
Comparative Analysis of Linking Efficiency
Evaluating LLD and mold through Insights into Performance Metrics and Architectural Differences in

Software Linking Processes

Anna Szymkowiak1

Supervisors: Soham Chakraborty1, Dennis Sprokholt1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Anna Szymkowiak
Final project course: CSE3000 Research Project
Thesis committee: Soham Chakraborty, Dennis Sprokholt, Burcu Ozkan

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
This study examines the differences between two
modern linkers, LLD and mold, focusing on their
efficiency during software development. Although
the linking process, which combines multiple ob-
ject files into a single executable, typically occu-
pies a minor fraction of the total compilation time,
optimizing it can significantly enhance the overall
build efficiency - particularly during the develop-
ment of large-scale projects. The research aims
to determine codebase-level differences between
these linkers and assess their performance across
various metrics, including linking time, memory
usage, and the time spent on different phases of the
linking process, using CMake and Bitcoin Core
as benchmarks. Furthermore, the study extends to
examining the executables produced by both link-
ers from the HDiffPatch project, comparing their
execution times and sizes. The findings consis-
tently show that mold outperforms LLD in terms of
speed and efficiency, which results from its com-
prehensive utilization of parallel processing tech-
niques. Nonetheless, LLD offers broader applica-
bility by supporting a wider range of file formats
and being suitable for both embedded and kernel
programming. Therefore, the selection of a linker
ultimately depends on the specific requirements of
the project and the characteristics of the target ma-
chine.

1 Introduction
In software development, writing source code is not suffi-
cient by itself; it must be translated into machine code for a
computer to execute it. This process requires a compiler [1].
The compilation process primarily involves two main phases:
compiling source files into object files and then linking them
into a single executable.

Linking is particularly valuable because it enables develop-
ers to split the code into multiple files across a project, avoid-
ing the cumbersome and unmanageable nature of placing ev-
erything into a single file [2]. Additionally, it allows for in-
cremental compilation, where only modified files are recom-
piled, and the application is simply relinked, thus speeding
up the development process. Although linking time typically
represents a minor part of the overall compilation process
(less than 1% as demonstrated in the experiment described
in Appendix A), it remains an important aspect in the context
of software development, during which it occurs repeatedly.
Moreover, the linking stage can become particularly time-
consuming when managing a large number of object files.
Consequently, improving the efficiency of this phase could
reduce the overall build time for large projects that require
extended compilation time.

There are several well-known linkers for programming
languages such as C, C++, and Rust, including GNU ld1,

1https://ftp.gnu.org/old-gnu/Manuals/ld-2.9.1/html mono/ld.h
tml

GNU gold2, LLVM LLD3, and mold4. Among these, mold
has proven to be the fastest, being 23 times faster than ld
when linking MySQL 8.3 and four times faster than LLD
for Chromium 124 [3]. Additionally, Rui Ueyama, who
developed both LLD and mold, has declared that mold is
production-ready for userland programs, though it is not yet
suitable for kernel or embedded programming [4].

The existing research on software linking predominantly
concentrates on specific aspects rather than exploring the core
mechanics of linkers. Studies such as those by [5] and [6] ex-
plore the integration of static and dynamic linking strategies,
aiming to utilize the strengths of each method while mitigat-
ing their respective limitations. Additionally, research like [7]
has provided valuable insights into the ELF format and de-
veloped specialized linkers tailored to its specifications. The
work in [8] explores the methods to optimize the performance
of shared libraries, seeking a balance between speed and flex-
ibility.

Furthermore, extensive research has been conducted that
directly targets the compilation process and compares it
across various compilers. For instance, the study in [9] ex-
amines the performance of different compilers such as Clang,
G++, and Intel C++ Compiler. This research benchmarks the
compilers in terms of execution speeds of compiled C/C++
code, that incorporates OpenMP 4.x for parallelization and
vectorization, as well as the compilation time for projects
with intensive C++ template usage. Similarly, the research
in [10] benchmarks the IPS, GNU, and LLVM compilers, fo-
cusing on metrics such as executable sizes, and overall build
times.

Despite these contributions, there is a notable gap in di-
rect academic research of existing linkers, with no compre-
hensive analysis aimed at fully understanding and enhancing
their performance and examining codebases directly. Conse-
quently, this study aims to fill this gap by scientifically com-
paring two contemporary linkers.

This research seeks to explore the current state of the link-
ing process, bringing the topic of linking into academic dis-
cussions. The goal is to enhance the visibility of linkers in
the field of computer science and to contribute to the develop-
ment of more efficient linking technologies. Despite the criti-
cal role that linking plays in software development, it remains
a relatively underexplored area in academic research, as ev-
idenced by the disparity in research output. A search con-
ducted on Scopus5 within the Computer Science subject area
and limited to publications in English demonstrates a signif-
icant difference in the number of results. A query for “com-
piler” produces approximately 35,000 results, while “assem-
bler” (another substage of the compilation process) returns
over 2,100 results. In contrast, a query for “linker” yields
around 1,800 results as of June 19, 2024. Importantly, this
figure is an overestimate as it includes unrelated results from
cheminformatics or molecular sciences, indicating a narrower
academic focus on linkers in the context of computer science.

2https://en.wikipedia.org/wiki/Gold (linker)
3https://lld.llvm.org/
4https://github.com/rui314/mold
5https://www.scopus.com/search/form.uri?display=basic

https://ftp.gnu.org/old-gnu/Manuals/ld-2.9.1/html_mono/ld.html
https://ftp.gnu.org/old-gnu/Manuals/ld-2.9.1/html_mono/ld.html
https://en.wikipedia.org/wiki/Gold_(linker)
https://lld.llvm.org/
https://github.com/rui314/mold
https://www.scopus.com/search/form.uri?display=basic


Thus, this study will delve into a comparative analysis of
LLD and mold, examining their architectures and profiling
their performance across different projects. The study as-
sesses various metrics, including linking time and memory
usage, and compares the executables produced by each linker.
LLDwas selected for this comparison as it is recognized as the
second fastest linker, according to [3].

Specifically, the main research question this paper aims to
answer is: “Why is LLD not as fast as mold?”. To address
this question, we formulated the following sub-questions:

• What does the linking process look like in LLD and in
mold and what are the differences?

• What are the differences in architecture between LLD
and mold?

• What factors contribute to mold’s performance?

The remainder of this paper is structured as follows: Sec-
tion 2 elaborates on the linking process and Section 3 outlines
the methodologies employed to address the research ques-
tions. While Section 4 examines the linking processes and
architectures of LLD and mold, Section 5 presents the con-
ducted benchmarks and discusses the results. Section 6 ad-
dresses the reproducibility of the methods used and Section 7
analyses the findings. Finally, Section 8 concludes the paper
and suggests directions for future research.

2 Background
This section provides essential background on the linking
process. Subsection 2.1 outlines linking’s role within the
compilation process and its general steps. Subsection 2.2 cov-
ers the standard format for object files, and Subsection 2.3
explains the differences between static and dynamic linking.
Finally, Subsection 2.4 discusses the function and purpose of
linker scripts.

2.1 The Linking Process
To translate the human-readable code into machine code, it
must go through the compilation process [11]. The compi-
lation process involves several distinct steps, as depicted in
Figure 1. Initially, the source code undergoes preprocessing
to prepare it for the compiler. Such prepared code is then
compiled into assembly language, which is subsequently con-
verted by an assembler into object files containing raw ma-
chine language instructions. Finally, a linker combines these
object files into a single executable program. It is important to
note that this process varies with different programming lan-
guages. For example, Java code is compiled into Java byte-
code [11]. However, this research will focus on the described
compilation flow for languages like C and C++.

The purpose of the linking process is to combine all object
files into a single executable that can be run by a computer.
This process typically unfolds as outlined in [2]:

1. The linker scans the files specified in the command line
from left to right:

• For object files, it enforces the insertion of symbols
(names or identifiers of variables, functions, or data

Figure 1: The compiler toolchain [11]

structures) into the global set of symbols. If a sym-
bol already exists, it merges them, which may lead
to an immediate resolution of the symbol.

• For archive files, the linker checks whether any of
the archive’s symbols resolve an undefined symbol
already in the set. If so, it resolves the symbol and
includes the archive in the final set of files that will
form the executable.

• For dynamic libraries, the linker notes references to
symbols within these libraries but does not incorpo-
rate the library code into the output executable.

2. The linker performs a check for any remaining undefined
symbols. If any are found, it throws an error; otherwise,
it proceeds.

3. Merges all code and data sections, except sections from
shared libraries.

4. Assigns runtime addresses to all static symbols and up-
dates all symbol references so they point to their correct
runtime addresses. References to symbols within dy-
namic libraries remain as those will be resolved later.

5. Outputs the final executable.

It is important to note that in this flow, which is imple-
mented by traditional linkers as ld, the order in which files
are specified as arguments matters. As the linker traverses the
files from left to right, if an object file references a symbol in
a library that appears earlier in the command line, that symbol
will not be resolved.

2.2 The ELF Format
Typically, object files come in various formats depending
on the operating system. For instance, Windows utilizes
the Portable Executable (PE) format, macOS employs the
Mach-O format, while Unix systems use the Executable and
Linkable Format (ELF) [2]. This research paper will specifi-
cally focus on the ELF format.

An ELF file is generally composed of four main compo-
nents: the Executable Header, Program Headers (optional),
Sections, and Section Headers (optional), as illustrated in Ta-
ble 1 [12].

The Executable Header indicates that it is an ELF file,
specifies the type of ELF file, and points to the locations of
other components. Section Headers locate specific sections
within the file. While they provide the section view of the



Executable header

Program headers

Sections

Section headers

Table 1: Overview of the ELF structure

file, Program Headers provide a segment view of the file [12].
Lastly, the ELF file includes multiple types of sections, such
as .text, .data, .symtab, .rel.*, and .rela.*.

• .text - contains the compiled code of the program.

• .data - holds initialized variables.

• .symtab - provides a symbol table with symbols that
are defined and referenced in the program.

• .rel.* / .rela.* - contains relocation tables with en-
tries detailing specific addresses where relocation needs
to be applied (relocation specifies where the linker must
update the location with the actual address of the sym-
bol).

2.3 Static and Dynamic Linking
There are two primary types of linking, as described in [2]:
static linking and dynamic linking. Static linking occurs dur-
ing the compile time and is part of the linking stage to pro-
duce an executable. It incorporates static libraries, known
as archives (the .a file extension). An archive is essentially
a collection of object files that are not automatically linked;
they only become linked when the linker identifies a reference
from other object files being compiled. Conversely, dynamic
linking takes place at run time. This method allows some
symbols to remain undefined when the program is compiled,
with these symbols being resolved only during the run-time
of the program [6].

Although static linking is conceptually simpler than dy-
namic linking, it generally results in larger executables. This
is because each program must contain its own copy of any
linked libraries. On the other hand, dynamic linking permits
the storage of a single copy of a library on disk, which can be
shared among multiple programs [6]. By deferring symbol
resolution until runtime, dynamic linking not only reduces
the size of the executable but also simplifies the process of
updating libraries. With dynamic linking, there is no need to
relink the entire program when a library is updated. However,
dynamic linking can lead to “DLL Hell”, where the proper
functioning of an executable depends on having the correct
versions of libraries [6]. Given these differences, it is im-
portant to note that this paper specifically focuses on static
linking.

2.4 Linker Scripts
Most linkers incorporate a scripting language that plays a cru-
cial role in specifying the memory layout of the final exe-
cutable by dictating the allocation of input files’ sections in
the output file [7]. The linker script language also determines

the program’s entry point and specifies the regions of mem-
ory, including their flags and alignment.

A linker script is always in use; if the user does not pro-
vide one explicitly, a default script is employed. The ability
to use a linker script provides programmers with significant
control over the final executable, a feature that proves partic-
ularly beneficial in embedded programming where resources
are limited and precise control over memory layout and spe-
cific management of various code and data sections are criti-
cal due to hardware constraints [13].

3 Methodology
This study conducts a comparative analysis of two prominent
linkers, LLD and mold. It aims to elucidate their architectures
and unique features by examining their codebases. Addition-
ally, the study evaluates the differences in memory usage and
total linking time across projects of various sizes. Further-
more, we profile specific phases of the linking process such
as symbol resolution, relocations handling, and file writing.

This study utilizes the built-in options provided by each
linker for performance tracing, specifically --time-trace
for LLD and --perf for mold. In both cases, the codebase in-
corporates specific markers to record the start and end points
of operations within each phase of the linking process. These
options allow for direct, reliable measurement of linker per-
formance metrics without the overhead and complexity intro-
duced by external profiling tools.

Initially, we considered tools like Valgrind6 and perf7 to
profile the linking stages. However, we found Valgrind to
be unsuitable due to its lack of support for multicore systems
[14], which is a crucial aspect of mold, given its multicore
efficiency [15]. The perf tool was also initially considered;
it supports multicore systems and provides detailed perfor-
mance metrics. Nevertheless, due to potential inaccuracies in
assessing the function-specific purpose and the necessity of
manual categorization, we decided not to use perf.

Although the linking process is critical, it typically occurs
only once, after which the focus shifts to the performance of
the actual executables produced. Therefore, it is essential to
evaluate not only the efficiency of the linking process but also
the characteristics of the final executables. We compare the
executables linked by LLD and mold in terms of execution
time, file size, and structural differences such as the number
and type of sections they contain.

4 Linking Strategies in LLD and mold
This section will delve deeper into the nuances of both linkers
based on the codebases and accompanying documentation.
Subsection 4.1 offers an in-depth examination of LLD, while
Subsection 4.2 focuses on mold. Finally, Subsection 4.3 de-
tails the differences between LLD and mold.

4.1 Examination of Linking Techniques in LLD
The linking process in LLD, as outlined in Section 2, begins by
sequentially parsing input files and resolving symbols imme-
diately. After processing the input files, LLD aggregates and

6https://valgrind.org/
7https://perf.wiki.kernel.org/index.php/Main Page

https://valgrind.org/
https://perf.wiki.kernel.org/index.php/Main_Page


merges the sections. The final step involves relocating and
writing the output sections to the executable, ensuring that
all references and links are correctly aligned, which is per-
formed in parallel. Additionally, LLD performs a check for
any remaining undefined symbols during the output phase to
ensure the integrity and completeness of the final executable.

Unlike traditional linkers such as ld, LLD permits back-
ward and mutually dependent references between libraries.
Specifically, LLD lazily adds symbols from archive files to the
symbol table — these symbols are not loaded immediately
but are extracted as needed. This method enables LLD to re-
member all symbols from previously encountered archives,
facilitating the resolution of undefined symbols by extracting
necessary object files instantly [16].

Internally, LLD utilizes a shared symbol table implemented
as a map that links each symbol name to an index. Addi-
tionally, all symbols are stored in a separate vector and each
file maintains its own array of symbols, which provide de-
tails about their definition status and other attributes. When
resolving symbols, LLD casts symbols at the same memory
location and updates their attributes as needed. It utilizes
the class CachedHashStringRef to store a precomputed
hash for each symbol. The internal data structures are specif-
ically designed to minimize the number of lookups, enabling
hash table operations to be executed just once per string [17].
Moreover, LLD leverages C++ templates to reduce code com-
plexity and improve performance. For instance, it utilizes
templates to determine system characteristics such as endi-
anness and whether the architecture is 32-bit or 64-bit, subse-
quently invoking the appropriate functions accordingly.

Regarding architecture, LLD maintains separate directories
for each file format (ELF, COFF, Mach-O), sharing minimal
code between them. This separation is maintained because
adding another layer of abstraction is not deemed beneficial
enough to justify the associated cost [16]. Moreover, MinGW
linker is implemented as a thin wrapper for lld/COFF. The
main function determines the target file format and invokes
the appropriate driver. Additionally, LLDmaintains a separate
file for each target architecture, all of which inherit from the
TargetInfo class, subsequently declaring virtual functions
such as relocation-target-specific.

Performance analyses show that while the non-concurrent
version of LLD spends considerable time copying files and
performing relocations, the concurrent version significantly
reduces time spent on these tasks by parallelizing section
copying and relocation [17]. Thus, spending the most time
adding symbols to the symbol table. They managed to par-
allelize the section copying and relocation by assigning non-
overlapping file offsets to sections. LLD primarily implements
parallelization in scenarios where functions modify only in-
dividual input files, thus eliminating the need for locks.

4.2 Optimization and Parallelism in mold
The linking approach in mold differs significantly from that
of LLD in terms of input file handling. mold processes files
in parallel, contrasting with LLD’s sequential processing. In-
stead of automatically resolving symbols while parsing and
adding them to a hashmap as LLD does, mold first accumu-
lates all symbols in a concurrent hashmap, and then it re-

solves the symbols and updates their references through a
parallel traversal of the files. After symbol resolution, mold
proceeds to create output sections. While LLD checks for un-
defined symbols during the file writing stage, mold conducts
this check earlier for SHF ALLOC sections, raising an error if
undefined symbols are found. The sections are then trans-
ferred to the output in parallel, and relocations are applied
concurrently. Afterward, mold performs an additional check
for any undefined symbols in non-SHF ALLOC sections be-
fore finalizing the executable output.

Similar to LLD, mold supports backward and mutually de-
pendent references [18]. It keeps track of symbols that can
be resolved from archive files, which allows mold to revisit
and retrieve object files from archives as needed to resolve
remaining undefined symbols.
mold leverages Intel Threading Building Blocks (TBB)

for parallel execution and employs several concurrent con-
tainers [19]. Key features include parallel for each
and concurrent hash map. It also utilizes templates
with requires and constexpr for data structures and at-
tributes. The symbol table in mold is defined as a con-
current hashmap that maps symbol names directly to sym-
bols, with each file also maintaining a separate list. Unlike
LLD, mold does not categorize symbols into classes such as
Defined, Undefined, SharedSymbol, CommonSymbol, or
LazySymbol. Instead, it employs a unified class for all sym-
bol types.

It is important to note that mold utilizes two processes to
enhance its efficiency [19]. The main process forks a child
process, which carries out the bulk of the linking work. As
the child process writes to the filesystem, it signals the main
process, allowing mold to terminate from the user’s perspec-
tive, even though the child process continues to finalize tasks.
This approach helps mold appear to complete its execution
earlier than it technically does. Additionally, creating a new
file and filling its contents using mmap is slower than writing
to an existing file in the buffer cache, thus mold overwrites an
existing executable file if one exists [19].

Notably, mold does not support traditional linker scripts.
Although linker scripts allow detailed file layout specifica-
tions and insertion of arbitrary bytes between sections, most
of these functions can be performed by post-link binary edit-
ing tools like objcopy [19]. However, tasks like mapping in-
put sections to output sections and applying relocations can-
not be done post-link. Therefore, mold provides only a basic
set of linker script features necessary for essential operations,
like reading /usr/lib/x86 64-linux-gnu/libc.so on
Linux [18]. Instead of expanding its support for traditional
linker scripts, mold aims to simplify the process by intro-
ducing simpler alternatives, such as the --section-order
command line option, that allows specifying addresses for
sections and program headers [4].
mold’s exceptional speed is attributed to its use of faster al-

gorithms and efficient data structures compared to other link-
ers, as well as its high degree of parallelism [15]. Further-
more, the decision to abandon support for linker scripts is
based on the belief that supporting them complicates the de-
sign and slows down the linker [4].



Feature LLD mold

Supported Architec-
tures

Supports AArch64, AMDGPU, ARM,
Hexagon, LoongArch, MIPS (32/64 little/big-
endian), PowerPC, PowerPC64, RISC-V,
SPARC V9, x86-32 and x86-64 [20].

Does not support: m68k, s390x, SH-4, and
DEC Alpha.

Supports x86-64, i386, ARM64, ARM32,
32/64 little/big-endian RISC-V, 32-bit Pow-
erPC, 64-bit big-endian PowerPC ELFv1, 64-
bit little-endian PowerPC ELFv2, s390x, 64-
bit/32-bit LoongArch, SPARC64, m68k, SH-
4, and DEC Alpha [3].

Does not support AMDGPU, Hexagon, and
MIPS (32/64 little/big-endian).

File Formats Sup-
ported

Supports ELF (Unix), PE/COFF (Windows),
Mach-O (macOS), and WebAssembly, with
varying degrees of completeness.

Supports only the ELF format.

Table 2: Comparative analysis of supported architectures and file formats between LLD and mold

4.3 Theoretical comparison between LLD and mold
Although the primary function of both LLD and mold is to as-
semble object files into an executable, these linkers exhibit
significant differences in their capabilities and approaches.
Table 2 offers a comparison of LLD and mold, focusing on
their support for different target architectures and file formats.

The diagrams in Figure 2 and Figure 3, illustrate simplified
and high-level representations of the linking processes in LLD
and mold, respectively, with a focus on the parallel or sequen-
tial aspect of each step. A key distinction between the two is
the extent of parallelization: mold implements extensive par-
allelism, whereas LLD primarily processes tasks sequentially.
LLD processes files sequentially and resolves symbols as they
are encountered. This approach ensures immediate resolu-
tion of symbols but does not exploit potential parallelism. In
contrast, mold adopts a highly parallel approach, parsing files
simultaneously and utilizing a concurrent hashmap for sym-
bol addition, which is followed by parallel symbol resolution.
Yet, both linkers leverage parallelism when writing the final
executable and applying relocations.

Figure 2: Simplified overview of the linking process in LLD, high-
lighting parallel or sequential processing

Figure 3: Simplified overview of the linking process in mold, high-
lighting parallel or sequential processing

Despite differences in processing files, both linkers sup-
port backward and mutually dependent references, ensuring
that they are not sensitive to the order of input files. More-
over, mold simplifies its architecture by implementing a sin-
gle class for symbols, whereas LLD employs multiple symbol

classes to manage different types of symbols. In terms of file
handling, mold categorizes files primarily as SharedFile
and ObjectFile, while LLD uses a more diverse classifica-
tion, including InputFile, SharedFile, BinaryFile, and
BitcodeFile.

Regarding section garbage collection, LLD supports this
feature through a mark-sweep process that removes unrefer-
enced sections going through the input graph. mold, how-
ever, enhances this process by utilizing multiple threads to
mark sections concurrently, improving efficiency and speed
of identifying and discarding unnecessary sections [19].

A notable performance advantage of mold over LLD lies
in its utilization of all available CPU cores during the execu-
tion, a feature that LLD does not leverage. This parallelism
allows mold to achieve significant reductions in linking time
compared to LLD [15].

Finally, a critical difference lies in linker script support.
LLD supports traditional linker scripts, allowing for detailed
file layout specifications and other advanced configurations
[21]. mold, on the other hand, does not support linker scripts,
thus it is not yet suitable for kernel or embedded program-
ming [4].

In summary, while LLD offers broad file format and tar-
get architecture support, and traditional linker script capabili-
ties, mold excels in speed and efficiency by leveraging paral-
lelism and focusing on ELF format optimization. The choice
between the two often depends on the specific needs of the
project and the target environment.

5 Performance Comparison of LLD and mold
This section provides a detailed analysis of both linkers,
specifically comparing LLD and mold in terms of total ex-
ecution time in Subsection 5.1, memory usage in Subsec-
tion 5.2, and the time spent on different phases of the linking
process in Subsection 5.3. Finally, Subsection 5.4 compares
the produced executables against different factors. All anal-
yses were conducted on the same machine, equipped with an
Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz (6-core/12-
threads) and 16.0 GB of RAM with an SSD drive, running
Linux Ubuntu 22.04.4 LTS.



The comparison involves benchmarking Ubuntu LLD
14.0.0 and mold 2.31.0 against two significant projects:
CMake8 and Bitcoin Core9, specifically targeting their
largest executables: cmake for CMake and bitcoind for
Bitcoin Core. The resulting executable sizes for these
projects while compiling using default options are 19 MiB
and 201 MiB, respectively. We selected these repositories due
to their complexity, a big number of object files (141810 for
CMake and 667 for Bitcoin Core), and because they com-
pile into a single relatively large executable, which makes
them suitable for performance analysis. Additionally, their
build processes allow for easy extraction of verbose output
necessary to understand how gcc11 invokes the linker, as we
invoked each linker directly rather than through gcc with the
-fuse-ld= option enabled.

For the comparison of the output files, the HDiffPatch12

repository was used. We chose this repository primarily be-
cause it facilitates easier measurement of program execution
time. In this case, invoking the linker directly is not critical,
so the -fuse-ld= option was used to specify the linker.

5.1 Execution Time Analysis
We used the command time to measure the execution time
for linking. The initial measurement was discarded as it was
significantly higher, likely due to caching effects, and thus
considered an outlier. We ran the test five times, and the aver-
age real-time execution was calculated. As presented in Fig-
ure 4, the linking time for mold was consistently faster than
for LLD for both executables.

Figure 4: Comparison of linking times between LLD and mold
(lower is better)

Furthermore, having established that mold performs faster
on relatively large projects, we performed an additional
benchmark on a simple Hello World! C program with a
size of 16 KiB to determine if the multicore capabilities of
mold also benefit smaller programs. The program was linked

8https://github.com/Kitware/CMake
9https://github.com/bitcoin/bitcoin

10Counted using the find . -name *.o | wc -l command
11https://gcc.gnu.org/
12https://github.com/sisong/HDiffPatch

100 times with LLD and mold, and the average execution
times were calculated. The results showed that the average
linking time for LLD was 15.85 milliseconds, whereas for
mold it was significantly lower at 4.62 milliseconds, indicat-
ing that mold provides substantial performance advantages
even for minimal programs, likely due to its comprehensive
parallelization strategy that effectively manages files, sec-
tions, and symbols, thereby optimizing performance across
all program sizes.

5.2 Memory Usage Comparison
We also conducted the memory usage analysis for the same
repositories using Valgrind with the --tool=massif op-
tion. The initial run was discarded, and data from only the
subsequent run was considered. The memory usage peak for
both linkers during the linking process is depicted in Fig-
ure 5. In the case of mold, two processes were run; how-
ever, the memory usage of the first process was minimal —
94.4 KiB for CMake and 95.7 KiB for Bitcoin Core— and
thus was considered too small to include in the graph. The
results demonstrate that mold also excels in terms of memory
efficiency.

Figure 5: Comparison of memory usage between LLD and mold
(lower is better)

5.3 Profiling Different Phases
As with previous benchmarks, the initial run was disregarded,
and data from the second run were utilized for analysis. This
study aimed to evaluate the real-time execution of specific
phases in the linking process, including:

• Parsing files and symbol resolution, which encompasses
adding symbols to the symbol table.

• Merging sections, copying input sections to output sec-
tions, writing to the final executable file, and applying
relocations.

• Scanning relocations, which entails traversing all files to
review and update relocations as needed, including the
creation of dynamic relocations.

• Splitting sections, which involves dividing sections into
smaller pieces to later merge duplicates from different
files, reducing redundancy.

https://github.com/Kitware/CMake
https://github.com/bitcoin/bitcoin
https://gcc.gnu.org/
https://github.com/sisong/HDiffPatch


Details on the categories assigned to each phase are avail-
able in Appendix B. For detailed analysis, we employed built-
in options – --time-trace for LLD and --perf for mold.
Data for mold were initially recorded in seconds from the
real-time column, while data for LLD were in microseconds;
both were converted to milliseconds for consistency.

The diagram in Figure 6 presents the linking time compar-
ison for CMake and Bitcoin Core between LLD and mold.
Therefore, it is evident that for both linkers, the most time-
consuming task during the linking process is writing to a file
and applying relocations. Moreover, while for CMake mold is
significantly faster than LLD in writing to a file, this advantage
is significantly smaller for Bitcoin Core. Generally, mold
tends to outperform LLD in all categories for both executa-
bles. However, surprisingly, it is slower in splitting sections
for Bitcoin Core. Despite these differences, the general
pattern in time distribution across various linking phases re-
mains similar between LLD and mold.

Figure 6: Linking time comparison across different phases between
LLD and mold for CMake and Bitcoin Core (lower is better)

It is important to note that the comparison may not be en-
tirely fair, as some phases inherently require more time due to
their conceptual complexity. However, the aim of this com-
parison was to identify the general areas where linking con-
sumes the most time and to assess whether there are signifi-
cant differences between the linkers in how they handle these
phases.

5.4 Binary Comparison
The executable hdiffz, produced by LLD, mold, and the
default linker ld, was evaluated with respect to executable
sizes, execution times, and the number of section headers, as
shown in Table 3. For evaluating execution times, the hdiffz
program was tested using PDF files containing 376,205 and
512,233 words, respectively. The execution times were mea-
sured using the time command, with data collected from the
“real” category. To ensure reliability, the program was ex-
ecuted 100 times; both the average execution time and the
standard deviation were recorded.

The results indicate that mold produces the largest exe-
cutable, while the executable linked by LLD shows minimal

Linker Executable
Size (KiB)

Execution Time
(ms) ± Standard
Deviation (ms)

Section
Headers

ld 762 1744.31 ± 38.61 33

LLD 764 1765.54 ± 28.97 35

mold 795 1740.92 ± 40.72 42

Table 3: Comparison of the executables for the HDiffPatch project,
produced by different linkers, detailing executable sizes, execution
times, and section headers

size difference compared to the default ld. Based on the anal-
ysis of execution times, it was found that the execution times
are influenced by the choice of linker, with a statistically sig-
nificant effect (F(2, 297) = 13.394, p < 0.001, η2 = 0.083),
indicating a moderate effect size according to η2. How-
ever, post hoc analysis revealed that the linker ld does not
show a statistically significant difference to mold (p = 0.788),
whereas LLD significantly differs from both ld and mold (p <
0.001). Additionally, Table 4 provides a detailed comparison
of the section differences for each linker’s output. Notably,
mold generates a significantly higher number of sections than
other linkers, raising questions about their necessity and po-
tential for optimization by stripping redundant sections.

ld LLD mold
.plt.got .got.plt .plt.got
.plt.sec .plt.sec .got.plt

.bss.rel.ro .rodata.cst{4/8/16}
.tm clone table .tm clone table

.copyrel.rel.ro

.relro padding
.rodata.str1.{1/8}

.copyrel

Table 4: Section differences for executables produced by each linker

6 Responsible Research
This section details the responsible research practices adopted
in this study, specifically addressing ethical considerations in
Subsection 6.1, the reproducibility of the methods in Subsec-
tion 6.2, and the representativeness of the repositories used
for benchmarking in Subsection 6.3.

6.1 Ethical Considerations
Both repositories and software used during experiments are
publicly available, thus ensuring not violating any proprietary
systems or data. This also further aids in the reproducibility
of the findings.

6.2 Reproducibility
To ensure the reproducibility of the findings, we provided de-
tailed information about the tools, methodologies, and envi-
ronments used in the experiments. Specific commit hashes
for the software versions used are recorded:



• Last commit hash for LLD:
af36fb00e32e43101b68b142cfc938af68ad5ffe

• Last commit hash for mold:
20fa8d56f5e0c47d1f4bbf7b829c12d3f43298e1

Appendix B contains a comprehensive list of all phases
and their categorizations to further aid the reproducibility of
benchmarks against profiling specific phases of the linking
process.

6.3 Representativeness
Ensuring that the sample code used for testing is represen-
tative of typical C and C++ codebases is crucial. This study
employs two significant projects, CMake and Bitcoin Core,
as benchmarks. These projects were chosen because of their
complexity and the number of contributors, making them rep-
resentative of real-world software development. Specifically,
the CMake repository has 1350 contributors, and the Bitcoin
Core repository has 955 contributors as of June 19, 2024.
Using these projects ensures that the results are relevant and
reflect true performance improvements across typical devel-
opment environments.

In addition, we employed the HDiffPatch repo for binary
comparison. Although this repository has only 8 contribu-
tors as of June 19, 2024, and 30 object files, its inclusion was
strategic. We chose this project primarily for its simplicity
in comparing execution times. However, it is acknowledged
that future research might benefit from selecting a project that
presents a more complex and demanding benchmarking sce-
nario.

7 Discussion
The benchmarks performed in this study aimed to assess and
compare the performance of LLD and mold across various
metrics, particularly focusing on speed and memory usage.
It was observed that mold generally excels in both areas. The
use of external tools for measurement could potentially intro-
duce overhead, however, since the same tools were utilized
for both linkers, the comparisons remain valid despite poten-
tial distortions in absolute performance data.

Profiling was conducted using the built-in options provided
by each linker, which may measure time slightly differently.
Additionally, each linker may define the phases of the link-
ing process differently, potentially skewing the results. While
these factors could affect the absolute accuracy of the find-
ings, for comparative purposes, this approach is sufficient to
highlight performance differences between the linkers.

Linking speed, while crucial during software develop-
ment, ultimately represents a one-time cost, making the
performance of the resulting executable a primary concern.
The analysis highlights noticeable differences in execution
speeds, with the executable produced by LLD underperform-
ing compared to those from other linkers. Additionally, mold
tends to produce larger executables with more sections, the
functions and purposes of which are not immediately appar-
ent. This aspect requires further investigation.

The research findings are dependent on the current state
of the linkers’ codebases. Significant refactoring could alter
the performance characteristics and the validity of the results.

Hence, the reported findings are representative only as of the
last commit hash documented.

A notable difference between LLD and mold is the extent
of parallelization. mold applies parallel processing exten-
sively, even in scenarios requiring data locking and atomic
operations. In contrast, LLD limits parallelization to scenar-
ios that do not involve complex data interactions. The ab-
sence of comprehensive parallel processing in LLD is often
attributed to its support for linker scripts, which is deemed
to introduce complexity and slow down the process [4]. The
presence of linker scripts in LLD and their absence in mold
highlight different priorities in terms of functionality and per-
formance optimization. While linker scripts provide detailed
control over the linking process, their complexity may hinder
the implementation of more efficient, parallel processing al-
gorithms, however, their impact remains unclear. While the
benefits of parallelization in mold are evident, it is essential
to consider potential overheads and whether these negate the
performance gains.

The analysis of code responsibilities required making as-
sumptions that may not be entirely accurate, adding a layer
of uncertainty to the evaluation. Similarly, assumptions were
necessary when categorizing tasks for profiling purposes.

The reason for the reduced performance of mold when
writing to a file for Bitcoin Core, compared to CMake, is
not immediately apparent. One possible explanation is the
significantly smaller number of files in Bitcoin Core —
51613 input files (505 object files + 11 shared files) com-
pared to the 1143 input files (1135 object files + 8 shared
files) in CMake. This disparity suggests that the benefits of
parallelization may not be as obvious when fewer files are in-
volved. The limited number of files in Bitcoin Core might
also contribute to mold’s slower performance in splitting sec-
tions and could explain why the overall linking time advan-
tage of mold is dramatically reduced compared to its perfor-
mance with CMake.

In terms of memory usage, one notable difference is how
mold and LLD manage their symbol tables. mold maintains a
simpler structure, utilizing only a hashmap that maps names
to symbols, with each file then holding a vector of pointers
to its symbols. In contrast, LLD uses a more complex sys-
tem involving both a hashmap of symbol names to indices
and a separate list of pointers to symbols. Additionally, each
file in LLD maintains its own array of pointers to symbols.
Moreover, LLD utilizes a greater variety of classes throughout
its codebase to differentiate between various symbol types
and file types. This additional layer in LLD’s data manage-
ment could contribute to its higher memory usage compared
to mold.

8 Conclusions and Future Work
This research aimed to initiate an academic discussion about
linkers, potentially sparking interest in the development of a
new linker that combines the speed of mold with support for
linker scripts. It has also prompted broader considerations
regarding general optimizations for linkers.

13Counted by directly debugging the mold repository and check-
ing the length of the input files list



The primary difference identified between LLD and mold
lies in their approach to parallelization. mold extensively uti-
lizes parallel processing capabilities, which significantly con-
tributes to its performance advantage. In terms of their link-
ing processes and architecture, the two linkers are quite sim-
ilar, with no significant visible differences. However, mold
lacks support for traditional linker scripts, which LLD accom-
modates. In summary, mold’s remarkable performance can
be attributed to its extensive use of parallelization across most
stages of the linking process, the implementation of more effi-
cient algorithms, and attention to performance-enhancing de-
tails such as utilizing two processes and overwriting an exist-
ing executable file.

As discussed in Section 7, there are unresolved questions
about why LLD has not implemented more aggressive paral-
lelization strategies. Further research into the architectural
constraints imposed by linker scripts and other traditional fea-
tures within LLDmight reveal opportunities for significant im-
provements.

The benchmarks conducted as part of this study focused
on single executable outputs, which leads to questions about
how mold, given its extensive parallelization, would perform
in scenarios with projects producing multiple executables,
such as kernel modules. Additionally, considering mold’s
reliance on multicore capabilities for its remarkable perfor-
mance, it raises the question of whether mold would still out-
perform LLD while utilizing only a single core. Although this
research briefly addressed the executables generated by the
linkers, a more extensive and detailed comparison, especially
for larger executables, is necessary. Furthermore, we recom-
mend conducting a broader set of benchmarks on a wider va-
riety of repositories, with different sizes, to obtain a better
and more comprehensive understanding of the performance
of both linkers.

Therefore, the future research directions would involve in-
vestigating the impact of linker script complexity on the per-
formance and parallelization capabilities of LLD, as well as
assessing mold’s performance in environments that output
multiple files to determine if its parallelized nature offers sub-
stantial benefits in such contexts. Additionally, it is crucial to
assess how mold performs when utilizing only a single core.
A deeper examination of the executables produced by these
linkers is also recommended to provide a comprehensive as-
sessment of their effectiveness and efficiency.

This study has established a foundation for further explo-
ration into linker technologies and set the stage for future in-
novations that could enhance the efficiency and functionality
of these essential tools.

References

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, “In-
troduction,” in Compilers: Principles, Techniques, and
Tools, pp. 1–3, Addison-Wesley, 2nd ed., August 2006.

[2] R. E. Bryant and D. R. O’Hallaron, “Linking,” in Com-
puter Systems: A Programmer’s Perspective, pp. 705–
750, Pearson, 3rd global ed., 2016.

[3] R. Ueyama, “mold: A Modern Linker.” https://github.c
om/rui314/mold?tab=readme-ov-file#mold-a-moder
n-linker, 2024.

[4] R. Ueyama, “Can the mold linker be /usr/bin/ld?,” in
Proceedings of the FOSDEM Brussels 2024, (Brussels,
Belgium), FOSDEM, Feb. 2024.

[5] W. Dietz and V. Adve, “Software multiplexing: share
your libraries and statically link them too,” Proceedings
of the ACM on Programming Languages, vol. 2, Oct.
2018.

[6] C. Collberg, J. H. Hartman, S. Babu, and S. K. Udupa,
“SLINKY: Static Linking Reloaded,” in USENIX An-
nual Technical Conference, pp. 309–322, 2005.

[7] S. Kell, D. P. Mulligan, and P. Sewell, “The missing
link: explaining ELF static linking, semantically,” in
Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pp. 607–623, Association
for Computing Machinery, Oct. 2016.

[8] D. B. Orr, J. Bonn, J. Lepreau, and R. Mecklenburg,
“Fast and Flexible Shared Libraries,” USENIX Summer,
pp. 237–252, June 1993.

[9] V. Kasliwal and A. Vladimirov, “A Performance-Based
Comparison of C/C++ Compilers,” Colfax Interna-
tional, 2017.

[10] R. Hebbar S R, M. Ponugoti, and A. Milenković, “Battle
of Compilers: An Experimental Evaluation Using SPEC
CPU2017,” in 2019 SoutheastCon, 2019.

[11] D. Thain, “A quick tour,” in Introduction to Compilers
and Language Design, pp. 5–10, University of Notre
Dame, 2nd ed., 2021.

[12] D. Andriesse, “The ELF Format,” in Practical Binary
Analysis: Build Your Own Linux Tools for Binary In-
strumentation, Analysis, and Disassembly, pp. 31–56,
No Starch Press, 2019.

[13] M. Kalaycı, “An Introduction to Linker Files: Crafting
Your Own for Embedded Projects.” https://medium.c
om/@mkklyci/an-introduction-to-linker-files-craftin
g-your-own-for-embedded-projects-60ad17193229,
2023.

[14] Valgrind™ Developers, “Support for Threads.” https:
//valgrind.org/docs/manual/manual-core.html#manua
l-core.pthreads, 2020.

[15] R. Ueyama, “Why is mold so fast?.” https://github.com
/rui314/mold?tab=readme-ov-file#why-is-mold-so-fas
t, 2024.

[16] LLVM Project, “The ELF, COFF and Wasm Linkers.”
https://lld.llvm.org/NewLLD.html, 2024.

[17] R. Ueyama, “lld: A Fast, Simple and Portable Linker.”
https://llvm.org/devmtg/2017-10/slides/Ueyama-l
ld.pdf, 2017. Presentation at the LLVM Developers’
Meeting 2017.

[18] R. Ueyama, “mold(1) – a modern linker.” https://github
.com/rui314/mold/blob/main/docs/mold.md, 2024.

https://github.com/rui314/mold?tab=readme-ov-file#mold-a-modern-linker
https://github.com/rui314/mold?tab=readme-ov-file#mold-a-modern-linker
https://github.com/rui314/mold?tab=readme-ov-file#mold-a-modern-linker
https://medium.com/@mkklyci/an-introduction-to-linker-files-crafting-your-own-for-embedded-projects-60ad17193229
https://medium.com/@mkklyci/an-introduction-to-linker-files-crafting-your-own-for-embedded-projects-60ad17193229
https://medium.com/@mkklyci/an-introduction-to-linker-files-crafting-your-own-for-embedded-projects-60ad17193229
https://valgrind.org/docs/manual/manual-core.html#manual-core.pthreads
https://valgrind.org/docs/manual/manual-core.html#manual-core.pthreads
https://valgrind.org/docs/manual/manual-core.html#manual-core.pthreads
https://github.com/rui314/mold?tab=readme-ov-file#why-is-mold-so-fast
https://github.com/rui314/mold?tab=readme-ov-file#why-is-mold-so-fast
https://github.com/rui314/mold?tab=readme-ov-file#why-is-mold-so-fast
https://lld.llvm.org/NewLLD.html
https://llvm.org/devmtg/2017-10/slides/Ueyama-lld.pdf
https://llvm.org/devmtg/2017-10/slides/Ueyama-lld.pdf
https://github.com/rui314/mold/blob/main/docs/mold.md
https://github.com/rui314/mold/blob/main/docs/mold.md


[19] R. Ueyama, “Design and implementation of mold.” http
s://github.com/rui314/mold/blob/main/docs/design.md,
2021.

[20] LLVM Project, “LLD - The LLVM Linker.” https://lld.
llvm.org/, 2024.

[21] LLVM Project, “Linker Script implementation notes
and policy.” https://lld.llvm.org/ELF/linker script.html,
2024.

A Linking Time in the Compilation Process
This section presents the methodology used to differentiate
the compilation and linking times for the CMake and Bitcoin
Core repositories. The time command was used alongside
make to measure the total real-time spent on compilation and
linking. To isolate the linking time, all produced executa-
bles were deleted, and time make was executed again. This
approach provided the linking time exclusively. Table 5 sum-
marizes the results.

Repository Total Compilation
Time (s)

Linking
Time (s)

CMake 821.89 4.77

Bitcoin
Core

1741.92 8.57

Table 5: Comparison of total compilation time and linking time for
CMake and Bitcoin Core repositories

While this experiment provides an approximation of the
time spent on linking, it serves primarily for comparative and
visualization purposes rather than precise measurement.

B Categorization of Linking Process Phases
This section details the categorization of the linking process
phases for both mold and LLD. Tasks within each phase are
grouped according to their classification during the experi-
mental analysis.

B.1 Classification of Phases for mold
1. Parse files and symbol resolution

• read input files
• resolve symbols

2. Merge sections, write to a file, and apply relocations

• open file
• copy
• close file
• create output sections

3. Scan relocations

• scan relocations

4. Split sections

• split section pieces

B.2 Classification of Phases for LLD
1. Parse files and symbol resolution

• Total Parse input files
• Total Load input files

2. Merge sections, write to a file, and apply relocations
• Total Write output file
• Total Add symbols to symtabs
• Total Finalize .eh frame
• Total Aggregate sections
• Total Assign sections
• Total Finalize synthetic sections
• Total Sort sections
• Total Create output files
• Total Merge/finalize input sections

3. Scan relocations
• Total Scan relocations

4. Split sections
• Total Split sections

https://github.com/rui314/mold/blob/main/docs/design.md
https://github.com/rui314/mold/blob/main/docs/design.md
https://lld.llvm.org/
https://lld.llvm.org/
https://lld.llvm.org/ELF/linker_script.html

	Introduction
	Background
	The Linking Process
	The ELF Format
	Static and Dynamic Linking
	Linker Scripts

	Methodology
	Linking Strategies in LLD and mold
	Examination of Linking Techniques in LLD
	Optimization and Parallelism in mold
	Theoretical comparison between LLD and mold

	Performance Comparison of LLD and mold
	Execution Time Analysis
	Memory Usage Comparison
	Profiling Different Phases
	Binary Comparison

	Responsible Research
	Ethical Considerations
	Reproducibility
	Representativeness

	Discussion
	Conclusions and Future Work
	Linking Time in the Compilation Process
	Categorization of Linking Process Phases
	Classification of Phases for mold
	Classification of Phases for LLD


