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Abstract

The advances of the information and communication technology (ICT) brought
changes in the energy distribution domain, introducing the Smart Grid (SG).
In SG, generators, distributors, and consumers communicate in a bidirectional
way. SGs are envisaged to include micro-grids (MG) consisting of distributed
control networks of consumers, prosumers, and the power grid. Two-way com-
munication in MGs allows allocating the produced energy inside a community
of consumers, to decentralize the energy flow. However, challenges arise re-
garding energy sharing, namely: (i) how to balance the demand and supply
inside communities; (ii) are there policies that prioritize among the consumers
while distributing the producers’ excess of energy; and (iii) how to balance the
economic benefit –under a policy– for everyone who participates.

In this thesis, we propose energy allocation strategies (EAS) for MG com-
munities consisting of households that use renewable sources of energy (RSEs).
Our objective is to maximize the energy usage and the cost reduction, under
certain priority policies. Through an in-depth analysis of energy and socioeco-
nomic data of the community, we form groups of households that share similar
characteristics, and we channelize the energy flow at will. We present seven,
simple and optimized, EASs and several consumer priority policies (CPPs).
Our EASs and CPPs are scalable and can meet the specific needs of an MG
community. We evaluate our algorithms and techniques using real data, ac-
quired from a community of 443 households over a year. We show that the
groups of households that we prioritize cover their needs of energy, sometimes
completely, in periods of high energy production. We compare on economic
basis trading energy within the MG and requesting energy form the grid (clas-
sic way). The expenses for prioritized groups of consumers under our EASs
are decreased, up to 50% in certain cases. Further, it is shown that even the
non-prioritized consumers are benefited economically by allocating the excess
of energy.



Preface

When I first came here in the Technical University of Delft, in my mind I
had a diploma thesis on networks. Having finished my previous master with
a thesis on Delay Tolerant Networking (DTN), the track ’telecommunications
and sensing systems’ of the electrical engineering domain seemed suitable to
continue my studies. However, while working as a researcher on DTN, I was
particularly interested in platforms designed for embedded software scenarios,
like IBR-DTN. In addition, the domain of the Internet of Things –basically
the concept of IoT, to put it in its theoretical frame– was always intriguing
for me. Thus, during the second year of my studies here, I decided to make
an internship, in Athens, where I had the chance to fully build, program, and
maintain an IoT-ecosystem of sensors. Before completing my internship, I had
already decided to continue with a thesis in the embedded software group of
TU. So, I contacted VP (Ranga Rao Venkatesha Prasad), and informed him
about my educational background and my intentions. Then, he connected me
with Akshay, and we started working on Smart Grids.

This report describes the methodology and the results of my project in the
domain of energy allocation in a Micro-grid community of households. My
intention was to provide knobs for the control of energy sharing inside the
community, in a decentralized way, respecting at the same time the specific
characteristics that it presents regarding the consumption and generation of
energy.

A paper was written during this thesis, with the title ”Energy Allocation
Strategies for Micro-Grids: Algorithms, Policies and Economical Aspects”. It
is an article of 10 pages, supplemented with 5 pages of algorithms, and it is
submitted for review for the ACM eEnergy 2017 conference.
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Chapter 1

Introduction

This chapter introduces the SGs, and their relation to the RSEs and the ICT.
The problem statement of this thesis is given and the research goals regarding
its solution are stated.

1.1 Electricity generation and ICT

Massive production of electricity by centralized stations continues to grow
since its first inception, in 1882. Small central grids (CG) have evolved into
big international networks of power lines –controlled by several companies–
which provide energy to industry and citizens. It is foreseen that by 2020 net
electricity generation will be increased to the order of 25.8 trillion kWh glob-
ally [1]. The coal, which was used as a source of electricity production by the
first CGs, continues to be used in many stations worldwide. It accounted for
33.17% of the electricity generation in the US in 2015 [2], despite its negative
impact on the carbon footprint. Nowadays, that the effects of the greenhouse
gases on the environment are reported, many developed countries pursue en-
ergy policies to reduce the use of coal and other fossil fuels, by incorporating to
the electricity production energy sources like the sun, the wind or geothermal
heat, which are eco-friendly.

The rise of the RSEs has brought in the spotlight several technologies, used
not only by the industry, but also by individuals, to generate energy, like solar
panels and wind turbines. Individual consumers that –except drawing energy
from the CG– use RSEs to produce energy are called prosumers. Note that
the RSEs are intermittent, usually requiring forecasting (e.g., sunlight for solar
panels). The existing forecasting models [3, 4] study the power generation as
a stochastic process, solved by artificial neural networks (ANN). Nevertheless,
under situations of energy shortage, a prosumer is not guaranteed to be able
to cover his/her needs based only on RSEs. Thus, the CG, being a stable
electricity supplier, is often imperative.

The autonomous energy generation by RSEs led to the need for a system
in which bidirectional communication, between the companies in the power
industry (electric utilities) and the individuals, could take place. However,
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traditionally the energy distribution network is centralized. CGs are primar-
ily used to carry power from a few generators to a large number of consumers.
Thus, the CG has the role of the master and households or industry build-
ings are seen as end-terminals. Because of lack of monitoring, and to improve
energy efficiency, energy utilities modernized the traditional grid by employ-
ing intelligent monitoring, control, and communication to enhance efficiency,
reliability, and sustainability of power generation and distribution networks.
This is popularly referred to as Smart Grid (SG). SGs promote two-way com-
munication between consumers and utilities by deploying a large number of
smart meters. The smart meters collect fine-grained data from the consumers
and provide real-time information regarding energy consumption, to improve
awareness and efficiency in its regulation. The autonomous energy generation
and the bidirectional scheme of communication decentralize the SG, making
it a dynamic energy ecosystem. SG is a distributed control network of small
communities of consumers and prosumers, which are called micro-grids (MG).

1.2 Problem statement and research goals

Recently, there have been few successful implementations of MGs [5, 6]. In
these cases, the households share the excess of energy, trying to balance in
that way electricity supply and demand, in an attempt to decentralize the
energy market. Since then, several research works, which study the potential
of energy negotiation in an SG community using RSEs, have been conducted,
focusing also on the market response [7–10]. The goal of MGs is to allocate
energy between consumers and prosumers while having some policy that pri-
oritizes certain households (or targets). However, allocating excess of energy
from prosumers to consumers is not trivial, because of the following reasons: (i)
energy requirements for individual consumers vary over time, and hence al-
location mechanisms need to be adaptive; (ii) prioritizing certain households
causes bias in the community, hence there is a need to develop fair energy
allocation schemes, (iii) the predictability of the amount of energy that is pro-
duced by prosumers has limits, because weather is variable. Any energy allo-
cation strategy is affected by combinations of the aforementioned challenges.
For example, consider a policy which prioritizes households that require high
amounts of energy (highly deficient). If, for a particular day, the aggregated
amount of generated energy is low, this policy will lead to only a few house-
holds served. Also, note that energy needs are connected to socioeconomic
attributes like household-size. Thus, the allocation of energy should consider
energy consumption/generation characteristics and socioeconomic attributes,
like household-size, income, age, etc.

An EAS defines the way in which the excess of energy of the prosumers is
distributed to (a group of) consumers. Several EASs, proposed recently, span
from simple concepts, such as first in first out (FIFO) [11], to more complicated
techniques, which use Game Theory aspects [12,13]. These algorithms mainly
focus either on allocating the excess to the maximum number of households
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or on minimizing the cost of power that is purchased from the CG. This thesis
focuses on developing novel allocation strategies that consider several energy
and socioeconomic attributes of the consumers. Furthermore, the proposed
EASs aim to achieve fairness, which can be defined for all (or a group of)
consumers in the MG community. Specifically, we try to answer the following
question:
In what way the energy allocation among the members of the com-
munity can be maximized under the constraints imposed?
We propose various algorithms for energy sharing between households and
define policies that prioritize certain members inside the community. The
objective of this work is to increase the potential of a consumer to receive
energy from the prosumers, increasing, at the same time, the welfare of all the
households in an MG.

In this thesis, we follow a three-step methodology. First, we characterize
households, based on their energy consumption/generation and socioeconomic
factors. Second, we present various policies, which prioritize households for
energy allocation. Third, we present strategies (EASs) in order to enable
fair energy allocation between prosumers and consumers. Further, to test the
efficacy of our algorithms, we employ a real-world dataset from 443 house-
holds [14] for a year.

The contributions of this thesis are summed up in the following way:

1. Complete characterization of a household community regarding energy.

• Using unsupervised clustering algorithms.
• Defining temporal characteristics of its members regarding energy

usage.
• Connecting energy clustering with meta-data attributes.

2. Defining priority policies between the consumers with respect to different
service goals.

3. Creating simple and sophisticated algorithms for energy allocation (EASs).

4. Proposing new metrics to evaluate the results of the EASs implementa-
tion in a community.

5. Evaluating our methodology using real, fine-grained energy data and
socio-economic information of 263 consumers and 180 prosumers [14].

6. Comparing the cost between our approaches and the classical non-sharing
approaches.

7. Creating and evaluating two-stage sharing approaches, based on group-
ing households that present similar energy behavior.
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1.3 Organization

A thorough system model of an MG community is presented in Chapter 2,
along with the method to characterize its energy behavior. In Chapter 3, the
priority policies and the energy allocation algorithms are defined. In Chap-
ter 4, we create the metrics to evaluate our methodology and we present the
results of its experimental implementation in a real community. Further, a
comparison of the expenses between allocating the energy and requesting it
from the CG is presented. Finally, in Chapter 5, we draw the concluding
remarks and propose future steps.



Chapter 2

System model and community
characterization

In this chapter, we analyze the model of an MG community (Fig. 1) and
describe the method that is followed to characterize it. Further, we implement
this method in a real household community and the results are presented.

An MG community includes households which use the power line of the
CG to transfer energy, under the dictations of a central controller (CC). The
households present different energy needs which derive from the usage of elec-
trical appliances. As the households differentiate in building size/type and the
residents present heterogeneity in socio-economical terms and preferences, the
energy needs are specific for each of them. Among the households, there is a
group of prosumers, which present energy generation potential through RSEs,
i.e., sunlight, the wind, geothermal heat, using photovoltaic (PV) panels and
wind (or geothermal) turbines.

We assume bootstrapping using sensors that communicate with smart me-
ters and offer fine-grained data on the consumption of household appliances
and the generation of solar panels. These amounts of data are acquired at a
constant frequency and can be used to characterize a household regarding its
electrical energy attributes. In order to characterize a household completely,
we connect our observations with social attributes which are related to several
non-energy characteristics. These meta-data attributes usually affect the en-
ergy characterization of a household. For example, a family with three kids,
probably, consumes more than a young couple.

2.1 Related works

The system model of an MG is proposed in several works [13, 15, 16] with
variations on the entities –CG, controller, prosumers, and consumers– that
compose it.

In [15], the MG community is composed of one provider and several con-
sumers (or subscribers), which use the power line of the CG for energy dis-
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Figure 1: System Model

tribution. The consumers are equipped with controllers. They communicate
with each other and with the provider through LAN and convey information
on their energy needs. This infrastructure allows the development of algo-
rithms, aiming to maximize the energy consumed by every subscriber under a
fair policy.

In [16], a small MG community of 40 households, which use solar power
is presented. Every household is equipped with PV panels, batteries (for
energy storage), and sensors. In every household, sensors measure the amounts
of the energy that is harvested and of the energy that is needed from the
appliances. Energy measurements and battery state information are collected
by an internal controller, located inside every household, which transmits them
–along with predictions on future consumption and generation– to a central
controller. The transmission happens in a separate distribution network from
the CG. The controller is responsible for the priority policy in energy allocation
among the households and for the pricing schemes that are to be imposed.

In [13], solar and wind RSEs are considered. However, the notions of
consumer and prosumer are expanded from the household level to character-
ize whole MG communities. Thus, there are several MGs with generating
potential, which could be characterized either as consumers or as providers,
depending on the difference between their produced energy and their needs.
The energy trading between consumer and provider-MGs takes place on the
power line of the CG, and it is controlled by a central distributor. The distrib-
utor –which is also a storage for the excess generated by the provider MGs–
accounts the historical data of each MG, regarding the amount of excess it
has provided to the system of MGs, in order to assign priorities on energy
allocation. The efficacy of this strategy is evaluated by numerical examples.
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The importance of characterization as means of profiling sensor results,
balancing supply-demand, and decision making regarding energy attributes in
SGs, is recognized in the works of [17–21].

In [17], the households are characterized by the fine-grained data they
offer in consumption terms (thirty-minute granularity over 1.5 years). Super-
vised machine learning algorithms are applied on data streams of appliances’
sensors to define each household’s profile. By data analysis, the authors infer
meta-data characteristics of the households, which relate to housing attributes
(building type), economical aspects (annual income of a family), and social
characteristics (age of occupants).

In [18,19], clustering algorithms are used to categorize the energy behavior
of customers inside groups. By energy profiling, the future needs of an SG
regarding supply and demand can be forecasted, maintaining in that way the
energy balance. In [19], clustering results characterize the consumption state
of households and their potential in regulating their needs. By defining their
temporal dynamics, the households can self-regulate their needs. Thus, they
can improve their consumption level and their load factors, and be led to
reduction in their expenses.

In [20], a holistic clustering attitude is proposed to characterize large data-
streams that change dynamically, and are created by the numerous smart
meters that are involved in an SG. The goal is to enable proper decision-
making on grid sustainability issues, like anomalies, events, and trends. In
[21], clustering is expanded from the level of households, to become the main
means of consumption analysis in industrial parks.

2.2 Micro-grid

We study an MG community in which the entities that negotiate are not
companies or technological centers, but households. Because of this, in our
system model, we focus only on autonomous energy generation by PV, which
is the main means of energy generation for households. Note that if the energy
needs cannot be covered by the generated energy, the deficit is always drawn
from the CG. Thus, without loss of generality, we only consider the excess of
energy and its allocation. In a community of c consumers and p prosumers, let
the group of consumers be C = {C1,C2, ...,Cc} and the group of prosumers
be P = {P1,P2, ...,Pp}.

The power line is mandatory for the functionality of our system model. Ex-
cept for the intermittent nature of the RSEs, which leads to energy shortages,
direct energy sharing presents obstacles regarding infrastructure. The energy
cannot be transferred directly between C and P , as it would be expensive
to have a separate transfer scheme between every possible pair of prosumer
and consumer. Moreover, even if such a system was constructed for models
of a few households, despite the cost, it would be impossible to scale it, as
the possible combinations of pairs increase exponentially with the addition of
new households in the system. The responsibility of applying communication
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schemes on energy allocation between the households is passed to the CC,
which utilizes the CG infrastructure for the actual energy transfer.

In Fig. 1, the CC has direct connection to all the households in order
to route information between them. It keeps information about the energy
needs of consumers and the amounts of energy produced by the prosumers.
As a result, it creates prosumer-consumer pairs for the transfer of energy.
The decision that is taken by the CC regarding any energy transaction is
forwarded to the prosumers and consumers that are involved. However, apart
from being a communication point, the CC can connect directly to the power
line of the CG to store energy in sophisticated EASs, which involve (groups
of) households from both the consumer and the prosumer sides. The total
energy produced by P during every time interval is stored in CC, and then
distributed to C, according to the selected EAS.

2.2.1 Paradigm

In Fig. 1, an optimized case of energy allocation in an MG community is
presented. To begin with, the CC stores the excess of energy –Ee = {E1e,E2e, ..,
Ep

e }– that every individual prosumer of P produces during a predefined time
interval. The amount of excess that is stored in the CC is less than the total
energy that is generated by P , because prosumers present energy needs for
their own electrical appliances, and thus they are not able to allocate the whole
amount of generated energy to consumers. Since storage phase is complete,
the CC accepts information by the consumers regarding their energy needs
–Ea = {E1a,E2a, ...,Eca}– and then it applies the dictated sharing strategy
(EAS) on C. The result is that every consumer-household i ∈ [1, c] accepts
an amount of energy, represented by Eg = {E1g,E2g, ...,Ecg}, to cover its needs
partially, Eig < Eia, or totally, Eig = Eia. This depends on the priority of every
consumer when the EAS is applied.

However, the assignment of priority relations among the consumers de-
pends on their status inside the community with regards to an energy at-
tribute. This status is obtained by defining the relation of every household to
the rest, inside the community. If their status is not defined, the consumers
cannot accept the amount of excess that should correspond to them. Assume
a situation, in which the excess of energy produced, Ee, is to be allocated
to the consumers, C, –which present energy needs Ea– under a policy which
prioritizes certain among them, according to an attribute. If the community is
not characterized regarding this attribute, the status of its consumers cannot
be created. Thus, the priority relation among them cannot be clear. Conse-
quently, the decided amount of excess that is to be given to a consumer k, Ekg,
does not correspond to the real status of him/her in terms of the attribute of
priority (e.g., a highly deficient consumer could accept large amounts of excess
during a low deficient-priority policy).

By characterizing the households of a community, specific groups, with
members that present similar energy trends, are created inside the community.
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Figure 2: Community Characterization

The characterization, based on energy behavior, is important for the energy
allocation procedure, in order to define a consumer priority policy (CPP) be-
tween the consumers or to describe an energy sharing relation between (a group
of) consumers and (a group of) prosumers. After proper characterization, the
produced groups present internal compactness (or homogeneity). They are
consisted of households with low variance regarding an energy attribute.

2.3 Community profiling

In this section, we describe the procedure to transform a community of pro-
sumers and consumers into groups with homogeneous members (see Fig. 2).
The first step in this direction is to sort the energy usage of the households.
The first categorization is made on their potential to generate energy. The
households that are able to generate energy are separated from the rest, as
prosumers. Using the consumption and generation data, we extract the defi-
ciency and excess of energy for every individual household. For a household i,
steady time of measurement t, consumption measurements Conit , and genera-
tion measurements Genit , (i) supposing that the household can cover its needs
by itself, the excess is defined as Eite = Genit − Conit , while, (ii) supposing
that it still needs energy, its deficiency is defined as Eita = Conit −Genit . The
smart meters can provide measurements at high frequencies –every few min-
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utes to every minute. However, the patterns of a family’s daily chores, which
affect the energy consumption behavior of a household, tend to be different on
weekdays and on weekends. Thus, to achieve convergence (and thus stability)
of energy allocation, we smooth the differences in energy by averaging the
electrical measurements over predefined time intervals. In this work, we use
weekly time intervals. The average of an energy attribute, Att, over a time
interval, T , is defined for every household, i, as Atti = (

∑tmax
t=1 Attt

i)/tmax,
where tmax is the number of consecutive measurements that constitute a time
interval T . The average cannot by itself characterize the energy behavior of a
household, as there is no measure of comparison. The energy behavior has to
be defined by comparing with the average results of the other households in
the MG community. For example, a household is described as less or highly
deficient, only related to the rest, and not in general. To associate every
household with the others (inside its MG community), we perform clustering.

2.3.1 Clustering

Clustering is an unsupervised method of machine learning, which uses algo-
rithms to classify households into different levels regarding their attributes. In
our case, the distribution is based on the average values of the attributes of
the households. The number of different clusters, in which the households are
distributed, is dictated by the applied clustering algorithm, either internally
–the algorithm computes them– or externally –we prefix them. The clusters
are characterized by their centroids, which are central values. The households
with values that are closer to a certain centroid than to the others are placed
around it. Specifically, assume that the averaged values for an attribute Att,
over a certain time interval T , are CAtt

T = {CAtt,1
T ,CAtt,2

T , ...,CAtt,c
T },

for the group of consumers C. After clustering, the group is defined as
CAtt

T = ClAtt,1 ∪ ClAtt,2 ∪ ... ∪ ClAtt,m, where m is the total number
of clusters. The same holds for the prosumers, PAtt

T . In this thesis we use
the Expectation-Maximization (EM) algorithm to define the number of clus-
ters for an electrical attribute [22], and to distribute every household to a
cluster. A household is a member only of one cluster for every time inter-
val T ; its cluster characterizes its relation to the rest of the households. For
example, assuming that clusters regarding consumption are set in ascending
order of their centroids, a household which is assigned to consumption-cluster
1 for week 1 is a low consumer, compared to the other households during that
week. The same holds for all the households assigned to cluster 1 regarding
consumption. The distribution of absolute differences, between the members
of a cluster and its centroid, defines the cluster variance. Clusters with high
internal compactness present low variances, as their members are close to their
corresponding centroid.

The above characterization holds for each household only for the predefined
time interval, T , in which the average calculation is made, and it cannot be
used to obtain insights into the energy behavior of households during longer pe-



11

riods of time. As an example, assuming an hour-time interval, clustering would
offer insights for the energy attributes of every household hourly. We would
need to collect twenty-four continuous clustering results to make assumptions
about the energy behavior of each household for a day. We consider the year as
the ideal time period for characterization, because it includes the main reasons
for which the energy patterns of a household vary –all the seasonal changes
and the possible vacations. Although it was possible to average the values of
the energy attributes on a year-basis, and then cluster them, we could not ob-
tain insights about the temporal transitions of the households. In other words,
we could not reproduce the temporal changes in consumption and generation,
which are observed during smaller time intervals, and which are obtained by
clustering. Thus, clustering was employed on week-basis in order to smooth
the weekend and daily variability. To acquire energy consumption/generation
perspective for the households over a year, temporal metrics were used. These
metrics are the temporal membership and the temporal adaptability.

2.3.2 Temporal metrics

Cluster membership refers to the existence of a household in one of the clus-
ters that are defined for an energy attribute and cluster adaptability refers to
the transition that happens between different clusters of the same attribute
between consecutive time intervals (periods of time, in which clustering hap-
pens). For example, a household in week 1 was in consumption-cluster 2 and
in week 2 it was found to be in cluster 1. This household is said to have
performed a Clcon,2→Clcon,1 transition in adaptability terms, being a mem-
ber of Clcon,2 and then of Clcon,1 in membership terms. The terms temporal
membership and temporal adaptability assess the possibility for a household to
be a member of a cluster or to perform a cluster transition. By using percent-
ages, we are able to understand if a certain cluster membership or transition is
more possible than other memberships or transitions for a household, because
it took place more frequently during the year. Thus, for a household i, in a
clustering scheme of a chosen time interval T , its temporal membership for
cluster u over a year is defined as

ClAtt,u,i =
∑Tmax

T =1 ClAtt,u,i
T

Tmax
, (2.1)

ClAtt,u,i
T =

{
1, i member of Clu
0, otherwise,

where Tmax is the number of consecutive time intervals, T , that constitute a
year.

The yearly temporal adaptability of a household between clusters u and v
is defined similarly as

(ClAtt,u → ...→ ClAtt,v)
i,z

=
∑Tmax

T =1 (ClT−z
Att,u → ...→ ClTAtt,v)i

Tmax − z
, (2.2)
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(ClT−z
Att,u → ...→ ClTAtt,v)i =

{
1, if the transition(s) took place
0, otherwise,

where z is the number of consecutive cluster transitions. For example, the
evaluation of the temporal adaptability for the immediate transition Cl3 →
Cl1 uses z = 1, while the evaluation of Cl3 → Cl2 → Cl1 will be performed
with z = 2. Without loss of generality, satisfactory insights on the temporal
adaptability of a household could be drawn also by measuring the total number
of cluster transitions regardless their type, noted as hop-count adaptability.
The logic is the same with (2.2), but z = 1 always and u, v can vary throughout
the year. Thus,

(clAtt,u → clAtt,v)T
i =

{
1, if u 6= v

0, otherwise

Note here that, regarding adaptability, we are interested only in transitions
that pose a beneficial impact on the household that performs them. In con-
sumption and deficiency terms, a transition from high to lower clusters is
considered beneficial, because the household saves expenses. Regarding gen-
eration and excess, low to higher cluster transitions are considered beneficial,
as the prosumer shows his/her potential to generate higher amounts of excess
of energy (than other prosumers inside the community), and this can lead to
higher profit by selling them. Based on temporal membership and adaptabil-
ity, the households are assigned to groups inside the MG community regarding
their energy profile, e.g., a group of highly consuming households is one that
encloses all the households that are members of the highest cluster in con-
sumption terms during a large part of the year. To dictate periods of the year,
under which the households are grouped, we define the theta limits, θm for
membership and θt for adaptability. These are percentage limits –0.25, 0.5
and 0.75– that define four levels for our temporal metrics from 0% to 100%
–low, moderately low, moderately high and high. By solving (2.1) and (2.2),
the households of the community are distributed in these levels for their energy
attributes.

2.3.3 Socioeconomic attributes

The temporal metrics results are combined with meta-data attributes to derive
a complete characterization of the community. There is a variety of them
for the households and they influence the energy attributes. Some of them
refer to a household as a building –its building type or size– and others to
social aspects of a household like the income of its occupants. Moreover, there
are several programs for consumption regulations, designed by companies,
which are signed by families. Some of these programs are designed for low-
income families and others involve strategies like text-feedback or monetary
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Figure 3: Consumption Clustering

incentives. The programs can be used as meta-data attributes, as they reveal
social and energy aspects of the behavior of households. To be more accurate,
we supplement our results with meta-data, obtained by a questionnaire, in
which a part of the households participated. After connecting the meta-data
with the results from clustering, the households are fully characterized, and
prioritization policies can be applied on them.

2.4 Results on a real community

In this section, we evaluate the behavior of a real community of consumers
and prosumers [14], using clustering algorithms and temporal metrics. In
Fig. 3, the smart meter results for the second week of the year, regarding
consumption, are clustered. The EM algorithm has distributed the consumer
households into five clusters. That week, most of the households were in high
levels of consumption; levels increase from c1 to c5. Under the same procedure,
for every week of the year, all the households are clustered on their energy
attributes. Being in a low consumption-cluster is beneficial, denoting that a
household can regulate its consumption efficiently. On the other hand, for
the 180 prosumers, which –apart from consumption and deficiency– are also
evaluated regarding generation and excess of energy, being in high clusters is
beneficial, because it implies high amounts of energy produced (and possibly
allocated inside the community).

Since weekly clustering has taken place, temporal behaviors are evaluated
by the metrics of temporal membership and adaptability. In Fig. 4a and 4b, the
x-axis shows the clusters in terms of consumption and generation respectively;
c1 represents low consumption/generation and c5 represents high. Further,
the position of the clusters on x-axis represents the cluster centroids. The
membership ratio for a household being in a particular cluster, with respect
to the total number of weeks, is θm. In Fig. 4a, about 400 households were low
consumers, out of which about 115 households were in c1 for more than 75%
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(a) (b)

Figure 4: Temporal Membership Behaviors

(a) (b)

Figure 5: Temporal Adaptability Behaviors

of the year (yellow part). Furthermore, the number of households in c4 and
c5 is much less and their overall time of staying in these clusters is also rare,
as seen in the figure. Regarding generation, in Fig. 4b, around a hundred
out of 180 prosumers manage to produce satisfactory amounts of energy –
distributed over c3, c4– for more than half of the year. This is the reason for
the low consumption membership of many prosumers, as they are able to cover
their needs with a part of their generated energy. Note that in generation and
excess terms the first cluster centroid is zero and refers to those households
that possess solar panels but do not generate (excess of) energy for a part
of the year. On temporal adaptability, in Fig. 5a and Fig. 5b, the x-axis
presents the beneficial cluster transitions, i.e., from high to lower clusters in
consumption terms (e.g., c2 to c1) or the opposite in generation terms. As it
is observed, immediate transitions characterized by two cluster difference are
rare, because they demand high regulation potential from the households. As
shown in Fig. 5a, most of the households regulate their consumption between
c1, c2, c3 most of the year, which explains the high number of households in
these clusters in Fig. 4a. Similarly, for prosumers (Fig. 4b and Fig. 5b), we
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(a) (b)

Figure 6: Energy and Socio-Economical Behavior – Building Type

(a) (b)

Figure 7: Energy and Socio-Economical Behavior – Size and Program Enrollment

infer that cluster transitions occur mostly between c2, c3, and c4.
After considering the energy behavior of the households over the year, we

take into account socioeconomic attributes, to add accuracy to the character-
ization. In Fig. 6a and Fig. 6b, three different building types of households
–apartments, single family homes, and town homes– are studied on their tem-
poral membership regarding consumption and generation. It is inferred that
apartments (cyan) cannot generate energy and –along with the town homes
(green)– constitute the lowest consumers in the community. These insights are
complemented with results regarding the size of the households (see Fig. 7a).
As the level of deficiency increases from c1 to c4, the mean of square footages of
the corresponding household members increases. We observed in Fig. 6a that
in high deficiency clusters the vast majority of households are single-family
homes, so we can infer that this is a large and energy consuming type of
households. On the other hand, smaller types of households (apartments and
town homes) are members of lower deficiency-clusters, especially town homes,
as they have many members able to generate sufficient amounts of energy.
As shown in Fig. 7b, households that are enrolled in Verizon –a program for
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(a) Annual Income of consumers (b) Age of prosumers

Figure 8: Household characterization with respect to questionnaire results

low-income families, in which all apartments are enrolled– did not manage to
generate any amount of energy. By connecting this fact with the clustering
results on apartments, it is implied that this type of building characterizes in
general low-income, small, low-consuming households. In the same way, we
study the whole community using graphs that connect energy attributes with
meta-data attributes. For example, the households enrolled in pricing incen-
tive programs (orange) generate energy more efficiently than the rest, thus
they are more reliable for energy sharing. The same holds for those enrolled
in portal programs (red), as they are able to observe the pricing incentive
enrolled households and copy their behaviors. Text-feedback programs are
proven inefficient, because their performances are similar to households that
did not accept any feedback (see control category in Fig. 7b).

The relation between meta-data and energy attributes can be supple-
mented with the results of a survey in the form of a questionnaire in which
a part of the households participated. For example, in Fig. 8a, it is observed
that relatively rich residents tend to consume high amounts of energy. This
can be connected to the fact that they dwell in large households, which in
turn are connected with high consumption membership results. In Fig. 8b, it
is seen that among prosumers that are members in high exess-clusters, the vast
majority is composed of families with members between 18 and 65 years old.
On the other hand, families with young children or elderly often produce low
amounts of excess of energy. This is connected to the relatively high energy
needs that the children and the elderly present.

2.5 Summary

The controller (CC) and the power line (CG) are imperative to any MG com-
munity. The first takes the decisions that decentralize the community from the
classic grid and the second is used to carry out the energy transfer. However,
without the proper understanding of the energy-behavior of the households in-
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side the community, any decision of the CC regarding energy allocation does
not have a stable base. This leads to energy allocation models working on
priority policies which do not represent the needs of the community. By using
energy clustering and temporal metrics –combined with social attributes–, the
complete energy profile of an MG community is created, and thus, the priority
policies that are imposed reflect the real needs of the community.



Chapter 3

Priority policies and energy
allocation

Since the characterization of the MG community is complete, the energy pro-
file of every household is obtained. Then, policies (CPPs) are developed, to
prioritize among the consumers, those who should be served before others (see
order in Fig. 9), or those who should accept higher amounts of energy than
others (see weights in Fig. 9). A priority policy can be based either on energy
attributes or on meta-data attributes. The energy based CPPs that we use
prioritize the high or the less deficient households among the consumers. The
meta-data based CPPs prioritize consumers on (i) the building size, (ii) the
building type, (iii) the annual income of the residents, and (iv) their enroll-
ment in consumption regulation programs. In addition, the priority policy
that is applied can merge energy and meta-data attributes. In that way, the
accuracy of the priority policy is augmented, as both energy and meta-data
attributes are combined. This type of CPP is called two-dimensional, with the
attributes seen as dimensions of the policy (e.g., prioritizing the less deficient
and small households).

Since priority relations are assigned to the households, an energy alloca-
tion strategy (EAS) is applied, to dictate the procedure, in which the CC
distributes the excess of energy among the consumers. Several EASs are pro-
posed in this thesis. They vary (i) on the priority relations under which the

Figure 9: Priority relations and energy allocation

18
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excess of energy is allocated and (ii) on the responsibilities of the CC. The
less complex EASs serve the consumers one by one and use the CC only for
communication purposes –transmitting deficiency or excess information. The
complex EASs first store the excess of energy in the CC, and then distribute
it to (groups of) consumers.

3.1 Related Works

The subject of energy sharing in SGs is approached by different scopes.
The work of [23, 24] focuses on managing the prosumers, to define a clear

role for them during the allocation of energy. By analyzing how direct (inter-
nal) parameters –like energy consumption/generation– or indirect (external)
parameters –like the weather forecasting or the energy market– affect pro-
sumers’ sharing potential, this series of works aims to create energy-sustainable
prosumer communities that exchange excess of energy in an inter-community
level in a smart way.

On the other hand, [15, 25] focus on consumption regulation mechanisms
for utility maximization. The work of [25] refers to a sole consumer, as a part
of a broader group of households. It defines an optimal strategy for demand
response, which relies on regular changes/adaptations of the consumer load,
as a response to the changes in the electricity prices. Quality of demand
response relies on real-time, two-way communication between the consumer
and the energy supplier. The work of [15] refers to a consumer community,
defining an optimal real-time pricing scheme, to maximize consumers’ utility
in a way beneficial to both the community and the energy supplier. This work
evaluates the proposed algorithm using simulation results.

Regarding the allocation strategies followed, the related works span from
algorithms created on simple FIFO concepts [11] to algorithmic schemes of
high complexity, utilizing Game Theory aspects [12,26,27].

In [11], an algorithm based on a FIFO philosophy was created to perform
energy sharing between a group of suppliers and a group of consumers, by using
energy data and supplier-consumer geographical distances. Its goal was to
reduce the energy transmission loss by creating short-distance pairs of supplier-
consumer.

Among several works –referred in [26]–, which relate energy sharing in SG
communities with Game Theory, an interesting approach in the domain of non-
cooperative games is introduced in [27], in which the energy transfer –from
a controller that stores excess of energy to residential units– takes place as a
Stackelberg game. The Stackelberg equilibrium, which guarantees the highest
cost-reduction for both the controller and the group of residential units, is
proven to be reached under a unique distributed algorithm that is proposed
in this work.

Another approach in the field of non-cooperative games involves a group
of consumers, which are seen as opponents, trying to acquire the largest pos-
sible portion from a common energy source –which is controlled by a utility
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company–, in order to cover their needs [12]. The energy allocation proce-
dure is transformed into a Nash non-cooperative game, and it is proven that
the electricity costs, for a community of consumers seen as opponents, are
decreased to their lowest value at the equilibrium point of the game. By us-
ing simulation results, [12] confirms that electricity peaks, energy costs, and
individual charges are diminished.

3.2 Consumer Priority Policies (CPP)

Every CPP is created to serve a particular goal. High deficiency policies serve
the problematic households that cannot regulate efficiently their consumption.
Low deficiency policies aim to serve as many households as possible, because,
being less deficient than others, a household can cover its needs easier. CPPs
which are focused on size are created to connect it with deficiency, and sub-
sequently, to serve households for the same reasons as deficiency-CPPs. It is
interesting to observe the connection between size and energy, and compare
the efficiency of policies based on clustering, like the deficiency ones, against
policies based on meta-data attributes. Also, there is the possibility to follow
a random policy of prioritization, which is more straightforward and works
efficiently in groups of consumers with similar energy attributes.

3.2.1 Relations of priority

The relations of priority that are defined by the CPPs are of two types: (i)
order (RoO) and (ii) weight (RoW).

A RoO arranges C into a sequence, in which the members are served in the
way the sequence dictates. The order-related CPPs impose a FIFO concept
regarding service. The low-complex EASs use RoO because of their simplicity,
as they do not complicate the sharing procedure.

A RoW, on the other hand, is applied when a CPP assigns weights to
the members of C. The consumers are served with the amounts of excess
that are dictated by their weights. In that way, everyone is served (except if
a consumer’s weight is zero), so this type of policies define flexible priorities
between the members of C. The complex EASs, that first store, and then
distribute the excess of energy, are usually applied on consumer groups that
are sorted by RoW. Also, a combination of RoO and RoW can be used.

The CPPs that develop RoO between the consumers tend to serve the
same households during every time interval, because of the FIFO concept that
characterizes them. This leads to unfairness in service in the community.
The problem is augmented in priority policies that are designed for highly
deficient (groups of) households, and in weeks of low excess. To ensure fair
energy allocation, we propose two measures; the λ level of service and the
round-robin mechanism.

The λ level is a percentage limit of service, posed to every household.
When this limit is reached, the next household in the RoO will be served.
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Consequently, more households can accept energy under the same amount of
excess, because the excess of energy is not distributed to the households until
they are fully served, but until a predefined limit.

The round-robin mechanism augments the complexity in energy allocation,
but increases the service diversity, in return. The households that are served
are rotated to the end of the service sequence (moved to the end of the queue).
Their previous positions are taken by the households which followed them in
the previous time interval. For example, assuming a week time interval and
a priority sequence of five consumers, {C1,C2,C3,C4,C5}, if at weekw three
consumers are served, at weekw+1 the priority sequence under the round-robin
mechanism becomes {C4,C5,C1,C2,C3}.

In weight relations (RoW), the exact amount, for which a consumer is
entitled, is defined by the weight of this specific consumer in relation to all
the other consumers of the community. The ratios between the weights of the
consumers dictate the differences in the amount of excess of energy that they
accept. The procedure is dictated by the following equation,

p∑
i=1

Eie = x
c∑

j=1
wj . (3.1)

where, at first, the total amount of excess from the prosumers, during a time
interval, is collected. Then, by using the weights w that are assigned to every
consumer of the group C, the single unit of excess, x, is computed, and every
consumer, j, accepts an amount of energy which corresponds to xwj .

Assume two consumers; C1 and C2. Suppose that we want to prioritize
C1. The weights are higher or equal to 1, because zero weight gives no energy
to the consumer and a weight between 0 and 1 or a negative weight has no
physical value in (3.1). Let us assume two cases. Case 1: w1/w2 = B and
case 2: w′1/w′2 = A, and also A > B. In other words, the prioritization in the
second case is stricter. We will prove that the difference in the accepted energy
between the two consumers in the second case will be higher, for the same
amount of excess. After weight normalization and without loss of generality,
the weights in the first case are B and 1, and in the second case are A and
1, with A > B > 1. The case A > B = 1 is obvious, because the difference
between the accepted energies, for weights w1 and w2, is 0 (the two consumers
accept the same amount of energy excess). We focus on the case A > B > 1.
Let us assume the produced amount of excess is the same for both cases,
sumExc. Thus by (3.1), –assuming x and x′ the corresponding single units of
excess– we have

Ax′ + x′ = Bx+ x = sumExc⇒ x′ = x
B + 1
A+ 1 .

The difference between the accepted energy excesses of C1 and C2 is{
Bx− x, case 1
Ax′ − x′, case 2 (higher ratio).
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{
(B − 1)x
(A− 1)x′

⇒

(B − 1)x

(A− 1)xB + 1
A+ 1

If we divide case 2 over case 1 we have

(A− 1)B + 1
A+ 1

(B − 1) = (A− 1)(B + 1)
(A+ 1)(B − 1) = AB +A−B − 1

AB −A+B − 1

Since A > B > 1 the following hold:

1. A−B > 0

2. B −A < 0

3. AB +A−B − 1 > 0

4. AB −A+B − 1 > 0

5. A−B > B −A

Finally we obtain,

AB +A−B − 1
AB −A+B − 1 > 1.

This confirms that in the second case, where the weight ratio is higher, the
prioritization is stricter, because the difference in the accepted amounts of
energy, between the prioritized and non-prioritized household, is higher than
in the first case. This can be scaled for c consumers, by comparing every
individual ratio of all the possible consumer pairs.

3.3 Energy Allocation Strategies (EAS)

There are two main types of energy sharing strategies regarding complexity:
(i) simple and (ii) optimized.

Simple strategies are less complex and more straightforward in commu-
nication and energy allocation terms. Energy distribution involves pairing
prosumers and consumers. CC is used only for communication purposes. The
excess of energy is transferred through the power line.

Optimized allocation strategies are more complex mechanisms of energy
allocation, where CC –besides routing– also stores energy. Thus, extra infras-
tructure is required for the transfer of energy between the CC and the power
line. At the initialization phase of an optimized EAS, weights are assigned
by the CC to every consumer, according to the CPP that is followed. Then,
the CC performs computations to define the portion of the excess of energy
that is to be sent to every consumer, and redistributes the collected amount
of excess accordingly.
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The cooperation of the CC with every separate household is important.
The households that do not communicate with the CC cannot participate in
the sharing process, because they cannot send information about their needs
or their excess of energy. The EASs –apart from complexity– differ on the
impact that their application has on the community and on every household
specifically. An appendix with all the EASs is given at the end of the thesis
report (see Algorithms).

3.3.1 Simple EASs

Random

In this EAS, all the households are served randomly (Alg. 1), through the
power line. Every prosumer sends information about its excess to the CC, and
the CC picks randomly the consumer to be served. If the consumer is covered
fully, the remaining energy is sent randomly to another. This approach is
the least complex as it does not use any priority policy for the consumers.
It is useful when the consumers share similar energy trends, and thus their
prioritization does not offer any advantage.

Greedy

The greedy algorithm exploits the characteristics of RoO policies. Under this
algorithm (Alg. 2), the CC applies the designated CPP on the consumers,
listing them in a priority sequence in accordance with the goal of the CPP.
The excess of energy is transferred by every prosumer to its corresponding
pair under a FIFO concept, as it is observed in Fig. 9 (order relation). The
λ level of coverage can delimit the deficiency coverage, and thus allow more
consumers to accept energy. The greedy approach on energy negotiation is
the least complex algorithm, among those that work under a priority policy
in order to serve the households. However, the order of service is the same
for every time interval, so the service diversity, i.e., the number of different
households served, stays at low levels. If the intention is to serve only certain
households and the excess of energy is in adequate levels, then applying the
greedy approach is satisfactory.

Round Robin

Often, we need to broaden the group of served households, without changing
the greedy service concept, which is a simple allocation approach. Under
these circumstances, the round robin algorithm maintains the priority given
by the RoO of the CPP, and, at the same time, augments the service diversity
(Alg. 3). This EAS uses the notion of time interval (T ) to reshape the sequence
of households that have to be served, and is initially created by the CPP, in
T = 1. In T = 2, the algorithm pushes the previously-served households
at the end of the service sequence and the sequence is redefined. The greedy
algorithm is then reapplied on the new consumer sequence. This mechanism is
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applied until a fixed number of consecutive time intervals, called Time-Limit,
(TL), passes. This limit dictates the reinitialization of the service sequence.
The value of TL is important for the algorithm, as it dictates the number
of service rounds until reinitialization, and, consequently, the depth of the
service variety. When {T mod TL = 0}, the reinitialization of the consumer
sequence takes place. If TL is close to one, the CPP that is imposed on the
consumers affects the energy sharing in a high degree, because of the frequent
reinitialization of the consumer priority sequence, which leads to the sequence
that was defined by the CPP at the beginning. The extreme case in which
TL = 1 is the greedy approach.

3.3.2 Optimized EASs

Weighted

The weighted algorithm has the lowest complexity among the optimized EASs
(Alg. 4). During every time interval, the total excess of energy, produced
by the prosumers, is gathered by the CC, which forms C into N subgroups,
C = ∪N

n=1Cn, and assigns the same weights, wn, to the consumers of every
subgroup, n. The highest weights are given by the CPP to the groups of
prioritized consumers. The priority policy for this approach is based both
on meta-data (size) and on energy clustering (deficiency) attributes, for aug-
mented accuracy. The total number of groups depends on the cardinality of
groups regarding size and deficiency, in the following way: N = SD, where
N , S, and D, respectively denote the total number of groups, the number of
groups regarding size similarities, and the number of groups regarding defi-
ciency clustering. Then, the amassed excess of p prosumers is distributed to c
consumers, as defined by the equation

p∑
i=1

Eei = x
N∑

n=1
(wnCn), (3.2)

that is a product of (3.1), for

c∑
j=1

wj =
N∑

n=1
(wnCn).

The weighted approach is more fair, regarding service, than the previous ap-
proaches, because the energy accepted by each household is correspondent to
its weight, which is defined by its level of priority.

Nash

Following the use of RoW in order to dictate priorities, in the Nash algo-
rithm, a different weight is assigned to every consumer, and all the consumers
request energy according to their weights from the CC, simultaneously and
continuously. They withdraw only when they are fully served (see Alg. 5).
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The concept behind the Nash EAS relies on Game Theory, and specifically on
the existence of an equilibrium on the choices of the consumers on the allo-
cation of energy. Assuming (a group of) consumers without personal interest
in cooperating to share the excess of energy, their natural approach towards
the aggregated excess is standard, in order to receive the maximum possible
amount of excess they can be entitled to. Also, supposing that a consumer
decides not to ask for excess during a certain time interval, the part of energy
that would (possibly) be allocated to him/her is distributed to the rest of the
consumers. Thus, any other choice besides asking for energy harms a con-
sumer. Seeing the consumers as players in a non-cooperative game of energy
allocation, the situation in which they are led –where everyone is bound to
a certain decision– was described by John Nash as an equilibrium [28]. At
the initialization phase, different weights, w, are assigned to every consumer
according to the CPP that is imposed. Then, the CC, which holds informa-
tion on the deficiency of every consumer, defines their ratios of deficiency over
weight, called heights of service, H,

H = Ea
w

(3.3)

In this approach, all the households have different weights, which are assigned
according to the CPP –contrary to the weighted approach, where all the mem-
bers of the same group have the same weight. In that way, the excess of energy
that is accepted by each individual household fits to its needs and reflects its
specific energy and socioeconomic characterization. In addition, the behav-
ior of the community under this approach is the most realistic, because the
households tend not to cooperate in energy sharing terms.

Water Filling (WF)

The WF algorithm is designed to combine the given RoW and the deficiency
needs of every consumer, to create RoO between the households. At the ini-
tialization phase, different weights are assigned to every consumer by the CC,
according to the CPP that is imposed. Then, the CC, which has information
on every consumer’s deficiency, defines their heights of service, H. However,
in this EAS, the CC arranges them in ascending order, which becomes the
order of service for the consumers. The difference between this algorithm
and the Nash EAS is that not all the consumers are permitted to make en-
ergy requests simultaneously. Assume that the transferred excess of energy
is added on top of the height of service, H, of every consumer as additional
height, h = Eg/w. As the CC commences the energy sharing procedure with
the first consumer in the order of service, it transfers excess to it. So, its
h1 level increases until a point, in which h1 = H2 − H1. At that point of
time, and assuming there is enough excess of energy, the CC starts transfer-
ring excess also to the second consumer in the order, until the moment when
h2 = H3−H2 = h1−(H2−H1)⇒ h1 = H3−H1. The procedure continues until
every need is covered or until the total energy excess is depleted. A consumer
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j is withdrawn of service only when he/she is fully covered (hj = Hj). For two
consumers, j and l, with Hl > Hj , it is also possible that Hl −Hj > Hj , and
thus the consumer j is fully covered before l starts requesting for energy. The
number of consumers that are served simultaneously at any time instance is
l + 1 − j, where j is the most and l the least prioritized among them. These
consumers are served simultaneously as long as they present equal sums of H
and h. The generalized form of the way of service of WF EAS, for a number of
c consumers by p prosumers, is described by Alg. 6. The WF approach is the
most complex and demanding among the EASs, as it requires constant coop-
eration between the consumers, more computations from the CC, and updates
of the consumer sequence of service at the beginning of every time interval.
As it is inferred by Alg. 6, many consumers are fully covered before others
even commence their energy requests. The WF algorithm is influenced by the
domain of Information Theory, and specifically by power allocation in parallel
Gaussian channels of different capacities [29, 30]. The major difference in our
case is that the households present finite needs of energy, while the channels
are receptive to an infinite amount of power –if it existed. Every consumer
household has a priority in relation to all the other consumers in the commu-
nity, regarding both its deficiency and its weight. This approach combines the
service accuracy of approaches that use RoW and the households-cooperation
of the approaches the use RoO. Thus, it guarantees high levels of community
welfare.

Pareto

In Pareto EAS, there is no CPP applied among consumers. This EAS uses
the λ parameter which was defined to pose a limit in deficiency coverage.
However, the usage of λ in this EAS is to set a limit of service, under which,
every consumer k covers the same percentage of its needs, Ekg/Eka, (Alg. 7).
During every time interval, the CC acquires information on each household’s
deficiency and gathers the total amount of excess. In a game, an outcome is
characterized Pareto optimal when it cannot be improved, unless at least one
of the players is harmed [31]. The Pareto EAS guarantees equal percentages of
deficiency coverage to the consumers, by utilizing the whole gathered amount
of energy excess. Since there is no more energy to distribute for a certain time
interval, any other transfer, apart from the dictated by the λ level, leads to
harming at least one consumer, by lowering his coverage percentage. Pareto
EAS is a low complexity algorithm that could not be characterized optimized
by itself. However, it is never used solely on a consumer group. It is employed
in cooperation with other optimized algorithms like the Nash or the WF EAS,
in two-stage approaches on energy allocation, which will be analyzed further
in this section.
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Table 1: Simple EASs in ascending complexity

Random Greedy Round-robin
RoO Served households Rotation

Service list Reinitialization
Table 2: Optimized EASs in ascending complexity

Pareto Weighted Nash WF
RoW Separate Weights RoO on Service Heights
Group Forming Service Heights

3.3.3 Complexity

The decision of the proper EAS for a community is influenced by the com-
plexity in its mechanism. In Table 1 and Table 2, the EASs are presented in
an order of increasing complexity (from left to right), with the basic charac-
teristics that augment it being stated.

3.3.4 Two-stage approaches

Until this point, the EASs are applied between P and C inside the MG-
community. In two-stage approaches, we focus on the same EASs. However,
after community characterization, we create groups of consumers and pro-
sumers, regarding similarities in energy and socio-economical attributes, be-
fore the commence of the energy sharing phase. Then, either we form pairs
of prosumer-consumer groups, and EASs are applied strictly between them,
or we apply one EAS-CPP to distribute the total excess of energy to the con-
sumer groups (inter-group distribution) and another EAS-CPP to distribute
the corresponding accepted excess inside every group (intra-group distribu-
tion). The advantage of grouping approaches is the application of different
EASs, which fit the needs of every consumer group. By forming groups in a
heterogeneous community of households, we create small teams with high in-
ternal compactness. Due to the homogeneity of these teams, applying a CPP
in energy sharing is possible to be redundant; thus a random or a Pareto EAS
would perform efficiently. Ultimately, this is beneficial in complexity terms,
because of the simplicity of sharing mechanisms that do not prioritize among
the consumers.

3.4 Summary

The insights and implications about the energy behavior of an MG community
(see Chapter 2) offer the proper base for deployment of priority policies among
the groups of consumers. These policies define the impact of service of the
prioritized households, and are used by strategies that allocate the excess of
energy inside the community. Since the energy needs inside an MG commu-
nity differ, heavily affected by the socioeconomic background of its members,
there is no optimal strategy for energy allocation. However, we have developed
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seven strategies (EASs) –simple to highly optimized. After the complete char-
acterization of an MG community, we are able to choose the proper strategy of
energy allocation. The one that: (i) fits the priority policy we need to impose,
(ii) maintains the level of complexity we prefer, and (iii) suits the needs of a
household community.

In the next chapter, we will define metrics to measure in quantifiable terms
the efficacy of each EAS under different aspects of energy allocation, simplify-
ing in that way the procedure of choosing the ideal strategy for different MG
communities.



Chapter 4

Experimental evaluation and
implementation

In this chapter, we experimentally evaluate the performance of the algorithms
and policies that were analyzed in Chapter 3. To achieve this, we introduce
a real community of households, Pecan Street, located in Texas, Austin [14].
On this community, we apply the aforementioned policies and EASs, based
on the energy characterization that happened in Chapter 2. The results are
presented, and they are evaluated by metrics that we introduce in order to
compare the efficacy of our CPPs and EASs. In addition, by comparing the
expenses of electricity between allocating the energy and requesting it from
the CG, we confirm the economic benefits of energy sharing.

4.1 Pecan Street

The community we selected is composed of 443 households. Among them,
there are 180 prosumers, which generate energy using PV. Consumers and
prosumers communicate solely with the CG for energy transfer. Prosumers
request energy from the CG only when the generated is not enough to cover
their needs completely. In case the amount of energy that is produced by the
solar panels is more than sufficient for his/her own energy needs, a prosumer
presents an excess of energy. In Pecan Street, the prosumers neither possess
the means for energy storage (batteries, capacitors etc) nor have the infras-
tructure for intra-community energy allocation. Thus, the excess of energy is
sold back to the CG.

The electrical appliances of the households are loaded with sensors, which
convey the consumption measurements to a central smart meter, using short-
range wireless protocols. Prosumers possess also sensors on their PV panels
to measure the produced energy and transmit the results to smart meters.
We used the aggregated electrical consumption and generation data from the
smart meters of the households during 2014 to define the deficiency and the
excess of energy for every household. The smart meters logged the data every
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minute, offering them in a fine-grained form for accurate analysis. We selected
households that had data for more than 300 days.

4.2 Metrics

To evaluate the performance of the deployed EASs, we defined specific metrics,
which cover the following issues:

• Deficiency coverage potential of EASs.

• Efficiency in prosumers utilization.

• Service diversity offered by each EAS.

• Social welfare on group and community level.

At first, we analyze the metrics that focus on households as entities being
served. These metrics refer to (a group of) c consumers of a MG community.
We use vector-parameters Cpar, for par : {served, notServed, unique}. These
parameters accept 1 or 0, based on the Boolean answer to the following state-
ments for a consumer k ∈ [1, c]: (i) is k served fully?, (ii) is k not served at
all?, and (iii) is it the first time that k is served?

To quantify the ability of a strategy to cover the needs of (a group of) c
consumers completely inside a community under a certain CPP, we define the
Served Ratio (SR) metric, for a constant time interval T , as follows:

SR =
∑c

k=1Cserved,k
c

(4.1)

If SR is averaged, we can draw insights into the serving potential of an EAS
during the whole year.

During a time interval, an important performance attribute of an EAS is its
ability to serve (a group of) consumers with the prosumers that are active, i.e.,
able to produce excess of energy. The evaluation of the efficiency of a number
of active prosumers, pact, during T is given by the Prosumers Beneficialness
Ratio (PBR), defined as

PBR =
∑c

k=1CnotServed,k
pact

(4.2)

If PBR is averaged, we can draw insights into the way an EAS utilizes pro-
sumers during the whole year. The PBR value is zero for sharing approaches
that offer energy to all the consumers, like the weighted, the Nash and the
Pareto EAS.

For the EASs that do not use (solely) RoW, it is also important to eval-
uate to what extent their approach serves different households under a CPP.
This can be measured by Uniqueness Ratio (UR), which quantifies the service
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diversity of a negotiation strategy for (a group of) consumers, for any set of
consecutive time intervals, denoted as Tb − Ta, where Ta,Tb ∈ [1,Tmax].

UR =
∑Tb

T =Ta

∑c
k=1C

T
unique,k

c
(4.3)

High UR is not necessarily beneficial for a CPP, as it indicates that energy is
sent also to households not intended to be served by the CPP. For example,
assuming a CPP that prioritizes a group of less deficient consumers and λ =
0.5, it is possible that, during weeks of large amounts of excess produced,
all the members of the less deficient group were served. This implies that
consumers from other groups had received energy, too. Thus, there was enough
excess of energy to cover all the members of the less deficient group with
λ > 0.5. This, in turn, means that it was possible for the prioritized households
to accept higher amounts of energy, but they did not.

With respect to fairness in service under a CPP –either it refers to a group
of consumers or to the whole community–, metrics that involve households in
absolute terms (1 and 0), like SR, PBR, and UR, do not offer the full picture,
because they cannot discriminate among the households that accepted excess
of energy, but were not fully covered. Irrespective of its type, the fairness
can be measured by the ratio of the amount of excess given to a household
(or a group) and its energy needs. This ratio is called Energy Ratio (ER),
and for a consumer k, during T , the ER is defined as ERk = Ekg/Eka. When
ER = 1, the consumer k is fully covered, while when ER = 0, no energy is
accepted. However, if we need to evaluate service in priority terms (CPP), the
deficiency coverage of every household has different impact on the community.
The prioritized households are more important to serve, and this importance
is quantified by assigning RoO or RoW to the consumers. Under this concept,
for a consumer k, applying a weight that mirrors its significance to the group
turns ER to its weighted form, ERw,k = wkERk. To evaluate it properly, we
use the log2 relation to define the Social Welfare (SW) for any consumer k,

SWk = wklog(1 + ERk) (4.4)

However, SWk cannot be characterized as high or low. It has to be related to
the maximum possible value of SW that k could reach. Obviously, when a con-
sumer is fully served, ERk = 1. This leads to SWk,max = wk. Thus, the metric
to characterize every consumer regarding fairness is the Social Welfare Ratio
(SWR), defined as SWRk = SWk/wk. Following the same concept, to expand
the individual SW into SW for groups or whole communities of c consumers,
(4.4) gives SWc =

∑c
k=1 SWk, that reaches its maximum when there is enough

excess of energy to serve all the consumers completely –SWmax,c =
∑c

k=1wk.
Thus, to define the community (or group) SWR,

SWRc = SWc∑c
k=1wk

. (4.5)
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Figure 10: Prosumers-Consumers quality groups

4.3 Implementation results

In this section we compare the results from the application of the EASs on the
Pecan St. dataset, using the aforementioned metrics. By using the evaluation
results, we can decide on the combinations of EASs and CPPs that serve our
energy allocation goals.

4.3.1 Ideal models of consumers and prosumers

The characterization of households in Pecan St. community enabled us to
segment consumers and define policies, based on their energy consumption/
generation and socioeconomic features. In social terms, we directly created
CPPs to prioritize households. In energy terms, we first defined the ideal con-
sumer and prosumer, and then we grouped the households by their proximity
to the ideal models (see Fig. 10). Both the ideal prosumer and consumer
present the lowest possible deficiency membership. Naturally, the ideal pro-
sumer performs many transitions from low to higher excess-clusters while the
ideal consumer is able to regulate its deficiency efficiently and thus hovers
around low deficiency-clusters. Grouping prosumers and consumers, based on
their ideal models, offers the opportunity (i) to evaluate the efficacy of EASs,
by applying our metrics in each group separately, and (ii) to define groups for
the two-stage energy sharing approach (see Subsection 3.3.4).

4.3.2 CPP comparison

In Fig. 11, we compare the CPPs –defined under RoO– of the greedy EAS. It is
observed that the policy that prioritizes the less deficient consumers manages
to serve more households than the policy that gives priority to the highly
deficient. Low deficiency CPP aims to serve a high number of households,
which is achieved, because the prioritized households are easily served. High
deficiency CPP aims to serve those in high-needs of energy, which require large
amounts of excess. In addition, it is observed that the results regarding small
size-CPP follow those that regard the low deficiency policy, and the results
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Figure 11: Served percentage of households, λ = 0.5 according to different Priority
Policies

regarding large size-CPP follow those that regard the high deficiency policy.
This confirms the characterization insight that large households tend to need
high amounts of energy, while small households regulate their consumption
effectively. As expected, the apartment-CPP follows the low deficiency and
the small size policies, and it is a socially aware policy, as the residents of the
apartments are enrolled in Verizon program, which is designed for low income
families. The performance of the random policy stays in the middle of the
other policies as it gives priority to no-one.

The importance of the combination of energy and meta-data characteris-
tics to define priority relations between the consumers will be stated by an
example. In the greedy EAS of Fig. 11, a CPP defined by the meta-data
attribute of size –small size priority policy–, during certain weeks, manages
to serve more households than the low deficiency-CPP, which is designed to
serve as many households as possible. This happens because the households
that are put in a RoO for their general behavior in deficiency terms are not
guaranteed to be in that exact order every week, regarding deficiency. Be-
cause of the relation between deficiency and size, the order priority that is
defined by size sometimes predicts the deficiency order better than the gen-
uine deficiency-policy. The insight from this situation is that, even both the
policies manage to serve a high number of consumers, a third policy, using the
combination of size (meta-data) and deficiency (energy), would predict the
RoO more accurately.

4.3.3 Service ratio and λ level

In Fig. 11, λ = 0.5, in an attempt to offer service diversity. Thus households
are not fully served, and the SR metric has no value. The SR is measured
only for λ = 1, which guarantees complete deficiency coverage. In Fig. 12a
and Fig. 12b, different target groups of consumers, which are served for three
consecutive months of 2014 –week 38 to 49– by the round-robin and by the
greedy EASs, are presented, along with their number of members. The con-
sumers were grouped regarding energy and meta-data attributes. In energy
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(a) Greedy (b) Round robin

Figure 12: Served Ratio

Figure 13: Served percentage of households, λ 0.5, 0.75 and 1

terms, the insights of the ideal prosumers and consumers (see Fig. 10) were
used to derive three different deficiency groups: low, medium, and high. Re-
garding meta-data, the information referring to the size of the households was
used to define small, medium and big consumers. As it is seen in Fig. 12b,
a round-robin EAS manages to serve, also, different groups of households,
apart from the prioritized ones. As the TL increases, the impact of the pri-
ority policy lessens. Moreover, because of the repositioning of hard-to-serve
consumers at the end of the service sequence (RoO), policies that prioritize
highly deficient and large sized households serve more households in total un-
der a round-robin EAS, than under a greedy EAS. The opposite happens for
the policies that prioritize the small and the less deficient consumers. The
impact of the combination of different λ levels and round-robin approaches
in energy sharing is seen in Fig. 13, where the number of households that
accepted energy once or twice throughout the year is presented for different
values of λ. As the λ levels decrease, more households are served. However,
at the same time, the connection between size and deficiency in CPPs, that
was first observed in Fig. 11, remains.
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Figure 14: Excess percentage accepted weekly by different groups - Weighted
High ratio between weights(strict): 1→ 8 (step 1.0), Low ratio between weights(soft):
1 → 3.33 (step 0.333), high deficient/small size: 0 members

4.3.4 Energy allocation in optimized EASs

The previous figures refer to simple EASs, which use RoO between the con-
sumers for prioritization. In Fig. 14, the weighted approach, which has the
lowest complexity among the approaches that utilize RoW, is presented. As
it is observed, eight groups are created by the compilation of the deficiency
characteristics of the households –defined in Fig. 10– and their meta-data at-
tributes (two-dimensional priority). These groups receive stable percentages
of the weekly excess, and this amount is shared equally by their members,
as they have the same weight. According to the CPPs and the differences
between the ratios of the imposed weights, every group accepts a different
percentage of energy-excess. As seen in Fig. 14, high weight-ratios among the
groups prioritize the groups strictly, while low ratios distribute the excess in a
way more similar to the unweighted approach, where all the consumers accept
the same percentage of excess every week, confirming in that way the proof of
Subsection 3.2.1 (-RoW), about ratios between the consumers weights.

Contrary to the weighted approach, the other optimized approaches that
use weights –Nash and WF EAS– assign a different weight to every consumer,
according to the priority policy that is to be imposed. In Nash EAS, there
is no cooperation between the consumers –they simultaneously request for
energy–, while in WF EAS the households with the lowest H accept excess
of energy before the others, creating in that way a RoO. In Fig. 15a and
Fig. 15b, the energy allocation differences of these two approaches, during
a week of low excess, are presented, for the same CPP, amount of excess,
and group of consumers. As it is seen in Fig. 15a, the Nash approach does
not permit high SR values; the excess is depleted before someone manages
to cover completely his/her needs, because of the simultaneous demands for
energy. In Nash EAS, to serve a number of consumers completely under a
produced amount of excess, their assigned weights have to be high, in relation
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(a) Nash (b) Water-Filling

Figure 15: Conceptual structure of Nash and Water Filling – week 47

to the weights of the other households, in order to produce low heights of
service –easily reached–, according to (3.3). On the other hand, in Fig. 15b,
the WF approach serves completely the most prioritized households, because
of the existence of the RoO, which was defined by the combination of weights
and consumer-deficiencies. Nevertheless, there is a big group of households
–not prioritized ones– that do not manage to cover even partially their needs.

4.3.5 Prosumers usage and uniqueness

For the energy allocation approaches that do not involve (solely) RoW between
the consumers, it is important to evaluate their efficacy on the domains of
prosumer utilization and service diversity. In Fig. 16a, note that the lowest
values present the most efficient behaviors, as the metric is related to the
consumers not served weekly, over the active prosumers according to (4.2).
Among the EASs that use CPPs, it is seen that the WF sharing approach
manages to utilize the prosumers in the most efficient way and, at the same
time, it keeps a satisfactory UR (' 0.5, Fig. 16b). The random EAS presents
a much lower PBR than the other EASs (see Fig. 16a), because its mechanism
obtains no priority in serving. That is the main reason of its usefulness in
communities where the consumers present similar attributes and there is no
need for priority policies. Its high diversity in consumer-service is reconfirmed
by Fig. 16b, where the random EAS manages to serve almost 85% of the
consumers throughout the year. By Fig. 16a and Fig 16b, we remark that,
in service terms, for augmented uniqueness and efficient utilization of the
prosumers, low λ values and low deficiency CPPs should be applied. The
round-robin approaches are able to offer high diversity –even UR = 1– as
the TL increases, because of the continuous repositioning of consumers at
the bottom of the sequence of service (see Fig. 13). However, this does not
imply efficacy in prosumers utilization, for PBR is a week measure while UR
is applied over consecutive weeks –even a year.
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(a) PBR (b) UR

Figure 16: Service diversity - prosumer usage (week 38-49)

(a) SWR - overall (b) SWR - groups

Figure 17: Community social welfare (yearly)

4.3.6 Social welfare

Fairness regarding service cannot be seen properly by SR, because it denotes
absolute service (1 or 0). When every household is assigned a weight or a
sequence position by a CPP, the impact of its service becomes differentiated
from the rest of the households. For example, covering half of the deficiency of
the highest-weighted household in a community is more important, in fairness
terms, than serving completely the lowest-weighted one. Service-fairness in a
community is described by the SWR metric (4.4). In Fig. 17a, the advantage of
the optimized against the simple approaches regarding social welfare is clear.
The augmented complexity –because of the weight assignment, the energy
storage, and the computations for the distribution of energy– is counterbal-
anced by high social welfare ratios, irrespective of the strategy. Specifically for
the WF and Nash EASs, under specific CPP, weights, deficiency, and excess
of energy, WF EAS manages higher SWR results. Focusing only on these two
EASs, in Fig. 17b, their impact on different groups of households –which are
defined by their closeness to the ideal models– is observed under the same
RoW. The WF EAS prioritizes stricter among the households than the Nash
EAS, because the households are prioritized with relations of both weight and
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Figure 18: Working schema of two stage energy sharing based on grouping

order. On the other hand, in Nash EAS, because of the simultaneous demand,
the groups’ social welfare results present closer values. Note here that groups
like the big sized or the high deficient households present deficiencies which are
hard to cover. Thus, the impact of their priority weights in (4.4) is lower than
the impact of the weights of other groups, when they are prioritized. The WF
approach presents higher SWR results not only in the prioritized household-
categories but also in the overall SW results, which confirms Fig. 17a. Further,
in WF we observe more outliers (see Fig. 17b), which leads to the conclusion
that the Nash algorithm is more stable than the WF.

4.3.7 Results of two-stage approaches

In two-stage energy allocation approaches, the excess of energy that is pro-
duced by P passes through a phase, in which it is divided in portions; not
to be distributed to every single consumer, but to groups of consumers. The
division of excess in portions can happen either by grouping prosumers ac-
cording to their ideal models, and collecting the groups’ amounts of excess,
or in an EAS-CPP combination scheme, seen in Fig. 18. This figure describes
schematically the mechanism of a two-stage approach, which permits several
combinations of EASs and CPPs, in the way analyzed in Subsection 3.3.4.

Pairs of groups negotiation

Pairs of groups, from the consumer and prosumer sides, that negotiate on
excess allocation can be created depending either on energy –see Fig. 10– or
on meta-data. In Fig. 19, we present the results of pair-grouping in terms of
meta-data (size). Three groups of consumers and prosumers were created, and
the energy sharing was permitted only between households of the same group
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(a) Percentage of excess accepted (b) Percentage of served consumers overall

Figure 19: Size grouping on households; greedy vs grouping on λ = 1 and λ = 0.5
(right). Consumers: 88 small, 113 medium, 62 big. Prosumers: 64 small, 65 medium,
51 big.

–e.g. small prosumers transfer excess of energy only to small consumers. As it
is observed, the size-grouping outperforms the classic greedy approach when
there is no priority policy (random CPP). This result confirms the advantage of
grouping as a low complexity energy allocation approach and the importance
of connecting size and energy demand.

EASs and CPPs combinations

Regarding priority policies and allocation algorithms combinations, we will
state the one that balances group and community-fairness in the most efficient
way. We use Nash EAS in the first stage of energy sharing, for distributing
energy to the groups of consumers, and WF EAS between the members of every
group (second stage). More specifically, Nash and WF are the most optimized
approaches and both present the best results in SWR terms. Nash EAS reflects
the reality in energy service between households, as, most of the times, they
do not cooperate. Similarly, in our case, the different groups of consumers,
having different needs and characteristics, would simultaneously request for
amounts of energy, according to their weights. However, in intra-group energy
allocation, households would be eager to cooperate under a common strategy,
because they share the same needs, and thus WF can be adopted. The results
of this strategy are presented in Fig. 20.

Note here that in Fig. 20b (large CPP on groups), when WF is applied
inside the group of large households, and the largest among them are prior-
itized, they are so highly deficient, that the excess allocated to the group is
depleted mostly by them. The result is that, although prioritized by Nash
EAS in the first level, the group of large households ends up with lower SWR
than the medium and small households-groups. This implies high variance in
deficiency terms inside this specific group, and thus further segmentation is
needed.
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(a) High/low deficiency priority inside every
group (x-axis)

(b) Big/small size priority inside every group
(x-axis)

Figure 20: Two stage energy sharing - Nash and Water Filling approaches combination

Figure 21: Cost schema for Energy Sharing

4.3.8 Cost analysis

In this section, we employ a standard pricing day from the ‘Power Smart Pric-
ing’ site [32], with hourly costs per kW. Using this day’s pricing scheme, we
evaluate the differences in the expenses when applying energy sharing from
10/13/2014 to 10/26/2014, a period in which relatively high production of
energy was observed on the prosumers side. By allocating the energy excess,
consumers experience price-reduction for their coverage of deficiency as they
buy energy at lower prices than they would do from the CG. Further, pro-
sumers profit from sharing because they sell their excess in higher prices to
the consumers than to the CG (see Fig. 21). In Fig. 22a, the cost reduction
using Nash EAS is observed for the prioritized groups of households for any
corresponding CPP. We do not claim that the reduction would be exactly at
the levels indicated in the figure. This depends on the prices per kWh which
would be imposed by the prosumers. However, (i) these are the lowest limits
that the costs could reach through the decentralization of energy distribution,
and (ii) the costs cannot be higher or equal to the expenses results for no coor-
dination (black), because this would imply that the prosumers sell their excess
of energy at higher prices than the grid –which is against the economical con-
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(a) Nash (b) Greedy - Weighted

Figure 22: Expenses reduction

cept of energy sharing (see Fig. 21)–, and no one would buy energy from them.
In addition, note that energy sharing is beneficial for every consumer, either
prioritized or not. In Fig. 22b, and in terms of weighted EAS (mid and right
bar-groups), although the cost reduction is higher for the prioritized groups
of households (red), there is still a considerable reduction in expenses for the
less prioritized consumers that accepted lower amounts of excess (green).

4.4 Summary

In this chapter, the impact of seven different energy allocation strategies, de-
ployed on a real community of prosumers and consumers, was presented. The
strategies were applied under different priority policies that channelize the ex-
cess of energy to the preferred (groups of) households. The metrics that were
developed cover a broad range of energy sharing aspects and offer the op-
portunity to evaluate the efficacy of our strategies. In general, homogeneous
communities share the excess of energy efficiently under simple algorithms.
The use of the round robin mechanism and the λ level of service augments the
service diversity among the consumers and improves the prosumers-usage ef-
ficacy. Allocation schemes of high complexity are intended for communities of
varying energy behaviors. In these communities, water-filling EAS is the strat-
egy that guarantees the highest social welfare ratios, but encloses the highest
levels of complexity in its mechanism. Low complexity algorithms that do not
use CPP –random and Pareto– work efficiently under two-stage approaches,
which group the households based on their energy behavior. Regarding elec-
tricity expenses, energy allocation is proven beneficial, even for consumers
that are not prioritized. It should be stated that community characterization
of Section 2.3 was crucial, being the cornerstone of several approaches and
energy negotiation scenarios that work with RoO or RoW (either one-stage or
two-stage). The plurality of combinations of EASs and CPPs allows any char-
acterized MG community to share the excess of energy among its members
efficiently.



Chapter 5

Conclusions and future work

In this chapter we wrap up our work and present proposals for future works
on the Smart Grids domain.

5.1 Conclusions

Smart Grids are rapidly becoming a reality. There is already awareness
amongst consumers to also generate energy, using solar, wind, and other RSEs,
which makes them prosumers. In this modernized version of the distribution
grid, two-way communication between consumers, prosumers, and utility con-
trollers is established. Bidirectionality in communication introduces interac-
tion in energy allocation among the members of an MG community. This will
avoid energy losses and also benefit prosumers, compared to selling energy to
the central grid.

In this thesis we created, implemented, and evaluated simple and optimized
algorithms (EASs), which control the sharing of energy in an MG community
of households, consisting of prosumers and consumers. The EASs were imple-
mented in accordance with prioritization policies (CPPs), which dictate the
impact of covering the needs of each consumer inside the MG. However, CPPs
are accurate on their priority targets when they are designed with knowledge
of the characteristics of the community, on which they are applied. Thus, by
using fine-grained energy data (for clustering) and socioeconomic attributes,
we gain insights into the behavior of the MG community regarding energy
consumption and generation. The results of the temporal energy dynamics of
an MG community reveal its complexities in energy usage.

To satisfy the specifics of every community, we developed seven strategies,
based on social and energy characteristics. These strategies span from simple
random algorithms, for homogeneous communities, to highly sophisticated
ones, for less compact communities. We analyzed one year of data from 443
houses (Pecan St., Texas) to test the impact of our algorithms. This work
provides many knobs to control a decentralized allocation of energy, under
various scenarios with a different focus, and to reduce the overall expenses of
buying energy from the central grid.
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5.2 Future works proposals

The triplet of characterization-CPP-EAS that this work proposes is a novel
approach to the new domain of intra-community energy allocation. There is
space for research both in the domains of characterization and energy alloca-
tion.

Regarding characterization and prioritization, it would be interesting to
consider also geographical data, which we were not able to obtain. With this
type of data, grouping could be done more efficiently.

In addition, as a large SG community would consist of several smaller
ones, its system model would be described as a distributed system of MG-
communities (like Pecan St.) –with their own CC, consumers and prosumers.
In that SG model, inter-community communication schemes on energy sharing
would emerge, seeing every MG community as a separate entity, with a specific
energy and socio-economical profile, and its own balance between supply and
demand of energy. A study on the communication between CCs and on the
way the excess of energy would be stored in them, in order to be distributed,
would profit the Smart Grids domain. Since we expect that every household
would be a prosumer in the near future, it would be interesting to evaluate
the scaling potential of our EASs.

The deployment of our algorithms and policies on the industrial domain,
where the energy profiling is different than the household communities, and
where other RSEs are also used (the wind, geothermal, etc.), would offer
interesting insights.

Further, plug-in hybrid electric vehicles (PHEV) should be integrated in
our system model. Their mobility can improve the balance between supply
and demand, if used properly.

Nowadays, in the era of cloud computing, large amounts of fine-grained
data can be transferred to controllers via cloud servers. Allocation strategies
which involve controllers located far from the MG communities should be
studied, along with the types of the two-way communication that will emerge
between the controllers and the households.



Nomenclature

Abbreviations
MG Micro-Grid

SG Smart Grid

RSE Renewable Sources of Energy

CG Central Grid

CC Central Controller

EM Expectation-Maximization algorithm

CPP Consumer Priority Policy

EAS Energy Allocation Strategy

RoO Relation of Order

RoW Relation of Weight

WF Water-Filling algorithm

Symbols
c Number of consumers

p Number of prosumers

C Group of consumers

P Group of prosumers

Ea Energy needs of C

Eg Covered energy needs of C

Ee Excess of energy of P

Con Consumption of C and P

44
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Gen Generation of P

Att Energy attribute, Con, Gen, Ea, Ee

t Time of (i) single measurement of Con and
Gen, and (ii) single computation of Ea and
Ee

T Time interval

tmax Number of consecutive t that constitute T

Tmax Last T of interest, total number of T

ClAtt,u,i Membership of consumer i in cluster u for
an Att

z Number of time intervals with consecutive
cluster transitions

(ClT−z
Att,u → ...→ ClTAtt,v)i Consecutive transitions of consumer i, from

Clu at T − z, to cluster Clv at T , for an Att

θm membership ratio of a household, being in
a particular cluster, with respect to total
number of weeks

θt ratio of number of transitions of a household
from a particular cluster to another over all
its transitions over the time intervals con-
sidered

λ Level of deficiency coverage

TL Time-Limit for RoO re-initialization

S Groups of consumers inside C that present
similarities regarding size

D Groups of consumers inside C that present
similarities regarding deficiency (clustering)

N Subgroups inside C, created by S and D
combinations

w Weights imposed on C

x Single unit of excess

H Heights of service, ratio of Ea over w
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h Additional served heights, ratio of Eg over
w

Cserved Fully covered consumers over a T

CnotServed Consumers who accepted no excess of en-
ergy over a T

Cunique Consumers served at least once over Tb −
Ta, with Tb,Ta ∈ [T1,Tmax]

pact Active prosumers –who generated (excess of)
energy– over a T

SR Served ratio

PBR Prosumer beneficialness ratio

UR Uniqueness ratio

ER Energy ratio, ratio of Eg over Ea

ERw Weighted ER

SW Individual social welfare, log2 form of ERw

SWc Social welfare of community (or group) of c
households
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Energy allocation algorithms

Algorithm 1 Random Algorithm
i prosumer index
P , C is set

On every time interval

Initialization phase:
1: i = 1
2: A consumer Cr1 with deficiency Er1a is picked randomly by the CC

Main phase:
3: while i 6 p do

Communication phase:
4: Pi sends info on its excess Eie to the CC
5: if Er1a = 0 then
6: Cr1 is removed from C
7: if length(C) = 0 then
8: Break
9: end if

10: A new consumer Cr2 is picked randomly
11: r1← r2
12: end if
13: Cr1 sends info on its deficiency Er1a to the CC

Allocation phase:
14: Pi transfers energy to Cr1 through the power line
15: if Eie > Er1a then
16: Eie ← Eie − Er1a
17: Er1a = 0
18: else
19: Er1a ← Er1a − Eie
20: i← i+ 1
21: end if
22: end while
23: C is reset
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Algorithm 2 Greedy Algorithm
k consumer index, i prosumer index
C defined by the CPP (RoO)
P ,λ are set

On every time interval

Initialization phase:
1: i = 1, k = 1

Main phase:
2: while i 6 p do

Communication phase:
3: Pi sends info on its excess Eie to the CC
4: if λEka = 0 then
5: k ← k + 1
6: if k > c then
7: Break
8: end if
9: end if

10: Ck sends info on its delimited deficiency λEka to the CC

Allocation phase:
11: Pi transfers energy to Ck through the power line
12: if Eie > λEka then
13: Eie ← Eie − λEka
14: λEka = 0
15: else
16: λEka ← λEka − Eie
17: i← i+ 1
18: end if
19: end while
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Algorithm 3 Round-robin Algorithm
k consumer index, i prosumer index
Initialization phase:

1: Initial consumer list Cini defined by the CPP (RoO)
2: C ← Cini
3: P , λ, TL are set
4: T = 1

Main phase:
5: while T 6 Tmax do
6: if (T mod TL) = 0 then
7: C ← Cini
8: end if

9: Perform Greedy Algorithm on P , C, λ for initialized indexes i =
1, k = 1

10: Since Greedy has finished, k defines the number of served consumers

11: *Consumer list C rotates k times to become C′

12: C ← C′, T ← T + 1
13: end while

* By rotating k − 1 times we favor the last served consumer-household of
every time interval T because it is on the top of the service list for T + 1
while it was partially served on T . By rotating k times we are unfair to
the last served consumer because it is pushed at the bottom of the service
list while it was not fully served.
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Algorithm 4 Weighted Algorithm
k consumer index, i prosumer index
At the beginning:

1: CC arranges C into N consumers subgroups, C = ∪N
n=1Cn, with N = SD

2: CC assigns weights wn∀n ∈ [1,N ] according to CPP (RoW)

On every time interval

Initialization phase:
3: CC amasses the individual prosumer excesses

∑p
i=1E

ie
4: CC computes the single unit of energy x by (3.2)

Communication phase:
5: Consumers C send info on their deficiency Ea to the CC
6: CC checks every consumer’s k corresponding subgroup, k ∈ Cn ∈ C, and

corresponding weight, wk ∈ wn ∈ w, ∀k ∈ [1, c]

Allocation phase:
7: Eka ← Eka − xwk, ∀k ∈ [1, c]
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Algorithm 5 Nash Algorithm
k consumer index, i prosumer index
At the beginning:

1: CC assigns weights wk∀k ∈ [1, c] according to a CPP (RoW)

On every time interval

Initialization phase:
2: CC amasses the individual prosumer excesses,

∑p
i=1E

ie
3: Consumers C send info on their deficiencies Ea to the CC
4: CC defines the heights of service H by (3.3)

Energy Allocation phase:
5: while

∑c
k=1Hk > 0 do

6: CC chooses non-zero minimum height of service, min(H)nz
7: if (min(H)nz

∑c
k=1wk) ≤

∑p
i=1E

ie then
8: Eka ← Eka −min(H)nzwk, ∀k ∈ [1, c]
9:

∑p
i=1E

ie ←
∑p

i=1E
ie − (min(H)nz

∑c
k=1wk)

10: Consumer with min(H)nz is fully served
11: wmin(H)nz = 0
12: H ←H −min(H)nz
13: else
14: min(H)nz ←

∑p
i=1E

ie∑c
k=1wk

15: Eka ← Eka −min(H)nzwk, ∀k ∈ [1, c]
16: Break
17: end if
18: end while
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Algorithm 6 Water-Filling (WF) Algorithm
i prosumer index
j, l: corresponding indexes of the most and least prioritized consumer
being served simultaneously
At the beginning:

1: CC assigns weights wk∀k ∈ [1, c] according to a CPP (RoW)

On every time interval

Initialization phase:
2: CC amasses the individual prosumer excesses,

∑p
i=1E

ie
3: C send information on their deficiencies Ea to the CC
4: CC defines initial heights of service by (3.3) and forms them in ascending

order, Hini, (RoO)
5: j = 1, l = 1
6: H ←Hini

Energy Allocation phase:
7: while j 6 c do
8: ** Perform Nash algorithm energy allocation phase on the following:

group of (l + 1− j) consumers
with weights assigned in step 1
with

∑p
i=1E

ie
with additional heights h defined as follows

if l + 1 6 c, hk =
{
Hl+1 −Hk, if Hl+1 < 2Hini,k
2Hini,k −Hk, otherwise

else hk = 2Hini,k −Hk

for k : [j, l]

After Nash algorithm:
9: Total excess decreased,

∑p
i=1E

ie updated
10: Individual deficiencies of (l + 1 − j) households decreased or covered,

Eka updated ∀k ∈ [j, l]
11: WF Heights of service updated
12: a← j . for algorithmic reasons only
13: for k : [a, l] do
14: Hk ← Hk + hk,
15: if Hk = 2Hini,k then
16: j ← j + 1
17: end if
18: end for
19: if ( Hl = Hl+1 or Hl = 2Hini,l ) and l + 1 6 c then
20: l← l + 1
21: end if
22: end while

** If
∑p

i=1E
ie = 0 during Nash algorithm, the procedure stops, and the

individual households of the group of (l + 1 − j) that are served, update
their deficiencies with the corresponding part of the last portion of excess
that was left.
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Algorithm 7 Pareto Algorithm
k consumer index, i prosumer index

On every time interval

Initialization phase:
1: CC amasses the individual prosumer excesses,

∑p
i=1E

ie
2: CC amasses the individual consumer needs,

∑c
k=1E

ka
3: CC defines the percentage coverage level (λ)

4: λ =
∑p

i=1E
ie∑c

k=1E
ka
< 1

Energy Allocation phase:
5: Eka ← Eka(1− λ),∀k ∈ [1, c]



Bibliography

[1] https://www.eia.gov/outlooks/ieo/electricity.cfm, International Energy
Outlook 2016.

[2] http://www.eia.gov/electricity/monthly/epm table grapher.cfm?t=
epmt 1 01, Electric Power Monthly.

[3] G. Sideratos and N. D. Hatziargyriou, Probabilistic Wind Power Forecast-
ing Using Radial Basis Function Neural Networks, IEEE Transactions on
Power Systems, vol.27, November 2012.

[4] T. T. Teo, T. Logenthiran, and W. L. Woo, Forecasting of photovoltaic
power using extreme learning machine, 2015 IEEE Innovative Smart grid
technologies Asia (ISTG ASIA), November 2015.

[5] http://www.efficiency-from-germany.info/ENEFF/Redaktion/EN/
Standardartikel/e-energy.html, E-Energy.

[6] http://www.powermatchingcity.nl, PowerMatching City.

[7] J. Naus, G. Spaargaren, B. J. van Vliet, and H. M. van der Horst, Smart
grids, information flows and emerging domestic energy practices, Article
in Energy Policy, May 2014.

[8] H. Farhangi, The path of the smart grid, IEEE Power and Energy Maga-
zine, January-February 2010.

[9] D. Geelen, A. Reinders, and D. Keyson, Empowering the end-user in
smart grids: Recommendations for the design of products and services,
Energy Policy, Elsevier, October 2013.

[10] Y. Guo, M. Pan, Y. Fang, and P. P. Khargonekar, Decentralized Coor-
dination of Energy Utilization for Residential Households in the Smart
Grid, IEEE Transactions on Smart Grid, vol.4, September 2013.

[11] T. Zhu, Z. Huang, A. Sharma, J. Su, D. Irwin, A. Mishra, D. Menasche,
and P. Shenoy, Sharing Renewable Energy in Smart Microgrids, Inter-
national Conference on Cyber-Physical Systems (ICCPS), ACM/IEEE,
April 2013.

54

https://www.eia.gov/outlooks/ieo/electricity.cfm
http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_1_01
http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_1_01
http://www.efficiency-from-germany.info/ENEFF/Redaktion/EN/Standardartikel/e-energy.html
http://www.efficiency-from-germany.info/ENEFF/Redaktion/EN/Standardartikel/e-energy.html
http://www.powermatchingcity.nl


55

[12] A.-H. Mohsenian-Rad, V. W. S. Wong, J. Jatskevich, R. Schober,
and A. Leon-Garcia, Autonomous Demand-Side Management Based on
Game-Theoretic Energy Consumption Scheduling for the Future Smart
Grid, Transactions on Smart Grid, IEEE, vol.1, December 2010.

[13] S. Park, J. Lee, S. Bae, G. Hwang, and J. K. Choi, Contribution-Based
Energy-Trading Mechanism in Microgrids for Future Smart Grid: A
Game Theoretic Approach, Transactions on Industrial Electronics, IEEE,
vol.63, July 2016.

[14] http://www.pecanstreet.org/, Pecan Street.

[15] P. Samadi, A.-H. Mohsenian-Rad, R. Schober, V. W. Wong, and
J. Jatskevich, Optimal Real-time Pricing Algorithm Based on Utility Max-
imization for Smart Grid, First IEEE International Conference on Smart
Grid Communications, October 2010.

[16] Z. Huang, T. Zhu, Y. Gu, D. Irwin, A. Mishra, and P. Shenoy, Minimizing
Electricity Costs by Sharing Energy in Sustainable Microgrids, BuildSys
’14, Proceedings of the 1st ACM Conference on Embedded Systems for
Energy-Efficient Buildings, November 2014.

[17] C. Beckel, L. Sadamori, T. Staake, and S. Santini, Revealing household
characteristics from smart meter data, Energy, Elsevier, vol. 78, Decem-
ber 2014.

[18] F. Brazier, H. L. Poutre, A. Abhyankar, K. Saxena, S. Singh, and
K. Tomar, A Review of Multi Agent Based Decentralised Energy Man-
agement Issues, International Conference on Energy Economics and En-
vironment, ICEEE, March 2015.

[19] A. U. Nambi, E. Pournaras, and V. Prasad, Temporal Self-regulation
of Energy Demand, Transactions on Industrial Informatics, IEEE, June
2016.

[20] P. P. Rodrigues and J. Gama, Holistic distributed stream clustering for
smart grids, Workshop on Ubiquitous Data Mining,Montpellier, France,
August 2012.

[21] L. Hernandez, C. Baladron, J. M. Aguiar, B. Carro, and A. Sanchez,
Classification and Clustering of Electricity Demand Patterns in Industrial
Parks, energies, vol. 5, December 2012.

[22] C. Do and S. Batzoglou, What is the expectation maximization algo-
rithm?, Nature Biotechnology, 2008.

[23] A. D. Rathnayaka, V. M. Potdar, O. Hussain, and T. Dillo, Identifying
Prosumer’s Energy Sharing Behaviours for Forming Optimal Prosumer-
Communities, International Conference on Cloud and Service Computing,
December 2011.

http://www.pecanstreet.org/


56

[24] A. D. Rathnayaka, V. M. Potdar, and S. J. Kuruppu, An Innovative
Approach to Manage Prosumers in Smart Grid, World Congress on Sus-
tainable Technologies (WCST), November 2011.

[25] A. J. Conejo, J. M. Morales, and L. Baringo, Real-Time Demand Response
Model, Transaction on Smart Grid, IEEE, vol. 1, December 2010.

[26] W. Saad, Z. Han, H. V. Poor, and T. Basar, Game-Theoretic Methods
for the Smart Grid: An Overview of Microgrid Systems and Demand-
Side Management and Smart Grid Communications, Signal Processing
Magazine, IEEE, vol. 29, September 2012.

[27] W. Tushar, B. Chai, C. Yuen, D. B. Smith, K. L. Wood, Z. Yang, Mem-
ber, and H. V. Poor, Three-Party Energy Management With Distributed
Energy Resources in Smart Grid, Transactions on Industrial Electronics,
IEEE, vol. 62, April 2015.

[28] J. Nash, Non-Cooperative Games, The Annals of Mathematics, September
1951.

[29] D. Tse and P. Viswanath, Fundamentals of Wireless Communication,
Fundamentals of Wireless Communication, ch. 5: Capacity of wireless
channels, Cambridge University Press, 2005.

[30] T. M. Cover and J. A. Thomas, Parallel Gaussian Channels, Elements of
Information Theory, ch. 9.4, Wiley, 1991.

[31] D. T. Luc, Pareto Optimality, Pareto Optimality, Game Theory and Equi-
libria, Springer, July 2008.

[32] https://www.powersmartpricing.org/pricing-table/, Power Smart Pric-
ing.

https://www.powersmartpricing.org/pricing-table/

	Introduction
	Electricity generation and ICT
	Problem statement and research goals
	Organization

	System model and community characterization
	Related works
	Micro-grid
	Paradigm

	Community profiling
	Clustering
	Temporal metrics
	Socioeconomic attributes

	Results on a real community
	Summary

	Priority policies and energy allocation
	Related Works
	Consumer Priority Policies (CPP)
	Relations of priority

	Energy Allocation Strategies (EAS)
	Simple EASs
	Optimized EASs
	Complexity
	Two-stage approaches

	Summary

	Experimental evaluation and implementation
	Pecan Street
	Metrics
	Implementation results
	Ideal models of consumers and prosumers
	CPP comparison
	Service ratio and  level
	Energy allocation in optimized EASs
	Prosumers usage and uniqueness
	Social welfare
	Results of two-stage approaches
	Cost analysis

	Summary

	Conclusions and future work
	Conclusions
	Future works proposals

	Nomenclature
	Energy allocation algorithms
	Bibliography

