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Verifying FreeRTOS; a feasibility study

C. (Kees) Pronk

Delft University of Technology, The Netherlands
c.pronk@tudelft.nl

Abstract. This paper presents a study on modeling and verifying the
kernel of Real-Time Operating Systems (RTOS). The study will show
advances in formally verifying such an RTOS both by refinement and by
model checking approaches. This work fits in the context of Hoare’s ver-
ification challenge. Several real-time operating systems will be discussed
including some commercial ones. The focus of the latter part of the pa-
per will be on verifying FreeRTOS. The paper investigates a number of
ways to verify this operating system. A preliminary set-up of verifying
FreeRTOS using model checking is presented.

1 Introduction

A software product should meet all of its requirements and fully conform to its
specification. Testing and other quality assessment techniques can only help to
approach this goal [17]. Proving that a piece of software will always work ac-
cording to its specification requires the use of formal methods. Two approaches
to using formal methods exist: correctness by construction [28] and post facto.
The first approach can be used to construct an implementation starting from an
abstract formal specification. This technique is sometimes referred to as refine-
ment and relies upon the use of theorem provers. The second approach, often
called verification, extracts a model from existing code and uses state based
technologies like model checking to determine the correctness of the model.

Tony Hoare has proposed a Grand Challenge project (GC6) [22], whose long-
term vision is to develop methodologies and a set of automated tools that can
be used to verify whether a piece of software meets its requirements [8]. One of
the steps towards the realization of this vision is to build a repository [57] of
formalized software designs and verified implementations, which can be used to
test and develop the before mentioned tools.

The first case study carried out for the Verification Grand Challenge was
Mondex [57], a smart card functioning as an electronic purse. The second case
study was the POSIX-like file system suggested by Gerard Holzmann at the
VSTTE conference in Zürich in 2005 [58]. The author of the present paper con-
tributed to that goal showing how model checking could be used to prove the
correctness of a Flash file system in the presence of power failures [51]. Further
case studies in GC6 involve a Cardiac Pacemaker [36, 41] and the verification of
the kernel of the FreeRTOS Real-Time Operating System.
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Verifying a real-time system (RTOS) is considered difficult for many reasons.
An RTOS creates and operates on a number of concurrent user tasks, promises
to schedule those tasks within guaranteed time-limits using some priority mech-
anism, guarantees non-interference between these tasks and between the tasks
and the kernel, allows these tasks to communicate using queues, synchronizes
these tasks using mutexes or semaphores, and interacts directly with hardware
through device drivers, clocks and interrupt mechanisms. An RTOS usually con-
sists of a kernel mostly programmed in the C language and some assembler; the
kernel heavily uses dynamic constructs like lists accessible through pointers. An
excellent overview of the issues involved can be found in [29]. Each of these topics
has already been formally investigated in isolation. Nowadays, full verification
of an RTOS is slowly becoming feasible.

This paper does not target pervasive verification of the whole system stack
consisting of hardware, compilers and the kernel but concentrates on verification
of the kernel itself. This paper also does not target timing overhead verification
of particular operating system functions such as context switching time. Such
verifications are too much dependent upon the particular hardware used. Inter-
ested readers are referred to [13]. Instead, the paper presents an overview of the
issues involved in verifying a real-time kernel, discusses the levels of verification
technology available and tries to set up a course to do formal verification using
one particular technology (model checking).

The focus of the latter part of this paper will be on verifying FreeRTOS. Sec-
tion 2 discusses the structure of the FreeRTOS source code and run-time model.
Section 3 explains which methods can be used and have been used to embark on
the verification task. This section also mentions related work in this area. From
this section a preferred method will be chosen for further development. Sect. 4
presents the current state of the project and discusses further steps to be taken
and Sect. 5 summarizes the paper.

Reservation: In an overview article like this, simplifications and shortcuts are
inescapable. The reader is referred to the literature references if in doubt.

2 What is FreeRTOS?

Cited from the web page: ”FreeRTOS1 is a portable, open source, royalty free,
mini Real Time Kernel. It is a free to download and free to deploy RTOS that
can be used in commercial applications without any requirement to expose your
proprietary source code. It has been downloaded more than 77,500 times during
2008. FreeRTOS is the cross platform de facto standard for embedded micro
controllers” [5, 6].

The kernel of FreeRTOS has been written in C (2500 lines of .c-files, 800
lines of .h-files and some 100 lines of assembler). These are real lines of code; not
comments. FreeRTOS has currently been ported to 24 different microprocessor
architectures; ranging from ’minimal’ 8-bit architectures to full blown 32-bit

1 Several (RT)OSes may be protected by trade marks. The reader is referred to the
respective web-sites.
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architectures. Depending upon the architecture, the kernel is compilable on 14
different compilers. Depending upon the application at hand, the user can include
or exclude facilities like mutexes, tracing and scheduling mechanisms.

The source code is heavily parameterized upon the above items using the
include mechanism of the C-language which makes extracting a proper subsystem
to be used for verification a bit cumbersome.

A verified/validated version of FreeRTOS is commercially available upon
request. SAFERTOS [46] has been certified for the following standards: IEC
61508 [25], FDA 510K [19] and DO-178B [45].

In order to better understand the complexity of full verification, a number
of features of the FreeRTOS kernel is given below:

– Multiple tasks with priorities exist; tasks may be created in run-time. Corou-
tines with priorities are optionally available too. The scheduler uses priori-
tized preemptive or cooperative mechanisms to schedule those tasks. Tasks
are synchronized by binary and counting semaphores and mutexes (w/w.o.
priority inheritance).

– Lists of ready/suspended/blocked tasks involve heap storage, pointers and
type casts. Dynamic memory management uses malloc() and free(). User
definable communication queues allow for thread-safe FIFOs.

– The stack-size has been preconfigured for each task.
– The kernel controls hardware registers, timers and listens to interrupts.

The FreeRTOS documentation also defines an API programmers may use to
invoke the functionality provided by the kernel. The kernel seems to have been
originally developed for a small system not supporting memory protection and
is therefore an example of a previous generation of real-time operating systems.
Memory protection has been added recently for the new Cortex-M3 processors
but will not be discussed here. Modern micro-kernels as discussed in Sect. 3.6
are based upon memory protection schemes but usually have larger code sizes
than the FreeRTOS kernel.

3 Verification methods and related work

3.1 What to prove?

Before embarking upon a detailed discussion on methods usable for verification
of a real-time operating system, a sketch of some categories of properties to
verify and some examples of those are given. The categories indicated below
will be used while comparing various methods to verify the kernel. It should
be emphasized that checking a real-time operating system (OS) for functional
correctness only, is considered insufficient. Any real-time properties of such an
OS should be specified and verified as well.

Functional correctness The implementation can be proved correct w.r.t. an
abstract specification. Often, the specification only describes the functional
properties of the system.
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Problems of the implementation language such as:

– Pointer problems like null pointer dereferences and pointer aliasing,

– Memory allocation problems (e.g. memory leaks),

– Use of unspecified language issues such as expression evaluation order,

– Arithmetic problems such as overflow.

Timing properties show that a real-time system indeed schedules tasks ’on-
time’, e.g.:

– A task scheduled to run at moment t will run at moment t ± ∆t.

– Interrupt latency time: the time interval from the occurrence of an in-
terrupt to the effective execution of the interrupt handling code should
be less than some specified value.

As stated earlier, verifying these properties is outside the scope of this paper.

Safety properties (a.k.a. reachability properties) are used to prove the ab-
sence of bad events, e.g.:

– Is deadlock possible in the scheduling mechanism?

– Are queues indeed thread-safe?

– Is mutual exclusion guaranteed?

Liveness properties show that a good event will happen eventually, e.g.:

– A task having been scheduled will eventually be executed.

Fairness properties such as:

– A task scheduled infinitely often will be executed infinitely often.

The latter three categories will, somewhat incorrectly, be referred to as ’tem-
poral specifications’.

In the sequel a discussion of various methods used for formal verification will
be given. Section 3.2 discusses verification by means of refinement proofs and
Sect. 3.3 will focus on state based verification. As these state based methods
lead to so-called state explosion, various ideas to cope with that problem are
described in Sect. 3.4. Another approach is translating existing kernel code into
a more abstract description. This is the subject of Sect. 3.5. Section 3.6 will
discuss some commercial RTOSes which claim to have been verified.

3.2 Refinement methods and proofs

Using the refinement approach, first an abstract specification of an RTOS is
created. Then, a refined version (the concrete specification) is created. The two
are related by a so-called abstraction relation. Proofs are needed to show that the
concrete specification correctly represents the abstract one. Multiple refinement
steps toward an executable language may be needed. Various tools are available
to prove the system correct. Generally speaking, these proofs are performed
by automatic theorem provers but steering these proofs requires considerable
interactive user expertise. Three entries known to the author are:
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The approach by Craig. In [14, 15] Craig describes in an extensive effort the
full refinement of an RTOS using the Z notation [49]. He starts off by abstracting
the µC/OS of Labrosse [31]. This kernel is similar to the FreeRTOS kernel in the
sense that there is no distinction between kernel space and user space. Device
drivers are also not discussed. The abstract specification is refined by formal
reasoning in one or two steps into Z specifications that can, according to the
author, be readily implemented. However, this seems too optimistic: all data
types are (still) of type N, there is no heap size checking and the total size of
the level 2 spec is approximately one-sixth of the size of the FreeRTOS code.
Checking the temporal specifications as in Sect. 3.1 seems infeasible. L. Freitas
further detailed and corrected this work in [20].

The approach by Klein et al. In [30, 59] many authors describe a monumental
effort to develop a round trip engineering project. They start with the C-code of
the seL4-kernel, a high performance micro kernel and a further development of
the L4 micro kernel [35], and transform the code into an abstract specification in
Isabelle/HOL. The specification is then refined into an executable specification
in Haskell [52]. In a second, manual, step the Haskell code is refined into a high
performance C implementation. The theoretical background of the project is
partly based upon separation logic [53, 54]. Particularly impressive is the almost
complete handling of the C-language, including the areas where the language
standard allows more than one interpretation. The effort is quite large; to verify
8700 lines of C code, more than 150,000 lines of proof script were needed. The
whole project took some 30 man years. The authors consider the cost of their
approach being less than the cost of an equivalent formal development according
to industrial standards. The project concentrated on functional correctness and
correct handling of C. Little could be found on proving temporal properties (see
Sect. 3.1).

The approach by Déharbe et al. In [16] the authors describe the same
subject as this paper: the GC6 FreeRTOS project. They analyze FreeRTOS by
hand and construct specifications of the task and queue models. They use the
B-method [1, 48] to construct a set-based abstract specification. The approach is
similar to the one by Craig described above. Their initial specification leaves task
priority undefined; in a later refinement they introduce priority in the system.
For the system described, 49 interactive proofs are needed. The paper men-
tions difficulties foreseen when refining towards pointer constructs but is quiet
about further refinements towards control of I/O-devices, interrupts and context
switches. The paper clearly describes ’first steps’ towards verifying FreeRTOS.
It remains unclear from the paper whether the whole range of temporal proofs
as described in Sect. 3.1 can be handled.

Refinement technology enables the user to refine operations and data struc-
tures into more ’detailed’ ones. After a refinement step has produced a stateful
(sub)-system, tools checking state properties such as model checkers may be used
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to prove relevant temporal behaviour of the (sub)-system. A tool set having an
integrated approach in this area is ProB [43].

However, refinements are usually done on indivivual operations and data
structures. This requires reiterating the checking of temporal specifications af-
ter each refinement step. Little seems to be known about refinements having
introduction rules spawning or refining temporally correct (sub)-systems.

3.3 State based methods

Contrasting with refinement based approaches, state based approaches (such
as model checking) usually start from an existing implementation. Properties
are being proved over the implementation. Such properties can be proved using
classical model checkers or so-called SAT-solvers.

The implementation tested can be written in (C) code or in some abstraction
of it, written in the modeling language of a model checker. In this paper, the
Spin system [23] and the Promela language will be used; many other systems
and languages do exist but will not be elaborated upon here due to lack of space.

Languages for model checking allow the programmer to (dynamically) create
processes; for each process an automaton is constructed. During model check-
ing, the model checker will probe all possible interleavings between the processes
exposing implementation errors that cannot be found using regular testing ap-
proaches.

To enable proofs of required properties, such a modeling language is usually
quite restricted in its data and control structures. Properties to be proved are
given in a (temporal) logic (propositional logic, predicate logic, Linear Tempo-
ral Logic (LTL), Computation Tree Logic (CTL), Timed-CTL (TCLT))2. The
model checker combines the automaton and the property specification and pro-
vides either a proof that the system indeed conforms to the specification or a
counterexample showing a path leading to the error.

The model checker combines the automatons describing the processes into
one automaton; the size of the resulting automaton being the product of the
sizes of the constituting automatons; this is referred to as state explosion. Due
to this problem, checking C code directly used to be next to impossible. Recent
developments lessen this problem as indicated in various papers below.

3.4 Abstraction based approaches

Performing model checking directly on C-code looks like a interesting proposal.
Unfortunately, the state space resulting from a direct translation of C-code into
an automaton is likely to explode already on small examples due to recursion
and pointer constructs. Various authors have tried to remedy that situation by
restricting the search procedures and the power of the query language. Usually,
these systems have a limited search depth and use heuristics to search only in

2 The reader is assumed to be familiar with these logics. Otherwise, [3] will provide
an excellent introduction.
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areas where the programmer expects an error. Figure 1 shows how the search
depth of a tree can be restricted to reduce the search space. Unfortunately, in
software verification, error traces are often quite long and therefore a large bound
is needed; otherwise errors may be missed.

One way to reduce the size of the verification model is by applying the tech-
nique of predicate abstraction. This so-called CEGAR (Counter Example Guided
Abstraction Refinement) method was introduced by Clarke et al. [10] and heavily
used in SLAM (see below). Predicate abstraction abstracts the data by keeping
track of certain predicates on the data, leaving the control flow of the code un-
changed. Each predicate in the concrete program is represented by a Boolean
variable in the abstract program; the original data are eliminated. The abstract
model and the (reachability) property are passed onto the model checker. If the
property is proved correct on the abstract model, it is also correct on the con-
crete model. The abstract model has more behaviours than the concrete model.
Therefore, a property shown to be false on the abstract model may be a spuri-
ous counterexample. A number of refinement steps may be needed to resolve the
issue. In these approaches however, the query language is limited, e.g. only asser-
tions and deadlock detection are supported and the expressivity of the programs
is often reduced by disallowing e.g. threading and/or mutexes.

Fig. 1. Partial checking, limited search depth and specific search area

StEAM. The StEAM model checker is an assembly level model checker [34,
37]. C-code is translated into code for the IVM (Internet Virtual Machine) in
a manner similar to the approach used by JPF (Java Path Finder) sketched
in Sect. 3.5. According to both papers, deadlocks and assertion violations can
be detected. A particular problem of the approach is that StEAM uses a pro-
prietary system of threads and locks. The examples given are small sized: the
philosophers, leader election and bounded buffer protocol.
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CBMC. In Bounded Model Checking (BMC), the transition relation for a state
machine and a property specification are jointly unwound to obtain a Boolean
formula that is tested for satisfiability by using a SAT-solver. If the formula is
satisfiable, a counterexample is extracted from the SAT output.

Clarke et al. [12] report on their development of CBMC (Bounded Model
Checker for checking C programs). Their C sub-language supports pointers, dy-
namic memory allocation, recursion and the float and double data types. The
tool is able to proof safety properties such as correctness of pointer constructs,
array bound checking and checking of user provided assertions. There is no sup-
port for concurrency and interleaving. The paper is silent about the size of the
programs the tool can handle.

In another paper [11], the authors discuss the behavioural consistency of C
and Verilog programs. This paper is hardware verification oriented. An interest-
ing feature in this paper is the translation of LTL formulae into C code. The C
code is then merged with the program code and fed to the SAT solver.

Rabinovitz and Grumberg [44] extend the previous approach to handling
threaded C programs. Their work is based upon CBMC [12] extended with
threads and mutexes. The system allows dynamic generation of threads; the
number of threads can be interactively increased until a bug is found or until
the SAT solver explodes. In order to obtain results, the number of allowed con-
text switches had to bounded. Using this technique, they can detect races and
deadlocks invalidating safety properties. The size of the programs tested is quite
limited; they report results on testing a concurrent implementation of bubble
sort.

Schlich and Kowalewski [47] report on their use of the CMBC system for
testing micro controller software. They discover two major problems: (a) Direct
access to memory locations, as needed for I/O operations, gave rise to compiler
errors. This problem could be solved by some rewrites of the C-code, but not
in a generic way for a range of microprocessors. (b) The loop unrolling needed
for CBMC-like testing did not handle infinite loops as are prevalent when an
I/O device has been signaled and the driver is waiting for the device to respond.
This problem is due to the lack of concurrency in CBMC. The authors decided
to develop their own model checker [MC]SQUARE. This model checker checks
the machine code; uses CTL and user provided asserts.

F-Soft. F-Soft [26] can be seen as a further development of the CBMC ideas.
The tool has been used primarily for verification of sequential programs. It ver-
ifies reachability properties on labeled statements and programming errors such
as array bound violations, null pointer dereferences, memory leaks etc. The tool
optionally supports predicate abstraction.

The C program is translated into a finite state representation. Heap memory
is modeled as a finite array; malloc() returns an index in the array. Two case
studies are presented: a verification of a part of the PPP protocol and a verifi-
cation of a TCAS component. The latter one consisted of the verification of a
preprocessed C program of 1652 lines. The number of predicates needed for veri-
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fication seems to have stressed the system. The authors remark that the absence
of loop unrolling made F-Soft scale better than CBMC on larger programs.

SLAM The SLAM system (see [4] and references therein) builds upon the
above mentioned CEGAR technology and Boolean abstraction of programs to
deliver a tool for static device driver verification; in particular for Windows
operating systems. SLAM focuses on stateful APIs: APIs requiring a certain
temporal ordering of API function calls. E.g.: a file must be opened before it
can be written into. A device driver to be tested for API conformance needs to
be enclosed in an environment. Driver entry points should be called from a test
harness mimicking the operating system. As drivers may call other (Windows-)
functions, these must be replaced by stubs. SLAM is currently regularly being
used on all Windows device drivers and reportedly has greatly contributed to
the robustness of Windows.

3.5 Translation based approaches

As checking the C language gives rise to many problems, several authors have
proposed translations to various, more abstract, languages.

Translation to Java. As the C-language and the Java-language have much in
common, translating the kernel into Java seems a viable option. The resulting
Java code can then be tested using the Java Pathfinder system (JPF) [18]. Diffi-
culties regarding the translation of pointers and heap structures seem to disap-
pear except for those places where void pointers are used to simulate genericity.
However, mapping the concurrency mechanism of the RTOS to the Java thread
model seems less intuitive. Inside JPF, the Java code is translated to code for
a Virtual Machine enhanced for model checking. This VM only allows checking
for invariants and deadlock to be performed on the Java program. There is no
support for temporal specifications as discussed in 3.1.

Translation to Uppaal. The Uppaal model checker [55] has been designed to
enable model checking of timed systems. The model checking algorithm is based
upon TCTL, a Timed version of CTL (Computation Tree Logic) [3]. Although
being one of the few model checkers being designed for timed systems, Uppaal
seems to be incapable of checking the code of an RTOS because:

– A Uppaal program consists of state machines and communication channels.
The state machines have to be programmed as nodes and transitions. Trans-
lating the kernel code to such machines cannot be done in a faithful way.

– The Uppaal system can only handle small programs.

– The query language of Uppaal does not allow checking of fairness properties.
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Translation to Promela/Spin. Spin has a restricted facility to include C-
code into a Promela program (Feaver, Modex). In [24], Holzmann, Groce and
Joshi redesign that mechanism. They distinguish between matched data that is
stored both on the search stack and in the state space of the model checker
and unmatched data that is only stored on the stack. A large reduction in the
amount of state space needed is obtained. However, the set-up influences the
architecture of an application by placing state information in a contiguous area
of memory. No examples using pointers are presented. Reportedly, the authors
are able to model check programs that are about 10,000 lines of code.

Using this method to check the FreeRTOS kernel looks very promising. How-
ever, it is unclear how much matched data will be needed in the case at hand
having many pointer operations. A distinctive advantage of this method is that
all features of the Spin model checker (liveness, fairness, multi core operation
and swarm verification) are available. A disadvantage is that the C code inserted
in Promela is executed as an atomic block, disallowing interleaving processes.
Checking FreeRTOS in this way is problematic but the next paragraph describes
a possible solution to that.

In [60], Zaks and Joshi describe another redesign of the same mechanism.
Starting at multi-threaded C code, a typed byte code for a virtual machine is
generated. The Spin system controls the virtual machine, allowing most proving
mechanisms provided by Spin to be used. The paper mainly discusses extending
the partial order mechanism needed. The largest example given is a 2800 line
C program implementing a multi threaded communication system. By allowing
most of the temporal proof mechanisms, this approach is quite promising for
verifying the FreeRTOS kernel except for the dependency upon the pthreads

library which is not appropriate for FreeRTOS.

Gallardo et al. [21] describe an interesting approach using a two dimensional
logic that combines time (control flow) and space (dynamic data structures).
Control flow is specified using an extension of LTL; data is specified using CTL.
Using the extended logic, they use Spin to model check properties of C pro-
grams, including dynamic allocation. By extending the checking of invariants in
LTL, they are able to detect acceptance cycles. Unfortunately, not all temporal
specifications can be tested and the examples given are rather limited in size
(e.g.: list reversal).

3.6 Some verified commercial RTOSes

Apart from the safe companion to FreeRTOS, various other systems claim to
have been formally verified. Presumably the list below is far from complete, but
it is assumed that the systems mentioned will give a good impression of what is
available commercially.

Green Hills Integrity RTOS, WindRiver and QNX. These OSes are
examples of so-called micro kernels. They have been ported to many architectures
and are being used in millions of real-time systems. They have been certified
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according to many standards like IEC 61508 [25], FDA 510K [19], ISO/IEC
15408 [27] and DO-178B [45] to various levels. Many of these standards are
process level standards however; they prescribe the process a developer should
follow to create dependable software. Very few of these standards require the use
of formal methods. An exception is ISO/IEC 15408 at level EAL6 and higher.

OpenComRTOS. This system [40] is advertised as a network centric RTOS
with support for heterogeneous multiprocessors systems and multi core systems.
The system has been ported to many architectures. Most of the C kernel code is
generated and checked according to MISRA [38]. The kernel code is reportedly
much smaller than the competitors’ code. OpenComRTOS is suited for level 3 or
4 SIL applications. Full source code and formal application reports are available
on special contract. The system has been partially verified using the TLA+/TLC
system [33]. Papers on OpenComRTOS by Verhulst et al. are available in [50,
56]. The authors of those papers report that:

– The mathematical notation of TLA (Temporal Logic of Actions) urged them
to work at a higher level of abstraction than e.g. the C-like syntax of Spin
[23] would do, which they considered an advantage.

– TLA/TLC was used primarily as an architectural design tool.
– The TLC model checker declares every action as a critical section, disallowing

the verification of concurrency present in the system. This resulted in an
avoidance of global data structures in the architecture.

– Due to the state explosion problem, the authors were unable to do a complete
check of the kernel; modeling was restricted to certain classes of services
(Ports, Events, Services).

Unfortunately, the papers show little detail about which of the temporal
specifications mentioned in Sect. 3.1 have indeed been checked.

PikeOS. In [42] the authors describe the verification of the PikeOS [7]; a further
development of the L4 micro kernel. The PikeOS web-site states that the kernel is
certifiable to safety-critical standards (DO-178B, IEC 61508 and EN 50128 [9]).
The authors have used the Microsoft Verifying C Compiler which allows them
to formulate contracts and invariants stored as annotations within the source
code. So far, they seem to concentrate on the system call level; an example of a
system call changing the priority of a thread is given. An interesting feature is
the verification of assembly code and hardware semantics.

It remains a bit unclear from the paper how the approach would scale up
towards checking the whole of the kernel. Given the tool used, it seems impossible
to check for the temporal specifications given in Sect. 3.1.

Design rules Many commercial systems advertise themselves as being secure
in some of several ways. Much of this security comes from the proper design of
these systems. A number of good design rules as applied in these systems, is
given below.
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– The kernel certifies that upon initialization, all safety related attributes are
set to a ”known good default” reducing chances of tampering with the kernel.

– The kernel guarantees a fixed budget of CPU time to a task. Similar guar-
antees can be stated for stack space and memory partitioning.

– All accesses to a resource are mediated by the kernel; every access goes
through the same mechanism for verification.

– Resources are protected from implicit sharing; upon releasing a resource, a
user has the option of explicit clearing of all the information.

– To ensure accountability, all events can be time stamped; recorded events
cannot be repudiated with respect to their timing.

– The kernel uses some scheduling mechanism as Rate Monotonic Analysis or
Earliest Deadline First Scheduling to guarantee throughput.

Using such good design principles contributes to the perceived safety of the
system, but is different from formal proofs of correctness. In fact each of these
rules opens up new possibilities for formally proving its implementation correct.

As shown above, many commercially available systems have been (partially)
formally verified. Understanding their conformance to the temporal specifica-
tions given in Sect. 3.1 is not straightforward. Unfortunately, these operating
systems are not open source and few of these verifications are in the public
domain.

4 Further steps

Based upon all the material presented herein, it remains to present a suitable
proposal for verifying the FreeRTOS-kernel. Basically, a choice can be made
between the refinement based approaches and the state based approaches.

Regarding the first category it can be said that, as exemplified in this paper,
much successful work has been done already.

In the category of state based systems, the CBMC-like approaches seem
unsuited to handle the verification of an OS because these approaches have diffi-
culties handling threads, concurrency and loop unrolling problems. An operating
system basically consist of an infinite loop and in the case of FreeRTOS even user
tasks must be programmed as infinite loops. In addition, CBMC-like systems are
usually limited to proving safety properties.

The SLAM approach [4] requires special mentioning here. SLAM targets
correctness of device drivers and in particular the temporal aspects of ordering
of API-calls to a device driver. Some of the work of SLAM is valuable to the
FreeRTOS-work, but the API-part seems less applicable here because FreeRTOS
only has a single API-layer directly accessible from application programs. Check-
ing such APIs involves checking user programs. A test harness containing such
programs is currently unavailable but developing the SLAM technology for users
of the FreeRTOS would be very fruitful. Such a test harness would however give
more credentials to the correctness of the user program than to the correctness
of the FreeRTOS itself.

Pronk – Verifying FreeRTOS; a feasibility study SERG

12 TUD-SERG-2010-042



Testing temporal specifications of an RTOS using a model checker as e.g.
Spin suggests the following two routes:

– The matched data/unmatched data approach by Holzmann et al. [24], ex-
tended by the virtual machine of Zaks and Joshi [60].

– A hand translation from C code into Promela code.

The Holzmann/Zaks approach In this approach some problems are to be
expected, e.g.:

– The dependency upon the pthreads library must be replaced by the more
general mechanism of interrupts and context switching.

– Using this method, many probes must be inserted in the code. Finding a
systematic method to find and insert probes is much needed. The paper by
Andrade et al. [2] will provide some help here.

– Solving the problem of limited concurrency [24].

Translation by hand When C-code is hand-translated into Promela, several
abstraction issues need resolution:

– When verifying FreeRTOS there seems no need to solve the general C to
Promela translation problem as e.g. is done in [60] and there is no need
to solve the general pointer problem. In the FreeRTOS kernel, pointers are
mainly used to construct (doubly) linked lists of a few data types only. The
storage model for the heap may be simulated with an array construct; point-
ers are replaced by indexes as in [26]. This will lead to a faithful transforma-
tion; C-code can be translated (by hand) in a one-to-one way into Promela.
Preliminary experiments show a large state vector however. This is to be
solved by using a special compression mechanism as in [51] in addition to
the mechanisms built into Spin already. If state compression proves insuffi-
ciently effective, a less faithful model without indexes can be constructed.

– In fact, the kernel and all application programs form a sequential piece of
code. Context switching only provides an illusion of parallelism. Real con-
currency stems from I/O devices and interrupts. I/O and interrupts can be
implemented using a very small state space, thus minimizing state explosion.
As a further reduction, limiting the amount of context switches as in [44]
can be tried.

– One particular problem is the difference in atomicity between Spin and ma-
chine instructions. In Spin, every statement is, by definition, atomic (non-
interruptible). With machine code, interrupts can occur on every machine in-
struction; sometimes even inside a machine instruction. Because the Promela
code can be interrupted before and after every instruction, sufficient inter-
ruptible locations are present and no difficulties are foreseen.

– In FreeRTOS, a context switch will save all registers on the stack and later re-
store the previous context. As registers are unavailable in a Spin simulation,
it seems sufficient to reduce stack handling to handling return addresses.
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– The number of Spin data types is quite restricted compared to the number
of C data types. E.g.: C knows about the data types char, signed char

and unsigned char. Promela only has a byte data type which is equivalent
with unsigned char. Promela has no long data type either.

– As the code of the kernel has been programmed quite neatly, few problems
are foreseen. Any problems have to be detected ’by hand’, however. The
rules given in [39] will be most helpful here.

The above approach has been used on a small scale as shown in a web report
on the formalization of the Minix kernel [32].

Currently, both methods mentioned above seem to be the most fruitful ways
forward and both implementations are at this moment being worked on.

5 Summary and further work

This paper has provided an overview on various methods to increase the confi-
dence in the functional and temporal correctness of a real-time operating system.
In particular, proving safety, liveness and timing properties of such an operat-
ing system is considered very important. Both refinement based and state based
approaches have been discussed. In the latter area, two promising techniques,
the Holzmann/Zaks approach and the direct translation of C to Spin have been
selected for further investigation.
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