<]
TUDelft

Delft University of Technology

Continuous Occupancy Mapping in Dynamic Environments Using Particles

Chen, Gang; Dong, Wei; Peng, Peng; Alonso-Mora, Javier; Zhu, Xiangyang

DOI
10.1109/TR0O.2023.3323841

Publication date
2023

Document Version
Final published version

Published in
IEEE Transactions on Robotics

Citation (APA)

Chen, G., Dong, W., Peng, P., Alonso-Mora, J., & Zhu, X. (2023). Continuous Occupancy Mapping in
Dynamic Environments Using Particles. IEEE Transactions on Robotics, 40, 64-84.
https://doi.org/10.1109/TR0.2023.3323841

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1109/TRO.2023.3323841
https://doi.org/10.1109/TRO.2023.3323841

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!’ - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

64

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Continuous Occupancy Mapping in Dynamic
Environments Using Particles

Gang Chen”, Wei Dong

, Member, IEEE, Peng Peng, Javier Alonso-Mora

, Senior Member, IEEE,

and Xiangyang Zhu

Abstract—Particle-based dynamic occupancy maps were pro-
posed in recent years to model the obstacles in dynamic environ-
ments. Current particle-based maps describe the occupancy status
in discrete grid form and suffer from the grid size problem, wherein
a large grid size is unfavorable for motion planning while a small
grid size lowers efficiency and causes gaps and inconsistencies. To
tackle this problem, this article generalizes the particle-based map
into continuous space and builds an efficient 3-D egocentric local
map. A dual-structure subspace division paradigm, composed of a
voxel subspace division and a novel pyramid-like subspace division,
is proposed to propagate particles and update the map efficiently
with the consideration of occlusions. The occupancy status at an
arbitrary point in the map space can then be estimated with the
weights of the particles. To reduce the noise in modeling static
and dynamic obstacles simultaneously, an initial velocity estima-
tion approach and a mixture model are utilized. Experimental
results show that our map can effectively and efficiently model
both dynamic obstacles and static obstacles. Compared to the
state-of-the-art grid-form particle-based map, our map enables
continuous occupancy estimation and substantially improves the
mapping performance at different resolutions.

Index Terms—Aerial systems, collision avoidance, dynamic
environment, mapping, perception and autonomy.

I. INTRODUCTION

HE particle-based map is originally proposed in [1] for
dynamic and unstructured environments. Particles with
position and velocity states are used to approximate both
dynamic obstacles and static obstacles on the basis of sequential
Monte Carlo (SMC) filtering. In recent works, [2] introduces the
theory of random finite set (RFS) to particle-based maps. The

Manuscript received 29 November 2022; revised 5 June 2023; accepted 7
September 2023. Date of publication 16 October 2023; date of current version 15
December 2023. This paper was recommended for publication by Associate Ed-
itor L. Zhao and Editor S. Behnke upon evaluation of the reviewers’ comments.
This work was supported in part by the National Natural Science Foundation of
China under Grant 51975348, and in part by the Shanghai Rising-Star Program
under Grant 22QA1404400. (Corresponding authors: Wei Dong; Xiangyang
Zhu.)

Gang Chen, Wei Dong, Peng Peng, and Xiangyang Zhu are with
the State Key Laboratory of Mechanical System and Vibration, School
of Mechanical Engineering, Shanghai Jiaotong University, Shanghai
200240, China (e-mail: chg947089399 @sjtu.edu.cn; dr.dongwei@sjtu.edu.cn;
yc_pengpeng @sjtu.edu.cn; mexyzhu@sjtu.edu.cn).

Javier Alonso-Mora is with the Autonomous Multi-Robots Lab, Department
of Cognitive Robotics, Delft University of Technology, 2628 CD Delft, The
Netherlands (e-mail: j.alonsomora@tudelft.nl).

This article has supplementary material provided by the au-
thors and color versions of one or more figures available at
https://doi.org/10.1109/TR0O.2023.3323841.

Digital Object Identifier 10.1109/TRO.2023.3323841

probability hypothesis density (PHD) filter is applied to predict
and update the particles and estimate the dynamics of the grids
in the map. Later, [3], [4], [S] improve the particle-based maps
by considering the mixture model, semantic information and
high-level occupancy status inference, respectively. Due to the
ability to model complex-shaped static and dynamic obstacles
simultaneously, particle-based maps draw more attention in
representing dynamic environments. Currently, the input form of
particle-based maps is the ray-casting-generated measurement
grid map originated from the first work [1], and thus the map
is discretized with grids. This discrete form inhibits the state
estimation resolution and brings the grid size problem, namely
large grids lead to a low resolution that is unfavorable for motion
planning, while small grids increase the computation require-
ments and may cause gaps and inconsistencies [6]. Besides,
desktop GPUs are required to run the particle-based maps in
real time, and a more efficient map is needed for applications in
small-scale robotic systems.

This work proposes a dual-structure particle-based (DSP)
map, a continuous dynamic occupancy map free from the grid
size problem. The input of the map is the raw point cloud
rather than the measurement grid map. A novel dual-structure
map building paradigm, composed of a voxel subspace division
for particle storage and resampling and a dynamic pyramid-
like subspace division for occlusion-aware particle update, is
proposed to model the local environment with particles that
have continuous states. Under the Gaussian noise assumption,
we demonstrate that this updating paradigm is effective and
computationally efficient. To reduce the noise in simultaneously
modeling static and dynamic obstacles, the importance of new-
born particles is addressed by using non-Gaussian initial velocity
estimation and a mixture model that adaptively allocates the
number of static and dynamic particles. With a complete process
of prediction, update, birth, and resampling of particles in the
continuous space, the occupancy status at an arbitrary point in
the map can be estimated using onboard CPU devices.

In the experimental tests, we first evaluated the dynamic
obstacle velocity estimation precision of the map. Then, the ab-
lation study was conducted to identify the mapping parameters.
Subsequently, comparison tests were carried out, involving a
state-of-the-art particle-based dynamic occupancy map [5] and
a widely used static occupancy map [7]. Results show that our
map has the best occupancy status estimation performance in
dynamic environments and competitive performance with [7]
in static environments. Furthermore, we verified the DSP map

1552-3098 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2024 at 15:16:09 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0124-2752
https://orcid.org/0000-0003-2640-1585
https://orcid.org/0000-0003-0058-570X
https://orcid.org/0000-0003-4914-6636
mailto:chg947089399@sjtu.edu.cn
mailto:dr.dongwei@sjtu.edu.cn
mailto:yc_pengpeng@sjtu.edu.cn
mailto:mexyzhu@sjtu.edu.cn
mailto:j.alonsomora@tudelft.nl
https://doi.org/10.1109/TRO.2023.3323841

CHEN et al.: CONTINUOUS OCCUPANCY MAPPING IN DYNAMIC ENVIRONMENTS USING PARTICLES 65

in obstacle avoidance tasks of a mini quadrotor in different
environments. To the best of our knowledge, this is the first
continuous particle-based occupancy map and the first dynamic
occupancy map that can be applied to small-scale robotic sys-
tems like quadrotors.

The main contributions of this work include the following.

1) A novel DSP map building paradigm that enables contin-
uous mapping of the occupancy status in dynamic envi-
ronments.

2) The leverage of initial velocity estimation and an efficient
mixture model to reduce noise in modeling static and
dynamic obstacles simultaneously.

3) The complete procedures of building a DSP map that can
be applied to onboard computing devices of small-scale
robotic systems.

4) The released code at,' including an example application
in ROS.

The rest of this article is organized as follows. Section II
describes the related work. Section III presents the background
knowledge of our map. Section I'V explains the formulations of
the world model and gives an overview of mapping procedures.
Section V expresses the mapping procedures with the dual
structure. In Section VI, more components for mapping are
discussed. Section VII presents some implementation details.
The experimental results are described in Section VIII. Finally,
Section IX concludes this article.

II. RELATED WORK
A. Discrete Map and Continuous Map

Environment representation is fundamental to obstacle avoid-
ance of robotics systems. One of the most popular representation
approaches is occupancy mapping, which originated from [8]
and is capable of modeling cluttered environments. Grid map
(2-Dor 3-D) is akind of computationally efficient form to realize
occupancy mapping. The environment is usually divided into
discrete grids, and the occupancy status of each grid is updated
with the ray casting algorithm [7], [9], [10], [11]. The size of the
grids, however, is difficult to determine. Large grids lead to a
low resolution that is unfavorable for motion planning. Small
grids increase the computation requirements and cause gaps
and inconsistencies when the input point clouds are sparse or
noisy [6]. To avoid the grid size problem and allow arbitrary
resolutions, the paradigm of building the map with continuous
occupancy probability kernels rather than grids is proposed [6],
[12], [13]. Free space and occupied points or segments are first
generated with the input point clouds and then used to update
the parameters in the kernel functions. The occupancy status at
an arbitrary position can then be estimated with nearby kernels.

B. Occupancy Maps in Dynamic Environments

The abovementioned maps [8], [9], [10], [11], [12], [13] are
built under the assumption that the environment is static. As
the robotic systems were deployed in dynamic environments,

![Online]. Available: https://github.com/g-ch/DSP-map

improvements have to be made to instantly represent the occu-
pancy position of dynamic obstacles, such as pedestrians and
other robots, and, even further, to predict the future positions of
dynamic obstacles. An intuitive approach is to leverage indepen-
dent detection and tracking of moving objects (DATMO) [14],
[15], [16] to model the dynamic obstacles and utilize static occu-
pancy maps still to represent the other objects. A prerequisite of
DATMO is that the detection and shape models of the dynamic
obstacles are well-trained [3], which conflicts with the unknown
environment characters in many tasks. In addition, difficulties
in data association [3] and the trail noise caused by obstacles
movements in the static map [15], [17] are intractable. Therefore,
improving the map itself directly by considering the dynamic
obstacle assumption is required, and the dynamic occupancy
map [18], [19] emerges accordingly.

Early dynamic occupancy maps treat the dynamic obstacles,
such as pedestrians and robots, as spurious data in the map, and
detect and remove the data to build a robust static map [18],
[19], [20], [21]. Starting from the latest decade [1], research
works considering modeling the dynamics, mostly velocities,
of the obstacles in the map have been carried out to improve
the obstacle avoidance performance in dynamic environments.
Various methods have been proposed in these works. Some
apply the dynamic obstacle assumption to the existing structures
of static occupancy maps. For example, [22] adopts optical-
flow-based motion maps to estimate the velocity of grids and
improves the Gaussian process occupancy map [12] to adapt to
dynamic environments. The work in [23] further improves [22]
by learning dynamic areas with stochastic variational inference.
In [24], point clouds from lidar are clustered and filtered to
estimate the velocities of dynamic obstacles. The estimation is
applied to generate nonstationary kernels in the Hilbert space
to build the dynamic Hilbert map. With the popularity of deep
learning methods, some recent works adopt neural networks to
predict the velocity of each grid in a grid map [25], [26] or future
occupancy status [27], [28].

C. Particle-Based Dynamic Occupancy Maps

The particle-based map originates from the autonomous driv-
ingarea[1], [29]. In a particle-based map, an obstacle is regarded
as a set of point objects and the particles with velocities are
used to model the point objects. Compared to the dynamic
occupancy maps in Section II-B, the particle-based map is
originally proposed for dynamic environments and has a stronger
potential to improve the mapping performance in complex and
highly dynamic environments. The work in [2] improves [1],
[29] by introducing the RFS theory and deriving map-building
procedures with the PHD filter and the Bernoulli filter. The
improved map can be built in real time in 2-D space with GPU
devices. Later, [5] generalizes [2] to 3-D space.

In a cluttered environment with dynamic and static obstacles,
multiple point objects, dynamic or static, need to be modeled,
and denoising is of great importance. Two approaches are usually
adopted to reduce the noise. The first approach is to use a mixture
model [3], [5], [30], [31], which includes a separate static model
and a dynamic model, to update the states of static and dynamic

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2024 at 15:16:09 UTC from IEEE Xplore. Restrictions apply.

https://github.com/g-ch/DSP-map

66

point objects independently. The mixture model works as dual
PHD filters [30] or the grid-level inference [3], [5], [31]. Another
approach is to apply additional information to reduce the noise in
the updating procedure. For instance, [4] adds an extra semantic
grid channel in the input to generate particles with semantic
labels and update with the semantic association.

The abovementioned particle-based maps are still grid maps.
Measurement grids generated by the ray casting method are
adopted as the input, and the environment is described with
discretized 2-D or 3-D girds. This discretized expression suffers
from the grid size problem mentioned in Section I. The grid size
also limits the state estimation resolution of the obstacles. There-
fore, a continuous particle-based occupancy map is required.
In addition, since numerous particles are used, state-of-the-art
particle-based maps usually rely on desktop GPU devices for
computation [2], [5]. To deploy the particle-based map on small-
scale robotic systems, improving computational efficiency is
necessary.

III. PRELIMINARIES

This section introduces the main concepts of RFS, PHD,
PHD filter, and SMC-PHD filter. The relationship between the
concepts is: PHD is a first moment of an RFS; PHD filter realizes
multiobject tracking by propagating PHD; SMC-PHD filter is a
particle-based implementation of the PHD filter and is used to
fulfill prediction and update in our DSP map. The notations used
in this section and the rest sections are shown in Table 1.

A. Random Finite Set

An RFS is a finite set-valued random variable [2]. The number
and the states of the elements in an RFS are random but finite.
Let X denote an RFES and z(*) € M denote the state vector of
an element in X. M is (?)s state space, e.g., map space. Then,
X is expressed as

X:{w(l),az(2)7...,w(N)} Q)]

where N € N is arandom variable representing elements num-
ber in X and is called the cardinality of X. Specially, when
N = 0,Xis (). A common usage of the RFS is in the multiobject
tracking area, where () is usually the state of an object and X is
the set composed of the states of all objects. IV varies as objects
appear and disappear in the tracking range.

B. Probability Hypothesis Density

PHD [32], [33] is a first moment of an RFS and is raised to
describe the multiobject density. The PHD of X at a state x is
defined as

Dx(xz) =E Z 5(x —) (2)
x()eX

where E[] is the expectation and 6(-) is the Dirac function.?

2Dirac function: §(z) = 0, if x # 0; fé(a:)dw =1

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

TABLE I
NOTATION IN THIS ARTICLE

Symbol
X7Xk
(V) (F5)
Xp X

Meaning
RFS, RFS composed of point objects at time k.

RFS composed of point objects in a voxel subspace and
a pyramid subspace, respectively, with index 7 at time k.
Zy, RFS composed of measurement points at time k.

Sklk—1 RFS composed of survived objects from k£ — 1 to k.
Brjr—1 RFS composed of newborn objects from k£ — 1 to k.
O, Cp RFS composed of the detected objects and clutter at k.
() State vector of an element or an object with index 4.
2z State vector of a measurement point with index .
(pz, Py, P=) Point object coordinate in Cartesian coordinate system.
(g, ok, Br) | Point object coordinate in sphere coordinate system.
M, M The map space. Visible space in the map space.
Vi, P; Voxel subspace and pyramid subspace with index <.
A®k Activation space of a point object xy,.
A‘iil) Activation space of a particle i;vz).
Dx(x) PHD of RFS X at state x.

) ()
mk‘)leE k
:fI<L)

The state vector of a particle and a newborn particle.

The state vector of a particle survived from k — 1 to k.

s,klk—1

wl(? The weight of a particle with index ¢ at time k.

Py, Ps Detection and survival probability of an object.
N, My Number of point objects and measurement points at k.
Ny, Np Number of voxel subspaces and pyramid subspaces.

Ny Number of pyramid subspaces in FOV.

Ly, Number of particles at time k.

Ly Number of newborn particles from a measurement point.
Limax Allowed max particle number in M after resampling.
LY. Allowed max particle number in V; after resampling.
A1, A2 Coefficients in the mixture motion model.

Vie|k—15 Kk Intensity of the newborn objects and clusters.
(lz, 1y, 1) Size of the map space.

l Side length or resolution of a voxel subspace.

n The number of adjacent pyramids on each side in A®k.

Res Resolution of the voxel filter for point cloud preprocess.
T min The radius of the robot sphere model.

(61, 0,) Horizontal and vertical angle of the FOV.

[4 Angle of a pyramid subspace.

Q Gaussian noise covariance matrix in prediction step.
Wév) Weight sum of dynamic particles in a voxel subspace.
WLSV) Weight sum of static particles in a voxel subspace.
W{ﬁ) Weight sum of all the particles in a voxel subspace.

V() Function to calculate the absolute velocity value.
m(-),pr() Mass function and probability function in DST.
bel(-),pl(-) | Belief function and plausibility function in DST.
Thlk—1() State transition density function of a single object.
gr(+) Measurement likelihood function of a single object.
fo() State transition function of a single point object.
fr() Measurement function of a single point object.
R(

) Function that defines the measurement noise matrix.

o(- Function that defines the standard deviation on each axis.

Two important properties of PHD are used in this work. The
first property is that the integral of PHD is the expectation of the
cardinality of X, which can be expressed as

/ Dx(x)da: = B[|X]] 3)

where |X| represents the cardinality of X.
Another property is that if X(V), X XN are indepen-
dent RFSs, and X UX®@ U ... uX®) = X, then

Dx(x) = Dy (x) + Dy (x) + -+ + Dy (x). (4)

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2024 at 15:16:09 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: CONTINUOUS OCCUPANCY MAPPING IN DYNAMIC ENVIRONMENTS USING PARTICLES 67

C. PHD Filter

The PHD filter [32] is an efficient filter that propagates the
PHD in the prediction and the update step, and can be used
to handle multiple object tracking problems. Let X;_; and
X} denote the RFS composed of object states at time step
k — 1 and k, respectively. Suppose Zj, is the RFS composed of
measurements, i.e., point cloud, to the objects at time k. In the
prediction step of a typical PHD filter, the prior object states RFS
Xp k-1 can be treated as the union of two independent subsets,
which is Xy k-1 = Sgjx—1 UByjx_1, where S, represents
the persistent objects from the X1, and By ,_; is the newly
born objects. Note that Sy, and By, are distinguished by
birth time. They are both in map space M but do not share any
element. Sy, is usually modeled with multi-Bernoulli mixture
(MBM). From X1 t0 S5 1, the objects have a probability of
P; to survive. Meanwhile, By, is modeled as a Poisson point
process (PPP) [32] with intensity 7,1 (). Similarly, in the
update step, Zj, is expressed as Z, = Oy, U Cy, where Oy, is the
detected objects set and Cy, is the set of clutter. From X, to Z,
the objects have a probability of P; to be detected. The clutter
Cj, are modeled as a PPP with intensity sy (zy).

Let Ds, , ,(x)) and DBk‘k,l(ka) denote the PHD at x;, of
RFS Sj;—1 and By ;_1, respectively. Considering the property
(4) and the MBM and PPP models, the general PHD filter [33]
is described as

ka\kq (wk) = Dsk\k—l (mk) + DBk\k—l (mk)

= P Hy(zr, Tr—1) + V-1 (Tr))

Hy(xy, xp1) = /Wk\kfl(xﬂmk—l)DXk,l(-’Bk—l)dmk—l

(6)
Dx, ()= [1=Py+Py > Grl(zx@r)| Dx,, . (zx)
ZkEZk
(7)
Gi(zs, Th) = gr(zk|xy)
’ wk(zx) + Pa [gr(zk|®r) Dx,, , (%1)d2y

®)

where (5) and (6) show the prediction step, and (7) and (8)
present the update step. ;1 (-) is the state transition density

of a single object and gi(+) is the single object measurement
likelihood.

D. SMC-PHD Filter

Sequential Monte Carlo PHD (SMC-PHD) filter [34], [35]
uses particles to represent PHD and is an efficient implemen-
tation of the PHD filter. Each particle has a weight and a state
vector with the same dimension as an object’s state. With the
particles, the posterior PHD of X at time k — 1 is approximated
by

Ly

Zw,g>15 (p 1 — &) 9)

Dx, ,(zi-1)

where Lj,_1 is the number of particles at time step k-1, w(l)

is the weight of particle with index (i), and & ! k_l denotes the
state vector of particle (7). We distinguish the state of an object
and the state of a particle with the tilde notation.

In the prediction step, with (5), (6), and (9), the prior PHD of
the RFS X1 at k is derived as

DXk\k—l (zr) = Ds,,, (zx) + DBk\kq (xk)

Ly 1
= Z Pg’LU,(Qlﬂk\ka(kaligzl) + Yrjp—1(Tk)-
i=1
(10)
Let wifi\k—l = Pswl(le. By sampling 7rk|k,1(:nk|a~v§le) and
Yi|k—1 () with particles, the abovementioned equation can be
further derived as

ka\k—l (mk)

Ly_1

= Z wi%kq(s(“’k
i—1

Ly

(i () 5

wg}qk—ﬂ + Z wb,l)c Tk — méjll)
=1

= Zw,(:‘?cilé(:ck) (11)

~ (@)

where ;c k‘k 1

represents the particle state sampled from

(J)

Thlk—1 (T |a: i 1) and represents the particle state sampled

from vy —1 (k). Lok and wb k are the number and the weight
of newborn particles at time k, respectively. The total number
of particles after prediction is Ly, = Ly_1 + Ly 1.

In the update step, substitute Dx, , (zx_1) in (7) and (8) with
the particle representation in the last row of (11). The posterior
PHD at k is reformed into the summation of particles, which is

Zw)(5)

remains the same as in the prediction

Dx, (x4, (12)

where the particle state a:(2

(@ -

step and the weight w,.” is given by

Pyigs Z/c|96’;C)

(4)
wy” = |1—Py+ (13)
k d z% K/k Z1 +Ck:<) k‘k‘ 1
Ck ZPdwk\k 1gk(zk\m(j)). (14)
Jj=1

The SMC-PHD filter estimates the PHD of X by iterative
prediction with (9)—(11) and update with (12)—(14). Details can
be found in [34], [35].

IV. WORLD MODEL AND SYSTEM OVERVIEW

A. World Model

Our DSP map is an egocentric map built on multiobject
tracking at the point object level in a continuous neighborhood
space. Let M denote the neighborhood map space of the robot.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2024 at 15:16:09 UTC from IEEE Xplore. Restrictions apply.

68

static

obstacle

(2)

Fig. 1.

= Lz
dynamic
obstacle

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

(b)

(©))

Tlustration of the world model: (a) shows a cubic local environment with a static obstacle and a dynamic obstacle. The small blue points are the point

objects that represent the two obstacles. The layout of the point objects depends on the measurement points. The blue points show one kind of layout; (b) presents
the particles (small hollow circles with arrows indicating the velocities) used to model the point objects; (c) and (d) are two different space division structures.
The whole local environment is divided into subspaces, but only a part of the subspaces are plotted to have a clear view of their shapes. In (d), the green pyramids
indicate the current FOV. (a) Point objects. (b) Particles in the local map. (c) Voxel subspaces. (d) Pyramid subspaces.

1. Input

2. Preprocess

3. SMC-PHD filter

FE—

[

Point cloud

Prediction

!

Particle Birth

Initial velocity

Resampling

¥

¥

4. Storage [Filtered Particles
[])
5. Output | Oc‘;%g?,?:i};i‘s)?ms | Future status prediction
)
Fig. 2. System overview of our DSP map.

M is areal space that has a cuboid boundary with size (I, 1y,).
The size can be set according to the range of the utilized sensors
or the requirements from the motion planner. At the center of
the cuboid is the robot. We consider the obstacles in M as point
objects, similar to [2]. Fig. 1(a) reveals the relation between
obstacles and point objects. One obstacle can correspond to
multiple point objects. The point objects are used to estimate
the occupancy status at an arbitrary position in the map. Since
the occupancy status rather than the state of each obstacle is
more important in an occupancy map, the mapping from point
objects to obstacles is omitted and the assumption that all the
point objects move independently is made. The same assumption
is used in the existing works on particle-based maps [1], [2], [5].

For the reason that the obstacles are unknown, the number
of the point objects in M and their states are random but finite.
Therefore, these point objects can be modeled as an RFS. At a
discrete time k, the RFS composed of the point object states is
represented as

X, = {m“),m(?), y .,az(N’“)} (15)
where N}, is the number of point objects at time &, and with
index from 1 to Ny, is the state vector of a point object. The state
vector is given by the 3-D position and velocity, namely

T = prapyapzyﬂrvvyyﬂz]T (16)

where the subscripts {x, y, z} are used to represent the axes in
Cartesian coordinate. The core of building the DSP map is to use
the SMC-PHD filter to track the point objects in 3-D continuous
space and estimate X;’s PHD, which is then used to estimate
the occupancy status of the map.

To realize effective and efficient SMC-PHD filtering in the
continuous space, we divide M into two types of subspaces, i.e.,
the cubic voxel subspaces and the pyramid-like subspaces, by
the position dimensions. The voxel subspaces are used for data
storage and particle resampling. The pyramid-like subspaces are
applied to handle limited sensor FOV and inevitable occlusions
in the continuous space, and realize efficient particle update.
Details are presented in Section V. The following describes
how to acquire the subspaces and defines the sub-RFSs divided
accordingly with the subspaces.

The voxel subspaces are divided in the cartesian coordinate
[see Fig. 1(c)]. The voxels can fill up M but have no overlaps
with each other. Assume the resolution of the voxel is [. Then,
the number of the voxels is N, = l‘ﬁiglz Let V; denote the ith
voxel subspace. Then, X, can be described as the union of these
sub-RFSs, which is

X, = X;(fVI) UX§€V2) U--- U XS’NU)' 17

Since the voxels have no overlaps, any two sub-RFSs do not
share a point object, and thus, the sub-RFSs are independent. In
the SMC-PHD filter, the voxel subspaces are used to resample
the particles in M in a uniform manner, which is described in
Section V-D. In addition, these voxel subspaces are used to index
and store the particles for efficiency purposes, as described in
Section VII.

For the reason that the field of view (FOV) of a sensor is
usually limited, and the occlusion prevents observations of the
area behind obstacles, only a part of M is visible. Let MY ¢ M
denote the visible space. M/ must be distinguished from the
occluded space to realize map updating. However, the voxel
subspaces have a limited resolution and cannot continuously
express M/, Thus, another division structure is still required.

Inspired by the perspective projection model for sensors,
we also divide M into pyramid-like subspaces in the spherical

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2024 at 15:16:09 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: CONTINUOUS OCCUPANCY MAPPING IN DYNAMIC ENVIRONMENTS USING PARTICLES 69

Visible Space M7/

Obstacle

* Point cloud

Occluded space
(a)

Fig. 3.

Visible Space M/

Cutay ay view

Ceg B
Particle

* Point ¢lgyg
Point object
b4

X = (pk,x:pk,yspk,z)
I

T Y WA

\

AN

NAVAVRA

7

NN

\\

(b ©

Tllustration of the pyramid subspaces in the FOV and the update step: (a) shows the visible space and the occluded space; (b) reveals the visible space

and the map space in the same plot. The pyramid subspaces out of the current FOV are partially presented to have a clear view. For a point object x that lies in a
pyramid subspace belonging to the visible space, such as the subspace outlined with black dashes, we define the activation space of = as the union of this pyramid
subspace and its adjacent n pyramid subspaces. The adjacent n pyramid subspaces of a pyramid are within the range of n rows and n columns from the pyramid.
n = 2 in this case; (c) shows a cutaway view of the activation space. Point cloud measurement z, locates out of the activation space. The distance from the point
object x to the map center is 7. (a) FOV space composed of visible pyramid subspaces. (b) Pyramid subspaces in map and FOV. (c) Update in activation space.

coordinate [see Fig. 1(d)]. These subspaces are divided dynam-
ically and uniformly in the sensor frame when the robot pose
is given. (Details can be found in Section VII and Algorithm 2
in the Appendix.) The real shape of a pyramid-like subspace is
composed of four near-triangular faces and one face on the map
boundary face. For simplification, we loosely name the subspace
as pyramid subspace in the following content.

In the spherical coordinate, the azimuth angle range is [0, 27]
and the zenith angle range is [0, 7]. Suppose the angle interval
of the pyramid division, namely the pyramid angle, is 6 > 0.
The number of these subspaces is N, = 25:%. To make N, an
integer, 0 satisfies 16 = 7w, where I € N+. Denote by PP; the
ith pyramid subspace, and by X,(CP") the RFS composed of point
objects in IP;. X, satisfies

(Pn,)

X, =xPuxFIu.ouxp v, (18)

The measurement of the point objects is the point cloud from
sensors, such as stereo cameras or lidars. The points in the point
cloud at time k form a measurement RFS Z. In analogy to the
point objects, Zj, is written as

7 = {z<1>7z<2>7m,z<Mk>}

where M}, represents the number of the measurement points, and
each measurement point z consists of the 3-D position, which
is

19)

z={2s,2y,2:}. (20)

With the measurement points and the pyramid-like subspaces,
we can determine the visible space M/ and occluded space. As
is shown in green in Fig. 3(a) and (b), M/ is the union of the
free space and obstacle surface in each pyramid subspace in the
FOV. Denote the visible space of pyramid subspace P; by IP’if .
When the pyramid angle 6 of P; equals the angular resolution
of the sensor, there is either one or no measurement point in P;.
If there is one point z, the subspace behind the measurement

point is occluded (painted in gray in Fig. 3), while the rest space
is the visible pyramid subspace]P’if . Pif C P; and the length of
]P’if is | z|. If there is no measurement point,]P’if = ;. Suppose
that the FOV is 0}, x 6,,. The number of P/ is N; = %% Since
the FOV usually cannot cover the whole neighborhood space,
Ny < N, Then, M/ = P{ U UP{_,and Z; can be divided
into subsets with these visible pyramid subspaces, which is

s s ®4)
z, =z vz y.uz, 1)

With the measurement Zj,, the PHD of X, is updated by using
the SMC-PHD filter. The hollow circles with velocity arrows in
Fig. 1(b), (c), and (d) show the particles used in the SMC-PHD
filter. The basic element in our map is the particle.

B. System Overview

An overview of the procedures to build our DSP map can
be found in Fig. 2. The core procedure is filtering the PHD
of X, with the SMC-PHD filter. In the SMC-PHD filter, the
prediction step and update step iteratively update the PHD. The
particle birth step generates new particles and is then used in
the prediction step. A resampling step is added after the update
step to prevent degeneration and control the maximum number
of particles. The pyramid subspace division is used in the update
step to distinguish visible space and improve computational
efficiency. The voxel subspace division is used in the resampling
step to realize efficient and uniform particle resampling. Details
about the SMC-PHD filtering procedure in our map can be found
in Section V. The filtered result is particles with position and
velocity states. Then, the map output can be calculated with the
particles into two forms designed for motion planning. The first
form is the current occupancy status, and the second is the pre-
diction of future occupancy status. An initial velocity estimation
procedure is introduced to reduce the noise in mapping. Details
about the output and initial velocity estimation are presented in

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2024 at 15:16:09 UTC from IEEE Xplore. Restrictions apply.

70

Section VI. The particles used in all the procedures are stored
in the voxel subspaces.

V. MAPPING WITH DUAL STRUCTURE

This section presents the core procedures to build our map
with the dual-structure space divisions, including prediction,
update, particle birth, and resampling steps. The prediction and
the particle birth are conducted in space M. In the update step,
the pyramid subspaces P; are utilized to update the point objects’
PHD efficiently. The voxel subspaces V; are adopted in the
resampling step.

A. Prediction

The prediction step predict the prior PHD of X, ;,_; and the
general form has been described in Section III-D. In our map, the
motion model of a single point object is defined by the constant
velocity (CV) model, then a point object x, that survived from
k — 1 is predicted by

I AtTsy:
2 = fo (1) + € = [O;;;j oo

] zp1+& (22)

where I is the identity matrix and & is the noise. The noise is
supposed to obey a Gaussian distribution with a covariance @,
which is & ~ N(0, Q).

Then, the state transition density in (6) turns to a Gaussian
probability density

=N (z1; fo (xx-1),Q) . (23)

Wk\k—l(mk-|$k—1)

Thus, from (10) to (11), Wk\k—1(wk|53§21) can be sampled by
particles using the Gaussian probability density, and igﬂ g D
(11) is given by

& = fo (21,) +u 24)
where u is a noise sampled from N (0, Q).

The weight and state of newborn particles in (11) are described
later in Section V-C.

B. Update

The update step utilizes the measurement Z; to get the
posterior PHD of Xj. Two major points are addressed in the
update step. The first point is to tackle the limited FOV and
the occlusion. Since the FOV of a sensor is usually limited, and
the occlusion prevents observations to the area behind obstacles,
Z. can only be in the visible space M/ defined in Section IV,
The objects that do not belong to M7 are in an unknown area
and should not be updated; otherwise, their existence probability
will be falsely reduced. Thus, the notations in (12) should
contain a superscript f, such as ka (xk), ,’:’(Z), and izi’(l).
Let superscript f represent the definitions in M \ M. Then, by
using the property in (4), the PHD of the all objects in M should
be estimated as

Dx, (1) = D§, (z1) + DL (1) (25)

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

where Dg; (xy) = Dgzm _(x1) because the objects in M\ M/

are not updated. ka (z) can be updated with (12), (13), and
(14) by considering the point objects and particles in M/ only.
For notation simplification, the superscript f is omitted in what

following. We still use (12), (13), and (14) to represent the

#V € M7 and Ly, only counts

general update form but now
the particles in M.
The second point is to reduce the computational complexity.

It should be noted that Ci(z) in (13) and (14) is controlled

by zy, and thus, for every w(R , Ck(zk) can be shared for the
same zj. Therefore, to calculate all the required Ci(zy), the
multiplication operation and PDF calculation calculation in (14)
should be performed Ly, - M), times, where Mj; is the cardinality
of Z. In addition, considering the summation operations in (12)
and (13), another Ly, - M}, times of multiplication, division, and
PDF calculation operations should be performed. The algorith-
mic complexity is O(Ly M},). In an unknown environment, there
could be many obstacles and over a million particles can be
required to approximate the states of the point objects. Hence,
Ly, - My, can be very large, and the efficiency of the map is not
adequate. The following considers using the pyramid subspaces
to reduce the complexity.

Considering the measurement noise of the commonly used
point cloud sensors, such as depth camera and lidar, the sin-
gle object measurement likelihood g (-) can be assumed as a
Gaussian distribution, which is

9k (zlzr) = N (zk; fr(zk), R(zk)) (26)
where fr(xy) = [I3x3,03x3] - @) since the measurement is
only position. Unlike the prediction covariance @, the measure-
ment covariance R(xy,) is usually not constant but related to the
distance dj, of the obstacle in regular sensor models.

First, we assume that the measurement error of a point ob-
ject x;, € M/ is independent on each axis, and the standard
deviation on each axis is equally p(dy), where p(-) is a func-
tion. The coordinate of xj in the sphere coordinate system is

1fp;“, >O and

(%, o, Br) [see Fig. 3(c)], where r, =

pL _ Pk
QJ;, = arccos Tbm(a E
Pk £

B = arccos (o) T if py,, < 0.
r1, and oy, are bounded. Suppose the robot is in a sphere model
with radius r,;, > 0. The space inside the sphere is considered

$1/12+12 4 12. Then, 1y, €

[Fmin, Tmax)- Considering the sensor has a limited FOV with
vertical view angle §,, < 7, we have ay, € [T50», 0],

With the coordinates in the sphere coordinate system, the
covariance turns to R(xy) = p?(ri)I3x3 and gi(zk|zk) can

then be rewritten as

and 3 = arccos

free and not updated. Let ry.x =

H N Zk iy Pkis P (rk))

ie{w,y,z}

gr(zx|xr) = (27)

where z;, ; and py, ; are the single-axis position of a measurement
and an object, respectively, at time k, which are described in (20)
and (16).

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2024 at 15:16:09 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: CONTINUOUS OCCUPANCY MAPPING IN DYNAMIC ENVIRONMENTS USING PARTICLES 71

In (14), gi(zk|xk) involves the transition density from xj
to every observed zj; and thus makes the update step time-
consuming. Let e denote a small constant. If z, satisfies Condi-
tion g (zx|xk) < €, the approximation gy (zx|xx) = 0, i.e., the
strategy that the zj, is omitted in (14), is applied to improve the
update efficiency. To find the z,, that satisfies the condition, we
define an activation space A** for point object x. The activation
space indicates that zj, out of A®* satisfies gy (zx|xk) ~ 0. A®*
is the adjacent space of xj, and is composed of the union of
the pyramid subspace where x, is and the adjacent n pyramid
subspaces. The adjacent n pyramid subspaces are within the
range of n rows and n columns from the pyramid subspace. For
example, Fig. 3(b) and (c) shows the activation space of x;, with
n = 2. The number of pyramid subspaces in A®* is (2n + 1)2.

Let Ad(zy,xy) denote the Euclidean position distance be-
tween an measurement point z; and the point object ;. Con-
sider the 3-D Gaussian probability density, gi(zx|x)) can be
further written as

1 _ Ad(zy,zp)?
)=————c¢ 2p2 (ry,)

(2m) p3 (ry.)

If z), ¢ A®*, the absolute azimuth angle and the zenith angle
difference between x; and zj, is no less than nf. Let 8’ = nf.
In Appendix A, we derive that the lower bound of Ad(zy,)
is 7 sin 0’ sin vy, Thus, for Vzj, ¢ A®*, the maximum density
is

gk (zk|Tk (28)

1 (rg sine/sinock)2
———ec 2070w
(2m)2 p3(rx)

When (7 sin @ sinay)? increases, gimax(2x|Tr) decreases
monotonically.
Let gk max (25| Zr) = €. (29) can be reformed as

0 = arcsin\/ 22p2(§k) In [(2m)2p (rk)} _1.

gk,max(zk|:ck) = (29)

(30)
risin®ay,

[7r 0y 7T+911]

Since 7 € [min, Tmax] and ay € are in close
intervals, #’ must have a maximum value 0, ax- For example,

Case 1: when p(r},) equals a constant value o, 6,

)

max

/ . 20-2 3 3 N
0l = arcsin, | —————In |¢(2m) 20
r2 20,
cos?

mm

€Y

Case 2: when p(r) = o'r, which means the measurement
standard deviation grows linearly with 7y, then

, 202
Oax = arcsin —
cos? 3

Therefore, given a threshold ¢, 6/

In [6(27’()%0,37‘3-]_1.

min

(32)

lax can be calculated and

the parameter n for the activation space is n = [%W. Then,
Vzi & A, gi(zi|xr) < € = 0. Note that the formula in the
square root symbol in (31) or (32) should be in the range [0,1],
which generally holds given real-world sensor parameters and
robot size. Special cases when 6, is near 7 or p(ry,) is very large
can make the condition invalid. Then, the strategy of increasing
rmin OF decreasing 6, in the map can be adopted to make the
condition valid. The strategy increases the sphere model size or

decreases the pyramid number, and thus, sacrifices part of the
space to be updated.

If the measurement variances on each axis are not identical,
the upper envelope of the variances can be taken as p(ry,), and the
abovementioned inference still holds. If the measurement errors
on each axis are not independent, (27) to (32) cannot hold but
the derived result can be used as an approximation to determine
n. In the following context, we suppose the measurement errors

on each axis are independent.

70

At the partlcle level, substltute Ty w1th x,’, and then,

gk(zk|ac,c)~ 0if z ¢ A% where A%’
space of particle 5327) and A% = A®+ if 535? is in the same
pyramid subspace of xj. Let L‘,‘}z‘“’ denote the number of par-

ticles whose activation space includes zy, (13) and (14) can be
expressed as

is the activation

Pdgk(zkli',(f)) ()

w,(f): 1-P;+ Z

“ o, Fr(zk) + Cr(2k) klk=1
zkEAmk
(33)
LAZk
Z Pdwklk Lk (z1]2)). (34)
LA * is about (2"+1) times of Ly and Ny = G’Le” is the

number of pyramid subspaces in M ;. Hence, the complex1ty of
the update step in (33) and (34) is about W times to (13)
and (14). To speed up computing, § = 6. . is adopted in prac-
tice. Then, n = [0;;“‘] =1 and the computational complexity
is reduced to 700 9 times of (13) and (14). Take 7y, = 0.15 m,

o' = 1%, and e = 0.01 as example With (32), it can be derived
that § = ¢/ = 3° and 67 ~ 0.002.

max

C. Particle Birth

Following the method in [35], we generate newborn particles
with measurement points Zj. Since Z;, € My, the newborn
particles are also in M ¢. For measurement point 2 € Zj, we
generate particles with a number of L;. Then, the number of
newborn particles in total is M}, L. The position of each newborn
particle is sampled from the Gaussian noise model in (26).
Normally, the velocity of the newborn particle is randomly
sampled in a feasible velocity range. However, this random
sampling leads to heavy noise, and the convergence speed is
slow. Thus, we sample the velocity of each newborn particle
through an initial velocity estimation method, which is described
in Section VI-A and VI-B. The weight of these particles are set

b
v .
to be Aj‘:&, where vz‘,%l = [Vi1 (xk)dxy is a parameter

that controls the expected number of newborn objects.
According to [35], the weight of the newborn particle is

calculated separately in the update step. Then, the weight update

(33) and (34) are reformed to represent the survived particles and

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2024 at 15:16:09 UTC from IEEE Xplore. Restrictions apply.

72

the newborn particles separately

(i) Pagr(zk]) (i)
= |1-P
Wy a+t Zi "@k Zk +Ck<) ws’k‘k71
ZkEA k
(35
()
j Wy klk—1
- Y oo

‘o ki(zk) + Cp(zk)

zkEA k

My Ly,) L{i\,zk))

S wle+ Y Pl on(zlz))
j=1 j=1

where LA7" < LA™* is the number of survived particles whose
(7)

activation space includes zy. Wy'k—1

is the prior weight of the

b
. s Yklk-1
newborn particle and is MLy

D. Resampling

The resampling step is to constrain the number of particles and
prevent degeneration. After resampling, the cardinality expec-
tation and the posterior PHD of Xy, i.e., E[|Xj|] and Dx, (xx),
should not change. With Dx, (x) in the form of (12), the
cardinality expectation of X}, is estimated by (3)

L
BXu) = [> uf 0 - Zw

For a single voxel subspace V;, the cardinality expectation

@\")dz), = (38)

E[|X,(Cvj) |] can also be estimated with the weights of the particles

inside, which is
= /DX;VJ)(w)dw

where L,(CVJ) represents the number of particles in V; at time
k. Although some particles outside of V; but close to V; may
be relevant to D (w y(x), they are not considered and thus the

(V)
L, "’

~ 3
i=1

(39)

approximately equal sign is used.

Then, the resampling is conducted by rejection sampling [36]
in each voxel subspace. The voxel subspace rather than the
whole map is used. The reason is that if an area contains only
low-weight particles, rejection sampling in the whole map may
reject all these particles and decrease the occupancy probability
of the area falsely. Let LXaX and Ly, denote the allowed
maximum number of particles in a voxel subspace and in the
map, respectively, after resampling. Lyox = LY, N,. Then, the
number of particles after resampling is

v,
IA/(VJ') _ LIXaX’ if L() > LXax (40)
L,(Cvj)| otherwise.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Time: t=k-1 =k 1. Input 2. Preprocess
Point cloud Remove ground &
* f (t=k-1) Cluster
Particle f / Point cloud Remove ground &
(False uj d.lte) o, (k) Cllfiar

¥

Matching | Dtilg‘izzn ’[

Initial
velocity

() (b)

Fig. 4. (a) Illustration of the particle false update problem and (b) the initial
velocity estimation procedures. In (a), a dynamic obstacle (a mobile robot)
moves rightwards fromt¢ = k — 1tot = k. Att = k — 1, ameasurement point
zéljl , on the right-hand side of the obstacle, is observed. With z](cljl , a particle
with state &1 is generated in the particle birth step (see Section V-C). Since

zgcl)l does not provide velocity, the commonly used way is to give 1 a

random velocity, e.g., a velocity to the left. At t = k, following the CV model,
xj,_1 moves to . Since the particle’s velocity is the opposite to the obstacle’s
velocity, this particle should belong to noise and its weight should be decreased
in the update procedure at k. However, due to the large size of the robot, another

(2)

measurement point 2, , close to T, may be observed at k and falsely increased
the weight of the particle in the update step. We call this problem the particle
false update. Note the problem also exists in modeling large-size static obstacles
and is more frequent when multiple dynamic and static obstacles exist, in which
case particles generated from one obstacle may be falsely updated with the
measurement from another obstacle. (a) Particle false update. (b) Initial velocity
estimation.

The weight of the particles in V; after resampling is identically

(V)
NO HX I
W, = — . (41)

VI. EXTENSIONS IN MAPPING

This section proposes some important extension modules.
First, the initial velocity estimation module for newborn particles
and a mixture model composed of a static model and a CV model
are proposed to reduce the noise in mapping. Then, the occu-
pancy status estimation and future status prediction modules,
which generate the output designed for motion planning, are
expressed. Finally, several useful extra extensions are discussed.

A. Initial Velocity Estimation

The particle-based maps model the obstacles as point objects.
This model is very friendly with particle-based tracking but
works only at the subobject level, which will cause nonnegligible
noise when the obstacle has a relatively large volume. Specif-
ically, the noise is caused by the false update of the particles.
Fig. 4(a) illustrates the false update. The false update leads to
many particles with a large weight but a wrong velocity, and
further causes heavy noise in predicting the occupancy status of
the area out of the FOV or at a future time. When the velocity
of the newborn particle is randomly generated, the particle false
update problem occurs frequently.

To alleviate the problem and reduce noise, we add an object-
level estimation by considering initial velocities for the newborn
particles. The procedures to acquire the initial velocities from
two adjacent point clouds are shown in Fig. 4(b). The point
cloud that obviously belongs to static obstacles, like the ground,
is segmented by considering the height dimension and assigned

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2024 at 15:16:09 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: CONTINUOUS OCCUPANCY MAPPING IN DYNAMIC ENVIRONMENTS USING PARTICLES 73

zero velocity. The rest point cloud is clustered, and the result
clusters are matched with the clusters extracted from the last
frame. Then the velocity of each cluster can be estimated by
differentiating the position of the matched clusters’ centers. We
use the Euclidean cluster extraction based on K-D tree [37] for
clustering and the Kuhn—Munkras (KM) algorithm for matching.
In the matching process, the position of the cluster center and the
number of points in the cluster are used as features. If a cluster
at time k cannot be matched, this cluster is regarded as a new
obstacle, and no velocity estimation result is assigned.

The velocity estimated by position differentiating between
two adjacent inputs is quite noisy because of three main reasons.
The first reason is that the position error of the point cloud mea-
surement is amplified and propagated to the velocity estimation
by differentiating. The second reason is that the position of a
cluster center varies when using point clouds observed from
different angles, and the third is that the clustering and matching
result might contain many errors in complex environments. We
have assumed that the measurement noise of the point cloud
is Gaussian noise. Thus, the noise caused by the first reason is
still Gaussian noise. However, the noise caused by the latter two
reasons can be very random. Therefore, the estimated velocity
cannot be regarded as the velocity measurement and utilized
in the update step. We, thus, adopt this estimated velocity as
a reference of initial particle velocities in the particle birth
step on the basis of a mixture model. Details are presented in
Section VI-B.

B. Mixture Model

To further reduce the noise caused by the false update and
model static objects better, we adopt a mixture model. The mix-
ture model supposes the state of a point object is the combination
of two components, i.e., € = A1Xj g + A2Tk 5. A1 and Ao are
weight coefficients that satisfy A1 + A2 = 1. @}, 4 is a dynamic
object state component. Ty, s iS a static object state component
with zero velocity. Since the environment is unknown, the value
of A; and A5 should not be fixed but should be updated in
the filtering process. We assume that the objects in one voxel
subspace, a small subspace, have the same weight coefficients.
In each voxel subspace, the dynamic object states and the static
object states can be regarded as two independent RFSs, XfiV)
and XgV), respectively. Then, A1 and A, is estimated by the ratio
between \ng)| and [X(V)|.

Using the property described in (3) and the same deduction in
(38), |Xfiv) |and |X(Y)| can be estimated with the weight summa-
tion of the particles. A particle 2z might correspond to &y, 4 or
X1, depending on the transition density 7,1 (wk}d\ﬁzgﬁl) or
Thlk—1(Th,s |5:,(21) For simplicity, the particle’s speed, namely
V(ﬁ:(i)) is used as the feature to determine the correspondence,
and the Dempster Shafer theory (DST) is adopted to approximate
|Xfy) |and | X(Y)|. The time subscript k is omitted to simplify the
notation. The universe of DST, in our case, is U = {d, s}, where
d is the dynamic hypothesis and s is the static hypothesis. The
power set is 2V = {0, {d}, {s}, U}. The mass function m(A)
has the properties that 3 , ., m(A) = 1 and m(0) = 0.

We suppose the weight summation of particles that satisfy
V(@) =o0is W Y) and the weight summation of particles that
satisfy V (2(V) > Vis Wév), where V is a threshold suggesting
that particles with a velocity larger than 1% correspond to Ty g
rather than x, . The particles with 0 < V(ﬁ:(i)) < V, however,
can correspond to Ty, 4 or Ty . Suppose the weight summation

of these particles is W(gz). Then, the masses are defined with

WéV) S(V)
m({d}) = 3wy mUsh) =
(V)
U)=—2 wW=w" 4w +wi" @
m()— W)’ — "a + W+ d,s (42)

which describes the basic belief. Then, the belief and the plau-
sibility are
bel({d}) = m({d}), pl({d}) = m({d}) + m(U)
bel({s}) = m({s}), pl({s}) = m({s}) + m(U).

According to DST, the probability is between the belief and
the plausibility. We simply take the median as the probability
estimation, which is pr(-) = w_ The cardinalities of dy-

namic and static objects in a voxel are approximated by
XY~ W) bel({d}) + pl({d})] /2
XY~ W [bel({s}) + pl({s})] /2.

Then, the coefficients A; and Ao are estimated with the ratio
of the cardinalities

(43)

(44)

X
XD x| WO 2w

Al

W awgd
Tw™ T ow™)”

X(Y)|
XY+ x(W)

(45)

In the prediction step, the motion model in (22) from time
k — 1 to k turns to

Tk =M [fo (@k-1,0) + B] + Ao [@p_1s + 2] (46)

where ¥’ is the Gaussian noise whose velocity dimension is zero.
At the particle level, with (45) it can be derived that particles
satisfying V' (2(Y) > V and half number of particles satisfying
0< V(:Nv(i)) <V correspond to _1 4, and their prior states are
sampled with (24). The rest particles correspond to T s, and
,(5&671 = :Ic,(jzl + o/, where
u’' does not contain velocity noise. The update step remains
the same because the measurement does not contain velocity
observation.

In the particle birth step, the velocities of the newborn par-
ticles are assigned based on A; and Ao in the corresponding
voxel subspace, and the initial velocity estimation results in
Section VI-A. If a measurement point is labeled static, e.g., the
ground, in the initial velocity estimation procedure, the velocities
of the particles generated from this point are all zero. Otherwise,
the mixture model is used. The number of dynamic particles
generated from a measurement point is A Ly, and the number of

their prior states are sampled with &

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2024 at 15:16:09 UTC from IEEE Xplore. Restrictions apply.

74

(b)

Fig. 5.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

(©) (d)

Occupancy status estimation of the DSP map in a scenario with a static obstacle and a dynamic obstacle: (a) shows the scenario with an RGB image;

(b) illustrates the particles in the current DSP map. The color is painted in the HSV color space, with the hue keeping red and the saturation indicating the particle’s
weight. Higher saturation, i.e., a greater proportion of red relative to black, indicates a larger weight. The estimated occupancy status in a continuous form is shown
in (c). Higher saturation indicates a larger occupied probability; (d) utilizes the voxel subspaces to calculate a 3-D grid map. The color of the grids changes with
their z-axis height. The obstacles are from a scenario in the pedestrian street world in Fig. 8, and the map is built with the recorded flight data used in Section VIII-C.
Some parts of the tree and the ground are missing because they have not been observed. (a) RGB image view. (b) Particle view. (c) Continuous occupancy status.

(d) Voxelized occupancy status.

static particlesis Ao Ly. According to the discussion of estimation
noise in Section VI-A, the velocities of dynamic particles are
composed of two parts: velocities sampled from a Gaussian
distribution and random velocities. Since real-world sensors
usually contain heavy noise, we set a large variance for the
Gaussian distribution, and the particles with random velocities
take 0.541 L. If too few particles exist in the voxel subspace
where the measurement point belongs, e.g., the situation when
the voxel subspace is observed for the first time, an initial guess
of A1 = Ao = 0.5 is used.

C. Occupancy Status Estimation

At an arbitrary point p in the map, the occupancy status is es-
timated by the cardinality expectation of point objects in a small
neighborhood space of p. Assume the point objects representing
an obstacle are uniformly distributed in the space occupied by the
obstacle and has no overlap. The distance between two adjacent
point objects is {’. Then, in a cubic neighborhood space with
side length I’ and centered by p, there should be either one or
no point object. In our case, the point cloud is prefiltered by a
voxel filter with resolution Res. Thus, I’ = Res. Denote the cubic
neighborhood space by V,, and the RSF composed of the point

objects in V,, by XZ”. According to (3) and (12), the expectation
of the cardinality of XZI’” is calculated with

BN = [Dgn(edes 3wl @)

eV,

which is the weight summation of particles in V),

We denote the occupancy probability at p by Py (p). Since
E[|XX” |] represents the expectation of the point object number
in V,, and V), is occupied as long as there is a point object inside,
Poce(p) can be estimated by Py (p) = E[|X, 7|, if B[|X, "] <
1. In practice, EHX,;V" |] can be larger than one because of the
noise in the input data and camera motions. If EHXZP >1,
Pyec(p) = 1 is adopted.

The occupancy probability of a general voxel subspace, such
as the voxel subspace V; defined in Section IV with side length

[, is estimated with

Min{E[X"[]- (§), 1}, if 1 <
Min{E[|X§§V7‘)], 1}, otherwise

Pocc(Vi) = (48)

where E[|X,(€Vi) |] is calculated with weight summation of parti-
cles in V; like (47). A scale factor (17/)3 is applied because the
volume of V; is (#)? times smaller than V,,. If | > I', the esti-

mated point object number E| X,(cvi)

| can be larger than one even
if the estimation has no error. If E[|X§€V"’) | > 1, Poee(V;) =1is
adopted. With the occupancy probability, a probability threshold
can then be used to get a binary occupancy status, i.e., occupied
or free. Fig. 5 shows an example occupancy estimation result
in a scenario with a static obstacle and a dynamic obstacle. The
voxelized map is shown in Fig. 5(d). It should be noted that
this voxelized map does not suffer from the grid size problem
because the mapping process is realized in the continuous space.

D. Future Occupancy Status Prediction

Predicting the future occupancy status is very useful for
motion planning in dynamic environments. In our DSP map,
the future occupancy status prediction is fulfilled by predicting
the position of the particles according to the motion model in
(22) and (46), and then using (47) and (48) for occupancy status
estimation. Fig. 6 presents the future occupancy estimation
results of the map shown in Fig. 5. The occupancy status of
the static obstacle, the tree, almost stays the same in each plot.
The occupied position of the dynamic obstacle, the pedestrian,
is predicted to move down with the CV model. The occupied
grids are spreading, and their occupancy probabilities are getting
lower as the prediction time increases. The reason is the uncer-
tainty in velocity estimation, which is reflected by the variance
of particles’ velocities. The estimation uncertainty also causes
noise in other parts of the plots. Since future occupancy status
prediction in dynamic environments has inevitable uncertainty,
the predicted occupancy probability can be used as the risk in
motion planning algorithms.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2024 at 15:16:09 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: CONTINUOUS OCCUPANCY MAPPING IN DYNAMIC ENVIRONMENTS USING PARTICLES 75

S A S Y] o e
=T 0% ut=()-.5”s
Y e w o i P _
t;l.Os t=1.5s t=2.0s

—)]

Occupancy possibility | EE——

Fig. 6. Future occupancy status prediction. We predict the future occupancy
status of the scenario in Fig. 5 at six future times. Only the layer z = 1.6 m is
shown to have a clear view. The black ellipses show the predicted occupancy
status of the pedestrian. The pedestrian walks with a CV to the bottom side. The
red occupied area in the upper left corresponds to the tree’s trunk and branches.

E. DSP-Static Map

By assuming the point objects as static objects and using only
the static model described in Section VI-B, the DSP map turns to
a static map, named the DSP-static map. In this case, the number
of particles used in this map can be very small since the velocity
dimension is not considered, which means the DSP-static map
is more computationally efficient. Compared to the voxel map
for static environments, the DSP-static map is continuous and
free from the voxel size problem. In the experiment section, the
DSP-static map is also tested.

VII. IMPLEMENTATION

This section describes an implementation of the DSP map.
The implementation includes the data structure to realize sub-
space division and particle storage, and the specific algorithms
used to build the DSP map.

A. Data Structure

The number of particles in the map can be up to one million.
Thus, storage and operation of the particles are important to
efficiency. Three techniques are utilized to improve efficiency
as follows.

1) The voxel subspaces are used to store particles while the

pyramid subspaces only store the indexes of particles.

2) Large arrays with preallocated size rather than unordered
sets, which represent RFSs natively, are used to store
elements in an RFS.

3) The operations of adding and deleting particles are sim-
plified using a flag variable.

The first technique is to reduce memory consumption, while
the second is to avoid dynamic memory allocation and increase
the cache hit rate. The last technique is employed to simplify
operations on particles. Detailed data structure can be found in
Appendix D.

Thread 1

Alg.5 Alg.6 Alg.7 Resampling,
. Alg3 Prediction — Update [—| Occupancy
fl?)ll;](; Point step step Estimation and et.al. Alg.8
P cloud Particle
Pose pre- birth
process Alg.4 Particle Initial Velocity Estimation
Thread 2
Fig. 7. Flowchart of the algorithms used to implement the DSP map.

B. Mapping Algorithms

A flowchart showing the order of the algorithms used for
mapping is presented in Fig. 7. After the input point cloud is
prefiltered by a voxel filter with resolution Res and transformed
to the map frame, two threads are opened to run the particle
initial velocity estimation in parallel with prediction, update, and
resampling. Resampling, occupancy estimation, and mixture
model coefficients calculation are conducted in one loop to
improve efficiency. Future occupancy status prediction is not
shown but is realized by predicting particle states to more future
times in the prediction step. Detailed algorithms can be found
in Appendix E.

VIII. EXPERIMENTAL RESULTS

This section first evaluates the velocity estimation precision
of the DSP map since velocity estimation ability is a major
difference between static maps and dynamic maps. Then, the
DSP map is tested with different parameters to evaluate the effect
of the parameters on mapping performance and identify the
best parameter values. With the identified parameter values, the
mapping performance is further compared with existing works
in different simulation worlds with different resolutions. To test
the practicality of using the DSP map on robotics platforms,
we also show computational efficiency comparison results on
an NVIDIA Jetson board. Finally, a demo of using this map for
drone obstacle avoidance is presented.

A. Velocity Estimation

The velocity estimation experiments were conducted with the
data collected in an indoor testing field with the Nokov motion
capture system. An Intel Realsense d435 camera was fixed at
an edge of the testing field to collect the point cloud. Two
pedestrians, wearing helmets with markers, walked around in
the testing field, and their trajectories estimated by the motion
capture system were recorded synchronously with the point
cloud. The experiments can be divided into two groups. In the
first group, the pedestrians tried to walk at a CV. In the second
group, the pedestrians walked randomly and freely. Fig. 8(a)
shows the data collection scenario.

We compared the velocities estimated by four different point-
cloud-based methods. The first method differentiates the center
position of two matched clusters, and no filter is adopted. The
matching is achieved by the KM algorithm. The second is a
multiobject tracker realized by the KM algorithm and Kalman
filters (KF) with a CV model. The input of the KF is the center

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2024 at 15:16:09 UTC from IEEE Xplore. Restrictions apply.

76

Fig. 8. Real-world scenario for velocity estimation test (a), and simulation
worlds for mapping performance comparison (b)—(d). The pedestrian square
world (b) contains only dynamic obstacles (the ground is excluded in the
evaluation tests), while the forest world (c) contains only static obstacles. The
pedestrian street world (d) contains both static obstacles and dynamic obstacles.
(a) Velocity estimation test. (b) Pedestrian square. (c) Forest. (d) Pedestrian
street.

TABLE I
VELOCITY ESTIMATION RESULTS OF DIFFERENT METHODS

Group CV Random walking
Metric RMSE Var. MBD | RMSE Var. MBD
KM- diff. 0.583 - - 0.656 - -
KM-KF 0.286 0.479 0470 | 0.309 0.481 0.476
DSP-random 0.332 1.083 0.641 | 0.353 1.077 0.641
DSP-dynamic | 0.277 0.318 0.398 | 0.302 0.335 0.417
2 T T
Ground truth
15T Cluster KM
KM KF
1 —— DSP-Random]
a —— DSP-Dyanmic
205
>
> 0
-0.5
-1
-1.5 \
1 2 3 4 5 6 7 8 9 10
t(s)
Fig. 9. Velocity estimation curves of a typical tracklet. The serrated orange

and blue background show the variance of the estimation results from the DSP-
dynamic map and the DSP-random map, respectively. Att = 6stot = 8s, the
pedestrian turns back.

positions of matched clusters. The third method is the DSP
map with the suffix “random,” whose newborn particles have
random velocities. The fourth method is the DSP map with
the suffix “dynamic,” whose newborn particles consider initial
velocity estimation. Since our maps do not explicitly segment the
objects, the state of a pedestrian was estimated with the particle
cluster near the pedestrian’s real position. Table II presents the
estimation results of the two groups. We consider a pedestrian
walking from one side of the testing field to another a tracklet.
Over thirty tracklets were collected in each group. Fig. 9 shows
the velocity estimation curves of a typical tracklet.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Three metrics are used for evaluation. The root-mean-square
error (RMSE) reflects the estimation precision evaluated with the
mean of the velocity estimation distribution and the ground truth
from the motion capture system. The Var. is the mean variance
of the different axes on every point. The differentiating method
outputs a single value rather than a distribution, and thus a dash is
placed in its Var. in Table II. The bolded values in Tables II- IV
signify the top-performing entries within each column. For a
particle-based map, a large variance means the particles would
disperse to a large scale of the area and cause much noise in
the map. Mean Bhattacharyya distance (MBD) measures the
similarity between the estimated and ground-truth velocity dis-
tribution. MBD considers both mean value and variance and is a
composite metric. The results in Table IT show that DSP-dynamic
performs best with all three metrics. The differentiated velocity
has a large RMSE, and the error can be huge sometimes, as
Fig. 9 shows. Using KF can reduce the error, but the Var. is over
30% larger than that of DSP-dynamic, and the MBD is over
12% larger. Compared to DSP-random, DSP-dynamic decreases
over 14% on RMSE, over 68% on Var., and over 34% on MBD,
showing the importance of the initial velocity estimation.

B. Mapping With Different Parameters

Inspired by [2], [5], [24], we evaluated the occupancy map-
ping performance by assessing the binary classification results,
i.e., free or occupied, of the voxel subspaces. The metrics include
average precision, recall, Fl-score,’ and time consumption of
a complete mapping process. The tested parameters include
maximum particle number Ly, the voxel size Res of the
voxel filter for the point cloud preprocess before mapping, the
pyramid subspace angle 0, and the voxel subspace size [. When
Res is larger, the measurement point number M} is smaller.
Each parameter was tested with three levels. A full factorial
experiment was conducted with data collected in the pedestrian
street world [see Fig. 8(d)], where both static and dynamic
obstacles exist. The world is built in the Gazebo* simulation
software. A simulated IRIS quadrotor with a Realsense camera
is controlled manually to collect point cloud and pose data for
mapping.

To generate the ground-truth occupancy map, we densely
and uniformly sampled points from the mesh surfaces of the
static objects in the world and generated a Euclidean distance
field (EDF) for the objects using the sampled points. The EDF
changes caused by pedestrians are updated online at each eval-
uation step using the mesh and pose of the pedestrians. A voxel
subspace was considered occupied if the distance value at the
voxel’s center position was no larger than é and free otherwise.
We also added a label array to distinguish the observed and
unobserved labels of the voxels. The array is updated using the
ray-casting approach with dense rays. Only the observed voxels
were considered in the evaluation.

The result is shown in Fig. 10(a). When L, increases from
0.8 to 2.4 million, the precision does not have a noticeable
% is a balanced metric of precision and recall.

4Gazebo simulation software: [Online]. Available: https://gazebosim.org/
home

3F1-score =

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2024 at 15:16:09 UTC from IEEE Xplore. Restrictions apply.

https://gazebosim.org/home
https://gazebosim.org/home

CHEN et al.: CONTINUOUS OCCUPANCY MAPPING IN DYNAMIC ENVIRONMENTS USING PARTICLES 71

Pedestrian Square, Voxel 0.Im Pedestrian Square, Voxel 0.2m Pedestrian Square, Voxel 0.3m
1% 1 1
= % — Avg. Mapping time * ﬁ‘g’E’)IBM g 08 0.8 0.8
—#— Avg. Precision ‘3 0.6 0.6 0.6
DSP-Random S
Avg. Recall DSP-Static o 0.4 0.4 - 0.4
—#— Avg. Fl-score . DSP-Dynamic ~ 02 0.2 0.2
0 * 0 0
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
Forest, Voxel 0.1m Forest, Voxel 0.2m Forest, Voxel 0.3m
0.8 200 0.8 200 1 11 19w
Q -~
306 —f1503 So6k _—*— TJisog | 08 08 08
. .- Lo 2 = S--_ ENEEY: 0.6 0.6
30,4/—*———' ° ;00,4_,___#\%1000 04 04 04
< 0‘2]’ - | g < 0-2| NI 0E | on 02 02
0 0 0 0 0 0
0.8]-? 1.6 2 2-‘; 0.05 0.075 0.1 0.125 0.15 0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
Max Particle Number Liax x 10 Filter Voxel Size Res (m) Pedestrian Street, Voxel 0.1m Pedestrian Street, Voxel 0.2m Pedestrian Street, Voxel 0.3m
0.8 200 0.8 200 1 1 1
o [k A
206 ——$150 5 § 0.6 1505 | 08 08 081 N
O e LoE = oa o2 |06 0.6 0.6
ol S m— Zoph 204 0.4 0.4
< O,ZT 50 \% < 0.2 | 50@ 0.2 02 0.2 \
0 0 ol 0 0 0 0 -
1 2 3 4 5 0.1 0.15 02 025 0.3 0 02 04 06 038 1 0 02 04 06 08 1 0 02 04 06 038 1
Pyramid Subspace Angle 6 (°) Voxel Subspace Size / (m) Recall
(a) ()
Fig. 10. (a) Mapping performance with different parameters. Each parameter has three levels and is analyzed in an individual plot. (b) Precision-recall curve

comparison. Results in different worlds are shown in different rows, and results with different voxel sizes are shown in different columns.

Pedestrians

Py

R

Pedestrian

Fig. 11.

Snapshots of different maps in the pedestrian street world when the mapping resolution is 0.1 m. A pedestrian moves along the direction indicated by

the white arrow from ¢ = 18.1s to ¢ = 19.4s. The color of the voxels changes with their z-axis height. The pink lines show the current FOV of the camera. The
voxels in the FOV are painted brighter than those out of the FOV. The semitransparent blue cylinders in the maps present the real position of the pedestrians. The
red rectangle in the DSP-dynamic map at ¢ = 19.4 s outlines an area out of the FOV corresponding to a pedestrian. The pedestrian is out of the FOV, and thus, its
occupancy status is predicted. Red dashed boxes show typical gaps and inconsistencies in grid maps when the resolution is high. (a) Ground truth. (b) Ewok [7].

(c) K3DOM [5]. (d) DSP-static. (e) DSP-random. (f) DSP-dynamic.

change, while the average time consumption increases from 50 to
160 ms. The recall rises from 0.22 to 0.30 when L, increases to
1.6 million but almost remains unchanged when L, increases
further. The F1-score has the same trend as the recall. Raising
Res leads to fewer measurement points in the point cloud and
shows a positive effect on precision but a negative effect on
recall. The balanced metric F1-score reaches the maximum value
of 0.38 when Res is 0.1 m. The time consumption decreases as
Res increases.

The pyramid subspace angle 6 slightly affects precision, re-
call, and Fl1-score. The Fl-score increases merely 0.005 when
0 grows from one degree to five degrees. Meanwhile, the time
consumption increases from 67 to 144 ms. The voxel subspace

size [positively correlates to all the metrics. When [is larger, the
number of voxels to classify is less, and the occupancy status
of a voxel is easier to determine because more measurement
points and particles are contained in one voxel. As a result, the
precision, recall, and F1-score all improve. However, a larger
voxel size is usually unfavorable in motion planning. The time
consumption rises because the particle operations in Algorithm
1 are slower with more particles in one voxel subspace.

To achieve the best Fl-score with an acceptable time con-
sumption (about 100 ms), Ly,x = 1.6 X 10%, Res = 0.1, and
0 = 3° are chosen. We further compare the performance of our
map with other maps using different resolutions in the following
experiment.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2024 at 15:16:09 UTC from IEEE Xplore. Restrictions apply.

78

Pedestrians

©

Fig. 12.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Snapshots of different maps in the pedestrian square world when the mapping resolution is 0.3 m. The red ellipses show the trail noise caused by

moving pedestrians in Ewok [7] and K3DOM [5]. From ¢t = 1.2s to ¢ = 2.8 s, the movement of three pedestrians causes more trail noise. The red rectangle
in Column (f) shows the predicted occupancy of a pedestrian out of FOV. (a) Ground truth. (b) Ewok [7]. (c) K3DOM [5]. (d) DSP-static. (¢) DSP-random.

(f) DSP-dynamic.

7

E I ok

= [K3DOM

2 %07 E—psp I
§ [DSP 0=1

2 4 I DSP 0=1° Res=0.15m
Z 400 i
=}

3

o

E 200 J
)

>

<

0.1 0.2 03
Voxel Size (m)

Fig. 13. Time consumption of different maps on Jeston Xavier NX.

C. Mapping Performance Comparison

In this experiment, we compared our DSP map with a static
local occupancy map named Ewok [7] and a state-of-the-art
particle-based dynamic occupancy map named K3DOM [5].
K3DOM is the only 3-D dynamic occupancy map with areleased
code currently. We also compared our map with two variants:
One uses newborn particles with random velocities and consid-
ers the CV model only, i.e., extensions in Section VI-A and VI-B
are not adopted; another uses static newborn particles and con-
siders the static motion model, i.e., the extension in Section VI-E.
To distinguish the variants, we call our map with particle initial
velocity estimation and mixture model DSP-dynamic map, and
the variants DSP-random map and DSP-static map, respectively.

K3DOM runs on NVIDIA RTX 2060 GPU, and the rest maps
run on AMD Ryzen 4800HS CPU in the tests. The map size
(Iz,1y,1-)is (10 m, 10 m, 6 m). The rest parameters in K3DOM
and Ewok remain the same as the original settings in the released
code. No voxel filter is used for point cloud preprocessing in
K3DOM and Ewok to reach their best performances. In DSP
map and its variants, the initial weight of the particle is 0.0001.
Three different voxel sizes, from 0.1 to 0.3 m, were tested in
the simulation worlds shown in Fig. 8(b)—(d). Using different
occupancy probability thresholds, which determine the binary
status, i.e., occupied or free, we draw precision—recall curves in
Fig 10(b). Snapshots of different maps can be found in Figs. 11
and 12.

In Fig 10(b), a larger area under the curve (AUC) suggests a
better overall performance in classifying the occupancy status
with different thresholds. The specific AUC values are presented

TABLE III
AUC COMPARISON

World Pedestrian square Forest Pedestrian street
Voxel size (m) | 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3
Ewok [7] 0.10 022 027 | 059 059 066 | 028 034 046
K3DOM [5] 015 023 028 | 055 057 061 | 027 033 037
DSP-Random 024 024 036 | 032 035 050 | 027 031 044
DSP-Static 024 029 032|056 061 069 | 034 042 049

DSP-Dynamic | 0.29 036 043 | 0.60 059 0.65 | 0.36 043 0.50

in Table III. The DSP-dynamic map has the largest AUC in
the two worlds with pedestrians and a comparable AUC with
Ewok and DSP-static map in the static forest world. When the
voxel size is 0.1 and 0.2 m, the recall of Ewok and K3DOM is
relatively low because of the gaps and inconsistencies in high-
resolution grid maps. Red dashed boxes in Fig. 11 illustrate
the gaps and inconsistencies. In Fig. 12, the areas in the red
ellipses show that Ewok has noticeable trail noise, which can
lower the precision, when the voxel size is 0.3 m. The dynamic
occupancy map K3DOM has less trail noise. In comparison, our
DSP-dynamic map does not suffer from gaps, inconsistencies,
or trail noise.

DSP-random, which does not have initial velocity estimation
and uses only the CV model, has obvious noise in the area out
of FOV, especially when representing static obstacles. Column
(e) in Fig. 11 shows the noise. Consequently, the AUC of DSP-
random is the smallest in the forest world. DSP-static adopts
only the static motion model and achieves the best AUC in the
forest world when the voxel size is 0.2 and 0.3 m. However, it
cannot predict the future occupancy status of dynamic obstacles,
and the AUCs in the worlds with pedestrians are smaller than
DSP-dynamic. The red rectangles in Column (f) in Fig. 11 and
Fig. 12 show the predicted occupancy status of a pedestrian out
of the FOV in the DSP-dynamic map.

Table IV shows the best F1-score, i.e., the highest classifica-
tion performance that each map reaches with different proba-
bility thresholds in Fig. 10(b). When the testing scenario is the
forest world, and the voxel size is 0.3 m, the DSP-dynamic map’s
score is slightly lower than the DSP-static map’s. In all other
situations, DSP-dynamic has the highest best F1-score. Note in
the pedestrian square world, where only dynamic obstacles exist,
the dynamic map K3DOM has a lower best F1-score than the

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2024 at 15:16:09 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: CONTINUOUS OCCUPANCY MAPPING IN DYNAMIC ENVIRONMENTS USING PARTICLES 79

Fig. 14.

Snapshots of building the DSP-dynamic map in different scenarios. The first row shows the RGB image in current FOV. The second row presents the

voxelized map view with a resolution of 0.15 m. The pink outlines show the FOV. Red dashed boxes indicate the dynamic obstacles in current FOV. (a) Pedestrian.

(b) Canteen. (c) Outdoor cyclist. (d) Corridor with desks. (e) Lab. (f) Woods.

Fig. 15. Testing scenarios for obstacle avoidance. (a) and (b) are dynamic
environments. (c) is a static environment. Red rectangles outline the quadrotor.

TABLE IV
BEST F1-SCORE COMPARISON

World Pedestrian square Forest Pedestrian street

Voxel size (m) | 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

Ewok [7] 007 0.19 024 | 042 050 052 | 024 032 040
K3DOM [5] 0.14 0.19 022 | 053 053 044 | 027 032 0.32
DSP-Random 024 024 035|029 029 044 | 025 028 0.39
DSP-Static 0.17 024 029 | 048 059 066 | 030 041 049
DSP-Dynamic | 0.26 036 043 | 0.58 0.59 065 | 0.36 0.41 0.50

static map Ewok when the voxel size is 0.3 m. The reason is that
although Ewok has a low precision due to its heavy trail noise,
its recall rate is higher than K3DOM’s. However, from Table III,
it can be seen that the AUC, which evaluates the overall classifi-
cation performance when using different occupancy probability
thresholds, of K3DOM is still higher than that of Ewok.

The average F1-score and AUC of our DSP-dynamic map in
different worlds with different resolutions are 0.46 and 0.47,
respectively. In comparison, the average F1-score and AUC of
the existing particle-based dynamic occupancy map K3DOM
are 0.33 and 0.37, respectively. Our map increases the F1-score
by 39.4% and AUC by 27.0%. If only the two worlds that contain
dynamic obstacles are considered, the average Fl-score and
AUC increase from 0.24 to 0.39 (62.5% increase) and 0.27 to
0.40 (48.1% increase), respectively.

D. Robotics Platform Efficiency Tests

This section first compares the efficiency of Ewok [7],
K3DOM [5], and our DSP map (with particle initial velocity es-
timation and mixture motion model) on NVIDIA Jetson Xavier
NX, which is a small computing board widely used on robotics
platforms. Xavier NX has a 384-core NVIDIA Volta GPU with
48 Tensor Cores and a 6-core NVIDIA Carmel ARM v8.2 CPU.
K3DOM [5] runs on the GPU, and the rest maps run on the CPU.

The average time consumption of each map with different voxel
sizes is shown in Fig. 13. The map size in the testis (10 m, 10 m,
6 m).

When the voxel size is 0.1 m, our DSP map is the fastest. The
existing particle-based dynamic occupancy map K3DOM is 4.5
times slower than the DSP map. The static map Ewok runs fastest
when the voxel size is 0.2 or 0.3 m. K3DOM is the second fastest,
and our DSP map is the slowest. However, with the results in
Fig. 10(a), we can further raise the computational efficiency
of our map by sacrificing a little performance on the F1-score.
Fig. 10(a) indicates that decreasing the pyramid subspace angle 6
from 3° to 1° can reduce the computation time while the F1-score
drops merely 1%. In addition, increasing the filter voxel size Res
from 0.1 m to 0.15 m can also reduce the computation time, and
the F1-score decreases 12% accordingly. If # = 1° is used in the
tests on Xavier NX, the DSP map’s computation time is only
0.56 times that of K3DOM'’s when the voxel size is 0.2 m and is
close to K3DOM’s when the voxel size is 0.3 m. [fRes = 0.15m
is further adopted, the DSP map’s computation time is shorter
than the K3DOM’s for all tested voxel sizes.

We also tested the computation efficiency of our DSP map
on two other onboard computers for robotics platforms: an Intel
NUC with a Core i7-10710 u CPU and an Up core board with an
Intel Atom x5-z8350 CPU. When § = 1° and Res = 0.15 m are
adopted, and the voxel size is 0.2 m, the average time consump-
tion on the two boards is about 133 and 254 ms, respectively.
For robotics obstacle avoidance tasks without fast movement,
a smaller map can be used to reduce time consumption. For
example, when the map size is reduced to (8 m, 8 m, 3 m), the
average time consumption on the up core board is below 150 ms.

In Appendix B, we present a test with omnidirectional and
multichannel lidar point cloud data. The time consumption is
about two times when using point cloud data from the Realsense
camera, which has a limited FOV. Improvements in computa-
tional efficiency will be conducted further to realize real-time
mapping with multichannel lidars.

E. Applications

Fig. 14 presents several snapshots of building the DSP-
dynamic map in different scenarios. The localization was real-
ized by a Realsense T265 tracking camera, and the point cloud

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2024 at 15:16:09 UTC from IEEE Xplore. Restrictions apply.

80

was from a Realsense d435 camera. To further demonstrate
the effectiveness and efficiency of our map in robotic systems.
We deployed the DSP-dynamic map on a miniquadrotor with
a weight of only 320 g and utilized a sampling-based motion
planning method [38] to realize obstacle avoidance in environ-
ments with static and dynamic obstacles. The method samples
motion primitives and evaluates the collision risk of each motion
primitive with the current and predicted particles in the DSP-
dynamic map. Details can be found in [38]. The point cloud
was collected from a Realsense d435 camera, and everything,
including mapping and motion planning, was performed on the
CPU of a low-cost up core computing board. Fig. 15 shows the
testing scenarios. The testing demos can be found at.’

IX. CONCLUSION

This article presents a novel DSP 3-D local map, named
DSP (dynamic) map, that allows continuous occupancy mapping
of dynamic environments. Voxel subspaces and pyramid-like
subspaces are adopted to achieve efficient updates in continuous
space. The initial velocity estimation and a mixture model are
considered to reduce noise. Experiments show that the DSP map
can increase the dynamic obstacle velocity estimation perfor-
mance by over 30% on MBD, compared to other tested point-
cloud-based methods. In occupancy status estimation tests, the
DSP map increases the F1-score of the state-of-the-art particle-
based occupancy map from 0.33 to 0.46 (39.4% increase) and
the AUC from 0.37 t0 0.47 (27.0% increase) on average. Further-
more, efficiency tests and a real-world application demo demon-
strated the broad prospect of this map in obstacle avoidance tasks
of small-scale robotic systems. Future works will consider two
main points. The first is to introduce semantic information to this
map to better identify and model different obstacles and further
predict their future states with multiple hypotheses. The second
is to connect this dynamic local map to a global static map to
achieve global mapping in dynamic environments.

APPENDIX A
LOWER BOUND DISTANCE CALCULATION

This appendix calculates the lower bound distance from a
point object to a measurement point whose azimuth angle and
zenith angle differences with the point object are no less than 6.
Fig. 16 shows two limiting cases where the zenith and azimuth
angle difference are ', respectively. In Fig. 16(a), when P, is
in the same vertical plane with P,, and P, P,, | P, O,
the minimum distance between P, and P, exists and is
|Pz, P,| = rgsind’. In Fig. 16(b), |Pg, P.,| > | P, P, |,
where | P, P, |is the distance between the projection points
of Py, and P,. When P, P, | P, O,|P,, P |hasthe
minimum value rjsinaysinf’. Since rjsinaysing’ < rsind’, the
lower bound of | P, P, | is i sinagsing’.

3[Online]. Available: https://youtu.be/seF_Oy4YbXo

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

P
(®)

Fig. 16. Calculation of the lower bound distance from a point object position
P, toameasurement point the position P, . The azimuth angle and zenith
angle difference between P, and P, isnolessthan'.In (a), the zenith angle
difference is 6'. In (b), the azimuth angle difference is ¢’. O is the origin point.
ay, is the zenith angle of Py, . 7, is the distance from O to Py, . P’wk and
P, .. are the projection point of P, and P, inthe x — y plane, respectively.

Fig. 17. Snapshots of mapping with the point cloud from lidar. Subfigures in
the top row, (a)-(c), show the DSP map. Subfigures in the bottom row, (d)-(f),
show the point cloud data collected when the top map was generated. The yellow
ellipses outline three pedestrians. In (d) and (e), the two pedestrians on the right
are occluded or partially occluded but are clearly shown in the map. In (f), the
pedestrians are detected by the lidar again.

APPENDIX B
TEST WITH LIDAR INPUT

This appendix presents a qualitative test result with point
cloud data from a simulated Velodyne HDL-32E Lidar. This
lidar is an omnidirectional and 32-channel lidar with a horizontal
resolution of 0.16° and a vertical resolution of 1.33°. The FOV is
360° x 40°. The point cloud data are collected in the pedestrian
street world shown in Fig. 8(d). The mapping parameters are § =
3°,Res = 0.15m, and Ly,x = 1.6 x 106. The map sizeis (10 m,
10 m, 6 m). Fig. 17 shows several snapshots of the mapping
result.

When the voxel size for discrete occupancy status estimation
is 0.1, 0.2, and 0.3 m, the time consumption for mapping is
194.9, 259.4, and 470.4 ms, respectively. In Section V-B, we
have discussed that the complexity in the update procedure is
O(%Lk Mj,). The omnidirectional character of the used lidar

increases 6,6, but also increases the particle number M}, in M.
The result is that the time consumption is about two times the
time consumption of using a depth camera with a smaller FOV
(90° x 60°). This time consumption is not small enough for real-
time usage. Further improvements in computational efficiency
will be conducted to realize real-time mapping with this kind of
lidar.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2024 at 15:16:09 UTC from IEEE Xplore. Restrictions apply.

https://youtu.be/seF_Oy4YbXo

CHEN et al.: CONTINUOUS OCCUPANCY MAPPING IN DYNAMIC ENVIRONMENTS USING PARTICLES 81

Algorithm 1: Particle Storage and Operation in Voxel Subspaces.

1 Struct Particle Particle = { flag, weight, vy, vy, vz, Pz, Dy, Pz }
2 LY — M Lmaa:/Nv
3 ptc_vozel_array[Ny|[LY]{ Particle}
4 Function addParticleToVoxel(Particle)

5 idx_voxel <—getldxVoxel(Particle.p., Particle.py, Particle.pz)
6 i < getVacancyldx (ptc_vozel_arraylide_voxel])

flag = 0 is found;
7 Particle.flag < 1, ptc_vozel_arraylidz_vozel][i] < Particle
8 return idx_vozel, i;

9 Function deleteParticleInVoxel(idz_vozel, idx_ptc)

10 | pte_vozel_arraylide_vozel][idz_ptc]. flag < 0

11 Function moveParticleToNew Voxel(idz_voxel, idx_ptc)

12 deleteParticleInVoxel(idx_voxel, idz_ptc)

13 return addParticleToVoxel(ptc_vozel_arraylidz_vozel||idz_ptc])

> Struct of the states of a particle. flag is initialized with O;

. L lyl
> Max particle number stored in a voxel. 1 > 1 is an empirical factor. N, = ”lg 2. Lmaz /Ny = LYMI;
> This array stores the particles in voxel subspaces. IV, is the number of voxel subspaces;

> Calculate the voxel index of a particle with the particle’s position;

> Traverse ptc_voxel_arraylidz_voxel] and check the flag until a vacancy with

> Add Particle to the vacancy in ptc_vozel_array;

> Delete a particle by setting its flag to zero;

> Delete the particle in the original voxel;
> Add the particle to a new voxel and return indexes;

Algorithm 2: Particle Index Storage and Operation in Pyramid Subspaces.

1 Struct Virtual_Particle Vr_Particle = { flag, idz_voxel,idz_ptc} > Struct of a virtual particle, which contains indexes mapping to the particle

in pte_vozel_arraylidz_voxel][idz_ptc]. flag is initialized with 0;

A . Lmax-0?
2 L3 < m2 - 555580

3 vr_ptc_pyd_array[Ny][L4] {Vr_Particle}
4 pyd_neighbors_array[Ny][n? — 1]
5 Function getldxPyd(pz, py, p=)

6 {Pz.s,Py,s,P=,s} + worldToSensorFrame(pz, py, p=)

7 if pointInFov(pz, s, py,s, Pz,s) then

8 tdz_pyd < getldxPydSensorFrame(pz, s, py,s, Pz,s)
9 ‘ return idz_pyd;

10 else return -1;

> Max particle number in a pyramid. 772 > 1 is an empirical factor;
> This array stores the Virtual_Particles in each pyramid;
> This array stores the neighbor pyramids’ indexes in the activation range. n is defined in Section V-B;

> This function calculates the pyramid index of a particle or a point.

> Calculate the position of a particle in sensor frame;

> Calculate the pyramid index of a point using sensor frame position;

11 Function addParticleldxToPyd(idx_pyd, idx_voxel, idz_ptc) > This function adds the index of a particle (a virtual particle) to vr_ptc_pyd_array.

j < getVacancyldx(vr_ptc_pyd_array(ide_pyd])
vr_ptc_pyd_arraylidz_pyd|[j] + {1, idz_vozel,idz_ptc}

> Traverse vr_ptc_pyd_arraylidz_pyd| until a vacancy (flag = 0) is found;

> Add the particle index to the vacancy;

APPENDIX C
UNKNOWN AREA REPRESENTATION

Representing the unknown area is very useful in exploration
tasks. For static grid maps, the grids are initialized with a tag
“unknown,” and the tag is removed when a ray generated from
point cloud measurement passes through or hits the grid. In
the DSP map, the unknown area can be represented by the
update time of the particles. Adding time stamps on the common
particles does not work because the particles are born only in the
area with obstacles, and thus the unknown area and the free area
cannot be distinguished. Therefore, when a new area appears in
the map, a small number of static particles, named time particles,
which have a zero weight and a time stamp, can be uniformly
added to the map. When the measurement point cloud comes, the
time particles only update their timestamp to the current time.
Then, the unknown property of each area can be evaluated by
checking the time stamp.

APPENDIX D
DATA STRUCTURE DETAILS

Algorithm 1 shows the data structure to store particles in voxel
subspaces and basic operations used in the mapping algorithms.
ptc_voxel_array is a fixed-size array that stores particles in
voxels. The maximum particle number that can be stored in a
voxel subspace is "116;““, where 77 > 1 is an empirical factor
used to allocate large storage space. If no storage space is left in
the array, the particle to be added is omitted. Note that % is

larger than LY used in the resampling step because, in the
prediction and particle birth steps, more than LY, particles
may enter one voxel subspace and should all be stored. In the
resampling step, the number of particles is reduced to LXax with
(40).

Algorithm 2 illustrates how the indexes of particles are stored
in the pyramid subspaces. vr_ptc_pyd_array is the array to
store particle indexes in pyramid subspaces. 772 > 1 is another
empirical factor that works similar to 7;. In practice, 71 = 12 =
3 is adopted. Note that the pyramid subspaces are divided dy-
namically with the sensor’s orientation, and thus, all the particle
indexes in vr_ptc_pyd_array must be updated in real time.
Therefore, vr_ptc_pyd_array is emptied after each mapping
process and recalculated in the prediction step (see Algorithm
5).

APPENDIX E
ALGORITHMS FOR MAPPING

The algorithms to realize DSP map building are illustrated
in Algorithms 3-8. In practice, we use C++ for programming.
Algorithms 5-8 correspond to the prediction, update, particle
birth and resampling steps in Section V, respectively. These
algorithms show one way to implement the mapping methods.
The computational complexities of Algorithms 5, 6, 7, and 8
are O(Lmax)s O(Mj,Linax0?), O(Lmax), and O(My,), respec-
tively. The overall computational complexity of the map is
then O (M}, Liax0?). Note that the lookup operation in function

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2024 at 15:16:09 UTC from IEEE Xplore. Restrictions apply.

82

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Algorithm 3: Point Cloud Preprocess.

1 ptel_array[My{pz, py, p=} > The input array that stores the point cloud filtered by a voxel filter with resolution Res;

2 M;4 — 292 > Calculates the maximum measurement point stored in a pyramid. €y, is the angle resolution of the sensor;
3 ptcl_pyd_array[Nf][]V[SA]{pz,py,pz} > This array stores the point cloud in each pyramid in the map frame;

4 pyd_pt_num_array[Ny], pyd_length_array[N] > The arrary of points number and the visible length of each pyramid;
5 for i =1: My do

6 pt < ptcl_arrayli], ide_pyd < getldxPyd(pt.pz, pt.py, pt.pz) > Get the pyramid subspace index of a point;

7 rotateAndStore(ptcl_pyd_array, pt, sensor_ort) > Rotate pt to the map frame with sensors’ orientation and store pt in ptcl_pyd_array;
8 pyd_pt_num_arraylide_pyd] + + > Update the number of measurement points in a pyramid;

9 eu_dist « squareEuclideanDist(pt) > Calculate square Euclidean distance from pt to the map center;

10 if eu_dist > pyd_length_array|idz_pyd] then

11 ‘ pyd_length_arraylide_pyd] < eu_dist > Update the visible length of a pyramid in the FOV;

Algorithm 4: Particle Initial Velocity Estimation.

1: ptel_vel_array[Ns)[M2{pe, py, 2} >This array stores the estimated velocities of points in the point cloud;
2: ptel_vel_array = calPointVelocity(ptcl_array) >>Calculate ptcl_vel_array with procedures in Fig. 4(b);

Algorithm 5: Prediction Step.

1 Bmpty vr_ptc_pyd_array[N¢][LA] {Vr_Particle} > Empty vr_ptc_pyd_array and recalculate later to realize dynamical division of the
pyramid subspaces;
2 pyd_vr_ptc_num_array[Ny] > The array to store the number of particle indexes in a pyramid;

3 for 7 in Range(N,) do

4 for j in Range(LY) do

5 if ptc_vozel_arrayli][j]. flag is O then

6 \ continue > Ignore the array element that doesn’t contain a particle currently;

7 particle <—predictParticleState(ptc_vozel_arrayli][j]) > Predict the particle’s state with the mixture model in Eq. (22) and (46).
8 idz_voxel, idx_ptc <—moveParticleToNew Voxel(z, j) > Move the particle with the predicted state;

9 idx_pyd +—getldxPyd(particle.z, particle.y, particle.z) > Get the pyramid index of the particle after prediction;

10 if idz_pyd > 0 then

11 addParticleldxToPyd(idz_pyd, idz_vozel, idz_ptc) > Add the particle index to vr_ptc_pyd_array for update;

12 pyd_vr_ptc_num_arraylide_pyd) + + > Update the number of particle indexes in the pyramid;

Algorithm 6: Update Step.

1 C;ﬁarray[Nf][l\Jf] > This array stores variable C} (zj) for each z;, and is defined in Eq. (37);
2 fori=1: Ny do
for j = 1: pyd_pt_num_array[i] do

3

4 pt < ptel_pyd_arrayli][j] > Get the point in the point clould one by one;

5 Cj,_arrayli][j] +calculateCk(pt,vr_ptc_pyd_array, pyd_neighbors_array) > Calculate C), with Eq. (37);

6 fori=1: Ny do

7 for j = 1: pyd_vr_ptc_num_arrayli] do

8 pte «+— pte_vozel_array [vr_ptc_pyd_arrayl[i[j].id_vozel] [vr_ptc_pyd_array(i][j].idz_ptc] > Get the particle to update;
9 pte_dist < squareEuclideanDist(ptc) > Calculate square Euclidean distance from ptc to the map center;

10 if pyd_length_array[i] > 0 and ptc_dist < pyd_length_arrayli] then

11 if pte.flag is 1 then

12 | pteweight <—updateWgt(ptc, Cj,__array, ptcl_pyd_array) > Update particle weight with (35);

13 else

14 \ ptc.weight <—updateWgtNewBorn(ptc, C/,_array, ptcl_pyd_array) > Update newborn particle weight with (36);

Algorithm 7: Resampling, Occupancy Estimation and Mixture Model Coefficients Calculation.

1 occ_voxel_array[Ny) > This array stores the occupancy probability of each voxel subspace;

2 dst_lambda_array[N,][2] > This array stores the coefficients A1 and A2 of each voxel subspace in DST (Section VI-B);

3 for:=1:N, do

4 dst_lambda_arrayli] < calculateDSTCoefficients(ptc_vozel_arrayl[i]) > Calculate the DST coefficients with (45);

5 occ_voxel_arrayli] <—calculateOccPr(weight_vozel_arrayli]) > Calculate a voxel’s occupancy probability with (48);
6 ptc_vozel_arrayli] < resample(ptc_vozel_arrayli]) > Resample the particles in a voxel using rejection sampling [36];

Algorithm 8: Particle Birth.

1 fori=1: Ny do

2 for j =1 : pyd_pt_num_arrayli] do

3 pt + ptel_pyd_arrayli][j], pt_vel < ptcl_vel_arrayl[i][;] > Traverse every measurement point;
4 for k=1:L; do

5 pct +— addNoise(pt), > Add noise to pt according to Section VI-B to generate a new particle;
6 addParticleToVoxel(pct), > Store the particle in ptc_voxel_array;

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2024 at 15:16:09 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: CONTINUOUS OCCUPANCY MAPPING IN DYNAMIC ENVIRONMENTS USING PARTICLES 83

getVacancyldx is disregarded in the computational complexity
analysis to simplify the expression. The lookup operation is
confined to a small subspace and costs little computing resource.

[1]

[2]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(7]

[18]

[19]

[20]

[21]

[22]

REFERENCES

R. Danescu, F. Oniga, and S. Nedevschi, “Modeling and tracking the
driving environment with a particle-based occupancy grid,” IEEE Trans.
Intell. Transp. Syst., vol. 12, no. 4, pp. 1331-1342, Dec. 2011.

D. Nuss et al., “A random finite set approach for dynamic occupancy
grid maps with real-time application,” Int. J. Robot. Res., vol. 37, no. 8,
pp. 841-866, 2017.

G. Tanzmeister and D. Wollherr, “Evidential grid-based tracking and
mapping,” IEEE Trans. Intell. Transp. Syst., vol. 18, no. 6, pp. 1454—1467,
Jun. 2017.

A. Vatavu et al., “From particles to self-localizing tracklets: A multi-
layer particle filter-based estimation for dynamic grid maps,” IEEE Intell.
Transp. Syst. Mag., vol. 12, no. 4, pp. 149-168, Sep. 2020.

M. Youngjae, K. Do-Un, and C. Han-Lim, “Kernel-based 3-D dynamic
occupancy mapping with particle tracking,” in Proc. IEEE Intl. Conf.
Robot. Autom., 2021, pp. 5268-5274.

K. Doherty, T. Shan, J. Wang, and B. Englot, “Learning-aided 3-D occu-
pancy mapping with Bayesian generalized kernel inference,” IEEE Trans.
Robot., vol. 35, no. 4, pp. 953-966, Aug. 2019.

V. Usenko, L. V. Stumberg, A. Pangercic, and D. Cremers, “Real-time
trajectory replanning for MAVs using uniform B-splines and 3D cir-
cular buffer,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2017,
pp. 215-222.

H. Moravec and A. Elfes, “High resolution maps from wide angle sonar,”
in Proc. IEEE Int. Conf. Robot. Autom., 1985, pp. 116-121.

A. Hornung, M. W. Kai, M. Bennewitz, C. Stachniss, and W.
Burgard, “OctoMap: An efficient probabilistic 3D mapping frame-
work based on octrees,” Auton. Robots, vol. 34, no. 3, pp. 189-206,
2013.

D. Duberg and P. Jensfelt, “UFOMap: An efficient probabilistic 3D map-
ping framework that embraces the unknown,” IEEE Robot. Autom. Lett.,
vol. 5, no. 4, pp. 6411-6418, Oct. 2020.

P. Gohl, D. Honegger, S. Omari, M. Achtelik, and R. Siegwart, “Om-
nidirectional visual obstacle detection using embedded FPGA,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2015, pp. 3938-3943.

S. T. O’Callaghan and F. T. Ramos, “Gaussian process occupancy maps,”
Int. J. Robot. Res. (IJRR), vol. 31, no. 1, pp. 42-62, 2011.

F. Ramos and L. Ott, “Hilbert maps: Scalable continuous occupancy
mapping with stochastic gradient descent,” Int. J. Robot. Res., vol. 35,
no. 14, pp. 1717-1730, 2015.

C.-C. Wang, C. Thorpe, S. Thrun, M. Hebert, and H. Durrant-Whyte,
“Simultaneous localization, mapping and moving object tracking,” Int. J.
Robot. Res., vol. 26, no. 9, pp. 889-916, 2007.

G. Chen, W. Dong, X. Sheng, X. Zhu, and H. Ding, “An active sense and
avoid system for flying robots in dynamic environments,” IEEE/ASME
Trans. Mechatron., vol. 26, no. 2, pp. 668—-678, Apr. 2021.

J. Lin, H. Zhu, and J. Alonso-Mora, “Robust vision-based obstacle avoid-
ance for micro aerial vehicles in dynamic environments,” in Proc. [EEE
Int. Conf. Robot. Autom., 2020, pp. 2682-2688.

A. Unnikrishnan et al., “Dynamic semantic occupancy mapping using 3D
scene flow and closed-form Bayesian inference,” IEEE Access, vol. 10,
pp. 97954-97970, 2022.

C.-C. Wang and C. Thorpe, “Simultaneous localization and mapping with
detection and tracking of moving objects,” in Proc. IEEE Int. Conf. Robot.
Autom., 2002, pp. 2918-2924.

D. Hahnel, R. Triebel, W. Burgard, and S. Thrun, “Map building with
mobile robots in dynamic environments,” in Proc. [EEE Int. Conf. Robot.
Autom., 2003, pp. 1557-1563.

J. Saarinen, H. Andreasson, and A. J. Lilienthal, “Independent
Markov chain occupancy grid maps for representation of dynamic
environment,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2012, pp. 3489-3495.

J.P. Saarinen, H. Andreasson, T. Stoyanov, and A.J. Lilienthal, “3D normal
distributions transform occupancy maps: An efficient representation for
mapping in dynamic environments,” Int. J. Robot. Res., vol. 32, no. 14,
pp. 1627-1644, 2013.

S. T. O’Callaghan and F. T. Ramos, Gaussian Process Occupancy Maps
for Dynamic Environments. Cham, Switzerland: Springer Int. Publishing,
2016, pp. 791-805.

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

(36]

(371

[38]

R. Senanayake, S. O’Callaghan, and F. Ramos, “Learning highly dynamic
environments with stochastic variational inference,” in Proc. IEEE Int.
Conf. Robot. Autom., 2017, pp. 2532-2539.

V. Guizilini, R. Senanayake, and F. Ramos, “Dynamic Hilbert maps: Real-
time occupancy predictions in changing environments,” in Proc. IEEE Int.
Conf. Robot. Autom., 2019, pp. 4091-4097.

M. Schreiber, V. Belagiannis, C. Gliser, and K. Dietmayer, “Motion esti-
mation in occupancy grid maps in stationary settings using recurrent neural
networks,” in Proc. IEEE Int. Conf. Robot. Autom., 2020, pp. 8587-8593.
M. Schreiber, V. Belagiannis, C. Glser, and K. Dietmayer, “Dynamic
occupancy grid mapping with recurrent neural networks,” in Proc. IEEE
Int. Conf. Robot. Autom., 2021, pp. 6717-6724.

M. Toyungyernsub, E. Yel, J. Li, and M. J. Kochenderfer, “Dynamics-
aware spatiotemporal occupancy prediction in urban environments,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2022, pp. 10836-10841.
H. Thomas, M. G. de Saint Aurin, J. Zhang, and T. D. Barfoot, “Learning
spatiotemporal occupancy grid maps for lifelong navigation in dynamic
scenes,” in Proc. Int. Conf. Robot. Automat., 2022, pp. 484—490.

R. Danescu and S. Nedevschi, “A particle-based solution for modeling
and tracking dynamic digital elevation maps,” IEEE Trans. Intell. Transp.
Syst., vol. 15, no. 3, pp. 10021015, Jun. 2014.

H. Fan, T. P. Kucner, M. Magnusson, T. Li, and A. J. Lilienthal, “A dual
PHD filter for effective occupancy filtering in a highly dynamic environ-
ment,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 9, pp. 2977-2993,
Sep. 2018.

S. Steyer, G. Tanzmeister, and D. Wollherr, “Grid-based environment
estimation using evidential mapping and particle tracking,” IEEE Trans.
Intell. Veh., vol. 3, no. 3, pp. 384-396, Sep. 2018.

R. P. S. Mahler, “Multitarget Bayes filtering via first-order multitarget mo-
ments,” IEEE Trans. Aerosp. Electron. Syst., vol. 39, no. 4, pp. 11521178,
Oct. 2003.

B. Ristic, Particle Filters for Random Set Models. Berlin, Germany:
Springer Publishing Company, Incorporated, 2013.

B. N. Vo, S. Singh, and A. Doucet, “Sequential monte carlo methods
for multi-target filtering with random finite sets,” IEEE Trans. Aerosp.
Electron. Syst., vol. 41, no. 4, pp. 1224-1245, Oct. 2005.

B. Ristic, D. Clark, and B. N. Vo, “Improved SMC implementation of the
PHD filter,” in Proc. Int. Conf. Inf. Fusion, 2010, pp. 1-8.

G. Casella, C. P. Robert, and M. T. Wells, “Generalized accept-reject
sampling schemes,” Lecture Notes-Monograph Ser., vol. 45, pp. 342-347,
2004.

R. B. Rusu, “Semantic 3D object maps for everyday manipulation in
human living environments,” KI-Kiinstliche Intelligenz, vol. 24, no. 4,
pp. 345-348, 2010.

G. Chen, P. Peng, P. Zhang, and W. Dong, “Risk-aware trajectory sampling
for quadrotor obstacle avoidance in dynamic environments,” I[EEE Trans.
Ind. Electron., vol. 70, no. 12, pp. 12606-12615, Dec. 2023.

Gang Chen received the B.E. and Ph.D. degrees
in mechanical engineering from Shanghai Jiao Tong
University, Shanghai, China, in 2016 and 2022, re-
spectively.

He is currently a Postdoc Researcher with Cogni-
tive Robotics Department, Delft University of Tech-
nology, Delft, The Netherlands. His research focuses
on perception and perception-aware planning for ob-
stacle avoidance.

Wei Dong (Member, IEEE) received the B.S. and
Ph.D. degrees in mechanical engineering from Shang-
hai Jiao Tong University, Shanghai, China, in 2009
and 2015, respectively.

He s currently an Associate Professor with Robotic
Institute, School of Mechanical Engineering, Shang-
hai Jiao Tong University. For years, his research group
was champions in several national-wide autonomous
navigation competitions of unmanned aerial vehicles
in China. In 2022, he was selected into the Shanghai
Rising-Star Program for distinguished young scien-

tists. His research interests include cooperation, perception, and agile control of
unmanned systems.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2024 at 15:16:09 UTC from IEEE Xplore. Restrictions apply.

84

Peng Peng received the B.E. degree in mechanical
engineering from the Harbin Institute of Technology,
Harbin, China, in 2020. He is currently working
toward the master’s degree in motion planning for
swarm drones with the State Key Laboratory of Me-
chanical System and Vibration, School of Mechanical
Engineering, Shanghai Jiao Tong University, Shang-
hai, China.

His research focuses on navigation and motion
planning of intelligent robots.

Javier Alonso-Mora (Senior Member, IEEE) re-
ceived the Ph.D. degree in robotics from ETH Zurich,
Zurich, Switzerland, in partnership with Disney Re-
search Studios, Zurich, Switzerland.

He is currently an Associate Professor with the
Delft University of Technology, Delft, The Nether-
lands, where he leads the Autonomous Multi-robots
Lab. He was a Postdoctoral Associate with Com-
puter Science and Artificial Intelligence Lab, Mas-
sachusetts Institute of Technology, Cambridge, MA,
USA. His research interests include navigation, mo-
tion planning, and control of autonomous mobile robots, with a special emphasis
on multirobot systems, mobile manipulation, ondemand transportation, and
robots that interact with other robots and humans in dynamic and uncertain
environments.

Dr. Alonso-Mora is an Associate Editor for IEEE TRANSACTIONS ON
ROBOTICS and Springer Autonomous Robots. He was the recipient of a talent
scheme VENI award from the Netherlands Organization for Scientific Research
(2017), the ICRA Best Paper Award on Multi-robot Systems (2019), and an ERC
Starting Grant (2021).

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Xiangyang Zhu received the B.S. degree in auto-
matic control engineering from the Department of
Automatic Control Engineering, Nanjing Institute of
Technology, Nanjing, China, in 1985, and the M.S.
degree in instrumentation engineering and the Ph.D.
degree in control engineering from Southeast Univer-
sity, Nanjing, China, in 1989 and 1992, respectively.

He is currently a Chair Professor of mechatronics
and the Director of Meta Robotics Institute, Shanghai
Jiao Tong University, Shanghai, China. His research
interests include wide range of topics in robotics
and the cross-disciplinary technology of biomechatronics, including robotic
manipulation planning, neuroprosthetics and neurointerfacing, human—machine
hybrid systems, and soft robotics.

Dr. Zhu was a recipient of a number of awards including the National Science
Fund for Distinguished Young Scholars from NSFC, in 2005, and the Cheung
Kong Distinguished Professorship from the Ministry of Education, in 2007. He
is serving on the editorial board of IEEE TRANSACTIONS ON CYBERNETICS and
Journal of Bionic Engineering.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2024 at 15:16:09 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

