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Abstract

Biomechanics studies the underlying mechanisms between body movements and forces.
Accurate motion data is crucial for the biomechanics. Currently, marker-based motion
capture systems are often used by researchers to record motion data. Marker-based motion
capture systems are not widely adopted due to its drawbacks in terms of financial and
time costs, portability, etc. Video-based motion capture systems can record motions
using videos collected by webcams, cameras, and smartphones as the input and then
estimate human motions from those videos. A simpler setup makes video-based motion
capture technology more accessible for widespread use. However, existing motion capture
datasets commonly lack of biomechanically accurate annotation, resulting in a deficiency
in the biomechanical accuracy of exsisting video-based motion capture methods. In the
biomechanics community, there are a lot of validated and biomechanically accurate models
and motion data; however, corresponding video data is lacking. Therefore, we aim to
construct human-like appearance based on these data and generate a synthetic human
motion video dataset using 3D graphic software. In this thesis, we purposed a pipeline
that can generate synthetic human motion videos. The pipeline takes a subject-specific
OpenSim model and motion as input and uses SMPL-X model to generate human-like
appearance. We validated the synthetic data generated by our pipeline and demonstrated
the biomechanical reliability of the pipeline. Using this pipeline, we created synthetic
dataset ODAH with biomechanically accurate annotations for neural network training.

Keywords: Motion capture, biomechanical model, OpenSim, synthetic video, SMPL-X model
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1 Introduction

Biomechanics is the study of forces acting on the body and their effect. Researchers study
human movement to understand its underlying mechanism. Biomechanics influenced appli-
cations in rehabilitations, sports, clinical diagnosis, et al. To analyse human motions, it is
necessary to capture human motions from reality. Currently, marker-based motion capture
systems can achieve very high accuracy, and they are often regarded as the gold standard in
motion capture [1]. In marker-based motion capture systems, a set of markers are attached
on the subject. To avoid the influence of clothing deformation, the subject need to wear a
tight-fitting suit, and markers are usually placed at specific bony landmarkers where bones
are very close to the skin. Light either emitted or reflected from the markers is picked up by
high speed motion capture cameras. Thus marker-based motion capture is usually conducted
indoor [1] where lighting conditions are ideal. Then the markers’ positions in 3D space are
calculated using triangulation. In specific motion capture data processing software, the col-
lected marker position data are derived to the motions of a skeleton template using inverse
kinematics. Although marker-based motion capture systems can provide accurate results, they
haven’t been adopted widely in biomechanical applications. It is partly due to its complex
and costly hardware setup, and time consuming marker placement. Another reason is that
marker-based motion capture is not suitable for all tasks. It is reported that subjects may not
perform natural movements due to feeling uncomfortable having markers attached to the body
and being recorded in an unfamiliar lab environment [2]. In some certain scenarios, such as
capturing the motion of an athlete in a sports competition, it is not feasible to attach markers
on the subject. In general, marker-based motion capture systems show shortcomings in cost,
portability, and ease of use. Therefore, it is difficult to widely adopt marker-based motion cap-
ture systems in clinical and personal applications, which hinders researchers in biomechanics
from collecting human movement data [2, 3].

There is a need for motion capture methods that are easier to use and less costly. Video-
based motion capture systems provide a more feasible solution. Video-based motion capture
systems take input from smartphone, webcam, or internet video to record motions, and often
leveraging deep learning-based algorithm to estimate body scale and motion [4]. Once videos
are recorded, pose estimation algorithms are then utilized to estimate 3D human joints. Current
pose estimation algorithms mostly rely on deep learning networks [4]. These methods are
‘trained’ on large scale datasets that provide video input from single view or multi-views and
annotated 3D poses for each time frame. During training, the pose estimation algorithms are
optimized to minimize the difference between estimation and ground truth annotation. Video-
based motion estimation methods have showed their potential in biomechanic applications,
such as gait analysis [5], rehabilitation [6], sports training [7-9].

Deep learning algorithms can learn the annotation of its training dataset includes bias and
errors. A lot of motion capture datasets are recorded by marker-based methods [10-12]. Al-
though marker-based methods are often considered as the ”gold standard”, the results provided
by these methods also have a certain margin of error. Markers placed on subjects are assumed
to be fixed to bones. In reality, due to soft tissue artifact, markers can move relative to bones,
which leads to error in motions. For example, soft tissue artifact can result in an error of
5.8 degrees in hip internal rotation estimation [13]. And marker-based methods are relatively
inaccurate in predicting rotation outside the sagittal plane because markers are placed closer
to the axis of rotation [14]. The process of transferring marker data to motions also introduces
errors. Due to these reasons, marker-based motion capture methods cannot perfectly record
human motions. Neural networks are trained based on a training set, which means the limit
of their accuracy is restricted to the accuracy of the training set. It actually obstructs the
potential of video-based motion capture methods.

To solve the issue of pseudo ground truth in existing motion capture datasets, researchers



purposed to train networks on synthetic datasets which can provide ”perfect” ground truth
annotations. Many synthetic datasets have been created for neural network training. Surreal
[15] is a large scale synthetic human motion dataset. Methods trained on Surreal achieved
good accuracy in human depth estimation, human part segmentation [15] and human pose
estimation [16] on real RGB images. Michael et al. created BEDLAM [17]. They trained
a neural network solely on synthetic data and achieved state-of-the-art on human pose and
shape estimation from real RGB images. These studies suggest that synthetic datasets have
the potential to replace existing datasets as training sets for neural networks.

A common issue for both current open-source real world motion capture dataset and synthetic
dataset is that these datasets are not designed for biomechanical applications [4]. In some
datasets [18,19], joint centers are manually labeled by people who have no anatomical knowl-
edge. Some datasets employ marker-based systems to record motion data, while not using
biomechanical human model [11,20] when transferring marker data to human motions. Syn-
thetic databases also face the same issue. Although they can reconstruct human-like external
appearance, the underlying skeleton cannot represent an actual human skeleton [3] and thus
these synthetic datasets and data generation pipelines cannot provide biomechanically accurate
ground truth.

Having an appropriate model is crucial for biomechanical research. Musculoskeletal models
are commonly used in biomechanical simulation. A musculoskeletal model includes: a well
defined skeletal structure, muscle actuators, anatomical joints [21]. Such model can be im-
plemented directly into the work flow of biomechanical research. Attempts have been made
to combine video-based motion capture systems with musculoskeletal models and joint angles.
Theia3D [22] is a commercially available Al-based 3D markerless motion capture solution for
biomechanics. Their system requires at least 6 cameras to capture human motions. Unfortu-
nately, its data source and algorithm are not publicly available. OpenCap [23] is an open-source
online platform that can estimate the biomechanical model and its kinematics and dynamics
from a setup with at least two cameras. OpenCap first derives 3D keypoint locations using
deep learning model and then obtain joint angles and model scaling using OpenSim Scale tool
and Inverse Kinematic tool. Such multi-step approaches may introduce variability and incon-
sistency. D3KE [24] is an end-to-end method that can predict biomechanical model and its
kinematics from monocular videos. In general, end-to-end methods are more preferable due to
higher reliability and accuracy [24].

As mentioned above, existing motion capture datasets lack accurate biomechanical annota-
tions. Current open-source datasets cannot provide a large scale of data to train a neural
network for biomechanical pose estimation. It is also very time consuming to build a large
scale biomechanical motion capture dataset from the beginning. Existing massive open-source
biomechanical motion data should be used to build such dataset. Therefore, creating synthetic
dataset based on biomechanical models and motions can be a potential solution. Schleicher et
al. [25] purposed Biomechanical Animated Skinned Human (BASH) that can rig a human skin
mesh based on an OpenSim model. However, BASH was designed to demonstrate muscle ac-
tivation instead of generating realistic synthetic data for network training. The biomechanical
accuracy of their method is questionable.

We proposed a method that can generate synthetic human motion videos based on a biome-
chanical skeleton. In comparison to existing motion capture datasets, our synthetic data gen-
eration pipeline offers numerous advantages. We utilized biomechanical models and motions
as inputs, providing trustworthy annotation for biomechanical research. Our pipeline allows
the easy generation of a large amount of data based on existing dataset, and users are free to
set backgrounds, lighting condition, camera parameters, etc. in 3D graphics software to create
data based on their needs.

The main contributions of our study are:



e A pipepline to generate synthetic video given a motion of a biomechanical (OpenSim)
model.

e A synthetic video dataset with ground truth joint angle trajectories for biomechanical
models, varied subject appearance, motions, and scene settings.

2 Method

2.1 Pipeline description
2.1.1 Overview

Human-like mesh and biomechanical skeletal model are two of the primary components in our
pipeline. We employed SMPL-X [26] mesh model and OpenSim fullbody skeletal model [27]
to achieve our goal. We developed a synthetic data generation pipeline to rig an SMPL-
X [26] model against a full-body OpenSim skeletal model [27] and its associated joint angles
that produce a variety of human motions (See Figure 1). The OpenSim skeletal model and
SMPL-X model used in our pipeline are introduced in section 2.1.2 and 2.1.3 respectively. The
OpenSim skeletal model and the joint angles serve as the inputs to the pipeline. We used
MoSh++ [28] to provide initial guess for our data generation pipeline, which is introduced in
section 2.1.4. The subject-specific SMPL-X models were fit to the joint and marker locations
extracted from the OpenSim skeletal model. In section 2.1.5, we trained a joint regressor that
can indicate OpenSim skeletal structure from SMPL-X mesh. Then, our OpenSim based fitting
process is described in section 2.1.6. Our rendering setup is described in section 2.1.7

Biomechanical skeletal model

& joint angles Joint relgressor Synthetic video
Marker locations OpenSim based fitting video
Joint locations rendering
{ " - Static pose Frame by
' OpenSim fitting frame fitting
Marker c
Tin& ) locations
MoSh++

SMPL-X parameters

Initial guess
and cameras

Figure 1: An overview of our synthetic data generation pipeline. We first trained a joint re-
gressor that represents the mapping from the SMPL-X mesh to the OpenSim skeleton. For
given OpenSim model, we then optimized the body shape and motion to achieve a best fit to
subject-specific OpenSim skeletal model and joint angles. Finally, we built a realistic environ-
ment in 3D graphic software with scene and cameras to render the synthetic video data.

2.1.2 Biomechanical model

An OpenSim model is composed of rigid bodies (bones) that are connected by joints. Joints
connect two reference frames: one on the parent and one on the child body of the joint, which



Figure 2: The OpenSim skeletal model used in our pipeline. The model has 22 rigid bodies
in total. There are 13 bodies in the lower body (pelvis, right and left femur, patella, tibia
and fibula, talus, calcaneus, toes), and 9 in the upper body (torso and head, right and left
humerus, ulna, radius, hand). The total number of DOFs is 37 (20 in the lower body and 17
in the upper body). This model is created and validated by Rajagopal et al. [27]

coincide in space at the joint center. The fullbody model [27] applied in the pipeline is designed
for gait simulation. Figure 2 shows the front and back view of the model. It has 22 rigid bodies
and 37 degrees of freedom. To assist 3D human skin generation, a set of markers is attached
to the model. These markers are place on bony landmarks where bones are very close to the
skin.

2.1.3 Human mesh model

We used Skinned Multi-Person Linear expressive (SMPL-X) model [26] as our 3D human mesh
model. SMPL-X is a skinned vertex-based model that can produce various natural human
body shapes in different poses. The mesh consists of 10,475 vertices and 20,908 faces, driven
by an internal armature with 54 joints. A SMPL-X mesh can be defined by 2 parameters:
shape 8 and pose #. The SMPL-X mesh is based on a template mesh. Given a shape pa-
rameter 3, the SMPL-X model calculates the displacement for each vertex based on a shape
displacement matrix. The model utilizes the SMPL-X joint regressor to obtain the internal
armature. Vertices are then driven by the internal armature to obtain the human meshes
at given pose. Figure 2.1.3 shows some example SMPL-X meshes. The SMPL-X model can
generate various human-like appearances. By optimizing these two parameters, we can find
an optimal SMPL-X mesh that best fits the given subject-specific musculoskeletal model and
joint angles.

2.1.4 MoSh++

We utilized MoSh++ (Motion and Shape capture) [28] to create the initial human mesh. Given
marker trajectories and a marker layout on the mesh, MoSh++ generated SMPL-X mesh
sequences. The marker layout was defined manually by identifying corresponding SMPL-X
vertices as OpenSim markers. From MoSh++, we obtained the initial SMPL-X shape 8 and
pose 6 for the given skeletal model and its motion.
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Figure 3: Some example SMPL-X meshes. (a) Meshes with various body shape can be obtained
by changing the shape parameter . (b) SMPL-X model can generate human body meshes in
various poses by changing the pose parameter 6.

2.1.5 Joint regressor

SMPL-X and OpenSim model do not share the same joint definition. The OpenSim skeletal
model is based on human anatomical structures, whereas the armature of the SMPL-X model
is based on matching the mesh to surface scans [29] instead of skeletal anatomy. To remove this
discrepancy, we trained a joint regressor for the SMPL-X model that identifies biomechanical
joint centers as joint keypoints based on the position of the SMPL-X vertices. This set of
joint keypoints has anatomical-based structure same as the structure in the OpenSim skeletal
model. The location of each joint keypoint are represented by a linear combination of several
adjacent vertices. It allows us to align the mesh and skeletal models using these joint keypoints
as reference.

To obtain our joint regressor, we manually posed and scaled several OpenSim skeletons to
match SMPL-X meshes, aligning them with the T-pose (see Figure 4). To avoid overfitting,
it is necessary to include a variety of different poses during the process of obtaining our joint
regressor. For such a massive data requirement, it is impractical to create a database entirely
by manual fitting. Hence, we assumed that the offset between an OpenSim joint and its
corresponding SMPL-X joint is fixed in the respective OpenSim parent body frame. (e.g., the
offset of hip joints is fixed in the pelvis frame, the offset of knee joint is fixed in the femur
frame).

The offset is subject dependent, meaning that different body shape may correspond to different
offset values. The offset for each subjects is obtained via our manually static pose fitting. We
used the output of MoSh+-+ as our initial guess. Under that assumption, we utilized the
Adam optimizer [30] to optimize SMPL-X shape parameter /5 and pose parameter , aiming
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Figure 4: An example of our manually fitted skeleton and mesh. The bottom of each gray
dart-shaped object corresponds to a joint center of the SMPL-X armature. The bottom of
each green dart-shaped object corresponds to a joint center of the OpenSim skeletal model.
We scaled and posed the OpenSim skeletal model to fit the SMPL-X mesh at static T-pose.
We then assumed that the offset between each OpenSim joint center and SMPL-X joint center
is fixed in the parent frame of the OpenSim joint.

to minimized the following loss:

Nj—1N;—1

E]omt N N Z Z ||ptgtjf D, f”l (1)
f=0 5=0

where p; ¢ is the joint location of fitted SMPL-X mesh, and Ptgt; ¢ is the target location of
corresponding SMPL-X joint. N; and Ny are number of joint and number of frames respec-
tively.

Given OpenSim joint location, the target SMPL-X joint locations can be calculated by the
following formula:
Pigtj ; = Posimj,f + Rpaenid; (2)

where posim ;5 and R;)“;’: elnt are OpenSim joint location and rotation matrix of corresponding

parent frame respectively. They can be obtained via OpenSim. d; is our predefined offset.

After previous fitting steps, we obtained a series of SMPL-X vertices along with their corre-
sponding OpenSim joint locations. We utilized an Adam optimizer [30] to obtain our joint
regressor by minimizing:

Ny—1

1
E.]R - N Z ||u7Vf ossz” (3)
f=0

where V € RN»x3 represent the SMPL-X vertices of each frame, and Pogim s € RN %3 repre-
sents OpenSim joints locations of each frame. J € RY:*Nv (N, number of vertices) represents
our joint regressor, which is our optimization objective.



2.1.6 OpenSim model based fitting

We used the output of MoSh++ as our initial guess, and improved the fitting by introduc-
ing additional joint based correction. The fitting process consists of two steps, static shape
optimization and frame by frame pose optimization.

Static shape optimization. Given an OpenSim model, we first determine a subject-specific
shape through a static trial. In this step, we optimize both the SMPL-X shape and pose
parameters. The objective is to obtain the subject-specific SMPL-X shape parameter 5. The
Loss function is given in equation 8. Additionally, our pipeline also allows transferring the
SMPL-X mesh to STAR [31] mesh which has an independent BMI related shape term, then
we can modify the overall size (fat or thin) of the synthetic subject.

Frame by frame pose optimization. Then, we optimize the SMPL-X pose parameter frame
by frame. The loss function consist of marker keypoint loss and joint keypoint loss, which is
given as follow:

N,;—1
173 .
£joint = Fj Z AjointjHszm.plfJ - pJosimf,j”l (4)
=0
pJosimf,j = (j‘;:smplf)j (5)
| Nmzt
»Cma'rker = Ni Z )‘markeTm”ﬁMsmplf)m - pMOSimf,m”l (6)
m
Epose = )\jointj”éf - Omoshf”l (7)
L= £joint + ‘Cmarker + ‘cpose (8)

where Lyotion is the total loss. Ljoint, Lmarker and Lpose are joint loss, marker loss and pose
loss respectively. )\jomtj and Amarkerm are the weight for each joint and marker respectively.
Nj is the number of OpenSim joint. pjesim ¢,; is the position of each OpenSim joint obtained
via OpenSim. Pjsmpi Iy is the position of the joint keypoint calculated following equation

5. J is a matrix that represents our joint regressor. \% ;€ RNv*3 is the positions of fitted
SMPL-X vertices at current frame. N,, is the number of OpenSim marker. PMsmpl f is the
virtual SMPL-X marker position for current frame. parosim ¢,; is the OpenSim marker position

for current frame. éf is the SMPL-X pose parameter for our fitted mesh at current frame.
Omosh ¢ is the initial guess of the pose parameter obtained via MoSh++. MoSh++ can provide
a natural pose that is close to the optimal result. The purpose of the pose loss is to prevent
twisting and unrealistic pose. For each frame, we optimized the pose parameter 6 of SMPL-X
model by minimizing the joint loss (4 and marker loss (6). Our static shape optimization and
frame by frame pose optimization are based on the same loss function. However, only the
SMPL-X pose parameter 6 are optimized in the frame by frame pose optimization step.

2.1.7 Rendering setup

Scene settings. To augment appearances, we used four types of upper body clothing, ranging
from vests to long-sleeved shirts, and four types of lower body clothing, from shorts to trousers.



Each type of the clothing is randomly combined with 5 different textures in each trial. We
used multiple area light sources evenly distributed on the ceiling.

Cameras settings We employed two static cameras for video rendering that were positioned
at a height of 1.1 4+ 0.1 meters. One camera captured the frontal view, while the other one
captured the sagittal view. To enhance diversity, the positions of the cameras are randomly
perturbed within a small range. Both cameras had a fixed focal length of 33 mm. The sensor
fit of the cameras was set to horizontal with the sensor width set to 36 mm.

Rendering The videos were rendered using the BLENDER_EEVEE [32] engine in Blender 3.5.
The video resolution was set to 1080 by 720 and collected at a frame rate of 100 fps. Motion
blur effects are disabled. The videos are encoded in the H264 format with a medium-quality
configuration.

2.2 Pipeline validation

We aim to validate our pipeline from two aspects: whether it can generate realistic appear-
ances for different subjects and actions, and whether the synthetic data accurately reflects the
realistic skeletal-skin relationship. To evaluate the performance of our pipeline quantitatively,
we introduced the following two categories of accuracy metrics:

Mesh to mesh error: We introduced mesh-to-mesh RMS error and distance to mesh
to evaluate the body shape reconstruction ability of our pipeline. The ground truth mesh
consists of vertices Vgr and faces For. The fitted SMPL-X mesh consists of vertices Vy;; and
faces F'r;¢. We calculated the summation of the mean distance of selected vertices on SMPL-X
mesh to ground truth 3D scan and the mean distance of all vertices on the ground truth mesh
to SMPL-X mesh. We used triangle mesh to distance function [33] to calculate the distance.
Figure 5 is a flowchart of this error. The mesh-to-mesh RMS error is calculated following:

Nosmpr=1 g 2 Nogr—1 4 2
gmeshRMS = \/Zz smpl; + \/Zl GT; (9)

=0 =0
stmpl N’UGT

where Nysmpr and Nyseqn are the number of vertices on the synthetic mesh and ground mesh
respectively. dgmgpi is the distance from a vertex on the synthetic mesh to the ground mesh.
dgr is the distance from a vertex on the ground mesh to the synthetic mesh. This error are
calculated on one frame only. For a series of frames, we calculate the error for each frame and
then take the average.

osim model
motion
S OpenSim scaling factors —
Known Meshes _ —'Marker e file Scale Tool & IK 44 Our pipeline
Ground truth mesh R synthetic mesh

mesh to mesh error

Figure 5: A flowchart of mesh to mesh error

Marker error: In the field of biomechanics, researchers utilize marker-based methods for mo-
tion capture, and assess the accuracy of the collected motion data by analyzing marker errors.
Similarly, we aim to use the marker error the assess whether our generated synthetic mesh



accurately reproduce the movement of the skeletal model from a biomechanical perspective.
We introduced mean marker spacial error to evaluate the motion following quality of the
synthetic meshes generated by our pipeline. We selected several vertices on SMPL-X mesh
to represent OpenSim virtual markers. These virtual markers correspond to bony landmarks
crucial for estimating bone location and orientation. This error evaluates how well our fitted
mesh can track the input OpenSim motions. A flowchart of this error is shown in figure 6.
This error is calculated by the following formula:

gmarker?)D = Nme fZ_O ];0 ||ﬁMm,f _pMm,f||2 (10)

, where N,,, and Ny are number of markers and number of frames respectively. pps is the
position of a virtual marker on fitted SMPL-X mesh, and pjy; is the position of a virtual
marker on opensim model.

osim model
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Figure 6: Mean marker spacial error

To assess the motion reconstruction ability of our pipeline in the output synthetic videos, we
introduced the mean marker pixel error (See Figure 7). In our synthetic video generaion
pipeline,the camera’s intrinsic and extrinsic matrices are known. We projected OpenSim virtual
markers and SMPL-X virtual markers into the image pixel coordinate system. The marker
mean pixel error is calculated by the following formula:

L NemiN
Emarker2D = m ;} ]Z:O H@Mm,f —TMm,f |2 (11)

, where Z; and x); represent opensim virtual marker position and SMPL-X vritual marker
position in image coordinate system.
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Figure 7: Mean marker pixel error



2.2.1 Datasets

To include variety of motions, we derived OpenSim models and motions from AMASS dataset
[28]. We defined virtual markers on AMASS mesh vertices to obtain marker trajectories. The
joint angle sequences were computed from the marker trajectories by scaling and performing
inverse kinematics in OpenSim. 56 subjects in AMASS BMLmovi subset were selected. Each
subject has around 19 motions. The motions include running, jogging, jumping, sideways,
scratching head, throwing and catching, hand clapping, walking, checking watch, sitting down,
hand waving, crossing arms, stretching, kicking, phone talking, taking photos, pointing, vertical
jumping, crawling, crossing legs while sitting, and freestyle. These motions are used as synthetic
dataset for neural network training. This dataset is named as OpenSim Driven Animated
Human (ODAH). We validated our pipeline by assessing the quality of the meshes in ODAH.

The AMASS meshes are synthetic, and the motion capture markers and mesh obtained from
them may not necessarily accurately reflect real-world situations. To assess our synthetic video
ganeration pipeline, we added 2 real-world subjects for validation: subject 1 with a static pose
3D scan and corresponding motion capture marker data, and subject 2 with a treadmill running
motion. Subject 1 is used to assess mesh to mesh error, and subject 2 is used to evaluate 3D
and 2D marker error.

3 Results

3.1 Visual Evaluation

The ODAH dataset has diverse body shape, motions, appearances, etc. Our pipeline generated
realistic appearances for skeletal model with various body sizes. The deformation of the mesh is
reasonable when when performing different motions. And, the relative positional relationship
is biomechnically accurate visually.

3.2 Quantitative Evaluation

We measured the mesh-to-mesh RMS error on several subjects selected from the ODAH dataset.
The subjects and motions in ODAH dataset is derived from meshes in AMASS dataset. In
this case, the original AMASS meshes are the ground truth. We measured the mesh-to-mesh
RMS error on 7 subjects (index in ODAH: 1, 2, 3, 4, 6, 7, 19). Each subject has 19 motion
trails. We calculated the mesh-to-mesh RMS error for each motions, and then calculated the
mean error and standard error across all motions for each subject individually. Table 9 lists
our result. The mean mesh-to-mesh error for each subject ranges from 1.15 to 1.48cm. The
result is comparable to the accuracy of other methods such as MoSh [34]. This result indicates
that our pipeline is capable of generating reliable meshes for various body shapes and motions.

AMASS is a synthetic dataset using SMPL-X human representation. The AMASS meshes
have realistic appearance, but they cannot represent a real-world individual. To validate our
pipeline on real-world human, we compared our synthetic mesh with the 3D scan of the subject
in a static pose. We measured the mesh-to-mesh RMS error and max distance to ground truth
mesh in fullbody and several interested regions. Table 1 show the results. Figure 11 shows the
body segmentation and distance from our synthetic mesh to 3D scan. The average mesh to
mesh error of the fullbody is 0.95cm. The shoulder area exhibits both the largest mesh-to-mesh
RMS error and the max distance to the ground truth mesh. We overlaid the 3D scan with
the OpenSim skeleton and noticed that the skeleton protrudes several centimeters above the

10



Figure 8: Examples of ODAH dataset. As an example, here are several different characters
in various poses: (a) Jogging. (b) Vertical jumping. (c) Kicking. (d) Checking watch. (e)
Clapping. (f) Walking. In (g), the SMPL-X mesh is fitted well against the Opensim skeletal
model visually.

skin (See Figure 10). Our fitted mesh is generated to fit the skeletal model, leading to larger
error in shoulder area. The skeletal model is scaled and posed using OpenSim Scale Tool and
Inverse Kinematic Tool to ”best match” experimental marker data. Also, in our synthetic data
generation pipeline, we selected a set of vertices on our synthetic mesh as virtual markers to
assist fitting. In SMPL-X, vertices are discrete, and we can only choose the nearest vertex as
the virtual marker. The marker layout in SMPL-X mesh cannot perfectly reflect the actual
marker placement in real world. The marker placement error in OpenSim skeletal model and
SMPL-X mesh model could result in a misalignment between the 3D scan and the skeletal
model. The asymmetry noticed in the heatmap can also be explained by the asymmetric
marker placement in OpenSim skeletal model and SMPL-X mesh.

In figure 11, we also observed a relatively larger error in waist and thigh areas. The body
shape of these areas are not reconstructed very well compared with 3D scan. In real human
body, these areas contains more soft tissues, such as fat and muscles, resulting in a lack of bony
landmarks that can constrain body shape reconstruction. In the case of this example subject,
our synthetic mesh has larger volume in these area, which can be the cause of larger distance
to ground truth in these area. a larger distance to ground truth is observed in the area of
right knee. This indicates that there may be an inaccurate alignment between the synthetic
mesh and the skeletal model at the right knee joint, suggesting that we need a more accurate
joint regressor to represent the mapping between the OpenSim skeletal model and the SMPL-X
mesh.

11
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Figure 9: AMASS full body mesh to mesh error. For different subjects and motion, the mesh
to mesh RMS error is acceptable. We also plot the error bar for each subject. The results
indicate that the our pipeline can generate suitable mesh for different body shape and motions.

We calculated the mean marker spacial error and mean marker pixel error on a running motion
following equations 11 and 10 respectively. The subject-specific model and the motion are
recorded and validated by Rajagopal et al. [27]. The results are shown in table 2. The mean
marker spacial error is 1.38cm. The mean marker pixel error is 2.32 pixel. The resolution of the
video is 1080*720, and the mean marker pixel error in the image coordinate represent roughly
an error of 1.0cm in 3D space. The result meets the biomechanical accuracy requirement for
motion capture [35]. The result of mean marker pixel error in two views are shown in figure
13.

4 Discussion, Limitation and Future Work

Based on our results, we showed that our synthetic data generation pipeline can generate
realistic human appearance, and the skeleton-mesh registration is also realistic. The synthetic
dataset was used as the training set of a human pose estimation neural network [36], and the
network performs well in both pose estimation on real world dataset and synthetic dataset. It
further proves the practical value of our pipeline.

Our pipeline allows researchers to build synthetic video dataset from opensim models and

12



Figure 10: Errors in shoulder area (a) The skeletal model protrudes the 3D scan of the
subject. (b) The skeletal is covered by the synthetic mesh. It explains the why the distance to
ground truth is larger in shoulder area.

Region mesh to mesh error | max distance
fullbody 0.95cm 3.81cm
wrists 1.10cm 2.72cm
forearms 0.94cm 2.72cm
elbows 0.77cm 1.49cm
upper arms 1.04cm 3.81cm
shoulders 1.34cm 3.81cm
torso 0.91cm 3.13cm
pelvis 0.91cm 2.57cm
hips 0.94cm 2.19cm
thighs 0.88cm 2.46cm
knees 0.86cm 2.07cm
shanks 0.79cm 1.3cm
ankles 0.92cm 1.73cm
feet 0.95cm 2.95¢cm

Table 1: mesh reconstruction error

motions. In OpenSim models, the connections of various body parts and the angle of each joint
are defined in accordance with prior biomechanical knowledge [27]. The knowledge is based
on decades of research, and is validated by comparing simulation results with experimental
measures [21]. The model shows higher biomechanical credibility compared to other models.
Therefore, our ground truth annotations are considered more trustworthy from a biomechanical
perspective.

Our pipeline also allows researchers to create a synthetic video database using existing motion
capture data. Existing experimental marker data can be transformed into an OpenSim models
and motions using the OpenSim Inverse Kinematics and scale tool. Synthetic human motion
video can be generated by inputting OpenSim models and motions into our pipeline. It is very
convenient to modify background scene, lighting condition, and camera parameters within the
pipeline to make the video data more diverse. People can rapidly expand existing OpenSim
datasets. The data generation process is entirely on computer and requires minimal human
operation. It is both time and money friendly, comparing to creating a video dataset from
scratch. They can then train task-specific neural network based on their existing data.
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Figure 11: (a) Body segmentation. We manually segmented the human mehs into 13 areas
(wrists, forearms, elbows, upper arms, shoulders, torso, pelvis, hips, thighs, knees, shanks,
ankles, and feet) Note that hands and head are not included due to a lack of accurate model.
(b) A heat map of the distance from each vertex on SMPL-X mesh to the 3D scan.

Our pipeline has some limitations. The joint regressor used in our pipeline is trained based on
our manually fitted templates. This step lacks repeatability. The credibility of these templates
needs to be verified. Using fluoroscopy [37], X-ray [38], and MRI can help people find out
the accurate mapping between human skin and skeleton. Then we can get an accurate joint
regressor. Another limition of our pipeline, is that the SMPL-X model is still driven by its
internal armature, although we rigged it against the given OpenSim model. Vertices on the
mesh still rotate around SMPL-X joint centers instead of joints centers in the OpenSim skeletal
model. The difference in joint centers introduces errors in our synthetic mesh, especially when
a joint is located at the distal end of the body and has large joint angles. This can lead
to unrealistic relative position between the mesh and the OpenSim skeleton, such as bones
protruding through the surface of the mesh. A solution to this issues is to create a human mesh
model that has an internal biomechanical skeleton, which is our ultimate goal. It requires a
human body 3D scan dataset with a diverse range of poses for body shapes, along with accurate
mapping between the human skin and internal skeleton. There are several existing human 3D
scan datasets [29,39,40], but the mapping between skin and skeleton remains unclear. Finding
this relationship will be the key element to achieving our ultimate goal.
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mean marker spacial error | mean marker pixel error
1.38cm 2.32 pixel

Table 2: The mean marker spatial error and the mean marker pixel error for a subject per-
forming a running motion.

e OpenSim markers

virtual markers on
fitted mesh

e\ T w7

Figure 12: The mean marker pixel error in front and side views. Virtual markers on the
OpenSim model are displayed in green. Virtual markers on the fitted SMPL-X mesh are
displayed in red. Visually, the 2D marker error is very minimal in the output video.

Our synthetic dataset and pipeline has been proven effective for neural network training. How-
ever, it still remains unclear whether training solely on synthetic datasets can achieve results
comparable to training solely on real world datasets. We aim to create a real world dataset and
a synthetic dataset based on the same groups of subjects and motions, and train two identical
neural networks. Comparing their training results can further validate the concept of utilizing
synthetic datasets for neural network training.

Another question worthy of consideration is what elements in synthetic dataset contribute
more to neural network training? Is it realistic motions, texture, clothing, lighting or others
factors? We can create various synthetic datasets with different setups to find out the answer
to this question.
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Figure 13: An example of bad fitting. The calcaneus may protruding through the surface of
the mesh. The mesh and the OpenSim skeletal model are driven by different models. We
fitted the shape at the static pose, but we cannot be sure that the mesh and the skeleton align
perfectly for all poses.
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Appendix
Code

The code will be publicly availibel via: https://github.com/blyu413/Synthetic-human-motion-video-generation

Rendering

Figure 14 shows our scene and camera setup from top view.

Figure 14: Scene and camera setup from top view.
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Mesh Error

Table 3 lists the mesh to mesh RMS error for all subjects and motions.

Marker Error

The mean and max spacial marker error for each marker during running is listed in table 4. And figure
15 the marker placement

Figure 15: Marker placement in running subject.
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Marker Name

mean spacial error (cm)

max spacial error (cm)

RACR
LACR
Cr
CLAV
RLEL
RMEL
RFAradius
RFAulna
LLEL
LMEL
LFAradius
LFAulna
RASI
LASI
RPSI
LPSI
RLFC
RMFC
RLMAL
RMMAL
RCAL
RTOE
RMT5
LLFC
LMFC
LLMAL
LMMAL
LCAL
LTOE
LMT5

0.013022
0.027348
0.025297
0.009441
0.012412
0.00121
0.007793
0.012357
0.007322
0.011302
0.018406
0.005241
0.01512
0.021646
0.008419
0.019457
0.016339
0.011515
0.016734
0.019052
0.01653
0.00198
0.013954
0.004438
0.013488
0.014397
0.015748
0.023116
0.001832
0.027817

0.018833
0.031274
0.029584
0.014297
0.014601
0.003734
0.013361
0.014803
0.01092
0.017017
0.023181
0.007867
0.026761
0.031225
0.012703
0.029106
0.023291
0.018374
0.020439
0.022482
0.020117
0.004797
0.018352
0.009054
0.029218
0.020014
0.022259
0.026178
0.007516
0.029886

Table 4: Mean and max marker spacial error for each marker.
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