporary WMS that are created from the different classification
and susceptibility processes of the tool.

• The OSM road and culverts have been loaded to a PostGIS database

The whole setup of the RI2DE environment (both back-end and front-end), was a
time consuming procedure. In the Appendix A are described with details all the
steps that were followed for the setup of the servers. At this point is should be
mentioned that during the setting up of the PyWPS environment the biggest issue
was created from the GDAL dependency. Apparently with some version of the

57

https://github.com/openearth/ri2de
https://github.com/openearth/ri2de

58 implementation

Linux the newest implementation of GDAL is difficult to be installed in a python
virtual environment. The problem was solved by installing in pygdal library.

For the development of the codes of the front-end, two different branches have
been created on RI2DE GitHub page, one for the search, retrieve, display, select and
use services functionality, and one for the translate to risk.

6.1.1 Example execute requests to the RI2DE back-end

After the setup of the PyWPS server, the next step was to test the classification
services in order to understand exactly how they work. As it was already described
in the RI2DE overview chapter, each classification process accepts as inputs a roads
identifier and the layer setup that contains: the classes boundaries, and the layer name
and OWS endpoint of the WCS.

Listing 6.1: XML document used for the execute request for WPS that extracts the roads

1 <?xml version=” 1 . 0 ” encoding=”UTF−8” ?>
2 <wps:Execute xmlns:wps=” h t t p : //www. opengis . net/wps / 1 . 0 . 0 ” xmlns :xs i=”

h t t p : //www. w3 . org /2001/XMLSchema−i n s t a n c e ” version=” 1 . 0 . 0 ” s e r v i c e =”
WPS” xsi : schemaLocat ion=” h t t p : //www. opengis . net/wps / 1 . 0 . 0 h t t p : //
schemas . opengis . net/wps/1 .0 .0/ wpsAll . xsd”>

3 <o w s : I d e n t i f i e r xmlns:ows=” h t t p : //www. opengis . net/ows/1 .1 ”>
r i 2 d e c a l c r o a d s</ o w s : I d e n t i f i e r>

4 <wps:DataInputs>
5 <wps:Input>
6 <o w s : I d e n t i f i e r xmlns:ows=” h t t p : //www. opengis . net/ows/1 .1 ”>

geo j son area</ o w s : I d e n t i f i e r>
7 <o w s : T i t l e xmlns:ows=” h t t p : //www. opengis . net/ows/1 .1 ”>

geo j son area</ o w s : T i t l e>
8 <wps:Data>
9 <wps:Li tera lData>

10 {
11 ” type ” : ” Feature ” ,
12 ” p r o p e r t i e s ” : {} ,
13 ”geometry” : {
14 ” type ” : ”Polygon” ,
15 ” coordinates ” : [[[4 .52306994863682 ,

52 .059532967349718] , [4 .525545891852937 ,
52 .063131020996131] ,

16 [4 .535252714688852 , 52 .060605494431172

] , [4 .532523550007451 ,
52 .057612733572178] ,

17 [4 .526277420530427 , 52 .055848121647529

] , [4 .52306994863682 ,
52 .059532967349718]]]

18 }
19 }
20 </wps:Li tera lData>
21 </wps:Data>
22 </wps:Input>
23 </wps:DataInputs>
24 <wps:ResponseForm>
25 <wps:RawDataOutput mimeType=” a p p l i c a t i o n / json ”>
26 <o w s : I d e n t i f i e r xmlns:ows=” h t t p : //www. opengis . net/ows/1 .1 ”>

output j son</ o w s : I d e n t i f i e r>
27 </wps:RawDataOutput>
28 </wps:ResponseForm>
29 </wps:Execute>

The roads identifier is the output of the WPS that extract the road infrastructures
from the PostGIS database, and this WPS accepts as input a GeoJSON file of the
desired polygon area. For that reason, a sample polygon area has been created in
the Netherlands through QGIS, and has been used as input to this WPS. The execute
request to the service and the raw data output of it (GeoJSON with the road lines),
are depicted in the Listing 6.1 and Listing 6.2 respectively.

https://github.com/openearth/ri2de

6.1 system setup 59

In the next phase, the slope classification process has been selected to be tested.
In the execute request there were given as inputs:

• road identifier to extract the road lines

• classes: [0,2,5,90] , classes boundaries for slope in degrees

• layer name: Global BaseMap:merit gebco , name of the WCS on the Geoserver

• OWSurl: https://fast.openearth.eu/geoserver/ows?, ows url of the Geoserver
that the WCS is published

Listing 6.2: Raw output of the WPS that extract the roads: GeoJSON of the road lines

1 {” r o a d s C o l l e c t i o n ” :
2 {” type ” : ” Mult iL ineStr ing ” ,
3 ” coordinates ” :
4 [[[4 . 5 2 9 3 8 5 9 , 5 2 . 0 6 1 0 1 5 2] , [4 . 5 2 9 4 7 8 3 , 5 2 . 0 6 1 0 0 4 8] ,
5 [4 . 5 2 9 5 7 2 1 , 5 2 . 0 6 1 0 0 8 5] , [4 . 5 2 9 6 6 1 6 , 5 2 . 0 6 1 0 2 5 9] ,
6 [4 . 5 2 9 7 4 1 7 , 5 2 . 0 6 1 0 5 6 1]] , [[4 . 5 2 9 6 2 2 4 , 5 2 . 0 6 1 4 6 8] ,
7 [4 . 5 2 9 4 9 2 9 , 5 2 . 0 6 1 4 8] , [4 . 5 2 9 3 6 4 3 , 5 2 . 0 6 1 4 6 4 7] ,
8 [4 . 5 2 9 2 5 1 4 , 5 2 . 0 6 1 4 2 3 9]] , [[4 . 5 2 9 1 4 5 1 , 5 2 . 0 6 1 3 3 5 5] ,
9 [4 . 5 2 9 1 1 8 1 , 5 2 . 0 6 1 2 7 6 4] , [4 . 5 2 9 1 1 6 6 , 5 2 . 0 6 1 2 1 5] ,

10 [4 . 5 2 9 1 4 0 7 , 5 2 . 0 6 1 1 5 5 5] , [4 . 5 2 9 1 8 8 8 , 5 2 . 0 6 1 1 0 1 7]] ,
11 [[4 . 5 2 9 2 5 1 4 , 5 2 . 0 6 1 4 2 3 9] , [4 . 5 2 9 1 8 9 8 , 5 2 . 0 6 1 3 8 3 5] ,
12 [4 . 5 2 9 1 4 5 1 , 5 2 . 0 6 1 3 3 5 5]]]} ,
13 ” r o a d s I d e n t i f i e r ” : ” roads 1568474493573512 ”}

Listing 6.3: XML document used for the execute request for slope classification WPS

1 <?xml version=” 1 . 0 ” encoding=”UTF−8” ?>
2 <wps:Execute xmlns:wps=” h t t p : //www. opengis . net/wps / 1 . 0 . 0 ” xmlns :xs i=”

h t t p : //www. w3 . org /2001/XMLSchema−i n s t a n c e ” version=” 1 . 0 . 0 ” s e r v i c e =”
WPS” xsi : schemaLocat ion=” h t t p : //www. opengis . net/wps / 1 . 0 . 0 h t t p : //
schemas . opengis . net/wps/1 .0 .0/ wpsAll . xsd”>

3 <o w s : I d e n t i f i e r xmlns:ows=” h t t p : //www. opengis . net/ows/1 .1 ”>
r i 2 d e c a l c s l o p e</ o w s : I d e n t i f i e r>

4 <wps:DataInputs>
5 <wps:Input>
6 <o w s : I d e n t i f i e r xmlns:ows=” h t t p : //www. opengis . net/ows/1 .1 ”>

r o a d s i d e n t i f i e r</ o w s : I d e n t i f i e r>
7 <o w s : T i t l e xmlns:ows=” h t t p : //www. opengis . net/ows/1 .1 ”>

r o a d s i d e n t i f i e r</ o w s : T i t l e>
8 <wps:Data>
9 <wps:Li tera lData>roads 1568474493573512</wps :Li tera lData>

10 </wps:Data>
11 </wps:Input>
12 <wps:Input>
13 <o w s : I d e n t i f i e r xmlns:ows=” h t t p : //www. opengis . net/ows/1 .1 ”>

l a y e r s s e t u p</ o w s : I d e n t i f i e r>
14 <o w s : T i t l e xmlns:ows=” h t t p : //www. opengis . net/ows/1 .1 ”>

l a y e r s s e t u p</ o w s : T i t l e>
15 <wps:Data>
16 <wps:Li tera lData>
17 {
18 ” c l a s s e s ” : [0 , 2 , 5 , 9 0] ,
19 ” layername” : ” Global Base Maps:meri t gebco ” ,
20 ”owsurl” : ” h t t p s : // f a s t . openearth . eu/geoserver/ows? ”
21 }
22 </wps:Li tera lData>
23 </wps:Data>
24 </wps:Input>
25 </wps:DataInputs>
26 <wps:ResponseForm>
27 <wps:RawDataOutput mimeType=” a p p l i c a t i o n / json ”>
28 <o w s : I d e n t i f i e r xmlns:ows=” h t t p : //www. opengis . net/ows/1 .1 ”>

output j son</ o w s : I d e n t i f i e r>
29 </wps:RawDataOutput>
30 </wps:ResponseForm>
31 </wps:Execute>

60 implementation

In Listing 6.3 and in Listing 6.4 are presented the XML request and response to
the slope classification service.

Listing 6.4: Raw Data Output of the slope classification WPS

1 {” s t y l e ” : ” r i2de ” ,
2 ”layerName” : ” TEMP:slope 1568476349913629 ” ,
3 ” baseUrl ” : ” h t t p : // l o c a l h o s t : 8 0 8 0 /geoserver/wms”
4 }

6.2 search, retrieve, display, select and use ser-
vices

This section of the report describes in detail the different steps and decisions that
were made in order to create a tool that can discover and retrieve services from
distributed WCS and for a specific susceptibility factor, display them for evaluation
purposes, as a ”market” of services, and let the user to select one of them as input
to the classification analysis, and then use it.

The overview of the classification processes that the RI2DE tool offers showed
that the only processes that are flexible enough to accept other datasets, than the
default, are the slope and the distance to water classification. So from an early stage
of the implementation the first restriction was set, that the new functionality can be
offered only from the slope and the distance to water classification.

Having as case studies the slope and the distance to water classification, the first
step was to discover different national, regional, and institutional geoportals that
offer WCS, in order to use them for testing purposes.

6.2.1 Geoportals and services

The selection of the geoportals was a difficult task, as the geoportals that are going
to be used need to have the following characteristics:

• Support the CSW standard

• Have registered DEM and water surface datasets as WCS, with the layer name
and the OWS URL of the GIS server they are published written in their metadata.

It was easy to find geoportals that implement the CSW binding protocol, especially
in the eu, as the countries are obliged to follow the guidelines of INSPRE directive,
for open and interoperable National SDI, but it was not easy to find geoportals with
water surface datasets. For that reason the slope classification process became the
only case study for testing this new functionality.

While the discovery of Geoportals with elevation WCS was an easier task, as there
are many National SDI and institutions that offer elevation datasets, like the PDOK
Geoportal (National SDI of the Netherlands) that has the AHN series of DEM, the
most of them didn’t have registered in their metadata, the layer name and the OWS

URL of the GIS server they are published.
Since the knowledge of the layer name and the OWS URL is essential for the re-

trieval of the datasets, it was decided to create a geoportal for the needs of this
research, and populate it with records, in order to create an ideal environment for
the implementation of the GetRecords operation. In a later stage of the project the
Deltares MI-SAFE Data portal has been populated with records of DEM WCS that the
institution used in several projects.

In the Table 6.1 are presented the Geoportals that have been used as test cases,
together with their CSW endpoints. In the next sections, follows a brief description
of the MI-SAFE Geoportal and on the Geoportal that was created for the purposes
of this research.

6.2 search, retrieve, display, select and use services 61

Table 6.1: Geoportals
GeoPortal CSW endpoint
MI-SAFE GeoNetwork https://fast.openearth.eu/geonetwork/srv/eng/csw?
RI2DE (Localhost) http://localhost:8080/geonetwork/srv/eng/csw?

Figure 6.1: MI-SAFE Catalogue

MI-SAFE GeoNetwork

The MI-SAFE geoportal is one of Deltares data portals and is has been developed
under the FAST project and the OpenEarth initiative. In the FAST OpenEarth project,
a software and web-viewer has been developed that depicts the estimated contri-
bution of coastal vegetation to wave height attenuation for user-selected coastal
locations anywhere in the world (publicwiki.deltares.nl). For the purposes of the
project a GeoServer has been created, for the publishing of the datasets that the tool
use. In the GeoServer there are DEM of (see also Section 4.3.1)

• Louisiana

• Beira

• Merit Gebco

• SRTM

When this research started the MI-SAFE geoportal had registered only the SRTM
DEM in its catalogue. For the purpose of this research the Louisiana Coastal DEM,
the Beira DEM and the Merit Gebco has been registered in the catalogue. The
Merit Gebco is the transnational DEM that the RI2DE use for the slope classification
process.

Localhost GeoPortal

As it was outlined previously, it was decided to create a geoportal for the needs
of this research. The geoportal needs to implement the CSW protocol binding. For
the development of the geoportal the GeoNetwork open source solution for the de-
velopment of catalogue application has been used. The name that was given to the
new geoportal is RI2DE Catalogue and is not in production. Within the GeoNetwork
it is possible to harvers metadata records from other Geoportals using the harvest
operation of the CSW standard or to add new records. Both of the options have been
used.

More specifically with the harvest operation the MI-SAFE Geoportal records have
been retrieved, in order to alter them by adding the layer name and OWS URL that are
needed.

62 implementation

Figure 6.2: RI2DE Catalogue, Albania DEM

Also new records have been added in order to assess the way that records are
created and which is the best metadata schema. One of these records was the
metadata of an Albania DEM , that was used in many cases as example in the whole
development stage.

albania dem web coverage service: When the RI2DE tool project started, the
first idea was to develop it having as case study the Albania area. For that reason
a DEM of the Albania with 10 m resolution and in the national coordinate system
(European Petroleum Survey Group (EPSG) 32634) has been used. But when the idea
for a regional case study has been abandoned and transnational datasets have been
used in order to have global coverage, the Albania DEM has been replaced with the
transnational DEM (Merit Gebco) that is on WGS84.

Since the basic idea of this research, it to discover and use regional datasets with
better resolution, the Albania DEM was a perfect case study. For that reason the DEM

was published as WCS, in the GeoServer that was developed for the purpose of this
research, and added as a new record in the RI2DE Catalogue, under the ISO metadata
schema.

6.2.2 GetRecords implementation

At this point of the research, the system has been setup for development (both
back-end and front-end), and two catalogue services (MI-SAFE Catalogue and RI2DE

Catalogue) have been populated with metadata records of elevation WCS for testing
purposes. From now on the functional requirements, as they have been defined
in the Chapter 5 are going to be the baseline for the implementation of the search,
retrieve, display, select and use other services functionality.

The first step according to the list of requirements is to implement the GetRecords
operation of the CSW binding protocol, in order to ”Search” and ”Retrieve” the
records. Implementing the GetRecords operation means deciding what values are
going to be used to the parameters of the request, and also to decide how the
request is going to be send.

The first idea was to create in the client side a base XML GetRecords request, and
adapt the parameters (e.g. query) according to the case. This request then would
be sent directly to the different catalogue services and the client would receive the
response with the records that fulfil the query.

6.2 search, retrieve, display, select and use services 63

This idea was abandoned from an early stage, since it is against to the whole
idea for sharing and interoperability, because the whole processing (reading the
records and extract the necessary information) would happen on the client side
(web browser). For that reason it was decided to use the OWSLib python package.
OWSLib is a package of classes and methods that implement the different OGC Web
Services operations, serving as a client that sends, receive and process requests.
More specifically in the case of the CSW standard, OWSLib offers the CatalogueSer-
viceWeb class with methods for every CSW operation. One of this method is the
getrecords (parameters) that implement the GetRecords operation.

Taking advantage this package it was possible to develop a process that sends
the GetRequest request with the HTTP-POST method, accepts it, reads it, process
the returned records, and return only the information that is essential for this new
functionality:

• Title of the record

• Abstract of the records

• OWS URL to connect and get it

• Layer name to recognize it

This process has been developed on a way to be flexible enough on accepting
different inputs (e.g. it can search either for elevation or water datasets) and has
been published under the WPS standard in order to be accessible to anyone.

The first step to develop this process is to implement the ”search” and ”retrieve”
part, which means to construct the GetRecords operation. From the CSW standard
it is known that a GetRecords operation should have the following parameters (See
also Table 2.4):

• Name of the service

• Version of the service

• Output format

• Output XML schema to be returned

• Maximum number of records to be returned

• The type names to query against

• Element Set Name (”full”, ”summary”, ”brief”

• Query language

• Query

In order to implement the GetRecords operation within the OWSlib library the
steps are:

initiate a catalogueserviceweb object: An OWSlib CatalogueServiceWeb ob-
ject can be initiated with the parameters that are presented in the Table 6.2. The URL

parameter indicates the endpoint of the CSW to connect and send the request. It is
essential for the flexibility of the process to have it as a variable, in order to be able
to set different URL. The version of the service was left to the default value(”2.0.2”)
since the most of the catalogues implement this version of the standard. The skip
capabilities parameter was set to ”true” in order to avoid errors that were created
during the tests. The rest of the parameters were left either empty or to the default
values.

64 implementation

Table 6.2: Initation of CatalogueServiceWeb object
All possible parameters Values that were given

url
It will be an input to the process.
The default that was given is the
url of the FastOpenEarth

language (the default is ’en-US’ It was left the default
version (default is ’2.0.2’) It was left the default
timeout It was left the default
skip capabilities It was set to ”true”
username for HTTP basic authentication It was left empty
password for HTTP basic authentication It was left empty
authentication It was left empty

construct the query: The most important step of the GetRecords implemen-
tation is to construct the query predicate. The query should be constructed in a
way to be flexible to work for every susceptibility factor and to offer also spatial
searching. The spatial searching indicates that only datasets that from the selected
area (polygon) will be retrieved.

OWSLib package support the OGC Filter Encoding 1.1.0. This Filter encoding of-
fers Logical, Comparison, Spatial and Temporal operators (See Section 2.7.1), and
can query against the specified Core queryable properties that every catalogue sup-
port.

In order to filter the results according to the area, theBBOX spatial operator
was used that query the BoundingBox property. While in order to search for spe-
cific datasets the PropertyIsLike operator was used that query against the AnyText
queryable property, which means that any text value in the metadata records is go-
ing to be searched, and if they are like the defined queryable values the datasets
are going to be returned. The conceptual structure of the query is depicted in the
Listing 6.5. The metadata records that are going to be returned should: Fell in the
defined bounding box and have in their texts one of the defined keywords. There
in no limit on the keywords to be used.

Listing 6.5: Conceptual structure of query in the OGC Filter Encoding

def handler (s e l f , request , response) :
<F i l t e r>

<And>
<BBOX>

<PropertyName>BoundingBox</PropertyName>
<gml:Envelope>

<gml:lowerCorner>Xmin Ymin</gml:lowerCorner>
<gml:upperCorner>Xmax Ymax</gml:upperCorner>

</gml:Envelope>
</BBOX>
<Or>

<Proper tyIsLike>
<PropertyName>AnyText</PropertyName>
<L i t e r a l>Keyword 1</ L i t e r a l>

</Proper tyIsLike>
<Proper tyIsLike>

<PropertyName>AnyText</PropertyName>
<L i t e r a l>Keyword 2</ L i t e r a l>

</Proper tyIsLike>
</Or>

</And>
</ F i l t e r>

call the method getrecords: The final step for the GetRecords implementa-
tion, is to call the getrecords method of the CatalogueServiceWeb object that has been
already initiated. In this method the parameters and the values that were given are

6.2 search, retrieve, display, select and use services 65

Table 6.3: Parameters of getrecords method
All possible parameters Values that were given
constraints (filter expression) The query that was created in the previous step
sort by It was left empty
typenames (default csw:record) It was left the default

esn (ElementSetName)
It was set to ”full” in order to have all
the possible metadata information

outputschema
(default is: http://www.opengis.net/cat/csw/2.0.2

It was set to http://www.isotc211.org/2005/gmd

outputformat (default is xml) It was left the default
start position It was left empty
maxrecords It was set to 50

xml (raw xml request) It was left the default
result type (default is ’results’) It was left the default

presented in the. Table 6.3. The esn parameter, that is the SetElementParameter of the
GetRecords, was set to ”full”, because the OWS URL and the layername metadata prop-
erties, are optional and not included in the shorter version (”brief” and ”summary”)
versions of the metadata. The output schema was decided to set to the ”ISO”, since
the most of the Catalogue Services that were examined, including also the Deltares
data portals, support only the ”ISO” metadata schema and not the ”Dublin Core”.

Now that the ”search” and ”retrieve” part of the process has been developed with
the use of the OWSlib package, it is now time to process the returned records in
order to retrieve the information that is needed. In the next section is described
all the processing that is made in order to extract the title, the abstract, the OWS

URL and the layer name of the records, and is explained how the process has been
published.

6.2.3 Web Processing Service for the discovery and retrieve of the records from
distributed catalogue services

This section will describe how the ”search” and ”retrieve” that was implemented
with the OWSLib package, and the processing of the returned records in order
to gain the information that is needed, have been combined and wrapped in one
process that is published under the WPS standard. The inputs to this process will be
the Identifier of the road, a list of keywords, and a list of CSW endpoints.

As it was already described in the previous section, the records that will be re-
turned should meet the criteria that the query sets, which means to fell in the
specified bounding box and to have one of the keywords in their texts (e.g. abstract,
title).

The process reads the road identifier in order to extract the road lines from the
temporary folder and to create the bounding box, and together with the keywords
creates the query. At the same time the process reads the list with the CSW endpoints
and with it every time creates a CatalogueServiceWeb object, connecting that way
to the Catalogue Service. Then with the query creates and sends the GetRecords
request, as it was described in the previous section.

The response each time contains the records that fulfilled the query. These records
are checked to see:

• If they haven’t already recovered from another Catalogue Service

• If they contain all the necessary information (Title, abstract, OWS URL and layer
name)

66 implementation

Figure 6.3: Process for search, retrieve and return records from distributed Catalogue Ser-
vices (WPS)

6.2 search, retrieve, display, select and use services 67

Figure 6.4: Polygon that was created in Beira city of Mozambique, with QGIS

If they do contain it, then they are stored in a list and at the end, all the records
that were retrieved from the distributed catalogue services are written in the output.
A schematic view of this process is depicted in the Figure 6.3

At this point it is essential to give an example of how this process works. Knowing
that in the FAST OpenEarth GeoNetwork there is a record of the Beira DEM WCS, a
GeoJSON has been created in the Beira city trough QGIS, and has been given as input
to the WPS that extract the road lines. After the road lines have been extracted and
stored in the temporary folder, the road identifier is used in order to call the WPS that
discover and retrieve records from distributed catalogue services.

The inputs that were given are:

• Roads identifier that was provided from the WPS that selects the roads

• Keywords: ’dem’,’elevation’

• CSW endpoint of the MI-SAFE GeoNetwork and the RI2DE (localhost)

The execute request to the WPS is depicted in the Listing 6.6, and the response
(JSON that contains the records) in the Listing 6.7. From this response we can see
that the process returned global coverage DEM, and the one of Beira, as it was
expected.

Listing 6.6: XML document of the Execute request of the WPS that discovers and retrieve the
records from distributed catalogue services

1 <?xml version=” 1 . 0 ” encoding=”UTF−8” ?>
2 <wps:Execute xmlns:wps=” h t t p : //www. opengis . net/wps / 1 . 0 . 0 ” xmlns :xs i=”

h t t p : //www. w3 . org /2001/XMLSchema−i n s t a n c e ” version=” 1 . 0 . 0 ” s e r v i c e =”
WPS” xsi : schemaLocat ion=” h t t p : //www. opengis . net/wps / 1 . 0 . 0 h t t p : //
schemas . opengis . net/wps/1 .0 .0/ wpsAll . xsd”>

3 <o w s : I d e n t i f i e r xmlns:ows=” h t t p : //www. opengis . net/ows/1 .1 ”>
g e t r e c o r d s u r l</ o w s : I d e n t i f i e r>

4 <wps:DataInputs>
5 <wps:Input>
6 <o w s : I d e n t i f i e r xmlns:ows=” h t t p : //www. opengis . net/ows/1 .1 ”>

r o a d s i d e n t i f i e r</ o w s : I d e n t i f i e r>
7 <o w s : T i t l e xmlns:ows=” h t t p : //www. opengis . net/ows/1 .1 ”>

r o a d s i d e n t i f i e r</ o w s : T i t l e>
8 <wps:Data>
9 <wps:Li tera lData>roads 1568722427210504</wps :Li tera lData>

10 </wps:Data>
11 </wps:Input>
12 <wps:Input>
13 <o w s : I d e n t i f i e r xmlns:ows=” h t t p : //www. opengis . net/ows/1 .1 ”>

csw url</ o w s : I d e n t i f i e r>
14 <o w s : T i t l e xmlns:ows=” h t t p : //www. opengis . net/ows/1 .1 ”>csw url</

o w s : T i t l e>

68 implementation

15 <wps:Data>
16 <wps:Li tera lData>{
17 ”csw” : [” h t t p : // l o c a l h o s t : 8 0 8 0 /geonetwork/srv/eng/csw? ” , ”

h t t p s : // f a s t . openearth . eu/geonetwork/srv/eng/csw? ”]
18 }
19 </wps :Li tera lData>
20 </wps:Data>
21 </wps:Input>
22 <wps:Input>
23 <o w s : I d e n t i f i e r xmlns:ows=” h t t p : //www. opengis . net/ows/1 .1 ”>

keywords</ o w s : I d e n t i f i e r>
24 <o w s : T i t l e xmlns:ows=” h t t p : //www. opengis . net/ows/1 .1 ”>keywords<

/ o w s : T i t l e>
25 <wps:Data>
26 <wps:Li tera lData>
27 {
28 ”keywords” : [”dem” , ” e l e v a t i o n ”]
29 }
30 </wps:Li tera lData>
31 </wps:Data>
32 </wps:Input>
33 </wps:DataInputs>
34 <wps:ResponseForm>
35 <wps:RawDataOutput mimeType=” a p p l i c a t i o n / json ”>
36 <o w s : I d e n t i f i e r xmlns:ows=” h t t p : //www. opengis . net/ows/1 .1 ”>

output j son</ o w s : I d e n t i f i e r>
37 </wps:RawDataOutput>
38 </wps:ResponseForm>
39 </wps:Execute>

Listing 6.7: Raw data output: JSON that contains the records

1 [{ ” a b s t r a c t ” : ” Global D i g i t a l E levat ion Model
2 (DEM) derived from the SRTM (S h u t t l e Radar Topography Mission) .
3 The data i s s tored on the D e l t a r e s P : dr i ve .
4 The SRTM e l e v a t i o n data can a l s o be downloaded
5 from the website h t t p : //gdex . cr . usgs . gov/gdex /.
6 This g loba l d a t a s e t i s f r e e l y a v a i l a b l e , you only
7 need to r e g i s t e r f i r s t . There i s a demo with i n s t r u c t i o n s on
8 the download procedure (h t t p : //gdex . cr . usgs . gov/demo/demo . html) . ” ,
9 ” layername” : ” g l o b a l : s r t m p l u s 1 5 ” ,

10 ”owsurl” : ” h t t p s : // d e l t a r e s d a t a . openearth . eu/geoserver/ows? ” ,
11 ” t i t l e ” : ” g l o b a l : s r t m p l u s 1 5 ”} ,
12 {” a b s t r a c t ” : ” D i g i t a l E levat ion Model Merit Gebco” ,
13 ” layername” : ” Global Base Maps:meri t gebco ” ,
14 ”owsurl” : ” h t t p s : // f a s t . openearth . eu/geoserver/ows? ” ,
15 ” t i t l e ” : ” Global Base Maps:meri t gebco ”} ,
16 {” a b s t r a c t ” : ” Be i ra CDEM” ,
17 ” layername” : ” Global Base Maps:Beira CDEM ” ,
18 ”owsurl” : ” h t t p s : // f a s t . openearth . eu/geoserver/ows? ” ,
19 ” t i t l e ” : ”Global Base Maps:BeiraCDEM”} ,
20]

6.2.4 Client processing

Since now it has been implemented the ”Discovery” and ”Retrieve” part of this new
functionality. Following the list of requirements the next step is to work on the client
side (web browser) in order to construct the XML requests to the process, develop
the equations that display the records and change the source of the classification
process, and all these in a new friendly in use GUI.

The XML document that is going to be sent to the WPS server from the web browser,
needs the keywords of the susceptibility factor, the CSW URLs and the road identifier.
As it was already mentioned in the Section 3.4 the web browser of the tool has
been developed with the Vuex state management library, which makes easier in this
case the manipulation of the datasets, as it is feasible to access them from all the

6.2 search, retrieve, display, select and use services 69

Figure 6.5: Schematic view of the client actions to display and change the source

components of the client and to alter the state of them when we want with the muta-
tions.The philosophy of the first edition of the tool was to store all the information
that configuration JSON file sends to the web browser in states, and to create the XML

requests to the different WPS by accessing them. Following the same philosophy the
keywords and the CSW URLs are stored in two new states that were created for them.

As the states of the keywords and the CSW URLs are populated, it is feasible to cre-
ate the XML document and send the Execute request to the WPS, in order to find and
retrieve records of services from distributed catalogues. So when the user choose
from the GUI to see extra sources for the selected susceptibility factor, the functions
that create the XML and call the WPS are triggered. Then the response to this request,
which means the records that were discovered, are stored in a temporary variable
and displayed to the user. If the user decides to select one of these datasets, then
are activated two functions, one that mutates the states that stores the OWS URL and
the layer name of the WCS, from the default values that were given from the JSON con-
figuration files, and sends immediately a new Execute request with the new WCS

endpoint (that retrieves from the altered states) to the WPS of the classification pro-
cess. In the Figure 6.5 it is depicted a schematic view of the processing that happens
in the client side (web browser). The new GUI is presented in the Section 6.5.

6.2.5 Reprojection

The last requirement in order to complete the implementation of the discover, re-
trieve, display, select and use other services functionality, is to develop new func-
tions in the back- end of the tool, that reproject the selected sources always to WGS84

coordinate system.
So far the custom procedure for the susceptibility analysis, is to extract the differ-

ent coverages from the GeoServer that they are published as acwcs, classify them,
and then overlay them with the other classified layers in order to produce the final
susceptibility map. The susceptibility analysis demands the datasets to be on the

70 implementation

Figure 6.6: Selected area in Albania

same projection. So far the default datasets, were transnational datasets projected
on the WGS84 system, so there was no need for a reprojection procedure in the back
end. Now that the user can select datasets from regional servers, there is always the
possibility to have datasets from different projection systems.

Having a closer look to the custom classification process, it seems that the cov-
erage is extracted with a bounding box that is on the WGS84. For that reason two
reprojection needs to happen. One of the bounding box before the GetCoverage im-
plementation, in order to be able to extract the coverage, and one after the coverage
is downloaded, in order to reproject it to the WGS84 for the final overlay. In the
first reprojection, in order to know the correct projection of the WCS, when the con-
nection to the GeoServer is initiated, it is possible to ask for the projection of the
coverage service. If the projection then is not the WGS84, then the bounding box
should be reprojected to the local system.

Although this procedure can solve problems that occur due to different projec-
tions, the double reprojection takes time, especially the reprojection of the coverage,
and for a web tool this is not preferred. So the code has not been used, and it can be
considered as future work. But the problem still remains, so in order to use other
datasets apart from the default transnational ones, they need to be projected in the
WGS84 first before they used as inputs to the classification processes.

6.3 test of status reporting
As it was already outlined in the PyWPS section of the technology framework chap-
ter of this report, the latest PyWPS version does not still support the GetStatus
and GetResult operation of the WPS 2.0.0. For that reason the functional require-
ments that were described in the Section 5.2 is not feasible to be developed in this
framework. Although it is not possible to have job monitor through these opera-
tions, PyWPS offers a way for status reporting, similar to the WPS 1.0.0 approach
for status report where the process writes the status to a third party service (see
Section 3.1.1).

It was decided then to test if it is feasible to get status reporting with the way
that the PyWPS offers. Since the status reporting makes sense only when the pro-
cess takes longer time to complete, it was necessary to select a big area and use as
input to the process, a dataset with high resolution. The Albania DEM has a high
resolution equal to 10m, so it is a good case study. Moreover since the idea for coor-
dinate transformation inside the classification process was abandoned, the Albania
DEM had to be transformed from the national coordinate system (EPSG:32634) to the
WGS84 (EPSG:4326) in order to be used as input to the process.

Following the methodology that PyWPS describes for enabling asynchronous ex-
ecution of the process, the steps for the status reporting implementation were:

6.3 test of status reporting 71

step 1: Create a polygon (GeoJSON) in the Albania through QGIS, big enough to
justify the need for status reporting (Figure 6.6)

step 2: Execute the WPS that extract the road lines, with input the GeoJSON of the
selected polygon, in order to create the roads file and take the roads identifier.

step 3: Add to the configuration file of the PyWPS, the output URL to store the
status XML document each time (Listing 6.8)

Listing 6.8: Configuration file of PyWPS

[server]
. . .
outputurl= h t t p : // l o c a l h o s t : 5 0 0 0 /ouputs
outputpath=outputs
. . .

step 4: Set the status supported and store supported parameters in the def init of
the slope classification WPS to true, (Listing 6.9)

Listing 6.9: Enable store and status support in slope classification WPS

def i n i t (s e l f) :
. . .

. . .
s tore supported=True ,
s ta tus suppor ted=True
. . .

step 5: Set in the def handler method of the slope classification WPS the status
report messages with the WPSResponse.update status() function. In contrast to the
buffer example that was given in the Section 3.1.1, where the status report mes-
sages are updated every time a feature is buffered, in all the RI2DE classification
processes, the processing happens in different parts and is not a repeated proce-
dure (see Custom classification process:). For that reason the slope classification
process was executed multiple times, in order to estimate approximately which part
of the whole processing takes more time to complete, (Listing 6.10).

Listing 6.10: Set status report messages in slope classification WPS

def handler (s e l f , request , response) :
. . .

response . update s ta tus (’ Read Input ’ , 5%)
. . .

response . update s ta tus (’ Get Roads ’ , 40%)
. . .

response . update s ta tus (’ Converted to slope ’ , 70%)
. . .

response . update s ta tus (’ C l a s s i f i e d ’ , 80%)
. . .

response . update s ta tus (’ Applied Mask ’ , 90%)
. . .

response . update s ta tus (’ Uploaded to GeoServer ’ , 100%)
. . .

step 6: Send an XML document as Execute request to the WPS server, indicating
in the XML that the output format should be a ResponseDocument, in order to achieve
asynchronous execution (Listing 6.11).

After the execution of the slope classification started a response was sent to the
client indicating that the process has been accepted and the location to find the

72 implementation

status report. In Listing 6.12, Listing 6.13 and Listing 6.14 are presented the different
status report documents. Firstly the status is ”Process Accepted” and the percentage
done of the process is still 0, which means that it hasn’t started yet to read the
input.Then while the process runs the status changes to ”Process Started and the
percentage is 40 percent, which indicates that the input has been read and the road
lines have been extracted from the PostGIS database. And at the the last document
the status changes to ”Process succeeded” and the output of the process is provided.

At this test the process execution finished fast enough to not have time to get a
status report indicating the 70, 80 and 90 per cent of the process. Which means
that perhaps the estimation to set the 40 per cent after the extraction of the road
lines is wrong. It is not easy to correctly estimate at which point the process will go
faster or slower, for instance when the Internet connection is weak the downloading
of the coverage from the GeoServer is slower. So another way for status reporting
should be found, perhaps to get the status of each sub-process separately and add
it to total calculation. Nevertheless the the idea to have status reporting at the RI2DE

tool while this research was happening, have been abandoned until a more accurate
way is found to calculate and not just estimate the time that every part of the whole
process takes to complete.

Listing 6.11: Asynchronous Execute request of slope classification process

1 <?xml version=” 1 . 0 ” encoding=”UTF−8” ?>
2 <wps:Execute xmlns:wps=” h t t p : //www. opengis . net/wps / 1 . 0 . 0 ” xmlns :xs i=”

h t t p : //www. w3 . org /2001/XMLSchema−i n s t a n c e ” version=” 1 . 0 . 0 ” s e r v i c e =”
WPS” xsi : schemaLocat ion=” h t t p : //www. opengis . net/wps / 1 . 0 . 0 h t t p : //
schemas . opengis . net/wps/1 .0 .0/ wpsAll . xsd”>

3 <o w s : I d e n t i f i e r xmlns:ows=” h t t p : //www. opengis . net/ows/1 .1 ”>
r i 2 d e c a l c s l o p e</ o w s : I d e n t i f i e r>

4 <wps:DataInputs>
5 <wps:Input>
6 <o w s : I d e n t i f i e r xmlns:ows=” h t t p : //www. opengis . net/ows/1 .1 ”>

r o a d s i d e n t i f i e r</ o w s : I d e n t i f i e r>
7 <o w s : T i t l e xmlns:ows=” h t t p : //www. opengis . net/ows/1 .1 ”>

r o a d s i d e n t i f i e r</ o w s : T i t l e>
8 <wps:Data>
9 <wps:Li tera lData>roads medium albania</wps:Li tera lData>

10 </wps:Data>
11 </wps:Input>
12 <wps:Input>
13 <o w s : I d e n t i f i e r xmlns:ows=” h t t p : //www. opengis . net/ows/1 .1 ”>

l a y e r s s e t u p</ o w s : I d e n t i f i e r>
14 <o w s : T i t l e xmlns:ows=” h t t p : //www. opengis . net/ows/1 .1 ”>

l a y e r s s e t u p</ o w s : T i t l e>
15 <wps:Data>
16 <wps:Li tera lData>
17 {
18 ” c l a s s e s ” : [0 , 2 , 5 , 9 0] ,
19 ” layername” : ” ioami:Albania DEM 10m global ” ,
20 ”owsurl” : ” h t t p : / / 1 0 . 0 . 2 . 2 : 8080/geoserver/ows? ”
21 }
22 </wps:Li tera lData>
23 </wps:Data>
24 </wps:Input>
25 </wps:DataInputs>
26 <wps:ResponseForm>
27 <wps:ResponseDocument s t a t u s =” true ” storeExecuteResponse=” true ”>
28 <wps:Output >
29 <o w s : I d e n t i f i e r xmlns:ows=” h t t p : //www. opengis . net/ows/1 .1 ”>

output j son</ o w s : I d e n t i f i e r>
30 </wps:Output>
31 </wps:ResponseDocument>
32

33 </wps:ResponseForm>
34 </wps:Execute>

Listing 6.12: Response Document with status: ”Process Accepted and 0 % percent completed

6.3 test of status reporting 73

1 <?xml version=” 1 . 0 ” encoding=”UTF−8” ?>
2 <wps:ExecuteResponse xmlns:wps=” h t t p : //www. opengis . net/wps / 1 . 0 . 0 ”

xmlns:ows=” h t t p : //www. opengis . net/ows/1 .1 ” xmlns :x l ink=” h t t p : //www.
w3 . org /1999/ x l i n k ” xmlns :xs i=” h t t p : //www. w3 . org /2001/XMLSchema−
i n s t a n c e ” xs i : schemaLocat ion=” h t t p : //www. opengis . net/wps / 1 . 0 . 0 . . /
wpsExecute response . xsd” s e r v i c e =”WPS” version=” 1 . 0 . 0 ” xml:lang=”en−
US” s e r v i c e I n s t a n c e =” h t t p : / / 1 2 7 . 0 . 0 . 1 :5000/wps? request=
G e t C a p a b i l i t i e s& ; amp ; s e r v i c e =WPS” s t a t u s L o c a t i o n =” h t t p :
/ / 1 2 7 . 0 . 0 . 1 :5000/outputs /6245680 c−d857−11e9−b635−0800279 a f 0 c f . xml”>

3 <wps:Process wps:processVersion=” 1 . 0 ”>
4 <o w s : I d e n t i f i e r>r i 2 d e c a l c s l o p e</ o w s : I d e n t i f i e r>
5 <o w s : T i t l e>backend process f o r the RI2DE t o o l p r o j e c t ,

c a l c u l a t e s s lope and c l a s s i f i e s i n t o c l a s s e s</ o w s : T i t l e>
6 <ows:Abstract> I t uses gdal t o o l s to c a l c u l a t e s lope and

sends back a JSON reply wrapped in the xml/wps format with
the wmslayer to show</ows:Abstract>

7 </wps:Process>
8 <wps:Status creat ionTime=”2019−09−16 T09 :55 :43Z ”>
9 <wps:ProcessAccepted percentCompleted=”0”>PyWPS Process

r i 2 d e c a l c s l o p e accepted</wps:ProcessAccepted>
10 </wps:Status>

Listing 6.13: Response Document with status: ”Process Started and 40% percentd completed

1 <?xml version=” 1 . 0 ” encoding=”UTF−8” ?>
2 <wps:ExecuteResponse xmlns:wps=” h t t p : //www. opengis . net/wps / 1 . 0 . 0 ”

xmlns:ows=” h t t p : //www. opengis . net/ows/1 .1 ” xmlns :x l ink=” h t t p : //www.
w3 . org /1999/ x l i n k ” xmlns :xs i=” h t t p : //www. w3 . org /2001/XMLSchema−
i n s t a n c e ” xs i : schemaLocat ion=” h t t p : //www. opengis . net/wps / 1 . 0 . 0 . . /
wpsExecute response . xsd” s e r v i c e =”WPS” version=” 1 . 0 . 0 ” xml:lang=”en−
US” s e r v i c e I n s t a n c e =” h t t p : / / 1 2 7 . 0 . 0 . 1 :5000/wps? request=
G e t C a p a b i l i t i e s& ; amp ; s e r v i c e =WPS” s t a t u s L o c a t i o n =” h t t p :
/ / 1 2 7 . 0 . 0 . 1 :5000/outputs /6245680 c−d857−11e9−b635−0800279 a f 0 c f . xml”>

3 <wps:Process wps:processVersion=” 1 . 0 ”>
4 <o w s : I d e n t i f i e r>r i 2 d e c a l c s l o p e</ o w s : I d e n t i f i e r>
5 <o w s : T i t l e>backend process f o r the RI2DE t o o l p r o j e c t ,

c a l c u l a t e s s lope and c l a s s i f i e s i n t o c l a s s e s</ o w s : T i t l e>
6 <ows:Abstract> I t uses gdal t o o l s to c a l c u l a t e s lope and

sends back a JSON reply wrapped in the xml/wps format with
the wmslayer to show</ows:Abstract>

7 </wps:Process>
8 <wps:Status creat ionTime=”2019−09−16 T09 :55 :43Z ”>
9 <wps:ProcessStarted percentCompleted=”40”>b</wps:ProcessStarted>

10 </wps:Status>
11 </wps:ExecuteResponse>

Listing 6.14: Response Document with status: ”Process Succeeded and output result

1 <?xml version=” 1 . 0 ” encoding=”UTF−8” ?>
2 <wps:ExecuteResponse xmlns:wps=” h t t p : //www. opengis . net/wps / 1 . 0 . 0 ”

xmlns:ows=” h t t p : //www. opengis . net/ows/1 .1 ” xmlns :x l ink=” h t t p : //www.
w3 . org /1999/ x l i n k ” xmlns :xs i=” h t t p : //www. w3 . org /2001/XMLSchema−
i n s t a n c e ” xs i : schemaLocat ion=” h t t p : //www. opengis . net/wps / 1 . 0 . 0 . . /
wpsExecute response . xsd” s e r v i c e =”WPS” version=” 1 . 0 . 0 ” xml:lang=”en−
US” s e r v i c e I n s t a n c e =” h t t p : / / 1 2 7 . 0 . 0 . 1 :5000/wps? request=
G e t C a p a b i l i t i e s& ; amp ; s e r v i c e =WPS” s t a t u s L o c a t i o n =” h t t p :
/ / 1 2 7 . 0 . 0 . 1 :5000/outputs /6245680 c−d857−11e9−b635−0800279 a f 0 c f . xml”>

3 <wps:Process wps:processVersion=” 1 . 0 ”>
4 <o w s : I d e n t i f i e r>r i 2 d e c a l c s l o p e</ o w s : I d e n t i f i e r>
5 <o w s : T i t l e>backend process f o r the RI2DE t o o l p r o j e c t ,

c a l c u l a t e s s lope and c l a s s i f i e s i n t o c l a s s e s</ o w s : T i t l e>
6 <ows:Abstract> I t uses gdal t o o l s to c a l c u l a t e s lope and

sends back a JSON reply wrapped in the xml/wps format with
the wmslayer to show</ows:Abstract>

7 </wps:Process>
8 <wps:Status creat ionTime=”2019−09−16 T09 :56 :09Z ”>
9 <wps:ProcessSucceeded>PyWPS Process backend process f o r the

RI2DE t o o l p r o j e c t , c a l c u l a t e s s lope and c l a s s i f i e s i n t o
c l a s s e s f i n i s h e d</wps:ProcessSucceeded>

74 implementation

10 </wps:Status>
11 <wps:ProcessOutputs>
12 <wps:Output>
13 <o w s : I d e n t i f i e r>output j son</ o w s : I d e n t i f i e r>
14 <o w s : T i t l e>Ri2DE c a l c u l a t i o n of a slope l a y e r [0 , 1 , 2]</

o w s : T i t l e>
15 <ows:Abstract/>
16 <wps:Data>
17 <wps:ComplexData mimeType=” a p p l i c a t i o n / json ”

encoding=”” schema=””>< ! [CDATA[{” s t y l e ” : ” r i2de
” , ”layerName” : ” TEMP:slope 1568620557442375 ” , ”
baseUrl ” : ” h t t p : / / 1 0 . 0 . 2 . 2 : 8080/geoserver/wms”}
]]></wps:ComplexData>

18 </wps:Data>
19 </wps:Output>
20 </wps:ProcessOutputs>
21 </wps:ExecuteResponse>

6.4 translate to risk functionality
The need for cost benefit analysis for preventive measures and repair constructions,
in case of geohazard risk on specific road segments, motivated the need for a trans-
late to risk functionality . With this functionality the tool calculates the mean values
of the raster cells that surround the different road lines, and pass them as properties
to the lines.

For that purpose a new process has been developed on the back end of the tool,
that translate the produced vulnerability maps to classified road lines. The develop-
ment of this process has been done from the main back-end developer of the tool.
This process is published as a service.

The purpose of this research was to work on the client side of the tool, in order
to create a friendly user interface, and create the functions that send the request,
and receives and display the classified road lines. The implementation steps are
based on the requirements list that was described in the requirements chapter. But
before the description of the way the front-end part of the translate-to-risk has been
implemented, it is essential to outline the way the translate-to-risk process works.

6.4.1 Translate to risk back-end

In the back end of the tool, it has been added a new process that calculates the
mean values of the vulnerability raster cells around the road lines, and create a
GeoJSON that includes a feature collection (the road lines) with attached properties
that indicate (the mean, max and min value of the possible vulnerability around the
line). The GIS analysis is happening with a zonal statistic procedure, so it is needed
to know the size of the zone around the road, and also the length that segments are
going to be created.

The inputs to this process are:

• Final susceptibility layer setup: The output of the Susceptibility analysis pro-
cess

• Buffer distance: The distance to create buffer around the road lines. It is
needed for the zonal statistics analysis

• Segment length: The length to create segment lines (split the lines), in order
for the user to configure the accuracy of the calculation (e.g. cut them in
smaller pieces than the default ones).

• Road identifier: In order to get the GeoJSON file that contains the road lines,
from the temporal directory.

6.4 translate to risk functionality 75

And the output product of this process is a GeoJSON file that contains a feature
collection of the different road segments, with properties that indicates the mean,
max and min vulnerability value of the segment, and the default color (it is a result
of the default classification that is happening in the process).

A schematic view of the translate to risk process, is depicted in the Figure 6.7.
The process has been developed in a way to be flexible to the user needs. The user
is the one to set the size of the area around the roads (buffer distance) that the risk
analysis will be based on, and the length of the road lines.

Figure 6.7: Schematic view of the Translate to risk process

6.4.2 Front-end: translate to risk

Having as guideline the requirements list that was described in the requirements
chapter, the first step is to develop a function in the front-end that creates the XML

76 implementation

Figure 6.8: Client processing: Translate to risk

request and sends it to the WPS server. This XML request has to contain, the road
identifier, the layer setup (llayer name and OWS URL) of the temporary vulnerability
map, and the buffer distance and segment length. In order to provide a translate to
risk functionality configurable to the user needs, there were created two states (one
for the buffer distance and one for the segments length) that are configurable from
the RI2DE GUI. The original values to the states were set to 120 meters for the buffer,
and 1000 meters for the segment length, and when the user changes these default
values, functions call the mutations that change the values of the states. The range
to these values was set: 50 to 250 meters for the buffer distance, and 500 to 2000

meters for the segment length.

Having all the necessary information set, the XML request is created and sent to
the WPS server. Then a function takes the response to the request, reads the GeoJSON

file, that contains the road lines with the necessary properties, and add it to the risk
features state, that have been created for that purpose. At the same time a function
takes the GeoJSON file and add it to the map, with the default colors, as they were
provided from the back-end process.

The last of the requirements is to enable an on the fly reclassification in the front
end. In order to accomplish that, a state has been created, that was called risk classes,
on which the boundaries of the classes are going to be stored. The boundaries
were set to be from 0 to 2, and they are configurable from the front end (web
browser). When the user change them, a function mutates them. When the risk
classes boundaries change, automatically a function is called that mutate the state of
the risk features (change the color in the feature properties, according to the new
classes boundaries). Then the new risk features are displayed in the map.

A schematic view of the processing that happens on the front-end, from the cre-
ation of theXML request, till the reclassification of the risk features, is presented in
the Figure 6.8.

6.5 new gui and workflow of user actions 77

6.5 new gui and workflow of user actions
In the Section 4.4.7 it has been presented the workflow of the user actions at the first
version of the RI2DE too. After the implementation of the new functionalities, dis-
cover extra sources for the slope susceptibility factor and translate to risk function-
ality, the workflow has changed. In this section the new workflow will be described,
emphasizing mainly on the new functionalities. The old functionalities will be only
referred. This workflow will contain also the functionalities that were implemented
by the RI2DE developers team. Figure 6.9, Figure 6.10, Figure 6.11 illustrate the RI2DE

GUI.

1. Load project or create a new one

In the previous workflow, when the first page of the RI2DE was loaded, the
start screen with the global map was presented. Now when the ro2de! (ro2de!)
is loaded for first time, the users firstly have to select if they are going to load
a project or create a new one.

2. Selection of the hazard

Remains the same as the previous workflow

Figure 6.9: RI2DE GUI, part 1

78 implementation

3. Selection of the infrastructures

Remains the same as the previous workflow

4. Configure the susceptibility factors

In the window of the slope susceptibility factor, were the user can adjust the
boundaries of the classes, there is a new button, the change source. When
the user clicks the change source button, a window pops up, displaying the
available DEM WCS on the area, as they were retrieved from the GetRecords
operation. In the list with the services, the users can see the title and the
abstract, and if they want, can select them as inputs to the slope classification
process.

Figure 6.10: RI2DE GUI, part 2

5. Calculate Susceptibility map

When the users set the parameters of the susceptibility factors, the calculate
button can be pressed, as before, in order to calculate the final vulnerability
map of the selected hazard. But in this version, the vulnerability map calcula-
tion is not the last step.

When the calculate button is clicked then the tool is navigated to the translate
to risk page.

6.5 new gui and workflow of user actions 79

Figure 6.11: RI2DE GUI, part 3

6. Configure translate to risk parameters

In this page now the users can alter the default values of the buffer dist and
the segment length, by sliding the respective bars. When the user adjust the
parameters to the desired values the translate to risk button can be pressed,
and the translate to risk calculation is initiated.

7. On the fly reclassification of the classfified road segments

When the translate to risk process ends, the classified road lines are displayed.
Then the user can adjust the boundaries of the classes, in a sliding bar that
has appeared on the left of the screen. Every time the user plays with the
boundaries, the road features are reclassified on the fly.

In the second snapshot of the Figure 6.9 the web browser shows a ”calculating
susceptibility layers” status message while it waits form the WPS server the response.
This is a good indication of how it is feasible to have status messages out of the WPS

framework.

80 implementation

6.6 new ogc architecture
The discovery of new source functionality, introduced a new component in the OGC

Web Services Architecture of the tool, the OGC CSW. An extra level has been added
to the different levels of the architecture, which includes Distributed Catalogue
Services that implement the CSW binding protocol. In the level that represents the
WPS, a new process has been added, the Discover & Retrieve records process, that
connects directly to the different catalogues (with the operation) in order to extract
metadata for DEMs. For that reason, the basic levels of the Distributed repositories
and the Distributed GIS Servers, have been expanded, on containing extra DEMs
and services from the default ones. A schematic representation of the new OGC Web
Service Architecture of the tool is presented in the Figure 6.12. The new components
are emphasized with yellow compared to the parts of the old architecture.

Figure 6.12: New OGC Web Services Architecture of RI2DE

7 D I S C U S S I O N A N D C O N C L U S I O N S

In this chapter a discussion will be made and conclusions will be given, on what
this research tried to achieve and on the final product which is a new version of the
RI2DE GIS web tool.

The main purpose of this research was to evaluate if the standards, their im-
plementations and the organizations that produce spatial datasets and tools are
mature enough to support the development of GIS web applications that demands
up-to-date regional datasets, and complex geo-processes, for quality decision mak-
ing. Motivation and case study the same time for this research, has been the RI2DE

GIS web tool of Deltares institution, a tool that that is solely developed from open
sources technology components and with OGC standards. By setting a set of func-
tionalities that address the needs of the users, and what the standards offers, a
research was carried out through the effort to implement a new version of the tool.
The new functionalities that were tried to be developed were:

1. The users will be able to discover and retrieve distributed services that are
registered on regional or national SDIs and select them as the inputs of the
vulnerability processes.

2. Status report message, e.g in the form of a progress bar will be sent to the user
while the processes are running.

3. The users will be able to control/stop the process if it takes long time to
complete.

4. There will be a new section on the tool where the user can translate the vul-
nerability raster maps into classified road lines based on the vulnerability of
the surrounded area.

These functionalities were tried to be developed under the context of researching
the:

• The CSW standard that is responsible for publishing standardized catalogues
(geoportals).

• The WPS 2.0.2 that offers the specifications for asynchronous execution of the
processes, and the operations to control and monitor the jobs. Which is im-
portant for long time running processes.

• The free and open source PyWPS 4.0.0 implementation of the standard under
which the different geoprocesses the tool offers are published.

With the delivery of this thesis two of the four desired new functionalities, have
been implemented, under the existing technology framework (PyWPS limitations
at supporting the new operation of the standard). Nevertheless the discover and
retrieve services from distributed SDIs was a success, and a big achievement, since
not many projects exist that integrate in one web platform GIS analysis (WPS imple-
mentation) and discovery of services focused on this analysis (CSW implementation).
Moreover the translate of the raster vulnerability maps into classified road lines has
been also implemented. While simple into its implementation, the last functionality
can be a long time running process, which makes it ideal for future work on the job
control and job monitor of the process.

81

82 discussion and conclusions

The functionality that makes possible to discover and retrieve services from SDIs
is already online at the https://ri2de.openearth.eu. While the translate to risk
functionality is currently available only as a deploy preview on the GitHub page of
the tool https://deploy-preview-51--ri2de.netlify.com/.

7.1 conclusions on the research questions
In order to server the main purpose of this research firstly the sub- questions and
the main research question should be answered.

1. How flexible are the Web Processing Services of the tool?

The classification processes of the tool are published as WPS, which means
that they have a standard structure of inputs and outputs. Every classification
process has been developed according to a custom classification procedure,
and the structure of the inputs that concerns the datasets has to be a JSON

layer setup that contains information regarding, the classes boundaries, and
the OWS URL and layer name of the WCS that offers the dataset.

This question is trying to answer how easy is to change the values of these
inputs. Answering the first sub-question it will make clear if the discovery of
new data sources for the classification processes makes sense. The flexibility
of the classification process on accepting new datasets is based on the way
they have been constructed. If the classification process is highly based on the
input dataset, then there is no meaning to discover new sources. The answer
to this question was that only the slope classification WPS can accept other WCS

from the default ones.

A good overview of the way each classification process had been developed
follows.

distance to water classification process: The Web Processing Ser-
vice that offers classification for water datasets, according to their distance to
the surface water, can be considered flexible enough to accept inputs from
any source. The only issue is that the classify function needs the resolution of
the input dataset in order to apply the final classification, and this resolution
is hardcoded to 25 meters, equal to the default water dataset (Global Surface
Water JRC). In order for this classification process to be considered flexible
enough to accept also other inputs from the default one, the resolution values
should be extracted from the dataset that is inserted each time.

soil classification process: The Web Processing Service that offers
classification of the soil datasets, is not quite flexible to accept other inputs
than the default ones. The classify function has been constructed based on
the soil types of the ISRIC soil datasets. For that reason the layer setup, in the
execute request, is always empty, since it is not possible to alter the classes, or
the input coverage service. Only if we provide as input a dataset that has the
exact soil types and seven depth layers as the ISRIC datasets, the process will
work.

land use classification process: Similar to the soil classification pro-
cess, the land use classification process is not flexible in accepting other inputs
than the default ones. The classify function has been constructed based on the
land use codes of the Corine 2012 land use coverage for the Europe, and the
GlobCover 2009 coverage for the rest of the world.

https://ri2de.openearth.eu
https://deploy-preview-51--ri2de.netlify.com/

7.1 conclusions on the research questions 83

culverts classification process: The Web Processing Service that of-
fers classification of the culverts, has been constructed in a different logic that
the rest of the processes. The dataset that the classification is based on is
the OSM culverts lines, which are firstly transformed to raster, and then classi-
fied. In the layer setup of the execute request the OWS URL and the layer name
are always empty, but the classes boundaries are needed. So while the process
has configurable classes boundaries, is not flexible on accepting other datasets.
The process can be considered flexible only if we provide another dataset of
culverts lines, and change the culvert lines name from fixed inside the code to
configurable.

slope classification process: The Web Processing Service that offers
classification of elevation datasets, according to the slope, is flexible in accept-
ing other inputs DEMs that the default one (MertiGebco DEM). Within the layer
setup are provided, the classes boundaries, and the OWS URL and layer name
of the elevation Web Coverage Services. With the OWS URL and the layer name
the coverage is downloaded from the GeoServer, then the elevation datasets
are transformed into slope, and base on the provided classes the classification
happens. For that reason and because the elevation datasets are easy to find,
the slope classification became the case study for the new functionality that
enables the discovery of other services than the default one, and set them as
inputs to the classification process.

2. How to get the metadata of the Web Services from the distributed Catalogues?

Answering the second sub-question outlined the way to retrieve the OWS URL

and the layer name of the Web Coverage Services that are registered as meta-
data records in different OGC Catalogue Services world wide.

To answer this sub-question a research had been carried out on the OGC Cata-
logue Services specifications, in order to understand the different rules it sets
for the development of catalogues. The research showed that the OGC Cata-
logue Services specifies an abstract information and interface model that every
catalogue can implement through a specific binding protocol. The OGC Cata-
logue Services for the Web binding protocol is the most common in use. The
operation that enable the discovery and retrieve of records from Catalogues
that support the CSW, is the GetReocrds.

The first step for the GetRecords implementation was to select catalogues for
testing purposes. The selection was a difficult task as the catalogues should
support the CSW binding protocol, and have registered DEM Web Coverage Ser-
vices. Although it was easy to find catalogues that support the CSW standard
and have DEM WCS records, it wasn’t easy to find in their metadata the layer
name and OWS URL. For that reason the catalogues that had been used were, a
catalogue that had been created for the purpose of this research and the Fast
OpenEarth Geoportal of Deltares institution, in order to have administrator
rights and be able to alter the records.

For the implementation of the GetRecords request to the geoportals, the OWSLib
python library had been used, in order to create a process that search and re-
trieve the desired metadata properties and publish it later as Web Processing
Service, in order to be shared to anyone.

This process constructs the GetRecords request, which contains a query, in
order to discover datasets that fell into a specific bounding box and contain
specific keywords, and sends the request to the different catalogues. The
records that are returned, had be chosen to be in the ISO metadata schema
since it is the most common. From this records the Title, abstract, OWS URL

and layer name are extracted.

84 discussion and conclusions

3. How to establish the connection between the Catalogue Services and Web Processing
Service ?

Answering this sub-question it made possible to pass from the OWS URL and
layer name properties that were returned from the Catalogue Services search
to the slope classification Web Processing Service.

In order to accomplish that the work had be done to the front-end of the tool,
with the state management of the datasets that the VUEX JavaScript frame-
work offers. For that purpose XML request for the Web Processing Service that
discover and retrieve the metadata had been constructed, and the returned
records from this request were stored to states. One state had been created for
the OWS URL and one for the layer name. On that way when the user selects
the dataset to use as input to the slope classification process, the states are
mutated with the new OWS URL and layer name, and the request to the slope
classification process is sent having the new OWS URL and layer name in the
layer setup.

4. What is the status of the PyWPS 4.0.0 with respect to the Web Processing Services
2.0.2 version (test of job monitoring and job control)?

The free and open-source implementation of the Web Processing Service, Py-
WPS, has recently released the PyWPS 4.0.0 version, which has been devel-
oped in order to implement the Web Processing Service 2.0.2 version of the
standard, and more specifically the GetStatus, GetResult and Dimsiss opera-
tion that offers job monitoring and job control of the process respectively.

PyWPS community decided to re-write the PyWPS code from scratch based
on new knowledge and new technologies, but they still have not implement
the GetStatus, GetResult and Dismiss operations. A few efforts had been made
from volunteers and thesis projects but they are still under development.

But although the PyWPS does not support the GetStatus, GetResult and Dis-
miss operations yet, there is a way to get status report messages through the
Execute request. An effort had been made to provide status messages from the
classification processes of the tool, but the way the processes are constructed
does not offer reliable results. PyWPS is not the only project that does not
support yet the WPS 2.0.2 version of the standard. From a research that carried
out, it was realized that until the delivery of this thesis, only the ZOO-Project
supports it.

5. What will be the GUI and new work flow of the user actions?

In order to provide the new functionalities, the sequence of actions that a user
of the tool can take had to change. Different designs of the new GUI has been
created and refined during the whole research. The final design has been
created in a way to offer an easy work flow of actions in order to discover and
select new datasets for the slope classification process, and to translate the risk
of hazard to the road lines. In the Section 6.5 is described in detail the new
work flow of the user actions.

Having answered the different sub questions and having implemented the new
functionalities of the tool, the main research question can answered:

”What will be the new OGC Web Services Architecture of the tool”

The discovery and select new services functionality, has altered as it was expected,
the OGC Web Services Architecture of the tool. A new level of services, has been in-
troduced, the level that contains the distributed OGC Catalogue Services, and a new
process has been added in the WPS server. This process connects with distributed
Catalogue Services and extract the records of the Web Coverage Services that can
be used as inputs to the classification processes.

7.2 contribution to the field of geomatics 85

These Web Coverage Services are distributed word wide in different GeoServers
and are accessible through their OWS URL and layer name. The lack of flexibility
of the most of the processes, restricted the discovery and select functionality only
to the slope classification process. For that reason in the level of repositories and
services, there are the default datasets and services for the rest of the susceptibility
factors, apart from the slope susceptibility factor, which it is possible to contain any
DEM dataset and service.

7.2 contribution to the field of geomatics

Working during this thesis on a demanding GIS web tool of an organization, that is
based on open source technology components and only on standard data formats, it
made possible to explore the existing standards and the state-of-the-art technology
framework for their implementation, from the three aspects of this research: stan-
dards, implementation and organizations. One of the achievements of this research
and contribution on the same time of at the field of Geomatics, is the realization
that these three levels (standards, implementation and organization) are not in line.
While the standards are there and initiative like INSPIRE set the rules for standard-
ized SDIs, its not easy to discover datasets or services, and the metadata are poor.

The greatest achievement and contribution of this thesis to the field of Geomat-
ics, is the integration of the CSW and WPS standard in one architecture of decision
making tool. Not any similar implementation has been discovered during the im-
plementation of this thesis. There are SDIs that offer searching on registered and
harvested metadata of processes, and services not in a similar way.

The searching that the WPS that was created takes place in distributed catalogues
servers, and is focused on datasets that the processes of the platform needs. The
retrieved records are filtered and only the ones that have accessible services are
displayed. While the services are not registered correctly and the processes are not
flexible enough (it can be solved with replacement of the processes with new ones),
the tool works.

7.3 discussion

At this section a more general discussion will be made concerning the realizations
from the achievements and limitations of this research.

7.3.1 Discover, retrieve, display, select and use services from distributed cata-
logues

The greatest achievement of this research was the development of one platform
which offers distributed searching of Web Coverage Services, in different OGC Cat-
alogues world wide and use of these services as inputs to the susceptibility analysis
Web Processing Services. This achievement was carried out with a lot of restrictions
regarding the flexibility of the processes to accept new inputs and the discovery of
available Web Coverage Services.

Working on the implementation of this functionality made me realize that al-
though a big amount of spatial datasets is being produced in a daily bases, and
although they organization publish them, this is not enough. The metadata are
needed in order to discover them. And the metadata should be populated on the
correct way. One of the organization that populates all the metadata with the URL

and the layer name of the services is the ISRIC organization. It is not enough to
find them, but it is needed to access them also.

86 discussion and conclusions

The ”metadata is amazing” phrase can encapsulate the biggest limitation of this
research.

7.3.2 Job monitor and job control

The initial ambition when this research started was to develop a tool that can moni-
tor the status of the process and offer to the user the possibility to stop them when
they take time to complete. These functionalities has not been implemented during
this research. The PyWPS implementation of the WPS 2.0.2 version of the standard
is still undergoing. But it is not the only project that has not implement it yet, (only
the ZOO-Project has a full implementation of the standard) which arise question re-
garding the complexity of the implementation. The PyWPS community has started
the implementation since 2016, and there is an open conversation. The code is free
and open, so anyone can help in the implementation.

These functionalities were not implemented due to incompatibility of the PyWPS
technology framework with the latest release of the WPS. This outlines perhaps
the biggest problem with the free and open-source tools, like the PyWPS. PyWPS
development is depended only on volunteers work and on student research projects,
which makes it difficult to have continuous updates in order to support the latest
versions of the standard.

7.3.3 Translate to risk

During this research for the translate to risk functionality I worked only on the
front-end of the tool. A general remark that it should be mentioned, is that working
in a project that has only standard formats and services as components, made the
whole procedure an easy task in the collaboration with the others, and into passing
information from the server to the client. Developing processes as WPS and provide
them to a front-end developer for further programming in the web browser was
pretty easy, as the only thing that the developer needs to know is the inputs and the
outputs of the process. During this functionality all it was needed to know was the
values that should be passes to the service, and that the output was a GeoJSON.

7.3.4 Evaluation of the tool

Due to time constraints it has not be made a usability test. Nevertheless during this
research, the supervisors from TU Delft, the stakeholders from Deltares institution,
and the team of developers (including me) have evaluated the tool in many aspects.
What is needed to be taken into consideration is that for someone that is not familiar
with the steps that should be made and the parameters that need to be configured,
the tool does not have a ”self-descriptive” GUI. For example in order to access
the discover services functionality, the more sources button should be pressed in
the susceptibility factor page. It is not easy for someone to understand what this
button does or even what is the difference with the add layer button, that add a
classified susceptibility factor.

As regarding the functionality part of the tool, when this research started I had
high ambitions as regarding the CSW integration in its architecture. At the end it
was implemented, but apart from the limitations that the discovery of datasets sets,
the greatest issue is the creation of flexible of classification processes.

7.4 future work
This section present some suggestions for future work either were not implemented
due to time or technology limitations.

7.4 future work 87

• Usability testing: A questionnaire can be created and answered in an evalu-
ation session from different users, in order to test how self-descriptive is the
GUI of the tool. So far the evaluation has been made only from the

• Job monitor and job control: The PyWPS implementation of the WPS 2.0.2 is
still undergoing, but the PyWPS community has an open conversation on the
topic, so perhaps in the near future the implementation will be available. The
PyWPS source codes are free and open to anyone so the implementation of
the GetStatus, GetResult and Dismiss operation can be a future thesis research.
On the other hand there is another alternative, it is possible to implement the
job control and job monitor operations at the RI2DE tool with the ZOO-Project.

• Job monitor at the sub-processes: Even with the current implementation of
the PyWPS the status report is possilbe. The problem was the separation of
the classification processing in many sequential steps. A good solution would
have been either to get report messages regarding the step that the process
runs, or to find a way to calculate each sub process percentage of completion.

• CRS Transformation: The CRS transformation functionality has to been imple-
mented as it leads to long time running processing. For that reason in a future
work a separate WPS can be created in order to transform first the dataset and
the use it as input to the WPS of the classification.

• Connection to the catalogues: In the version of the tool that was created, the
user can discover new sources from different catalogues, and have a list with
title and abstract of the retrieved records. An idea for future work would be
to add a button next to the record, that connect directly to the catalogue in
order to have a full access to its metadata.

• More user friendly GUI: A better GUI perhaps can be achieved by adding e.g
a manual or a link to the wiki of the tool with the steps that the user should
follow in order to reach to the final product. Also instead of configure some
values through the configuration files, e.g the keywords, it can be added a
kind of configuration in the web browser

B I B L I O G R A P H Y

Baumann, P. (2010). OGC WCS 2.0 Interface Standard - Core. Open Geospatial Con-
sortium Inc.

Beaujardiere, J. (2006). Opengis Web Map Server implementation specification.
Open Geospatial Consortium Inc., OGC Standards Document 06-042, Version 1.3.0.

Calero, J. S. (2017). MI-SAFE architecture. URL https://publicwiki.deltares.

nl/display/OET/MI-SAFE+architecture. [Online; accessed 25 October 2019].

Čepickỳ, J. and de Sousa, L. M. (2016). New implementation of OGC Web Process-
ing Service in Python programming language. PyWPS-4 and issues we are facing
with processing of large raster data using OGC WPS. The International Archives of
Photogrammetry, Remote Sensing and Spatial Information Sciences.

De Boer, G. (2019). Openearth. URL https://publicwiki.deltares.nl/display/

OET/OpenEarth. [Online; accessed 25 October 2019].

de Boer, G. and Smits, B. (2017). MI-SAFE. URL https://publicwiki.deltares.

nl/display/OET/MI-SAFE. [Online; accessed 25 October 2019].

Degree (2019). degree Webservices. OSCGeo Project, Version 3.4.10.

ESA (2019). GlobCover. URL http://due.esrin.esa.int/page_globcover.php.
[Online; accessed 25 October 2019].

ESRI (2019a). Tutorial: Publishing a WPS service. URL https:

//enterprise.arcgis.com/en/server/latest/publish-services/windows/

tutorial-publishing-a-wps-service.htm. [Online; accessed 25 October 2019].

ESRI (2019b). What is ArcGIS Enterprise. URL https://enterprise.arcgis.com/

en/get-started/latest/windows/what-is-arcgis-enterprise-.htm. [Online;
accessed 25 October 2019].

Falemo, S., Blied, L., and Danielsson, P. (2015). ROADAPT Ooads for today, adapted
for tomorrow guideline part c GIS-aided vulnerability assessment for roads. Con-
ference of European Directors of Roads.

Gebco (2019). Gridded Bathymetric Data. URL https://www.gebco.net/data_and_

products/gridded_bathymetry_data/. [Online; accessed 25 October 2019].

GeoNetwork (2019). Geonetwork opensource. URL https://

geonetwork-opensource.org/. [Online; accessed 25 October 2019].

GeoServer (2019a). GeoServer is an open source server for sharing geospatial data.
URL http://geoserver.org/. [Online; accessed 25 October 2019].

GeoServer (2019b). WPS operations. URL https://docs.geoserver.org/2.13.2/

user/services/wps/operations.html#execute. [Online; accessed 25 October
2019].

GeoServer (2019c). Web Processing Service (WPS). URL https://docs.geoserver.

org/2.13.2/user/services/wps/index.html. [Online; accessed 25 October
2019].

GeoServer (2019). WPS Service page. URL https://docs.geoserver.org/latest/

en/user/services/wps/administration.html. [Online; accessed 25 October
2019].

89

https://publicwiki.deltares.nl/display/OET/MI-SAFE+architecture
https://publicwiki.deltares.nl/display/OET/MI-SAFE+architecture
https://publicwiki.deltares.nl/display/OET/OpenEarth
https://publicwiki.deltares.nl/display/OET/OpenEarth
https://publicwiki.deltares.nl/display/OET/MI-SAFE
https://publicwiki.deltares.nl/display/OET/MI-SAFE
http://due.esrin.esa.int/page_globcover.php
https://enterprise.arcgis.com/en/server/latest/publish-services/windows/tutorial-publishing-a-wps-service.htm
https://enterprise.arcgis.com/en/server/latest/publish-services/windows/tutorial-publishing-a-wps-service.htm
https://enterprise.arcgis.com/en/server/latest/publish-services/windows/tutorial-publishing-a-wps-service.htm
https://enterprise.arcgis.com/en/get-started/latest/windows/what-is-arcgis-enterprise-.htm
https://enterprise.arcgis.com/en/get-started/latest/windows/what-is-arcgis-enterprise-.htm
https://www.gebco.net/data_and_products/gridded_bathymetry_data/
https://www.gebco.net/data_and_products/gridded_bathymetry_data/
https://geonetwork-opensource.org/
https://geonetwork-opensource.org/
http://geoserver.org/
https://docs.geoserver.org/2.13.2/user/services/wps/operations.html#execute
https://docs.geoserver.org/2.13.2/user/services/wps/operations.html#execute
https://docs.geoserver.org/2.13.2/user/services/wps/index.html
https://docs.geoserver.org/2.13.2/user/services/wps/index.html
https://docs.geoserver.org/latest/en/user/services/wps/administration.html
https://docs.geoserver.org/latest/en/user/services/wps/administration.html

90 Bibliography

Gistandards (2018). GIS Standards. URL https://www.gistandards.eu/

gis-standards/. [Online; accessed 25 October 2019].

Gooseon, Y., , Kwangseob, K., and Kiwon, L. (2017). Linkage of OGC WPS 2.0
to the e-government Standard Framework in Korea: An Implementation case for
geo-spatial image processing. International Journal of Geoinformation.

Hengl, T., de Jesus, J. M., Heuvelink, G. B., Gonzalez, M. R., Kilibarda, M., Blagotić,
A., Shangguan, W., Wright, M. N., Geng, X., Bauer-Marschallinger, B., et al. (2017).
SoilGrids250m: Global gridded soil information based on machine learning. PLoS
one.

Hevner, A. and Chatterjee, S. (2010). Design Research in Information Systems. Springer.

ISO (2019). Standards.

Kralidis, T. (2019). Owslib 0.18.0 documentation. URL https://geopython.github.

io/OWSLib/. [Online; accessed 25 October 2019].

Laza, A. (2018). Process isolation in PyWPS framework. Master’s Thesis, Czech
Technical University in Prague.

Mapbox (2019). How Mapbox works. URL https://docs.mapbox.com/help/

how-mapbox-works/. [Online; accessed 25 October 2019].

Mueller, M. and Pross, B. (2016). OGC WPS 2.0.2 Interface Standard: Corrigendum 2.

Nebert, . D., Voges, U., Vretanos, P., Bigagli, L., and Westcott, B. (2016a). OGC R©
Catalogue Services 3.0 Specification - HTTP Protocol Binding.

Nebert, D., Voges, U., and Bigagli, L. (2016b). OGC R© Catalogue Services 3.0 - General
Model.

Nebert, D., Whiteside, A., and Vretanos, P. (2007). Opengis catalogue services spec-
ification. Implementation Specification.

Nogueras-Iso, J., Zarazaga-Soria, F. J., and Muro-Medrano, P. R. (2005). Geographic
information metadata for spatial data infrastructures. Resources, Interoperability
and Information Retrieval.

52 North (2019a). Innovative open source software. URL https://52north.org/

software/software-projects/. [Online; accessed 25 October 2019].

52 North (2019b). Standardized web-based geo-processing. URL https://52north.

org/software/software-projects/wps/. [Online; accessed 25 October 2019].

52 North (2019c). wps-js-client. URL https://github.com/52North/

wps-js-client. [Online; accessed 25 October 2019].

OGC (2019a). Certified and implementing products. URL https://www.

opengeospatial.org/resource/products/compliant. [Online; accessed 25 Oc-
tober 2019].

OGC (2019b). OGC History (abbreviated). URL https://www.opengeospatial.

org/ogc/history. [Online; accessed 25 October 2019].

PyWPS (2019a). Extensions. URL https://pywps.readthedocs.io/en/latest/

extensions.html. [Online; accessed 25 October 2019].

PyWPS (2019b). Pywps 4.3 documentation. URL https://pywps.readthedocs.io/

en/latest/.

Schut, P. (2007). Opengis Web Processing Service. Open Geospatial Consortium Inc.,
OGC Standards Document 05-007r7, Version 1.0.0.

https://www.gistandards.eu/gis-standards/
https://www.gistandards.eu/gis-standards/
https://geopython.github.io/OWSLib/
https://geopython.github.io/OWSLib/
https://docs.mapbox.com/help/how-mapbox-works/
https://docs.mapbox.com/help/how-mapbox-works/
https://52north.org/software/software-projects/
https://52north.org/software/software-projects/
https://52north.org/software/software-projects/wps/
https://52north.org/software/software-projects/wps/
https://github.com/52North/wps-js-client
https://github.com/52North/wps-js-client
https://www.opengeospatial.org/resource/products/compliant
https://www.opengeospatial.org/resource/products/compliant
https://www.opengeospatial.org/ogc/history
https://www.opengeospatial.org/ogc/history
https://pywps.readthedocs.io/en/latest/extensions.html
https://pywps.readthedocs.io/en/latest/extensions.html
https://pywps.readthedocs.io/en/latest/
https://pywps.readthedocs.io/en/latest/

Bibliography 91

team, Z.-P. (2019). ZOO-Project documentation. ZOO, Release 1.8.

UNC (2019). Metadata for data management: A tutorial.

van den Brink, L. (2018). Geospatial Data on the Web. Phd thesis, Delft University
of Technology.

van Koningsveld, M. and den Heijer, K. (2014). Data. URL https://publicwiki.

deltares.nl/display/OET/Data. [Online; accessed 25 October 2019].

Vretanos, P. (2010). OpenGIS Filter Encoding 2.0 Encoding Standard. Open Geospatial
Consortium.

Vretanos, P. A. (2005). Opengis Filter Encoding Implementation Specification. Open
Geospatial Consortium Inc., OGC Standards Document 04-095cl, Version 1.1.0.

Vuex (2019). What is Vuex. URL https://vuex.vuejs.org/. [Online; accessed 25

October 2019].

Wikipedia (2019a). GeoJSON. URL https://en.wikipedia.org/wiki/GeoJSON.
[Online; accessed 25 October 2019].

Wikipedia (2019b). GeoServer. URL https://en.wikipedia.org/wiki/GeoServer.
[Online; accessed 25 October 2019].

Wikipedia (2019c). Openstreetmap. URL https://en.wikipedia.org/wiki/

OpenStreetMap. [Online; accessed 25 October 2019].

Wikipedia (2019d). State management. URL https://en.wikipedia.org/wiki/

State_management. [Online; accessed 25 October 2019].

Wikipedia (2019e). JAON. URL https://en.wikipedia.org/wiki/JSON. [Online;
accessed 25 October 2019].

Wikipedia (2019f). Vue.js. URL https://en.wikipedia.org/wiki/Vue.js. [Online;
accessed 25 October 2019].

YAMAZAKI, D. (2018). MERIT DEM: multi-Error-Removed Improved-Terrain
DEM. URL http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM. [Online;
accessed 25 October 2019].

https://publicwiki.deltares.nl/display/OET/Data
https://publicwiki.deltares.nl/display/OET/Data
https://vuex.vuejs.org/
https://en.wikipedia.org/wiki/GeoJSON
https://en.wikipedia.org/wiki/GeoServer
https://en.wikipedia.org/wiki/OpenStreetMap
https://en.wikipedia.org/wiki/OpenStreetMap
https://en.wikipedia.org/wiki/State_management
https://en.wikipedia.org/wiki/State_management
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Vue.js
http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM

A S Y S T E M S E T U P

The RI2DE GIS web tool is developed from only free and open source technology
components and has an OGC Web Services Architecture which means that it is re-
producible by anyone. At this appendix guidelines will be given on how to setup
the back-end and the front-end of the tool.

a.1 setting up pywps 4.0.0 in a linux environ-
ment

It is suggested to setup the back-end in a Linux environment, since PyWPS is not
tested on MS Windows platforms, which don’t support yet the asynchronous exe-
cution. RI2DE runs with python 2.7.

Step 1:
Check Python 2.7 installation on the system and make sure the version is up to

date. Update and upgrade the system

Step 2:
Create a virtual environment and activate it Step 3:

Download RI2DE WPS from RI2DE SVN

Step 4: Install at the virtual environment the dependencies with the pip install -r
requirements.txt

It should be noted that some Linux versions create issues with the GDAL depen-
dency. The tool needs the GDAL 2.3.2 version and after. The easiest way to install
GDAL if something goes wrong, is through the pygdal package.

Step 5: Install cURL at your linux

Step 6: Run the pywps.wsgi. Now the service run on your localhost:5000.

Step 7: Test the services by sending request with the curl command through the
terminal. Example: ”curl -X POST -H ”Content-Type: application/xml” -d @request.xml
http://localhost:5000/wps”

a.2 setting up ri2de web browser in a linux en-
vironment

It is suggested to setup the front-end of the RI2DE tool in a Linux environment.
Step 1:
Install Node.js and npm

Step 2: Clone the repository from RI2DE GitHub page

93

https://svn.oss.deltares.nl/repos/openearthtools/trunk/python/applications/wps/ri2de/
https://github.com/openearth/ri2de

94 system setup

Step 3: Change the name of the .env.example to .env and set the Mapbox Token.
It is possible to get a Mapbox Token for free from Mapbox.

Step 4: Run the npm install command

Step 5: After everything are installed, run npm dev in order to run it in a devel-
opment mode

colophon
This document was typeset using LATEX. The document layout was generated using
the arsclassica package by Lorenzo Pantieri, which is an adaption of the original
classicthesis package from André Miede.

	1 INTRODUCTION
	1.1 Motivation and case study
	1.2 Objectives & research questions
	1.3 Research scope
	1.4 Methodology
	1.4.1 Project initiation
	1.4.2 Analysis framework
	1.4.3 Design
	1.4.4 Implementation
	1.4.5 Publishing & Evaluation

	1.5 Thesis outline

	2 OGC Web Services and other standards
	2.1 JSON
	2.2 GeoJSON
	2.3 OGC Web Map Service (WMS)
	2.4 OGC Web Coverage Service (WCS)
	2.5 OGC Web Processing Service (WPS)
	2.5.1 OGC WPS 1.0.0
	2.5.2 OGC WPS 2.0.2

	2.6 OGC Catalogue Services
	2.7 OGC Catalogue Services for the Web (CSW)
	2.7.1 Query predicate language at CSW
	2.7.2 Core queryable & returnable realization
	2.7.3 GetRecords operation

	2.8 Metadata schemes
	2.8.1 ISO metadata schema
	2.8.2 Dublin Core

	3 TECHNOLOGY FRAMEWORK
	3.1 PyWPS
	3.1.1 PyWPS-4

	3.2 GeoNetwork
	3.3 GeoServer
	3.4 Vue.js and Vuex
	3.5 OWSLib

	4 Related work
	4.1 WPS implementations
	4.1.1 ArcGIS Server
	4.1.2 Degree
	4.1.3 52 North
	4.1.4 GeoServer
	4.1.5 ZOO-Project

	4.2 E-Government Standard Framework of South Korea
	4.3 OpenEarth initiative
	4.3.1 MI-SAFE Viewer

	4.4 RI2DE GIS Web tool
	4.4.1 Roadapt Vulnerability Assessment methodology
	4.4.2 OGC Web Services Architecture of the RI2DE tool
	4.4.3 Technology components of the tool
	4.4.4 Input datasets & services
	4.4.5 Web Processin Services
	4.4.6 Configuration files
	4.4.7 GUI and workflow of the user actions in the RI2DE client

	5 REQUIREMENTS
	5.1 Discover, retrieve, display and use services
	5.2 Status reporting of the processes
	5.3 Control of the processes
	5.4 Translate to risk
	5.5 Extra functionalities outside of the scope of this research

	6 IMPLEMENTATION
	6.1 System setup
	6.1.1 Example execute requests to the RI2DE back-end

	6.2 Search, retrieve, display, select and use services
	6.2.1 Geoportals and services
	6.2.2 GetRecords implementation
	6.2.3 Web Processing Service for the discovery and retrieve of the records from distributed catalogue services
	6.2.4 Client processing
	6.2.5 Reprojection

	6.3 Test of status reporting
	6.4 Translate to risk functionality
	6.4.1 Translate to risk back-end
	6.4.2 Front-end: translate to risk

	6.5 New GUI and workflow of user actions
	6.6 New OGC architecture

	7 Discussion and Conclusions
	7.1 Conclusions on the research questions
	7.2 Contribution to the field of Geomatics
	7.3 Discussion
	7.3.1 Discover, retrieve, display, select and use services from distributed catalogues
	7.3.2 Job monitor and job control
	7.3.3 Translate to risk
	7.3.4 Evaluation of the tool

	7.4 Future work

	A System setup
	A.1 Setting up PyWPS 4.0.0 in a Linux environment
	A.2 Setting up RI2DE web browser in a Linux environment

