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Abstract 

Bayesian system identification has been extensively adopted in Structural Health Monitoring 

as a way to probabilistically infer unobservable parameters of the physical model of a 

structure using measurement data. Combining the Bayesian approach with distributed optic 

fibre sensors can potentially improve the accuracy and reduce the uncertainty in parameter 

estimation problems, given the large amount of quasi-continuous data produced by this 

sensing technology; however, its computational cost could be prohibitively high when using 

conventional methods since Bayesian inference typically involves a large number of samples, 

each of which entails a physical model evaluation. 

The focus of this work is on performing Bayesian system identification for real-world civil 

engineering structures within an acceptable running time, while using optic fibre 

measurements with a high spatial resolution. The proposed methodology employs a cheap-

to-compute Gaussian process (GP) surrogate that replaces the main bottleneck of the Bayesian 

workflow for these type of problems: the evaluation of the log-likelihood. The GP surrogate 

is actively built by sequentially selecting new training points in areas that are expected to 

highly contribute to the accuracy of the posterior distribution. Once convergence is achieved, 

the surrogate is used to obtain the parameter estimates via Markov chain Monte Carlo 

(MCMC) sampling. Additionally, in order to accelerate the Bayesian workflow, cloud-based 

parallelization is used to perform multiple finite element analyses simultaneously. 

A first synthetic case with an inexpensive frame model is used to test the methodology for 

problems with two and five probabilistic parameters. An encouraging outcome is obtained 

with the actively learned GP surrogate, with posterior distributions very close to the full 

MCMC procedure while requiring a number of physical model evaluations orders of 

magnitude lower.  

After that, a second case study consisting of an existing reinforced concrete bridge with real 

measurements and a relatively expensive finite element model is investigated. A subset of 

discrete strain and translation sensors are used to perform an initial parameter estimation that 

almost exactly resembles the results from previous research on this bridge by Rózsás, et al. 

(2022), successfully validating the proposed procedure. Then, another parameter estimation 

is computed using available high resolution optic fibre measurements, after which is shown 

that the optic fibre provides the best improvements in model predictive capacity among all 

sensor groups, confirming its potential when combined with Bayesian system identification. 

The results of the case studies indicate that the approach presented in this thesis has the 

capacity to greatly reduce the wall-clock time of Bayesian parameter estimation for real world 

civil engineering structures with optic fibre measurements, while maintaining a high degree 

of accuracy. Nevertheless, additional research is required for cases where the statistical 

parameters governing the measurement and model uncertainty are inferred along with the 

physical parameters. 
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1 Introduction 

1.1 Motivation 

The continuous and adequate operation of infrastructure is fundamental for sustainable 

economic growth and societal progress. In developed countries, much of the infrastructure 

built decades ago requires maintenance, repairment and sometimes replacement. In the 

Netherlands, the responsible authorities spend approximately €6 billion a year on maintaining 

the existing infrastructure (TNO, 2014).  

Regular manual inspections to assess the state of structures can be costly, on top of requiring 

specialized labour and equipment. Structural health monitoring (SHM) methods have gained 

popularity in recent years as they can provide a more effective and consistent way of making 

decisions related to infrastructure maintenance. In SHM, sensing systems and necessary 

hardware/software facilities are used to monitor structural responses and operational 

conditions of structures (Chen, 2018). 

A natural way of integrating monitoring data into a physical model in order to obtain more 

accurate model predictions and/or to reduce the uncertainty in model predictions is provided 

by Bayesian statistics (Dashti & Stuart, 2015). In this approach, the unknown structural 

parameters are treated as random variables with a prior probability distribution that is then 

updated into a posterior distribution by incorporating the sensing data and its deviation from 

model predictions, i.e. the likelihood of the data. This methodology is usually referred to as 

Bayesian system identification across SHM literature. 

One of the key aspects of SHM is the acquisition of useful measurement data. Standard 

monitoring practices for civil engineering structures are usually based on a relatively small 

number of sensing locations using devices such as electric strain sensors, accelerometers, 

inclinometers, etc. These discrete sensors provide useful data related to local structural 

behaviour; however, they may miss important information in non-instrumented areas of large 

structures (Bárrias, et al., 2016). Optic fibre sensors offer an advantage over discrete sensors 

by providing quasi-continuous strain measurements over their lengths.  

Considering the aforementioned points, it is natural to infer that the combination of a robust 

methodology such as Bayesian system identification with the large amount of data produced 

by high-resolution optic fibre sensors could potentially improve the predictive performance 

of structural models; however, solving Bayesian parameter estimation tasks for real civil 

structures in this context can be computationally challenging for multiple reasons.  

First, in most practical applications a closed-form solution of the posterior distribution cannot 

be obtained, so it has to be numerically approximated using sampling methods. Each of the 

drawn samples entails a likelihood calculation that requires a finite element analysis, making 

the procedure unfeasible for models with non-negligible running times, as is usually the case 

for realistic models in SHM (e.g. with a three-dimensional geometry and a large number of 

degrees of freedom). In addition to that, the use of a large number of measurements from optic 
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fibre sensors adds another layer of complexity since the model prediction uncertainty of 

closely spaced points can have a significant degree of correlation. Moreover, the calculation 

of the likelihood requires obtaining the probability density of a multivariate normal 

distribution1, a process that scales cubically with the number of data points, thus, increasing 

the computational costs even further if optic fibre measurements are used. Considering that 

research in this context is very limited, this thesis investigates the use of optic fibre 

measurements for Bayesian system identification of real-world civil engineering structures. 

1.2 Research questions 

The use of optic fibre sensors for Bayesian system identification of civil engineering structures 

has great potential, but its computational cost could be prohibitively high when using 

conventional approaches, which might explain the lack of research on the topic. In view of 

this, the main research question of the thesis is defined as follows: 

How to perform Bayesian system identification for real-world civil engineering structures within an 

acceptable running time, i.e., in less than 24 hours, while including high-resolution optic fibre 

measurements? 

In order to answer this main research question, the following sub-questions are addressed: 

A. How to include recent developments in surrogate modelling techniques and cloud-based 

parallelization in order to accelerate the Bayesian inference workflow? 

 

B. What gain in information content can be obtained from optic fibre strain sensors compared to 

conventional discrete sensors for the identification of structural model parameters? 

 

C. How to describe the dependency in model uncertainty for optic fibre sensors and what is their 

influence on the results of Bayesian parameter estimations? 

1.3 Approach 

The approach to answer the previously introduced research questions begins with an 

exploration of the existing literature on the use of optic fibre sensors and/or surrogate 

modelling for Bayesian inference, in order to identify techniques that might be relevant for 

this thesis. Then, the methods and tools to be used are selected, including some of the most 

promising findings of the literature review.  

A first case study consisting of a planar frame-type structure with synthetically generated 

measurements is investigated for 2D and 5D Bayesian parameter estimations. Given its cheap-

to-compute structural model, the problem can quickly be solved with and without surrogates, 

allowing for the proposed methodology to be tested.  

Subsequently, a second case study involving a real reinforced concrete bridge in the 

Netherlands, Bridge 705, is examined. The large amount of available measurement data from 

discrete sensors and optic fibre allows the study of various sub-cases with different settings, 

 
1 Assuming that Gaussian distributions are used to model the measurement and model prediction uncertainties. 
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each of which is focused on a particular research question. Also, cloud-based parallelization 

is used to simultaneously perform multiple finite element analyses of the bridge and reduce 

the wall-clock time of the Bayesian parameter estimation.  

A summary of the case studies is presented on Table 1. 

Table 1: Summary of case studies. 

Case  Description Goal Parallel  
Research 

question 
Section 

Frame  

Sub-case 1 

2D parameter estimation with 

synthetic discrete and optic 

fibre measurements 

Test the thesis 

methodology 
No A 4.2 

Frame  

Sub-case 2 

5D parameter estimation using 

synthetic discrete and optic 

fibre measurements 

Test the thesis 

methodology 
No A 4.4 

Bridge 705 

Sub-case 1  

2D parameter estimation with 

real discrete translation and 

strain measurements 

Validate the thesis 

methodology 
Yes A  6.2 

Bridge 705 

Sub-case 2 

2D parameter estimation with 

real discrete strain 

measurements 

Compare discrete 

strain sensors vs 

optic fibre 

Yes B 6.3 

Bridge 705 

Sub-case 3  

2D parameter estimation with 

real optic fibre strain 

measurements 

Compare discrete 

strain sensors vs 

optic fibre 

Yes B  6.4 

Bridge 705 

Sub-case 4  

5D parameter estimation with 

real optic fibre strain 

measurements 

Asses influence of 

uncertainty 

parameters  

Yes C 6.5 

 

1.4 Scope and limitations 

Since the main goal of the thesis is to find a feasible way of performing Bayesian system 

identification in real world structures while using optic fibre measurements, the emphasis is 

placed is in prototyping, testing, validating and presenting the methodology, rather than 

assessing the condition of the structure in the considered real-world case.  

For the very same reason, no effort is put on identifying a ‘true’ probabilistic model class for 

the data, therefore, the investigation is carried using an assumed model. Furthermore, within 

the Bayesian framework, the focus is on obtaining posterior distributions, while other aspects 

such as posterior predictives and model evidences are mentioned but not treated. 

In both case studies, only lineal-elastic analyses are performed and temperature loads are not 

considered. Likewise, research is limited to structures with deterministic static loads, 

although the proposed approach could theoretically be extended for dynamic loading, 

granting more research. Even though the only real-world case studied is a concrete bridge, 



1.5 Thesis structure 4 

 

 

 

the applicability of the methodology and the conclusions are expected to be valid for civil 

engineering structures in general. 

1.5 Thesis structure 

The remaining of the thesis is structured as follows. Chapter 2 contains a literature review 

related to optic fibre sensors and surrogate modelling in the context of Bayesian system 

identification. The methods and tools used in this thesis are described in Chapter 3, including 

the theoretical basis of key parts such as the Bayesian approach and the use of Gaussian 

process regression for surrogate modelling. Chapter 4 presents the first case study of the 

thesis, which consists of a planar frame-type structure with synthetic measurements, where 

two Bayesian parameter estimations are performed with and without surrogates. The second 

case study, Bridge 705 in the Netherlands, is described in Chapter 5, along with details about 

the finite element model, the measurement campaign and the settings for the sub-cases; while 

the results of the parameter estimations are presented in Chapter 6. Finally the answers to the 

research questions, main thesis contributions and recommendations for future work are 

treated in Chapter 7.  
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2 Literature review 

Structural system identification generally involves an inverse problem, i.e., the obtention of 

model parameter values (input) using measurement data of the structure (output). When 

treated deterministically, inverse problems are typically ill-conditioned and ill-posed, since 

there is usually not enough measurement information to precisely determine the model 

(Huang, et al., 2019). In contrast, Bayesian inference provides a probabilistic treatment of the 

inverse problem that is rational, robust and capable of handling the difficulty of non-unique 

solutions (Katafygiotis & Beck, 1998). In Bayesian inference, the unknown structural 

parameters are treated as random variables with prior probability distributions, which are 

then updated into a posterior distribution by incorporating measurement data via Bayes’ 

theorem. 

The Bayesian approach has been extensively applied for various types of civil engineering 

structures such as buildings, bridges and geotechnical structures; however, the purpose of 

this chapter is not to provide a comprehensive review of Bayesian inference for structural 

system identification, for which the reader is referred to Huang et al. (2019), but to highlight 

the knowledge gap that inspires this thesis and determine relevant methods that might be 

used to answer the research questions. Consequently, the use of optic fibre sensors and 

surrogate modelling in the context of Bayesian system identification is be addressed in the 

next sections. 

2.1 Optic fibre sensors  

Optic fibre sensors are dielectric devices composed by a fibre core, cladding and coating layers 

that provide mechanical resistance. The refractive index of the cladding is lower than that of 

the core, thus the propagation of light is confined to the fibre core only. When the optic fibre 

suffers a strain or temperature variation, the frequency of the backscattered light is shifted 

with respect to the reference state, which is then related to a strain value (Bado, et al., 2022). 

Optic fibres present multiple characteristics that make them attractive over other sensing 

technologies, such as their resistance to corrosion and extreme temperatures, their inherent 

anti-electro-magnetic interference feature and their ease of installation, due to their small 

diameter, low rigidity and minimal intrusiveness. More importantly, optic fibre sensors are 

capable of recording continuous strain measurements with monitoring points spaced less than 

one millimetre, over monitoring lengths varying from centimetres to kilometres (Bado & 

Casas, 2021). 

A typical classification of optic fibres divides them in quasi-distributed and distributed optic 

fibre sensors. The former refers to a series of individual sensors, usually Fibre Bragg Gratings 

(FBG), connected through a single optic fibre, that gives discrete strain measurements 

averaged over the individual gauge lengths. On the other hand, distributed optic fibre sensors 

provide strain measurements at any point along the fibre, offering a superior spatial 

resolution.  
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The use of optic fibre sensors across the SHM literature is extensive and has grown rapidly in 

recent years, as shown in the reviews by Bárrias, et al. (2016), Harger, et al. (2019), Wu, et al. 

(2020) and Bado & Casas (2021); however, their application for Bayesian inference is less 

widespread. This issue is discussed in the rest of the section.  

In Zhang & Yang (2013), a damage assessment methodology based on strain modal analysis 

under Bayesian statistics is proposed and tested on an experimental small steel plate with FBG 

sensors. An external excitation was applied and the recorded dynamic strains were 

successfully used to locate the area where damage had been introduced. Another 

experimental work can be found in Waeytens, et al. (2016) who attached distributed optic fibre 

sensors to the rebar of a prestressed concrete beam that was statically loaded. The beam model 

was discretized into several subdomains across its length, each with its own Young’s 

modulus, and Bayesian model updating was used to detect the damaged area, i.e., the 

subdomain with a diminished Young’s modulus. More recently, Schranz, et al. (2022) 

statically tested a concrete slab strengthened with memory-steel bars and distributed optic 

fibres attached to them. The recordings were then used to perform Bayesian model updating 

of a cross-section model based on the output of a Timoshenko beam analysis. 

Moving to real civil structures, Zonta, et al. (2013) studied a cable-stayed bridge whose cables 

had been instrumented with both force sensors and FBG strain sensors. The sources of 

uncertainty of this case were the parameters relating the actual load intensity on the cable 

with the recordings, so no finite element model evaluations were required to perform 

Bayesian parameter estimation. On the other hand, Koune (2021) used a finite element model 

and optic fibre strain measurements to perform Bayesian system identification on a steel 

bridge, in order to infer both physical and statistical parameters. In this study, a cheap-to-

compute model with Euler-Bernoulli elements was deemed sufficient to accurately describe 

the structure, thus surrogate modelling was not necessary and the Nested Sampling technique 

(Skilling, 2006) was directly applied on the actual finite element predictions to sample from 

the posterior distribution. 

To the author knowledge, Febrianto, et al. (2021) is the only example in open literature where 

optic fibre measurements have been used for Bayesian system identification of a real-world 

civil engineering structure with a relatively expensive-to-compute finite element model. In 

this study, the statFEM methodology introduced by Girolami, et al. (2021) is applied to a 

composite railway bridge instrumented with FBG sensors, in order to obtain model 

predictions in unobserved locations of the structure, while accounting for different sources of 

uncertainty. In general, statFEM problems involve the solution of stochastic partial differential 

equations; however, the formulation of this case allows for the nodal displacement vector to 

be expressed as a multivariate Gaussian, with a mean equal to the deterministic nodal 

displacement vector obtained when solving the finite element model for the mean force 

vector. In other words, the expensive finite element model only has to be evaluated once. 

The previous paragraphs have shown that although optic fibres are well-established in SHM, 

their use on Bayesian inference is limited to a handful of applications that are either 

experimental or framed in situations that do not require multiple evaluations of a costly 



7 Literature review 

 

 

physical model. By investigating a real-world structure instrumented with distributed optic 

fibre sensors, this thesis addresses some of the existing research gap. 

2.2 Surrogate modelling  

As discussed at the beginning of the chapter, Bayesian statistics provide a powerful 

framework for solving the inverse problems that many applications of SHM demand; 

however, for most real cases, Bayesian inference requires a high number of samples, each of 

which entails a forward model evaluation, making the procedure computationally unfeasible 

for most realistic civil engineering models. In recent years, surrogate modelling techniques 

have been introduced into the field to overcome this issue by replacing the forward model 

(e.g. finite element model) with a cheap-to-compute approximation. Surrogate models are 

built by strategically selecting samples on which the forward model is evaluated, and then 

using the input-output pairs to train the approximation function. In the following paragraphs, 

their use for Bayesian inference across SHM literature is reviewed. 

A natural application is to surrogate the individual responses of finite element models that 

are associated with measurement data using different regression methods. For example, 

Rózsás, et al. (2022) used a set of grid points to construct a Gaussian process surrogate of static 

translations and strains in order to perform Bayesian parameter estimation and load 

identification on a reinforced concrete bridge; while Sbarufatti, et al. (2018) followed a similar 

approach to probabilistically detect strain-based damage on a synthetic plate but using 

Artificial Neural Networks. Vibration-based approaches are also present in the literature, such 

as Ierimonti, et al. (2021), who developed a monitoring scheme that relied on Kriging to 

surrogate modal frequencies, in order to detect reductions of stiffness in a monumental 

masonry building; and Pepi, et al. (2019), who used Polynomial chaos surrogates to perform 

Bayesian system identification on a pedestrian bridge.  

It should be noted that the examples introduced beforehand and similar applications are 

facilitated by low parameter dimensionality, low number of measurements or both. In real-

world cases with distributed optic fibre data, building surrogate models of physical responses 

might still be computationally challenging since the number of physical model evaluations 

required to be globally accurate, i.e., on the entire parameter domain, could be prohibitively 

high. On top of that, some surrogating techniques such as Gaussian processes are not 

inherently prone to multi-output regression, meaning that a very high number of individual 

response surrogates have to be fit separately, elevating the computing cost. 

Strategies based on surrogating the likelihood might alleviate the complications described in 

the previous paragraph. Indeed, by focusing on the approximation of a single statistical 

measure rather than multiple physical responses, this approach can result on a simpler 

formulation of the surrogate, while also allowing for the introduction of active learning 

algorithms that only select new training points in areas that highly contribute to the accuracy 

of the desired quantity. Osborne, et al. (2012) proposed a method based on Bayesian 

quadrature and active learning to approximate the model evidence, i.e., the distribution of 

observed data marginalized over the parameters, and tested it for a few astrophysical 

problems. Also in the astrophysics literature, Kandasamy, et al. (2015) developed the BAPE 
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method that surrogates the log joint probability density using Gaussian processes and an 

active learning cost function that combines the uncertainty of the prediction with its mean 

value. A continuation of this work can be found in Wang & Li  (2017), where the surrogated 

term is the unnormalized posterior divided by a Gaussian mixture approximation of the 

posterior distribution, with the expectation that this quotient would sequentially give a 

smoother and flatter function easier to approximate with a Gaussian process. Finally, a 

somewhat different approach, is given by Acerbi (2018), which combines Variational Bayesian 

methods with Gaussian process-based Bayesian quadrature to simultaneously deal with the 

posterior and model evidence. 

Multiple solutions have been proposed to minimize the number of likelihood evaluations for 

problems with expensive-to-compute forward models; however, their applications are mostly 

encased in astrophysics and neuroscience. The author has not found applications of these 

strategies for SHM with the exception of Ni, et al. (2021), and Ni, et al. (2022), who respectively 

used the previously described variational approach and log joint probability surrogate 

approach, for the Bayesian parameter estimation of a synthetic arch bridge and an 

experimental small frame structure, i.e., not for a real-world case. 

The literature exploration of this section signals a lack of research in the application of 

surrogating techniques for real-world civil engineering structures where a high number of 

physical outputs are required, as occurs with high resolution optic fibre sensors. By 

investigating this scenario, the thesis contributes to reduce the research gap. 
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3 Methods and tools 

In this section, the methods and tools used in this thesis are described. First, Bayes’ theorem 

is introduced, as well as its application to obtain posterior predictive distributions. Then, the 

data generating process is presented, i.e., the assumed mathematical process that generates 

measurements from the physical and probabilistic models. Next, the topic of information 

content of sensors is addressed, as well as methods to evaluate the information gain from prior 

to posterior distributions. After that, Markov Chain Monte Carlo (MCMC) methods to sample 

from the posterior distribution are introduced, including specific algorithm such as Metropolis 

Hastings and the Affine-invariant ensemble sampler. Additionally, the concepts of surrogate 

modelling and Gaussian process (GP) surrogates are introduced, along with some GP 

components, limitations and adaptive sampling strategies for posterior estimation. Finally, 

the parallelization approach used in this thesis to reduce wall-clock times is presented. 

3.1 Bayesian system identification 

Many problems in Structural Health Monitoring (SHM) involve the solution of an inverse 

problem, i.e. inferring the parameters of the physical model of a structure from a set of 

measurements, rather than obtaining the responses of a structure for a given combination of 

parameters (forward problem). Dashti & Stuart (2015) explain that solving inverse problems 

might be difficult due to (a) the presence of measurement noise, for which only its statistical 

properties are known at best, and (b) the problem being ill-posed, meaning that small changes 

in the data can induce arbitrarily large changes in the solution. 

Adopting the Bayesian approach allows to overcome both of these difficulties. In this way, the 

solution of the inverse problem is defined as a probability distribution of the parameters with 

respect to the measurement data and the noise is modelled via its statistical properties. Also, 

the previous knowledge about the parameters is incorporated as the prior distribution, which 

can serve as a form of regularization to counteract the ill-posedness (Dashti & Stuart, 2015). 

Under the Bayesian approach, the problem is casted as a parameter estimation, often referred 

to as system identification in the SHM literature. This sub-section presents the main aspects 

of Bayesian system identification. 

3.1.1 Bayes’ theorem 

Bayesian inference is the process of fitting a statistical model to a set of data and summarizing 

the result by a probability distribution of the model parameters (Gelman, et al., 2013). The 

Bayes’ theorem for continuous variables reads: 

𝑝(𝜽|𝒚) =
𝑝(𝒚|𝜽) ∙ 𝑝(𝜽)

𝑝(𝒚)
=

𝑝(𝒚|𝜽) ∙ 𝑝(𝜽)

∫ 𝑝(𝒚|𝜽) ∙ 𝑝(𝜽) 𝑑𝜽
 (1) 

where 𝜽 is a vector of parameters defined as uncertain (parameters of interest) and 𝒚 is a 

vector of measurements. The knowledge or set of assumptions about 𝜽 is expressed in the 

prior distribution 𝑝(𝜽), which gives a probability density for every possible value of 𝜽 in the 
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parameter domain. The likelihood of the data for a given a parameter combination 𝜽 is given 

by the likelihood function 𝑝(𝒚|𝜽), while 𝑝(𝜽|𝒚) is the posterior distribution, i.e., the probability 

density function of 𝜽 updated with measurements and accounting for the prior. The integral 

in the denominator ∫ 𝑝(𝒚|𝜽) ∙ 𝑝(𝜽) 𝑑𝜽 is the evidence (also called marginal likelihood) of 𝒚, or 

𝑝(𝒚), and serves as a normalizing term for the numerator so the posterior distribution 𝑝(𝜽|𝒚) 

integrates to one over the parameter domain. Although in some situations the posterior 

distribution 𝑝(𝜽|𝒚) can be obtained analytically, this is generally not the case and numerical 

methods are necessary (see Section 3.4).  

3.1.2 Posterior predictives 

After computing the posterior distribution of theta, it might be desirable to make predictions 

of observables or variables that depend on these model parameters; however, under the 

Bayesian approach there is only access to the posterior distribution 𝑝(𝜽|𝒚) over possible 

values that the model parameters 𝜽 could take, so this uncertainty needs to be marginalized 

in order to make predictions (Speagle, 2020): 

𝑝(𝒚̃|𝒚) = ∫ 𝑝(𝒚̃|𝜽) ∙ 𝑝(𝜽|𝒚)𝑑𝜽 (2) 

where 𝒚̃ is a vector of future observations and 𝒚 the vector of the already existing observations. 

The term 𝑝(𝒚̃|𝒚) is known as the posterior predictive distribution of 𝒚̃ given 𝒚, 𝑝(𝜽|𝒚) is the 

already determined posterior and 𝑝(𝒚̃|𝜽) is the likelihood of the future observations. The 

posterior predictive is the expected value of the likelihood of future observations over the 

posterior, hence, it incorporates the uncertainty from all sources: model and measurement 

uncertainty via the likelihood, and parameter uncertainty via the posterior.  

3.2 Data generating process 

Bayesian data analysis means producing a story of how the data came to be (McElreath, 2016). 

This process involves the likelihood function introduced in the previous section, and is 

usually known as the data generating process. The content of this section is partially based on 

the work of Koune (2021). 

In this thesis, the data generating process refers to the combination of a physical and a 

probabilistic model. The physical model is defined as deterministic mathematical 

representation of a structure for which responses can be obtained as a function of a parameter 

combination; while the probabilistic model accounts for the intrinsic uncertainties that appear 

when using a model to describe a physical system. Two sources of uncertainty are considered 

in this thesis: measurement uncertainty and physical model uncertainty. 

Measurement uncertainty refers to the mismatch between the measured quantities and the 

true responses of the structure caused by sensing errors and/or environmental noise. In this 

thesis, the measurement error is modelled as an additive Gaussian term with zero mean and a 

standard deviation, which is usually estimated using sensor pre-recordings. 

On the other hand, the model uncertainty is related to the discrepancy between the 

deterministic physical model predictions and the true responses. The errors here mainly obey 
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to mathematical simplifications and idealizations with respect to the real structure. In this 

thesis, the model prediction error is modelled as a multiplicative Gaussian term with a unitary 

mean. The hypothesis that model uncertainty scales with the model output seems adequate 

when considering the situation of translation restraints. Indeed, an additive model 

uncertainty scheme would give unrealistic results here since it is known that displacements 

in these points are zero by the definition of the problem. 

Considering the aforementioned points, the relationship between the measured response 𝒚 

and the deterministic physical model prediction 𝒚model is given by the following equation: 

𝒚 = 𝒄model
𝑇 ∙ 𝒚model(𝜽) + 𝒆meas (3) 

where 𝜽 is the vector of uncertain physical parameters, 𝒆meas is the vector containing the 

measurement additive noise term and 𝒄𝑚𝑜𝑑𝑒𝑙 is the vector containing the model multiplicative 

noise term. Considering 𝐷 as the length of 𝒚, 𝒆meas is a particular realisation of a random 

variable 𝑬meas  that follows a multivariate Gaussian distribution: 

𝑬meas ~ 𝒩(𝟎, 𝚺meas) (4) 

𝚺meas = 𝜎meas𝑰(𝐷,𝐷) (5) 

where 𝜎meas is the standard deviation of the measurement noise and 𝑰 is the identity matrix. 

In a similar way, the model noise 𝒄model is a particular realisation of a random variable 

𝑪model with the following distribution (the formulation of the covariance matrix 𝚺model is 

discussed later): 

𝑪model ~ 𝒩(𝟏, 𝚺model) (6) 

Considering 𝑴 = diag(𝒚model(𝜽)), the covariance matrix  𝚺phys =  𝑴 ∙ 𝚺model ∙ 𝑴 is defined. 

Then, the measurements 𝒚 are realisations of a random variable 𝒀 that follows: 

𝒀 ~ 𝒩(𝒚model(𝜽), 𝚺meas + 𝚺phys) (7) 

The multivariate Gaussian distribution has a joint probability density given by the following 

equation (Rasmussen & Williams, 2006): 

𝑝(𝒙|𝝁 = 𝒎) = (2𝜋)−𝐷/2|𝚺|−1/2 ∙ exp (− 1
2⁄ (𝒙 − 𝒎)𝑇𝚺−1(𝒙 − 𝒎)) (8) 

where m is the mean vector (of length 𝐷), 𝚺 is the covariance matrix (of size 𝐷, 𝐷) and 

𝒙 ~ 𝒩(𝒎, 𝚺). Since the physical parameter vector 𝜽 only intervenes in the physical model 

prediction, the likelihood presented in equation (1) can be interpreted as the probability 

density of having a set of measurements 𝒚 given a mean of 𝒚𝑚𝑜𝑑𝑒𝑙(𝜽): 

𝑝(𝒚|𝜽) = 𝑝(𝒚|𝝁 = 𝒚model(𝜽)) (9) 

Defining 𝚺tot = 𝚺meas + 𝚺phys, and combining equations (8) and (9) yields the likelihood 

function: 

𝑝(𝒚|𝜽) = (2𝜋)−𝐷/2|𝚺tot|−1/2 ∙ exp (− 1
2⁄ (𝒚 − 𝒚model(𝜽))

𝑇
𝚺𝑡𝑜𝑡

−1(𝒚 − 𝒚model(𝜽))) (10) 
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To complete the definition of the data generating process, the covariance matrix 𝚺model is 

addressed. A significant dependence between closely-spaced sensing points is expected, 

hence, a covariance function of the distance 𝑘(𝒙 − 𝒙′) is needed. In this thesis, the Squared 

Exponential (SE) covariance function is used: 

𝑘(𝒙 − 𝒙′) = 𝜎model
2 ∙ exp 

−(𝒙 − 𝒙′)2

𝑙corr
 (11) 

where 𝒙, 𝒙′ are point coordinates in space, while 𝜎model and 𝑙corr are the hyperparameters of the 

covariance function, the first representing its amplitude and the second, the length scale or 

how far the dependence propagates. Many properties of this covariance function make it 

attractive to use; for example, it is infinitely differentiable, i.e., very smooth, while having only 

two hyperparameters that need to be tuned. Also, the SE function is stationary, meaning that 

it only depends on the distance 𝒙 − 𝒙′ and not on their absolute positions (Duvenaud, 2014).  

Finally, 𝚺model is built by evaluating the covariance function 𝑘 for every pair of sensing points, 

yielding a square symmetric matrix of size 𝐷: 

𝜮model 𝑖,𝑗 = 𝑘(𝒙𝑖 − 𝒙𝑗) (12) 

3.3 Information content of sensors 

A visual way of evaluating the information content is by using credible regions. A p-level 

credible region encompasses p probability mass of the density function (Gelman, et al., 2013), 

so the credible intervals for each parameter could be plotted for every sub-set of sensors and 

determine which one is more informative. An illustration of the concept is shown in Figure 1. 

 
Figure 1: Posterior distributions of a parameter obtained with different sets of sensors. The shadowed regions 

correspond to the same p-level credible interval. Since the distance between b and c is smaller than the distance 

between a and d, the information gain of the sensor set associated with the blue curve is higher. 

A more principled approach to evaluate the information content is based on the Kullback-

Leibler divergence which is defined as follows: 

𝐷(𝑓||𝑔) = ∫ 𝑓(𝑥) ∙ 𝑙𝑜𝑔
𝑓(𝑥)

𝑔(𝑥)
𝑑𝑥 (13) 
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where 𝑔 and 𝑓 are probability distributions for a random variable 𝑋. The KL divergence can 

be interpreted as a measure of how far 𝑔 is from 𝑓 and it has some of the properties of a 

distance: for all 𝑔, 𝑓 the divergence 𝐷(𝑔||𝑓) ≥ 0, 𝐷(𝑓||𝑓) = 0, and conversely if 𝐷(𝑔||𝑓) = 0, 

then 𝑔 = 𝑓 almost everywhere. However, the KL divergence is not a distance (metric) since it 

is not symmetric (Commenges, 2015). 

The KL divergence of the posterior with respect to the prior could be used to measure the 

information gain (Huan & Marzouk, 2013): 

𝐷(𝑝(𝜽|𝒚)||𝑝(𝜽)) = ∫ 𝑝(𝜽|𝒚) ∙ 𝑙𝑜𝑔
𝑝(𝜽|𝒚)

𝑝(𝜽)
𝑑𝜽 (14) 

The idea behind the approach would be to compute the posterior distribution with different 

sub-sets of sensors separately and compare the values of the KL divergences for each. It is 

evident that since the KL divergence is obtained by integrating in the whole parameter space, 

the information gain assessment is global and complements the credible interval approach 

that gives evaluation on each parameter individually2. 

3.4 Markov Chain Monte Carlo 

As mentioned in Section 3.1.1, the posterior distribution 𝑝(𝜽|𝒚) can usually only be obtained 

by numerical methods. One approach is to discretize the parameter space in grids and solve 

the posterior integrals in a Riemann sum-like way; however, the total number of necessary 

grids increases exponentially with the number of dimensions (the curse of dimensionality), 

making it unattractive even for low-dimensional problems (Speagle, 2020). In this Section, a 

more appropriate family of computational methods for Bayesian inference is presented: 

Markov Chain Monte Carlo (MCMC). 

In MCMC, a Markov chain3 of n parameter values is drawn {𝜽1 → ⋯  → 𝜽𝑛}. Considering 

𝑚(𝜽𝛿) the number of iterations from the chain allocated on a parameter region 𝛿, the sample 

density in that region is (Speagle, 2020): 

𝜌𝛿(𝜽) =
𝑚(𝜽𝛿)

𝑛⁄  (15) 

The goal of MCMC methods is to generate a chain (or chains) of parameter values so that after 

a number of iterations 𝜌(𝜽) approximates the posterior 𝑝(𝜽|𝒚). Then, the posterior can be 

found just by dividing the number of samples on each region by the total number of samples.  

A popular approach for MCMC is the Metropolis-Hastings (MH) algorithm. Defining the term 

𝒫̃(𝜽) = 𝑝(𝒚|𝜽) ∙ 𝑝(𝜽) as the unnormalized posterior density, a summary of the algorithm is 

presented:  

1. From a position 𝜽𝑖 draw 𝜽𝑖+1
′  from an easy-to-sample proposal distribution 𝒬(𝜽𝑖+1

′  |𝜽𝑖) 

 
2 The credible interval approach is global for 1D cases. 
3 A sequence of events where the probability of an event only depends on the previous one. 
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2. Compute the transition probability4, 5, i.e., the probability of accepting 𝜽𝑖+1
′ : 

𝑇(𝜽𝑖+1
′ |𝜽𝑖) = min [1,

𝒫̃(𝜽𝑖+1
′  )

𝒫̃(𝜽𝑖)

𝒬(𝜽𝑖+1
′  |𝜽𝑖)

𝒬(𝜽𝑖|𝜽𝑖+1
′  )

] (16) 

3. Draw a random number 𝑟 from a uniform distribution ~ 𝒰(0,1) 

4. If 𝑟 < 𝑇(𝜽𝑖+1
′ |𝜽𝑖) accept the new point and 𝜽𝑖+1 = 𝜽𝑖+1

′  

5. If 𝑟 > 𝑇(𝜽𝑖+1
′ |𝜽𝑖) reject the new point and 𝜽𝑖+1 = 𝜽𝑖 

The sequence {𝜽1 → ⋯  → 𝜽𝑛} is a Markov Chain since the drawing of 𝜽𝑖+1 was only 

conditioned on 𝜽𝑖. The MH algorithm converges to a stationary set of samples from the 

posterior at 𝑖 → ∞. Other algorithms can achieve convergence at a faster rate, i.e., with a lower 

number of likelihood evaluations, and may be preferrable because of that.  

One way of measuring the convergence rate is by using the autocorrelation time, which can be 

defined as the amount of iterations necessary for the chain to start independently sampling 

from the target density (Foreman-Mackey, et al., 2013). Assuming an infinitely long chain 

{𝜽1 → ⋯ } the auto-covariance 𝐶(𝑡) is defined as: 

𝐶(𝑡)  = lim
𝑛→∞

1

𝑛
∑ (𝜽𝑖 − 𝜽̅). (𝜽𝑖+𝑡 − 𝜽̅)

𝑛

𝑖=1
 (17) 

where 𝑡 is the time lag and 𝜽̅ is the vector of averages. 𝐶(𝑡) takes its maximum value when 

𝑡 = 0, since the auto-covariance is measured for two identical points. Considering this, the 

auto-correlation 𝐴(𝑡) is: 

𝐴(𝑡)  =
𝐶(𝑡)

𝐶(0)
 (18) 

Using equation (18), the auto-correlation time is obtained by: 

𝜏 = 2 ∑ 𝐴(𝑡)
∞

𝑡=1
 (19) 

As previously mentioned, 𝜏 offers a measure of the inverse of the convergence rate. In practice, 

the generated chains are finite so the auto-correlation time can only be approximated. Many 

methods to do this are available; however, they are not be described further here.   

For this thesis, the MCMC Python package emcee (Foreman-Mackey, et al., 2013) is used. This 

package implements the affine-invariant ensemble sampler (Goodman & Weare, 2010), which 

significantly outperforms standard MH algorithms. Also, this algorithm only requires hand-

 
4 The transition probability is derived by invoking the principle of Detailed balance which ensures convergence as 

𝑖 → ∞. Under this principle, the probability of moving from 𝜽𝑖 → 𝜽𝑖+1 is the same as the probability of 𝜽𝑖+1 → 𝜽𝑖 
(Speagle, 2020). 
5 This line can be computationally expensive since it involves the evaluation of the likelihood. 
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tuning of 1 or 2 parameters, compared to ~ 𝑁2 for traditional MCMC methods6, where 𝑁 is 

the number of dimensions of the parameter space. 

The method, and in particular the so called stretch move variant (Goodman & Weare, 2010), 

comprises an ensemble of 𝐾 walkers where the proposal distribution for one walker k is 

determined with respect to the position of the other 𝐾 − 1 walkers. The procedure for a single 

stretch move is summarized as follows: 

1. Randomly select a walker 𝜽𝑗  from the complementary ensemble of 𝐾 − 1 walkers 

{𝜽1(𝑡 + 1), … , 𝜽𝑘−1(𝑡 + 1), 𝜽𝑘+1(𝑡), … , 𝜽𝐾−1(𝑡)} 

2. From the distribution 𝑔(𝑧), randomly sample a value 𝑧 

3. Calculate the new proposed position 𝜽′𝑘(𝑡 + 1) = 𝜽𝑗 + 𝑧(𝜽𝑘(𝑡) − 𝜽𝑗), see Figure 2 

4. Compute the probability of accepting  𝜽′𝑘(𝑡 + 1)7: 

𝑇(𝜽′𝑘(𝑡 + 1) |𝜽𝑘(𝑡) ) = min [1, 𝑧𝑁−1  
𝒫̃(𝜽′𝑘(𝑡 + 1))

𝒫̃(𝜽𝑘(𝑡))
] (20) 

5. Draw a random number 𝑟 from a uniform distribution ~ 𝒰(0,1) 

6. If 𝑟 < 𝑇(𝜽′𝑘(𝑡 + 1) |𝜽𝑘(𝑡) ) accept the new point and 𝜽𝑘(𝑡 + 1) = 𝜽′𝑘(𝑡 + 1) 

7. If 𝑟 > 𝑇(𝜽′𝑘(𝑡 + 1) |𝜽𝑘(𝑡) ) reject the new point and 𝜽𝑘(𝑡 + 1) = 𝜽𝑘(𝑡) 

The distribution 𝑔(𝑧) proposed by Goodman & Weare (2010) is: 

𝑔(𝑧) = {1/√𝑧
0

     
if z ∈ [0.5, 2.0]

otherwise
 (21) 

 

 

Figure 2: A stretch move. The grey dots are the walkers that are not used in this move. The proposal is generated 

along the straight line connecting 𝜽𝑗  and 𝜽𝑘. Adapted from Goodman & Weare (2010). 

3.5 Surrogate modelling 

3.5.1 General concepts 

Many engineering tasks such as model calibration and optimisation require the evaluation of 

a forward model for a number of times that might be practically unfeasible for heavy 

simulations (e.g. the three-dimensional finite element model of a large structure). Surrogate 

 
6 A common proposal 𝒬(𝜽𝑖+1

′  |𝜽𝑖) is a Gaussian distribution centred on 𝜽𝑖 with a covariance matrix tuned for 

performance. This means adjusting 𝑁(𝑁 + 1)/2 parameters corresponding to the unique terms in the symmetric 

covariance matrix. 
7 This line can be computationally expensive since it involves the evaluation of the likelihood. 

𝜽𝑗 

𝜽𝑘 

𝜽𝑘(𝑡 + 1) 
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modelling offers an alternative to alleviate this difficulty. Considering a function that maps a 

series of inputs to outputs, a surrogate model is a cheap-to-compute replacement of the function 

that uses a set of training data to make predictions of the function output in points where the 

forward model has not been evaluated. 

Surrogate models deal with problems that can be classified as regression, when the output to 

predict is a continuous quantity, or classification, when the output is a discrete label. Also, a 

surrogate is either global, if the surrogate is built with the aim of making predictions over the 

entire parameter space, or local, if predictions are only necessary in specific regions of the 

parameter space (e.g. around maxima for optimisation). 

A surrogate model can be constructed using a fixed and previously obtained dataset; 

however, in problems where the forward model is computationally expensive and there is no 

training data yet, the number of points where the model is evaluated should be minimized. 

Here, an adaptive sampling technique may be preferable. Under this approach, the surrogate 

is built in a sequential manner, fitting the function at every step and drawing samples (and 

evaluating the real model) based on the prediction of the surrogate, which is then used to refit 

it at the next step. This procedure is followed until a convergence threshold is reached.  

Two approaches may be followed in adaptive sampling: exploitation and exploration. 

Exploitation refers to adding more samples in regions that are already providing good results 

(e.g. the lowest output values for a minimisation problem), while exploration focuses on 

under-sampled areas that may provide even better results. Normally, both are necessary since 

an exploration step precedes the finding of an interesting area to exploit. On the opposite side, 

if no exploitation takes place, then the surrogate construction does not need to be adaptive 

and a scheme that samples the parameter space evenly, such as Latin Hypercube, could be 

employed. The goal of adaptive sampling techniques is to find the right balance between these 

two strategies. 

This thesis only uses Gaussian process regression surrogates, which are described in the 

following section; nevertheless, the reader should be aware that many families of surrogating 

methods exist, such as linear regression, decision trees, support vector machines, neural networks, 

among others. 

3.5.2 Gaussian process regression 

Gaussian processes (GP) are a generalization of multivariate Gaussian probability 

distributions. A formal definition is given by Rasmussen and Williams (2006): “A Gaussian 

process is a collection of random variables, any finite number of which have a joint Gaussian 

distribution”. The GP model of a function 𝑓(𝒙) is defined by its mean function 𝑚(𝒙) and 

covariance function or kernel 𝑘(𝒙, 𝒙′): 

𝑚(𝒙) = 𝔼[𝑓(𝒙)] (22) 

𝑘(𝒙, 𝒙′) = 𝔼[(𝑓(𝒙) − 𝑚(𝒙))(𝑓(𝒙′) − 𝑚(𝒙′))] (23) 

and the Gaussian process is written as: 
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𝑓(𝒙) ~ 𝒢𝒫(𝑓(𝒙), 𝑘(𝒙, 𝒙′)) (24) 

GP’s have several properties that make them attractive for regression. For example, they offer 

a high amount of flexibility to approximate different types of functions, and can even be 

universal function approximators depending on the choice of the kernel (Micchelli, et al., 2006). 

In addition to that, GP’s require relatively few parameters to be estimated (e.g. compared to 

neural networks), lessening the need for complex optimisation (Duvenaud, 2014). 

Furthermore, a GP predictive distribution can be analytically computed given a kernel and 

some fixed observations. 

It is a common practice to assume that the mean function 𝑚(𝒙) is simply zero everywhere, 

since the uncertainty about the mean function can be taken into account by adding an extra 

term to the kernel (Duvenaud, 2014). Figure 3 shows an example with functions drawn from 

a Gaussian Process:  

 
Figure 3: Functions randomly drawn from a GP prior with zero mean and a unitary standard deviation (left) and 

from the GP posterior after two data points have been observed (right). The grey shaded area corresponds to the 

limits set by the mean plus and minus two times the standard deviation (Rasmussen & Williams, 2006). 

Considering the regression problem 𝑦 = 𝑓(𝒙) + 𝜀, with a Gaussian noise term 𝜀 ~ 𝒩(0, 𝜎𝑛
2), 

the joint distribution of the observed target values 𝑦 and the predicted values 𝑓∗: 

[
𝑦
𝑓∗

] ~ 𝒩 (𝟎, [
𝑲(𝑿, 𝑿) + 𝜎𝑛

2𝑰 𝑲(𝑿,  𝑿∗)
𝑲( 𝑿∗, 𝑿) 𝑲( 𝑿∗,  𝑿∗)

]) (25) 

where 𝑿 and 𝑿∗ contain the training points and prediction points, respectively, while the 

terms 𝑲 denote the matrices of the covariances evaluated element-wise on every pair of 

training and prediction points.  The mean and covariance of the predictive distribution 𝑓∗ are 

given by: 

𝑓∗̅ = 𝑲( 𝑿∗, 𝑿)[𝑲(𝑿, 𝑿) + 𝜎𝑛
2𝑰]−1𝑦 (26) 

cov(𝑓∗) = 𝑲( 𝑿∗,  𝑿∗) −  𝑲( 𝑿∗, 𝑿)[𝑲(𝑿, 𝑿) + 𝜎𝑛
2𝑰]−1𝑲(𝑿,  𝑿∗) (27) 

Simplified expressions can be obtained for a single test point 𝑥∗. Considering 𝑲 = 𝑲(𝑋, 𝑋) and 

𝑘∗ = 𝑲(𝑋, 𝑥∗): 

𝑓∗̅ = 𝑘∗
𝑇(𝑲 + 𝜎𝑛

2𝑰)−1𝑦 (28) 
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𝕍[𝑓∗] = 𝑘(𝒙∗, 𝒙∗) − 𝑘∗
𝑇(𝑲 + 𝜎𝑛

2𝑰)−1𝑘∗ (29) 

The kernel 𝑘(𝒙, 𝒙′) of a GP expresses the similarity between two values of a function when it 

is evaluated in 𝒙 and 𝒙′, or in other words, it determines which functions are more likely under 

the GP prior (Duvenaud, 2014). Since the mean prior function is usually zero, as explained 

before, all of the prior knowledge of the function 𝑓(𝒙) is deposited on the kernel. Therefore, 

the kernel should be able to capture features of the function structure that are previously 

recognised such as symmetry, periodicity or exponential decay.  

Figure 4 and Figure 5 show some kernels commonly used in GP’s. Notice that every kernel 

contains a scaling factor 𝜎𝑓. The term 𝑙 denotes the correlation length, or how far it takes for 

two points to be uncorrelated, while 𝑝 represents the period or the distance between 

repetitions, and 𝑐 is the offset at which the lines of the posterior cross the abscise. The term 𝛼 

determines the relative weighting between small and large scale variations and when 𝛼 → ∞, 

the Rational Quadratic kernel turns into a Square Exponential kernel. Notice that 𝛿 is the 

Kronecker-delta function. 

 

Figure 4: Basic kernels commonly used in GPs – Part 1 (Duvenaud, 2014). 

 

Figure 5: Basic kernels commonly used in GPs – Part 2 (Duvenaud, 2014). 
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The shown kernels can be summed or multiplied in order to construct new kernels that 

combine the desired properties, for example, a typical kernel structure sums a Square 

exponential kernel with a White noise kernel, to have both model correlations and observation 

noise. Once the structure of the kernel has been chosen, a question arises: what values should 

the hyperparameters have? This issue is of great relevance since the hyperparameters greatly 

influence the posterior functions. 

Rasmussen & Williams (2006) show a procedure to set the values of the hyperparameters by 

maximizing the marginal likelihood8 with respect to the hyperparameters 𝜓 using partial 

derivatives: 

𝜕

𝜕𝜓𝑖
log 𝑝(𝑦|𝑿, 𝜓) =

1

2
tr ((αα𝑇 − 𝑲−1)

𝜕𝑲

𝜕𝜓𝑖
) (30) 9 

Notice that Equations (28), (29) and (30) involve the computation of the inverse matrix 𝑲−1, 

an operation which scales as 𝒪(𝑛3) where 𝑛 is the number of rows in the square matrix. Also, 

the storage of covariance matrices scales as 𝒪(𝑛2). This means that GP prediction may become 

prohibitively expensive for training sets consisting of more than a few thousand points, 

especially when the surrogate construction is expected to be refined step-wise, as in this thesis. 

Many approximated methods have been proposed for Gaussian processes with a large 

number of samples, most of them using a carefully chosen subset of training points 

(Rasmussen & Williams, 2006); however, the details of these methods are not discussed 

further in this thesis and only exact Gaussian process regression is used. 

3.5.3 Adaptive sampling for posterior estimation 

A natural way of applying the techniques from this chapter into a civil engineering problem 

is to use Gaussian processes to surrogate the individual finite element responses (e.g. strains) 

at positions where sensors are located. Here, an adaptive sampling strategy is preferable over 

one-time training since it has the potential to minimize the number of forward model 

evaluations, which is expected to be the bottleneck of the Bayesian system identification 

workflow of this thesis.  

The idea would be to build a global GP (see 3.5.1) with an initial training set and then draw 

new points in areas where the GP predicts the maximum variance. Finding these new points 

results in an optimisation problem. Convergence could be checked by comparing the 

maximum variance in the current step with the maximum variance at the beginning. 

One way of implementing the mentioned approach is to separately and sequentially fit 

surrogates for every sensor response, reusing exact function evaluations from the previous 

surrogates for the new ones, although this would be too cumbersome for the problems 

analysed in this thesis due to the high number of data points of an optic fibre sensor (e.g., 10 

GP surrogates per meter of optic fibre). Also, given that the outputs are correlated, valuable 

 
8 Marginalized over the model parameters 𝜽:  𝑝(𝑦|𝑿, 𝜓) = ∫ 𝑝( 𝑦|𝑿, 𝜽). 𝑝(𝜽| 𝜓)𝑑𝜽. 
9 

𝜕𝐾

𝜕𝜓𝑖
 is an element-wise partial derivative of 𝐾 over 𝜓𝑖. 
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information may be lost when using separate surrogates. One could also include the location 

along the optic fibre as an additional parameter; however, every finite element evaluation 

would produce such a large number of samples (e.g. 10 samples per meter of optic fibre) that 

the computations would quickly become unmanageable for Gaussian process regression due 

to its cubic time complexity10. 

Another way of doing this is to build a multiple-output surrogate model, which would appear 

more promising since the knowledge of the physical model could be introduced to constrain 

and interpolate outputs, thus reducing the number of forward model evaluations. A multiple 

output GP surrogate is presented in Equation (31): 

𝑓(𝑥) ~ 𝒢𝒫(0, 𝑲𝑀(𝒙, 𝒙′)) (31)  

where 𝑲𝑀(𝒙, 𝒙′) ∈ 𝑅𝑇𝑥𝑇 is the multiple-output covariance matrix, with 𝑇 the number of 

outputs. The performance of the multiple-output GP depends on 𝑲𝑀 being able to capture the 

output correlations and transferring available information across outputs (Liu, et al., 2018), 

which is non-trivial and still an active field of research.  

An alternative to the previous strategies is to surrogate the likelihood function instead of the 

individual physical model responses. In this way, the problem of dealing with either multiple 

single-output GP surrogates or a single multiple-output GP with a complicated output 

covariance matrix is avoided. Also, an additional computational gain is obtained by 

predicting the likelihood values from a GP rather than calculating Equation (10), and its 

expensive inverse matrix operations.  

On this line, Kandasamy, et al. (2015) proposed an adaptive sampling strategy for a GP 

containing the likelihood function. The Bayesian active posterior estimation method (BAPE) 

requires the construction of a GP that surrogates the log-joint probability: 

log(𝑝(𝜽, 𝒚)) = log(𝑝(𝜽|𝒚) ∙ 𝑝(𝜽)) (32)  

Then, the algorithm selects new samples in areas where the GP predicts the log-joint 

probability to have the highest uncertainty. In contrast with the approaches mentioned before, 

the plain standard deviation is not a good predictor of uncertainty for BAPE since the GP is 

in the log domain. Indeed, areas with a low likelihood would have high negative log-joint 

probabilities, resulting in high standard deviations. The authors propose to use the 

exponentiated variance as a more adequate measure of uncertainty for the log-joint probability. 

The Exponentiated variance utility function for a sample 𝜽 is: 

𝑢EV(𝜽) = 𝑒𝑥𝑝(2𝜇(𝜽) + 𝜎2(𝜽)) (𝑒𝑥𝑝 (𝜎2(𝜽) − 1)) (33)  

 
10 This approach would be interesting for surrogating techniques that are able to handle large datasets (e.g. neural 

networks). 
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where 𝜇(𝜽) and 𝜎(𝜽) are the log-joint probability mean and standard deviation predicted by 

the GP at point 𝜽. A new sample 𝜽′ is chosen at the point where the utility function is 

maximized: 

𝜽′ = argmax(𝑢EV(𝜽)) (34)  

The utility function 𝑢𝐸𝑉 reduces high variances in areas with low likelihood and amplifies 

small variances in areas with high likelihood, which means that the focus is only on regions 

that highly contribute to the posterior distribution accuracy, rather than on the entire 

parameter domain. It is expected then that the number of samples required with BAPE is 

considerably lower than for strategies that use global surrogate for individual physical 

responses. Because of this reason, BAPE is the surrogating approach used for this thesis. 

It should be noted that BAPE also carries some drawbacks. For example, the GP surrogate is 

not independent of the measurement data since it includes the log likelihood, therefore it 

cannot be reused for different parameter estimation cases (e.g. when using different subsets 

of sensors). Moreover, the likelihood can be highly nonlinear and fast-varying, making it a 

difficult function to approximate with a Gaussian process (Wang & Li, 2017). Additionally, 

the algorithm is focused on being accurate in areas with high posterior density, which is 

efficient for the estimation of the posterior distribution, but does not offer a straightforward 

path to estimate the evidence and posterior predictives.  

The final ingredient of the adaptive surrogate is the convergence criterion, i.e., when to stop 

drawing samples. For this thesis, convergence is checked by comparing the variation of the 

posterior mean of every parameter at each step, normalized with its posterior standard 

deviation, as proposed by Fleming & VanderPlas (2018). In this way, convergence is controlled 

by quantities that are directly related to the physical problem, making it more intuitive than 

approaches based on more abstract concepts such as the KL divergence. The convergence 

procedure for an adaptive step 𝑡 is shown below: 

1. Perform MCMC using the log joint probability GP fitted with the samples of the 

previous 𝑡 − 1 adaptive steps 

2. Use the MCMC samples to compute the means 𝜇𝑖,𝑡 and standard deviations 𝜎𝑖,𝑡 of each 

parameter 𝜃𝑖 

3. For each 𝜃𝑖, compute the term (𝜇𝑖,𝑡 − 𝜇𝑖,𝑡−1) 𝜎𝑖,𝑡−1⁄  

4. If the term is below a preestablished threshold 𝜖 for all 𝜃𝑖, convergence is reached. If 

not, the algorithm moves to step 𝑡 + 1 

3.6 Cloud-based parallelization 

Even though the use of surrogating techniques can significantly decrease the total 

computation time of Bayesian system identification for real-world structures, multiple 

forward model evaluations are still needed for the different parameter combinations required 

to train the surrogate model. A strategy to further accelerate the Bayesian workflow is to run 

the finite element analyses in a parallel way instead of sequentially. 
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The ability to perform parallel finite element model evaluations in a single computer is limited 

by its memory and processing power. On the other hand, building a local IT infrastructure 

capable of handling these parallel tasks would have a high initial cost and may be wasteful 

during the times where it operates below its capacity. Cloud-based parallelization offers a 

more efficient way of approaching this problem by allowing to get the desired amount of 

computational resources on demand, and only during the time the parallel tasks are executed. 

For this thesis, a Python-based cloud parallelization tool developed by the Netherlands 

Organisation for Applied Scientific Research (TNO) was used. A brief description of how the 

parallelization tool operates is presented below 

First, a vector of model parameter combinations and a base folder containing the finite 

element analysis model are passed. Then, a task folder is created for each element of the 

parameter vector and the contents of the base folder are copied into them. After that, the input 

parameters are used as arguments in a predefined pre-processing function that applies 

changes to the model files, which are then uploaded to an external cluster to start the cloud-

based parallel execution of tasks. Finally, once the parallel finite element model runs are 

finished, the output analysis files are downloaded to the local machine and a post-processing 

function is applied to obtain the desired results for each parameter combination.  

The cloud service used in this case is provided by Microsoft Azure, which among other things, 

allows for the execution of tasks in virtual computers that run in a physical host operated by 

them. On top of that, Argo Workflows and Kubernetes are employed, the first one being 

responsible for the creation and management of parallel workflows, while the second controls 

the execution and communication with Azure. The implementation allows for the user to 

define the amount of resources to employ for each task, such as the memory and number of 

virtual CPUs, meaning that the amount of finite element parallel runs is only limited by the 

number of available software licenses (if required). 
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4 Case study 1: Synthetic case 

In this chapter, some of the methods described previously are applied in order to complete 

the Bayesian system identification of an in-plane frame-type structure. Specifically, the 

posterior distributions of the physical parameters are obtained for both a two-dimensional 

problem (4.1 and 4.2) and a five-dimensional problem (4.3 and 4.4), using sets of synthetic 

measurements that combine strain fibre-optic sensors and discrete translation sensors. The 

goal of this case study is to illustrate some of the concepts of the Bayesian system identification 

workflow and explore certain features that may be computationally infeasible to do for a real 

world case. 

The parameter estimations are performed using the MCMC approach shown in Section 3.4 

under two schemes: the first evaluates the log-likelihood for a set of parameters by calling the 

FE model directly, while the second scheme uses an adaptively-built GP surrogate of the log 

joint probability (i.e., log prior plus log likelihood) and could be more suitable for problems 

with expensive-to-compute forward models (see Section 3.5.3). 

The structure consists of a continuous three-span rectangular beam with a uniformly 

distributed load on top and two rectangular columns (see Figure 6). The beam–column 

connections are assumed to be rigid. The geometry and load parameters are considered as  

deterministic. 

 

Figure 6: Elevation view of the frame-type structure and cross-section for both columns and beams. Dimensions 

are in meters. 

The finite element model consists of five 2-node Euler-Bernoulli beam-column elements. The 

beam ends (side supports) are fixed against translations but they can freely rotate. The same 

applies for the base of the columns; however, in this case vertical settlements are set for both 

the 2D and 5D cases as parameters to be recovered by the Bayesian system identification.  

4.1 Description of the problem – 2-dimensional problem 

Figure 7 shows the setup of the 2D case. Two parameters are defined as random variables: the 

Young’s modulus 𝐸 of the structure and the vertical settlement ∆1 of the left column base. 
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Figure 7: Probabilistic parameters and set of sensors - 2D case. 

A discrete vertical displacement sensor is positioned at midspan of the left beam, while a 3 m 

long, high-resolution fibre-optic strain sensor is placed on the bottom face of the middle beam 

starting at L/4. The latter sensor is discretised every 120 mm, resulting in 26 data points. 

The prediction of the FE model is implemented through a function that takes two parameters 

as input and returns a vector with 1 displacement and 26 strains in the location of the sensors, 

as is shown in Equation (35).  

𝒙FEM(𝐸,  ∆1) = ((𝛿11); (𝜀21,  𝜀22, … , 𝜀226)) (35) 

The synthetic measurements are produced under the data generating process described in 

Section 3.2. Figure 8 shows the correlation matrices for the measurement and model 

uncertainty.  

 
Figure 8: Tile plots of the measurement uncertainty correlation matrix (left) and model uncertainty correlation 

matrix (right) – 2D case. Each pixel represents the correlation between two measurement data points. 

Table 2 shows the values of the physical and probabilistic parameters used. For a successful 

Bayesian parameter estimation, it is expected that these input values are recovered. 

Table 2: Parameters for synthetic measurements generation – 2D case. 

Parameter Value 

𝐸true 25 GPa 

∆1 true 10 mm 

𝜎δ 0.2 mm 

𝜎ε 0.5 mm 

𝜎model 0.02 

 𝑙corr 1000 mm 
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Table 3 and Figure 9 show the prior distribution.  

Table 3: Prior distribution – 2D case. The random variables are assumed to be mutually independent. 

Parameter Prior distribution 

𝐸 𝒩(30, 10) 𝐺𝑃𝑎 

∆1 𝒩(15, 5) 𝑚𝑚 

 

 
Figure 9: Prior distribution – 2D case. The red and blue dashed lines represent the ground truth values of the 

parameters and the estimated medians, respectively. Diagonal: 1D marginal densities. Off diagonal: 2D contour 

plot of joint probability density. 

4.2 Results – 2-dimensional problem 

In this section, the ground truth parameters for E and Δ1 are recovered with Bayesian 

parameter estimation using both a direct MCMC approach and a Gaussian process surrogate 

approach. The latter is expected to reduce the number of finite element model evaluations, 

which is typically a bottleneck in Bayesian system identification of real world structures. 

4.2.1 Direct MCMC estimation 

The MCMC-based parameter estimation of this section is performed with the help of the 

Python package emcee (Foreman-Mackey, et al., 2013) introduced in Section 3.4. The number 

of walkers is set at 20 and the sampling initial positions are placed at the mean of the prior 

distribution with small random variations for each walker. 

One of the challenges of MCMC methods is to determine how many samples are 

sufficient/needed. If too few steps are run, the obtained samples are not be independent from 

the initial positions of the walkers. In contrast, too many steps may be unnecessary to obtain 

accurate-enough posterior distributions and may be computationally expensive since every 

sample requires the calculation of the likelihood, which needs the evaluation of the forward 

model. This might be especially challenging for structures with heavy FE models; however, 
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in this case study the FE model is simple and cheap-to-evaluate, hence we can run a high 

number of steps at a low computational cost. 

Figure 10 shows the trace plots of the two physical parameters for a single walker. It can be 

seen that they both start near their prior mean and after approximately 100 steps, they start 

sampling around their ground truth values. The initial phase where the sampling is not 

independent from the initial positions is called burn-in phase. The burn-in phase is discarded 

when estimating the posterior distributions.   

 

Figure 10: Trace plots for a single walker on 1600 steps – 2D case. The red dashed lines and blue continuous lines 

represents the ground truth values of the parameters and the samples on every step, respectively. 

Table 4 presents a summary of the marginal distribution containing the means, medians and 

standard deviations, as well as the 25th, 75th and 95th percentiles. 

Table 4: Summary of the posterior distribution – 2D case. 

Parameter True val. Mean Median Std. dev. 25th per. 75th per. 95th per. 

E (GPa) 25.00 25.01 25.00 0.30 24.80 25.21 25.51 

∆1 (mm) 10.00 10.12 10.12 0.74 9.62 10.60 11.35 

It is clear from Figure 11 that there is a considerable reduction of the uncertainty from the 

posterior with respect to the prior shown in Figure 9. There is also a shift towards the ground 

truth values in both parameters. These results show that the Bayesian parameter estimation is 

successful. Additionally, a positive correlation of 0.31 is present between these parameters. 
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Figure 11: Posterior distribution – 2D case.  The left plot shows the same axis limits as the prior while the right one 

presents a zoomed-in view. The red and blue dashed lines represent the ground truth values of the parameters 

and the estimated medians, respectively. Diagonal: 1D marginal densities. Off diagonal: 2D contour plot of joint 

probability density. 

4.2.2 BAPE surrogate model 

In this section, the parameter estimation is performed with the adaptive sampling strategy 

described in Section 3.5.3, using the Python package approxposterior (Fleming & VanderPlas, 

2018).  

First, a training phase starts by drawing parameter combinations with Latin hypercube 

sampling and using them as input for evaluating the FE model, after which the log-prior and 

log-likelihood are obtained as in Section 4.2.1. Then, the GP surrogate is fit using a squared 

exponential kernel, and its parameters are optimised by maximizing its marginal log-

likelihood with equation (30). This last step is repeated a few times to avoid hyperparameters 

corresponding to local maxima. 

For the adaptive phase, three main features need to be defined: the domain of the parameter 

space, the number of new points to be drawn per step and the convergence threshold 𝜖, which 

represents the change in the mean of the marginal posterior distribution of every parameter 

relative to the previous marginal posterior distribution standard deviation (see Section 3.5.3). 

It has to be noted that if convergence is checked, a parameter estimation needs to be 

performed, and in this case this is done with emcee in the same way as in Section 4.2.1, but 

using the GP surrogate to predict the values associated with the samples. The settings of the 

BAPE algorithm are presented in Table 5.  
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Table 5: Settings of the BAPE algorithm – 2D case. 

Initial samples 6 

GP Kernel Anisotropic squared exponential 

Number of GP hyperparameter optimisations per step 3 

Parameter domain 
𝐸 → [5, 55] 𝐺𝑃𝑎 
∆ → [0, 30] 𝑚𝑚 

Number of new points drawn per step 4 

Convergence threshold 𝝐 Multiple values (see Figure 12) 

Number of repetitions to reach convergence 3 

Number of MCMC walkers 20 

Number of MCMC steps 1500 

Figure 12 presents the marginal distributions estimated using the BAPE method. It can be seen 

that the four levels of tolerance provide excellent results since the distributions are shifted 

towards the ground truth values and the degree of uncertainty is on the same level as the one 

presented in Figure 11. Also, it is clear that the algorithm is effective on exploiting the high 

probability density zones (see dots in Figure 12).  

  
(a) 𝜖 = 1.00, added samples = 16 (b) 𝜖 = 0.1, added samples = 28 

  
(c) 𝜖 = 0.05, added samples = 132 (d) 𝜖 = 0.01, added samples = 400 (*) 

Figure 12 (continuation): Posterior distributions obtained with a GP surrogate for different 𝜖 values – 2D case. The 

dots represents the samples added by the BAPE algorithm. (*) indicates an analysis without convergence. 
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Figure 13: BAPE running time per step (4 added samples each) vs number of samples – 2D case. 

It is well-known that one of the main limitations of standard GP regression is its poor 

scalability when increasing the number of samples, therefore, it is of interest to study the wall-

clock time of drawing new samples and fitting the GP as a function of them. Figure 13 shows 

this for up to 800 added samples. For this plot, the convergence check was not included to 

avoid distorting the runtimes with the parameter estimations at each step, and also, only one 

GP hyperparameter optimisation has been performed. The runtime of the FE evaluations is 

not included either. It should be noted that the runtimes for higher steps appear to be more 

noisy. A possible explanation for this is that the inherent randomness of hyperparameters 

optimisation algorithms also scales with the number of samples.  

4.3 Description of the problem – 5-dimensional problem 

Figure 14 shows the setup of the 5D case. Five parameters are represented as random 

variables: the Young’s modulus of the exterior beams (𝐸ext), middle beam (𝐸int) and columns 

(𝐸col), as well as the vertical settlement of the left (∆1) and right (∆2) column base. 

 

Figure 14: Probabilistic parameters and set of sensors - 5D case. 

The same set of sensors from Section 4.1 is used, with the addition of two displacement sensors 

placed on the right beam at L/3 and 2L/3, and two strain sensors placed on the centre-axis at 

the middle of both columns. 

The FE model prediction is denoted as: 
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𝒙FEM(𝐸ext, 𝐸int, 𝐸col, ∆1, ∆2) = ((𝛿11); (𝜀21,  𝜀22, … , 𝜀226); (𝛿31,  𝛿32);  (𝜀41); (𝜀51))) (36) 

The synthetic measurements are generated in the same way as in Section 4.1 with the 

parameter values indicated in Table 6. 

Table 6: Parameters for synthetic measurements generation – 5D case. 

Parameter Value 

𝐸ext 35 GPa 

𝐸int 25 GPa 

𝐸col 27 GPa 

∆1 18 mm 

∆2 12 mm 

𝜎δ 0.2 mm 

𝜎ε 0.5 mm 

𝜎model 0.02 

 𝑙corr 1000 mm 

 

Table 7 and Figure 15 show the prior distribution. 

Table 7: Prior distribution – 5D case. The random variables are assumed to be mutually independent. 

Parameter Prior distribution 

𝐸ext 𝒩(30, 10) 𝐺𝑃𝑎 

𝐸int 𝒩(30, 10) 𝐺𝑃𝑎 

𝐸col 𝒩(30, 10) 𝐺𝑃𝑎 

∆1  𝒩(15, 5) 𝑚𝑚 

∆2 𝒩(15, 5) 𝑚𝑚 

 
Figure 15: Prior distribution – 5D case. The red and blue dashed lines represent the ground truth values of the 

parameters and the estimated medians, respectively. Diagonal: 1D marginal densities. Off diagonal: 2D contour 

plot of joint probability density. 
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4.4 Results – 5-dimensional problem 

In this section, the ground truth parameters are recovered with Bayesian parameter estimation 

using both a direct MCMC approach and a Gaussian process surrogate approach. The higher 

dimensionality of this problem allows to check the scalability of the methods proposed. 

4.4.1 Direct MCMC estimation 

Similarly to the 2-dimensional problem, the parameter estimation of this section is performed 

with the help of the Python package emcee with 50 walkers and 1600 steps. 

 
Figure 16: Trace plots for a single walker on 1600 steps – 5D case. The red dashed lines and blue continuous lines 

represents the ground truth values of the parameters and the samples on every step, respectively. 

Figure 16 shows the trace plots of the five physical parameters for a single walker. It can be 

seen that after approximately 50 steps the walkers start sampling around the ground truth 

values and independently from the initial positions. 

Figure 17 shows the prior and posterior marginal distributions as corner plots, discarding the 

first 100 steps, while Table 8 presents a summary of the posterior distribution. For the five 

parameters there is a shift towards the mean values and also a reduction of the standard 

deviation with respect to the prior, hence the system identification is successful. 

Additionally, a strong positive correlation is present between the parameter 𝐸ext, ∆1 and ∆2. 

Also, the correlations of 𝐸int and the parameters ∆1 and ∆2 are moderate and low, respectively. 

Finally, the parameter 𝐸col is virtually independent of the other parameters. 
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Figure 17: Posterior distribution – 5D case.  The left plot shows the same axis limits as the prior while the right one 

presents a zoomed-in view. The red and blue dashed lines represent the ground truth values of the parameters 

and the estimated medians, respectively. Diagonal: 1D marginal densities. Off diagonal: 2D contour plot of joint 

probability density. 

Table 8: Summary of the posterior distribution – 5D case 

Parameter Truth Mean Median Std. dev. 25th per. 75th per. 95th per. 

Eext (GPa) 35.00 34.78 34.76 0.89 34.18 35.35 36.28 

Eint (GPa) 25.00 24.67 24.67 0.33 24.45 24.90 25.22 

Ecol (GPa) 27.00 26.64 26.64 0.42 26.35 26.92 27.33 

∆1 (mm) 18.00 17.86 17.88 2.18 16.39 19.32 21.44 

∆2 (mm) 12.00 11.26 11.25 2.62 9.47 12.97 15.63 

 

4.4.2 BAPE surrogate model 

In the same way as for the 2-dimensional problem, the problem is solved using the BAPE 

algorithm, whose settings are presented in Table 9. 

Table 9: Settings of the BAPE algorithm – 5D case. 

Initial samples 15 

GP Kernel Anisotropic squared exponential 

Number of GP hyperparameter optimisations per step 3 

Parameter domain 
𝐸ext, 𝐸int, 𝐸col  → [5, 55] 𝐺𝑃𝑎 
∆1, ∆2  → [0, 30] 𝑚𝑚 

Number of new points drawn per step 10 

Convergence threshold 𝝐 Multiple values (see Figure 12) 

Number of repetitions to reach convergence 3 

Number of MCMC walkers 50 

Number of MCMC steps 1500 
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Figure 18 presents the marginal distributions for the 5D case estimated via the BAPE 

algorithm for three convergence thresholds, while Table 10 and Table 11 are summaries of the 

mean values and 95% credible intervals obtained with BAPE vs the direct MCMC sampling. 

From the figures, it is clear the BAPE algorithm is able to capture the shapes, correlations and 

recover the ground truth values reasonably, even for a threshold of 𝜖 = 1.00. As expected, the 

credible intervals and mean values get closer to the direct MCMC results when a more tight 

threshold is established 

Table 10: Summary of the posterior distribution means – 5D case. 

Parameter True val. MCMC BAPE, 𝜖 = 1.00 BAPE, 𝜖 = 0.10 BAPE, 𝜖 = 0.05 

Eext (GPa) 35.00 34.78 34.30 34.39 34.70 

Eint (GPa) 25.00 24.67 24.48 24.51 24.63 

Ecol (GPa) 27.00 26.64 27.01 27.03 26.68 

∆1 (mm) 18.00 17.86 16.03 16.10 17.27 

∆2 (mm) 12.00 11.26 10.38 10.70 11.00 

 

Table 11: Summary of the posterior distribution 95% credible interval – 5D case 

Parameter True val. MCMC BAPE, 𝜖 = 1.00 BAPE, 𝜖 = 0.10 BAPE, 𝜖 = 0.05 

Eext (GPa) 35.00 [33.30, 36.28] [33.17, 35.43] [33.27, 35.51] [33.38, 36.02] 

Eint (GPa) 25.00 [24.12, 25.22] [23.95, 25.01] [23.98, 25.04] [24.08, 25.18] 

Ecol (GPa) 27.00 [25.94, 27.34] [26.43, 27.59] [26.43, 27.63] [25.96, 27.40] 

∆1 (mm) 18.00 [14.23, 21.49] [13.58, 18.48] [13.68, 18.52] [14.27, 20.27] 

∆2 (mm) 12.00 [6.89, 15.63] [7.03, 13.73] [7.40, 14.00] [7.43, 14.57] 

  

(a) 𝜖 = 1.00, added samples = 190 (b) 𝜖 = 0.10, added samples = 210 

Figure 18: Posterior distributions obtained with a GP surrogate for different 𝜖 values – 5D case. The red dots 

represents the samples added by the BAPE algorithm. (*) indicates an analysis without convergence. 
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(c) 𝜖 = 0.05, added samples = 500 (*) 

Figure 18 (continuation): Posterior distributions obtained with a GP surrogate for different 𝜖 values – 5D case. The 

red dots represents the samples added by the BAPE algorithm. (*) indicates an analysis without convergence. 

Finally, the BAPE runtime per step vs number of samples is presented in Figure 19, in the same 

way as in Section 4.2.2. In this case, the runtimes for higher steps are noisier as well.  

 
Figure 19: BAPE running time per step (10 added samples each) vs number of samples – 5D case. 

4.5 Discussion 

4.5.1 Computation time 

The BAPE solution presented in Sections 4.2.2 and 4.4.2 proved to be much more efficient than 

the direct MCMC method in the number of forward model evaluations required; however, it 

has additional computational costs since it requires the GP surrogate to be fitted at every step, 

as well as the selection of new training points. In order to compare the two methodologies in 

a more extended way, the total runtime for the analyses presented in the previous sections are 

calculated by considering different runtimes per forward model evaluation. The considered 

runtimes range from 10-3 to 104 seconds. The results of this comparison are shown below. 
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Figure 20: Comparison of MCMC and BAPE total runtimes as a function of the time per forward model evaluation 

for the 2D case (left) and 5D case (right). For this case, the real runtime for a single finite element evaluation is 

approximately 0.002 seconds. 

As expected, the direct MCMC method has a lower computational time only for very fast 

forward models. Indeed, the BAPE algorithm becomes more efficient at 0.02 and 0.10 seconds 

for the 2D and 5D cases, respectively, which is way below the runtimes of realistic civil 

engineering structural analyses performed in commercial software. In addition to that, it can 

be observed that at around 10 seconds for the left graph and 100 seconds for the right graph, 

the BAPE runtimes start being governed almost exclusively by the forward model runtime; 

however, higher dimensional problems may require a larger number of samples which could 

make the GP training the bottleneck if the FE model runtime is in the realm of a few minutes. 

In such case, a fast approximate GP formulation may have to be used. 

Finally, the default option of approxposterior is to verify convergence by performing a 

parameter estimation at every step with an MCMC approach using the GP surrogate. This 

considerably slows every step so it was removed from the runtimes shown in this sub-section. 

Strategies such as checking convergence only every ‘n’ number of steps or estimating the 

means and standard deviations by approximate Bayesian methods rather than MCMC, could 

be used to reduce the burden of convergence checks on the total computation time. 

4.5.2 GP performance 

A typical anisotropic squared exponential kernel was used for the GP surrogates of this 

chapter since it requires relatively few hyperparameters to tune. Another advantage of this 

kernel is that it is universal (Micchelli, et al., 2006), which means that it is capable of uniformly 

approximating any continuous function with enough data. Duvenaud (2014) states that 

sometimes this kernel flexibility comes at the cost of slowness, and that accounting for a more 

complex kernel structure generally means less data needed, i.e., the blessing of abstraction 

(Goodman, et al., 2011) that counters the curse of dimensionality. This implies that there is 

potential of further reduction of the number of training points with an alternative kernel 

structure. 

Nevertheless, for the purpose of this thesis, no further investigation is done with respect to 

kernel structures, especially considering that the one chosen was able to appropriately 

approximate the log joint probability with a reasonably low number of training points for the 
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2D and 5D cases. Additionally, the results shown in Sections 4.2.2 and 4.4.2 did not vary 

considerably when the hyperparameter optimisation was performed once instead of three 

times every step. 

It should be noted that the accuracy of the GP surrogate is less relevant during intermediate 

steps since then it is used only to draw new training points. According to Wang & Li (2017) it 

is not essential for them to be the optimal solution as long as good training points are found. 

In contrast, for the last step the accuracy of the GP becomes very important since here it is 

used for the MCMC-based parameter estimation, therefore, in this case a higher number of 

hyperparameter optimisation restarts may be recommendable. 

Finally, there might be an opportunity of improvement in the number of training points 

needed if the algorithm that maximizes the utility function can be modified in a way that 

penalizes the location of points too close to each other, thus, avoid some of the clusters that 

can be seen in Figure 12. 

4.5.3 Calculation of posterior predictives and evidence 

The focus of this chapter is on obtaining reliable and cheap-to-compute posterior 

distributions. However, often it is of interest to also predict the probability distribution of 

future observations given the existing set of observations. These posterior predictive 

distributions can be calculated with the following equation: 

𝑝(𝒚̃|𝒚) = ∫ 𝑝(𝒚̃|𝜽). 𝑝(𝜽|𝒚). 𝑑𝜽 (37) 

where 𝒚̃ is the vector of future observations and 𝑦 is the vector of the already existing 

observations. The second term of the integral is the posterior distribution which in this case 

has been obtained by an MCMC method, using a GP rather than directly calling the forward 

model. In theory, new samples may not be needed to estimate posterior predictives since the 

ones drawn for MCMC can be used. The problem is that the future observations likelihood 

term 𝑝(𝒚̃|𝜽) requires the evaluation of the forward model at every sample. Nevertheless, if 

the responses at the sensor locations and the prediction locations are stored every time the FE 

model is evaluated under the BAPE algorithm, then a GP surrogate of a second likelihood 

function can be constructed for the posterior predictive using the prediction locations. A 

different convergence criteria may be necessary for this second surrogate in order to check its 

accuracy and some extra new training points may be needed.  

On the other hand, an accurate value of the evidence under the BAPE approach may not be 

easy to obtain even if the parameter space is sampled in an evidence-driven way like Nested 

sampling (Skilling, 2006), since the GP has been trained only in the areas that highly contribute 

to the posterior distribution accuracy. In this case, a procedure that actively learns the 

evidence by means of Bayesian Quadrature (Osborne, et al., 2012) may be preferable. 
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5 Case study 2: Bridge 705 - Description 

In this chapter, the real world case study Bridge 705 is presented. The geometry of the bridge 

is described in Section 5.1; while Section 5.2 introduces the measurement campaigns 

conducted by several parties, both with discrete sensors and optic fibre sensors. The finite 

element model of the structure developed in the structural engineering software DIANA FEA 

(2022) is presented in Section 5.3. Moreover, the parameter estimation sub-cases and the 

specific goal behind each of them are discussed in Section 5.4. Finally, the settings for 

parallelization are presented in Section 5.5. It should be noted that some Bayesian parameter 

estimations have previously been performed for this bridge by Rózsás, et al. (2022). 

5.1 Structure 

Bridge 705 is a reinforced concrete bridge located in the western part of Amsterdam which 

spans over the Johan Huizingalaan street and was inaugurated in 1962. Its central part carries 

tram lines 1, 17 and 27, while the sides are destined to road lanes. Figure 21 shows recent 

pictures of the bridge 

         

Figure 21: Overview of Bridge 705 (Amsterdam op de kaart, 2022). 

The bridge consists of a 7-span continuous reinforced concrete deck supported by 24 

intermediate V-shaped pillars aligned in 6 rows and connected to the foundations with hinges. 

The deck is monolithically connected to the pillars, and its thickness varies in the transverse 

direction from 45cm to 66cm, while it remains constant longitudinally. Figure 22 shows a 

cross-section view of the bridge. Figure 23 shows top and side views of the bridge.  

 

Figure 22: Cross-section view of Bridge 705 (Rózsás, et al., 2022). 
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Figure 23: Top and side longitudinal view of Bridge 705. Dimensions are in cm (Rózsás, et al., 2022). 

5.2 Measurement campaign 

In October 2018, TNO and several other organizations conducted a measurement campaign 

in Bridge 705. For a couple of nights, traffic was closed and two sand trucks were positioned 

in different configurations, which are shown in Figure 24.  

 

Figure 24: Axle positions of Truck 1 and Truck 2 used for measurement campaign. Top view (top) and side view 

(bottom) of the bridge (Rózsás, et al., 2022). 

Truck 1 had three axles and weighted around 35 ton, while Truck 2 had four axles and 

weighted 45 ton. Before the start of campaign, the exact axle load and axle distances were 

measured. 

Four static test series are considered, accounting for a total of 52 load positions: 

1. Series ‘ZB’: Truck 1 in each of its 13 positions without Truck 2 

2. Series ‘MB1’: Truck 1 in each of its 13 positions with Truck 2 in position 1 
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3. Series ‘MB2’: Truck 1 in each of its 13 positions with Truck 2 in position 2 

4. Series ‘MB3’: Truck 1 in each of its 13 positions with Truck 2 in position 3 

Figure 25 and Figure 26 show the layout of discrete translation and strain sensors used in the 

campaign, with the different labels corresponding to the organization that installed them. In 

all cases, the sensors are installed under the bottom face of the deck. 

For each sensor and load case, a single static measurement value is obtained by averaging the 

results during the one minute that the truck is in position. Additionally, a spatial averaging 

was applied for the strain sensors since the strains are not obtained on a single point, but along 

the sensor extension (see Table 12). 

 

Figure 25: Location of discrete translation sensors used for measurement campaign. Top view (top) and side view 

(bottom) of the bridge (Rózsás, et al., 2022). 

 

Figure 26: Location of discrete strain sensors used for measurement campaign. Top view (top) and side view 

(bottom) of the bridge. The arrows indicate the direction of the measured strain (Rózsás, et al., 2022). 
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Table 12: Discrete sensor groups outline. 

Sensor group Measured quantity Number of sensors Sensor length 

U Translation (vertical) 29 N. A. 

B Strain 20 2.00 m 

O Strain 12 2.00 m 

T Strain 5 0.50 m 

In addition to the sensor groups mentioned before, a novel high resolution optic fibre sensor 

(Wosniok, et al., 2019) was also installed, giving strain measurements along its path with a 

relatively high spatial resolution (at approximately every 10 cm). The layout of the fibre and 

some of its properties are presented in Figure 27 and Table 13.  

 

Figure 27: Location of optic fibre strain sensor used for measurement campaign. Top view (top) and side view 

(bottom) of the bridge. 

Table 13: Optic fibre outline. 

Fibre leg Strain orientation Leg length Discretization points 

Top X 10.85 m 106 

Transversal  Y 24.30 m 236 

Bottom X 34.50 m 336 

More information about the measurement data processing and the technology behind every 

sensor group can be found in Rózsás, et al. (2022). 

5.3 Finite element model 

This thesis uses a 3D finite element model previously developed by Rózsás, et al. (2022) in the 

software DIANA FEA, to predict Bridge 705 responses. The deck and pillars are modelled 
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with quadrilateral 8-noded shell elements with different thicknesses and a mesh size between 

20cm and 25cm. The elastic modulus and Poisson ratio are the same for all concrete in the 

bridge; however, the contributions of the asphalt layer and tram tracks on the stiffness of the 

deck are taken into account as equivalent elastic modulus with fixed values for the pavement 

and rail material properties.  

The hinges at the base of the pillars are considered as nodal rotational springs in the 

longitudinal direction, while fully restricting translations in the vertical and transverse 

directions. The deck supports at the abutments are modelled as rollers with free longitudinal 

translations.  

 

Figure 28: 3D view of finite element model. The contours show the response under a concentrated load in span 2 

(Rózsás, et al., 2022). 

Given the low load intensity of the test trucks, all analyses are linear elastic. The self-weight 

of the structure is not considered since the sensors were installed after all bridge dead loads 

have been applied. The truck loads are modelled as uniformly distributed loads on a 

rectangular area of 90 x 96cm which represents the 45° projection of the tires footprints at the 

centre of the deck thickness.  

The movement of trucks 1 and 2 is discretized every meter and the truck locations in between 

are linearly interpolated. The translation predictions correspond to the node closest to the 

sensor location, while the strains are obtained by averaging the centroidal strains for the 

elements crossed by the sensor path. 

5.4 Parameter estimation sub-cases 

The followed approach for the Bayesian parameter estimations of Bridge 705 is the one 

described in Section 3.5.3. In contrast with the previous case study, an ad-hoc Python code 

developed by the author is used instead of approxposterior,  in order to have more flexibility to 

introduce the cloud-based parallelization scheme described in Section 5.5. 

With the measurement data described in 5.2, four main sub-cases are investigated, as shown 

in Table 14. For all of them, two physical parameters are considered to be identified: the 

concrete elasticity modulus 𝐸𝑐 and the springs rotational stiffness 𝐾𝑟𝑜𝑡. Table 15 and Figure 29 

show the selected prior distribution. 
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Table 14: Description of parameter estimation sub-cases. 

Case Parameters  Sensor subsets Test Series 

Sub-case 1 𝐸c, 𝐾rot ‘B’, ‘O’, ‘T’ and ‘U’ ‘ZB’ 

Sub-case 2 𝐸𝑐, 𝐾rot ‘O’ (partially) and ‘T’ ‘ZB’ 

Sub-case 3 𝐸c, 𝐾rot Transversal and bottom optic fibre legs ‘ZB’ 

Sub-case 4 
𝐸𝑐, 𝐾rot, 

 𝜎meas,𝑐𝑜𝑣model, 𝐿corr 
Transversal and bottom optic fibre legs ‘ZB’ 

Table 15: Prior distribution of physical parameters. 

Parameter Distribution Lower bound Upper bound 

𝐸c (GPa) Uniform 10 100 

𝐾rot (Nmm/rad) Uniform 1 1012 

  
Figure 29: Prior distribution of physical parameters. The plot on the left shows  𝐾𝑟𝑜𝑡 in linear scale while the plot 

on the right shows it on log-10 scale. Diagonal: 1D marginal densities. Off diagonal: 2D contour plot of joint 

probability density.  

As described in Section 3.2, a correlated model prediction uncertainty (Table 16) and an 

uncorrelated measurement uncertainty (Table 17) are considered. These values were also used 

by Rózsás, et al. (2022), who estimated them based on expert judgement.  

Table 16: Fixed model prediction uncertainty parameters for sub-cases 1, 2 and 3. 

Group 𝑐𝑜𝑣model 𝐿corr (m) 

Translation 0.05 3.00 

Strain 0.10 3.00 

Load position NA 3.00 
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Table 17: Fixed measurement uncertainty parameters for sub-cases 1, 2 and 3. 

Sensor group 𝜎𝑚𝑒𝑎𝑠 

U, translation 0.05 mm 

B, strain 1.00 microstrains 

O, strain 1.00 microstrains 

T, strain 0.50 microstrains 

Optic fibre, strain 1.00 microstrains 

All first three sub-cases start with 20 initial samples drawn from the parameter domain with 

Latin hypercube sampling, as shown in Figure 30.  

 

Figure 30: Initial Latin hypercube samples used for sub-cases 1, 2 and 3. 

Sub-case 1 makes use of all discrete strain and translation sensors, and serves to validate the 

thesis methodology against Rózsás, et al. (2022), which has the same probabilistic settings but 

performs a conventional MCMC sampling, i.e., without using of a log joint probability 

surrogate. Nevertheless, it should be noted that they did use a GP surrogate to reduce the 

computation time, but on the finite element model predictions. This structural GP11 was 

trained with a grid of 112 points over the parameter domain.   

Sub-cases 2 and 3 use subsets of discrete and optic fibre sensors, respectively, with the goal of 

finding what gain in information is obtained when using the latter in comparison with the 

former. 

On top of the two physical parameters, sub-case 4 also aims to identify the three uncertainty 

parameters that were fixed for the previous sub-cases, in order to assess their influence in the 

context of Bayesian parameter estimations.  

 
11 Technically, it is a collection of many individual GPs, one for each sensor and load case. No correlation structure 

between outputs is included  
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Gamma distributions are assumed for the priors, following the recommendation from 

Simoen, et al. (2013). The probability densities for the three parameters are shown in Figure 

31 and the full prior is shown in Figure 32. The Gamma distribution parameters are presented 

in Table 18 and they have been selected such that their means coincide with the fixed values 

from sub-case 3 while moderately limiting them on the right side. This constraint is introduced 

to avoid excessively high values (e.g. a very large 𝜎meas that causes all measurements to be 

identified as noise), although it is possible that this might be too biased. 

 

Figure 31: Prior probability density for uncertainty parameters. 

 

Figure 32: Prior distribution of physical parameters and statistical parameters. 𝐾𝑟𝑜𝑡 is plotted on log-10 scale. 

Diagonal: 1D marginal densities. Off diagonal: 2D contour plot of joint probability density. 
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Table 18: Prior distribution of uncertainty parameters for sub-case 4. 

Parameter Distribution 𝑘 (shape) 𝜃 (scale) 

𝜎meas  Gamma 2.00 0.50 

𝑐𝑜𝑣model  Gamma 2.00 0.05 

𝐿corr  Gamma 2.00 1.50 

In addition to the 20 Latin-hypercube points from Figure 30, four physical parameter 

combinations corresponding to the corners of the domain are added, since some tests showed 

that the GP mean predictions were severely overestimated in these regions, making the 

algorithm draw new points there even though they did not contribute much to the posterior 

distribution accuracy.  

With the finite element analysis results already available, it is not computationally demanding 

to calculate the log joint probabilities for different statistical parameter combinations. In this 

case, two grids were used, giving 8 and 27 points, respectively, as shown in Figure 33. The 24 

physical parameter points are combined with the 35 statistical points, giving a total of 840 

samples for Sub-case 4. The data is then split and 75% is used to start the posterior active 

learning procedure, while the remaining is employed to test the accuracy of the GP. 

 
Figure 33: 2D visualization of statistical parameters grid points. The blue and orange dots correspond to Grid 1  

(8 points) and Grid 2 (27 points), respectively. 

5.5 Parallelization settings 

The cloud-based parallelization tool described in Section 3.6 is used in this case study to 

evaluate multiple finite element models simultaneously, thus reducing the Bayesian 

parameter estimation wall-clock time. Table 19 shows the specifications of the Azure virtual 

computer selected to run the DIANA FEA. 
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Table 19: Specifications of used Azure virtual computers 

Name Standard_D16a_v4 

Number of vCPUs 16 

Memory 64 GiB 

Processor AMD EPYC 7452 32-Core processor 

OS disk size 1023 GiB 

Resource disk size 400 GiB 

The adaptive sampling algorithm selects new points by optimizing a utility function, so 

theoretically, only one point could be drawn per step and parallelization would not be 

possible. To circumvent this problem, a distance constrain is introduced for this case study 

such that if a proposed point is too close to either any of the existing points or the other 

candidates, the point is rejected. Indeed, if it is found that distances with any point are below 

the established distance thresholds for every parameter, the utility function returns a negative 

infinite, forcing the optimization algorithm to explore in other areas. On the other hand, if the 

distances are fulfilled, the utility function returns the exponentiated variance presented in 

Section 3.5.3.  

Table 20 shows the distance thresholds used for this case study. The values were chosen to 

allow for exploitation of high probability areas while avoiding the dense clustering of points 

observed in Chapter 4. Ideally, these settings should be tuned to maximize the algorithm 

efficiency; however, this aspect is beyond the scope of this thesis and is not addressed further. 

Table 20: Parallelization distance thresholds for physical and statistical parameters 

Parameter Distance threshold  

𝐸c (GPa) 2.0 

𝐾rot (Nmm/rad) 5E+10 

𝜎meas 0.5 

𝑐𝑜𝑣model 0.2 

𝐿corr (m) 1.0 
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6 Case study 2: Bridge 705 - Results 

In this section, the results of the sub-cases introduced in 5.4 are presented. For all of them, the 

converged posterior distributions are displayed. In addition to that, since an active learning 

procedure is used to approximate the log joint probability density, it is also of interest to 

investigate the evolution of the posterior evolution per step and the distribution of the new 

samples. Moreover, the finite element predictions obtained with the posterior median 

parameters are compared with the a priori model predictions, in order to assess the Bayesian 

parameter estimation efficacy. Finally, the influence of the measurement and model 

uncertainty parameters is evaluated for the optic fibre case. 

6.1 A priori model 

The a priori modulus of elasticity is calculated based on compressive tests applied on concrete 

cores drilled from the bridge deck, while the stiffness of the rotational springs at the piers base 

is set to 1.0 Nmm/rad, hence simulating an ideal hinge. The values are shown in Table 21. 

Table 21: A-priori parameter values. 

Parameter A-priori value 

𝐸c (GPa) 38.4 

𝐾rot (Nmm/rad) 1.0 

A comparison of the finite element predictions with the measurements for the four discrete 

sensor groups is presented in Figure 34. It can be seen that a reasonable agreement is obtained 

for both translations and strains. Note that in case of perfect agreement all dots are at the 

diagonal line and the coefficient of determination (R2 score) is equal to 1.0.   

 

Figure 34: Comparison of a priori model predictions (y-axis) vs measurements (x-axis) for translation (‘U’) and 

strain (‘B’, ‘O’ and  ‘T’) sensor groups. 

In a similar way, the predictions and measurements are compared for the optic fibre sensor in 

Figure 35. Here the agreement is also good for the a priori model. It should be noted that some 

corrections have been applied to this set of measurements, as described in Appendix B. 
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Figure 35: Comparison of a priori model predictions (y-axis) vs measurements (x-axis) for the optic fibre sensor. 

Figure 36 provides more insight in the discrepancy between predictions and measurements, 

showing longitudinal strain diagrams for two fixed truck locations. It can be seen that the 

shape of the optic fibre measurements is quite similar to the model predictions, although with 

slight differences in the peaks. On the other hand, the discrete strain measurements show a 

high variability between consecutive points (with a 0.5m distance) and also with respect to 

the predictions.  

 

 

Figure 36: Longitudinal strain diagrams at centreline of Truck 1 lane (deck bottom fibre). The model predictions 

are obtained with the a priori model parameters. Top: load case S7-ZB. Bottom: load case S9-ZB. 

In a similar way, Figure 37 shows vertical translation diagrams for the same truck positions. 

For both load cases, there is a non-negligible difference between the measured and predicted 

peaks. Moreover, the predicted deck rotations above the pier lines are underestimated for load 

case S7-ZB and overestimated for S9-ZB. 
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Figure 37: Vertical translation diagrams at centreline of Truck 1 lane. The model predictions are obtained with the 

a priori model parameters. The model predictions are obtained with the a priori model parameters. Top: load case 

S7-ZB. Bottom: load case S9-ZB. 

6.2 Sub-case 1 

Sub-case 1 uses all Series ZB discrete measurements to perform the Bayesian parameter 

estimation. The active learning is started with 20 initial samples and 4 new samples are drawn 

per step based on an exponentiated variance utility function. When convergence is achieved, 

a final MCMC sampling using 20 walkers and 15,000 steps is performed in order to obtain the 

posterior medians and median absolute deviations. The results are summarized in Table 22. 

For the concrete elastic modulus 𝐸c a reduction of around 28% is obtained with respect to the 

a priori value. On the other hand, the change of the rotational stiffness is quite significant, 

showing an almost clamped behaviour while the a priori model assumed ideal hinges.  

Table 22: Posterior values for Sub-case 1 – Log joint probability GP. 

Parameter Median MAD 

𝐸c (GPa) 27.48 0.65 

𝐾rot (Nmm/rad) 8.80 E+11 1.16 E+11 

The converged posterior distribution is shown in Figure 38 using a log-10 scale for 𝐾rot. It is 

evident when comparing the left sub-figure with the prior distribution from Figure 29 that a 

significant concentration of the probability densities on the top left corner has occurred. It is 

also noticeable from the right sub-figure that the densities for 𝐾rot are tilted towards the right 

boundary of the domain, which is even more noticeable on a logarithmic scale. Even though 
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is not ideal to have such behaviour, the 𝐾rot boundary has not been extended since the effect 

of having higher values is minimal on the model predictions, i.e., the hinges at the bottom of 

the piers already behave very similar to a clamped support. 

 

Figure 38: Converged posterior distribution for Sub-case 1 obtained by directly using FE model predictions. The 

left plot shows the same axis limits as the prior while the right one presents a zoomed-in view. Diagonal: 1D 

marginal densities. Off diagonal: 2D contour plot of joint probability density. 

In order to validate the active learning procedure proposed in this thesis, the Bayesian 

parameter estimation is also performed with a direct MCMC sampling, meaning that the log 

likelihood is calculated for every sample according to equation (10), rather than predicted 

with a log probability GP. This means that strain and translation predictions are needed at the 

location of all sensors and load cases for every parameter value. Since it is unfeasible to run 

hundreds of thousands of finite element models12 a structural multi-output GP surrogate built 

with 112 training points is used to predict the bridge responses for every sensor at a negligible 

computing cost. More details about this can be found in Rózsás, et al. (2022), whose Python 

code was used to obtain the GP structural predictions. 

Table 23 shows the posterior medians and median absolute deviations using the structural 

GP. The posterior values for the concrete elastic modulus 𝐸c show a very good agreement with 

the ones from Table 22, having a difference of 0.18 GPa for the median and 0.11 GPa for the 

MAD. The differences are more visible for the rotational stiffness 𝐾rot, with 0.86E+11 

Nmm/rad for the median and 0.64E+11 Nmm/rad for the MAD. It should be noted that both 

median predictions are within less than one MAD from the other and that variability in model 

predictions for high 𝐾rot is low.  

Nevertheless, to have more confidence about the thesis methodology, an additional parameter 

estimation is performed, this time using the structural GP and the log joint probability GP13 

 
12 Multiplying 20 walkers per 15,000 steps, and considering around 25 minute per finite element model evaluation, 

gives 125,000 computing hours. 
13 Given that the bridge model predictions and the log probabilities are obtained with cheap-to-compute Gaussian 

processes, this parameter estimation is performed in just a few minutes. 
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combined. Convergence is reached in 10 steps, meaning that only 40 structural GP calls are 

made. The posterior values presented in Table 24 show a remarkable resemblance with Table 

23, which demonstrates that a very high accuracy with respect to a direct MCMC sampling is 

possible with the methodology chosen for this thesis, even when using noisy real 

measurements. The similarity is also observed in the posterior density plots from Figure 39. 

Table 23: Posterior values for Sub-case 1 - Physical GP. 

Parameter Median MAD 

𝐸c (GPa) 27.30 0.54 

𝐾rot (Nmm/rad) 7.94 E+11 1.80 E+11 

 

Table 24: Posterior values for Sub-case 1 – Log joint probability GP + Structural GP. 

Parameter Median MAD 

𝐸c (GPa) 27.30 0.55 

𝐾rot (Nmm/rad) 7.96 E+11 1.73 E+11 

 

 

Figure 39: Zoomed-in posterior distribution for Sub-case 1 obtained using a multi-output GP surrogate to predict 

structural responses. The left plot shows was built by directly sampling with MCMC while the right one used an 

additional GP surrogate for the log joint probability. Diagonal: 1D marginal densities. Off diagonal: 2D contour 

plot of joint probability density. 

The differences in results between the parameter estimations performed with and without the 

structural GP surrogate may come from discrepancies in predictions with respect to the ones 

obtained from DIANA FEA, as is illustrated in Figure 40. Notice that even though the R2 scores 

are close to 1.0, equation (10) squares the error to obtain the log likelihood, amplifying the 

discrepancy in the posterior distributions. 
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Figure 40: Comparison of a priori physical GP predictions (y-axis) vs Diana model predictions (x-axis) for strain 

(‘B’, ‘O’ and  ‘T’) and translation (‘U’) sensor groups. 

The convergence criterion from Section 3.5.3 is used. Specifically, convergence is reached 

when the variation of the median with respect to its median absolute deviation is below the 

threshold 𝜖 = 0.1 in three consecutive steps for both parameters. For sub-case 1 this occurs in 

Step 9, meaning that only 36 additional finite element model evaluations are necessary to 

obtain an accurate posterior distribution, showing the remarkable efficacy of the active 

learning posterior methodology. In order to observe the tendencies, the analysis is continued 

until Step 15. Figure 41 shows the evolution of the estimated parameters. The medians and 

MADs remain flat after convergence is reached. 

 

 
Figure 41: Evolution of MCMC parameter estimation per step for Sub-case 1, with four new samples drawn at each 

of them. Step 0 only uses the initial samples, i.e., before the active learning. Top left: Median values. Top right: 

Maximum absolute deviations. Bottom: Variation of the mean with respect to previous step normalized by the 

MAD. The red dashed line represents the convergence threshold set for this case study: 0.10. 

Figure 42 shows the locations of the new points drawn by the active learning algorithm. These 

new samples are concentrated around the high density areas in 𝐸𝑐. In contrast to the synthetic 

case study, a distance constraint has been imposed in order to avoid points too close to each 

other, which explains the even distribution of orange dots. The fact that the points are aligned 
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vertically demonstrates that the likelihood is less sensitive to 𝐾rot for values in the order of 

1012 Nmm/rad. 

 

Figure 42: Samples used to surrogate the log joint probability GP surrogate for Sub-case 1. The blue dots are the 

initial Latin hypercube points while the orange are actively drawn. 

The results obtained in Sub-case 1 serve to validate14 the methodology proposed in this thesis. 

Some additional results related to the agreement between the a posteriori model predictions 

and measurements are presented in Appendix C. 

6.3 Sub-case 2 

Sub-case 2 uses only the strain sensors located in the path of the optic fibre in order to make a 

fair comparison with Sub-case 3. The emphasis in this section is on the a posteriori model 

predictions, therefore, the results about convergence of the algorithm and the distribution of 

drawn samples are not shown here but in Appendix D. Since the posterior active learning 

methodology was validated in the previous section, the structural GP surrogate is no longer 

used.  

The settings for the posterior active learning and the MCMC are the same as for Sub-case 1. 

Table 25 shows the posterior median and MAD for the converged state. As it happened for 

the previous case, the value of the rotational stiffness 𝐾𝑟𝑜𝑡 is significantly increased with 

respect to the prior model. The median value of the concrete elastic modulus 𝐸𝑐 is 31% lower 

than the median for Sub-case 1 and 51% lower than the a-priori value. 

Table 25: Posterior values for Sub-case 2. 

Parameter Median MAD 

𝐸c (GPa) 18.92 1.20 

𝐾rot (Nmm/rad) 7.90 E+11 1.79 E+11 

 

The posterior probability densities are presented in Figure 43. The extent of the 0.90 highest 

density credible region is greater than in Sub-case 1, which is expected since using only a 

fraction of the sensors would naturally imply a higher uncertainty in the model predictions; 

 
14 Strictly speaking, a full order MCMC would be necessary to fully validate the methodology  
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however, the posterior median of 𝐸c from Sub-case 1 is outside this credible interval. In other 

words, the parameter estimation of Sub-case 2 not only gives bad estimates for medians but 

also predicts an unrealistically narrow credible region.  

A possible explanation for observed differences with Sub-case 1 is that this case mostly relies 

on sensor from group ‘T’, which showed a high number of predictions outside the 0.99 

credible region of the measurements even for Sub-case 1 (see Appendix C). Rózsás, et al. (2022) 

performed a parameter estimation with all discrete strain sensors and the agreement with 

Sub-case 1 was much better, which would back up the idea that group ‘T’ sensors might not 

be too reliable.  

 
Figure 43: Converged posterior distribution for Sub-case 2. The left plot shows the same axis limits as the prior 

while the right one presents a zoomed-in view. Diagonal: 1D marginal densities. Off diagonal: 2D contour plot of 

joint probability density. 

The posterior median values from Table 25 are used to obtain finite element model predictions 

which are then compared to the sensor measurements in Figure 44. The R2 scores for the four 

sensor groups are considerably worse the a priori model. Striking is that the group that 

contains 80% of the sensor used for this case, sensor group ‘T’, is the one with the worst fit, 

although this might be explained if we accept the hypothesis that this sensor group is not 

reliable. 

 

Figure 44: Comparison of model predictions obtained with Sub-case 2 converged posterior median values (y-axis) 

vs measurements (x-axis) for translation (‘U’) and strain (‘B’, ‘O’ and  ‘T’) sensor groups. The vertical and horizontal 

lines on the dots indicate the 0.99 highest density credible intervals for model prediction uncertainty and 

measurement uncertainty, respectively. 
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Figure 45 shows strain diagrams for the bottom fibre of the deck at the centreline of Truck 1 

lane. There is not only a significant discrepancy between predictions and measurements, but 

the 0.99 measurement credible intervals mostly do not cross the model prediction credible 

interval in any of the peak areas. 

 

 

 

Figure 45: Longitudinal strain diagrams at centreline of Truck 1 lane (deck bottom fibre). The model predictions 

are obtained with the posterior median parameters from Sub-case 2. The grey-shaded region indicate the 0.99 

highest density credible intervals for the model prediction uncertainty. The orange-shaded region and black 

vertical lines indicate the 0.99 highest density credible intervals for measurement uncertainty for optic fibre and 

discrete measurements, respectively. Top: load case S7-ZB. Bottom: load case S9-ZB. 

Also the vertical translation diagrams in Figure 46 display a considerable disagreement for 

the sensors below the load position, with a very small overlap of the credible intervals for load 

case S7-ZB and no overlap at all for S9-ZB. 

Figure 47 shows a comparison of the strain predictions and measurements of the optic fibre, 

hence evaluating the prediction accuracy for unseen data. The R2 score here is worse than the 

a priori model as well. It can also be observed that, in terms of absolute values, the predictions 

are generally higher than the measurements, i.e., rotated counter clockwise from the diagonal. 

This confirms that the actual stiffness of the deck, represented by 𝐸𝑐, is higher than what was 

obtained in for this sub-case. 
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Figure 46: Vertical translation diagrams at centreline of Truck 1 lane. The model predictions are obtained with the 

posterior median parameters from Sub-case 2. The grey-shaded region indicate the 0.99 highest density credible 

intervals for the model prediction uncertainty. The orange-shaded region and black vertical lines indicate the 0.99 

highest density credible intervals for measurement uncertainty for optic fibre and discrete measurements, 

respectively. Top: load case S7-ZB. Bottom: load case S9-ZB. 

 
Figure 47: Comparison of model predictions obtained with Sub-case 2 converged posterior median values (y-axis) 

vs measurements (x-axis) for the optic fibre sensor 

6.4 Sub-case 3 

Sub-case 3 uses the transversal and bottom legs of the optic fibre for the parameter estimation 

as shown in Figure 27 and Table 13, in order to compare the information obtained by using 

high resolution optic fibre measurements and discrete strain measurements. Results about 

convergence and the distribution of drawn samples are shown in Appendix E. 

The posterior median values and MADs for the converged state are presented in Table 26. As 

it happened with the previous sub-cases, the inferred rotational stiffness 𝐾𝑟𝑜𝑡 is orders of 
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magnitude above the a priori value; however the median is still around 48% and 42% lower 

than what was obtained for Sub-cases 1 and 2, respectively. On the other hand, the concrete 

elastic modulus 𝐸𝑐 is closer to the a priori model than the previous cases, with the median 

only around 11% lower than its initially assumed value. 

Table 26: Posterior values for Sub-case 3. 

Parameter Median MAD 

𝐸c (GPa) 34.27 1.14 

𝐾rot (Nmm/rad) 4.59 E+11 1.29 E+11 

 

The converged posterior probability densities are presented in Figure 48. The inferred 0.90 

highest density credible region is larger than in Sub-case 1, but smaller than Sub-case 2. Also, 

the shape of the 1D marginal distribution over 𝐾rot is no longer tilted towards its right 

boundary, which was an undesired outcome from the marginals in Sub-case 1 and 2. 

 

Figure 48: Converged posterior distribution for Sub-case 3, with four new samples drawn at each of them. Step 0 

only uses the initial samples, i.e., before the active learning. Top left: Median values. Top right: Maximum absolute 

deviations. Bottom: Variation of the mean with respect to previous step normalized by the MAD. The red dotted 

line represents the convergence threshold set for this case study: 0.10. 

The posterior median values from Table 26 are used to obtain finite element model predictions 

which are then compared to the sensor measurements in Figure 49. For all sensor groups, an 

improvement on the R2 scores is obtained in Sub-case 3 with respect to the a priori model. 

Even more, for sensor groups ‘U’ and  ‘O’, the credible intervals for all points cross the dotted 

diagonal line.  
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Figure 49: Comparison of model predictions obtained with Sub-case 3 converged posterior median values (y-axis) 

vs measurements (x-axis) for translation (‘U’) and strain (‘B’, ‘O’ and  ‘T’) sensor groups. The vertical and horizontal 

lines on the dots indicate the 0.99 highest density credible intervals for model prediction uncertainty and 

measurement uncertainty, respectively. 

On the other hand, both sensor groups ‘B’ and ‘T’ contain points whose credible intervals do 

not reach the diagonal. The predictions for the optic fibre from Figure 50 show the best 

agreement with the measurements across all sub-cases, with an R2 score 3% and 11% greater 

than the prior model and Sub-case 1, respectively.   

 

Figure 50: Comparison of model predictions obtained with Sub-case 3 converged posterior median values (y-axis) 

vs measurements (x-axis) for the optic fibre sensor. 

In summary, it could be said that after the structural parameter estimation of Sub-case 3 the 

model predictions for all sensor groups are improved with respect to the prior model. When 

comparing against Sub-case 1, the predictions are generally improved for all strain sensor 

groups, while their match is slightly lower for the translation sensors, which was expected 

since ‘U’ sensors were not used for Sub-case 3.  

The previous conclusion can be visually explained by looking at the strain plots in Figure 51. 

The match on the peak areas between the model prediction and the optic fibre measurements 

is almost perfect, while some slight differences appear near the piers, but still within the 

credible regions. The discrete strain measurements from group ‘T’ still show considerable 

differences with both the optic fibre measurements and the predictions. At this point, it is clear 

that this sensor group contains issues that may steer Sub-cases 1 and 2 towards wrong 

estimations. 
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Figure 51: Longitudinal strain diagrams at centreline of Truck 1 lane. The model predictions are obtained with the 

posterior median parameters from Sub-case 3. The grey-shaded region indicate the 0.99 highest density credible 

intervals for the model prediction uncertainty. The orange-shaded region and black vertical lines indicate the 0.99 

highest density credible intervals for measurement uncertainty for optic fibre and discrete measurements, 

respectively. Top: load case S7-ZB. Bottom: load case S9-ZB. 

Finally, Figure 52 confirms that the translation predictions are improved with respect to the a 

priori model but are less accurate than the parameter estimation in Sub-case 1 that used the 

translation sensors. Nevertheless, for all sensors in load cases S7-ZB and S9-ZB the 

measurement and model prediction credible intervals overlap. 
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Figure 52: Vertical translation diagrams at centreline of Truck 1 lane. The model predictions are obtained with the 

posterior median parameters from Sub-case 3. The grey-shaded region indicate the 0.99 highest density credible 

intervals for the model prediction uncertainty. The orange-shaded region and black vertical lines indicate the 0.99 

highest density credible intervals for measurement uncertainty for optic fibre and discrete measurements, 

respectively. Top: load case S7-ZB. Bottom: load case S9-ZB. 

6.5 Sub-case 4 

All parameter estimation cases performed so far have been focused on inferring structural 

parameters, while using fixed statistical parameters to describe the model and measurement 

uncertainties. As discussed in 5.4, the statistical parameters for this case study were estimated 

based on expert judgement, and thus, are not free of uncertainty. In order to assess their 

influence in the parameter estimation, Sub-case 4 aims to identify the statistical parameters 

𝜎meas, 𝑐𝑜𝑣model and 𝐿corr, along with the physical parameters 𝐸c and 𝐾rot, resulting on a five-

dimensional parameter estimation case. 

The initial dataset of 840 samples (see Section 5.4) and their respective log joint probability 

output is split so that 75% is used to start the posterior active learning procedure, while the 

remaining is employed to test the accuracy of the GP surrogate15. For this sub-case, 10 new 

samples are drawn per step based on the exponentiated variance utility function. The 

algorithm was ran for 9 steps without reaching convergence, therefore, it is not possible to 

make general conclusions about the influence of the statistical parameters on Bayesian 

parameter estimation; nevertheless, the posterior distribution estimated after the final step is 

shown for completeness. The MCMC sampling was performed using 50 walkers and 15,000 

final steps. 

 
15 The GP surrogate is trained with an anisotropic Matern kernel with 𝜈 = 1.5 
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In general, the posterior from Figure 53 is much narrower than the prior distribution shown 

in Figure 32, with very low median absolute deviations (MAD) values for all parameters, (see 

Table 27). This low degree of uncertainty might not be realistic considering that convergence 

was not achieved. Still, some resemblance with Sub-case 3 is found for the physical 

parameters, with 𝐸c having a posterior median slightly lower than the a priori model, and 𝐾rot 

being much higher than its initially assumed value. In contrast, very different marginal 1D 

distribution shapes are obtained for these two parameters with respect to sub-case 3. 

Table 27: Posterior values for Sub-case 4. 

Parameter Median MAD 

𝐸c (GPa) 31.50 0.85 

𝐾rot (Nmm/rad) 9.95 E+11 3.91E+09 

𝜎meas 0.33 0.004 

𝑐𝑜𝑣model 0.32 0.001 

𝐿corr (m) 3.88 0.02 

 

 
Figure 53: Posterior distribution for Sub-case 4. Diagonal: 1D marginal densities. Off diagonal: 2D contour plot of 

joint probability density. 
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The remaining of this section is dedicated to aspects that might explain the unsuccessful 

parameter estimation. Figure 54 shows a comparison between the real log joint probability 

values and the GP predictions for the 25% test dataset. The left plot shows a very poor global 

approximation, with a negative R2 score, mainly driven by inaccurate predictions on low 

probability regions (above 1E+4). Indeed, the real values grow beyond 1E+7 while the GP 

predictions remain ‘flat’ at around 2E+4. On the other hand, the right plot shows that the GP 

predictions are far better for the high probability values, i.e., below 1E+4.  

 
Figure 54: Comparison of negative log joint probability (x-axis) vs negative GP surrogate predictions (y-axis). The 

left plot is in logarithmic scale and shows the entire dataset. The right plot is a linear scale zoomed view to values 

below 1E+4.  

In theory, a surrogate with such a high R2 score value in high probability areas should be 

accurate enough for parameter estimation; however, it should be noted that the log joint 

probability varies faster across statistical parameters than physical parameters for this case. 

In other words, for a given combination of statistical parameters, only small variations of the 

log probability (in percentage) occur in the physical parameter domain. In order to evaluate 

if the GP surrogate is capable of representing this behaviour, a few samples from the test set 

are selected. 

Table 28: Comparison of real log joint probability values vs GP surrogate predictions for different samples, all of 

them with 𝜎meas = 0.70 and 𝑐𝑜𝑣model = 0.10. The real log probabilities are displayed in a descending order. 

𝐸c  

(GPa) 

𝐾rot 

(Nmm/rad) 

𝐿corr 

(m) 
Real log 

probability 

Real 

order 

GP 

prediction 

GP 

order 

GP / Real 

ratio 

33.2 3.98E+11 1.5 -5028.1 1 -5289.7 7 1.05 

33.2 3.98E+11 0.5 -5106.3 2 -5550.7 8 1.09 

39.1 9.18E+11 0.5 -5121.6 3 -5262.2 6 1.03 

45.7 4.18E+11 1.5 -5136.1 4 -5209.4 5 1.01 

17.2 6.50E+11 3.0 -5180.3 5 -5069.3 2 0.98 

30.7 1.66E+11 0.5 -5187.5 6 -5037.6 1 0.97 

48.7 7.91E+11 3.0 -5209.9 7 -5160.9 3 0.99 

11.4 2.47E+11 3.0 -5420.6 8 -5119.6 4 0.94 
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Table 28 shows a comparison of the real log joint probability and the GP predictions for the 

selected samples. The last column presents ratios between predictions and real values very 

close to 1.0, with differences below 10%; however, these discrepancies are enough to 

completely alter the order of the predictions, as seen in the penultimate column of the table. 

Considering that MCMC methods are not directly driven by the log probabilities of the 

considered samples but by their difference16, it could be inferred that the GP surrogate is not 

accurate enough. Indeed, the GP prediction errors from Table 28 are not negligible when 

compared to the difference of real log joint probabilities within the samples. 

It is also interesting to see how effective the posterior active learning algorithm was on 

drawing samples on the high probability regions. Figure 55 shows the real log joint probability 

for the 90 drawn samples. It can be noted that high probability values were not consistently 

selected by the algorithm, with the exception of steps 6 and 7. It could be the case that more 

steps were necessary for the algorithm to select ‘better’ samples in a more stable way.   

 
Figure 55: Real log joint probability of actively drawn samples. The vertical grey dashed lines mark the beginning 

of a new step of the algorithm.   

6.6 Discussion 

6.6.1 Performance 

One of the main goals of this thesis is to reduce the computation time of Bayesian system 

identification of real-world civil engineering structures. On that line, the total running times 

for the first three sub-cases of Bridge 705 are projected under the four different scenarios 

described below, including the formulas to calculate them: 

• Full order MCMC: default scenario where the finite element model is evaluated at each 

MCMC sample. 

𝑡projected = 𝑛MCMC(𝑡likelihood + 𝑡FEA) (38) 

 
16 As explained in Section 3.4, the acceptance of a proposed sample in MCMC depends on the division of its 

probability with the probability of the current sample. This is equivalent to applying the exponential function to 

the difference of log probabilities.    



6.6 Discussion 64 

 

 

 

• Structural GP: scenario where the finite element model responses are approximated 

with a GP surrogate trained with a grid of samples, emulating Rózsás, et al. (2022). 

𝑡projected = 𝑛grid ∙ 𝑡FEA + 𝑛MCMC(𝑡likelihood + 𝑡physGP) (39) 

• Log joint probability GP: scenario that uses the methodology proposed in this thesis, i.e., 

an actively built GP surrogate of the log joint probability density. 

𝑡projected = (𝑛latin + 𝑛active) ∙ (𝑡likelihood + 𝑡FEA) + 𝑛MCMC ∙ 𝑡logprobGP (40) 

• Log joint probability GP with cloud-based parallelization: similar to the previous scenario 

but adding cloud-based parallelization. 

𝑡projected = (𝑛latin + 𝑛active) ∙ (𝑡likelihood + 𝑡FEA + 𝑡overhead) 𝑛parallel⁄  

+ 𝑛MCMC ∙ 𝑡logprobGP 
(41) 

where: 

• 𝑛MCMC is the total number of MCMC samples 

• 𝑛grid is the number of grid points used to fit the structural GP 

• 𝑛latin is the number of initially drawn Latin hypercube samples 

• 𝑛active is the number of actively drawn samples until reaching convergence 

• 𝑛parallel is the number of parallel FE model evaluations 

• 𝑡likelihood is the computation time for a single likelihood evaluation 

• 𝑡FEA is the computation time for a single DIANA FEA model evaluation 

• 𝑡physGP is the computation time for a single structural GP prediction 

• 𝑡logprobGP is the computation time for a single log joint probability density prediction 

• 𝑡overhead is the overhead time due to cloud-based parallelization 

Table 29 shows the number of evaluations per component.  

Table 29: Number of evaluations of Bayesian workflow components per sub-case 

Case 𝑛MCMC
17 𝑛grid 𝑛latin 𝑛active 𝑛parallel 

Sub-case 1 340,000 112 20 36 4 

Sub-case 2 340,000 112 20 60 4 

Sub-case 3 340,000 112 20 36 4 

Table 30 presents the unitary computation times estimated by performing several test runs 

and calculating their average time. A laptop with 16 GB of RAM and a 1.7 GHz CPU with 8 

cores was used.  

 
17 Obtained by multiplying the number of walkers (20) with the total number of MCMC steps (17,000) 
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Table 30: Unitary computation times of Bayesian workflow components per sub-case. 

Case 𝑡FEA 𝑡overhead  𝑡likelihood
18 𝑡physGP

19 𝑡logprobGP
20  

Sub-case 1 1500 s 600 s 0.09 s 0.34 ms 83 µs 

Sub-case 2 1500 s 600 s 0.02 s 0.32 ms 86 µs 

Sub-case 3 1500 s 600 s 9.18 s 0.76 ms 83 µs 

Figure 56 presents the projection of the total running time for the four scenarios using the 

previous information. The default case where no GP approximation is used for the parameter 

estimation (blue bar) gives total runtimes in the realm of years for the three sub-cases, making 

it unfeasible for practical purposes, i.e., without super computers. On the other hand, using a 

physical GP (orange bar) gives reasonable running times for cases with discrete sensor 

measurements (Sub-cases 1 and 2); however, the method becomes unmanageable for the case 

with optic fibre measurements (Sub-case 3) where covariance matrices with thousands of rows 

and columns have to be evaluated. This is where the methodology proposed on this thesis 

(green and red bars) shows a clear advantage since the log likelihood is not directly computed 

but approximated with a log probability GP. It can be seen that in all sub-cases the Bayesian 

parameter estimation is computed within a few hours, showing a remarkable efficiency when 

comparing it with the other approaches. 

 
Figure 56: Estimation of total Bayesian parameter estimation runtime for each sub-case. The training times for the 

Gaussian process are not included as they are negligible compared to the total times 

 
18 Differences are due to the number of measurements included on each sub-case 
19 Differences are due to the number of predictions per GP call for each sub-case 
20 Differences are due to the number of samples used to fit the converged GP for each sub-case 
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The comparison above is based on a two-dimensional problem. With increasing 

dimensionality, the running times per approach are expected to scale differently. For example, 

the structural GP scenario requires a global surrogate approach (i.e., accurate in the entire 

parameter domain) which generally scales poorly with the number of dimensions. In contrast, 

the log joint probability GP approach proposed in this thesis aims to only select points that 

contribute the most to the accuracy of the posterior distribution, which intuitively would 

demand a lower number of finite element model evaluations. 

Nevertheless, building global surrogates of the finite element responses has also a few 

advantages. For example, they may be easier to approximate with Gaussian processes than 

log probabilities, which can be highly nonlinear and fast-varying (Wang & Li, 2017). In 

addition to that, while the structural GP can be reused for different parameter estimations, the 

log probability GP has to be obtained for every new case. Furthermore, a structural GP can be 

used with other Bayesian inference methods such as Nested Sampling, as shown by Chai 

(2019), while the log probability GP specifically works with MCMC methods. In general, 

different conditions could make one surrogating approach more desirable than the other; 

however, for this case study, it has been proven that the proposed methodology is both 

accurate and computationally effective. 

It is also interesting to evaluate the monetary cost of the cloud-based parallel finite element 

model evaluations used in this chapter. As mentioned in Section 3.6, the parallelization 

scheme relies on Microsoft Azure, which charges the user based on the amount of 

computational resources used per unit of time.  

The total costs per case study are shown in Table 31. The hourly cost of the selected virtual 

computers (properties shown in Section 5.5) is 0.0875 USD21, and the duration of each parallel 

step was estimated in 0.5 hours, including the FEA running time and cloud overhead time. 

The initial Latin hypercube samples are accounted separately since they were ran only once. 

Table 31: Total cost of finite element parallel runs per case study. 

Description Steps  Runs per step Step duration Unit cost Total cost 

Initial sampling 1 20 0.5 hours 0.0875 USD 0.875 USD 

Sub-case 1 9 4 0.5 hours 0.0875 USD 1.575 USD 

Sub-case 2 15 4 0.5 hours 0.0875 USD 2.625 USD 

Sub-case 3 9 4 0.5 hours 0.0875 USD 1.575 USD 

The total costs are remarkably low and show a great potential for the application of cloud-

based parallelization, especially considering that prices will diminish over time with the 

progress of the technology. Nevertheless, its use in practical situations will depend on users 

having access to an IT infrastructure that makes it possible. At the moment, cloud-based 

parallelization is not a common feature in commercial finite element modelling software, 

 
21 Price consulted in https://azureprice.net/?tier=spot&cpu=14,416 on July 28th, 2022   

https://azureprice.net/?tier=spot&cpu=14,416
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although things might be moving in that direction, as shown by the recent introduction of a 

cloud environment for the finite element software Abaqus (Dassault Systemes, 2022).    

6.6.2 Utility of optic fibre measurements for Bayesian inference 

In order to assess the benefit of the optic fibre measurements for the identification of structural 

parameters, the median values obtained with the parameter estimations were used to make 

finite element predictions, which were then compared against the discrete sensor 

measurements predictions. Table 32 shows a summary of the coefficients of determinations 

(R2 score) presented in the previous sections.  

Table 32: Summary of R2 scores per sensor set and sub-case. 

Sensor set A priori Sub-case 1 Sub-case 2 Sub-case 3 

Translation 0.89 0.97 0.74 0.96 

Discrete strain 0.84 0.82 0.44 0.86 

Optic fibre 0.86 0.79 0.18 0.89 

It is clear that the a priori model already gives good predictions, with all R2 scores with values 

above 0.80. For Sub-case 1, the parameter estimation improves the predictive capacity for 

translations but worsens it for discrete and optic fibre strains. Sub-case 2, on the other hand, 

yields the worst results with lower scores across all sensor groups when comparing to the a 

priori model. Finally, all sensor set coefficients are improved with Sub-case 3, with a 

translation R2 score almost as good as the one obtained in Sub-case 1, even though no 

translation sensors were used.  

It is also interesting to evaluate the parameter estimation uncertainty obtained in each sub-

case. Table 33 shows the extension of the 1D 0.90 highest density credible interval. The most 

noticeable aspect is that the intervals obtained with Sub-case 1 and Sub-case 3 do not overlap, 

which might indicate an underestimation of the uncertainty for at least one of them. Sub-case 

2 yields the wider credible intervals, which is in line with using a lower amount of 

measurements; however, they are considerably shifted from the posterior values for the other 

sub-cases. As previously mentioned, the strain sensor group ‘T’ forms the majority of the used 

sensors in Sub-case 2, which show erratic behaviour and a poor agreement when compare 

with both strain predictions and optic fibre measurements. A higher measurement 

uncertainty standard deviation for this group could have given more realistic medians. 

Table 33: Summary of 0.90 highest density credible intervals extension per sub-case. 

Sensor set Sub-case 1 Sub-case 2 Sub-case 3 

𝐸c (GPa) 26.41 - 28.55 16.95 – 20.89 32.39 – 36.15 

𝐾rot (Nmm/rad) 6.89 E+11 - 1.00 E+12 4.96 E+11 - 1.00 E+12 2.47 E+11 – 6.71 E+11 

In general, the results obtained with optic fibre strain sensors were much better than when 

using discrete strain sensors, and even though this might be due to some problematic discrete 
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sensors, the optic fibre measurements were not entirely flawless. Nevertheless, since the optic 

fibre information was recorded at such high spatial rate, it was easier to determine tendencies, 

compare with model predictions and apply the appropriate corrections, as described in 

Appendix B. 

6.6.3 Surrogating the log likelihood 

The log joint probabilities were successfully approximated with Gaussian processes for the 

first three sub-cases using an anisotropic Matern kernel (ν = 2.5); however, in some cases new 

samples were selected close to the corners of the parameter domain, even though these areas 

had very low likelihoods.  

 

Figure 57: 3D view of the log probability GP mean predictions for Sub-case 3. Left: GP fitted using only the initial 

Latin hypercube samples. Right: GP fitted after reaching convergence. 

Figure 57 shows the log probability GP predictions over the entire parameter domain for Sub-

case 3. When the GP is fitted using only the initial training points, the mean predictions on the 

corners are significantly overestimated, as it can be appreciated on the left plot. The right plot 

show the GP after reaching convergence with exact FE model evaluations near the corners, as 

the algorithm selected points in these areas and found the actual values of the log 

probabilities. To avoid this issue, these corner points could be included in the initial sampling. 

Nevertheless, it should be noted that the algorithm corrected itself, although taking more 

steps to reach convergence. 

On the other hand, the introduced parameter distance constraint proved effective to avoid the 

excessive clustering of new samples from Case Study 1 (see Section 4.5.2), hence allowing the 

selection of several unique new points to be run with cloud-based parallelization. Still, in some 

occasions all new points drawn for a single step appeared in the same location, separated only 

by the initially set minimal distances. In this situation, the gain in GP accuracy by drawing 

multiple points is not very different that doing it with just one. Furthermore, the distance 

constraints are expected to be highly case-specific. If one wants to guarantee that drawing a 

higher number of parallel points directly implies reaching convergence at a faster rate, this 

methodology should be refined. 
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Finally, the surrogation for Sub-case 4 is more complicated since the log likelihood of a point 

in the physical parameter domain can considerably change for different combinations of 

statistical parameters, as it was demonstrated in Section 6.5. As an example, Table 34 and 

Figure 58 show log joint probability values with different orders of magnitude. In this context, 

it is clear that the Gaussian process regression would quickly detect the log likelihood 

variations across statistical parameters but would struggle to do so for the physical 

parameters. Inferring statistical parameters under this methodology still requires more 

research. 

Table 34: Log joint probability for different statistical parameters (𝐸c = 33.2 GPa, 𝐾rot = 3.98E+11 Nmm/rad). 

𝜎meas 𝑐𝑜𝑣model  𝐿corr  Log joint probability 

0.01 0.01 10.00 m - 4.29 E+06 

0.01 0.50 0.01 m - 8.20 E+05 

5.00 0.50 10.00 m -1.62 E+04 

1.50 0.10 1.50 m -8.83 E+03 

0.30 0.40 3.00 m -2.37 E+03 

 
Figure 58: Logarithmic histogram of negative log joint probability for the initial samples of Sub-case 4. 
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7 Conclusion 

7.1 Answer to research questions 

With the results obtained in Chapters 4 and 6, the research sub-questions presented in Section 

1.2 can be answered: 

A. How to include recent developments in surrogate modelling techniques and cloud-based 

parallelization in order to accelerate the Bayesian inference workflow? 

The main computational bottleneck of the Bayesian inference workflow for real-world civil 

engineering structures is usually the finite element model, whose evaluation is necessary to 

calculate the likelihood of the data. With this in mind, the methodology proposed in this thesis 

approximates the log joint probability with a Gaussian process surrogate, which is 

sequentially built by selecting new points on areas that are expected to highly contribute to 

the accuracy of the posterior. The number of finite element model evaluations needed under 

this approach is far lower than what is required for a directly applied MCMC method, with 

reductions by factors as high as 6000, as proven for both a synthetic (Sections 4.2 and 4.4) and 

a real case (Section 6.2), while obtaining almost equivalent posterior distributions. 

Furthermore, Section 6.6.1 demonstrates that predicting the log joint probability with a 

Gaussian process can be considerably faster than computing the exact log likelihood in cases 

with a high number of measurements, making the proposed method more attractive than 

strategies where the physical finite element responses are surrogated. Finally, the cloud-based 

parallelization strategy presented in Section 3.6 was successfully used in order to reduce the 

parameter estimation running time at a minimal monetary cost (see Section 6.6.1). The 

maximum number of simultaneous Diana model evaluations used was 10; however, its limit 

is only determined by the number of available software licenses. 

B. What gain in information content can be obtained from optic fibre strain sensors compared to 

conventional discrete sensors for the identification of structural model parameters? 

The large amount of data produced by distributed optic fibre sensors can be very useful in 

many SHM applications; however, its advantages over discrete sensors in the context of 

Bayesian system identification were not as clear initially, since some correlation may be 

present in the model prediction error of closely space points. Multiple parameter estimations 

were performed for Bridge 705 using different subsets of discrete and optic fibre sensors, and 

among all cases, the one that yielded the best match between measurements and posterior 

model predictions was the one that used only optic fibre data (Section 6.4), proving the 

potential of this sensing technology for Bayesian inference. In particular, the R2 scores 

improved around 8%, 2% and 3% for translations, discrete strains and optic fibre strains, 

respectively, when compared to a priori model, which already offered reasonably accurate 

predictions. Still, in order to generalize this conclusion, a more systematic approach that uses 

a measurement campaign designed for it should be used. Nevertheless, one aspect that should 

not be overlooked is the qualitative usefulness of quasi-continuous measurements for 
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discovering tendencies, finding erroneous data and making comparisons with model 

predictions, by building continuous strain plots. This aspect facilitated the application of 

corrections to the optic fibre measurements described in Appendix B. 

C. How to describe the dependency in model uncertainty for optic fibre sensors and what is their 

influence on the results of Bayesian parameter estimations? 

The physical model prediction uncertainty was modelled with a multiplicative approach and 

a squared exponential covariance function. With this data structure, synthetic measurements 

were generated for Case Study 1, and the ground truth physical parameters used to create 

them were effectively identified for a 2D case (Section 4.2) and a 5D case (Section 4.4). For 

Case Study 2, the statistical parameters governing the model uncertainty were not known a 

priori, so their values were assumed based on previous research on this bridge. Nevertheless, 

good results were obtained when using these settings for the optic measurements (Section 

6.4), as the parameter estimation allowed an improvement of model predictions across all 

sensor groups. On the other hand, as shown in Section 6.5, inferring the uncertainty 

parameters along with the physical parameters was unsuccessful, possibly due to the 

difficulty of obtaining a Gaussian process surrogate that is accurate for log likelihoods with 

different orders of magnitude, as one obtains when exploring the statistical parameter 

domain.  

Having answered the previous sub-questions, the main research question of this thesis is 

addressed: 

How to perform Bayesian system identification for real-world civil engineering structures within an 

acceptable running time, i.e., in less than 24 hours, while including high-resolution optic fibre 

measurements? 

An approach that approximates the log joint probability with an actively built Gaussian 

process was applied to perform multiple Bayesian parameter estimations for both a frame-

type structure with synthetic measurements and a cast-in-situ concrete bridge with real 

measurements. For both cases, the proposed methodology was significantly more efficient on 

the number of required finite element model evaluations than a direct MCMC sampling, while 

obtaining equivalent posterior accuracies. Furthermore, cloud-based parallelization was 

employed to evaluate multiple finite element models simultaneously, decreasing the total 

running time of the workflow. The combination of these factors made the Bayesian parameter 

estimation of real-world civil engineering structures with optic fibre measurements feasible 

for practical situations.  

7.2 Contributions 

This section summarizes the main contributions of this work, harmonising the research gap 

found in the literature review and the results obtained for the synthetic and real-world case 

studies.  

First, even though the SHM literature shows some examples of Bayesian system identification 

using distributed optic fibre measurements, their use is limited to a handful of applications 
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that are either experimental or framed in situations that do not require multiple evaluations 

of an expensive physical model. To the author’s knowledge, this is the first time the 

combination has been applied for a real civil engineering structure with a computationally 

demanding finite element model that requires surrogating. 

Furthermore, to make the procedure computationally feasible, the log joint probability is 

replaced with a Gaussian process surrogate using an active posterior learning algorithm. This 

method requires only a limited number of finite element model evaluations, thus, addressing 

the main computational bottleneck of the workflow. Another advantage is that the log 

likelihood, whose calculation scales cubically with the number of data points, no longer needs 

to be directly obtained since it is approximated by a cheap-to-evaluate Gaussian process 

surrogate. This technique has been followed in some previous works, although the 

applications are mostly concentrated in fields such as astrophysics or neuroscience, and the 

few available civil engineering examples are either theoretical or laboratory-based. To the 

author’s knowledge, this is the first time in open literature where this approach has been used 

for a real-world civil engineering structure. 

Additionally, cloud-based parallelization was successfully used, at a relatively low monetary 

cost, to perform multiple finite element analyses for both the initial and the active-learning 

phase of the workflow. By allowing a higher number of model evaluations, this technology 

has the potential to enhance the use of probabilistic methods in real-world civil structures and 

increase the dimensionality of parameter estimation problems.  

7.3 Future work 

The results presented along this document showed the effectiveness of the proposed approach 

to solve problems that combine Bayesian system identification with optic fibre measurements, 

giving motivation to continue researching about the topic. This section presents additional 

research questions for potential upgrades to the methodology, as well as aspects that were not 

addressed in this thesis. 

7.3.1 Improvements on the posterior active learning methodology 

• How to build an accurate Gaussian process surrogate of the log joint probability when 

it drastically varies across the parameter domain, as it happens when inferring 

statistical parameters? 

 

• How can automatic differentiation be applied to Gaussian processes for obtaining 

statistical point estimates faster and in a more stable way than with MCMC, in order 

to evaluate the convergence of the posterior learning procedure?  

 

• What is the effect of parallelization, as introduced in this thesis, on the convergence 

rate of the posterior learning algorithm? How more advantageous it is to select 

multiple points per step instead of one? 
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• How to appropriately balance the degree of exploration and exploitation of the 

parameter domain when selecting new parallel points for the posterior learning 

procedure? 

 

• What is the degree of accuracy obtained for posterior predictives when a Gaussian 

process of the future observations likelihood, which has been fitted only with the 

samples drawn for the posterior active learning, is used? 

7.3.2 Further testing on the use of optic fibre sensors for Bayesian inference 

• What is the effect of the spatial discretisation rate of distributed optic fibre strain 

measurements in the context of Bayesian parameter estimation? 

 

• What is the effect of smoothening/filtering optic fibre measurements on Bayesian 

parameter estimation and what is the best way to do it in order to maintain theoretical 

consistency? 

 

• How can dynamic optic fibre strain measurements be incorporated into the Bayesian 

parameter estimation framework? 

 

• How to build a surrogate of the finite element model strain predictions using the 

location of the optic fibre data points as a parameter? 
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Appendix A – Implementation details 

Python 3.8 was used to perform the computations of this thesis. Table 35 and Table 36 show 

both the Python and external tools employed in Case studies 1 and 2, respectively. 

Table 35: Tools used for Case Study 1 – Synthetic frame. 

Tool Description Use 

NumPy 
Python library that provides fast operations for arrays, 

including mathematical, logical, sorting, etc. 
General computing 

SciPy 
Python library that provides fundamental algorithms for 

scientific computing 
General computing 

Matplotlib 
Python library for creating static, animated and 

interactive visualizations 
Plotting 

emcee 
Python package that implements the Affine Invariant 

Markov chain Monte Carlo (MCMC) Ensemble sampler 
MCMC sampling 

Taralli 
Python package that provides functionalities for 

Bayesian system identification 

Compiling 

covariance matrices 

approxposterior 

Python package that implements a variant of the 

Bayesian Active Learning for Posterior estimation 

algorithm  

Building a GP 

surrogate of the joint 

probability 

 

Table 36: Tools used for Case Study 2 – Bridge 705. 

Tool Description Use 

NumPy 
Python library that provides fast operations for arrays, 

including mathematical, logical, sorting, etc. 
General computing 

SciPy 
Python library that provides fundamental algorithms for 

scientific computing 
General computing 

Matplotlib 
Python library for creating static, animated and 

interactive visualizations 
Plotting 

emcee 
Python package that implements the Affine Invariant 

Markov chain Monte Carlo (MCMC) Ensemble sampler 
MCMC sampling 

Taralli 
Python package that provides functionalities for 

Bayesian system identification 

Compiling 

covariance matrices 

scikit-learn 
Python library for machine learning featuring various 

regression, classification and clustering algorithms 

Building a GP 

surrogate of the joint 

probability 

Diana FEA 
Software for Finite Element Analysis of civil engineering 

structures 

Finite element 

analysis 

Microsoft Azure 
Cloud computing service for application management 

via Microsoft-managed data centres 

Cloud-based 

parallelization of FE 

analyses 

Kubernetes 

Open-source container orchestration system for 

automating software deployment, scaling and 

management 

Cloud-based 

parallelization of FE 

analyses 

Argo 

Workflows 

Open-source container-native workflow engine for 

orchestrating parallel jobs on Kubernetes 

Cloud-based 

parallelization of FE 

analyses 
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Appendix B – Optic fibre corrections 

In this section, the corrections that were applied to the optic fibre measurements for each load 

case are presented. Notice that S12-ZB is not displayed since there are no available recordings 

for this load case. 

When comparing the uncorrected measurements to the model predictions, it was evident that 

the shapes were similar but there was an offset between them. After consulting with the team 

that conducted the campaign, a 2.5 m shift was applied to the measurements of the bottom 

leg with respect to the optic fibre coordinates, while a 1.5 m shift was applied to the transversal 

leg if the optic fibre. The effect of the shifts can clearly be seen for load cases S5-ZB to S9-ZB. 

In load cases such as S10-ZB, S11-ZB and S13-ZB, the truck position is so far from the optic 

fibre that the model predicts strain values close to zero; however the plots show almost 

constant non-zero values in these areas. It was found that a small temperature change had 

occurred during the test series. Since temperature loading was not included in the finite 

element model, the corrections shown Table 37 below were necessary to match the model 

predictions: 

Table 37: Temperature corrections applied to the optic fibre measurements. 

Time event Load case ΔT (Cº) Temperature correction 

24-Oct-2018 00:53:00 S1-ZB 0.00 0.0 microstrains 

24-Oct-2018 01:00:00 S2-ZB 0.00 0.0 microstrains 

24-Oct-2018 01:07:00 S3-ZB 0.00 0.0 microstrains 

24-Oct-2018 01:14:00 S4-ZB 0.00 0.0 microstrains 

24-Oct-2018 01:18:00 S5-ZB 0.00 0.0 microstrains 

24-Oct-2018 01:22:00 S6-ZB 0.00 0.0 microstrains 

24-Oct-2018 01:26:00 S7-ZB 0.02 2.4 microstrains 

24-Oct-2018 01:30:00 S8-ZB 0.03 3.6 microstrains 

24-Oct-2018 01:34:00 S9-ZB 0.03 3.6 microstrains 

24-Oct-2018 01:38:00 S10-ZB 0.04 4.8 microstrains 

24-Oct-2018 01:41:00 S11-ZB 0.04 4.8 microstrains 

24-Oct-2018 01:48:00 S13-ZB 0.06 7.2 microstrains 

Finally, the raw measurements were replaced by moving averages centred at the 

measurement location with a window of 10 data points (around 1.0 m). This was necessary 

since the data exhibited a peakiness that appeared to depend of the intensity of the 

measurement itself, so it could not be modelled with the data generating process described in 

Section 3.2. This issue can be observed especially for load cases S5-ZB, S7-ZB and S9-ZB.  
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Figure 59: Comparison of corrected and uncorrected optic fibre measurements in the longitudinal direction of the 

bridge for load cases S1-ZB, S2-ZB, S3-ZB and S4-ZB. 
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Figure 60: Comparison of corrected and uncorrected optic fibre measurements in the longitudinal direction of the 

bridge for load cases S5-ZB, S6-ZB, S7-ZB and S8-ZB. 
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Figure 61: Comparison of corrected and uncorrected optic fibre measurements in the longitudinal direction of the 

bridge for load cases S9-ZB, S10-ZB, S11-ZB and S13-ZB. 
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Appendix C – Sub-case 1 additional results 

The goal of Sub-case 1 was to validate the methodology proposed in this thesis, so the 

emphasis of Section 6.2 was put on the posterior distributions. This section presents additional 

results related to the fitness of the a posteriori model predictions.   

The posterior median values from Table 22 are used to obtain finite element predictions, 

which are then compared to the sensor measurements in Figure 62. A clear improvement on 

the translation predictions are obtained with respect to the a priori model, as can be observed 

by an R2 score increment of around 9% and by the fact that the 0.99 credible intervals cross the 

diagonal line for every dot.  

On the other hand, the predictive capacity is not considerably improved for the discrete 

strains and it is even worse for sensor group ‘T’. However, this subset has been previously 

identified as suspicious and its measurements may not be entirely reliable (notice that the 

credible interval do not cross the diagonal for multiple dots). 

 

Figure 62: Comparison of model predictions obtained with Sub-case 1 converged posterior median values (y-axis) 

vs measurements (x-axis) for translation (‘U’) and strain (‘B’, ‘O’ and  ‘T’) sensor groups. The vertical and horizontal 

lines on the dots indicate the 0.99 highest density credible intervals for model prediction uncertainty and 

measurement uncertainty, respectively. 

Even though the optic fibre measurements were not used for this Sub-case, it is still interesting 

to notice that the R2 score is 9% lower than the one from the a priori model, as it can be seen 

in Figure 63.    

 

Figure 63: Comparison of model predictions obtained with Sub-case 1 converged posterior median values (y-axis) 

vs measurements (x-axis) for the optic fibre sensor. 
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The findings described in the previous paragraphs can also be visualized in the following 

response diagrams where the model prediction uncertainty is represented as a grey shadowed 

region while the measurement uncertainty of the optic fibre and discrete measurements are 

displayed as a light orange shadowed region and vertical black lines, respectively. 

 

 

Figure 64: Longitudinal strain diagrams at centreline of Truck 1 lane (deck bottom fibre). The model predictions 

are obtained with the posterior median parameters from Sub-case 1. The grey-shaded region indicate the 0.99 

highest density credible intervals for the model prediction uncertainty. The orange-shaded region and black 

vertical lines indicate the 0.99 highest density credible intervals for measurement uncertainty for optic fibre and 

discrete measurements, respectively. Top: load case S7-ZB. Bottom: load case S9-ZB. 

The strain diagrams from Figure 64 show that the predictions are farther to the measurements 

than for the a priori model (Figure 36), especially in the peaks. Also, the 0.99 measurement 

uncertainty credible interval do not cross the model prediction for many discrete sensors. This 

confirms the reduction of R2 scores for the strain sensors. On the other hand, Figure 65 shows 

a remarkable agreement between the predicted translations and measurements, especially in 

the midspan peaks, which is also backed by the R2 score increment for sensor group ‘U’.  
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Figure 65: Vertical translation diagrams at centreline of Truck 1 lane. The model predictions are obtained with the 

posterior median parameters from Sub-case 1. The grey-shaded region indicate the 0.99 highest density credible 

intervals for the model prediction uncertainty. The orange-shaded region and black vertical lines indicate the 0.99 

highest density credible intervals for measurement uncertainty for optic fibre and discrete measurements, 

respectively. Top: load case S7-ZB. Bottom: load case S9-ZB. 
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Appendix D – Sub-case 2 additional results 

The goal of Sub-case 2 was to assess the a posteriori model predictions obtained using a subset 

of discrete strain sensors, so the emphasis of Section 6.3 was put on showing the discrepancies 

between model predictions and measurements via R2 score plots and response plots. This 

section presents additional results related to the active sampling process.   

The evolution of the parameter estimation per step for Sub-case 2 is presented in Figure 66. It 

can be seen from the top plots that the median and MADs show a stable flat behaviour only 

in the last steps. This is confirmed by the bottom sub-figure, where the convergence criterion, 

i.e., the median variation is below the threshold in three consecutive steps, is achieved in the 

last step displayed. 

 

 

Figure 66: Evolution of MCMC parameter estimation per step for Sub-case 2, with four new samples drawn at each 

of them. Step 0 only uses the initial samples, i.e., before the active learning. Top left: Median values. Top right: 

Maximum absolute deviations. Bottom: Variation of the mean with respect to previous step normalized by the 

MAD. The red dashed line represents the convergence threshold set for this case study: 0.10. 

The distribution of actively drawn samples from Figure 67 is shifted to the left of Sub-case 1 

and is also less concentrated, mainly due to the fact that that many new points on the lower 

boundary for 𝐸c and in both for 𝐾rot were chosen. As it has been explained before, the GP 

surrogate tends to overestimate the log joint probabilities on the borders of the domain, so the 

algorithm initially predicts that this regions will have high probability densities and selects 



87 Appendix D – Sub-case 2 additional results 

 

 

 

points on it. This is then corrected but convergence is achieved at a total of 80 finite element 

model evaluations, 24 more than in Sub-case 1. 

 

Figure 67: Samples used to surrogate the log joint probability GP surrogate for Sub-case 2. The blue dots are the 

initial Latin hypercube points while the orange are actively drawn. 
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Appendix E – Sub-case 3 additional results 

The goal of Sub-case 3 was to assess the a posteriori model predictions obtained using the 

optic fibre sensor, so the emphasis of Section 6.4 was put on showing the discrepancies 

between model predictions and measurements via R2 score plots and response plots. This 

section presents additional results related to the active sampling process.   

The evolution of the parameter estimation per step for Sub-case 3 is presented in Figure 68. 

Convergence is achieved at step 9, which is when three consecutive step have a median 

variation below the 0.1 threshold for the two parameters simultaneously. The posterior values 

remain quite flat after this point except for the MAD of 𝐸c, which exhibits some small 

fluctuations below 0.05 GPa.   

 

 

Figure 68: Evolution of MCMC parameter estimation per step for Sub-case 3. Step 0 only uses the initial samples, 

i.e., before the active learning. Top left: Median values. Top right: Maximum absolute deviations. Bottom: Variation 

of the mean with respect to previous step normalized by the MAD. The red dashed line represents the convergence 

threshold set for this case study: 0.10. 

As with the previous cases, the actively drawn samples for Sub-case 3 shown in Figure 69 are 

concentrated in a narrow region of 𝐸c centred around its converged posterior median value, 

while they are more evenly distributed for 𝐾rot. Here again, the algorithm selected many 

points on the boundaries of the domain that ended up having very low probability densities, 

due to a GP surrogate overestimated prediction at the borders of the parameter space. 
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Figure 69: Samples used to surrogate the log joint probability GP surrogate for Sub-case 3. The blue dots are the 

initial Latin hypercube points while the orange are actively drawn. 
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Appendix F – A priori fixed-load plots 

A complete list of all strain and translation response plots for the a priori model are presented 

in this section.  

 

 

 

Figure 70: Longitudinal strain diagrams at centreline of Truck 1 lane (deck bottom fibre) for load cases S1-ZB, S2-

ZB and S3-ZB. The model predictions are obtained with the a priori model parameters. 
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Figure 71: Longitudinal strain diagrams at centreline of Truck 1 lane (deck bottom fibre) for load cases S4-ZB, S5-

ZB, S6-ZB and S7-ZB. The model predictions are obtained with the a priori model parameters. 
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Figure 72: Longitudinal strain diagrams at centreline of Truck 1 lane (deck bottom fibre) for load cases S8-ZB, S9-

ZB, S10-ZB and S11-ZB. The model predictions are obtained with the a priori model parameters. 
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Figure 73: Longitudinal strain diagrams at centreline of Truck 1 lane (deck bottom fibre) for load cases S12-ZB and 

S13-ZB. The model predictions are obtained with the a priori model parameters. 

 

 

Figure 74: Vertical translation diagrams at centreline of Truck 1 lane for load cases S1-ZB and S2-ZB. The model 

predictions are obtained with the a priori model parameters. 



Appendix F – A priori fixed-load plots 94 

 

 

 

 

 

 

 

Figure 75: Vertical translation diagrams at centreline of Truck 1 lane for load cases S3-ZB, S4-ZB, S5-ZB and S6-ZB. 

The model predictions are obtained with the a priori model parameters. 
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Figure 76: Vertical translation diagrams at centreline of Truck 1 lane for load cases S7-ZB, S8-ZB, S9-ZB and S10-

ZB. The model predictions are obtained with the a priori model parameters. 
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Figure 77: Vertical translation diagrams at centreline of Truck 1 lane for load cases S11-ZB, S12-ZB and S13-ZB. The 

model predictions are obtained with the a priori model parameters. 
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Appendix G – Sub-case 3 fixed-load plots 

A complete list of all strain and translation response plots for Sub-case 3 are presented in this 

section. The grey-shadowed region corresponds to the 0.99 highest density credible interval 

for model predictions, which are obtained by multiplying the response prediction, the strain 

model uncertainty coefficient of variation (0.10) and the factor associated with a 0.99 credible 

interval for a normal distribution (2.58). The orange region and vertical black lines correspond 

to the 0.99 highest density credible interval for measurements of the optic fibre and discrete 

sensors, respectively. 

 

 

 

Figure 78: Longitudinal strain diagrams at centreline of Truck 1 lane (deck bottom fibre) for load cases S1-ZB, S2-

ZB and S3-ZB. The model predictions are obtained with the posterior median Sub-case 3 parameters.  
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Figure 79: Longitudinal strain diagrams at centreline of Truck 1 lane (deck bottom fibre) for load cases S4-ZB, S5-

ZB, S6-ZB and S7-ZB. The model predictions are obtained with the posterior median Sub-case 3 parameters.  
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Figure 80: Longitudinal strain diagrams at centreline of Truck 1 lane (deck bottom fibre) for load cases S8-ZB, S9-

ZB, S10-ZB and S11-ZB. The model predictions are obtained with the posterior median Sub-case 3 parameters. 
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Figure 81: Longitudinal strain diagrams at centreline of Truck 1 lane (deck bottom fibre) for load cases S12-ZB and 

S13-ZB. The model predictions are obtained with the posterior median Sub-case 3 parameters. 

 

 

Figure 82: Vertical translation diagrams at centreline of Truck 1 lane for load cases S1-ZB and S2-ZB. The model 

predictions are obtained with the posterior median Sub-case 3 parameters. 
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Figure 83: Vertical translation diagrams at centreline of Truck 1 lane for load cases S3-ZB, S4-ZB, S5-ZB and S6-ZB. 

The model predictions are obtained with the posterior median Sub-case 3 parameters. 
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Figure 84: Vertical translation diagrams at centreline of Truck 1 lane for load cases S7-ZB, S8-ZB, S9-ZB and S10-

ZB. The model predictions are obtained with the posterior median Sub-case 3 parameters. 
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Figure 85: Vertical translation diagrams at centreline of Truck 1 lane for load cases S11-ZB, S12-ZB and S13-ZB. The 

model predictions are obtained with the posterior median Sub-case 3 parameters. 
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