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Sharp growth rates for semigroups using resolvent bounds

Jan Rozendaal and Mark Veraar

Abstract. We study growth rates for strongly continuous semigroups. We prove that a growth rate for the
resolvent on imaginary lines implies a corresponding growth rate for the semigroup if either the underlying
space is a Hilbert space, or the semigroup is asymptotically analytic, or if the semigroup is positive and
the underlying space is an L p-space or a space of continuous functions. We also prove variations of the
main results on fractional domains; these are valid on more general Banach spaces. In the second part of
the article, we apply our main theorem to prove optimality in a classical example by Renardy of a perturbed
wave equation which exhibits unusual spectral behavior.

1. Introduction

Let −A be the generator of a C0-semigroup (T (t))t≥0 on a Banach space X . It can
be quite difficult to verify the assumptions of the Hille–Yosida theorem to determine
whether (T (t))t≥0 is uniformly bounded, given that bounds for all powers of the
resolvent of A are required. Hence it is of interest to determine spectral conditions that
are easier to check and which imply specific growth behavior of (T (t))t≥0, such as for
example polynomial growth. One such condition is the Kreiss resolvent assumption
from [27]: σ(A) ⊆ C+ and

‖(λ + A)−1‖ ≤ K

Re(λ)
(λ ∈ C+) (1.1)

for some K ≥ 0. It is known from [44] that (1.1) implies ‖T (t)‖ ≤ enK if X is
n-dimensional. Moreover, as was shown in [13], if X is a Hilbert space and (1.1)
holds then ‖T (t)‖ grows at most linearly in t , while there exist semigroups on general
Banach spaces which satisfy (1.1) but grow exponentially. For more on this topic see
[13,43,44] and references therein.
There are many interesting strongly continuous semigroups with a polynomial

growth rate. One important class is given by certain Schrödinger semigroups on L p-
spaces, p ∈ [1,∞], that have generator � + V for V an (unbounded) potential (see
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[9,19] and references therein). Other examples arise from (perturbed) wave equations
[18,36], delay equations [41], and operator matrices and multiplication operators [39,
Section 4.7]. In [1,7,8,12,16,45] one may find additional examples of semigroups
with interesting growth behavior.
The following is the main result of this article. It enables one to derive polynomial

growth bounds for a semigroup from resolvent estimates similar to (1.1). We note that
each eventually differentiable C0-semigroup, and in particular each analytic semi-
group, is asymptotically analytic. Also, condition (4) is satisfied if, e.g., X = Cub(Ω)

for Ω a metric space, or X = C0(Ω) for Ω a locally compact space.

THEOREM1.1. Let−A be the generator of aC0-semigroup (T (t))t≥0 on aBanach
space X such that C− ⊆ ρ(A). Assume that one of the following conditions holds:

(1) X is a Hilbert space;
(2) (T (t))t≥0 is an asymptotically analytic semigroup;
(3) X = L p(Ω) for p ∈ [1,∞) and Ω a measure space, and T (t) is a positive

operator for all t ≥ 0.
(4) X is a closed subspace of Cb(Ω), for Ω a topological space, such that either

1Ω ∈ X or X is a sublattice, and T (t) is a positive operator for all t ≥ 0.

If there exist α ∈ [0,∞) and K ≥ 1 such that

‖(λ + A)−1‖L(X) ≤ K (Re(λ)−α + 1) (λ ∈ C+), (1.2)

then there exists a C ≥ 0 such that

‖T (t)‖L(X) ≤ CK (tα + 1) (t ≥ 0). (1.3)

In fact, in the main text, we allow an arbitrary growth rate g in (1.2) and (1.3).
It follows from Example 3.5 below that, for α ∈ N, Theorem 1.1 is optimal up to
arbitrarily small polynomial loss in (1.3).

For α = 0 and X a Hilbert space, Theorem 1.1 reduces to the Gearhart–Prüss
theorem (see [1, Theorem 5.2.1]), while for α = 0 and (T (t))t≥0 a positive semigroup
on an L p-space one recovers a result by Weis (see [1, Theorem 5.3.1]).

For α ∈ (0, 1) the inequality ‖R(λ, A)‖ ≥ dist(λ, σ (A)) for λ ∈ ρ(A) shows that
C− ⊆ ρ(A), and then one can use a Neumann series argument to reduce to the case
where α = 0.

For α ≥ 1 it was previously known from [14] that (1.2) implies

‖T (t)‖L(X) ≤ CK (t2α−1 + 1) (t ≥ 0) (1.4)

whenever (T (t))t≥0 has a so-called p-integrable resolvent for some p ∈ (1,∞).
This property is satisfied by, e.g., all C0-semigroups on Hilbert spaces and analytic
semigroups on general Banach spaces. If α = 1, then (1.3) and (1.4) yield the same
conclusion. In all other cases (1.3) improves (1.4). Theorem 1.1 also seems to be
the first result of its kind for asymptotically analytic semigroups and for positive
semigroups on L p-spaces and spaces of continuous functions. Generation theorems
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for (semi)groups with polynomial growth were discussed in [12,25,34]. In contrast
to these articles we assume a priori that the relevant semigroup exists. Other results
on semigroups of polynomial growth can be found in [6,13,47]. Versions of Theorem
1.1 for Césaro-type averages have been considered in [32], where also numerous
counterexamples are presented.
It was known from [14] that on general Banach spaces (1.3) implies

‖(λ + A)−1‖L(X) ≤ C ′(Re(λ)−α−1 + 1) (λ ∈ C+)

for some C ′ ≥ 0, thus providing a partial converse to Theorem 1.1. In Theorem
3.11 and Corollary 3.13 we extend this result and obtain a full characterization of
polynomial stability of a semigroup in terms of properties of the resolvent of its
generator.
We also derive versions of Theorem 1.1 on fractional domains, where we make

other geometric assumptions on X . In particular, it is shown in Proposition 3.1 that
on a general Banach space X (1.1) implies at most linear growth for semigroup orbits
with sufficiently smooth initial values. We also point out that, by choosing α = 0
and using a scaling argument, Theorem 1.1 and other results in Sect. 3 imply various
theorems about exponential stability from [46,47,49,51].
We note here that the main result of [13] was applied to Schrödinger semigroups

in [17, Theorem 5.4] to deduce cubic growth of the semigroup, whereas Theorem 1.1
immediately yields quadratic growth.
To prove Theorem 1.1, we use the connection between stability theory and Fourier

multipliers which goes back to, e.g., [21,24,30,49] and which was renewed in [39],
following the development of a theory of operator-valued (L p, Lq) Fourier multipliers
in [38,40]. In particular, Theorem 3.2 gives a Fourier multiplier criterion for a bound as
in (1.3) to hold, and Corollary 3.13 gives a characterization of polynomial growth and
uniform boundedness of a semigroup in terms of multiplier properties of the resolvent.
Theorem 1.1 is then deduced using Plancherel’s theorem, known connections between
Fourier multipliers and analytic semigroups from [4], and a Fourier multiplier theorem
for positive kernels from Proposition 3.7.

In Sect. 4we applyTheorem1.1 to obtain optimality of the growth rate in a perturbed
wave equation which was studied by Renardy in [37] and which exhibits unusual
spectral behavior.

2. Notation and preliminaries

We denote by C+ := {λ ∈ C | Re(λ) > 0} and C− := −C+ the open complex
right and left half-planes.
Nonzero Banach spaces over the complex numbers are denoted by X and Y . The

space of bounded linear operators from X to Y is L(X,Y ), and L(X) := L(X, X).
The identity operator on X is denoted by IX , and we usually write λ for λIX when
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λ ∈ C. The domain of a closed operator A on X is D(A), a Banach space with the
norm

‖x‖D(A) := ‖x‖X + ‖Ax‖X (x ∈ D(A)).

The spectrum of A is σ(A) and the resolvent set is ρ(A) = C\σ(A). We write
R(λ, A) = (λ − A)−1 for the resolvent operator of A at λ ∈ ρ(A).
For p ∈ [1,∞] and Ω a measure space, L p(Ω; X) is the Bochner space of equiv-

alence classes of strongly measurable, p-integrable, X -valued functions on Ω . The
Hölder conjugate of p ∈ [1,∞] is p′ ∈ [1,∞] and is defined by 1 = 1

p + 1
p′ .

The indicator function of a set Ω is denoted by 1Ω . We often identify functions on
[0,∞) with their extension to R which is identically zero on (−∞, 0).
The class of X -valued Schwartz functions on R

n , n ∈ N, is denoted by S(Rn; X),
and S(Rn) := S(Rn;C). The space of continuous linear f : S(Rn) → X , the X -
valued tempered distributions, is S ′(Rn; X). The Fourier transform of f ∈ S ′(Rn; X)

is denoted by F f or ̂f . If f ∈ L1(Rn; X) then

F f (ξ) = ̂f (ξ) =
∫

Rn
e−iξ ·t f (t) dt (ξ ∈ R

n).

Let X and Y be Banach spaces. A function m : R
n → L(X,Y ) is X-strongly

measurable if ξ 
→ m(ξ)x is a strongly measurable Y -valued map for all x ∈ X . We
say that m is of moderate growth if there exist α ∈ (0,∞) and g ∈ L1(R) such that

(1 + |ξ |)−α‖m(ξ)‖L(X,Y ) ≤ g(ξ) (ξ ∈ R
n).

Let m : Rn → L(X,Y ) be an X -strongly measurable map of moderate growth. Then
Tm : S(Rn; X) → S ′(Rn; Y ),

Tm( f ) := F−1(m · ̂f ) ( f ∈ S(Rn; X)), (2.1)

is the Fourier multiplier operator associated with m. For p ∈ [1,∞) and q ∈ [1,∞]
we letMp,q(R

n;L(X,Y )) be the set of all X -stronglymeasurablem : Rn → L(X,Y )

of moderate growth such that Tm ∈ L(L p(Rn; X), Lq(Rn; Y )), with

‖m‖Mp,q (Rn;L(X,Y )) := ‖Tm‖L(L p(Rn;X),Lq (Rn;Y )).

Moreover, suppose that there exists an X -strongly measurable K : Rn → L(X,Y )

such that K (·)x ∈ L1(Rn; Y ) and m(ξ)x = F(K (·)x)(ξ) for all x ∈ X and ξ ∈ R
n .

Then for f ∈ L∞(Rn) ⊗ X an X -valued simple function, one may define

Tm( f )(t) :=
∫

Rn
K (t − s) f (s) ds (t ∈ R

n).

We write m ∈ M∞,∞(Rn;L(Y, X)) if there exists a constant C ≥ 0 such that

‖Tm( f )‖L∞(Rn;Y ) ≤ C‖ f ‖L∞(Rn;X) (2.2)
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for all such f , and then we let ‖m‖M∞,∞(Rn;L(X,Y )) be the minimal constant C in
(2.2). In this case Tm extends to a bounded operator from the closure of the X -valued
simple functions in L∞(Rn; X) to L∞(Rn; Y ). This closure is not in general equal to
L∞(Rn; X), but for n = 1 it contains all regulated functions (e.g., piecewise contin-
uous f ) that vanish at infinity (see [11, 7.6.1]), which will suffice for our purposes.
For ϕ ∈ (0, π) set

Sϕ := {z ∈ C\{0} | |arg(z)| < ϕ}.
A operator A on a Banach space X is sectorial of angle ϕ ∈ (0, π) if σ(A) ⊆ Sϕ and
if sup{‖λR(λ, A)‖L(X) | λ ∈ C\Sθ } < ∞ for all θ ∈ (ϕ, π). An operator A such that

M(A) := sup{‖λ(λ + A)−1‖L(X) | λ ∈ (0,∞)} < ∞
is sectorial of angle ϕ = π −arcsin(1/M(A)), and for each θ > π −arcsin(1/M(A))

there exists a constant Cθ ≥ 0 independent of A such that

sup{‖λR(λ, A)‖L(X) | λ ∈ C\Sθ } ≤ Cθ M(A), (2.3)

as follows from the proof of [20, Proposition 2.1.1.a]. For −A the generator of a
C0-semigroup (T (t))t≥0 ⊆ L(X) on a Banach space X , set

ω0(T ) := inf{ω ∈ R | ∃M ≥ 0 : ‖T (t)‖L(X) ≤ Meωt for all t ≥ 0}
and s(−A) := sup{Re(λ) | λ ∈ σ(−A)}. Then ω + A is a sectorial operator for
ω > ω0(T ). In particular, for γ ∈ [0,∞) the fractional domain Xγ := D((ω + A)γ )

is well defined, and up to norm equivalence, it is independent of the choice of ω.
For background knowledge on C0-semigroups and sectorial operators, we refer to
[1,12,16,20,45].

3. Polynomial growth results

Throughout this section, for −A the generator of a C0-semigroup (T (t))t≥0 on a
Banach space X , let ω, Mω ≥ 1 be such that

‖T (t)‖L(X) ≤ Mωe
t (ω−1) (t ≥ 0), (3.1)

and set M := sup{‖T (t)‖L(X) | t ∈ [0, 2]}.
3.1. General Banach spaces

We first consider semigroups on general Banach spaces. In [14] an example is
given of a semigroup generator −A which satisfies (1.1) such that the associated
semigroup grows exponentially. The following proposition shows in particular that the
Kreiss condition does imply atmost linear growth of semigroup orbits with sufficiently
smooth initial values.
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PROPOSITION 3.1. Let −A be the generator of a C0-semigroup (T (t))t≥0 on a
Banach space X such that C− ⊆ ρ(A). Suppose that there exists a nondecreasing
g : (0,∞) → (0,∞) such that

‖(λ + A)−1‖L(X) ≤ g(Re(λ)−1) (λ ∈ C+).

Then for each γ ∈ (1,∞) there exists a Cγ > 0 such that ‖T (t)‖L(Xγ ,X) ≤ Cγ g(t)+
M for all t > 0.

Proof. It suffices to prove the estimate for t ≥ 2. Let x ∈ Xγ and set y := (1+A)γ x ∈
X . For a ∈ (0, 1) the functional calculus for half-plane operators from [3] yields

e−at T (t)x = 1

2π i

∫

iR

e−zt

(1 − a + z)γ
R(z, A + a)y dz.

Hence there exists a constant C ′
γ > 0 such that, for all a ∈ (0, 1

2 ),

‖T (t)x‖X ≤ 1

2π
eat g(1/a)‖y‖X

∫

iR

1

|1 − a + z|γ |dz| ≤ C ′
γ e

at g(1/a)‖x‖Xγ .

Now set a = 1/t to conclude the proof. �

The following theorem is inspired by [30, Theorem 3.1]. It links growth rates of a
semigroup to the Fourier multiplier properties of the resolvent of its generator.

THEOREM3.2. Let−A be the generator of aC0-semigroup (T (t))t≥0 on aBanach
space X such that C− ⊆ ρ(A), and let Y ↪→ X be a continuously embedded Banach
space satisfying the following conditions:

(1) There exists a CT ≥ 0 such that T (t) ∈ L(Y ) for all t ≥ 0, with ‖T (t)‖L(Y ) ≤
CT ‖T (t)‖L(X);

(2) There exists a continuously and densely embedded Banach space Y0 ↪→ Y such
that [t 
→ e−at‖T (t)‖L(Y0,X)] ∈ L1(0,∞) for all a ∈ (0,∞).

Suppose that there exist p ∈ [1,∞], q ∈ [p,∞] and a nondecreasing g : (0,∞) →
(0,∞) such that (a + i · +A)−1 ∈ Mp,q(R;L(Y, X)) for all a ∈ (0,∞), with

‖(a + i · +A)−1‖Mp,q (R;L(Y,X)) ≤ g(1/a). (3.2)

Then ‖T (t)‖L(Y,X) ≤ Cq(g(t) + 1) for all t > 0. Here Cq = eCTCY Mω(1 + 2Mω)

for q < ∞, C∞ = eCTCY Mω(1 + ω), and CY = max(1, ‖IY ‖L(Y,X)).

Proof. Set ma(ξ) := (a + iξ + A)−1 ∈ L(Y, X) for a > 0 and ξ ∈ R. We first prove

‖ma‖Mp,∞(R;L(Y,X)) ≤ 2M(g(1/a) + CY ) (3.3)

forq < ∞. Let f ∈ S(R)⊗Y0 be such that‖ f ‖L p(R;Y ) ≤ 1.Then‖Tma ( f )‖Lq (R;X) ≤
g(1/a), so for each l ∈ Z, there exists a t ∈ [l, l + 1] such that

‖Tma ( f )(t)‖X ≤ 2g(1/a). (3.4)
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Fix an l ∈ Z and let t ∈ [l, l + 1] be such that (3.4) holds. Let τ ∈ [0, 2] and note that
(see [16, Lemma II.1.9])

e−iξτ e−aτT (τ )(a + iξ + A)−1x = (a + iξ + A)−1x −
∫ τ

0
e−(a+iξ)r T (r)x dr

for all ξ ∈ R and x ∈ X . Hence

e−aτT (τ )Tma ( f )(t) = 1

2π

∫

R

eiξ(t+τ)e−iξτ e−aτT (τ )(a + iξ + A)−1
̂f (ξ) dξ

= Tma ( f )(t + τ) −
∫ τ

0
e−ar T (r) f (t + τ − r) dr.

Rearranging terms and using (3.4) and Hölder’s inequality, we obtain

‖Tma ( f )(t + τ)‖X ≤ 2Mg(1/a) + τ 1/p
′
MCY ≤ 2M

(

g(1/a) + CY
)

.

Because τ ∈ [0, 2] and l ∈ Z are arbitrary and since Y0 ⊆ Y is dense, (3.3) follows.
This in turn yields

‖TIY+ωma ( f )‖L∞(R;X) ≤ CY ‖ f ‖L∞(R;Y ) + 2Mω(g(1/a) + CY )‖ f ‖L p(R;Y ) (3.5)

for f ∈ L∞(R; Y0) ∩ L p(R; Y0). On the other hand, for q = ∞ one has

‖TIY+ωma ( f )‖L∞(R;X) ≤ CY ‖ f ‖L∞(R;Y ) + ωg(1/a)‖ f ‖L p(R;Y ) (3.6)

for all piecewise continuous f ∈ L p(R; Y0) ∩ L∞(R; Y0) that vanish at infinity.
Let x ∈ Y0 and set f (t) := e−(ω+a)t T (t)x for t ≥ 0. It follows from C− ⊆ ρ(A)

and [t 
→ e−at T (t)x] ∈ L1([0,∞); X) that (see [39, Lemma 3.1])

F([t 
→ e−at T (t)x])(·) = (a + i · +A)−1x and F( f )(·) = (a + ω + i · +A)−1x .
(3.7)

For t > 0 one has, by the assumptions on Y ,

‖ f (t)‖Y ≤ CT ‖e−(ω+a)t T (t)‖L(X)‖x‖Y ≤ CT Mωe
−t‖x‖Y .

Hence f is piecewise continuous, vanishes at infinity, and satisfies ‖ f ‖Lr (R+;Y ) ≤
CT Mω‖x‖Y for r ∈ {p,∞}. Also, by (3.7) and the resolvent identity,

e−at T (t)x = TIY+ωma ( f )(t).

Now (3.5) yields

e−at‖T (t)x‖X ≤ CTCY Mω(1 + 2Mω)(g(1/a) + 1)‖x‖Y ,

and (3.6) implies

e−at‖T (t)x‖X ≤ CTCY Mω(1 + ω)(g(1/a) + 1)‖x‖Y .

Since Y0 ⊆ Y is dense, the proof is concluded by setting a = 1/t . �
REMARK 3.3. Note from the Proof of Theorem 3.2 that if there exist a0 ∈ (0,∞),

p, q ∈ [1,∞], and a nondecreasing g : (0,∞) → (0,∞) such that (3.2) holds for all
a ∈ (0, a0), then ‖T (t)‖L(Y,X) ≤ C(g(t) + 1) for all t > 1/a0. This will be used in
the Proof of Theorem 3.6.
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3.2. Hilbert spaces

We apply Theorem 3.2 by bounding theMp,q norm in (3.2) by a supremum norm of
(a+i ·+A)−1.Wefirst consider theHilbert space setting,where the following theorem,
in the special casewhere g is a polynomial, improves [14, Corollary 2.2].More general
g were considered in [6, Theorem 3.4], where a bound of the form ‖T (t)‖L(X) ≤
Cg(t)2

t was obtained. Note that g which grow sublinearly lead to exponentially stable
semigroups.

THEOREM 3.4. Let −A be the generator of a C0-semigroup (T (t))t≥0 on a
Hilbert space X such that C− ⊆ ρ(A). Suppose that there exists a nondecreasing
g : (0,∞) → (0,∞) such that

‖(λ + A)−1‖L(X) ≤ g(Re(λ)−1) (λ ∈ C+). (3.8)

Then ‖T (t)‖L(X) ≤ eMω(1 + 2Mω)(g(t) + 1) for all t > 0.

Proof. Condition (2) in Theorem 3.2, with Y0 = X2 and Y = X , is satisfied by
Proposition 3.1. Moreover, Plancherel’s identity yields

‖(a + i · +A)−1‖M2,2(R;L(X)) = ‖(a + i · +A)−1‖L∞(R;L(X)) ≤ g(1/a),

so that Theorem 3.2 concludes the proof. �

The following example, an extension of an example from [13], shows that for g a
polynomial, Theorem 3.4 is optimal up to arbitrarily small polynomial loss.

EXAMPLE 3.5. Fix γ ∈ (0, 1) and n ∈ N. It is shown in [13] that there exist a
Hilbert space X , a C0-semigroup (S(t))t≥0 ⊆ L(X) with bounded generator −A, and
constants C1,C2 ≥ 0 such that σ(A) ⊆ C+,

‖R(λ, A)‖L(X) ≤ C1

Re(λ)
(λ ∈ C−)

and ‖S(t)‖L(X) ≥ C2(tγ + 1) for all t ≥ 0. Let J ∈ L(Xn) be the n × n operator
matrix with Jk,k+1 = −IX for k ∈ {1, . . . , n − 1}, and Jk,l = 0 for l �= k + 1. Set
A := A(IXn + J ), and let (T (t))t≥0 ⊆ L(Xn) be the C0-semigroup generated by
−A. Then T (t) = S(t)e−t J for t ≥ 0, and ‖T (t)‖L(Xn) ≥ c(tγ+n−1 + 1) for some
c > 0 independent of t . Moreover, there exists aC ≥ 0 such that ‖(λ+A)−1‖L(Xn) ≤
C(Re(λ)−n + 1) for all λ ∈ C+.

3.3. Asymptotically analytic semigroups

For a C0-semigroup (T (t))t≥0 with generator −A on a Banach space X , the non-
analytic growth bound is

ζ(T ) := inf
{

ω ∈ R

∣

∣

∣ sup
t>0

e−ωt‖T (t) − S(t)‖ < ∞ for some S ∈ H(B(X))
}

,
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where H(B(X)) is the set of S : (0,∞) → B(X) having an exponentially bounded
analytic extension to some sector containing (0,∞). Let s∞

0 (−A) be the infimum
over all ω ∈ R for which there exists an R ∈ (0,∞) such that {η + iξ | η > ω, ξ ∈
R, |ξ | ≥ R} ⊆ ρ(−A) and

sup{‖(η + iξ + A)−1‖L(X) | η > ω, ξ ∈ R, |ξ | ≥ R} < ∞.

If ζ(T ) < 0 then (T (t))t≥0 is asymptotically analytic. Then s∞
0 (−A) < 0, and the

converse implication holds if X is a Hilbert space. It is trivial that if (T (t))t≥0 is an
analytic semigroup then ζ(T ) = −∞. In fact, ζ(T ) = −∞ if (T (t))t≥0 is eventually
differentiable. For more on asymptotically analytic semigroups see [2,4,5].

THEOREM 3.6. Let −A be the generator of an asymptotically analytic C0-
semigroup (T (t))t≥0 on a Banach space X such that C− ⊆ ρ(A). Suppose that
there exists a nondecreasing g : (0,∞) → (0,∞) such that

‖(λ + A)−1‖L(X) ≤ g(Re(λ)−1) (λ ∈ C+).

Then there exists a C ≥ 0 such that ‖T (t)‖L(X) ≤ C(g(t) + 1) for all t > 0.

Proof. By [4, Theorem 3.6 and Lemmas 3.2 and 3.5] there exist a0 > 0 and ψ ∈
C∞
c (R) such that (1 − ψ(·))(a + i · +A)−1 ∈ M1,∞(R;L(X)) for all a ∈ (0, a0),

with

C1 := sup{‖(1 − ψ(·))(a + i · +A)−1‖M1,∞(R;L(X)) | a ∈ (0, a0)} < ∞.

On the other hand, a straightforward estimate (see also [39, Proposition 3.1]) shows
that ψ(·)(a + i · +A)−1 ∈ M1,∞(R;L(X)) for all a > 0, with

‖ψ(·)(a + i · +A)−1‖M1,∞(R;L(X)) ≤ 1

2π
‖ψ(·)(a + i · +A)−1‖L1(R;L(X))

≤ C2g(1/a)

for some C2 ≥ 0 independent of a. It follows that

‖(a + i · +A)−1‖M1,∞(R;L(X)) ≤ C1 + R

2π
g(1/a) ≤ C3g(1/a) (a ∈ (0, a0)),

where C3 = C1g(1/a0)−1 +C2. Then Remark 3.3 yields a constant C ′ ≥ 0 such that
‖T (t)‖L(X) ≤ C ′(g(t)+1) for all t > 1/a0. Since sup{‖T (t)‖L(X) | t ∈ [0, 1/a0]} <

∞, this concludes the proof. �

3.4. Positive semigroups

We now consider positive C0-semigroups on various Banach lattices. To this end
we first prove a multiplier theorem for positive kernels. Part of this result is already
contained in [40, Theorem 3.24]. Recall that a subspace X of a Banach lattice Y is a
sublattice if x ∨ y, x ∧ y ∈ X for all x, y ∈ X .
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PROPOSITION 3.7. Let n ∈ N, p ∈ [1,∞], and let X be a Banach lattice and
m : Rn → L(X) an X-strongly measurable map of moderate growth. Let K : Rn →
L(X) be such that K (·)x ∈ L1(Rn; X) and m(ξ)x = F(K (·)x)(ξ) for all x ∈ X and
ξ ∈ R

n, and such that K (t) is a positive operator for all t ∈ R
n. Suppose that one of

the following conditions holds:

(1) X = L p(Ω) for Ω a measure space;
(2) p = ∞ and X is a closed subspace of Cb(Ω), for Ω a topological space, such

that either 1Ω ∈ X or X is a sublattice.

Then m ∈ Mp,p(R
n;L(X)) with

‖m‖Mp,p(Rn;L(X)) = ‖m(0)‖L(X).

Proof. It is well known that

‖m‖Mp,p(Rn;L(X)) ≥ sup
ξ∈Rn

‖m(ξ)‖L(X) ≥ ‖m(0)‖L(X)

if m ∈ Mp,p(R
n;L(X)). In the case where X = L p(Ω) for p ∈ [1,∞) it follows

from the proof of [40, Theorem 3.24] or [50, Theorem 2] that m ∈ Mp,p(R;L(X))

with the required estimate.
Next, assume that p = ∞ and let f := ∑m

k=1 1Ek⊗xk form ∈ N, E1, . . . , En ⊆ R
n

disjoint and measurable, and x1, . . . , xn ∈ X . If 1Ω ∈ X set g ≡ ‖ f ‖L∞(Rn;X), and
for X a sublattice set g = ∨1≤k≤m |xk |. In both cases g ∈ X , | f (t)| ≤ g for all t ∈ R

n ,
and ‖ f ‖L∞(Rn;X) = ‖g‖X . Then

|Tm( f )(t)| ≤
∫

Rn
|K (s) f (t − s)| ds ≤

∫

Rn
K (s)g ds = m(0)g

for all t ∈ R
n . Hence

‖Tm( f )‖L∞(Rn;X) ≤ ‖m(0)‖L(X)‖g‖X = ‖m(0)‖L(X)‖ f ‖L∞(Rn;X),

which concludes the proof. �

We now prove our main result for positive semigroups.

THEOREM 3.8. Let −A be the generator of a positive C0-semigroup (T (t))t≥0 on
a Banach lattice X such thatC− ⊆ ρ(A). Assume that one of the following conditions
holds:

(1) X = L p(Ω) for p ∈ [1,∞] and Ω a measure space;
(2) p = ∞ and X is a closed subspace of Cb(Ω), for Ω a topological space, such

that either 1Ω ∈ X or X is a sublattice.

Suppose that there exists a nondecreasing g : (0,∞) → (0,∞) such that

‖(a + A)−1‖L(X) ≤ g(1/a) (a ∈ (0,∞)). (3.9)

Then ‖T (t)‖L(X) ≤ C(g(t) + 1) for all t > 0, where C = eMω(1 + 2Mω) for (1),
and C = eMω(1 + ω) if (2) holds.
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Proof. Set p = ∞ if (2) holds. Let a > 0. We first claim that [t 
→ e−at T (t)x] ∈
L1([0,∞); X) for all x ∈ X , with

F([t 
→ e−at T (t)x])(ξ) = (a + iξ + A)−1x (ξ ∈ R).

To prove this let n ≥ 2ω and b ∈ (0,min(a, ω)), and set Bn := n2(n + A)−2 and
Kn,b(t) := e−bt T (t)Bn for t ≥ 0. Then Kn,b(t) is a positive operator for all t ≥ 0,
and Kn,b(·)x ∈ L1(R; X) with

F(Kn,b(·)x)(ξ) = (b + iξ + A)−1Bnx (ξ ∈ R),

whereweuseProposition 3.1.ByProposition 3.7, (b+i ·+A)−1Bn ∈ Mp,p(R;L(X))

with
‖(b + i · +A)−1Bn‖Mp,p(R;L(X)) ≤ 4g(1/b)M2

ω, (3.10)

where we used (3.1) to deduce that ‖n(n + A)−1‖L(X) ≤ n
n−ω+1Mω ≤ 2Mω. Let

x ∈ X and set f (t) := e−ωt T (t)x for t ≥ 0. Then f ∈ L p(R; X) ∩ L1(R; X)

is piecewise continuous and vanishes at infinity, and Kn,b ∗ f = T(b+i ·+A)−1Bn ( f ).
Moreover,

Kn,b ∗ f (t) =
∫ t

0
e−(ω−b)se−bt T (t)Bnx ds = 1 − e−(ω−b)t

ω − b
e−bt T (t)Bnx .

Since Bn → IX strongly as n → ∞, (3.10) yields a constant Cb ≥ 0 such that

e−bt‖T (t)x‖X ≤ Cb‖x‖X (t ≥ 1).

This shows that [t 
→ e−at T (t)x] ∈ L1([0,∞); X) for all x ∈ X , and the identity

F([t 
→ e−at T (t)x])(ξ) = (a + iξ + A)−1x (ξ ∈ R)

is then straightforward. This proves the claim.
Finally, since e−at T (t) is a positive operator for all t ≥ 0, Proposition 3.7 yields

(a + i · +A)−1 ∈ Mp,p(R;L(X)) with

‖(a + i · +A)−1‖Mp,p(R;L(X)) = ‖(a + A)−1‖L(X) ≤ g(1/a).

Now Theorem 3.2 concludes the proof. �

Theorem 3.8 implies in particular that ω0(T ) = s(−A) for a positive semigroup
(T (t))t≥0 on a space X as in (1) or (2). For (1) this result was originally obtained
in [48]. It is possible to extend Theorem 3.8 to fractional domains on more general
Banach lattices, by using Fourier multipliers on X -valued Besov spaces as in [39,
Theorem 5.7], but we will not pursue this matter here.
We do not know whether the growth rate in Theorem 3.8 is optimal. It follows

from [49, Example 4.4] that the positivity assumption cannot be dropped in case (1)
for p �= 2. Moreover, [1, Example 5.1.11]) shows that Theorem 3.8 is not valid on
X = L p(Ω) ∩ Lq(Ω) for Ω a measure space and p, q ∈ [1,∞) with p �= q.
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3.5. Fourier and Rademacher type

We now improve Proposition 3.1 under additional geometric assumptions on X . A
Banach space X is said to have Fourier type p ∈ [1, 2] if the Fourier transform F
is bounded from L p(R; X) into L p′

(R; X). See [22] for more on Fourier type. Note
in particular that Lu(Ω), for Ω a measure space and u ∈ [1,∞], has Fourier type
p = min(u, u′).

PROPOSITION 3.9. Let −A be the generator of a C0-semigroup (T (t))t≥0 on a
Banach space X with Fourier type p ∈ [1, 2] such that C− ⊆ ρ(A). Suppose that
there exists a nondecreasing g : (0,∞) → (0,∞) such that

‖(λ + A)−1‖L(X) ≤ g(Re(λ)−1) (λ ∈ C+).

Then for each γ ∈ ( 1p − 1
p′ ,∞) there exists a Cγ ≥ 0 such that ‖T (t)‖L(Xγ ,X) ≤

Cγ (g(t) + 1) for all t > 0. For p = 2 one may let γ = 0.

Proof. The case where p = 1 follows from Proposition 3.1. Hence we may suppose
that γ ∈ [0, 1), and we may also assume that g(s) > c for all s > 0 and some c > 0.
Then (3.1) yields

sup
λ>2ω

λ‖(λ + A + a)−1‖L(X) ≤ 2Mω ≤ 2c−1Mωg(1/a) (a > 0).

Hence A + a is an injective sectorial operator, and for θ ∈ (0, π) large enough there
exists a C1 ≥ 0 independent of a such that

sup
λ/∈Sθ

‖λR(λ, A + a)‖L(X) ≤ C1 sup
λ>0

‖λ(λ + A + a)−1‖L(X)

≤ 2C1(c
−1Mω + ω)g(1/a),

by (2.3). It now follows from the proof of [39, Proposition 3.4] applied to the operator
A + a, by keeping track of the relevant constants, that

‖(a + iξ + A)−1‖L(Xγ ,X) ≤ C2(1 + |ξ |)−γ g(1/a) (ξ ∈ R)

for some C2 ≥ 0. Hence [40, Proposition 3.9] yields constants C3,C4 ≥ 0 such that,
for r ∈ [1,∞] such that 1

r = 1
p − 1

p′ (here one can allow γ = 1
p − 1

p′ = 0 for p = 2),

‖(a + i · +A)−1‖Mp,p′ (R;L(Xγ ,X)) ≤ C3‖(a + i · +A)−1‖Lr (R;L(Xγ ,X))

≤ C4g(1/a).

Now let Y := Xγ and Y0 := X2 in Theorem 3.2, using Proposition 3.1. �

A similar result holds under type and cotype assumptions on the underlying space,
and R-boundedness assumptions on the resolvent. Let (rk)k∈N be a sequence of inde-
pendent real Rademacher variables on some probability space. Let X and Y be Banach
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spaces and T ⊆ L(X,Y ). We say that T is R-bounded if there exists a constantC ≥ 0
such that for all n ∈ N, T1, . . . , Tn ∈ T and x1, . . . , xn ∈ X one has

(

E

∥

∥

∥

n
∑

k=1

rkTkxk
∥

∥

∥

2

Y

)1/2 ≤ C
(

E

∥

∥

∥

n
∑

k=1

rk xk
∥

∥

∥

2

X

)1/2
.

The smallest such C is the R-bound of T and is denoted by R(T ). When we want to
specify the underlying spaces X and Y we write RX,Y (T ) for the R-bound of T , and
we write RX (T ) := RX,Y (T ) if X = Y .
For the definitions of and background on type and cotype, we refer to [10,23],

and for p-convexity and q-concavity of Banach lattices see [33]. Note that X =
Lu(Ω), for u ∈ [1,∞) and Ω a measure space, has type p = min(u, 2) and cotype
q = max(2, u) and is u-convex and u-concave. For such X the first statement of the
following proposition yields the same conclusion as Proposition 3.9.

PROPOSITION 3.10. Let −A be the generator of a C0-semigroup (T (t))t≥0 on a
Banach space X with type p ∈ [1, 2] and cotype q ∈ [2,∞) such that C− ⊆ ρ(A).
Suppose that there exists a nondecreasing g : (0,∞) → (0,∞) such that

‖(λ + A)−1‖L(X) ≤ g(Re(λ)−1) (λ ∈ C+).

Then for each γ ∈ ( 2p − 2
q ,∞) there exists a Cγ ≥ 0 such that ‖T (t)‖L(Xγ ,X) ≤

Cγ (g(t) + 1) for all t > 0. If

RX ({(a + iξ + A)−1 | ξ ∈ R}) ≤ g(1/a) (a ∈ (0,∞)),

then one may let γ ∈ ( 1p − 1
q ,∞). If in addition X is a p-convex and q-concave

Banach lattice then one may let γ = 1
p − 1

q .

One could also let q = ∞ in the first two statements in this proposition. However,
then Proposition 3.1 yields a stronger statement, since any Banach space has type
p = 1 and cotype q = ∞, and because a Banach space that does not have finite
cotype also does not have nontrivial type.

Proof. Wemay suppose that γ ∈ (0, 1), by Proposition 3.1 and because each 2-convex
and 2-concave Banach lattice is isomorphic to a Hilbert space, by [29]. We may also
suppose that g(s) > c for all s > 0 and some c > 0. We first prove the final two
statements.
As in the Proof of Proposition 3.9, it suffices to check the multiplier condition in

Theorem 3.2. Moreover, again using estimates in the proof of [39, Proposition 3.4]
and proceeding as in the Proof of Proposition 3.9, one obtains a C1 ≥ 0 such that

RXγ ,X ({(1 + |ξ |)γ (a + iξ + A)−1 | ξ ∈ R}) ≤ C1g(1/a) (a > 0).

Now [40, Theorems 3.18 and 3.21] yield a C2 ≥ 0 such that

‖(a + i · +A)−1‖Mp,q (R;L(Xγ ,X)) ≤ C2g(1/a) (a > 0),
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which proves the final two statements.
For the first statement we may assume that 2

p − 2
q < 1 and show that for each

γ ∈ ( 2p − 2
q , 1) there exists a C3 ≥ 0 such that

RXγ ,X ({(1+ |ξ |)γ /2(a + iξ + A)−1 | ξ ∈ R}) ≤ C3g(1/a) (a > 0), (3.11)

after which one proceeds as before. To obtain (3.11) let r ∈ [1,∞] be such that
1
r = 1

p − 1
q , and set fa(ξ) := (1 + |ξ |)γ /2(a + iξ + A)−1 for ξ ∈ R. Then fa ∈

W 1,r (R;L(Xγ , X)) by [39, Proposition 3.4], with

‖ fa‖W 1,r (R;L(Xγ ,X)) ≤ C4g(1/a)

for some C4 ≥ 0 independent of a. Now [39, Lemma 2.1] yields (3.11). �

It follows from an example due to Arendt (see [1, Example 5.1.11] or [51, Section
4]) that, already in the case where g is constant, the indices 1

p − 1
p′ and 1

p − 1
q

in Propositions 3.9 and 3.10 cannot be improved. We do not know whether it is in
general possible to let γ = 1

p − 1
p′ or γ = 1

p − 1
q in these results.

3.6. Necessary conditions

Here we provide a converse to Theorem 3.2, extending [14, Theorem 2.1]. For
simplicity we restrict to semigroups of polynomial growth and to fractional domains,
but from the proof one can derive an analogous statement for more general semigroups
and more general continuously embedded spaces.

THEOREM 3.11. Let −A be the generator of a C0-semigroup (T (t))t≥0 on a
Banach space X. Let γ ∈ [0,∞). Suppose that there exist α,C ≥ 0 such that
‖T (t)‖L(Xγ ,X) ≤ C(tα + 1) for all t ≥ 0. Then C− ⊆ ρ(A) and for all p ∈ [1,∞],
q ∈ [p,∞], and r ∈ [1,∞] such that 1

p − 1
q = 1 − 1

r , we have

‖(a + i · +A)−1‖Mp,q (R;L(Xγ ,X)) ≤ C(Cra
−α− 1

r + C ′
r a

− 1
r ) (a ∈ (0,∞)),

(3.12)

where Cr = r−α− 1
r �(α + 1)

1
r and C ′

r = r−1/r for r < ∞, and C∞ = e−ααα and
C ′∞ = 1. Moreover,

sup{‖(a + iξ + A)−1‖L(Xγ ,X) | ξ ∈ R} ≤ RXγ ,X ({(a + iξ + A)−1 | ξ ∈ R})
≤ C(�(α + 1)a−α−1 + a−1).

(3.13)

Proof. It follows by rescaling from [39, Proposition 4.19] that C− ⊆ ρ(A). We claim

‖e−a·‖T (·)‖L(Xγ ,X)‖Lr (0,∞) ≤ C(Cra
−α− 1

r + C ′
r a

− 1
r ) (a ∈ (0,∞)).

(3.14)
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To prove this claim, first consider r < ∞. Then

‖e−a·‖T (·)‖L(Xγ ,X)‖Lr (0,∞) ≤ C
(

∫ ∞

0
e−art (tα + 1)r dt

) 1
r

≤ C
((

∫ ∞

0
e−art trα dt

) 1
r +

(

∫ ∞

0
e−art dt

) 1
r
)

(3.15)

≤ C
(

(ar)−α− 1
r

(

∫ ∞

0
e−t tα dt

) 1
r + (ar)−

1
r

)

= C(Cra
−α− 1

r + C ′
r a

− 1
r ).

On the other hand, for r = ∞ a simple optimization argument shows that

sup
t≥0

e−at‖T (t)‖L(Xγ ,X) ≤ C(sup
t≥0

e−at tα + 1) = C
(

e−αααa−α + 1
)

.

Nowsetma(ξ) := (a+iξ+A)−1 fora > 0 and ξ ∈ R. For r < ∞ let f ∈ S(R)⊗X ,
and for r = ∞ let f be an X -valued simple function. Note that e−a·‖T (·)‖L(Xγ ,X) ∈
L1(R). It then follows in a straightforward manner (see [39, Lemma 3.1]) that

(a + iξ + A)−1x =
∫ ∞

0
e−t (a+iξ)T (t)x dt (x ∈ Xγ , ξ ∈ R)

and

Tma ( f ) =
∫ ∞

0
e−asT (s) f (t − s) ds (t ∈ R).

The latter equality, (3.14) andYoung’s inequality for operator-valuedkernels [1, Propo-
sition 1.3.5] yield (3.12). On the other hand, applying [28, Corollary 2.17] and (3.15)
with r = 1 to t 
→ e−at T (t) yields (3.13). �

For −A a standard n × n Jordan block acting on X = R
n , n ≥ 2, there exists a

C ≥ 0 such that

C−1(tn−1 + 1) ≤ ‖T (t)‖L(X) ≤ C(tn−1 + 1) (t ≥ 0)

and

‖(a + iξ + A)−1‖L(X) ≤ ‖(a + A)−1‖ ≤ C(a−n + a−1) (a > 0, ξ ∈ R).

This shows that (3.13) is optimal. Note that in this case R-boundedness and uniform
boundedness coincide since X is a Hilbert space.

REMARK 3.12. Onemight be tempted to think that themore restrictive R-bounded
analog of (1.2) which appears in (3.13), namely

RX ({(a + iξ + A)−1 | ξ ∈ R}) ≤ g(1/a) (a ∈ (0,∞)),

can be used to extend the conclusion of Theorem 1.1 to more general Banach spaces.
However, the example at the end of Sect. 3.4 shows that this is not the case for certain
positive semigroups on L p(Ω) ∩ Lq(Ω), for Ω a measure space.
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Theorems 3.2 and 3.11 combine to yield the following characterization of polyno-
mially growing semigroups on fractional domains.

COROLLARY 3.13. Let −A be the generator of a C0-semigroup (T (t))t≥0 on a
Banach space X such that C− ⊆ ρ(A), and let α, γ ∈ [0,∞). Then the following
conditions are equivalent:

(1) there exists a C ≥ 0 such that ‖T (t)‖L(Xγ ,X) ≤ C(tα + 1) for all t ≥ 0;
(2) there exist p, q ∈ [1,∞] and a C ′ ≥ 0 such that

‖(a + i · +A)−1‖Mp,q (R;L(Xγ ,X)) ≤ C ′(a−α + 1) (a ∈ (0,∞)). (3.16)

Proof. Theorem 3.2 contains (2)⇒(1), and (1)⇒(2) follows from Theorem 3.11 by
letting p = 1 and q = ∞. �

Note that Corollary 3.13 also characterizes semigroups which grow sublinearly,
and in particular uniformly bounded semigroups. To characterize such semigroups it
would not be possible to replace the multiplier norm in (3.16) by a supremum norm,
since ‖R(λ, A)‖L(X) ≥ dist(λ, σ (A))−1 for all λ ∈ ρ(A).

3.7. Auxiliary results

The theorems in this article also apply if A is an n × n matrix acting on X = R
n ,

n ∈ N. For example, if

‖(a + iξ + A)−1‖L(X) ≤ g(1/a) (a > 0, ξ ∈ R)

then one obtains ‖e−t A‖L(X) ≤ eMω(1 + 2Mω)(g(t) + 1) for all t > 0 if Rn is
endowed with the standard norm, or if (e−t A)t≥0 is positive and R

n is endowed with
the �p-norm, p ∈ [1,∞]. Here ω, M and Mω are as in (3.1). Note that this estimate
does not depend on n but that it does require knowledge of ω, M and Mω. If these
constants are unknown, then the argument used to prove [44, Theorem 4.8] (see also
[31]) yields the following statement, which is presumably well known to experts. For
the convenience of the reader we include the proof. Recall that it suffices to consider
the case where g grows at least linearly at infinity and g(t) = O(t) as t → 0.

PROPOSITION 3.14. Let X be an n-dimensional normed vector space, n ∈ N,
and let A ∈ L(X) be such thatC− ⊆ ρ(A). Suppose that there exists a nondecreasing
g : (0,∞) → (0,∞) such that

‖(a + iξ + A)−1‖L(X) ≤ g(1/a) (a ∈ (0,∞), ξ ∈ R).

Then ‖e−t A‖L(X) ≤ en g(t)
t for all t > 0.

Proof. Let a, t > 0 and write, as in the Proof of Proposition 3.1,

e−at T (t) = 1

2π i

∫

iR
e−zt R(z, A + a) dz.
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Let F ∈ L(X)∗ be such that ‖F‖L(X)∗ ≤ 1 and F(T (t)) = ‖T (t)‖L(X). Integration
by parts yields

e−at‖T (t)‖L(X) = 1

2π i

∫

iR
e−zt F(R(z, A + a)) dz

= 1

2π i t

∫

iR
e−zt F(R(z, A + a))′ dz.

One easily sees that z 
→ F(R(z, A+ a)) is a rational scalar-valued map with numer-
ator and denominator of degree at most n. Now [42, Lemma 2] (after composing with
a suitable Möbius transformation) shows that

e−at‖T (t)‖L(X) ≤ n

t
sup
z∈iR

|F(R(z, A + a))| ≤ ng(1/a)

t
.

Finally, set a = 1/t to conclude the proof. �

Proposition 3.14 is sharp in the case where g(t) = Kt for some K ≥ 0 and all
t > 0 (see [26,31,44]). For further discussion on this topic we refer the reader to [35],
where in particular improvements on the bounds have been obtained under additional
geometric assumptions on the norm of X .

Finally, as a corollary of Theorem 3.6we extend a theorem from [15] concerning the
growth of the Cayley transform V (A) := (1− A)(1+ A)−1 of a semigroup generator
−A on a Banach space X with −1 ∈ ρ(A). Recall from Sect. 3.3 that each eventually
differentiable semigroup, and in particular each analytic semigroup, is asymptotically
analytic. Also, if −A generates a C0-semigroup (T (t))t≥0 on a Hilbert space X such
that s∞

0 (−A) < 0, then (T (t))t≥0 is asymptotically analytic. Hence the following
result both extends and improves [15, Theorem 5.4].

COROLLARY 3.15. Let (T (t))t≥0 be an asymptotically analytic C0-semigroup
with generator −A on a Banach space X such that −1 ∈ ρ(A). Suppose that there
exist k ∈ N0 and C ≥ 0 such that

‖V (A)n‖L(X) ≤ Cnk (n ∈ N).

Then there exists a C ′ ≥ 0 such that ‖T (t)‖L(X) ≤ C ′(1 + tk+1) for all t ≥ 0.

Proof. First note that s∞
0 (−A) < 0, since (T (t))t≥0 is asymptotically analytic (see

[2, Proposition 2.4]). Now proceed as in the proof of [15, Theorem 5.4] to show that

‖(a + iξ + A)−1‖L(X) ≤ C1a
−k−1 (a > 0, ξ ∈ R)

for some C1 ≥ 0. Theorem 3.6 then concludes the proof. �

4. Application to a perturbed wave equation

In [52], using a direct sum of Jordan blocks, Zabczyk constructed a C0-semigroup
(T (t))t≥0 with generator−A on a Hilbert space such thatω0(T ) > s(−A). Onemight
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be tempted to think that this phenomenon only occurs in rather academic situations.
However, in [37, Theorem 1] Renardy gave an example of a concrete perturbed wave
equation with the same property. More precisely, the C0-group (T (t))t∈R with gen-
erator −A which arises when formulating this wave equation as an abstract Cauchy
problem has the property that s(−A) = 0 = s(A) but ω0(T ) ≥ 1

2 . In this section
we prove that ω0(T ) = 1

2 , a matter which was left open in [37]. In fact, Theorem 4.1
below yields a more precise growth bound for (T (t))t∈R.

On the two-dimensional torusT2 := [0, 2π ]2, under the usual identificationmodulo
2π , consider

⎧

⎨

⎩

utt = uxx + uyy + eiyux , t ∈ (0,∞), x, y ∈ T,

u(0, x, y) = f (x, y), ut (0, x, y) = g(x, y), x, y ∈ T,

(4.1)

for f, g ∈ L2(T2). For s ∈ R let Hs(T2) = W 2,s(T2) be the second order Sobolev
space equipped with the following convenient norm:

‖ f ‖Hs (T2) =
(

| ̂f (0)|2 +
∑

k∈Z2\{0}
|k|2s | ̂f (k)|2

)1/2
( f ∈ Hs(T2)).

Clearly, this norm is equivalent to the standard norm on Hs(T2):

‖ f ‖Hs (T2) ≤
(

∑

k∈Z2

(1 + |k|2)s | ̂f (k)|2
)1/2 ≤ Cs‖ f ‖Hs (T2) (4.2)

for some Cs ≥ 0 and all f ∈ Hs(T2). Then (4.1) can be formulated as an abstract
Cauchy problem on the Hilbert space X := H1(T2) × L2(T2):

d

dt

(

u
v

)

+ A

(

u
v

)

= 0 (4.3)

and (u(0), v(0)) = ( f, g), where A = A0 + B with D(A) = H2(T2) × H1(T2),

A0 =
(

0 −1
−� 0

)

and B =
(

0 0
−M ∂

∂x 0

)

.

Here� is theLaplacianwith D(�) = H2(T2), andM : L2(T2) → L2(T2) is given by
M f (x, y) = eiy f (x, y) for f ∈ L2(T2) and x, y ∈ T. Using Fourier series one easily
checks that−A0 generates aC0-group.More precisely, let ek(x, y) := (2π)−1eik·(x,y)
for k ∈ Z

2. Taking the discrete Fourier tranform, the system

d

dt

(

ϕ

ψ

)

+ A0

(

ϕ

ψ

)

= 0
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can be solved explicitly. Let hk := 1
2π

∫

T2 e−ik·(x,y)h(x, y) dx dy, k ∈ Z
2, be the

Fourier coefficients of h ∈ L2(T2). Then

ϕ(t) = ( f0 + tg0)e0 +
∑

k∈Z2\{0}

(

cos(|k|t) fk + sin(|k|t)
|k| gk

)

ek,

ψ(t) = g0e0 +
∑

k∈Z2\{0}
(−|k| sin(|k|t) fk + cos(|k|t)gk)ek

for t ∈ R. Set e−t A0

(

f
g

)

:=
(

ϕ(t)
ψ(t)

)

. One has

‖(ϕ(t), ψ(t))‖2X = | f0 + tg0|2 + |g0|2 +
∑

k∈Z2\{0}

(|k|2| fk |2 + |gk |2
)

≤ 2| f0|2 +
∑

k∈Z2\{0}
|k|2| fk |2 + 2|tg0|2 + |g0|2 +

∑

k∈Z2\{0}
|gk |2

≤ 2‖ f ‖2H1(T2)
+ (1 + 2t2)‖g‖2L2(T2)

≤ 2(1 + |t |)2‖( f, g)‖2X ,

so that ‖e−t A0‖L(X) ≤ √
2(1 + |t |) for all t ∈ R. One could alternatively get a norm

estimate using Theorem 3.4, but in this case one obtains only a quadratic bound.
Since ‖B‖L(X) ≤ 1, standard perturbation theory (see [16, Theorem III.1.3]) shows

that −A = −A0 − B generates a C0-group (T (t))t∈R with

‖T (t)‖L(X) ≤ √
2e(1+√

2)|t | (t ∈ R). (4.4)

It was shown in [37, Theorem 1] that σ(A) ⊆ iR and ω0(T ) ≥ 1
2 , and by the

same method one sees that ω0(S) ≥ 1
2 for (S(t))t≥0 := (T (t)−1)t≥0, the semigroup

generated by A. The next theorem is the main result of this section. It shows that these
lower bounds are optimal and in doing so significantly improves (4.4).

THEOREM 4.1. Let X and A be as before, and let (T (t))t∈R and (S(t))t∈R be
the C0-semigroups generated by −A and A, respectively. Then ω0(T ) = ω0(S) = 1

2 .
Moreover, there exists a C ≥ 0 such that

‖T (t)‖L(X) ≤ C(1 + |t |)e|t |/2 (t ∈ R).

REMARK 4.2. For each R ≥ 0 there exists a CR ≥ 0 such that ‖( 12 + iξ ±
A)−1‖L(X) ≤ CR for |ξ | ≤ R, since σ(A) ⊆ iR, and it follows from Theorem 4.1
that CR → ∞ as R → ∞. It would be interesting to study the asymptotic behavior
of ‖( 12 + iξ ± A)−1‖L(X) as |ξ | → ∞. Moreover, if ‖e−|t |/2T (t)‖L(X) were to grow
asymptotically linearly as t → ∞ then this would solve the optimality issue left open
after Theorem 3.4 and in [13].

The Proof of Theorem 4.1 relies on two lemmas. The first collects some basic
estimates.
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LEMMA 4.3. Let z ∈ C be such that |Re(z)| ≥ 1
2 , and let y ∈ R. Then

(i)
|z|2

|z2 + y2|2 ≤ 4, (i i)
y2 + 1

|z2 + y2|2 ≤ 16, (i i i)
|z|4

|z2 + y2|2 ≤ 32(y2 + 1).

Proof. Write z = a + is for a, s ∈ R with |a| ≥ 1/2. Then (i) and (ii) follow from

|z2 + y2|2 = (y2 − s2)2 + a4 + 2y2a2 + 2a2s2 ≥ max( 1
16 (1 + y2), 1

4 |z|2).
For (iii) note that

|z|4 ≤ (|z2 + y2| + y2)2 ≤ 2|z2 + y2|2 + 2y4,

divide by |z2 + y2|2, and use (ii). �

The following lemma contains the required resolvent estimates for A.

LEMMA 4.4. Let X and A be as before. Then there exists a C ≥ 0 such that for
all ε > 0, ξ ∈ R and λ = ±( 12 + ε) + iξ one has

‖(λ + A)−1‖L(X) ≤ C max(ε−1, 1).

Proof. Let λ ∈ C\iR, (u, v) ∈ D(A) and ( f, g) ∈ X be such that (λ + A)(u, v) =
( f, g). Then

λ2u − �u − eiyux = g + λ f (4.5)

in L2(T2). Since v = λu − f , it suffices to prove

‖u‖H1(T2) + ‖λu‖L2(T2) ≤ C max(1, ε−1)(‖ f ‖H1(T2) + ‖g‖L2(T2)) (4.6)

if λ = ±( 12 + ε) + iξ for ε > 0 and ξ ∈ R. Write u = ∑

(m,n)∈Z2 um,nem,n with
(um,n)m,n∈Z theFourier coefficients ofu and (em,n)m,n∈Z the normalized trigonometric
basis of L2(T2). Then (4.5) yields

(λ2 + m2 + n2)um,n = imum,n−1 + gm,n + λ fm,n (m, n ∈ Z).

Now, using that |r + s|2 ≤ (1 + δ)|r |2 + (1 + δ−1)|s|2 for any fixed δ > 0 and all
r, s ∈ C, one has

|um,n|2 ≤ (1 + δ)|mum,n−1|2
|λ2 + m2 + n2|2 + (

1 + 1

δ

)

( |gm,n|
|λ2 + m2 + n2| + |λ fm,n|

|λ2 + m2 + n2|
)2

.

(4.7)
We first bound ‖u‖H1(T2) in (4.6). From (4.7) we obtain

∑

m,n∈Z
(m2 + n2 + 1)|um,n|2 ≤ (1 + δ)

∑

m,n∈Z

m2(m2 + (n + 1)2 + 1)|um,n|2
|λ2 + m2 + (n + 1)2|2 + C2

f,g

for

C2
f,g =

(

1 + 1

δ

)

∑

k∈Z2

( (|k|2 + 1)1/2|gk |
|λ2 + |k|2| + (|k|2 + 1)1/2|λ fk |

|λ2 + |k|2|
)2

.
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Lemma 4.3 (i) and (ii) yield a C1 ≥ 0 such that C f,g ≤ C1(1 + δ−1)1/2(‖ f ‖H1 +
‖g‖L2), so that

∑

m,n∈Z
(m2+n2+1)|um,n|2

(

1−(1+δ)ym,n
) ≤ C2

1 (1+δ−1)(‖ f ‖H1 +‖g‖L2)2 (4.8)

for

ym,n := m2(m2 + (n + 1)2 + 1)

(m2 + n2 + 1)|λ2 + m2 + (n + 1)2|2 (m, n ∈ Z).

Now suppose that λ = a + iξ for ξ ∈ R and |a| > 1
2 . Then a simple minimization

argument yields

|λ2 +m2 + (n+1)2|2 = (a2 − ξ2 +m2 + (n+1)2)2 +4a2ξ2 ≥ 4a2(m2 + (n+1)2),
(4.9)

from which it follows that ym,n ≤ 1
4a2

for allm, n ∈ Z. Combining this with (4.2) and

(4.8), we obtain that for δ ∈ (0, 4a2 − 1) one has

‖u‖H1(T2) ≤ C1
2|a|(1 + δ−1)1/2

(4a2 − (1 + δ))1/2
(‖ f ‖H1(T2) + ‖g‖L2(T2)).

For ε > 0 such that |a| = 1
2 + ε one now easily obtains a C2 ≥ 0 independent of ε

such that

‖u‖H1(T2) ≤ C2 max(1, ε−1)(‖ f ‖H1(T2 + ‖g‖L2(T2)).

We now bound ‖λu‖L2(T2) in (4.6). From (4.7) one obtains

∑

m,n∈Z
|λ|2|um,n|2 ≤ (1 + δ)

∑

m,n

|λ|2m2|um,n|2
|λ2 + m2 + (n + 1)2|2 + K 2

f,g, (4.10)

where

K 2
f,g = (

1 + 1

δ

)
∑

k∈Z2

( |λ||gk |
|λ2 + |k|2| + |λ|2| fk |

|λ2 + |k|2|
)2

≤ C3(1 + δ−1)1/2(‖ f ‖H1 + ‖g‖L2)

for some C3 ≥ 0 by Lemma 4.3 (i) and (iii). Now (4.10) implies

|λ|2
∑

m,n

|um,n|2
[

1 − (1 + δ)zm,n
] ≤ C2

3 (1 + δ−1)
(

‖g‖L2 + ‖ f ‖H1

)2
,

where

zm,n := m2

|λ2 + m2 + (n + 1)2|2 ≤ 1

4a2
(m, n ∈ Z)
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by (4.9). As in the previous step this yields a constant C4 ≥ 0 such that, for ε > 0
such that |a| = 1

2 + ε,

‖λu‖H1(T2) ≤ C4 max(1, ε−1)(‖ f ‖H1(T2) + ‖g‖L2(T2)).

This completes the proof of (4.6). �

Proof of Theorem 4.1. The inequalities ω0(T ) ≥ 1
2 and ω0(S) ≥ 1

2 follow from [37].
Lemma 4.4 shows that the operators − 1

2 + A and − 1
2 − A satisfy the conditions of

Theorem 3.4 with g(t) = max(1/t, 1) for t > 0, and the latter theorem concludes the
proof. �
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