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Abstract

Many coupled problems have high computational demands, and therefore higher order time in-
tegration methods are commonly employed in order to increase the computational efficiency of
unsteady fluid dynamics simulations. Usually second order, implicit schemes are used in engineer-
ing flow solvers. Substantial gains in computational efficiency can be acquired by e.g. using higher
order time integration schemes, and by improving the convergence of the iterative solver.

John and Rang (2010) show that for incompressible flow, several Rosenbrock-Wanner meth-
ods outperform the Crank-Nicolson scheme and several multi-stage DIRK schemes in terms of
computational efficiency. Rosenbrock-Wanner methods are derived from a linearisation of a DIRK
scheme. Therefore, a gain in computational efficiency is observed, but some stability and accuracy
properties are lost. W-methods use an approximation for the Jacobian, which can further increase
the computational efficiency.

This thesis compares the efficiency of Rosenbrock time integration schemes with ESDIRK
schemes, applicable to unsteady flow and fluid-structure interaction simulations. By solving the
linear systems with the iterative solver GMRES, the preconditioner can be reused, and the Krylov
subspace vectors can be reused for the different Rosenbrock stages improving computational ef-
ficiency (Carpenter et al., 2010). The influence of the convergence level of the linear solver
on computational efficiency and stability is investigated, and the impact of the reuse of Krylov
subspace vectors in comparison with the standard GMRES approach is studied. Results of simu-
lations for unsteady flow show a gain in computational efficiency of approximately factor five in
comparison with ESDIRK.
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Chapter 1

Introduction

Efficient time integration methods applicable to fluid dynamics and fluid-structure interaction
simulations are of high importance. During the research project, several time integration schemes
and linear iterative solvers are studied. The goal of the masters thesis is to improve unsteady flow
solvers by comparing high order Rosenbrock time integration schemes with implicit Runge-Kutta
methods for convection-diffusion problems and viscous flows, in order to decrease computational
times for fluid simulations which span several weeks for certain cases with current hardware set-ups.
The motivation, goal and approach for the masters thesis can be found in this chapter.

1.1 Motivation

The interaction between fluids and structures is of high importance for many engineering appli-
cations. Air plane structures are not completely rigid structures, and several steady and dynamic
aeroelasticity phenomena arise when structural deformations induce changes on the aerodynamic
forces acting on the aircraft. These interactions may reach an equilibrium point, but divergence
or flutter may also occur, which may cause catastrophic accidents. In September 1997, a U.S. Air
Force F-117 ”Stealth” fighter crashed. The aircraft crashed due to flutter excited by the vibration
from a loose elevon.

A famous example of fluid-structure interaction in the field of civil engineering is the Tacoma
Narrows Bridge. The first Tacoma Narrows bridge opened to traffic on July 1, 1940. Four months
later on November 7, 1940, its main span collapsed into the Tacoma Narrows. Aeroelastic flutter
was caused by a 68 kilometres per hour wind. Figure 1.1 shows a picture of the opening day of
the bridge (Figure 1.1(a)) and the collapse is shown (Figure 1.1(b)).
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2 Introduction

(a) The opening day of the Tacoma Narrows bridge at
July 1, 1940 (University of Washington, 1940a).

(b) The collapse of the Tacoma Narrows bridge at
November 7, 1940 (University of Washington,

1940b).

Figure 1.1: Tacoma Narrows bridge. The opening day at July 1, 1940, and the collapse at November 7,
1940.

These two examples show that it is extremely important to analyse the dynamics of coupled
systems during the design phase. The instability of coupled systems and the performance of fluid-
structure systems need to be predicted. Other examples are to be able to predict the actual lift
of a wing, and to evaluate the effect of surgical interventions to the functioning of the heart.

1.2 Approach

The approach followed to suggest improvements for unsteady flow solvers is to identify the main
parts of an unsteady flow solver. Possible areas of improvement are identified and solutions
already proposed in the literature are used. Numerical solution techniques are necessary to solve
the governing equations for a fluid problem. Generally iterative methods are used in flow solvers to
find the solution. The efficiency of the used approach depends on the combination of the different
parts of the solver, such as the used time integration scheme, preconditioner and the iterative
solver.

Currently, backward difference (BDF) time integration schemes are widely used in engineering
codes. Explicit first-stage singly diagonal implicit Runge-Kutta (ESDIRK) methods have proven
to be more efficient than BDF methods for engineering accuracies (Bijl et al., 2002; Jothiprasad
et al., 2003; Wang and Mavriplis, 2007). An alternative to ESDIRK schemes which has not
been widely applied for flow problems are Rosenbrock-Wanner schemes or Rosenbrock schemes.
By linearizing the multi-stage Runge-Kutta schemes, Rosenbrock time integration schemes are
derived. Rosenbrock schemes need to solve only one linear system per stage. Also, the different
stages of the scheme can be effectively preconditioned by one preconditioner.

David Blom M. Sc. Thesis - AE5110



1.3 Goal 3

John and Rang (2010) show that for incompressible flow, several Rosenbrock-Wanner meth-
ods outperform the Crank-Nicolson scheme and several multi-stage DIRK schemes in terms of
computational efficiency. These simulations were performed with the use of an adaptive time step
selection algorithm.

In combination with the used time integration scheme, fluid solvers apply iterative techniques
to find an approximation for the solution of the linear system A x = b. A subclass of Rosenbrock
time integration methods are Krylov-ROW schemes, which use an approximation for the Jacobian,
and apply Krylov subspace methods to compute a solution for the resulting linear system. Also,
Rosenbrock time integration schemes solve the same linear system of equations multiple times per
time step for different right-hand-sides. By reusing the vectors which build the Krylov subspace for
subsequent stages of the Rosenbrock time integration scheme, a further efficiency gain is expected
(Carpenter et al., 2010).

1.3 Goal

The objective of the masters thesis is to improve state-of-the-art unsteady flow solvers by compar-
ing high order Rosenbrock-Wanner time integration schemes with implicit Runge-Kutta schemes
for non linear convection-diffusion problems and viscous flows. The efficiency of the Rosenbrock
schemes is improved by the reuse of Krylov subspace vectors for the subsequent Rosenbrock stages.
Future research can focus on the application of the Rosenbrock scheme in a fluid-structure inter-
action problem.

The core questions of the research are:

1. How do Rosenbrock-Wanner time integration schemes compare to ESDIRK schemes in terms
of numerical stability, accuracy and computational efficiency when applied to a non linear
convection-diffusion and viscous flow problem?

2. Does the use of an adaptive time step control algorithm show a gain in efficiency for
Rosenbrock-Wanner time integration schemes compared to ESDIRK schemes for non linear
convection-diffusion and viscous flow problems?

3. Does the computational efficiency of the Rosenbrock-Wanner schemes improve when Krylov
subspace vectors are reused for the subsequent stages of the Rosenbrock time integration
scheme compared to standard Krylov subspace methods?

M. Sc. Thesis - AE5110 David Blom



4 Introduction

1.4 Structure

The structure of the thesis is as follows. Chapter 2 gives an overview of several time integration
schemes. The ESDIRK and Rosenbrock-Wanner time integration schemes are used to simulate
two test cases, namely a non linear convection-diffusion problem and a uniform flow around a
cylinder. The reuse of Krylov subspace vectors is the subject of Chapter 3. The GMRES and
GMRES-E algorithms are discussed, and also used to simulate the two test cases. Chapter 4
concludes the thesis with conclusions and recommendations.

David Blom M. Sc. Thesis - AE5110



Chapter 2

Time integration schemes for fluid dynamics

Chapter 1 gives the goal of the masters thesis and the approach to reach that goal, namely
to improve unsteady flow solvers by comparing high order Rosenbrock time integration schemes
with implicit Runge-Kutta methods for convection-diffusion problems and viscous flows. This
chapter gives an overview of different time integration schemes, starting with implicit Runge-
Kutta schemes in Section 2.2. Rosenbrock schemes are discussed in Section 2.3. The approach
to solve the nonlinear systems of equations for implicit Runge-Kutta schemes is shortly touched
upon in Section 2.4. The adaptive step size selection algorithm which increases the robustness of
the time integration schemes is discussed in Section 2.5. The chapter is finalised with test results,
and a short summary.

The reader is referred to Hairer and Wanner (1996) for further details on solution methods for
stiff systems. The notation of Hairer and Wanner (1996) is used throughout this chapter. Also,
Butcher (2003) is a good reference for several time integration schemes, with the main focus on
Runge-Kutta schemes.

2.1 Introductory remarks

High order time integration methods are employed in order to increase the efficiency of unsteady
computations. Currently, second order implicit schemes are commonly used in engineering codes.
The use of implicit methods is advised, since explicit methods impose strict stability constraints
on the time step used by the method. Contrary to explicit methods, the time step for implicit
methods can be chosen based on accuracy considerations. For fluid flows, large differences in
length and time scales are present, namely in the boundary layer, which increase the stiffness of
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6 Time integration schemes for fluid dynamics

the system. Therefore, implicit schemes are preferred over explicit schemes for fluid solvers.

The different methods discussed in this chapter are multi-stage Runge-Kutta methods. Multi-
step backward difference methods, which are currently widely applied in engineering codes, are
not L-stable (Section 2.2.1) for third or higher orders, which is an advantageous property of
a numerical scheme. These methods are therefore not part of this thesis. Also, multi-stage
Runge-Kutta methods have proven to be computationally more efficient than second order time
integration schemes for fluid flow computations (Van Zuijlen, 2006).

Rosenbrock-type methods are derived from diagonally implicit Runge-Kutta methods. This
family of time integration methods replace the non-linear stages of implicit Runge-Kutta schemes
with a sequence of linear systems. A non-linear implicit Runge-Kutta scheme, namely a diagonally
implicit Runge-Kutta scheme (Section 2.2.2) is linearised.

Thus effectively a non-linear system of equations is replaced with a sequence of linear systems.
The question arises whether the linearisation of the DIRK scheme has a small or significant
influence on the accuracy and stability of the simulations. An advantage of the Rosenbrock scheme
is that the preconditioner can be reused for the subsequent stages of the Rosenbrock scheme,
resulting in a reduction of computational costs. It is expected that Rosenbrock time integration
schemes are computationally more efficient compared to ESDIRK schemes. This hypothesis is
examined in this chapter.

2.2 Implicit Runge-Kutta methods

This chapter covers methods to solve stiff problems, such as the Navier-Stokes equations. Due
to the nature of stiff equations, new concepts of stability and mathematical relations for order
restrictions for the shown methods are necessary. Large differences in length and time scales are
present when fluid flows are considered. Therefore, implicit methods should be used to solve these
problems.

The discussion starts with the implicit Euler method. The implicit Euler method is given by
ym+1 = ym+h f(xm+1, ym+1). When the method is applied to Dahlquist’s test equation y′ = λ y,
the relation ym+1 = ym + hλ ym+1 is found. This gives the following relation:

ym+1 = R (hλ) ym, (2.1)

wherein the stability function R(z) is given by R(z) = 1
1−z . The stability domain given by the

set S = {z ∈ C; |R (z)| ≤ 1} is visualised in the complex plane as the exterior of the circle with
radius 1 and centre +1. Thus, the stability domain covers the complete negative half-plane and
a significant part of the positive half-plane as well. Concluding, the implicit Euler method has
advantageous stability properties.

David Blom M. Sc. Thesis - AE5110



2.2 Implicit Runge-Kutta methods 7

The s-stage implicit Runge-Kutta method is given by

gi = ym + h
s∑
j=1

aijf (xm + cjh, gj) i = 1, ..., s, (2.2)

wherein gi are the stage values and

ym+1 = ym + h
s∑
j=1

bjf (xm + cjh, gj) , (2.3)

is evaluated to obtain the solution at the next time level. The coefficients aij and bj are typically
given in the Butcher tableau. Contrary to an explicit Runge-Kutta method, the Butcher tableau
is completely filled with non-zero terms. Therefore, s coupled non-linear systems of equations
need to be solved at every step. This increases the computational costs considerably, compared
to multi-step methods, which only require that one implicit system needs to be solved per time
step. In order to be computationally efficient, the gain in accuracy for large time steps should
compensate the increased computational costs per time step. The Butcher tableau for a general
s-stage implicit Runge-Kutta method is shown in Table 2.1.

Table 2.1: Butcher tableau for an implicit Runge-Kutta method with s stages

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s
... ... ... . . . ...

cs as1 as2 . . . ass

b1 b2 . . . bs

A general formulation employing the implicit Runge-Kutta schemes for unsteady fluid or struc-
ture problems is

w(k) = wn + ∆t
s∑
i=1

aki F(i), F(i) = F
(
w(i)

)
, (2.4)

wherein w(k) represents the solution of stage k. Note that the stage solutions w(k) are generally
of a low order. The solution at the next time level wn+1 of a high order is thus obtained by the
summation of the residual function given by

wn+1 = wn + ∆t
s∑
i=1

bi F(i). (2.5)

The reader is referred to Hairer and Wanner (1996) for details on designing a multi-stage Runge-
Kutta method.

The stability function for an implicit Runge-Kutta method is given by (Hairer and Wanner,
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8 Time integration schemes for fluid dynamics

1996) as

R(z) = 1 + z bT (I − zA)−1 e =
det

(
I − z A+ z e bT

)
det (I − z A) , (2.6)

wherein bT = (b1, ..., bs), A = (aij)si,j=1, and e = (1, ..., 1)T . Thus the stability function is the
quotient of two polynomials of degree s for an s-stage implicit Runge-Kutta method.

2.2.1 Stability

One measure to compare the time integration methods shown in this chapter, is to compare the
stability and stiffness properties of the different methods. A non-mathematical description of
stiffness is the following: the differential equation is called stiff, if explicit ordinary differential
equation solvers diverge or need small step sizes to obtain an admissible approximation (Rang,
2004).

The following mathematical description is used to determine whether an ordinary differential
equation (ODE) is called stiff (Rang, 2004). Suppose that the ODE

M u̇ = f (t,u) , u (t0) = u0, (2.7)

has a solution u(t), then Equation (2.7) is called stiff if for all (t, u) ∈ J ×Rn, and the inequality

(t1 − t0) supµ [fu (t, u)] ≤ µ̂� (t1 − t0) sup ‖ fu (t, u) ‖ (2.8)

holds, where fu (t, u) is the Jacobian of f (t, u), µ̂ is an upper bound for (t1 − t0) supµ [f (t, u)],
and µ [A] is the logarithmic norm of the matrix A, which is defined by

µ [A] = lim
h→0+

‖ I + hA ‖ −1
h

. (2.9)

And, given a subset S of the totally or partially ordered set T , sup or supremum of the subset S,
is the least element of the set T that is greater than or equal to every element of the subset S.

An ODE-solver can be A-stable or L-stable. An ODE-solver is called A-stable if the inequality

lim
Re{z}→−∞

|R (z)| < 1 (2.10)

holds, wherein R (z) is the stability function of the used method. For A-stable methods, the
stability domain covers the entire left half-plane C−. This is an advantage for a numerical method,
since the exact solution of Dahlquist’s test equation is stable as well on the left half-plane C−

(Hairer and Wanner, 1996).
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2.2 Implicit Runge-Kutta methods 9

An ODE-solver is called L-stable if the limit

lim
Re{z}→−∞

|R (z)| = 0 (2.11)

approaches zero for Re {z} → −∞. From Equations (2.10) and (2.11) it follows that an L-stable
method is also A-stable.

Another stability property can also be used. An ordinary differential equation solver is called
A (α)-stable if |R (z)| ≤ 1 for z ∈ C−α (Widlund, 1967), where

C−α =
{
z ∈ C− : | arg (z)− π| ≤ α, α ∈

(
0, π2

)}
. (2.12)

Note that methods which are A (α)-stable have weaker stability properties compared to A-stable
or L-stable methods. Similarly, a method can also be L (α)-stable.

2.2.2 Diagonally implicit Runge-Kutta (DIRK) methods

General IRK methods can use the complete Butcher tableau. However, many sub classes exists.
The diagonally implicit Runge-Kutta (DIRK) methods are such a subclass of the implicit Runge-
Kutta methods. The DIRK method is also given by Equations (2.2) and (2.3). The difference
lies in the values of the coefficients aij . The DIRK method has only implicit coefficients on the
diagonal of the Butcher tableau, i.e. aij = 0 ∀ j > i. The Butcher tableau for a general s-stage
DIRK scheme is given by Table 2.2.

Table 2.2: Butcher tableau for a diagonally implicit Runge-Kutta method with s stages

c1 a11 0 . . . . . . 0

c2 a21 a22 0
...

c3 a31 a32 a33
. . . ...

... ... . . . . . . 0

cs as1 . . . . . . as,s−1 ass

b1 b2 . . . . . . bs

The stages of this method can be solved sequential instead of simultaneous. Thus this method
demands less computational resources than a general implicit Runge-Kutta method.
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10 Time integration schemes for fluid dynamics

2.2.3 Single diagonal, diagonally implicit Runge-Kutta (SDIRK) methods

Single diagonal, diagonally implicit Runge-Kutta (SDIRK) schemes are a subclass of DIRK meth-
ods. The SDIRK method is also given by Equations (2.2) and (2.3). The SDIRK method has
constant values on the diagonal of the Butcher tableau, i.e. aii = γ, and is optimised for fast
convergence of a non-linear solver. Thus when an iterative solver is used, the number of iterations
required to obtain the converged solution for each stage is lower than without the optimisation.
Note that flow solvers usually use iterative methods.

The Butcher tableau for a SDIRK method is shown in Table 2.3. Appendix A shows the
coefficients of several time integration schemes. A second order SDIRK scheme is shown in Table
A.1, which is used for the time integration of the convection-diffusion test case.

Table 2.3: Butcher tableau for a single-diagonal, diagonally implicit Runge-Kutta method with s stages

c1 γ 0 . . . . . . 0

c2 a21 γ 0
...

c3 a31 a32 γ
. . . ...

... ... . . . . . . 0

cs as1 . . . . . . as,s−1 γ

b1 b2 . . . . . . bs

2.2.4 Explicit first stage, single diagonal, diagonally implicit Runge-Kutta (ES-
DIRK) methods

As the name suggests, explicit first stage, single diagonal, diagonally implicit Runge-Kutta (ES-
DIRK) methods are a subclass of SDIRK methods. The ESDIRK method is also given by Equations
(2.2) and (2.3). The Butcher tableau for a general s-stage ESDIRK method is given by Table 2.4.

Table 2.4: Butcher tableau for a single-diagonal, diagonally implicit Runge-Kutta method with s stages

c1 0 0 . . . . . . 0

c2 γ γ 0
...

c3 a31 a32 γ
. . . ...

... ... . . . . . . 0

cs as1 . . . . . . as,s−1 γ

b1 b2 . . . . . . bs
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2.3 Rosenbrock-type methods 11

For this method a11 = 0, denoting the explicit first stage, and a21 = γ, denoting a second-
order accurately Crank-Nicolson scheme. When applied in the general formulation, s− 1 coupled
systems of equations need to be solved, whereas for the IRK, DIRK, and SDIRK methods s coupled
systems need be solved. Also, the solution at the last stage of the method is equal to the solution
at the next time step, i.e. asj = bj .

Appendix A lists the coefficients for a third, fourth and fifth order ESDIRK scheme in Tables
A.2, A.3 and A.4, respectively.

2.3 Rosenbrock-type methods

Rosenbrock methods or Rosenbrock-Wanner are part of a class of linearly implicit Runge-Kutta
methods. Rosenbrock methods replace non-linear systems with a sequence of linear systems.
Rosenbrock schemes are derived by linearizing a DIRK scheme. As a result, some stability and
accuracy properties are lost, but the computational costs per time step are reduced: s linear
equation systems with a constant coefficient matrix and different right hand sides need to be
solved, instead of s non-linear systems.

As mentioned, Rosenbrock methods are derived from the diagonally implicit Runge-Kutta
method. Starting with a nonlinear DIRK scheme

ki = h f

y0 +
i−1∑
j=1

aij kj + aii ki

 i = 1, ..., s, (2.13)

where the solution at the next time step is given by

ym+1 = ym +
s∑
i=1

bi ki, (2.14)

the method is applied to the differential equation y′ = f (y). Equation (2.13) is linearised around
gi = y0 +

∑i−1
j=1 aijkj , as shown in

ki = h f (gi) + h f ′ (gi) aii ki. (2.15)

In order to accelerate the computations, the Jacobians f ′ (gi) are replaced by J = f ′ (y0), such
that the Jacobian needs to be evaluated only once during the Rosenbrock computation (Calahan,
1968). Thus an s-stage Rosenbrock method is described with the following two relations:

ki = h f

y0 +
i−1∑
j=1

αij kj

+ hJ
i∑

j=1
γij kj , (2.16)
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12 Time integration schemes for fluid dynamics

and
ym+1 = ym +

s∑
j=1

bj kj , (2.17)

with the coefficients αij , γij and bi, which are generally shown in a Butcher tableau.

The linearisation step can be interpreted as performing one Newton iteration at every step
of the DIRK method, instead of a complete Newton loop. W-methods are obtained, if an ap-
proximation for the Jacobian is used. W-methods have additional order conditions. Krylov-ROW
schemes are applied, if a Krylov subspace method is used to compute a solution for the linear
system. Generally for nonlinear problems, Rosenbrock methods are less accurate and less robust
than ESDIRK methods.

For implementation purposes, Equations (2.16) and (2.17) can be rewritten by introducing the
new variables ui. This approach is applied, since a direct implementation of Equations (2.16) and
(2.17) requires the solution of a linear system with the matrix I − h γii J and the matrix-vector
multiplication J ·

∑
γij kj . This matrix-vector multiplication is avoided by introducing the new

variables ui:

ui =
i∑

j=1
γij kj i = 1, ..., s . (2.18)

If γij 6= 0 for j 6 i, then the matrix Γ = (γij) is invertible and ki can be determined from ui with

ki = 1
γii

ui −
i−1∑
j=1

cij uj , (2.19)

wherein C is given by
C = diag

(
y11
−1, ..., γss

−1
)
− Γ−1. (2.20)

Thus the following formulation of the Rosenbrock method is found for practical implementations,

( 1
hγii

I − J
)
ui = f

ym +
i−1∑
j=1

aijuj

+
i−1∑
j=1

(
cij
h

)
uj , i = 1, ..., s, (2.21)

where ym+1 is given by

ym+1 = ym +
s∑
j=1

mj uj , (2.22)

wherein the coefficients aij andmj are given by (aij) = (αij) Γ−1 and (m1, ...,ms) = (b1, ..., bs) Γ−1.
Appendix A lists the coefficients for two third order (ROS34PW2, ROSI2PW and ROS34PRW)
and a fourth order Rosenbrock method (RODASP) in Tables A.5, A.6, A.7 and A.8, respectively.

Concluding, Rosenbrock-type methods are presented as an alternative to ESDIRK time inte-
gration schemes. Rosenbrock-Wanner methods can be used, which use an approximation for the
Jacobian, thus effectively reducing the computational costs per time step. However, the accuracy
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2.4 Nonlinear systems of equations 13

and stability are also reduced per time step. When Krylov-ROW schemes are applied, a Krylov
subspace method is used to compute the solution for the linear system resulting from the Rosen-
brock scheme. Note that Rosenbrock schemes are generally less accurate than ESDIRK methods,
since stability and accuracy properties are lost after the linearisation of the implicit Runge-Kutta
scheme.

2.4 Nonlinear systems of equations

The implicit Runge-Kutta schemes lead to a nonlinear system of equations of the form

u = ũ + α∆t f̂ (u) , (2.23)

where u ∈ R is the unknown vector, α is a parameter, and ũ is a given vector. The function f̂ (u)
performs the temporal and spatial discretisation of the computational domain.

Multi grid methods are currently widely applied in engineering codes to solve this nonlinear
system of equations. In practice, the Full Approximation Scheme (FAS) is used to apply multi grid
directly to the nonlinear problem. A nonlinear iteration is employed to smooth the error. The full
system is solved on a coarse mesh, and the coarse-grid error is determined from this solution. The
coarse-grid correction is interpolated and applied on the fine mesh approximation for the nonlinear
problem (Van E. Henson, 2003).

Another approach is to use a linearisation scheme, namely Newton’s method, and consequently
use multi grid to solve the resulting linear system. Still another approach is to apply an inexact
Newton method to solve the nonlinear system of equations, which uses an iterative solver for the
linear system. This approach is used in this thesis and discussed in this section.

2.4.1 Newton’s method

The root problem
F (u) = 0, (2.24)

is solved by Newton’s method, which is also commonly called the Newton-Raphson method. The
following procedure is followed repeatedly until the convergence criteria are satisfied:

∂ F (u)
∂ u

∆u = −F (un)

un+1 = un + ∆ u, n = 0, 1, 2, 3, .... (2.25)
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14 Time integration schemes for fluid dynamics

The convergence criterion

||F (un+1)||2 6 τr ||F (u0)||2 + τa, (2.26)

is used to determine whether the Newton iterations have been converged. The relative error
tolerance τr and the absolute error tolerance τa are input parameters of the algorithm.

Note that Newton’s method assumes that the function F (u) is differentiable, and that the
initial iterate is “sufficiently near” the solution of the nonlinear problem. An advantage of Newton’s
method is that when the resulting linear equations are solved exactly, the method converges
quadratically. A drawback of Newton’s method is that slow convergence or stall can occur when
the initial iterate is not close to the solution of the nonlinear problem.

Since the initial iterate is derived from the solution at the previous time step, it is expected that
the assumption that the initial iterate is “sufficiently near” the solution of the nonlinear problem
holds for the test cases considered in this thesis. Besides, in case the initial iterate is not close to
the root, line search methods or trust region methods can be applied to increase the robustness of
the method (Kelley, 1995). Also, the procedure can be started with a number of nonlinear multi
grid iterations, followed by the Newton iterations. This approach has been used by Lucas (2010)
and Bijl and Carpenter (2005) for compressible flow and fluid-structure interaction problems in
order to reach fast nonlinear convergence.

Since an exact Jacobian may not available for the Navier-Stokes solver, and the resulting linear
system is iteratively solved, an inexact Newton method is used to solve the nonlinear system, which
is the subject of the following subsection.

2.4.2 Inexact Newton method

Inexact Newton methods use an approximate solution of the linear equation for the Newton step,
in which the step satisfies∣∣∣∣∣∣∣∣∂ F (u)

∂ u

∣∣∣
n

∆u + F (un)
∣∣∣∣∣∣∣∣ 6 ηk ||F (un)||

un+1 = un + ∆ u, n = 0, 1, 2, 3, ..., (2.27)

where the tolerance parameter ηk ∈ R is called the forcing term of the inexact Newton method.
Eisenstat and Walker (1994) discuss the choice of the forcing term of the inexact Newton method.
The efficiency of the Newton method depends on the choice of the forcing terms. Also, robustness
of the method can be affected by the choice of the forcing terms. In case the forcing terms are
chosen too strict, then over solving may occur, i.e. the linear system arising from the linearisation
step are solved to a precision far beyond what is necessary for a correct nonlinear iteration. In case
the forcing terms are chosen relatively large, slow convergence or even divergence of the Newton
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2.4 Nonlinear systems of equations 15

iterations may occur. It is shown that if ηk converges to zero fast enough, convergence of the
method is locally quadratic.

The following procedure is followed to determine the forcing terms, as Eisenstat and Walker
(1994) have proposed in their article. First the parameter ηkA is determined with

ηn
A = γ

||F (un)||2

||F (un−1)||2
, (2.28)

for a given parameter γ ∈ (0, 1]. If the sequence ηn
A is uniformly bounded away from one,

convergence of the method is quadratic. In order to start the sequence and bound it away from
one, the value of ηn is limited with

ηn
B =

{
ηmax, n = 0,
min

(
ηmax, ηk

A
)
, n > 0 . (2.29)

Eisenstat and Walker (1994) suggest to apply safeguarding in order to avoid volatile decreases
of the forcing term ηn by

ηn
C =


ηmax, n = 0,
min

(
ηmax, ηk

A
)
, n > 0, γ ηk−1

2 6 0.1
min

(
ηmax, max

(
ηk
A, γ ηk−1

2
))

n > 0, γ ηk−1
2 > 0.1

. (2.30)

The term γ ηn−1
2 is used as a criterion to determine whether ηn−1 is sufficiently large. ηn is not

decreased by more than a fraction of ηn−1.

In order to avoid over solving of the final step of Newton method, the norm of the current
nonlinear residual ||F (un)|| is compared to the nonlinear residual norm at which the iterations
would stop

τt = τa + τr ||F (un)|| . (2.31)

ηn is bounded from below by a constant multiple of τt
||F (un)|| . Kelley (1995) suggests to use

ηn = min
(
ηmax, max

(
ηk
C ,

0.5 τt
||F(un)||

))
, (2.32)

and with the parameter γ = 0.9.

To solve the linear system of the Newton iteration, an iterative solver is used, such as GMRES.
A Jacobian free version of Newton’s method can be formulated, which is the subject of the next
subsection.
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16 Time integration schemes for fluid dynamics

2.4.3 Jacobian-free Newton-Krylov method

Jacobian-free Newton-Krylov methods are a combination of Newton methods and Krylov subspace
methods to solve the Newton correction equations. The Jacobian-vector product links the Newton
method and the Krylov subspace method, which can be approximated with a finite difference
approach. For preconditioning of the Krylov iterations, an approximation of the Jacobian matrix
can still be required. The reader is referred to Knoll and Keyes (2004) for a comprehensive overview
of Jacobian-free Newton-Krylov methods. Lucas (2010) discusses the implementation details of
the used Jacobian-free Newton-Krylov solver.

As mentioned, the matrix vector products required by GMRES, which will be discussed in
Chapter 3, can be approximated with a finite difference quotient via

∂ F (u)
∂ u v ≈ F (u + εv)− F (u)

ε
, (2.33)

where the parameter ε is determined with

ε =
√
εmach
||v||2

, (2.34)

and where εmach is the machine precision. Here the approach of Qin et al. (2000) is followed to
determine the parameter ε. Cancellation errors can become a major problem if the parameter ε is
chosen too small. The use of Equation (2.34) has proven to be effective.

A second order approximation for the matrix-vector product can be used to increase the
robustness of the solver:

∂ F (u)
∂ u v ≈ F (u + εv)− F (u− εv)

2 ε . (2.35)

Note that the amount of computational work is increased, since two function evaluations are
necessary to determine the matrix-vector product, instead of one for the first order approximation
shown in (2.33). However, the number of Newton iterations necessary for convergence is decreased
in case of an SDIRK or ESDIRK time integration scheme (Knoll and Keyes, 2004). When the
Rosenbrock time integration is applied, the accuracy of the approximation of the solution of the
linear system is increased. During preliminary computations performed during this research project,
the use of this second order approximation of the matrix-vector product has shown to be necessary
when Rosenbrock schemes are used, since with the first order approximation computations crashed
due to function evaluations equal to NaN. Stability of the Rosenbrock scheme is still an issue for
relatively large time steps, but the robustness of the Rosenbrock scheme can be further increased
with the use of an adaptive step size selection algorithm, which is discussed in the following
section.
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2.5 Adaptive time step control 17

2.5 Adaptive time step control

Time step control is an important measure to increase the efficiency and robustness of a time
integration method. A constant time step often results in a large number of small steps, increasing
the computational costs of a simulation significantly. A simple approach for an adaptive time step
control method would be to compare the change of the solution of two subsequent time steps in
the L2-norm of the space-time interval. For Runge-Kutta and Rosenbrock schemes, an embedded
scheme can be used as an error estimator.

The numerical error needs to be determined for the adaptive step control algorithm. Often,
an absolute error is applied, as shown in

rn = ||ŵn −wn||, (2.36)

where ŵn and wn are two solutions at time step tn of different order. Hairer and Wanner (1996)
propose the error

rn =

√
1
N

∑(
wi − ŵi

δ + max {|wi|, |ŵi|}

)2
, (2.37)

where δ is a scaling factor, which is typically chosen in between 10−6 and 1. In the test cases
discussed in this thesis, Equation (2.36) is used to determine the numerical error.

2.5.1 Standard controller

The model for the error - step size relation is the most important for the design of the adaptive
step size selection algorithm (Gustafsson, 1991). The next time step can be chosen by using the
standard controller (Hairer and Wanner, 1996; Lang, 1999)

hn+1 = ρ

(
TOLt
rn

) 1
p

hn, (2.38)

where ρ denotes a safety factor, usually ρ = 0.8 or 0.9, TOLt > 0 represents a given tolerance,
p the order of the local error estimator, and hn+1 is the new time step. If the numerical error
rn at time step tn is bigger then the prescribed tolerance, then time step tn is rejected, and is
recomputed with a smaller step hn := hn+1. Notably, the standard controller is the simplest and
most common candidate for the model of the error - step size relation.

A disadvantage of the standard controller is that too many time steps are rejected (Lang,
1999). Gustafsson (1994) proposes to use more data from previous time steps to decide on the
new step size, as shown in the step size selection rule

hn+1 = ρ
hn

2

hn−1

(
TOLt rn−1

rn2

) 1
p

. (2.39)
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18 Time integration schemes for fluid dynamics

This approach has been thoroughly tested by John and Rang (2010) for several DIRK and Rosen-
brock schemes. John and Rang show that the computational efficiency and accuracy of the
solution highly depend on the tolerance TOLt for the adaptive time step control. The selection
of the tolerance depends on the used time integration scheme. Yet another approach is the use
of digital filters, as discussed in the following section.

2.5.2 Digital filters

A further improvement of the step size selection rule is the use of digital filters and limiters. The
application of digital filters and limiters has been shown to have a major impact on computational
stability (Söderlind and Wang, 2006a), contrary to the classical approach. Thus a small change
of the tolerance parameter TOLt only leads to a small change in the accuracy of the produced
solution, as well as on the work required to achieve that accuracy. The standard controller,
PI-controller and H211b digital filter are all covered by the generic step size recursion

hn+1 =
(
ε

rn

)β1 ( ε

rn−1

)β2 ( hn
hn−1

)−α2

hn, (2.40)

if the dynamics are limited to at most second order (Söderlind, 2003). Here ε is determined with
ε = ρ TOLt, where ρ again represents a safety factor. Table 2.5 shows the parameterisations of
three different controllers. Here p represents the order of the local error estimator. Note that
the PI-controller and the H221b digital filter are not self-starting. In actual implementations,
the procedure starts with the standard controller, and thereafter the PI-controller or digital filter
continues the process.

Table 2.5: Three first order adaptive controllers which can be used in the adaptive time step control
algorithm

p β1 p β2 α2 Name

1 - - Standard controller (Hairer and Wanner, 1996)
3
5 −1

5 - PI.4.2 controller (Gustafsson, 1994; Söderlind,

2002)
1
4

1
4

1
4 H211b digital filter (b = 4) (Söderlind, 2003)

2.5.3 Limiters and anti-windup

Smooth limiters can also be used to further improve the adaptive time step control algorithm.
Discontinuities are introduced in the step size ratio hn+1

hn
when the maximum step size increase

and decrease are limited (Söderlind and Wang, 2006b). By applying a smooth limiter this problem
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can be solved efficiently. The new step size is determined with hn+1 = ρn hn where ρn is given by

ρn =
(
ε

rn

)β1 ( ε

rn−1

)β2

ρn−1
−α2 . (2.41)

Although (2.41) is equivalent to (2.40), step size rejections may be reduced by basing the test on
the requested change ρ instead on the error. When the limiter

ρ̂n = 1 + κ arctan
(
ρn − 1
κ

)
, (2.42)

with hn+1 = ρ̂n hn is used to determine the time step, the previously mentioned discontinuities in
the step size change ratio hn+1

hn
are removed. The parameter κ determines the maximum step size

increase or reduction. The effect of the limiter is increased by decreasing the value of κ. Hence,
with a smaller value of κ, the interval where ρ̂ ≈ ρn is shortened. A common choice for κ is
κ = 1. Figure 2.1 shows a plot of ρ̂n for κ = 0.5, κ = 1.0 and κ = 2.0, giving an visual indication
of the effect of the limiter.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
ρn

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ρ̂
n

=
1

+
κ

a
rc

ta
n
( ρ

n
−

1
κ

)

k = 0.5

k = 1.0

k = 2.0

Figure 2.1: Plot of the smooth limiter ρ̂n = 1 + κ arctan
(
ρn − 1
κ

)
where κ = 0.5, κ = 1.0 and κ = 2.0

for a range of values for ρn.

The pseudo code for the complete controller is shown in Algorithm 2.1.

2.5.4 Tolerance scaling and calibration

In order to compare the computational efficiency of different time integration schemes, it is desir-
able to scale and calibrate the tolerance of the adaptive step size control algorithm. The control
algorithm should run in a tolerance proportional mode: when the tolerance is changed by one
order of magnitude, then the error of the solution should change by one order of magnitude. Also,

M. Sc. Thesis - AE5110 David Blom



20 Time integration schemes for fluid dynamics

Algorithm 2.1 Adaptive time step controller: the standard controller is combined with the digital
filter and the smooth limiter for a stable time integration

1: c1 = ε

r
2: if first time step or first step after successive rejects then
3: ρ = c1

1
k

4: else
5: ρ = c1

1
4 k · c0

1
4 k · ρ−

1
4

6: end if
7: ρ̂ = 1 + κ · arctan

(
ρ− 1
κ

)
8: c0 = c1

9: h = ρ̂ · h
10: if ρ̂ < 0.9 then
11: Time step is rejected. Recompute with new time step
12: end if

the different time integration schemes should deliver the same accuracy for the same tolerance
setting (Söderlind and Wang, 2006b).

The scaling transformation

TOLt
′ = TOLt

α−1
α

0 TOLt
1
α (2.43)

can be used to compare the computational efficiencies of the ESDIRK and Rosenbrock time
integration schemes (Söderlind and Wang, 2006b). TOLt

′ represents the tolerance parameter
used by the adaptive step size control algorithm, TOLt is the parameter specified by the user,
TOLt0 is the equivalence point determined during the calibration, and α is the measured order of
the adaptive step size control algorithm of the reference computations for the calibration.

2.5.5 Error criteria

Reliable error measurements are necessary in order to determine the accuracy of time step evalua-
tions. The standard approach is to use the ratio

(
ε

r

)
for the adaptive step size control algorithm.

The fixed resolution test and fixed scaling test are also used to judge the accuracy of a solution
after a time step evaluation. The fixed resolution test and fixed scaling test are shortly discussed.
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Fixed resolution test

The fixed resolution test is given by the inequality

|| l̂./d (wn,ρ) || 6 1, (2.44)

where the vector d (wn,ρ) is defined as

di (wn,ρ) = RTOLt |wni |+ ρi, (2.45)

where RTOLt is a predefined relative tolerance parameter and the vector ρ specifies the resolution
level of wni . l̂ is a given local error estimate, typically implemented as ŵn −wn for Runge-Kutta
and Rosenbrock schemes, thus subtracting the solutions of different orders of the time integration
schemes.

The error estimate is accepted if the inequality (2.44) is satisfied. The inclusion of the res-
olution level acts as a noise floor, typically a characteristic of the simulated problem. For fluid
dynamic simulations, a combination of a fixed resolution test and fixed scaling test can be used,
which is discussed next.

Fixed scaling test

The error estimate is accepted if the fixed scaling test

|| l̂./d (wn,η) || 6 TOLt (2.46)

is satisfied, where the vector d (wn,η) is defined as

di (wn,η) = |wni |+ ηi. (2.47)

Thus the norm depends on the solution wn, and the scaling ηi of each component of the solution
wni . The fixed scaling test measures relative accuracy for the different components of wn with
|wni | > ηi and absolute accuracy with |wni | < ηi.

For the simulations performed in this thesis a combination of the fixed resolution test and fixed
scaling test is used by using the vector di = RTOLt ( |wni |+ 1), thus enforcing the scale 1 with
RTOLt as the noise floor. Also, a purely relative error criterion is applied with di = TOLt |wni |
for the compressible flow test case. The new step size is determined by applying Equation (2.41),
which is adapted to apply the new error criterion, as shown below:

ρn =
(
||d./̂l ||n

)β1 (||d./̂l ||n−1
)β2

ρn−1
−α2 . (2.48)
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Concluding, an adaptive time step selection algorithm can be efficiently implemented for
Runge-Kutta schemes and Rosenbrock methods. By employing the embedded schemes, the error
of the solution can be efficiently approximated. Also, the use of digital filters and limiters ensures
computational stability, meaning that a small change of the tolerance parameter TOLt only leads
to a small change in the accuracy of the produced solution, as well as on the work required to
achieve that accuracy.

2.6 Nonlinear convection-diffusion equation

In order to compare the Rosenbrock time integration schemes with the implicit Runge-Kutta
schemes, several test problems have been used to verify the computational efficiency of the different
methods discussed earlier in this chapter. A nonlinear convection-diffusion equation is used as the
first test case, and is discussed in this section. A description of the problem is given, and the
performance of the different time integration schemes is discussed. Fixed time step studies and
adaptive time step studies have been performed for non-linear and linear convection-diffusion
problems.

2.6.1 Description of the nonlinear convection-diffusion problem

This first test case consists of a generalised nonlinear convection-diffusion equation:

ut = β un · ∇u+ α∇ · (um∇u) , x ∈ Ω := (0, 1)× (0, 1) , (2.49)

where u (x, y, 0) is given by
u (x, y, 0) = u0 (x, y) . (2.50)

The strength of the diffusion is determined by the parameter α ∈ R. The strength and the
direction of the convection is determined with

β = β̃

(
sin (γ)
cos (γ)

)
, (2.51)

where β̃ ∈ R is a user specified parameter, and γ determines the angle of the direction of the
convection. The degree of non linearity is determined with the parameters m and n. The initial
solution used for this test case is shown in Figure 2.2(a). The initial solution is one in the complete
domain, except on the square [0.1, 0.3] × [0.1, 0.3], where the initial value is 1.1. The values for
α, β and γ are set to α = 1, β = 200 and γ = 0.35π. The reference solution at the end of the
simulation is shown graphically in Figure 2.2(b) for n = m = 3.

A non-uniform mesh is used for the computations shown in this section. Preliminary computa-
tions showed that for a uniform mesh, the Krylov subspace solver finished in one or two iterations.
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2.6 Nonlinear convection-diffusion equation 23

As a result, the difference in computational time between Rosenbrock and ESDIRK was negligible.
As shown in Figure 2.2, the mesh is refined close to x = 0.5 and y = 0.5 resulting in cells with a
high aspect ratio.

x

0.0
0.2

0.4
0.6

0.8
1.0

y

0.0
0.2

0.4
0.6

0.8
1.0
1.00

1.02

1.05

1.08

1.10

(a) Initial solution for a convection-diffusion simulation.
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(b) Reference solution for a non-linear convection-
diffusion simulation (n = m = 3) at time t = 0.002.

Figure 2.2: Initial solution and reference solution for a non-linear convection-diffusion simulation (n =
m = 3). The reference solution has been obtained with ESDIRK5 and ∆t = 10−7. A non-uniform

mesh of size 50× 50 is used.

2.6.2 Performance of the time integration schemes

The performance of the different time integration schemes is discussed in this section. The effect
of the non linearity parameters is studied first. Thereafter, a series of fixed time steps simulations
have been performed in order to judge the computational efficiency of the different time integration
schemes. Also, an adaptive time step study is performed in order to investigate the influence of
the use of a time step control algorithm.

Incomplete LU factorisations are used as a preconditioner for the GMRES method, which is
used as the linear solver of the incomplete Newton-Krylov method, and to solve the stages of
the Rosenbrock scheme. The error E of one computation is determined by taking the root mean
square of the difference between the solution and the reference solution, and scaling with the total
number of cells N :

E = 1√
N

N∑
i=1

(
ui − uiref

)2
(2.52)

Effect of non linearity parameters on accuracy

A fixed time study has been performed for different settings of the parameters n and m, which
influence the degree of non linearity of the test problem. Figure 2.3 shows the results for the
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SDIRK, ESDIRK and Rosenbrock time integration schemes. The linear systems arising from the
Newton iterations, and the Rosenbrock stages are directly solved, thus no iterative error exists.
By changing the non linearity parameters, its effect on the accuracy and efficiency of the different
time integration schemes can be studied.

For the linear convection-diffusion case, the theoretical order of the different schemes is con-
firmed, which indicates that the SDIRK, ESDIRK and Rosenbrock schemes are correctly imple-
mented. Since a linear convection-diffusion problem is considered, the ESDIRK and Rosenbrock
schemes of the same order have the same error. For the non-linear cases, the error of the ESDIRK
and Rosenbrock schemes is different. The error of the ESDIRK time scheme is smaller than the
error of the Rosenbrock scheme of the same order. This is expected for the Rosenbrock schemes,
since by linearizing the DIRK scheme, as discussed in Section 2.3, some accuracy and stability
properties are lost. When the degree of non linearity is increased, the difference in error between
the ESDIRK and Rosenbrock schemes of the same order increases, as can be clearly seen by
comparing Figures 2.3(b) and 2.3(d).

Effect of the Newton-Krylov method and Krylov subspace method on accuracy and effi-
ciency

Another fixed time step study has been performed for the nonlinear convection-diffusion test case.
The effect of the use of an incomplete Newton-Krylov solver and a Krylov subspace method for the
ESDIRK and Rosenbrock schemes is investigated. The Eisenstat-Walker method has been used
for the Newton iterations to determine the optimal forcing term for the Krylov subspace method.
The tolerance setting for the Newton iterations TOLNK , and GMRES in case of the Rosenbrock
scheme TOLGMRES , has a significant influence on the computational stability and accuracy. The
accuracy and computational time for ESDIRK and Rosenbrock is compared graphically in Figure
2.4 for different tolerances for the Newton iterations and the GMRES algorithm. The nonlinear
convection-diffusion test case is simulated with n = m = 3.

When the tolerance TOLNK or TOLGMRES is chosen too large, the order of the time inte-
gration schemes reduces to zero for relatively small time steps. In order to increase the computa-
tional stability of the simulations, the tolerance for the Newton iterations (TOLNK) or GMRES
(TOLGMRES) has to be chosen more strict, as can be clearly seen in Figures 2.4(a), 2.4(c)
and 2.4(e). Note that the order of the ESDIRK schemes reduces to zero earlier compared to
the Rosenbrock schemes of the same order. When the tolerance for the Newton iterations or
GMRES algorithm is chosen strict enough, a reduction of order does not appear, in this case
for TOLNK = TOLGMRES = 10−6, and TOLGMRES = 10−4 for the third order Rosenbrock
schemes.

The Rosenbrock time integration schemes show a gain in computational efficiency compared to
ESDIRK for all the different cases considered. For the smallest tolerance, the gain in computational
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Figure 2.3: Fixed time study studies for SDIRK, ESDIRK and Rosenbrock time integration schemes for
the convection-diffusion problem with varying non-linearity settings. The linear systems arising from
the Newton iterations, and Rosenbrock stages are directly solved. The simulations are performed on

a non-uniform mesh (50× 50).
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efficiency is the greatest. The second order SDIRK scheme is computationally more efficient than
ESDIRK3 and ESDIRK4 for small accuracies. In case higher accuracies are needed, then the higher
order methods are preferred over SDIRK2. Comparing the third and fourth order Rosenbrock
schemes, the fourth order RODASP method has the greatest potential for use in a flow solver,
due to the significant gain in computational efficiency.
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Figure 2.4: Fixed time step study for the Newton-Krylov and Krylov subspace method comparing (E)SDIRK
and Rosenbrock schemes with different tolerance settings used for the Newton iterations and the

GMRES solver with n = m = 3.
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Effect of adaptive time step control on accuracy and computational stability

Besides the fixed time step studies, also the use of the adaptive time step algorithms has been
investigated. The classical controller and the digital filter combined with the smooth limiter and
time step rejections, as discussed in Sections 2.5.1 and 2.5.2, are used to simulate the nonlinear
convection-diffusion problem. For one simulation, the resulting error estimates and time step
history are shown in Figure 2.5. Time steps which are rejected are denoted with a red cross.

As shown in Figure 2.5, the error estimate is controlled effectively by the digital filter, and is
close to one for a large part of the simulation. The time step is increased by the controller, and
shows no discontinuities due to the fact that the smooth limiter is applied. The initial time step
is chosen relatively large for this simulation. Therefore, the first time steps are rejected. Note
that time steps are only rejected at the start of the simulation. Thereafter, the error estimate is
controlled and close to 1.0. Thus the remaining time steps are accepted resulting in an efficient
time integration.
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Figure 2.5: The error estimates and time steps for a non-linear convection-diffusion simulation. Rejected
time steps are indicated with a red cross.

The performance of the classical controller and the digital filter is compared with a tolerance
study of the adaptive time step control algorithm, as shown in Figure 2.6. A relatively large initial
time step is used to start the simulations. The classical controller does not include a step size
rejection algorithm, and is therefore not able to converge when strict tolerances are applied due to
the large initial time step. The digital filter shows good computational stability for the different
time integration schemes, meaning that a small change of the tolerance parameter only leads to
a small change in the accuracy of the solution.

The use of the fixed resolution test and fixed scaling test has been investigated, and shown to
have a negligible influence on the convergence behaviour of the different time integration schemes.
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The fixed resolution test has been used for the second test case, which is a uniform flow around
a cylinder, and has shown to be necessary due to the scaling of the variables. This is discussed in
Section 2.7.
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Figure 2.6: Comparison of two different adaptive time step control algorithms: the classical controller, and
the digital filter with the smooth limiter and step rejections. The nonlinear convection-diffusion test
case is simulated with n = m = 1 on a non-uniform grid. The tolerance used for the adaptive time
step selection is plotted versus the error of the simulations. The initial step size is chosen relatively

large.

Effect of adaptive time step control on accuracy and computational efficiency with varying
non linearity settings

The effect of the use of the digital filter for the time step selection on accuracy and computational
efficiency is studied for two different nonlinear convection-diffusion cases: n = m = 1 and n =
m = 3. Figure 2.7 shows the results for the tolerance studies of the adaptive step control algorithm,
comparing the efficiency of ESDIRK and Rosenbrock. The incomplete Newton-Krylov solver, and
the GMRES algorithm are used to solve the stages of the SDIRK, ESDIRK and Rosenbrock time
integration schemes. The tolerance of the Newton iterations and of GMRES depends on the
tolerance used for the adaptive time step selection algorithm. For the computations shown in this
subsection, the tolerances of the adaptive time step controller and the appropriate solvers of the
stages of ESDIRK and Rosenbrock are equal, thus TOLt = TOLNK = TOLGMRES .

From the graphs it follows that the use of the digital filter for the adaptive time step selection
results in good computational stability, i.e. a small change of the tolerance parameter TOLt leads
to a small change in the accuracy of the solution and also to a small change in the amount of
computational work.
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Also, comparing the convergence graphs of the different time integration schemes shows that
the error of the simulation at the same tolerance differs for the different schemes. For example when
RODASP is applied, the error of the solution is approximately one magnitude smaller in comparison
with SDIRK2, judging from Figures 2.7(a) and 2.7(c). Therefore, a tolerance calibration procedure
has been performed in order to have a better comparison of the computational efficiency of the
different time integration schemes.

The results of the nonlinear convection-diffusion test case n = m = 1 have been used to
determine the coefficients of the tolerance calibration via a least squares fit. The resulting tolerance
TOLt

′ is multiplied with a factor β in order to have similar accuracies for the different time
integration schemes at the end of the simulations. The used coefficients are shown in Table
2.6 with the equivalence point set to TOLt0 = 10−5. The results of the tolerance study after
calibration is shown in Figure 2.8.

Again, the two nonlinear convection-diffusion test cases n = m = 1 and n = m = 3 are
simulated. The convergence graphs for the different time integration schemes are now nearly on top
of each other. Comparing the computational efficiency of ESDIRK and Rosenbrock shows a gain
in efficiency for the Rosenbrock schemes. RODASP is the most computationally efficient scheme
in comparison with ROS34PW2, ROSI2PW, ROS34PRW, SDIRK2, ESDIRK3 and ESDIRK4.

Table 2.6: Coefficients determined after the tolerance calibration for the nonlinear convection-diffusion
case

Scheme α β

SDIRK2 0.99 1064
ESDIRK3 0.95 423
ESDIRK4 0.90 1267
ROS34PW2 0.95 2714
ROSI2PW 0.96 3734
ROS34PRW 0.94 1468
RODASP 0.91 15039
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Figure 2.7: Comparison of computational efficiency and accuracy of the different time integration schemes
with the digital filter used for the adaptive time step selection. Two non-linear convection-diffusion

case are simulated: n = m = 1 and n = m = 3.
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Figure 2.8: Tolerance scaling and calibration for two nonlinear convection-diffusion cases: n = m = 1 and
n = m = 3. The digital filter combined with the smooth limiter and time step rejection is used for
the adaptive step size selection. The results of the nonlinear convection-diffusion case n = m = 1

are used to determine the coefficients for the tolerance calibration.
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2.7 Uniform flow past a circular cylinder

Following the previous nonlinear convection-diffusion test case, the question remains how the
Rosenbrock time integration scheme compare to the ESDIRK scheme in terms of computational
efficiency and stability when applied to viscous flows. The second test case consists of a two-
dimensional flow around a cylinder. The circular cylinder is held fixed in a uniform flow field,
resulting in a vortex-street behind the cylinder. When the initial transient has been disappeared,
an unsteady periodic flow is present. This test case has been used by Bijl et al. (2002) and
Van Zuijlen (2006) to study the order of the ESDIRK schemes for laminar and turbulent flow.
The findings of this research are that the theoretical order and efficiency of the ESDIRK schemes
are confirmed for laminar flows. For turbulent flows, the order of the schemes reduces, but only
for a small amount at moderate Reynolds numbers. In Van Zuijlen (2006), the performance of the
ESDIRK schemes is compared with the BDF2 scheme. For this test case the time integration has
been performed more efficiently with the ESDIRK scheme in comparison with the second order
BDF2 scheme.

A fixed time step study and an adaptive time step study have been performed to study the
performance of ESDIRK and Rosenbrock for this test case. The simulations are performed with
the Reynolds-averaged Navier-Stokes solver Hexstream.

2.7.1 Description of the flow past a circular cylinder

The cylinder with diameter D is located on a fixed position in a uniform flow field with Mach
number M∞ = 0.3 and Reynolds number Re∞ = 1.0 · 103, simulating a laminar flow. The radius
of the cylinder is used as the characteristic length to determine the Reynolds number.

The computational domain consists of 2.5D upstream of the centre of the cylinder, 4.5D
above and below the cylinder centre, and 16.5D downstream of the centre of the cylinder. The
mesh is refined in twelve steps to obtain a highly refined region close to the cylinder and in the
wake downstream, resulting in a mesh with 10 608 cells. Close to the cylinder five extra layers of
body conformal cells are generated resulting in an accurate representation of the boundary layer.
The smallest cells which are located in the boundary layer, are of size 6.6 · 10−5D. Refinement
in the wake is performed, since the vortex street needs to be resolved accurately to obtain a good
accuracy for the simulations. The generated mesh in shown in Figure 2.10.

An initial solution for the convergence and tolerance studies is computed with the BDF method.
During this simulation the transient from the initial uniform flow to a periodic solution is obtained.
The solution at the end of this simulation is used as the initial solution for the time step convergence
study, and the adaptive tolerance study. By following this approach, the transient from the initial
flow condition is removed from the computations. The vertical velocity and pressure of the
reference computation is shown in Figure 2.10.

M. Sc. Thesis - AE5110 David Blom



34 Time integration schemes for fluid dynamics

(a) Computational mesh used for uniform flow around
a circular cylinder test case of the complete do-

main

(b) Computational mesh near the cylinder

Figure 2.9: Computational mesh used for the uniform flow around a circular cylinder case

(a) Reference simulation: vertical velocity (m/s) (b) Reference simulation: total pressure (Pa)

Figure 2.10: Vertical velocity and total pressure at the end of the simulation of the reference solution.
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2.7.2 Performance of the time integration schemes for the flow past a circular
cylinder

The performance of the ESDIRK and Rosenbrock time integration schemes is verified by performing
a fixed time step study, and an adaptive time step study. Again, the error of one simulation is
determined by taking the L2 norm of the difference between the solution and the reference solution,
and scaling with the total number of cells, as shown in Equation (2.52). The reference solution is
computed with the multi grid solver combined with ESDIRK5 with time step ∆t = 7.8126 · 10−6

until t = 0.02. The tolerance for the multi grid solver is set to the strict value TOLNMG = 10−8.

Effect of the Newton-Krylov method and Krylov subspace method on accuracy and effi-
ciency

A fixed time step study has been performed for the ESDIRK and Rosenbrock time integration
schemes, in order to compare the accuracy and efficiency of the used schemes. The nonlinear
multi grid solver and Jacobian-free Newton-Krylov solver are used to solve the implicit stages
of the ESDIRK scheme. GMRES is employed to solve the linear stages of the Rosenbrock time
integration schemes. As is also the case for the nonlinear convection-diffusion case, the Eisenstat-
Walker method is used to determine the forcing terms of the incomplete Newton-Krylov method,
in order to avoid over solving of the linear systems arising from the Newton iterations.

For the first time step study, the tolerance for the multi grid solver, JFNK solver and GMRES
solver in case of Rosenbrock is set to the strict value TOLNMG = TOLNK = TOLGMRES =
10−6, resulting in a stable time integration. The results for these simulations are shown graphically
in Figure 2.11. As can be seen in the four subplots of Figure 2.11, RODASP and ROS34PW2
have trouble converging for the time steps ∆t = 5.0 · 10−4 and ∆t = 6.25 · 10−5, respectively. An
explanation for this fact, is that the linear solver is stopped before the solution is converged, since
a maximum number of GMRES iterations is imposed. The convergence graph of ROS34PRW lies
almost on top of the results for the ESDIRK3 scheme.

The accuracy of the other computations performed with a Rosenbrock scheme lie close to the
computations performed with an ESDIRK scheme. The order of the fourth order schemes reduces
for small time steps, which is probably caused by the iterative error since a Newton-Krylov or
GMRES solver is used. Note that ROSI2PW is slightly less accurate for the two smallest time
steps in comparison with ESDIRK3 and ROS34PW2.

Besides these observations, the accuracy of the multi grid and JFNK solvers for the ESDIRK
scheme are approximately equal for this tolerance setting (TOLNK = TOLGMRES = 10−6).
For the tolerances TOLNK = TOLGMRES = 10−1 and TOLNK = TOLGMRES = 10−3, the
order of the time integration schemes reduces for small time steps, as shown in Figure 2.12. From
these figures it can be concluded that it is necessary to choose a relatively strict tolerance for
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the different solvers. Note that the multi grid approach shows a large reduction of the order for
TOLNK = TOLGMRES = 10−1, compared to the Jacobian-free Newton-Krylov solver. This
can be explained by the fact that one Newton iteration often reduces the residual of the implicit
system several orders in magnitude. In other words, the ESDIRK stages are solved to a higher
precision than the imposed tolerance setting, whereas this is generally not the case for the multi
grid algorithm or the Krylov subspace solver. It is important to note that RODASP is more
susceptible to order reduction in comparison with ROS34PW2, ROSI2PW and ROS34PRW.

Concluding, a gain in computational efficiency is observed for the Rosenbrock time integration
schemes in comparison with ESDIRK. However, the difference in computational efficiency is not
as large as for the convection-diffusion test case. The JFNK solver shows a significant increase in
computational efficiency compared to the multi grid solver, confirming the work of Lucas (2010).
The RODASP scheme outperforms the other time integration schemes in terms of efficiency, but
is also susceptible to order reduction when the tolerance for the GMRES algorithm is chosen too
large. ROS34PRW is more efficient that ESDIRK3, and is less sensitive to the GMRES tolerance
setting in comparison with RODASP.

David Blom M. Sc. Thesis - AE5110



2.7 Uniform flow past a circular cylinder 37

10−5 10−4 10−3 10−2

Time step [s]

10−8

10−7

10−6

10−5

10−4

10−3

10−2

E
rr

or
[-

]

ESDIRK3 NMG

ESDIRK4 NMG

ESDIRK3 JFNK

ESDIRK4 JFNK

ROS34PW2

ROSI2PW

ROS34PRW

RODASP

(a) Density

10−5 10−4 10−3 10−2

Time step [s]

10−8

10−7

10−6

10−5

10−4

10−3

10−2

E
rr

or
[-

]

ESDIRK3 NMG

ESDIRK4 NMG

ESDIRK3 JFNK

ESDIRK4 JFNK

ROS34PW2

ROSI2PW

ROS34PRW

RODASP

(b) Pressure

10−5 10−4 10−3 10−2

Time step [s]

10−7

10−6

10−5

10−4

10−3

10−2

10−1

E
rr

or
[-

]

ESDIRK3 NMG

ESDIRK4 NMG

ESDIRK3 JFNK

ESDIRK4 JFNK

ROS34PW2

ROSI2PW

ROS34PRW

RODASP

(c) Velocity component in x-direction

10−5 10−4 10−3 10−2

Time step [s]

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

E
rr

or
[-

]

ESDIRK3 NMG

ESDIRK4 NMG

ESDIRK3 JFNK

ESDIRK4 JFNK

ROS34PW2

ROSI2PW

ROS34PRW

RODASP

(d) Velocity component in y-direction

Figure 2.11: Uniform around a cylinder: fixed time step study comparing the accuracy of the ESDIRK and
Rosenbrock schemes. The error of the normalised density, pressure and velocity components is shown
for a range of time steps. The ESDIRK stages are solved with a nonlinear multi grid algorithm, and
with a Jacobian-free Newton-Krylov solver. The stages of the Rosenbrock scheme are solved with the
GMRES algorithm. The tolerance setting for these simulations is TOLNK = TOLGMRES = 10−6.
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Figure 2.12: Uniform flow around a cylinder: fixed time step study comparing the accuracy and computa-
tional efficiency of ESDIRK and Rosenbrock schemes with different tolerance settings applied for the
appropriate solvers. The ESDIRK stages are solved with a nonlinear multi grid algorithm (NMG),
and with a Jacobian-free Newton-Krylov solver (JFNK). The stages of the Rosenbrock schemes are
solved with an ILU preconditioned GMRES method. The error is determined by using the complete

solution vector.
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Effect of adaptive time step control on accuracy and computational stability for a uniform
flow around a cylinder

The application of the digital filter for the adaptive time step selection has been tested for a range
of time steps, in order to study the computational efficiency and accuracy of the Rosenbrock
and ESDIRK schemes. The digital filter is combined with the smooth limiter, fixed resolution
test and step size rejection. Figure 2.13 shows the results of the simulations performed with this
adaptive time step control algorithm. The Jacobian-free Newton Krylov solver is used to solve the
implicit stages of the ESDIRK scheme, and the GMRES method solves the linear systems of the
Rosenbrock stages. The tolerance for the JFNK solver, and the GMRES algorithm is determined
with TOLNK = TOLGMRES = c · TOLt, where c is c = 100, c = 10−2 and 10−4.

As can be seen in the different graphs, the use of an adaptive time step selection, and notably
the use of the digital filter results in good computational stability for the ESDIRK and Rosenbrock
solvers. For the RODASP scheme it is necessary to choose a strict tolerance for the GMRES
algorithm, which is also observed for the fixed time step study. For loose tolerances, a large
number of time steps are rejected, and small time steps are selected as a result. The third order
Rosenbrock schemes and the third and fourth order ESDIRK schemes show good computational
stability for the different tolerance settings.

Besides, the adaptive time control results in a large difference in accuracy for the same tolerance
setting comparing Rosenbrock and ESDIRK. For the Rosenbrock schemes, the accuracy of the
solution is more than one magnitude higher compared to ESDIRK3 and ESDIRK4. Therefore, a
tolerance calibration procedure has been carried out in order to have a good comparison of the
efficiency of the ESDIRK and Rosenbrock schemes.

The simulations performed with the adaptive time step selection algorithm show a significant
gain in efficiency for the Rosenbrock schemes in comparison with ESDIRK. The computations per-
formed with the calibrated tolerances confirm this result, as shown in Figure 2.14. The coefficients
are found via a least squares fit through the data points shown in Figure 2.13, and can be found
in Table 2.7. The equivalence point of the calibration is set to TOLt0 = 10−2. The convergence
graphs for the different time integration schemes are now close to each other, but still a difference
in accuracy is present between the different schemes at the same tolerance setting TOLt. For
this test case, the third and fourth order Rosenbrock time integration schemes show a significant
gain in computational efficiency compared to ESDIRK.

M. Sc. Thesis - AE5110 David Blom



40 Time integration schemes for fluid dynamics

10−4 10−3 10−2 10−1 100

Tolerance for adaptive time step control algorithm [-]

10−7

10−6

10−5

10−4

10−3

10−2

10−1

E
rr

or
[-

]
ESDIRK3 JFNK

ESDIRK4 JFNK

ROS34PW2

ROSI2PW

ROS34PRW

RODASP

(a) Accuracy for T OLNK = T OLGMRES = T OLt

102 103 104 105

Computational time [s]

10−7

10−6

10−5

10−4

10−3

10−2

10−1

E
rr

or
[-

]

ESDIRK3 JFNK

ESDIRK4 JFNK

ROS34PW2

ROSI2PW

ROS34PRW

RODASP

(b) Computational work for T OLNK =
T OLGMRES = T OLt

10−4 10−3 10−2 10−1 100

Tolerance for adaptive time step control algorithm [-]

10−7

10−6

10−5

10−4

10−3

10−2

10−1

E
rr

or
[-

]

ESDIRK3 JFNK

ESDIRK4 JFNK

ROS34PW2

ROSI2PW

ROS34PRW

RODASP

(c) Accuracy for T OLNK = T OLGMRES = 10−2 · T OLt

102 103 104 105

Computational time [s]

10−7

10−6

10−5

10−4

10−3

10−2

10−1

E
rr

or
[-

]
ESDIRK3 JFNK

ESDIRK4 JFNK

ROS34PW2

ROSI2PW

ROS34PRW

RODASP

(d) Computational work for T OLNK =
T OLGMRES = 10−2 · T OLt

10−4 10−3 10−2 10−1 100

Tolerance for adaptive time step control algorithm [-]

10−7

10−6

10−5

10−4

10−3

10−2

10−1

E
rr

or
[-

]

ESDIRK3 JFNK

ESDIRK4 JFNK

ROS34PW2

ROSI2PW

ROS34PRW

RODASP

(e) Accuracy for T OLNK = T OLGMRES = 10−4 · T OLt

102 103 104 105

Computational time [s]

10−7

10−6

10−5

10−4

10−3

10−2

10−1

E
rr

or
[-

]

ESDIRK3 JFNK

ESDIRK4 JFNK

ROS34PW2

ROSI2PW

ROS34PRW

RODASP

(f) Computational work for T OLNK = T OLGMRES =
10−4 · T OLt

Figure 2.13: Uniform around a cylinder: comparison of computational efficiency and accuracy of ESDIRK
and Rosenbrock schemes with the digital filter combined with a fixed resolution test used for the
adaptive time step selection. The tolerance for the JFNK solver, and the GMRES algorithm is
determined with TOLNK = TOLGMRES = c · TOLt where c is c = 100, c = 10−2 and c = 10−4.

The error is determined by using the complete solution vector.
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Figure 2.14: Uniform flow around a cylinder: comparison of performance of ESDIRK and Rosenbrock
schemes with tolerance scaling and calibration. The digital filter combined with the fixed resolution

test, smooth limiter, and time step rejection is used for the adaptive step size selection.

Table 2.7: Calibration coefficients for the different time integration schemes. The coefficients are deter-
mined with the results calculated for the uniform flow around a cylinder.

Scheme α β

ESDIRK3 0.75 222
ESDIRK4 0.70 171
ROS34PW2 1.01 1434
ROSI2PW 0.75 3192
ROS34PRW 1.08 1155
RODASP 0.97 6951

The time step histories and the error estimator histories for the ESDIRK3 scheme with
TOLNK = 1.6 · 10−6 and TOLt = 1.6 · 10−2 and for the ROS34PW2 computation with
TOLGMRES = 1.2 · 10−5 and TOLt = 1.3 · 10−1 are shown graphically in Figures 2.15 and
2.16, respectively. The first fifty time steps of both computations are shown in Figure 2.17.
These two simulations have similar accuracies, thus can be used to investigate the cause of the
large difference in computational efficiency between the Rosenbrock and ESDIRK time integration
schemes. The time step histories show a large difference in the number of time steps between the
ROS34PW2 and ESDIRK3 simulation. In case a time step is rejected for the ESDIRK3 scheme,
the following two or three steps are also rejected. Thereafter, the time step is slowly increased by
the digital filter, and a time step is again rejected. For ROS34PW2 less consecutive time steps
are rejected.
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Figure 2.15: Time step history and error estimator history for the ESDIRK3 scheme with TOLNK =
1.6 · 10−6 and TOLt = 1.6 · 10−2. Rejected time steps are indicated with red crosses.
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(a) Time step history for ROS34PW2
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Figure 2.16: Time step history and error estimator history for the ROS34PW2 scheme with TOLGMRES =
1.2 · 10−5 and TOLt = 1.3 · 10−1.
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Figure 2.17: The first fifty time steps for the ESDIRK3 scheme with with TOLNK = 1.6 · 10−6 and
TOLt = 1.6 · 10−2, and the ROS34PW2 scheme with TOLGMRES = 1.2 · 10−5 and TOLt =

1.3 · 10−1.
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2.8 Summary

Implicit Runge-Kutta and Rosenbrock time integration schemes are considered for the use in a
flow solver, and possibly also in a fluid-structure interaction solver. Implicit Runge-Kutta methods
are preferred over explicit RK methods, since large differences in length and time scales are
present when fluid flows are considered. Therefore, the time step is not constrained by stability
requirements, but rather by accuracy considerations. For third or higher order accuracy, ESDIRK
and Rosenbrock schemes are considered. ESDIRK schemes have advantageous properties, namely
for arbitrary high order the method remains L-stable, also s coupled systems of equations need to
be solved, versus s+ 1 coupled systems for the IRK, DIRK and SDIRK methods.

Rosenbrock schemes are derived from a DIRK method by following a linearisation procedure.
Therefore, stability and accuracy properties of the DIRK method are lost after the linearisation,
and a smaller time step is required for Rosenbrock methods compared to ESDIRK. However,
Rosenbrock-Wanner methods, which use an approximation for the Jacobian, have less computa-
tional costs per time step. Computational costs can further be reduced by reusing the precondi-
tioner for the s stages of the Rosenbrock scheme.

Adaptive time step control algorithms have been discussed shortly. By the using the embedded
methods of the Runge-Kutta or Rosenbrock schemes, the error of the solution can be efficiently
approximated. The use of a digital filter and limiter ensures computational stability, i.e. a small
change of the tolerance parameter only leads to a small change in the accuracy of the solution,
as well as on the work required to achieve that accuracy.

A nonlinear convection-diffusion equation is used to compare the performance of the Rosen-
brock time integration schemes with the implicit Runge-Kutta schemes. Also, a uniform flow
around a circular cylinder is simulated with a RANS solver in order to compare the computational
efficiency and accuracy of the Rosenbrock and ESDIRK schemes. Based on the observed order
and efficiency of the different time integration schemes, it is believed that the schemes are cor-
rectly implemented. A gain in efficiency is observed for the Rosenbrock time integration when
fixed and adaptive time steps are used to integrate the fluid dynamics equations, or the nonlinear
convection-diffusion equation. A large gain in computational efficiency is observed when adaptive
time steps are used. The difference in efficiency is explained by the fact that the Rosenbrock
schemes use less time steps to solve the governing equations.

The RODASP scheme outperforms the ESDIRK schemes in terms of computational efficiency,
but is also susceptible to order reduction when the tolerance TOLGMRES is chosen rather large.
The ROS34PRW scheme is also computationally more efficient in comparison with ESDIRK3, and
also has better stability properties in comparison with RODASP.

Combining an adaptive time step selection algorithm with the Rosenbrock time integration
schemes is a possible solution for problems caused by instability of the time integration scheme.
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Also, inaccuracies arising from slow convergence of the GMRES algorithm can be solved with
an adaptive time selection combined with step size rejection. For the test cases studied in this
chapter, the performance of the ESDIRK scheme is reduced in terms of computational time when
an adaptive time step selection algorithm is used, since a relatively large number of time steps are
rejected. Future research can focus on optimising the parameter κ of the adaptive step control
algorithm, in order to decrease the number of consecutive rejected time steps for the ESDIRK
time integration scheme.

David Blom M. Sc. Thesis - AE5110



Chapter 3

Krylov subspace enrichment

Several time integration methods have been discussed and studied in the previous chapter. Inexact
Newton methods and Rosenbrock-Wanner methods employ iterative methods to solve the linear
schemes arising from the two different linearisation steps. The GMRES algorithm which is used in
this thesis to solve the linear systems is extensively discussed in this chapter. The chapter starts
with some introductory remarks introducing Krylov subspace methods. Section 3.2 discusses the
main principles of Krylov subspace methods. Thereafter, restarted and truncated, and augmented
and deflated methods are the topics of Sections 3.3 and 3.4, respectively. The GMRES-E algorithm,
which reuses Krylov subspace vectors on consecutive GMRES cycles, is discussed in Section 3.5,
and thereafter the results of the simulations for the different test cases are reported. The chapter
concludes with a short summary explaining the main findings of the performed research.

3.1 Introductory remarks

Krylov subspace methods are being applied for the iterative solution of linear systems of equations
of the form

A x = b. (3.1)

Krylov subspace methods are extensively used to solve the systems arising from ordinary and partial
differential equations, including the Navier-Stokes equations. Several Krylov subspace methods
have been developed and extended during the last two decades. These new developments have
led to different versions of augmented, restarted, flexible, deflated, nested and inexact methods.
Blom (2012) gives an overview of these methods, indicating the applicability of the different
methods. The main result of this literature survey was that the GMRES algorithm is currently
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the best approach to solve the linear systems arising from the Newton iterations or the stages of
a Rosenbrock scheme. The content of this chapter is partly based on this literature survey.

The recently published book by Elman et al. (2005) gives an introduction into iterative linear
solvers, and the application of the solvers with finite elements. Saad (2003) gives a thorough
overview of iterative methods, covering also preconditioning techniques. Another reference for
matrix iterative analysis can be found in Varga (2000). The recent literature survey Simoncini and
Szyld (2007) is also a good reference for recent developments of Krylov subspace methods.

Good references are Saad (2003), Kelley (1995), Varga (2000), Greenbaum (1987) and Van der
Vorst (2003).

3.2 Krylov subspace methods

Krylov subspace methods build a solution for the linear system of equations given by Equation
(3.1). r0 = b−A x0 is the initial residual, and let Km be the Krylov subspace with dimension m
defined by

Km (A, r0) = span
{
r0,A r0,A2 r0, ..., Am−1 r0

}
. (3.2)

The m-th step of the iterative method provides the approximation xm in x0 + Km. The
Krylov subspaces are nested, that is Km ∈ Km+1. The approximation is of the form xm =
x0 + qm−1 (A) r0, where qm−1 is a polynomial of degree m− 1.

The residual rm = b−A xm is associated with the residual polynomial pm with pm (0) = 1,
as shown in

rm = b−A xm = r0 −A qm−1 (A) r0 = pm (A) r0. (3.3)

The set of polynomials p of degree at most m such that p (0) = 0 is denoted by Pm. The
approximation xm ∈ x0 + Km can be found by requiring xm to be the minimizer of a certain
functional. The GMRES method (Saad and Schultz, 1986) minimizes the 2-norm of the residual,
which is discussed in Section 3.2.2.

The procedure starts with the initial vector x0, the initial residual r0 = b−A x0, and at the
m-th step the vector xm in x0 +Km (A, r0) is obtained which satisfies a projection or minimizing
condition. rm = b − A xm is the residual at the m-th iteration step. The Petrov-Galerkin
condition is defined as follows:

rm ⊥ Lm, (3.4)

where Lm is a m-dimensional subspace. The Galerkin condition and the minimum residual con-
dition are two Petrov-Galerkin conditions for Lm = Km and Lm = AKm, respectively. Thus the
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following relation applies for a Galerkin condition:

rm ⊥ Km. (3.5)

The minimum residual condition is defined as shown in the following equation:

||rm|| = min
x∈x0+Km

||b−A x || . (3.6)

Note that any method for which the Petrov-Galerkin, Galerkin or minimum residual condition
holds, the method will stop in at most n steps, in exact arithmetic. This is a result of the nested
property of the Krylov subspaces. For practical implementations this result has little value, since
the storage and computational requirements are prohibitive.

3.2.1 Arnoldi procedure

The Arnoldi procedure constructs an orthonormal basis of the Krylov subspace (Simoncini and
Szyld, 2007). For symmetric matrices, the Arnoldi procedure is simplified and is named after
Lanczos (Lanczos, 1950).

An orthonormal basis {v1, v2, ..., vm} of the Krylov subspace Km (A, r0) is determined by
computing one vector during every iteration by evaluating A vk. This new vector is orthogonalised
with respect to the previous vectors v1, v2, ..., vk, and is also normalised. Therefore,

vk+1 hk+1,k = A vk −
k∑
j=1

vj hjk, (3.7)

where the coefficients hjk = 〈vj ,A vk〉 , j 6 k are constructed such that orthogonality is achieved.
hk+1,k is positive, and the new vector vk+1 has the property such that ||vk+1|| = 1. These vectors
are collected in the matrix Vm = [v1, v2, ..., vm]. The coefficients hjk are collected into the
upper Hessenberg matrix Hm+1,m with dimension (m+ 1) × m. Thus the Arnoldi relation is
found:

A Vm = Vm+1 Hm+1,m = Vm Hm + hm+1,m vm+1 emT , (3.8)

where emT is the k-th canonical basis vector in Rk. The matrix Hm contains the first m rows of
the upper Hessenberg matrix Hm+1,m, which can be written in mathematical terms as

Hm+1,m =
[

Hm

hm+1,m emT

]
. (3.9)

From Equation (3.8) it follows that the rank of the Hessenberg matrix Hm+1,m is equal to the rank
of A Vm. In other words, the upper Hessenberg matrix Hm+1,m has rank m if the new Krylov
subspace vector A Vm is linearly independent of the previous Krylov subspace vectors. Also note
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that for the case that hm+1,m = 0, the vectors v1, v2, ..., vm form an invariant subspace of the
matrix A, thus the solution of Equation (3.1) belongs to this subspace. Also, from Equation (3.8)
one obtains

Vm
T A Vm = Hm. (3.10)

It is important to note that in this description of the Arnoldi procedure, the standard Gram-
Schmidt orthogonalisation procedure is applied. In actual implementations, it is advised to apply
the modified Gram-Schmidt (MGS) procedure, since this approach is more stable (Golub and van
Loan, 1996). Paige et al. (2006) show that the modified Gram-Schmidt GMRES (MGS-GMRES)
method is backward stable.

The pseudo code for the Arnoldi-Modified Gram-Schmidt procedure is shown in Algorithm
3.1. In exact arithmetic, the Arnoldi method and the Modified Gram-Schmidt procedure and
mathematically equivalent. However, in the presence of round-off the modified Gram-Schmidt
procedure is more reliable (Saad, 2003).

Algorithm 3.1 Arnoldi-Modified Gram-Schmidt procedure (Saad, 2003)
1: Choose a vector v1 of norm 1
2: for j = 1→ m do
3: Compute wj = A vj
4: for i = 1→ j do
5: hi,j = (wj ,vi)
6: wj = wj − hi,j vi
7: end for
8: hj+1,j = ||wj ||2
9: if hj+1,j = 0 then

10: Stop
11: end if
12: vj+1 = wj

hj+1,j
13: end for

Saad (2003) discusses two further improvements of the Arnoldi procedure. The first improve-
ment applies double orthogonalisation. When the final vector wj is obtained at the end of the main
loop in Algorithm 3.1, the norm of this vector is compared with the initial vector wj , which equals
to ||A vj ||2. A second orthogonalisation is made in case the reduction falls below a beforehand
defined threshold.

The second improvement has originally been proposed by Walker (1988). From a numer-
ical point of view, the Householder algorithm has proven to be one of the most reliable or-
thogonalisation techniques. The Householder algorithm uses reflection matrices of the form
Pk = I − 2 wk wk

T to transform a matrix into upper triangular form. An orthogonal column
vi is obtained as P1 P2 ...Pi ei. P1, P2, ..., Pi are the previous Householder matrices. The
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resulting vector is multiplied by the matrix A. Thereafter the previous Householder transforms
are applied to this result. The next Householder transform is calculated from the resulting vector.

3.2.2 GMRES

The generalised minimal residual (GMRES) method is a Krylov subspace method proposed by
Saad and Schultz (1986). The projection condition (3.6) is applied, thus minimizing the residual
over all available vectors in the Krylov subspace Km (A, r0). Thus, xm is found such that

||rm|| = ||b−A xm || = min
x∈Km(A,r0)

||b−A x || . (3.11)

Usually, the 2-norm is used for the GMRES method. In the literature other norms for the minimi-
sation are also proposed (Simoncini and Szyld, 2007). It is important to note that the solution of
the least squares problem (3.11) is unique when A has full rank (Björck, 1996).

GMRES implements the solution of the least squares problem shown in (3.11) by using a
orthonormal basis of the Krylov subspace, which is produced by the Arnoldi process. Thus the
approximation xm is given by

xm = Vm ym, (3.12)

where ym ∈ Rm. By applying Equation (3.8), and with the relation Vm+1 e1 = v1 = b
β , one

obtains

rm = b−A xm = b−A Vm ym
= β v1 −Vm+1 Hm+1,m ym = Vm+1 (β e1 −Hm+1,m ym) , (3.13)

which can be written as
||rm|| = min

y∈Rm
||β e1 −Hm+1,m y || , (3.14)

since Vm+1 has orthonormal columns. For the matrix Hm+1,m, the following QR decomposition
is used:

Hm+1,m = Qm+1 Rm+1,m. (3.15)

The matrix Qm+1 has dimensions (m+ 1)× (m+ 1) and is orthogonal. Also

Rm+1,m =
[
Rm

0

]
, (3.16)

where the matrix Rm is upper triangular with dimensions m×m. A common implementation of
the QR decomposition shown in Equation (3.15) is with Given rotations such that only two entries
per step need to be computed and used to update the matrix Rm (Saad and Schultz, 1986; Saad,
2003). As a result of the QR decomposition the least squares problem shown in Equation (3.14)
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can be written as
||rm|| = min

y∈Rm

∣∣∣∣∣∣QT
m+1 β e1 −Rm+1,m y

∣∣∣∣∣∣ . (3.17)

Now, introduce
gm = Qm β e1 = (γ1, γ2, ..., γm, γm+1)T , (3.18)

then it follows from (3.17) that

||rm|| =
∣∣∣∣∣∣QT

m+1 β e1 −Rm+1,m ym
∣∣∣∣∣∣ = |γm+1| (3.19)

(Saad, 2003). In the literature, γm+1 is also denoted as ρm+1 (Simoncini and Szyld, 2007).
Implementations of the GMRES method use this result to check whether convergence of the
solution has been reached. It should be noted that Greenbaum (1997) has shown that the equality
|γm+1| = ||b−A xm|| may not hold in finite precision arithmetic.

For all methods which satisfy the minimum residual condition on nested subspaces, shown
in Equation (3.6), the sequence of residual norms ||rm|| is non-increasing. This is also the case
for the GMRES method. A disadvantage of the GMRES method is that is has long recurrences.
As the iterations proceed, the storage requirements grow due to the fact that the whole basis of
the Krylov subspace is needed for subsequent iterations. Truncated and restarted methods have
been proposed in the literature which provide solutions for this behaviour of the GMRES method.
These methods are discussed in Section 3.3.

The pseudo code for the GMRES method is shown in Algorithm 3.2, which includes left and
right preconditioning via the matrices M1 and M2. The only possibility of breakdown in the
GMRES method is in the Arnoldi loop. When wj = 0, or when hm+1,m = 0 during iteration step
j. For this situation, the procedure stops because the next Arnoldi vector cannot be generated.
However, as Saad (2003) shows, for a non singular matrix A, break down occurs for the GMRES
algorithm breaks only at step m, which means that hm+1,m = 0, if and only if the approximate
solution xm is exact.

For further information on the GMRES method, see references Saad and Schultz (1986), Saad
(2003) and Barrett et al. (1994). Saad (2003) also contains detailed information on preconditioning
techniques, which can be used to increase the computational efficiency of the GMRES algorithm.

3.3 Restarted and truncated methods

Krylov subspace methods based on the Arnoldi procedure for non-symmetric matrices are generally
expensive. For an accurate solution a large number of iterations may be necessary. As a conse-
quence, the Arnoldi matrix Vm becomes too large to be stored. The standard procedure consists
of restarting the Krylov subspace method when a maximum subspace dimension is reached. After
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Algorithm 3.2 Modified Gram-Schmidt GMRES procedure with left and right preconditioning
applied (Saad, 2003)

1: Compute r0 = M1
−1 (b−A x0), β = ||r0||2, and v1 = v0

β
2: for j = 1→ m do
3: Compute wj = M1

−1 A M2
−1 vj

4: for i = 1→ j do
5: hi,j = (wj ,vi)
6: wj = wj − hi,j vi
7: end for
8: hj+1,j = ||wj ||2
9: if hj+1,j = 0 then

10: Set m = j and go to 14
11: end if
12: vj+1 = wj

hj+1,j
13: end for
14: Define the (m+ 1)×m Hessenberg matrix Hm = {hi,j}16i6m+1,16j6m.
15: Compute ym = min

y∈Rm
||β e1 −Hm+1,m y ||2 and xm = x0 + M2

−1 Vm ym.

m iterations the procedure is stopped, and the current approximation xm is used as an initial
approximation. The overall procedure of the restarted methods for a maximum ‘maxit’ number of
restarts is shown in Algorithm 3.3.

Algorithm 3.3 Restarted Krylov subspace method (Simoncini and Szyld, 2007)
1: Given A, x0

i, b, m, maxit
2: while i < maxit do
3: Run m iterations of the chosen Krylov subspace method and get xmi

4: Test
∣∣∣∣rmi∣∣∣∣ =

∣∣∣∣b−A xmi
∣∣∣∣. If convergence reached then stop

5: Set x0
i+1 = xmi, i = i+ 1

6: end while

The advantage of restarted methods is that at most m iterations of the Arnoldi procedure
are performed. As a result, both the computational costs and memory allocations per outer
iteration are controlled. A disadvantage of the restarted method is that the optimality properties
are lost after the first restart, as is the case for GMRES. The overall process may not converge
and stagnate with

∣∣∣∣rmi+1∣∣∣∣ ≈ ∣∣∣∣rmi∣∣∣∣ for all i. It should be noted that in GMRES the residual
cannot increase in the outer iterations, since the inner GMRES step ensures that

∣∣∣∣rmi∣∣∣∣ 6 ∣∣∣∣r0
i
∣∣∣∣

for all i. If stagnation occurs, a simple solution would be to enlarge the maximum number of
inner GMRES iterations. It should be stressed that enlarging the subspace dimension m does not
always ensure faster convergence (Eiermann et al., 2000). Also, for large problems it may not be
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possible to choose a larger m, since the used dimension of the Krylov subspace is usually chosen as
the maximum dimension affordable. Dynamically selecting the number of inner GMRES iterations
may fix this problem (Joubert, 1994; Baker et al., 2009).

When restarting is applied, the GMRES residual is probably not the most efficient vector to
carry over to the new restart of the inner Krylov subspace method. The residual rmi is a linear
combination of the vectors v1, v2, ..., vm which form the basis of the Krylov subspace Km. If the
residual rmi is almost a multiple of v1, then at the following restart the starting vector r0

i+1 ≡ rmi

builds a Krylov subspace that is close to the previously build Krylov subspace. A natural strategy
to ensure that the subspace generate after restarting has maximum dimension is to impose that
the new direction vector has a non-negligible component onto vm+1. This requirement is actually
satisfied by the Full Orthogonalisation Method (FOM), since the residual rmi is a multiple of
vm+1.

Another approach to enrich the information carried over during the restart is to discard the
oldest vectors of the Krylov subspace basis. Thus, only the last j vectors of the basis are kept
orthogonal to each other. Then the recurrence is modified as follows:

hk+1,k vk+1 = A vk −
k∑

i= max{1,k−j+1}
hik vi. (3.20)

The basis for the Krylov subspace is updated after the first j steps, and after each iteration the
oldest vectors is replaced by last computed vector. Hence, the Arnoldi procedure is truncated.
The question remains whether keeping the latest basis vectors is a good choice. Augmented and
deflated methods discussed in the following section provide strategies to select ‘better’ vectors for
the basis of the Krylov subspace.

3.4 Augmented and deflated methods

Augmented and deflated methods have been developed to reduce the computational cost of solving
a linear system A x = b. The main idea of augmented and deflated methods is to determine an
approximation space of dimension m as the sum of two spaces with a smaller dimension, thus the
approximation space is spanned by the basis {v1, v2, ..., vk, w1, w2, ..., wm−k}. The standard
Arnoldi procedure is used to determine the vectors v1, v2, ..., vk, and the remaining vectors
w1, w2, ..., wm−k contain information saved from previous iterations, or are chosen beforehand
as is the case for the GMRES-E algorithm (Carpenter et al., 2010).

The algorithms show differences in the manner the vectors w1, w2, ..., wm−k are determined,
and also in the way the vectors are included in the approximation. Eiermann et al. (2000) perform
an analysis of the different techniques proposed in the literature. Note that Eiermann concludes
with the statement that the presented techniques cannot replace an effective preconditioning
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strategy. However, the algorithms can dramatically improve the performance of restarted GMRES
when the method is applied to a properly preconditioned linear system.

Morgan (1995) has proposed to compute the vectors w1, w2, ..., wm−k as approximate eigen-
vectors in the current approximation space. Thus, Ritz vectors are generated in the case of FOM,
and harmonic Ritz vectors when GMRES is applied. This method is useful for a problem with
small eigenvalues. Also, if GMRES is used for a problem with multiple right-hand sides, then the
harmonic Ritz vectors can be computed once and used for all of the right-hand sides.

Note that if the Ritz vectors or the harmonic Ritz vectors are used to approximate the eigenvec-
tors of the coefficient matrix A, then the subspace spanned by span {v1, v2, ..., vk, w1, w2, ..., wm−k}
is still a Krylov subspace generated by the matrix A, but a different starting vector is used. This
can be illustrated with a simple example. Let θ1 and θ2 be two harmonic Ritz values, with as-
sociated harmonic Ritz vectors w1 and w2. Therefore, A wj − θj wj = γj rm for j = 1, 2 for a
certain γj . Here rm is the GMRES residual of the current cycle. By setting s = γ2 w1 − γ1 w2,
and v1 = rm

||rm||
is the initial vector for the new GMRES cycle, the following relation is found:

span
{
s,A s, ..., Am−1 s

}
= span

{
w1, w2, v1, A v1, ..., Am−3 v1

}
. (3.21)

Morgan (2000, 2002) has introduced the concept of implicitly including the eigenvectors in
restarted GMRES. The enrichment vectors are included within the Krylov subspace during each
cycle. The success of an augmented approach depends on the matrix being not too far from
normal.

Besides the augmented approach which includes enrichment vectors into the approximation
space, another approach would be to explicitly deflate the eigenvector components and solve the
deflated problem. The problem to be solved for a non-symmetric matrix A is

(I−U S W?) A x = (I−U S W?) b, (3.22)

where S is determined with the relation S = (W? A U)−1, and the columns of the matrices
U and W span the approximate right and left invariant subspaces associated with a group of
‘undesired’ eigenvalues. However, if an exact invariant subspace of A is available, the residual
norm obtained with this approach is not smaller than that obtained by using the corresponding
augmented technique.

Another adaptive approach is based on the idea of translating a group of small eigenvalues by
means of a series of low-rank projections of the coefficient matrix of the form

Ã = A (I + u1 w?
1) · · · (I + uk w?

k) , (3.23)

where uj , wj are the right and left eigenvectors associated with the eigenvalues which are trans-
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lated. Hence, the Krylov subspace method is applied on Ã. For a restarted method, Ã is updated
at each restart. This can be seen as a preconditioning strategy.

Thus augmented and deflated methods show potential for acceleration of the convergence
of Krylov subspace methods when restarts are necessary. The GMRES-E algorithm also shows
promising results, and has been implemented and tested for the different test cases.

3.5 Generalised Krylov subspace method

As mentioned in the previous section, augmented and deflated methods show a good potential
for acceleration of the convergence of Krylov subspace methods in case restarts are necessary.
The GMRES-E algorithm designed by Carpenter et al. (2010) uses augmentation of the Krylov
subspace, and reuses information from previous GMRES(m) cycles. This approach is the subject of
this section, and has been implemented and tested for the different test cases discussed in Chapter
2. The theory behind the algorithm is discussed in depth, and the results of the simulations are
discussed.

3.5.1 GMRES with enrichment

The GMRES-E algorithm is designed to solve large, slowly varying linear systems:

Ai x = bi. (3.24)

The method consists of the conventional restarted GMRES algorithm where k enrichment vectors
are prepended to the Krylov subspace. The algorithm consists of four main elements:

1. Preprocessing of previous solutions: an optimal starting solution x0 is determined based on
previous solutions under the condition that the system matrix A is constant, i.e. Ai = Ai−1.

2. Selection of enrichment vectors: this element is performed for each consecutive GMRES
cycle, or when the current GMRES cycle is restarted. The eigenvalues which are inadequately
clustered by the preconditioner are selected and prepended to the Krylov subspace. These
eigenvalues contribute to poor convergence of the GMRES solver.

3. Data rotation and compression: the Arnoldi relationship Ai Sk = Vk Hk is constructed
for the selected enrichment vectors. In case the system matrix A is unchanged, an exist-
ing Arnoldi relationship of the previous GMRES cycle Ai Sm = Vm+1 Hm is rotated and
compressed.

4. Initialisation with Galerkin projection: the new starting residual r0
i is preprocessed in order

to ensure consistency with the current Arnoldi relation.
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Note that the convention is followed that matrices written with an over bar are non squares
matrices, and matrices without an over bar are square matrices.

3.5.2 Preprocessing of previous solutions

The first enhancement to the GMRES algorithm consists of the reuse of previous solutions for
linear systems where the system matrix A is equal to the previous systems. However, the right
hand side vector b is allowed to change for a small amount. By reusing the solutions from previous
linear systems, presumably an optimal starting solution and starting residual is chosen, thus hereby
improving the convergence of the GMRES algorithm.

Hence, it is assumed that i − 1 linear problems have been solved, where the system matrix
A remained unchanged. The current right hand side vector bi is projected onto the data space
span

{
b1, ..., bi−1} in order to determine b⊥i. Thus the vector bi is decomposed into bi =

b⊥i +
(
bi − b⊥i

)
.

Practical implementations solve the system Ai xi = bi−ri, instead of Ai xi = bi. Therefore,
the vector bi is projected onto the data space span

{
b1 − r1, ..., bi−1 − ri−1}. Summarising,

two vector spaces are defined:
Γi−1 =

[
x1, ..., xi−1

]
(3.25)

and
Ωi−1 =

[
b1 − r1, ..., bi−1 − ri−1

]
. (3.26)

Ωi−1 is orthogonalised such that
Ωi−1 = Θi−1 Hbr (3.27)

and [
Θi−1

]T
Θi−1 = I. (3.28)

With these definitions for Ωi−1 and Θi−1, the data from the previous problems can be described
as

A Γi−1 = Θi−1 Hbr. (3.29)

Hence the L2 optimal starting guess x0
i can be computed with

x0
i = x0

i + Γi−1 Hbr
−1
[
Θi−1

]T
r0, (3.30)

given the initial guess x0
i, and initial residual r0. The starting residual r0 can be determined with

r0 =
(
I −Θi−1

[
Θi−1

]T)
r0. (3.31)

The proof for these equations can be found in Carpenter et al. (2010).
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The advantage of this preprocessing step is that the solution to the problem A xi =
(
bi − b⊥i

)
is already available from the solution space span

{
x1, ..., xi−1}. The remaining problem which

need to be solved is A xi = b⊥i. Thus information from previous GMRES cycles is efficiently
reused to start the next GMRES solve. However, as mentioned before, this step can only be used
in case the system matrix A is constant. Therefore, Rosenbrock time integration schemes can
use this step to speed up the convergence of the GMRES algorithm, since the system matrix is
constant for the consecutive stages of the Rosenbrock scheme. Contrary to Rosenbrock schemes,
ESDIRK schemes combined with a nonlinear Newton solver cannot take advantage of this step,
since the Newton iterations change the system matrix.

3.5.3 Selection of enrichment vectors

Various different approaches can be used for the selection of the enrichment vectors. One approach
would be to use physical arguments to construct approximate eigenvectors. Nicolaides (1987)
derives algebraic deflation vectors which are used to deflate coarse-grid information. Another
approach would be to reuse the vectors which contributed significantly to the convergence of
previous iterations (De Sturler, 1999). The approach followed by Carpenter et al. (2010) and
which is also used in this thesis, is to identify the eigenvalues which are inadequately clustered by
the preconditioner. These eigenvalues contribute to poor convergence of the GMRES algorithm,
and are therefore used as enrichment vectors.

Determination of eigenvectors

Ritz-values and Ritz-vectors are commonly used to approximate the eigenvalues and eigenvectors
of the system matrix A (Morgan and Zeng, 1998). When the iterations of the GMRES algorithm
progresses, the accuracy of the approximation for the eigenvalues and eigenvectors of the system
matrix increases. The derivation for these Ritz-values and vectors starts with the non-symmetric
eigenvalue problem

(A− θ I) ζ = 0, (3.32)

where A is the system matrix, θ is an eigenvalue and ζ is the corresponding eigenvector. With a
Petrov-Galerkin projection technique, an approximate solution to the eigenvalue problem given by
Equation (3.32) can be found. Thus, Equation (3.32) is approximated with[

A− θ̆ I
]
Sm ξ̆m = 0, (3.33)

where Sm is the search space for an approximate eigenvector, and ξ̆m is an arbitrary vector which
combines the basis vectors in the search space Sm. Following the Petrov-Galerkin projection
technique, Equation (3.33) is constrained such that an approximation error that exists is orthogonal
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to the subspace A Sm. With the eigenpair
(
θ̃, ξ̃
)

, the resulting equation is

(A Sm)T
[
A− θ̃ I

]
Sm ξ̃m = 0. (3.34)

And with the definition Γ = (Vm+1)T Sm, the m × m generalised eigenvalue problem can be
described as {

A1 − θ̃A2
}
ξ̃m = 0, (3.35)

where A1 is given by A1 = Hm
T Hm and A2 is determined with A2 = Hm

T Γ. This generalised
eigenvalue problem be easily solved with the routine GGEVX of the software package LAPACK
(Netlib, 2012).

An equivalent harmonic Ritz eigenvalue problem can be formulated which has a decreased
condition number. By introducing he = Hm

−T em, the following formulation is found:{
A1 − θ̃A2

}
ξ̃m = 0, (3.36)

where A1 is given by A1 = Hm + (hm+1,m)2 he emT and A2 is determined by evaluating A2 =
(Vm)T Sm + (hm+1,m) he em+1

T Γ.

Selection of eigenvectors

With the harmonic Ritz-values and Ritz-vectors known, the optimal choice would be to select the k
smallest harmonic Ritz values in magnitude. The harmonic Ritz procedure is known to accurately
predict the small eigenvalues of the matrix A (Carpenter et al., 2010). For most cases, this is the
best choice, but exceptions do exist. When a preconditioner is used to speed up the convergence
of the iterative solver, the eigenvalues of the resulting system are clustered within the unit circle
with the centre at (1.0, 0.0) in the complex plane. In case eigenvalues are close to the origin, the
selection procedure regards them as problematic. Therefore, another selection criterion is needed
in case the eigenvalues are far removed from the origin.

Carpenter et al. (2010) propose four different selection criteria, by assigning a merit to each
eigenvector and eigenvalue pair. The values with the smallest merit are used for the Krylov
subspace enrichment. The merit functions are:

1. |ζj | =
√

(θr)2
j + (θi)2

j

2. |ζj | =
1√

(1− θr)2
j + (θi)2

j

3. |ζj | =
− (θr)j√

(1− θr)2
j + (θi)2

j
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4. |ζj | =

√
(−0.25− θr)2

j + (θi)2
j√

(1− θr)2
j + (θi)2

j

θr and θi represent the real and imaginary part of the eigenvalue θ.

Unfortunately, the choice of the merit function has a substantial influence on the performance
of the GMRES-E algorithm (Carpenter et al., 2010). The first function selects the Ritz values
based on the distance from the origin. The inverse distance from the point (1.0, 0.0) is used by the
second function. The third function selects the Ritz values based on their inverse distance from
the point (1.0, 0.0), and assigns a higher merit to the eigenvalues located in the left half-plane of
the complex plane. The last function selects Ritz values located outside of the unit circle, and
gives a higher merit to values located close to the point (−0.25, 0.0).

Note that the selection algorithm should be modified when a complex conjugate pair is selected.
In case the conjugate pair is assigned the ranks k and k + 1, then k − 1 vectors should be used
for the enrichment instead of k vectors.

The selected vectors are assembled in the matrix P̃k. For the complex conjugate pairs, Schur
vectors are used instead of the eigenvectors. When the Schur vectors are used, the column span
of P̃k is retained, and the matrix P̃k consists of real entries. The Schur vectors are determined
from the conjugate eigenvector pairs ξ̃n j , ξ̃n j+1 via the rotation[

ξ
′
n j

ξ
′
n j+1

]
= 1

2

[
1 1
i −i

] [
ξ̃n j
ξ̃n j+1

]
. (3.37)

As a last final step, the modified Gram-Schmidt algorithm is used on P̃k to produce the orthogonal
matrix Pk. The columns of Pk are no longer the eigenvectors of the harmonic Ritz problem, but
the column span of P̃k has not been changed.

Summarising, the selection of the enrichment vectors consists of a procedure to approximate the
eigenvalues and eigenvectors of the system matrix A with harmonic Ritz values and Ritz vectors.
The standard approach would be to select the harmonic Ritz values smallest in magnitude. Other
approaches are to select Ritz values based on their inverse distance to the point (1.0, 0.0) in the
complex plane. Finally, the orthogonal matrix Pk is calculated with the modified Gram-Schmidt
procedure applied on the selected harmonic Ritz vectors.

3.5.4 Data rotation and compression

The existing Arnoldi relation is rotated or compressed in preparation for the next GMRES cycle.
This step is performed in order to construct the Arnoldi relationship Ai Sk = Vk Hk for the
selected enrichment vectors. The matrix Pk contains the Ritz vectors which follow from the
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selection of the enrichment vectors. This rotation and compression step can only be used in case
the system matrix A is unchanged. When the system matrix A has been changed, for example
when Newton iterations are carried out to solve the root problem, then the selected enrichment
vectors need to be multiplied with the system matrix A via the Arnoldi procedure.

The previous Arnoldi Ai−1 Sn = Vn+1 Hn is right multiplied by the matrix Pk forming the
relation

A Sn Pk = Vn+1 Hn Pk. (3.38)

Thereafter, QR factorisations are used to decompose the matrix product Hn Pk into

Hn Pk = Qn Rk. (3.39)

Now, the matrices Sk and Vk are defined as

Sk = Sn Pk (3.40)

and
Vk = Vn+1 Qn. (3.41)

Hence, the compressed system is described with the relation

A Sk = Vk Rk, (3.42)

where the matrix Vk is orthogonal (Carpenter et al., 2010).

As mentioned, when the system matrix A has been changed, then the selected enrichment
vectors need to be left-multiplied with A to form the Arnoldi relationship Ai Sk = Vk Hk. The
standard Arnoldi procedure is used to construct the Arnoldi relationship Ai Sk = Vk Hk, as shown
in Algorithm 3.4.

3.5.5 Initialisation with Galerkin projection

The current residual needs to be included in the Krylov subspace, and the next iteration needs
to be started. The Galerkin projection technique is used to ensure consistency with the current
Arnoldi iteration.

Carpenter et al. (2010) show that the L2 optimal starting solution x0 can be constructed from
the vectors Sk and a starting guess x0 with

x0 = x0 + M2
−1 Sk Rk

−1 Vk
T r0. (3.43)
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Algorithm 3.4 Left multiplication of selected enrichment vectors with the system matrix A to
form the Arnoldi relationship Ai Sk = Vk Hk, with left and right preconditioning.

1: for j = 1→ k do
2: Compute wj = M1

−1 A M2
−1 (Sk)j

3: for i = 1→ j do
4: hi,j = (wj ,vi)
5: wj = wj − hi,j vi
6: end for
7: hj+1,j = ||wj ||2
8: if hj+1,j = 0 then
9: Stop

10: end if
11: vj+1 = wj

hj+1,j
12: end for
13: return Vk, Hk

The starting residual r0 can be determined with

r0 =
(
I−Vk Vk

T
)

r0. (3.44)

The new system A Sk = Vk+1 Rk is now ready to start the conventional GMRES algorithm
to generate a m− k dimensional Krylov subspace. Algorithm 3.5 shows the pseudo code for the
complete GMRES-E algorithm.

3.5.6 Implementation details of GMRES-E for ESDIRK and Rosenbrock time
integration schemes

The application of the GMRES-E algorithm differs per used time integration scheme. The most
important difference between the Rosenbrock and ESDIRK time integration schemes, is that the
system matrix for the Rosenbrock time integration scheme is constant for all stages, whereas the
system matrix for ESDIRK combined with a Newton-Krylov solver is not constant.

For the Rosenbrock time integration schemes, the four main elements of the GMRES-E method
can be used to speed up the convergence of the GMRES algorithm for the consecutive stages of
the Rosenbrock method. The system matrix of the Rosenbrock scheme is constant for all stages.
As a result, the solutions of the previous stages can be reused to speed up the convergence of a
new GMRES cycle. Also, data rotation and compression can be performed efficiently, since the
Arnoldi relationship of the previous GMRES-E cycle is still available from memory and can be
reused.
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Algorithm 3.5 GMRES(m) with q enrichment vectors to solve Aκ x = bκ with left and right
preconditioning applied (Carpenter et al., 2010)

1: while Nonlinear convergence criterion do
2: κ = κ+ 1
3: Construct Aκ and bκ, choose x0 and compute r0 = M1

−1 (b−Aκ x0)
4: if Aτ = ... = Aκ−1 = Aκ then
5: Project x and r0 onto A x[τ, ... , κ−1] = b[τ, ... , κ−1] for optimal initial x0 and r0
6: end if
7: while Linear convergence criterion do
8: Initialise Sκq with q enrichment vectors
9: if Restart then

10: Use problematic eigenvectors from Aκ

11: end if
12: if Same A, new bκ, and available memory then
13: Sκq = Sκ−1

m

14: end if
15: Construct the square Arnoldi relation Aκ Sq = Vq Hq

16: Orthogonalise r0 against Vq such that r̃0 ⊥ Vq

17: Compute β = ||r̃0||2; vq+1 = r̃0
β ; Hq+1,j = 0T , j = 1→ q

18: Set j = q + 1
19: while Convergence criterion and j < m do
20: j = j + 1
21: vj+1 = M1

−1 Aκ M2
−1 vj

22: for i = 0→ j do
23: H i,j = (vi, vj+1)
24: vj+1 = vj+1 −H i,j vi
25: end for
26: Hj+1,j = ||vj+1||2; vj+1 = vj+1

Hj+1,j
27: end while
28: Define S = [Sq, Vq+1→j ]
29: Compute y = min

y∈Rq

∣∣∣∣∣∣β eq −Hj y
∣∣∣∣∣∣; rj = Vj+1

[
β e−Hj y

]
30: xj = x0 + M2

−1 S y
31: Estimate problematic eigenvectors from Aκ Sj = Vj+1 Hj

32: if Linear convergence then
33: Save xκ and bκ as A x[τ, ..., κ] = b[τ, ..., κ]

34: Exit to nonlinear loop
35: else
36: Restart: x0 = xj and r0 = rj
37: end if
38: end while
39: end while
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In contrast to the Rosenbrock scheme, the ESDIRK time integration method uses an inexact
Newton-Krylov solver to solve the implicit stages. Since the system matrix A is changed at every
stage and at every Newton iteration, it is not possible to reuse the solutions of the previous stages.
Data rotation and compression can also not be performed efficiently if a new Newton iteration is
started, since the selected enrichment vectors need to be multiplied with the system matrix A via
the Arnoldi algorithm. As a consequence, the computational costs of including one enrichment
vector of a previous GMRES-E cycle into the Krylov subspace is equal to the computational cost
of one GMRES iteration, under the assumption that the computational costs of the remaining
steps of the GMRES-E method are negligible. However, in case the GMRES algorithm is restarted
during one Newton iteration, the selected enrichment vectors can efficiently be included into the
new Krylov subspace.

3.6 Nonlinear convection-diffusion equation

The same test cases which were used to judge the performance of the ESDIRK and Rosenbrock
time integration schemes are also used to study the effect of the enrichment of the Krylov subspace
on computational efficiency. In this section the results for the nonlinear convection-diffusion test
case are shown and discussed. Thereafter, Section 3.7 discusses the results for the uniform
flow past a circular cylinder case. The governing equation and further details on the nonlinear
convection-diffusion test case can be found in Section 2.6.

3.6.1 Influence of the number of Ritz vectors used for the Krylov subspace
enrichment

The influence of the number of enrichment vectors on the computational efficiency of the solver
is studied for several nonlinear convection-diffusion cases. The time integration is performed with
the fixed time step ∆t = 1.25 · 10−4 and tolerance TOLNK = TOLGMRES = 1.0 · 10−6 for the
Newton iterations and the GMRES algorithm. The results of the simulations are shown in Figures
3.1 and 3.2 for the ESDIRK schemes and Rosenbrock schemes, respectively. The total number
of GMRES iterations is scaled with the number of GMRES iterations with the standard GMRES
algorithm applied. The first selection criterion or classical selection criterion is used to select the
enrichment vectors for the simulations shown in this section, as shown in Section 3.5.3.

Judging from Figure 3.1, the use of the GMRES-E algorithm does not accelerate the conver-
gence of the GMRES algorithm in case the ESDIRK time integration scheme is used in combination
with an incomplete Newton-Krylov solver. For two and four enrichment vectors, the number of
GMRES iterations is approximately equal to the reference computations. For more than four en-
richment vectors, the number of GMRES iterations increases linearly indicating that the reuse of
Krylov subspace vectors does not accelerate the convergence of the GMRES algorithm, but rather
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3.6 Nonlinear convection-diffusion equation 63

has a negative effect on the performance of GMRES.

In contrast to ESDIRK, the number of GMRES iterations is decreased by at least 35 % for
the Rosenbrock time integration schemes, as shown in Figure 3.2. This indicates that the reuse
of Krylov subspace vectors does lead to an acceleration of the GMRES algorithm. The efficiency
of the algorithm increases for an increasing number of enrichment vectors. The efficiency of the
GMRES-E algorithm is reduced when the amount of non linearity is increased for this problem.
Also, the effect of the GMRES-E method depends on the used time integration scheme. The
inclusion of the enrichment vectors is the most effective in case the ROSI2PW scheme is used.

Summarising, the reuse of Krylov subspace vectors accelerates the convergence of the GMRES
algorithm in case the Rosenbrock time integration scheme is used. For an incomplete Newton-
Krylov solver this is not the case however. The inclusion of the enrichment vectors in the Krylov
subspace cause an increase of GMRES iterations for the ESDIRK schemes. For the Rosenbrock
schemes, an increasing number of enrichment vectors causes the number of GMRES iterations to
decrease.
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Figure 3.1: Nonlinear convection-diffusion case: influence of the number of Ritz vectors used for the
Krylov subspace enrichment on the number of GMRES iterations for the ESDIRK time integration
schemes. The total number of GMRES iterations is scaled with the number of GMRES iterations of

the standard GMRES algorithm. The simulations are run for two non linearity settings.
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Figure 3.2: Nonlinear convection-diffusion case: influence of the number of Ritz vectors used for the
Krylov subspace enrichment on the number of GMRES iterations for the Rosenbrock time integration
schemes. The total number of GMRES iterations is scaled with the number of GMRES iterations of

the standard GMRES algorithm. The simulations are run for various non linearity settings.
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3.6.2 Influence of selection criteria of the enrichment vectors on computational
efficiency

The influence of the used selection criteria is also studied for several nonlinear convection-diffusion
cases. The same settings for the time integration were used as for the research on the number
of enrichment vectors, namely ∆t = 1.25 · 10−4 and TOLNK = TOLGMRES = 1.0 · 10−6.
Sixteen enrichment vectors are included in the Krylov subspace between restarts of the GMRES-
E algorithm. The results of the simulations are shown in Figure 3.3 and 3.4 for ESDIRK and
Rosenbrock, respectively.

It is apparent from Figure 3.3 that the selection criteria does have an influence on the con-
vergence behaviour of the GMRES algorithm. However, the efficiency of the GMRES algorithm is
not increased when an ESDIRK time integration scheme is used for every selection criterion.

For the Rosenbrock time integration schemes, the performance of the GMRES-E algorithm with
different selection criteria is similar, except for the third selection criterion, as shown in Figure 3.4.
In case Ritz vectors are selected based on their inverse distance from the point (1.0, 0.0) in the
complex plane, the performance of GMRES is less in comparison with the other three selection
criteria.
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Figure 3.3: Nonlinear convection-diffusion case: influence of the selection criteria used for the Krylov
subspace enrichment on the number of GMRES iterations for the ESDIRK time integration schemes.
The total number of GMRES iterations is scaled with the number of GMRES iterations of the

standard GMRES algorithm. The simulations are run for various non linearity settings.
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Figure 3.4: Nonlinear convection-diffusion case: influence of the selection criteria used for the Krylov sub-
space enrichment on the number of GMRES iterations for the Rosenbrock time integration schemes.
The total number of GMRES iterations is scaled with the number of GMRES iterations of the

standard GMRES algorithm. The simulations are run for various non linearity settings.
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3.7 Uniform flow past a circular cylinder

The uniform flow around a cylinder test case has also been used to verify the performance of
the GMRES-E algorithm. A complete description of the mesh and computational settings can be
found in Section 2.7. The influence of the number of enrichment vectors and the used selection
criteria is studied for this test case. The ESDIRK time integration scheme is not considered in this
section, since preliminary computations showed that the use of the GMRES-E algorithm caused
an increase of GMRES iterations, as is also the case for the convection-diffusion test case.

The time integration is performed with the fixed time step ∆t = 2.5 · 10−4 and tolerance
TOLGMRES = 1.0 ·10−6 for the GMRES algorithm. The results of the computations are shown in
Figure 3.5 and 3.6. Figure 3.5 shows the amount of computational time, where the computational
time is scaled with the computational time for the standard GMRES algorithm. The number of
enrichment vectors is varied, and the used selection criterion is also varied as shown in the subplots
of Figure 3.5. The total number of GMRES iterations are shown in Figure 3.6.

As shown in Figure 3.5, the use of the GMRES-E algorithm leads to a decrease in computa-
tional time for the Rosenbrock time integration schemes. The preprocessing step has the biggest
impact on the total computational time. In case the fourth selection criterion is used, increasing
the number of enrichment vectors leads to a decrease in computational time except for ROSI2PW.
However, judging from the results for the other selection criteria, increasing the number of en-
richment vectors may also lead to an increase in computational time. For a large number of
enrichment vectors, the gain in computational efficiency seems to flatten out. This is caused by
the fact that the GMRES algorithm is already converged in less iterations than the number of
used enrichment vectors. Thus all the Krylov subspace vectors are reused by the algorithm.

When comparing the computational time with the number of GMRES iterations, it is unclear
which number of enrichment vectors and which selection criterion provides the best performance
improvement. Increasing the number of enrichment vectors may lead to a large increase in GMRES
iterations. The fourth selection criterion seems to produce the best results. However, it is unclear
whether this criterion should be used for other test cases.

3.8 Summary

The GMRES algorithm has been discussed to solve the linear system A x = b for application in a
flow solver. Besides the conventional GMRES algorithm, several approaches are discussed which
supposedly reduce the computational costs of the method, and reduce the number of iterations
needed to satisfy the convergence criteria.

GMRES is one of the most popular methods for solving non-symmetric systems. The method
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(c) Selection criteria 3
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Figure 3.5: Uniform flow around a cylinder case: influence of the number of enrichment vectors and the
used selection criteria on the total computational time for the Rosenbrock time integration schemes.
The total CPU time is scaled with the total CPU of the standard GMRES algorithm. The plots show

the results for the four selection criteria.
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Figure 3.6: Uniform flow around a cylinder case: influence of the number of enrichment vectors and the
used selection criteria on the total number of GMRES iterations for the Rosenbrock time integration

schemes. The plots show the results for the four selection criteria.
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is robust, i.e. the solution of the least squares problem always exists. GMRES does have full
recurrences since the basis of the Krylov subspace needs to be stored completely. Also, orthogo-
nalisation of new basis vectors becomes increasingly more expensive when the iterations proceed.
GMRES minimizes the residual norm, as a result the residual norm decreases monotonically and
the convergence is smooth.

The GMRES-E method uses augmentation of the Krylov subspace, and reuses information from
previous GMRES cycles in order to speed up the convergence of the GMRES solver. This method
is suitable for Rosenbrock time integration schemes, since the system matrix stays constant for
the consecutive stages of the ROW-method. Rosenbrock schemes utilise the complete GMRES-E
method, whereas ESDIRK schemes can only reuse Krylov subspace vectors of previous GMRES
cycles by performing a matrix vector multiplication increasing the computational costs significantly.

The nonlinear convection-diffusion problem and the uniform flow around a cylinder test case
are used to compare the performance of the GMRES-E algorithm with GMRES. The use of the
GMRES-E algorithm reduces the number of GMRES iterations and total computational time sig-
nificantly for the Rosenbrock time integration schemes. With an increasing number of enrichment
vectors, the efficiency of GMRES-E is increased as well for the nonlinear convection-diffusion test
case. The used selection criteria does not have a significant influence on the number of GMRES
iterations, except when the third criterion is used which has a negative influence on the perfor-
mance of GMRES. For the viscous test case, it is unclear which settings are optimal. The use of
the GMRES-E algorithm for ESDIRK time integration schemes is not advised, since the number
of GMRES iterations increased with an increasing number of enrichment vectors.
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Chapter 4

Conclusions and recommendations

4.1 Conclusions

The objective of the research project is to improve state-of-the-art unsteady flow solvers by compar-
ing high order Rosenbrock-Wanner time integration schemes with implicit Runge-Kutta schemes
for non linear convection-diffusion problems and viscous flows, as mentioned in the first chapter.
The main conclusions of the comparison of the different time integration schemes are summarised.
Thereafter, conclusions are given for the use of Krylov subspace enrichment in a flow solver.

4.1.1 Time integration schemes for fluid dynamics

A gain in efficiency is observed for the Rosenbrock-Wanner time integration schemes when fixed
and adaptive time steps are used to integrate the fluid dynamics equations, or the nonlinear
convection-diffusion equation. A large gain in computational efficiency is observed in case an
adaptive time step control algorithm is used. The ROW-schemes use less time steps in comparison
with ESDIRK to solve the governing equations. The Rosenbrock schemes introduce a decrease in
accuracy as is clearly observed for the convection-diffusion test case. This is also observed for the
viscous flow problem.

The RODASP scheme outperforms the ESDIRK schemes in terms of computational effi-
ciency, but is also susceptible to order reduction for loose tolerance settings for the linear solver.
ROS34PRW is also computationally more efficient than ESDIRK3, and is less susceptible to order
reduction compared with RODASP. However, it was necessary for the computations performed
in this thesis to use a second order finite difference quotient for the matrix vector product used
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by the Jacobian-free Newton-Krylov method when a Rosenbrock time integration scheme is used.
With a first order approximation, instabilities in the matrix vector product caused the GMRES
algorithm to diverge.

Combining an adaptive time step selection algorithm with the Rosenbrock time integration
schemes is a possible solution for problems caused by instability of the time integration scheme,
especially when relatively large time steps are desired for the time integration. However, for the two
test cases studied in this thesis, the computational efficiency of the Rosenbrock time integration
scheme is not improved. The computational efficiency of the ESDIRK scheme reduces with the
use of an adaptive time step control algorithm, due to a large number of time steps being rejected.

4.1.2 Krylov subspace enrichment

The reuse of the Krylov subspace vectors for the subsequent stages of the Rosenbrock time
integration scheme accelerates the converge of the GMRES solver for the non linear convection-
diffusion test case, and also for the uniform flow around a cylinder test case. The preprocessing
step of the GMRES-E algorithm has the biggest impact on the computational efficiency. By
increasing the number of enrichment vectors, the computational efficiency is further increased for
the convection-diffusion test case. The used selection criteria does not have a significant influence
on the convergence of the GMRES algorithm, except for the third criterion which is less efficient
than criteria 1, 2 and 4. It is unclear which number of enrichment vectors and selection criterion
results in the best performance for the viscous flow case.

The use of the GMRES-E algorithm for ESDIRK time integration schemes is not advised, since
the number of GMRES iterations increased with an increasing number of enrichment vectors. This
is caused by the fact that the system matrix A changes at every Newton iteration, and also at
every stage of the ESDIRK scheme.

4.2 Recommendations

Based on the outcome of the performed research some recommendations are given for further
research. The Rosenbrock-Wanner time integration schemes proved to be computationally more
efficient with ESDIRK time integration schemes for the cases considered in this thesis. So far
only laminar flows are studied. Therefore, the comparison of the different schemes in terms of
efficiency and accuracy for turbulent flows is a further step. Also, a grid convergence study needs
to performed since the test cases studied in this thesis are exactly solved in time, but inaccuracies
exist in space.

Rosenbrock time integration schemes combined with moving meshes is also not considered in
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this thesis. This is the next step if it is desired to employ a ROW-scheme in a fluid-structure
interaction simulation. It is advised to follow the same approach used in this thesis, namely to
first apply the method on a relatively simple test case such as a diffusion-convection problem.

Regarding the inclusion of enrichment vectors in the Krylov subspace, further tests are also
necessary to confirm the gain in efficiency for the GMRES-E algorithm. As mentioned, turbulent
flows are not considered in this thesis, and only one grid is used for the viscous test case. Also, it
may be possible to use the GMRES-E algorithm for the ESDIRK in case the Jacobian used by the
Newton-Krylov method is kept constant for the consecutive stages of the scheme. In this way, it
is possible to utilise all the elements of the GMRES-E algorithm.

Further research is also necessary for the selection of the enrichment vectors of the GMRES-E
algorithm. Probably with the use of an error estimator for the computed Ritz vectors, the perfor-
mance of GMRES-E can be improved.
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Appendix A

Butcher tableaus for the SDIRK, ESDIRK
and ROW schemes

The used coefficients for the SDIRK2, ESDIRK3, ESDIRK4, ESDIRK5, ROS34PW2, ROSI2PW2,
ROS34PRW and RODASP schemes can be found in Tables A.1 - A.8. The tables include the
embedded schemes of the different methods.

Table A.1: Butcher tableau for the method of Ellsiepen (SDIRK2), where α = 1 −
√

2/2, α̂ = 2 − 5
4
√

2
and α− α̂ = −1 + 3

4
√

2 (Ellsiepen, 1999).

α α 0

1 1− α α

bi 1− α α

b̂i 1− α̂ α̂

bi − b̂i α̂− α α− α̂
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Table A.2: Butcher tableau for ESDIRK3 (Kennedy and Carpenter, 2003)

c1 0 0 0 0

c2
1767732205903
4055673282236

1767732205903
4055673282236 0 0

c3
2746238789719
10658868560708 − 640167445237

6845629431997
1767732205903
4055673282236 0

c4
1471266399579
7840856788654 −4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236

bi
1471266399579
7840856788654 −4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236

b̂i
2756255671327
12835298489170 −10771552573575

22201958757719
9247589265047
10645013368117

2193209047091
5459859503100

Table A.3: Butcher tableau for ESDIRK4 (Kennedy and Carpenter, 2003)

c1 0 0 0 0 0 0

c2
1
4

1
4 0 0 0 0

c3
8611
62500 − 1743

31250
1
4 0 0 0

c4
5012029
34652500 − 654441

2922500
174375
388108

1
4 0 0

c5
15267082809
155376265600 − 71443401

120774400
730878875
902184768

2285395
8070912

1
4 0

c6
82889
524892 0 15625

83664
69875
102672 −2260

8211
1
4

bi
82889
524892 0 15625

83664
69875
102672 −2260

8211
1
4

b̂i
4586570599
29645900160 0 178811875

945068544
814220225
1159782912 − 3700637

11593932
61727
225920
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Table A.5: Set of coefficients for Rosenbrock ROS34PW2, a stiffly accurate W-method of order three for
PDAES of index one (Rang and Angermann, 2005).

γ = 4.3586652150845900× 10−1

α21 = 8.7173304301691801× 10−1 γ21 = −8.7173304301691801× 10−1

α31 = 8.4457060015369423× 10−1 γ31 = −9.0338057013044082× 10−1

α32 = −1.1299064236484185× 10−1 γ32 = 5.4180672388095326× 10−2

α41 = 0.0000000000000000× 10+0 γ41 = 2.4212380706095346× 10−1

α42 = 0.0000000000000000× 10+0 γ42 = −1.2232505839045147× 10+0

α43 = 1.0000000000000000× 10+0 γ43 = 5.4526025533510214× 10−1

b1 = 2.4212380706095346× 10−1 b̂1 = 3.7810903145819369× 10−1

b2 = −1.2232505839045147× 10+0 b̂2 = −9.6042292212423178× 10−2

b3 = 1.5452602553351020× 10+0 b̂3 = 5.0000000000000000× 10−1

b4 = 4.3586652150845900× 10−1 b̂4 = 2.1793326075422950× 10−1

Table A.6: Set of coefficients for Rosenbrock ROSI2PW and its embedded method, a stiffly accurate
W-method of order three for PDAES of index two (Rang and Angermann, 2006).

γ = 4.3586652150845900× 10−1

α21 = 8.7173304301691801× 10−1 γ21 = −8.7173304301691801× 10−1

α31 = −7.9937335839852708× 10−1 γ31 = 3.0647867418622479× 10+0

α32 = −7.9937335839852708× 10−1 γ32 = 3.0647867418622479× 10+0

α41 = 7.0849664917601007× 10−1 γ41 = −1.0424832458800504× 10−1

α42 = 3.1746327955312481× 10−1 γ42 = −3.1746327955312481× 10−1

α43 = −2.5959928729134892× 10−2 γ43 = −1.4154917367329144× 10−2

b1 = 6.0424832458800504× 10−1 b̂1 = 4.4315753191688778× 10−1

b2 = −3.6210810811598324× 10−32 b̂2 = 4.4315753191688778× 10−1

b3 = −4.0114846096464034× 10−2 b̂3 = 0.0000000000000000× 10+0

b4 = 4.3586652150845900× 10−1 b̂4 = 1.1368493616622447× 10−1
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Table A.7: Set of coefficients for Rosenbrock ROS34PRW and its embedded method, a stiffly accurate
W-method of order three for PDAES of index two (Rang, 2013).

γ = 4.3586652150845900× 10−1

α21 = 8.7173304301691801× 10−1 γ21 = −8.7173304301691801× 10−1

α31 = 1.4722022879435914× 10+0 γ31 = −1.2855347382089872× 10+0

α32 = −3.1840250568090289× 10−1 γ32 = 5.0507005541550687× 10−1

α41 = 8.1505192016694938× 10−1 γ41 = −4.8201449182864348× 10−1

α42 = 5.0000000000000000× 10−1 γ42 = 2.1793326075422950× 10−1

α43 = −3.1505192016694938× 10−1 γ43 = −1.7178529043404503× 10−1

b1 = 3.3303742833830591× 10−1 b̂1 = 2.5000000000000000× 10−1

b2 = 7.1793326075422947× 10−1 b̂2 = 7.4276119608319180× 10−1

b3 = −4.8683721060099439× 10−1 b̂3 = −3.1472922970066219× 10−1

b4 = 4.3586652150845900× 10−1 b̂4 = 3.2196803361747034× 10−1
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Table A.8: Set of coefficients for Rosenbrock RODASP and its embedded method, a stiffly accurate
method of order four for PDAES of index one (John and Rang, 2010).

γ = 2.5000000000× 10−1

α21 = 7.5000000000× 10−1 γ21 = −7.5000000000× 10−1

α31 = 8.6120400814× 10−2 γ31 = −1.3551200000× 10−1

α32 = 1.2387959919× 10−1 γ32 = −1.3799200000× 10−1

α41 = 7.7403453551× 10−1 γ41 = −1.2560800000× 10+0

α42 = 1.4926515495× 10−1 γ42 = −2.5014500000× 10−1

α43 = −2.9419969046× 10−1 γ43 = 1.2209300000× 10+0

α51 = 5.3087466826× 10+0 γ51 = −7.0731800000× 10+0

α52 = 1.3308921400× 10+0 γ52 = −1.8056500000× 10+0

α53 = −5.3741378117× 10+0 γ53 = 7.7438300000× 10+0

α54 = −2.6550101103× 10−1 γ54 = 8.8500300000× 10−1

α61 = −1.7644376488× 10+0 γ61 = 1.6840700000× 10+0

α62 = −4.7475655721× 10−1 γ62 = 4.1826600000× 10−1

α63 = 2.3696918469× 10+0 γ63 = −1.8814100000× 10+0

α64 = 6.1950235906× 10−1 γ64 = −1.1378600000× 10−1

α65 = 2.5000000000× 10−1 γ65 = −3.5714300000× 10−1

b1 = −8.0368370789× 10−2 b̂1 = −1.7644376488× 10+0

b2 = −5.6490613592× 10−2 b̂2 = −4.7475655721× 10−1

b3 = 4.8828563004× 10−1 b̂3 = 2.3696918469× 10+0

b4 = 5.0571621148× 10−1 b̂4 = 6.1950235906× 10−1

b5 = −1.0714285714× 10−1 b̂5 = 2.5000000000× 10−1

b6 = 2.5000000000× 10−1 b̂5 = 0.0000000000× 10+0
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