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Abstract: Convolutional neural networks (CNNs) are to be effective in many application domains,
especially in the computer vision area. In order to achieve lower latency CNN processing, and reduce
power consumption, developers are experimenting with using FPGAs to accelerate CNN processing
in several applications. Current FPGA CNN accelerators usually use the same acceleration approaches
as GPUs, where operations from different network layers are mapped to the same hardware units
working in a multiplexed manner. This will result in high flexibility in implementing different
types of CNNs; however, this will degrade the latency that accelerators can achieve. Alternatively,
we can reduce the latency of the accelerator by pipelining the processing of consecutive layers,
at the expense of more FPGA resources. The continued increase in hardware resources available
in FPGAs makes such implementations feasible for latency-critical application domains. In this
paper, we present FPQNet, a fully pipelined and quantized CNN FPGA implementation that is
channel-parallel, layer-pipelined, and network-parallel, to decrease latency and increase throughput,
combined with quantization methods to optimize hardware utilization. In addition, we optimize this
hardware architecture for the HDMI timing standard to avoid extra hardware utilization. This makes
it possible for the accelerator to handle video datasets. We present prototypes of the FPQNet CNN
network implementations on an Alpha Data 9H7 FPGA, connected with an OpenCAPI interface,
to demonstrate architecture capabilities. Results show that with a 250 MHz clock frequency, an
optimized LeNet-5 design is able to achieve latencies as low as 9.32 ps with an accuracy of 98.8% on
the MNIST dataset, making it feasible for utilization in high frame rate video processing applications.
With 10 hardware kernels working concurrently, the throughput is as high as 1108 GOPs. The
methods in this paper are suitable for many other CNNSs. Our analysis shows that the latency of
AlexNet, ZFNet, OverFeat-Fast, and OverFeat-Accurate can be as low as 69.27, 66.95, 182.98, and
132.6 ps, using the architecture introduced in this paper, respectively.

Keywords: CNNs; FPGA acceleration; HDMI; OpenCAPI; layer pipeline; channel parallelization

1. Introduction

Convolutional neural networks (CNNs) have rapidly developed as effective tools for
various computer vision tasks, such as image recognition [1], image classification [2,3],
object detection [4,5], and image enhancement [6]. Instead of depending on manual feature
engineering, as is the case in traditional machine learning algorithms, CNNs use feature-
learning from large training sets; they leverage their superior learning capabilities to
achieve accuracy that is comparable to, or even surpasses, human perception.

With the demands of low latency and low power consumption, CPU accelerators are
not capable enough to meet this demand. Graphic processing units (GPUs) have been
widely used for CNN inference by multiple researchers [7,8] because they can support
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multi-core parallel computing to achieve high throughput. However, the high power
consumption of GPUs and their relatively high latency make them unsuitable for embedded,
real-time applications. In contrast, FPGAs are good candidate accelerators in this space
because of their large number of parallel computing resources, low latency, low power
consumption, reprogrammable architectures, and high flexibility [9,10].

Current CNN FPGA accelerators are usually based on SIMD structures that are similar
to GPUs [11,12]. Within this framework, different network layer operations are mapped
to shared hardware units, allowing concurrent execution. This multiplexed execution of
operations from diverse layers not only offers adaptability but also optimizes hardware
resource utilization. However, they are unable to deliver the optimal latency or throughput
performance of any particular neural network. The emergence of flow structure accelerators
solved the problem [13,14]. Flow structures map all the network layers on-chip and
encourage a dynamic interplay between layer parallelism and layer pipelining, effectively
reducing the idle time associated with traditional processing. The flow structure reduces the
latency of the networks and enhances the throughput. However, they require much more
hardware resources, making them hard to implement on FPGAs. In this paper, we propose
multiple quantization methods and model compression methods to reduce the sizes of
the models, making the implementation of flow CNN accelerator structures more feasible.
In addition, our optimized flow structure with the HDMI timing standard helps reduce
the extra restoration of the intermediate feature maps, which helps alleviate hardware
resource constraints.

In this paper, we present FPQNet, a fully pipelined and quantized CNN, which
uses an optimized flow structure for the HDMI timing standard to implement a proof-
of-concept CNN accelerator on FPGAs and mitigate the high hardware requirements by
optimizing the amount of memory needed between different layers. We also implement
ten convolutional neural network instances in the system to increase the throughput. In
addition, we deploy several quantization methods to make their FPGA implementation
more feasible. We integrate the design using an OpenCAPI interface to ensure high
bandwidth communication with the host processor and prevent data communication
bottlenecks. In the end, we also show the results of the models implemented by FINN [15],
as well as the advantages and disadvantages of the implementation in this paper compared
with FINN implementations.

The contributions of this paper are as follows:

1.  We optimize the fully parallelized channel and fully pipelined layer structure with
the HDMI timing standard to avoid extra data transfer and save hardware resources.

2. We integrate the accelerator with a high-bandwidth OpenCAPI interface.

3. We combine several proposed quantization and model compression methods to save
hardware resources.

The rest of the paper is organized as follows. In Section 2, we provide the background
knowledge used in this paper. In Section 3, we discuss the related research work of CNN
accelerators. In Section 4, we present optimization methods to reduce the CNN hardware
utilization. Section 5 focuses on the FPGA hardware structure of each component. Section 6
provides an evaluation of the performance that this design can achieve. Section 7 concludes
this paper.

2. Background

In this section, we introduce the CNN structures, the HDMI timing standard, and the
OpenCAPI interface, which are important technologies used in this paper.

2.1. CNN Structures

In this paper, we use the LeNet-5 model to implement in hardware. This model is
widely used in many application scenarios, for example, medical diagnoses [16], signal
processing [17], agriculture [18], etc. In addition, this model can be combined with the
hardware flow structure and the full channel parallelism structure to achieve ultra-low
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latency, which is the focus of this paper. More complex models, such as those with branches
like ResNet, are unable to achieve full channel parallelism, so they require longer latency
times to process.

LeNet-5 is a basic and efficient convolutional neural network for handwritten digit
recognition and other image recognition [19]. Figure 1 shows the structure of LeNet-5.
Excluding the input layer, there are 7 layers, which are: C1 convolutional layer, S2 pooling
layer, C3 convolutional layer, S4 pooling layer, C5 convolutional layer, F6 fully connected
layer, and finally an output layer.
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Figure 1. Structure of LeNet-5.

Apart from LeNet-5, we also analyze the latency of AlexNet, ZFNet, and OverFeat.
These networks are presented next.

AlexNet [20] is a popular network due to its low top-1 error rate of 37.5% and top-5
error rate of 17% on the ImageNet dataset. Figure 2 shows the structure of AlexNet. There
are five convolutional layers in AlexNet, and three max-pooling layers are after the first,
second, and last convolutional layers. Finally, there are three fully connected layers.
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Figure 2. Structure of AlexNet.
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ZFNet [21] was the winner of the ImageNet Large Scale Visual Recognition Challenge
2013 (ILSVRC2013). It involved fine-tuning of AlexNet, which reduced the top-5 error rate
by 1.7%. The most important contribution of this network is that it proposes a method to
visualize the middle layer of convolutional neural networks. Figure 3 shows the structure
of ZFNet. The order of the layers in ZFNet is the same as in AlexNet but with an optimized
size and stride of some kernels (reduced in the first layer to 7 and 2, respectively).
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Figure 3. Structure of ZFNet.
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OverFeat [22] was the winner of the localization task in ILSVRC2013. It uses the same
network for classification, localization, and detection. There are two implementations of
OverFeat: a fast model and an accurate model. The fast model has five convolutional layers,
three max-pooling layers, and three fully connected layers, while the accurate model has
one more convolutional layer. The structures of OverFeat-Fast and OverFeat-Accurate are
shown in Figures 4 and 5.
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Figure 4. Structure of OverFeat-Fast.
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Figure 5. Structure of OverFeat-Accurate.

2.2. HDMI Timing Standard

HDMI (high-definition multimedia interface) is widely used in video transmissions for
connecting computers, monitors, and other display devices [23]. A typical timing diagram
of HDMI signals is shown in Figure 6. The three main signals used in the HDMI timing
standard are Data, HSYNC, and VSYNC. The data signal includes the various pixels of
an image, the HSYNC signal indicates the completion of displaying one row of an image
and the VSYNC signal indicates the completion of displaying one frame of an image. The
HSYNC signal has four main time periods: the horizontal synchronization, the horizontal
back porch, the horizontal active video, and the horizontal front porch. The horizontal
synchronization represents the start and the end of a given row of pixels in an image. It
marks the transition from the end of one row to the beginning of the next. The horizontal
active video represents the active video data in one row. The horizontal back porch and the
horizontal front porch are the periods of time at the end or the beginning of each horizontal
scan line, during which no active video data are transmitted. The VSYNC signal has the
same timing periods as HSYNC. In this paper, we use this timing standard for the images
and feature maps of our CNN hardware accelerator to provide a clear view of the starting
point of one image and the starting point of one new row of the image, which makes
the accelerator handle the images more efficiently. Using the HDMI timing standard also
provides the hardware accelerator with the possibility of handling video datasets.

2.3. OpenCAPI Interface

OpenCAPI is the open coherent accelerator processor interface, which implements
the connection between different components in the computing system, such as the CPU,
GPU, and accelerators. OpenCAPI can achieve high-bandwidth, low-latency data trans-
mission between processors and other accelerators. OpenCAPI can ensure coherent data
communication between processors and accelerators, reducing the additional overhead
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required to copy and manage data transfer, enabling a seamless transmission of data. In
addition, OpenCAPI provides competitive throughput and latency specs, while reducing
the implementation complexity for application developers. Due to these advantages of
OpenCAP], it has been used for high-throughput data-processing applications in the big
data analytics domain [24,25]. In this paper, we use OpenCAPI to reduce the latency of
data transfer from the host memory to the FPGA memory to improve overall performance.

VSYNC

iSYnchroi Back | s iFront
LnizationPorch Active Video iPorch

HSYNC M Il 1 [ [

J 3 iActive Videoi 3

Back Front

Synchronization Porch Porch

DATA

Data is only Valid in Active Video
Figure 6. Timing diagram showing the horizontal synchronization and vertical synchronization.

3. Related Work

The acceleration of CNN models is becoming more important due to the need to
optimize various model execution parameters, such as latency, throughput, and hard-
ware footprint.

Quantization and model compression methods are widely explored. Lin et al. [26]
introduce a fixed-point quantization technique, and they solve the problem of identi-
fying optimal fixed point bit-width allocation across deep convolution network layers.
Zhu et al. [27] present optimized binary neural networks, considering the gradient paths,
which can lead to a lower error of binary convolutional neural networks. However, these
publications do not explore the actual hardware footprint and the challenges specific to
mapping quantized networks onto FPGAs. Our paper extends the concept of quantization
to FPGA CNN accelerators. We present advanced quantization methods that are opti-
mized for FPGA platforms, enabling efficient deployment of quantized networks while
minimizing computational overhead.

Other papers have explored the implementation of convolutional neural networks
on hardware. Liu et al. [28] introduce a CNN accelerator for both standard convolu-
tion and depthwise separable convolution, which can handle network layers of different
scales. Liu et al. [29] propose an accelerator that supports hybrid CNN-SVM algorithms.
Ma et al. [30] introduce a CNN accelerator that can handle different kinds of convolutions,
especially irregular convolutions, and at the same time, they accelerate the networks by re-
ducing the number of loops in the layers. These accelerators are hardware resource-saving,
and they are flexible enough to handle different CNNs. However, their implementation can-
not handle different layers coherently, so the latency and throughput are not well optimized.
In our design, we pipeline all the layers of the network, which results in a low latency.

Cho et al. [31] propose a CNN accelerator on FPGA; this accelerator utilizes optimized
fixed-point data types and employs loop parallelization for optimization. However, their
pipeline strategy focuses on increasing throughput by pipelining different images, rather
than reducing the latency of processing a single image. In our implementation, we de-
sign a pipeline between layers, so the pipeline can benefit both throughput and latency.
Li et al. [14] implement all the layers of the whole neural network on one FPGA to increase
the throughput. However, they use buffers to store the data between layers, and this will
lead to extra pressure on resources. In our design, with the help of the HDMI timing
standard we explore in our paper, we do not need to store the results of each layer in a
buffer. Instead, we directly send the results to the next layer. In this way, we can use less
hardware resources.

OpenCAPI is a framework that can provide a high-bandwidth, low-latency connection
between the CPU and the accelerator. Multiple publications make use of OpenCAPI to
generate a high-bandwidth accelerator design. Chen et al. [32] use OpenCAPI to accelerate
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matrix multiplication operations for posit numbers. OpenCAPI is also used to accelerate
JSON parsing for big data applications [24]. Peltenburg et al. [33] propose an FPGA
accelerator with OpenCAPI to improve the speed at which data can be loaded from disk to
memory. Hoozemans et al. [25] explore the benefits of OpenCAPI for FPGA-accelerated
big data systems. In this paper, OpenCAPI is used in combination with CNN acceleration
to avoid the bottleneck of data transfer.

4. Algorithm Optimization

In this section, we discuss how to optimize the LeNet-5 network to reduce its hardware
utilization requirements and allow the hardware design to fit with the target FPGA.

4.1. Improved Model

The convolutional neural network has a large number of parameters, as well as
multiplication and addition operations. In our hardware design, all the weights need to be
stored on-chip, while all the layers are computed in a pipelined fashion, which requires a
lot of FPGA resources. To address this issue, we optimize the LeNet-5 model in terms of
reducing input size, quantizing parameters, optimizing activation function, and optimizing
output layer calculation method, while ensuring that the model accuracy reduction is
minimal.

4.1.1. Reducing Input Size

The input layer of LeNet-5 is 32 x 32, which is larger than the image size in the MNIST
dataset. This is done in an attempt to capture obvious features, such as stroke break-point,
and to ensure capturing angles in the middle of the highest level of the receptive field. This
requires adding padding to the 28 x 28 images before training the network.

In our design, we experiment with reducing the size of the input layer to match
that of the dataset images. Experiments with the MNIST dataset demonstrate that these
optimizations have a minimal impact on the final prediction accuracy of the network,
reducing it by only 0.06%. At the same time, these experiments show that this optimization
can reduce the prediction time of the baseline code by up to 16%. In addition, a smaller
input size can also save the number of parameters that we need to actively store on the
FPGA. When the input size is 32 x 32, the total number of parameters required is 69,564,
while when the input size is 28 x 28, the total number of parameters required is 50,004.
Therefore, reducing the size of the input features can both reduce parameters and save
computation time.

4.1.2. Quantizing Parameters and Data

In this paper, we consider quantizing both the parameters as well as the input
data [34-36]. The network uses a single-precision data type with 32 bits to store the
parameters, which is quite resource-consuming for hardware, whether for storage or for
multiply-add operations. Moreover, such multiply—add operations with high bit width
also pose a challenge to the timing of hardware implementation.

To quantize parameters, we follow the method in DoReFa-Net [37], as Equation (1).

- . tanh(r;) 1
7o _z*quantlzek(Z*max(\tanh(ri)D +§) -1 (1)

where 7; is the full-precision weight. Tanh is used to limit the range of weights to [—1, 1].
quantizey() is a function to quantize its input (which is in the range of [0, 1]) to its nearest
neighbor in {ﬁ li=o0,-- .2k=1} as a k-bit fixed-point in the range of [0, 1]. Finally, 7, is in
the range of [—1, 1]. In this paper, we quantize the weights to 8-bit fixed points.

For input images, the images in the MNIST dataset are grayscale pictures. The range
of input pixels is 0-255, which needs an 8-bit width. However, we can represent this image
as a binary (black and white) image, which requires only 1 bit, with a small degradation in
the prediction accuracy of only 0.15%. This can save time in transferring the image to the
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FPGA. In addition, the first convolutional layer will only need simple logic gates to process
the input instead of multipliers, thereby saving a lot of hardware resources.

In this paper, we use the intra-class variance method (Otsu method) [38] to find the
optimal threshold to transform the input image into a binary image and then use the
binarized image to perform both network training and inference. In our hardware design,
we directly input the binarized image into the hardware.

4.1.3. Improved Sigmoid Function
The activation function used by LeNet-5 is the Sigmoid function. The formula is
expressed in Equation (2) [39].
1
T 1te:

y(2) )

The reason the Sigmoid function is used here (rather than other activation functions
such as ReLU) is that the output range of the Sigmoid function is limited; it is less affected
by data noise, and it is not easy to diverge the data in the process of transmission.

However, using this function directly will cost a lot of hardware resource utilization.
According to Equation (2), we can see that the Sigmoid function is a function with an
exponential denominator. This kind of function is very difficult to calculate accurately
in hardware. Some well-known methods to reduce hardware utilization include look-up
tables among others, but these still have high hardware utilization requirements.

The Sigmoid function is essentially a binary classification function, which maps the
input to the 0-1 interval. Therefore, this can be approximated as a step function, as shown
in Equation (3).

f<x)={(1) N ©)

The improved Sigmoid function is similar to the function of the activation binarization
because they are both step functions. We use a similar method to the training binary
activation in [40] to train the improved Sigmoid function. The forward and backward
propagations are shown in Equation (4).

1 x>0
Forward.l—"(x)-{ 0 x<0

242x —-1<x<0 4)
Backward:ag(xx): 2-2x 0<x<l1

0 otherwise

The step function is simple to implement in hardware, which reduces the hardware
utilization requirements of the network, compared to the original one.

4.1.4. Output Layer Optimization

As discussed earlier, the output layer of LeNet-5 [19] uses RBF to calculate the output
classification result. Nowadays, RBF is replaced by a fully connected layer and a SoftMax
activation function in the output layers of LeNet [41,42]. The expression of the SoftMax
function is shown in Equation (5) [43].

et

=max;( —r——
y z(w:l o

) ©)

where x; is the iy, output of the last fully connected layer. M is the total number of
the outputs.

Equation (5) calculates the ratio of the exponent of a given x; to the sum of exponents
of all x;. Then y is calculated as the largest result of Equation (5), which is considered to be
the output of the network. This function is used in the training as well as inference of the
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CNNs. However, for inference-only purposes, we can simply calculate the largest element
as output. Therefore, in this paper, we directly calculate the maximum result from the final
fully connected layer and regard its index as the final network output.

4.2. Result of Algorithm Optimization

We use the batch size of 256, the learning rate of 0.001, the epoch number of 40, and an
Adam optimizer to train our model. With all the optimization methods shown in Section 4.1,
our improved LeNet-5 can achieve an accuracy of 98.8% on the MNIST dataset and an
accuracy of 90.2% on the Fashion-MNIST dataset. We also calculate the time of the inference
of the LeNet-5 on the MNIST dataset on Pytorch 0.4. The results show that the time to infer
one image before the optimization is 6.98 s, and the time to infer one image after all these
optimizations is 4.77 s. In total, 31.7% of the operation time has been reduced because of
the optimization methods we use.

5. Hardware Design

In this section, we present the overall FPGA hardware structure of FPQNet and the
hardware structure of each component. We also introduce several hardware optimization
methods.

5.1. Overall Hardware Architecture on OpenCAPI

In this paper, we present a system with ten hardware kernels implementing convolu-
tional neural networks, working together to increase the throughput. We use OpenCAPI to
transfer parameters from the host system to the hardware to be shared by all ten kernels.
Different images flow into different kernels to be processed in parallel to produce ten differ-
ent classification results for these images at the same time. Figure 7 shows the architecture
of the whole system.

Software Program OEAABEEE me Hardware Action

Kernel Kernel

Process

Kernel Kernel

I mmio | A’jXI Tite i Slave

TLx
Dix [t Kerne!
|

oshap N Kernel
library C OpehCA
T i bridge !

|
libocxl i

snap

ocxl core

AXIA-MM ) Master

erne Kernel

Kernel Kernel

Software on Host Server Acceleration on FPGA

Figure 7. The architecture of the whole system.

5.2. OpenCAPI Data Transfer Module

In this design, the parameters and images are transmitted from the host side of
OpenCAPI to the hardware side through the AXI bus. The bit width of the input bus is
512 bits, encoding data in parallel. A Serializer is used to convert the input data to 16 bits.
Afterward, there is a data converter to transfer the parameters to the target kernel. These
parameters are encoded as 8 bits. The controller in the data converter identifies each of
these parameters and transfers them separately to the target kernel. When the images are
transferred, the data converter sends the lower 0 to 9 bits of the 16-bit data to each of the 10
kernels, respectively, leaving the remaining 6 bits redundant. After inference, the result
from the hardware will be transferred to the host through OpenCAPL
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5.3. Layer-Pipeline Hardware Architecture

In our design, we first transfer the network parameters from the host system through
OpenCAPI to the hardware. Afterward, we transfer the images of the dataset to the
hardware with OpenCAPI to perform inference measurements on the network. In this
project, all the channels in each layer are fully parallelized in each kernel. In addition, we
design the first five layers to be pipelined. Since the last two layers only need to compute a
limited amount of data, the full network can have ultra-low latency inference capabilities.
The process of reading images and performing inference is coherent. The overall timing
diagram of the circuit with OpenCAPI is shown in Figure 8.
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FC5 (F5 ) (F5) (F)

FC6 (78 79 76

FC7 F7 F7 F7
Output 0] 0] (o)

Figure 8. Overall timing diagram of the circuit with OpenCAPIL.

With the OpenCAPI interface, we can read the images from the host memory to
perform inference on the FPGA directly without having to copy the images to the FPGA
memory beforehand. Otherwise, we need to wait for the copy of the images to be completed
before inference can start, which will lead to extra latency, as shown in Figure 9. In the
design, the latency of copying an image is 5.34 p1s, and the latency of the inference operations
is 6.17 ps. With OpenCAPI, directly accessing the image from the host memory results
in a total latency of 9.32 ps, rather than 11.51 ps. Therefore, without OpenCAP], the total
inference latency would increase by 23.5% as compared to our design.

CLK

RSTN |
Input C Image
Operation (___Operations )

Figure 9. Overall timing diagram of the circuit without OpenCAPIL.

The overall schematic diagram of one convolutional neural network is shown in
Figure 10. The figure shows the main hardware components of the design, which include
the OpenCAPI module used to load parameters and data, convolution modules, pooling
modules, linear mapping modules, fully connected modules, and the find max module,
to perform predictive classification. We store the parameters on-chip. The intermediate
results flow directly into the next layer and do not need to be stored.

5.4. HDMI Timing Standard

In order to ensure proper image transfer, we use the HDMI timing standard, which
requires that the pixel points be provided with both line and field synchronization, as shown
in Figure 6. This allows the network to process both images as well as video datasets.

The HDMI timing standard is also used in the feature maps of all convolution layers
and pooling layers. We generate the VSYNC and the HSYNC signals for each layer to
control each operation. When a VSYNC signal comes, we know that a new image starts, so
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we reset the circuit for a new image. An HSYNC signal indicates a change in the row. When
an HSYNC signal arrives, we store the data that follow in a new register to process them
using convolution or pooling operations. In this way, each image row is stored in different
registers, which makes it easier to start the convolution or pooling operation. The details of
the operation of the convolution and the pooling are stated in Sections 5.5 and 5.6. We only
use the VSYNC signals and do not use the HSYNC signals in fully connected layers. The
VSYNC and HSYNC signals for the output feature maps of each layer can be generated
based on the signals of the VSYNC and HSYNC of the input feature maps of the same
layer. Our design implements the four main periods in the HDMI standard for each row
(horizontal /vertical synchronization, horizontal /vertical back porch, horizontal /vertical
active video, and horizontal/vertical front porch), as discussed in Section 2.2. With the
VSYNC and HSYNC signals, we know when the next images will be transferred and when
the rows finish. The results of the former layer can directly flow into the next layer. In
contrast, machine learning synthesis frameworks, such as FINN, have to store intermediate
feature maps to extra RAMs to convert the structure of the data. With the direct flow of the
feature maps between layers, which is the simplest way of transferring data, unnecessary
data migration can be reduced. The HDMI timing standard benefits by both reducing
hardware utilization and minimizing data migration.
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Figure 10. Overall schematic diagram of the hardware design.

5.5. Convolution Layers

For convolutional layer C1, although this layer has convolution operations, it does not
need to use multipliers because the input data are binarized. Therefore, it suffices to use
simple zero-one comparisons, reassigning the weights to 0 or themselves, as well as simple
additions.

The core of this module is a parallel FIFO pipeline designed for 5 x 5 convolution
operations. Because real-time input pixels do not need to be stored, only four FIFOs are
needed to satisfy the operation as shown in Figure 11. The four FIFOs are connected end to
end. The data go into FIFO1 while going into the first group of registers. The data in the
registers are used to perform the convolution. Each FIFO holds a whole line of the image,
where data output from FIFO1 will flow into FIFO2 and the second group of the registers.
The following FIFOs follow the same flow. While the data flow through the FIFOs, the data
in the registers are multiplied with the 5 x 5 weights, and the 25 resulting products are
summed in an adder tree. The structure of the adder tree is depicted in Figure 12. Since the
input data are 0 or 1, selectors instead of multipliers are needed in this layer. There are six
modules working in parallel with different output channels in this convolution layer, such
that the results of this layer are produced at the same time. When there are only two image
output lines, the next pooling layer can start to work.

When it comes to the convolutional layer C3, there are 6 x 16 5 x 5 convolution kernels
in this layer. This layer operates by first having the 6 convolution kernels convolve with
the 6 sets of output results from the preceding layer, then adding the bias to the results; the
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16 sets of convolution kernels operate at the same time. The input of this layer is not only 1,
so the multipliers are used in this layer. There are 16 x 6 sets of multipliers that work at the

same time.
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Figure 11. The structure of the FIFOs in the convolution layers.
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Figure 12. The adder tree in the convolution layers.

5.6. Pooling Layers

This design uses mean pooling with a kernel size of 2. Therefore, FIFOs are also
needed in this layer and the principle is the same as the convolution layers, similar to the
structure shown in Figure 11. Since the output data of the optimized Sigmoid function
activation are only O or 1, the average results of this layer have only 5 possible values: 0,
0.25,0.5,0.75, and 1. The 5 values of the result are quantified by multiplying by 4, so the
outputs of the results are 0, 1, 2, 3, or 4. In this way, we only need to perform addition and
do not need to perform division for the average pooling. The pooling layer appears twice
in LeNet-5, where it is evaluated in the same way in both cases.

5.7. Fully Connected Layers and Output Layer

When it comes to the C5 layer, this layer is not a convolution operation in the strict
sense, so the C5 layer is split into two modules to operate separately. The linear map-
ping module is the first operation of the C5 layer and the other operation is the fully
connected operation.

The main function of linear mapping is to perform mapping on the 16 4 x 4 features
from the S4 layer to obtain a 1 x 256 linear feature vector. We first flatten the 4 x 4 data
vertically and then connect each group of data first. And finally, we obtain a 1 x 256 feature
vector. We use RAM to implement this.

All fully connected layers are the same in this design. Take the C5 layer as an example,
the architecture of the fully connected layer is shown in Figure 13. The 1 x 256 vectors from
the feature map multiply the 256 x 120 weights and obtain the 1 x 120 results. In this layer,
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each channel only needs one multiplier and adds each output by the multiplier in real time
to obtain the result of the first column. Meanwhile, the 120 multipliers of each channel
work at the same time to obtain the final 120 results. The subsequent two fully connected
layers are the same as this layer.

Input

Weights D Dﬁi% G Output

00%0 © R O

1120 ':> 1120

@
00.0- ¢ ¢ @8 O

Figure 13. The architecture of the fully connected layer.

As explained in Section 4.1.4, the softmax operation uses a comparator to compare
each result and find the maximum result from the outputs of the last fully connected layer.
While obtaining the maximum value, the addresses of the data are also marked, which are
the final prediction results of the whole design.

6. Experimental Results

In this section, we show our hardware experimental results for our FPQNet imple-
mentation. We also compare our results with other solutions and discuss the advantages
and disadvantages of our design. Furthermore, we analyze the latency of other popular
convolutional neural networks. The code for this work can only be used for this specific
LeNet-5 network. However, the same design approach can be used to implement the
proposed hardware techniques for other networks.

6.1. Measurement Results

The experimental setup used in this paper to perform the measurements consists
of an Inspur FP5290G2 system with a dual-socket POWER9 Lagrange 22-core CPU and
OpenCAPI interface to an Aphadata ADM-PCIE-9H7 FPGA board, with a Xilinx XCVU37P
chip. Our design is implemented via Verilog hardware design language rather than HLS
tools. Our network design runs at a 250 MHz clock frequency. We also use the MNIST
dataset for inference measurements.

Measurements show that our design can achieve an ultra-low latency inference time
for each MNIST image that is as low as 9.32 ps. Due to the predictable operation of the
FPGA designs, all MNIST images run at that exact timing. This indicates that it is possible
to use such FPGA ML designs to perform inference in applications that require real-time
inference capabilities as well as predictable timing.

The latency to transfer the parameters from CPU to FPGA is 222 ps. However, we
only need to transfer the weights once and then can infer multiple images continuously.
Therefore, this transfer of parameters is not part of the latency-critical path. When transfer-
ring the images and transferring the results back to the CPU for multiple kernels, the high
bandwidth of OpenCAPI can avoid a bottleneck.

The hardware utilization values of the FPGA resources for the full designs of one
network and ten parallel networks are listed in Table 1. These numbers include the full
hardware, including the one or ten convolutional neural network designs, as well as the
OpenCAPI interfacing infrastructure. The table shows that the utilization values of the
DSPs, BRAMs, and LUTs for one network are 28.97%, 16.91%, and 4.09%. The utilization
values of the DSPs, BRAMs, and LUTs for ten networks are 100%, 72.67%, and 81.4%,
respectively. One network only uses about one-tenth of the resources on FPGA and
multiple networks make almost full use of the resources on FPGA.

As discussed earlier in the paper, the design can achieve an accuracy of 98.8%.



Electronics 2023, 12, 4085

13 0of 19

To calculate the throughput, we need to calculate the number of floating-point oper-
ations (FLOPs) used by the network first. Now, we calculate the FLOPs of one LeNet-5
convolutional neural network. For convolutional layers, pooling layers, and fully con-
nected layers, we follow the method in [44]. The FLOP numbers for convolutional layers,
pooling layers, and fully connected layers are 940,416, 4480, and 83,280, respectively. For
the optimized Sigmoid function, each input pixel only needs to undergo one operation,
making the total FLOPs for all the Sigmoid functions 4684. For the max operation in the
output layer, each input pixel needs to undergo one operation; therefore, the FLOPs of this
operation is 10. In total, the number of FLOPs of all operations in one network is 1,032,870,
which gives a throughput of 1,032,870/9.32 us = 110.8 GOPs. Ten neural networks working
together make the overall throughput 1108 GOPs. This is the highest throughput reported
for accelerating LeNet on FPGAs.

Table 1. Utilization of FPGA resources for the full design.

Resource Available Used Utilization Used Utilization
One Net Ten Nets

LUTs 1,303,680 53,292 4.09% 1,061,205 81.40%

FFs 2,607,360 94,470 3.62% 1,131,786 43.41%

BRAMs 2016 341 16.91% 1465 72.67%

DSPs 9024 2614 28.97% 9024 100%

From the Vivado report, the power consumption of one LeNet implementation is 420 W.
The static power consumption is 37.0 W, which is 9% of the total power consumption and
the dynamic power consumption is 383 W, which is 91% of the total power consumption.

6.2. Comparison with Other Solutions

In Table 2, we compare our FPQNet implementation with former implementations of
the LeNet network on FPGAs. The accuracy results are all based on inference measurement
on the MNIST dataset.

Compared to [45], the latency of 9.32 ps in our implementation is about half of the
latency of 18.97 us in the cited paper. Considering that the frequency of the cited paper is
lower than ours, we run a simulation with a reduced frequency equal to that in [45]. This
increases our latency to 15.5 ps, which is 18.1% lower than the latency in [45]. Another
difference between the two implementations is that the cited paper uses the original dataset
image size while we optimize the image by reducing its size. On the other hand, our design
is targeted toward video processing; therefore, our design includes the horizontal/vertical
back/front porch signals for the images, which is not included in [45]. Due to these
differences, it is not possible to provide a direct fair comparison between the latency of the
two designs. In addition, our accuracy is 0.4% higher than the accuracy in [45]. However,
our implementation uses 1.4 times more LUTs, 12.2 times more DSPs, and 2.8 times more
BRAMs. Compared to [46], our latency is about 1000 times lower and our throughput is
264 times higher, despite the fact that they use higher frequencies. At the same time, our
accuracy is 1.74% higher than the accuracy in [46]. Reference [47] shows a 53 times higher
latency and a 2.5 times lower throughput than our implementation. At the same time, our
implementation uses 5.9 times more LUTs and 2.9 times more DSPs but about half of the
BRAMSs compared to [47].

The table shows that our FPQNet design is able to achieve the lowest latency of
all available published solutions, scoring less than half of the lowest latency of any of
the alternatives. With 10 networks working together, the overall throughput achieved is
almost 25 times higher than other reported designs. However, this comes at the expense of
high resource utilization. The resources are used to enable the parallelization needed to
achieve lower latency and higher throughput. Still, for modern-day FPGAs, the continued
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increase in available resources makes such a trade-off viable. In terms of accuracy, with our
optimized methods, our design has the highest accuracy of 98.8% among these designs.

Table 2. Comparison with other solutions.

Reference [45] [46] [47] This Work

One Net Ten Nets
FPGA platform Zynq-7020 PYNQ Virtex7 485t Alpha Data 9H7 Alpha Data 9H7
Layers 6 7 7 7 7
Frequency (MHz) 150 650 - 250 250
Data precision (bit) 2 - 8 8 8
Latency (ns) 18.97 9100 490 9.32 9.32
Accuracy 98.4% 97.06% 98.16% 98.8% 98.8%
Throughput (GOPs) - 0.42 449 110.8 1108
LUTs 36,798 - 9071 53,292 1061 k
DSPs 214 - 916 2614 9024
BRAMs 123 - 619 341 1465

6.3. Comparison with FINN Solutions

We compare the results in this paper with the results of the same CNN model imple-
mented by FINN [15,48]. We train the same LeNet-5 model with Brevitas. We use the batch
size of 256, the learning rate of 0.001, the epoch number of 40, and an Adam optimizer
to train the model. The pooling layer is changed from the average pooling layer to the
max-pooling layer because we are not able to obtain a good accuracy result using the
average pooling layer. After training, we use FINN 0.8.1 to implement the model as well as
Alveo U200 FPGA to implement the model. The comparison of the results of the model
implemented by FINN and the manually implemented model in this paper is shown in
Table 3.

The table shows that—with the same data precision as the LeNet-5 model implemented
manually in this paper, which is 8 bits for the weights and 8 bits for the activations—the
FINN implementation shows the same accuracy result. The lowest latency that FINN
models can achieve is 230.38 ps, which is 24.7x higher compared to the latency of 9.32 s
in our implementation. The LUT utilization of this FINN model is 66,931, which is 25.6%
higher than our implementation. The BRAM utilization of the FINN implementation is 32,
which is 9.4% of our implementation, and our implementation utilizes 2614 DSPs, whereas
the FINN implementation does not employ DSPs.

Table 3. Comparison of our LeNet-5 implementation with FINN.

FINN This Paper
Model LeNet-5 LeNet-5
Weight precision (bit) 8 8
Activation precision (bit) 8 8
FPGA platform Alveo U200 Alpha Data 9H7
Frequency (MHz) 250 250
Accuracy 98.8% 98.8%
Throughput 17,193.95 fps 110.8 GOPs
Latency (ps) 230.38 9.32
BRAM utilization 32 341
LUT utilization 66,931 53,292
DSP utilization 0 2614

We also implement the LeNet-5 models with other bit widths in FINN. The results of
the FINN implementations of models with other bit widths of data precision are also shown
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in Table 4. The lowest latency and the highest throughput that the FINN implementations
can achieve are similar. When increasing the bit width of the data precision, the accuracy of
the models increases, while the resource utilization of the implementation also increases.

Table 4. FINN results for LeNet-5 models implemented using various other bit widths.

Model LeNet-5 LeNet-5 LeNet-5 LeNet-5
Weight precision (bit) 8 8 2 2
Activation precision (bit) 2 1 2 1

FPGA platform Alveo U200  Alveo U200  Alveo U200  Alveo U200
Frequency (MHz) 250 250 250 250
Accuracy 98.6% 98.2% 98.6% 97.5%
Throughput (fps) 17,193.95 17,193.95 17,193.95 17,193.95
Latency (us) 231.02 231.02 231.02 231.02
BRAM utilization 32 32 10 10

LUT utilization 5267 4754 3145 2811

Here, we further explore the reason for the large gap in latency between the results
of FINN and the results of our implementation. We look into the latency results of each
layer of the CNN model of FINN. The latency of each layer is shown in Table 5. The
latency is presented by the number of clock cycles used. As shown in the table, the
bottleneck of the design is the first ConvolutionIlnputGenerator layer, which takes 14,540
clock cycles. The main operation of FINN is based on matrix-vector multiplications. FINN
maps each layer of a CNN to a dedicated processing engine named the matrix—vector—
threshold unit (MVTU). Every convolutional layer is converted into a sliding window unit
(SWU), which generates the image matrix from incoming feature maps, and an MVTU. The
ConvolutionInputGenerator in Table 5 is the SWU. The time that FINN needs to generate
the input features into the matrix, which is needed for the next step, is long, because it needs
to copy data multiple times, and it cannot be parallel when the input only has one channel.
However, our design in this paper directly uses FIFOs to store data for the convolution
operation, such that data can stream in one by one, and the convolution operation can start
and continue to work as long as the kernel size line data are streamed in. In this way, our
design does not have the same bottleneck as FINN.

Table 5. The latency of each layer in the FINN-generated model is presented in Table 3.

Layer Cycle
ConvolutionInputGenerator_0 14,540
MatrixVectorActivation_0 3456
StreamingMaxPool_Batch_0 720
ConvolutionInputGenerator_1 9960
MatrixVectorActivation_1 10,240
StreamingMaxPool_Batch_1 80
MatrixVectorActivation_2 7680
MatrixVectorActivation_3 10,080
MatrixVectorActivation_4 840

However, FINN is an automated design framework, which requires less effort to
implement a neural network. As an example, for the LeNet-5 designs in this paper, it
took us two months to implement the network manually, as compared with two days to
implement in FINN.

In conclusion, the results show that FINN can implement a model efficiently and
flexibly, and FINN can achieve a trade-off between latency and resource utilization. How-
ever, FINN does not focus on implementing extremely low latency implementations. In
situations that have strict latency requirements but have sufficient hardware resources and
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enough human costs, the implementation strategy represented in this paper works better
than the FINN implementations.

6.4. Latency Analysis for Other CNNs

The architecture we show in this paper can be used in many other convolutional neural
networks, such as AlexNet, ZFNet, and OverFeat. In this section, we estimate the latency
we expect to achieve by implementing our architecture to several other networks. Due to
the labor-intensive nature of the hardware implementation, we focus on estimating the
impact of our architecture rather than on a detailed hardware implementation. As shown
in Figure 8, we can calculate how much time is needed in each layer before the next layer
can start. The formula of the latency of the convolutional layers is shown in Equation (6),
where K is the size of the convolutional kernel, W is the width of the input map, and T
is the clock period. Equation (7) shows the latency of the fully connected layers and the
output layers, where I is the input length. The total latency is shown in Equation (8), where
M is the number of convolutional layers and N is the number of fully connected layers and
output layers. With a frequency of 250 MHz and using the ImageNet dataset, the times
used in each layer of AlexNet, ZFNet, and OverFeat are shown in Table 6.

T.=KWT (6)
Ty =IT )
M N
Ttotal = Zi:l Tc_i + Zi:l Tfﬁi (8)

With our structure, the theoretical latency values of AlexNet, ZFNet, OverFeat-Fast,
and OverFeat-Accurate are 69.27 ps, 66.95 ps, 182.98 ps, and 132.6 ps. The longest period of
time is spent in fully connected layer 2 and fully connected layer 3. This is because these
fully connected layers cannot operate in parallel, and they have to wait for the former layer
to finish.

Table 6. Latency analysis for each layer in AlexNet, ZFNet, and OverFeat.

Latency (us) Convl Pool2 Conv3 Pool4 Conv5 Conve Conv7
AlexNet 9.86 0.66 0.54 0.32 0.16 0.16 -
ZFNet 6.27 1.32 1.10 0.31 0.16 0.16 -
OverFeat-Fast 10.16 3.84 0.48 0.10 0.14 0.14 -
OverFeat-Accurate 6.19 1.30 1.01 0.36 0.18 0.18 0.18
Latency (us) Conv8 Pool9 FC1 FC2 FC3 Output  Total
AlexNet 0.16 0.16 0.07 36.86 16.38 4.00 69.27
ZFNet 0.16 0.16 0.07 36.86 16.38 4.00 66.95
OverFeat-Fast 0.14 0.10 0.04 14746  16.38 4.00 182.98

OverFeat-Accurate 0.18 0.18 0.06 102.40 16.38 4.00 132.6

7. Conclusions

In this paper, we present FPQNet, an ultra-low latency hardware implementation
for inference on the LeNet-5 network on FPGAs. In this design, multiple hardware ker-
nels work concurrently to gain high throughput. The design uses several optimization
techniques for most network layers, meant to reduce hardware design complexity and
improve latency. Furthermore, a pipelining structure is used between most layers to enable
the parallel processing of multiple layers. Pipeline optimization with the HDMI timing
standard is used to reduce the extra RAM needed between subsequent layers. We also show
several quantization methods as well as a simplified hardware-friendly implementation of
the Sigmoid function. We demonstrate these methods to implement a hardware design of
LeNet-5 for inference on both images as well as video datasets, and compare its latency and
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accuracy to alternative published solutions. The implementation leverages the OpenCAPI
data interface on a POWERSY system to an Alpha Data 9H7 FPGA. For the MNIST dataset,
the latency of each image is measured to be as low as 9.32 ps, with an accuracy of 98.8% with
a clock frequency of 250 MHz. With ten hardware kernels working concurrently, the overall
throughput is 1108 GOPs. The methods proposed in this paper can also be used to improve
the performances of other convolutional neural networks. The code for our implementation
is open source and publicly available on GitHub at https://github.com/MF]I/FPQNet
(accessed on 18 August 2023).
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