

Delft University of Technology

An Empirical Evaluation of Feedback-Driven Software Development

Beller, Moritz

DOI
10.4233/uuid:b2946104-2092-42bb-a1ee-3b085d110466
Publication date
2018
Document Version
Final published version
Citation (APA)
Beller, M. (2018). An Empirical Evaluation of Feedback-Driven Software Development. [Dissertation (TU
Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:b2946104-2092-42bb-a1ee-
3b085d110466

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:b2946104-2092-42bb-a1ee-3b085d110466
https://doi.org/10.4233/uuid:b2946104-2092-42bb-a1ee-3b085d110466
https://doi.org/10.4233/uuid:b2946104-2092-42bb-a1ee-3b085d110466

Moritz Beller

AN EMPIRICAL EVALUATION OF
FEEDBACK-DRIVEN

SOFTWARE DEVELOPMENT

An Empirical Evaluation of Feedback-Driven
Software Development

An Empirical Evaluation of Feedback-Driven
Software Development

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen
op vrijdag 23 november 2018 om 15.00 uur

door

Moritz Marc BELLER

Master of Science in Computer Science,
Technische Universität München, Duitsland,

geboren te Schweinfurt, Duitsland.

Dit proefschrift is goedgekeurd door de
promotoren: Dr. A.E. Zaidman, Prof. dr. A. van Deursen
copromotor: Dr. ir. G. Gousios

Samenstelling promotiecommissie:
Rector Magnificus, voorzitter
Prof. dr. A. van Deursen, Technische Universiteit Delft
Dr. A.E. Zaidman, Technische Universiteit Delft
Dr. ir. G. Gousios, Technische Universiteit Delft

Onafhankelijke leden:
Prof. dr. ir. G.J.P.M. Houben, Technische Universiteit Delft
Prof. dr. P. Runeson, Lund Universitet, Sweden
Dr. Th. Zimmermann, Microsoft Research,

United States of America
Prof. dr. D. Spinellis, Athens University of Economics and Business,

Greece
Prof. dr. ir. E. Visser, Technische Universiteit Delft, reservelid

Prof. dr. D. Spinellis has contributed to the end phase of writing Chapter 6.

The work in the thesis has been carried out under the auspices of the research school
IPA (Institute for Programming research and Algorithmics) and was financed by the Ned-
erlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), project TestRoots, grant
number 016.133.324.

Keywords: Feedback-Driven Development (FDD), Developer Testing, Empirical
Software Engineering, Continuous Integration

Printed by: ProefschriftMaken, www.proefschriftmaken.nl

Cover: Cloud of ‘2,443 points’ by Zsófia Varga

The author set this thesis in LATEX using the Libertinus and Inconsolata fonts.

ISBN 978-94-6380-065-5
An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

I [...] like to give the maximum in everything I do. The maximum I have. The maximum I
can give. I am not perfect. But if I do something, I do it [as best I can].

Reinhold Messner

vii

Contents

Summary xi

Samenvatting xiii

Acknowledgments xv

1 Introduction 1
1.1 Background & Context . 2

1.1.1 A Model of Feedback-Driven Development. 2
1.1.2 The Case for FDD in a Collaborative Coding World. 5

1.2 Feedback-Driven Development in Practice 6
1.3 Research Goal and Questions. 8
1.4 Research Methodology . 8

1.4.1 Research Method Categorization 9
1.4.2 Enablement of Large-Scale Studies 10
1.4.3 Ethical Implications . 11

1.5 Replicability, Open Science & Source . 12
1.5.1 Open Data Sets . 12
1.5.2 Open-Source Contributions . 13

1.6 Outline & Contribution . 14
1.6.1 Thesis Structure . 16
1.6.2 Other Contributions . 18

2 Analyzing the State of Static Analysis 21
2.1 Related Work. 23

2.1.1 Automatic Static Analysis Tools 23
2.1.2 Defect Classifications . 23

2.2 Research Questions . 24
2.3 Prevalence Analysis (RQ I.1) . 25

2.3.1 Methodology . 25
2.3.2 Results . 26

2.4 General Defect Classification (GDC) . 27
2.5 Configuration & Evolution (RQ I.2, RQ I.3) 28

2.5.1 Study Design . 29
2.5.2 Methods . 29
2.5.3 Study Objects . 31
2.5.4 Results . 32

2.6 Discussion . 36
2.6.1 Results . 36
2.6.2 Threats to Validity . 39

viii Contents

2.7 Tool Construction UAV. 40
2.7.1 Introduction . 40
2.7.2 User Story . 41
2.7.3 Related Work. 41
2.7.4 Implementation . 43
2.7.5 Evaluation . 46
2.7.6 Development Roadmap. 47

2.8 Future Work & Conclusions . 48

3 The Last Line Effect Explained 51
3.1 Study Setup . 54

3.1.1 Study Design 𝐶1: Spread and Prevalence of the Last Line Effect
within Micro-Clones . 54

3.1.2 Study Design 𝐶2: Analyzing Reasons Behind the Existence of the
Last Line Effect. 55

3.1.3 Study Objects . 56
3.1.4 How to Replicate This Study . 56

3.2 Methods . 56
3.2.1 Inaptness of Current Clone Detectors 56
3.2.2 How to Find Faulty Micro-Clones Instead 57
3.2.3 Inferring the Origin of an Erroneous Micro-Clone Instance. 57
3.2.4 Putting Commit Sizes in Perspective 59

3.3 Results . 59
3.3.1 Overview Description of Results 59
3.3.2 In-Depth Investigation of Findings 60
3.3.3 Statistical Evaluation . 63
3.3.4 Origin of Micro-Clones. 64
3.3.5 Developer Interviews. 66
3.3.6 Usefulness of Results . 69

3.4 Discussion . 69
3.4.1 Technical Complexity & Reasons 70
3.4.2 Psychological Mechanisms & Reasons 70
3.4.3 Threats to Validity . 72

3.5 Related Work. 74
3.6 Future Work & Conclusion . 75

4 Developer Testing in the IDE: Patterns, Beliefs, and Behavior 77
4.1 Study Infrastructure Design . 79

4.1.1 Field Study Infrastructure . 79
4.1.2 WatchDog Developer Survey & Testing Analytics 81
4.1.3 IDE Instrumentation . 84

4.2 Research Methods . 88
4.2.1 Correlation Analyses (RQ III.1, RQ III.2) 88
4.2.2 Analysis of Induced Test Failures (RQ III.3) 88
4.2.3 Sequentialization of Intervals (RQ III.3, RQ III.4) 89
4.2.4 Test Flakiness Detection (RQ III.3) 89

Contents ix

4.2.5 Recognition of Test-Driven Development (RQ III.4). 89
4.2.6 Statistical Evaluation (RQ III.1–RQ III.5) 92

4.3 Study Participants . 92
4.3.1 Acquisition of Participants . 92
4.3.2 Demographics of Study Subjects 93
4.3.3 Data Normalization . 95

4.4 Results . 95
4.4.1 RQ III.1: Which Testing Patterns Are Common In the IDE?. 95
4.4.2 RQ III.2: What Characterizes The Tests Developers Run In The

IDE? . 97
4.4.3 RQ III.3: How Do Developers Manage Failing Tests? 98
4.4.4 RQ III.4: Do Developers Follow TDD In The IDE? 101
4.4.5 RQ III.5: How Much Do Developers Test In The IDE?. 102

4.5 Discussion . 103
4.5.1 RQ III.1: Which Testing Patterns Are Common In the IDE?. 104
4.5.2 RQ III.2: What Characterizes The Tests Developers Run? 105
4.5.3 RQ III.3: How Do Developers Manage Failing Tests? 106
4.5.4 RQ III.4: Do Developers Follow TDD? 108
4.5.5 RQ III.5: How Much Do Developers Test? 110
4.5.6 A Note On Generality And Replicability 112
4.5.7 Toward A theory of Test-Guided Development 112

4.6 Threats to Validity . 113
4.6.1 Limitations . 113
4.6.2 Construct Validity . 114
4.6.3 Internal Validity . 114
4.6.4 External Validity . 115

4.7 Related Work. 116
4.7.1 Related Tools and Plugins . 116
4.7.2 Related Research . 116

4.8 Conclusion . 117

5 Oops, My Tests Broke the Build: An Analysis of Travis CI 119
5.1 Background . 122

5.1.1 Related Work. 122
5.1.2 Travis CI . 122

5.2 Research Setup . 125
5.2.1 Study Design . 125
5.2.2 Tools . 125
5.2.3 Build Linearization and Mapping to Git 127
5.2.4 Statistical Evaluation . 129

5.3 The TravisTorrent Data Set . 129
5.3.1 Descriptive Statistics . 129
5.3.2 Data-Set-as-a-Service . 129
5.3.3 Data Sample . 130

x Contents

5.4 Results . 132
5.4.1 RQ IV.1: How common is Travis CI use on GitHub? 132
5.4.2 RQ IV.2: How central is testing to CI? 134
5.4.3 RQ IV.3: How do tests influence the build result? 137

5.5 Discussion . 139
5.5.1 Results . 139
5.5.2 Threats to Validity . 142

5.6 Future Work . 143
5.7 Conclusion . 144

6 On the Dichotomy of Debugging Behavior Among Programmers 145
6.1 Related Work. 147
6.2 Debugging Survey . 149

6.2.1 Research Methods . 149
6.2.2 Results . 150

6.3 IDE Field Study . 154
6.3.1 Study Methods . 154
6.3.2 Results . 155

6.4 Interviews . 160
6.4.1 Study Methods . 160
6.4.2 Results . 160

6.5 Threats to Validity . 164
6.6 Conclusion . 165

7 Conclusion 167
7.1 Research Questions Revisited . 167
7.2 Threats to Validity . 169
7.3 A Speculative Perspective on Feedback-Driven Development. 170
7.4 Implications . 172

7.4.1 Individual FDD Stages . 172
7.4.2 Conclusion and Future Work on FDD 174

Bibliography 175

Glossary 205

Curriculum Vitæ 207

List of Publications 211

xi

Summary
Software developers today crave for feedback, be it from their peers in the form of code
review, static analysis tools like their compiler, or the local or remote execution of their
tests in the Continuous Integration (CI) environment. With the advent of social coding
sites such as GitHub and tight integration of CI services such as Travis CI, software de-
velopment practices have fundamentally changed. Despite a highly alternated software
engineering landscape, however, we still lack a suitable holistic description of contempo-
rary software development practices. Existing descriptions such as the V-model are either
too coarse-grained to describe an individual contributor’s workflow, or only regard a sub-
part of the development process, like Test-Driven Development (TDD). In addition, most
existing models are pre- rather than de-scriptive.

By contrast, in this thesis, we perform a series of empirical studies to characterize the
individual constituents of Feedback-Driven Development (FDD): we study the prevalence
and evolution of Automatic Static Analysis Tools (ASATs), we explain the “Last Line Effect,”
a phenomenon at the boundary between ASATs and code review, we observe local testing
patterns in the Integrated Development Environment (IDE) of developers, compare them
to remote testing on the CI server, and, finally, should these quality assurance techniques
have failed, we examine how developers debug faults. We then compile this empirical
evidence into a model of how today’s software developers work.

Our results show that developers employ the different techniques in FDD to best
achieve their current task in the most efficient way, often knowingly taking shortcuts
to get the job done. While this is efficient in the short term, it also bears risks, namely that
prevention and introspection activities fall short: developers might not configure or com-
bine ASATs to their full benefit, they might have wrong perceptions about the amount
of time spent on quality-control, quality-related activities such as testing could become
an after-thought, and learning about debugging techniques falls short. A relatively rigid,
tool-enforced FDD process could help developers in not committing some of these mis-
takes. Our thesis culminates in the finding that feedback loops are the characterizing
criterion of contemporary software development. Our model is flexible enough to accom-
modate a broad band of modern workflows, despite large variances in how projects use
and configure parts of FDD.

xiii

Samenvatting
Softwareontwikkelaars van vandaag hunkeren naar feedback over hun werk, danwel van
hun peers via code review, via statische analyse tools zoals hun compiler, ofwel via de uit-
voering van testen, hetzij lokaal of op afstand in de Continuous Integration (CI) omgeving.
De strakke integratie van sociale coding sites zoals GitHub en CI services zoals Travis
CI hebben software ontwikkeling enorm veranderd. Met deze grote verschuivingen op
het vlak van software ontwikkeling missen we een holistische beschrijving van heden-
daagse software ontwikkelingspraktijken. Bestaande beschrijvingen zoals het V-model
zijn te grof om een individuele workflow te beschrijven of gaan alleen over een onderdeel
van het ontwikkelingsproces, zoals Test-Driven Development (TDD). Bovendien zijn de
bestaande modellen meer pre- dan de-scriptief.

In deze thesis daarentegen doen we een reeks empirische studies om de individuele
onderdelen van Feedback-Driven Development te beschrijven: we onderzoeken hoe wijd-
verspreid het gebruik van Automatic Static Analysis Tools (ASATs) is, bekijken de evolutie
van hun gebruik en we leggen het “Last Line Effect” uit, een fenomeen op het snijvlak van
ASATs en code reviews. Ook observeren we de lokale testpatronen van ontwikkelaars in
hun Integrated Development Environment en vergelijken we die lokale patronen met het
op afstand testen op de CI server. Vervolgens bestuderen we hoe ontwikkelaars fouten de-
buggen in het geval dat de voorgaande maatregelen om de kwaliteit te bewaken falen. Ten
slotte verzamelen we het empirische bewijs dat we hebben verkregen om tot een model te
komen van hoe softwareontwikkelaars heden ten dage werken.

Onze resultaten tonen dat programmeurs de verschillende technieken in FDD gebrui-
ken om hun programmeeropdracht op de meest efficiënte manier uit te voeren, waarbij
ze vaak bewust een shortcut nemen om de klus te klaren. Het valt niet te ontkennen dat
die op korte termijn efficiënt is, maar deze manier van werken brengt ook risico’s met
zich mee, vooral op het vlak van preventie en introspectie-activiteiten die te kort schieten.
Zo kan het voorkomen dat programmeurs hun ASATs niet optimaal configureren of com-
bineren, ze een verkeerde perceptie hebben qua tijdsbesteding van kwaliteitscontrole, ze
activiteiten verwant aan kwaliteitsbewaking, zoals testen, als bijkomstigheid beschouwen
en zichzelf onvoldoende scholen op het gebied van debuggingtechnieken. Een relatief ri-
gide, door tools gehandhaafd FDD proces kan ontwikkelaars begeleiden om deze fouten
niet te maken. Onze thesis culmineert in de vondst dat feedbacklussen het karakterise-
rende criterium zijn van moderne softwareontwikkeling. Ons model is flexibel genoeg
om er een brede waaier aan moderne workflows in onder te brengen, ondanks de grote
variatie in hoe projecten delen van FDD gebruiken en configureren.

xv

Acknowledgments
Without a doubt, the acknowledgments are the most widely and most eagerly read part
of any thesis. Mine shall not disappoint, either, for this thesis and the time I had while
writing it would not have been nearly so good without the contributions, large and small,
of many a people.

Contribution-based Acknowledgments
For specific parts of the thesis, I want to acknowledge individuals whom I had fruitful dis-
cussionswith, who gaveme a pointer to a paper I wasmissing, who reviewed amanuscript,
or otherwise provided input that advanced said part or simply me.

Cover: thank you, Zsófia, for being so responsive, fast, and patient with me. You cre-
ated a stunning piece of art with a strong connection to the thesis. Köszönöm szépen!

Chapter 2: I thank Bastiaan Reijm for the help that he provided throughout the devel-
opment of UAV, Fabian Beck for useful suggestions on the first release candidate, and all
students who participated in our usability evaluation.

Chapter 3: I thank Diomidis Spinellis for an inspiring conversation during ICSE’15
in the “Mercato Centrale.” For reviewing drafts of this chapter, I thank Maurício Aniche,
Joseph Hejderup, and Mozhan Soltani.

Chapter 4: I thankMathiasMeyer (then-CEO of Travis CI), Arie vanDeursen, Felienne
Hermans, Alexey Zagalsky, Maurício Aniche, and previous anonymous reviewers for their
feedback.

Chapter 5: I owe our biggest gratitude to the hundreds of WatchDog users. Moreover,
I thank Maryi Arciniegas-Mendez, Alan Richardson, Nepomuk Seiler, Shane McIntosh,
Michaela Greiler, Diana Kupfer, Lars Vogel, Anja Reuter, Marcel Bruch, Ian Bull, Katrin
Kehrbusch, Maaike Beliën, and the anonymous reviewers. I thank Andreas Bauer for help
with the WatchDog transformer.

Chapter 6: I thank all study participants, who, in spite of showing their fallibility, al-
lowed us to research their debugging behavior. I thank Georgios Gousios and Earl Barr
for reviewing this manuscript.

General Acknowledgments
Somewhat impersonally, I want to thank the European Union for paving the road that
makes it so easy and enjoyable for foreigners like me to work in a different member state;
the Dutch I want to thank for being welcoming, relaxed, and pretty darn awesome (de-
spite the bread), i.e., just being Dutch. I also felt that TU Delft deeply cares about their
employees. I had an absolutely delightful four years here. Bedankt allemaal!

Andy: when you offered me to pursue a PhD under your supervision on that sunny
October day in 2013, I did not know you well. However, it took little effort to notice that

xvi Acknowledgments

you seemed to be one of the kindest, most understanding, and open-hearted persons I
have had the pleasure to get to know (and I am only using the plural here in case someone
else I worked with reads this). I have to say, some four years later, I stand by that sentence
with certainty. I did not realize it back then, but the decision to do a PhD with you turned
out to be the best possible decision I could have taken. Thank you for giving advice when
I needed advice, thank you for being compassionate when I needed companionship, thank
you for playing the advocate when I needed a devil, thank you for letting me co-supervise
three Master students, thank you for all the sweets, and, above all, thank you for giving
me space. Space to fail, space to develop (both software and myself), space to go abroad.
In the past years, I never once heard you say “no” to yet another arcane idea from me. For
that, I owe you my biggest thank you!

Georgios: I learned about 998 things too many from you to list them all here, so suffice
it to say that I am your padawan. If I had to name two things I learned from you, it would
be that you showed me that one can never know enough technically and the fine art of
sometimes not giving a damn (and especially not to make someone else’s problems your
own). I am still learning on both ends, but, hey, I don’t care. The exact place our journey
will lead us to, I do not know yet, but it certainly does not stop here. Thanks for being
awesome and thanks for being my best friend in Delft!

Arie: thank you for providing an open and friendly environment inwhich to do cutting-
edge research in. In every encounter with you, I perceived you as a fundamentally happy
person (in case you noticed: sorry if I sometimes smirked when seeing you. I swear it was
because of that!). Thanks for letting me (stay) in your research group and thanks for being
so quick to provide constructive feedback to my thesis!

Alberto: writing that first MSR paper on code reviews with you was a transformative
experience that I was fortunate enough to have gotten early in my PhD. It showed me how
much diligence one should put into composing every single element of a paper and talk,
even on secondary material, and that there simply is no good enough (manifesting itself
in my habit of submitting incremental improvements of papers well past their deadline).

Tom: thanks for giving me the opportunity to do research at Microsoft and have an
absolutely wonderful summer in Seattle. Thank you for allowing me to be very diligent.
When you were away, it was very clear that it is you who holds the mini-group at MSR
together, always assembles everyone for lunch, and organizes fantastic outings. Thank
you for creating an environment in which I could not only work on big data, but also
learn from you, all the while having tons of fun! So long and thanks for all the fishood!

Per, Diomidis, Geert-Jan, and Eelco: thank you for accepting to be in my defense com-
mittee, bearing with all the Doodles (I’m so sorry!), and traveling to Delft (Per, Diomidis)!
I truly appreciate your time and effort.

Annibale: thanks for always having a smile, an open ear, a deep understanding of what
is important in life (no question there, it’s food!), and for showing me how to make pasta
(I am not writing teaching, because unfortunately, it still keeps sticking to my unworthy,
non-Italian hands).

Fenia: thanks for the fantastic food and being a super easy-going neighbor across the
“white bridge.” You rock (and sorry for the not-so-useful ancient Greek name suggestions)!′Ε𝜆𝜆𝜂:

I have had the pleasure to have many joyful conversations with current and past col-

Acknowledgments xvii

leagues, but some stand out. Nicolas: thanks for your hospitality and sense of humor.
Hennie: thanks, too, for your sense of humor (though totally different than Nicolas’s).
Felienne: thanks for your embracing and enthusiastic character (and all the party invita-
tions ⌣). Bas: thanks for sharing your running routine with me and being an all-around
nice person. Maria: thanks for being jolly fun (and always in a good mood!). Joseph:
thanks for, despite being a super Swede, also being talkative (and a super shopper). Qian-
qian: thanks for being a really pleasant person. Anja: thanks for being a great first office
mate and the thesis printing info. Tamara: thanks for taking care of every organizational
detail.

Radjino, Igor, and Niels: thanks for sharing part of the ride and being my master stu-
dents. It was an absolute pleasure to work and learn with and from you.

Shane, Rolf, Elmar, and Andrey: thanks for co-writing with me. Your contributions
were not only important to the respective papers, but more so, I learned skills from you
that have shaped how I work today.

Corinna, Evi, Christian, Ernst, und Martin: vielen Dank, dass ihr nach Delft gekommen
seid (das bedeutet mir wirklich viel)!

Stefan (Zachseule): thanks for being a good friend. It was great to visit you in Kassel.
Wilma: dankjewel voor het tuinieren en dat je zo een goede buurvrouw bent!
Dino, Peter, Mario: thanks for being awesome ninjas! Peter, you are the genuinely

funniest person I have ever met. Keep it up! Dino, thanks for being the best truffle pow-
der pig, for your pleasantly calm personality, and all the (mountain) fun we had and will
hopefully be having!

Heiko: your coolness and ability to find joy and relaxation is an absolute inspiration
to me. Whenever I am stressed, I should remember I have the chillest friend ever. Wuff!

Petra: bedankt dafür that je mir Dutch geleerd hast. Jij bent echt een belankrijke deel
waarom ik het zo ontzettend leuk hier vind (en mij ook een beetje ‘thuis voel’).

Melanie, Fabi, Benni, Marcel, and Ryan: thanks for being great friends, be it for hang-
ing out, doing sports, cooking, climbing, sending packages, or hiking (Yosemite, Mt. St.
Helens!). I hope we will reach many peaks together.

Martin: thanks for being a great host, chef, and mountain guide. My first multi pitch
route up the Aggenstein was an absolutely amazing experience with you, duly celebrated.

Thomas (imagine Ali G speaking here): what up, thanks for being my main man! I am
truly happy and honored to have you in my life.

Pixie: thanks for hopping (or cycling) aboard and joining the tour (or rather, roller
coaster ride)! I am grateful for all the things you showed me and have done for me, and
everything we did and will do.

Mama, Papa, undNora: danke, dass ihr immer fürmich da seid, mich immer unterstützt
und ich immer auf euch zählen kann.

No PhD is an easy journey. However, thanks to all of you, I can count the days where
I did not like what I was doing on one hand, and my memory cell for counting how many
times I smiled, thinking “this is exactly what I want to be doing right now,” has long since
overflown (whether due to memory limitations on my side is left to the judgment of the
reader, possibly after assessing the remainder of this thesis). Thank you!

Moritz
Delft, January 2018

1

1

1
Introduction

In today’s software development world, feedback loops pervade the entire life cycle of a piece
of code from its inception through its acceptance into the code base to its maintenance life as
legacy code. These feedback loops accommodate all stages of quality assurance from human
code review to debugging, for at the heart of each loop lies the desire to improve the quality
of the examined piece of code by feeding back quality concerns to the developer. We call this
highly-flexible process of doing software development on the basis of a configurable number
of quality assurance methods Feedback-Driven Development (FDD). In spite of large historical
and technical differences between the individual constituents of FDD, have recent advances
in collaborative software development enabled the seamless and continuous integration of
even such opposed techniques as static and dynamic analyses. As a result, the multitude
of feedback loops and the interplay between them has become a characterizing criterion of
modern-day software development.

In this thesis, we study the feedback loops that underlie modern software development. We
perform empirical research on each of the proposed components of FDD from static analy-
sis tools over code review to testing and debugging via a series of independent case studies.
Compiling the findings of these studies under the umbrella of Feedback-Driven Development
enables us to build a first reality-grounded understanding of contemporary software develop-
ment practices in a highly collaborative and integrated development world.

This chapter is partly based onM. Beller. Toward an Empirical Theory of Feedback-Driven Development, ICSE’18
(Student Research Competition) [1].

1

2 1 Introduction

A plethora of breakdowns of software engineers’ work processes exist today, ranging
from structured, general process decompositions such as the V-model [2], over more

flexible guidelines such as the agile manifesto [3] to practically process-free software cre-
ation paradigms such as the chaos model [4]. These models, however, tend to focus less
on an individual developer’s workflow, but more on the general processes to be followed
in an entire project. Thus, they are of little help in describing the individual act of creating
and improving program code. Other, partly more recent inventions such as Test-Driven
Development (TDD) [5] or its off-spring Behavior-Driven Development [6] provide rec-
ommendations closer to a single developer, but they often focus on a somewhat limited
aspect of the software development process, for example how to drive development via
testing, which leaves out other important feedback-cycles such as code review or static
analysis. Thus, they cannot provide us with a model capturing a more holistic individual
code creation process. A common denominator of all these models is that they are pre-
rather than de-scriptive: they argue that a certain methodology should be applied instead
of studying what is being applied.

In contrast to these pre facto models, we build up our model of Feedback-Driven Devel-
opment (FDD) post factum based on empirical evidence. We perform empirical analyses
on the constituents of today’s software development workflow first and then compile this
empirical evidence into a model of Feedback-Driven Development. Our model is thus a
contemporary mirror of the development practices of software developers.

Gaining this understanding is important because it allows us to adequately reason
about current development practices in a precise and definedway. As an emerging hypoth-
esis, FDD shapes our thoughts so that we have a common language to express ourselves
eloquently and efficiently about modern development practices. It allows us to educate
aspiring students on the state of the art of software creation, to compare the advantages
of different implementations of FDD to each other, to identify areas for further research
under its umbrella, and to propose further improvements in the current FDD circle.

1.1 Background & Context
In this section, we give an overview of the FDD model and show how it is embedded
within the Software Engineering research domain and how it connects to related work.

1.1.1 A Model of Feedback-Driven Development
Today, developers can receive feedback on a piece of code they have created from a vari-
ety of sources: the compiler, automated static analysis tools, the Continuous Integration
server, local or remote test runs, peers who perform a code review, if necessary, a debug-
ging session that can includes remote logging information or application telemetry. Even
end users can give feedback to the developers directly, often via an automated bug moni-
toring system. The goal of all these different feedback mechanisms is to enable developers
to immediately improve the quality of their software.

Figure 1.1 sketches the Feedback-Driven Development workflow alongside these qual-
ity assurance methods typically found in today’s software development projects and how
they relate to other concepts in the Software Engineering domain. Every rounded box
represents a concept, possibly grouped together by an overarching theme in a dotted box.

1.1 Background & Context

1

3

Edges between them represent the typical workflow, while the absence of edges means
that there is no fixed order. A dotted edge symbolizes the concept of having an influence
on the connected stage. Black stages represent stages covered in this thesis, concepts
and relations in gray entities outside the scope of this thesis. We take here the technical
perspective of how a code contribution progresses from its initial inception 1⃝ to its final
rejection or acceptance into the code base 5⃝. One short FDD loop for a developer is to go
from creating code to testing in the IDE (local) and back to Code Creation to fix a finding
caught by the reviewer. However, the model also caters for different workflows, for ex-
ample to go from Code Creation, over testing locally in the IDE and remotely to accepting
the piece of code into the project. This thesis is performs an empirical evaluation of the
core of FDD, the Code Quality Assurance methods in Figure 1.1. The act of writing the
code itself is outside the scope of this thesis and studied partly in the field of program
comprehension [7, 8]. How a code contribution be best packaged, for example as a pull
request, and which characteristics a contribution should have for a fast acceptance into
the code base [9] also lies outside the scope of this thesis.

There exist various triggers for the creation of a code contribution, be it the need to
introduce a new feature, fix a bug, or improve the maintainability of the system [10]. The
developers working on a code contribution often obtain more detailed information about
its desired nature in explicit and structured form from the system’s requirements, often
written down as tickets or issues in an Issue Tracking System, more implicitly through
discussion with colleagues, other stakeholders, or a (hopefully) mutually shared project
vision. Coming up with good requirements and how to translate them into work tasks
are questions that concern the research field of Requirements Engineering [11]. Which of
these work items to tackle next is the domain of issue prioritization, a sub-field of Soft-
ware Engineering research that often determines the success or failure of a project [12].
In a development methodology called “DevOps” [13, 14], developers are in charge of run-
ning their own code in production. This typically involves monitoring live systems to get
feedback of the successful operation of code. However, this feedback loop differs from the
inner FDD loop modeled in Figure 1.1 in that it might be a trigger for a code change (or,
in fact, a change in operations), but cannot usually be used to decide about the acceptance
or rejection of a code contribution 5⃝, as this information is only available after the code
has been integrated and deployed. Running A-B experiments and (automatically) deciding
on their outcome in production, like Google and Bing do to test the efficiency of certain
changes [15, 16], of course somewhat softens this clear separation.

Apart from the quality assurance methods in Figure 1.1, developers can also receive
feedback from other “soft channels” such as fora by asking for help or ideas from their
peers. While this bears some resemblance with Code Review, we modeled it as a separate
entity because in contrast to Code Review, it is not mandatory to use these channels or
fora, developers might or might not submit (sample) code with their original question, and
answers are of more ad-hoc nature. In spite of the inherent randomness and seemingly
unpredictable nature of the process [17], practitioners have referred to the prime example
of such a feedback source, Stack Overflow, as “game changing” and “the biggest inven-
tion in Software Engineering in the past decade” [18]. We have refrained from studying
Stack Overflow as part of this thesis in light of its different nature in comparison to the
other FDD stages and an abundance of empirical research on it [17, 19–21]. Outside of

1

4 1 Introduction

Feedback Stages

Code Review

AcceptanceRejection

Code Creation

Issue Tracking
System

Product Vision

Testing (local)

Automated Tools

Static Analysis

Dynamic Analysis

Testing (remote)

Debugging

Discussions with
customers & colleagues

1

5

4

2

6

3

Soft Feedback

Live Monitoring

Figure 1.1: The stages of the FDD model and their relationship to other Software Engineering concepts.

the scope of this thesis is also the study of the “Code Creation” stage 2⃝. The Incremental
Change process [22] complements FDD by describing what happens there.

We divide quality assurance methods of FDD, which we study in this thesis, into two
complementary groups that work fundamentally differently on a technical level:

1. Static Analysis 3⃝ examines program artifacts or their source codewithout executing
them [23], while

2. Dynamic Analysis 4⃝ relies on information gathered from their execution [24].

Static Analysis not only includes so-called Automated Static Analysis Tools (ASATs),
which perform property checks on the software without human interference, but also in-
cludes manual assessment in the form of code review [25]. In particular Modern Code

1.1 Background & Context

1

5

Review is a topic of active research in the Software Engineering community [26, 27]. Dy-
namic Analysis, on the other hand, is not confined to testing the software, but also in-
cludes debugging, which routinely involves reading run-time log messages or analyzing
real-time dashboards in the case of remote systems. It is customary for contributions in the
making to go through a cyclical review process until they reach a pre-defined acceptance
criterion 5⃝. Consequently, most projects explicitly allow reworking and perfecting con-
tributions after their initial submission 6⃝. These feedback loops thus stand at the heart
of modern software development. The precise order of quality assurance checks in Fig-
ure 1.1 may deviate from project to project and even feedback cycle to feedback cycle. For
example, in an attempt to minimize human involvement, many projects do not perform
mandatory human code reviews [27] or defer them until remote testing on the Continuous
Integration server has shown that the contribution has reached a certain degree of quality.
Because the output of ASATs or even compilers can be hard for developers to interpret [28],
some projects such as Ruby on Rails have set up advanced bots that reply in a style that
makes them almost indistinguishable from a human reviewer [29], shown in Figure 1.3.
Examples of such bots that bridge the gap between the way a human and an ASAT reports
their findings are Microsoft’s review bot and lgtm.com, which provides “automated code
reviews for developers [with] [d]eeper insights [and] [a]ctionable results.”

1.1.2 The Case for FDD in a Collaborative Coding World
In today’s ever more collaborative software development world [30–32], most notably
currently seen in the GitHub ecosystem, the number and quality of code contributions
from developers outside the core development team poses a particular challenge to proj-
ects [33, 34]. Even companies such as Microsoft who traditionally used to be skeptical
of OSS [35] have recently started to embrace the Open-Source Software model [36, 37],
largely increasing the visibility of their projects and the number of potential contribu-
tors to them. Simultaneously, project maintainers, who are in many cases volunteers and
do this important service to the world-wide software community in their free time, have
started to suffer from an increasing workload caused by an overwhelming number of pull
requests.

Many code contributions in today’s Open-Source world come from one-time contrib-
utors [38]. These pull requests from project outsiders are potentially of low quality or
not aligned with the project’s direction [33, 39, 40]. Ensuring a good fit with the proj-
ect is particularly challenging and important for these contributions. Data extracted from
GHTorrent [41] shows the widening gap between the number of opened andmerged pull
requests in Figure 1.2. By September 2017, a total of 1,653,879 pull requests on GitHub
were open, but neither merged nor closed by the project maintainers. When we transfer
this situation to our model, many of these potential contributions would be stuck in one
of the stages 2⃝ to 4⃝ of Figure 1.1.

Drowning in pull requests or issues is not a problem that evenly spreads across the
more than 20millionGitHub projects, but targets precisely the important andwell-known
projects: As one such example, the Ruby on Rails project had 719 open pull requests on
November 29, 2017. The trend does not affect the large amount of dormant toy, private or
forked projects on GitHub, since with small interest in a project come few pull requests.
On a project level, it means that it takes an unnecessarily long time for code contributions

1

6 1 Introduction

to finally make it to the project’s code base, at which point extra effort might be neces-
sary to re-base the contribution. This is a frustrating situation for contributors, maintain-
ers, and users that slows down collaboration and innovation. It shows the fundamental
dilemma that undermines the OSS community: Most projects which would need outside
contributions never receive any, and few projects are flooded by them.

Thus, automating the feedback stages in FDD could help both active projects by reduc-
ing their workload and the many dormant projects to which developers cannot ensure the
quality of their code contribution because the maintainer is not available anymore.

0

50,000

100,000

150,000

2011 2012 2013 2014

#
E

ve
n

ts

Pullrequest Events merged opened

Figure 1.2: Mind the gap: Number of opened and merged pull requests on GitHub from 2010–2014.

1.2 Feedback-Driven Development in Practice
Figure 1.3 shows FDD’s feedback loops at work on an exemplary constructed pull request
in the Ruby on Rails project. The author witlessbird might have drawn inspiration for
the creation of the pull request “Initial support for running Rails on FIPS-certified sys-
tems” A⃝ from issue #31203, which stated that “Rails is not compliant with FIPS 140-2
mode” (step 1⃝ in Figure 1.1). Within seconds of the first code change B⃝, the above dis-
cussed Rails bot hails the newcomer and assigns a suitable reviewer C⃝. The bot’s comment
also contains a warning about the automated use of Code Climate, an ASAT that let the in-
tegration of the initial commit fail B⃝. With these hints, the contributor goes back to code
creation 2⃝ and authors another commit that passes all checks D⃝. Following the ASAT-
feedback cycle, a code review round begins with the suggestion of replacing a hashing
algorithm E⃝, the implementation of which promptly follows. Another reviewer jumps in
and asks for more changes in a constructor F⃝.

However, during the course of implementing changes suggested in the code review
feedback loop, the build broke G⃝. The author now enters the inner-remote testing loop 4⃝

1.2 Feedback-Driven Development in Practice

1

7

A

B

C

D

E

F

G

H

Figure 1.3: A constructed examplary pull request of the Ruby on Rails project showing feedback loops and their
integration into pull-based development in action.

in Figure 1.1. A first try at fixing the build fails H⃝. Upon receiving this feedback, the second
try succeeds. The contribution is awaiting final acceptance 5⃝. The complete sequential-
ization of this process via Figure 1.1 is thus: Issue Tracking System → Code Creation
(by witlessbird) → Automated Tools (review bot) → Automated Tools (Code Climate,
failed) → Code Creation (by witlessbird, fix Code Climate warnings) → Code Review
(by bdewater, first reviewer)→Code Creation (by witlessbird)→Code Review (by simi,
second reviewer) → Code Creation (by witlessbird) → Testing (remote, failed, Travis
CI) → Code Creation (by witlessbird) → Testing (remote, failed, Travis CI) → Code
Creation (by witlessbird) → Testing (remote, success, Travis CI). However, this exam-
ple also shows us the limitation of a repository analysis alone: we cannot determine from
it whether the developer witlessbird entered the local testing or debugging loops, for
which we would need telemetry data from their computer.

1

8 1 Introduction

At the end of this workflow stands a decision on whether or not the code contribution
makes it into the code base of the project 5⃝. The advent of distributed version control
systems such as BitKeeper, Mercurial, or git has allowed projects to work in novel
collaborative ways. Many projects have adopted a pull-based development model [9], both
in the Open-Source and the Closed-Sourced world. Pull-based development means that
contributors make their own copy of a project’s repository they want to contribute code to,
a so-called fork, perform changes on their fork, and finally file a pull request asking that the
changes from their copy be merged back into the main repository. “Then, the members
of the project’s core team (the integrators) are responsible for evaluating the quality of
the contributions, proposing corrections, engaging in discussion with the contributors,
and eventually merging or rejecting the changes.” [33] Not only are pull requests thus
open calls for code review, but they also allow the structured, automated, and efficient
integration of both static and dynamic checks of the contribution on platforms such as
GitHub. A merged pull request equates an accepted code change in Figure 1.1.

1.3 Research Goal and Questions
In addition to an always existing desire to automate labor-intense and error-prone human
work in Software Engineering, the trend to more outside contributions, overwhelmed proj-
ect maintainers, and a desire for more reliable software systems necessitates automating
and improving projects’ feedback loops. Before we can suggest meaningful improvements
to this process, however, we must first develop a thorough understanding of it. Moreover,
knowledge itself can be a way to improvement, as we show on several occurrences in the
remainder of this thesis.

This thesis is concerned with the empirical assessment of the state of the art of how
developers drive software development with the help of feedback loops.

RQ 1 How do developers use static analysis within FDD?
Step 3⃝ in Figure 1.1, Chapters 2 and 3

RQ 2 How do developers use dynamic analysis within FDD?
Step 4⃝ in Figure 1.1, Chapters 4 to 6

By answering the research questions, the thesis culminates in the first definition and
empirical characterization of what we call the “Feedback-Driven Development” process.
In it, we compile our findings on the different aspects of the various quality assurance
methods into a coherent initial model.

1.4 Research Methodology
In this section, we describe the main research methods we use throughout this thesis and
their ethical implications.

The methodological foundations of this thesis are rooted in Empirical Software Engi-
neering, a relatively young sub-discipline of Computer Science that can trace its begin-
nings to the 1970s [42]. Fundamentally, Empirical Software Engineering applies the sci-

1.4 Research Methodology

1

9

Initial Model on
Feedback-Driven

Development

Quality
Assurance
Methods

in OSS and
Commercial

Software

Empirical Case
Studies

Study Design

Set of Hypotheses Set of Observations

1

3 2

observational path

Figure 1.4: Instantiation of the RPS with our research. We followed the observational path [49].

entific method known from the natural sciences (most notably experimental physics) to
gain falsifiable insights into various aspects of the Software Engineering domain. At the
heart of empiricism applied to Software Engineering lies the idea that to understand the
impact of proposed changes, be they human-, tool-, or process-oriented, one must first
assess and understand the status quo. Surprisingly, while Software Engineering used to
have no shortage of suggestions for arbitrary and sometimes questionable improvements,
combined with dubious research practices [43], it lacked empirical evidence in some of its
key areas [44–47], a theme that recurs throughout this thesis.

1.4.1 Research Method Categorization
McGrath divides research methodologies into four different quadrants with a canon of
eight associated concrete research methods [48]. Which of the eight methods is best
suited for a given research objective depends on the desired degree of generalizability,
precision, and realism for that study. These range from laboratory experiments, which
maximize precision, to formal theories, which maximize generalizability. For the studies
in this thesis, we selected mostly research methods in the “Field Strategies” quadrant, thus
maximizing realism, arguably the most critical concern for an applied discipline such as
Software Engineering. Our study methods comprise field and case studies, but we borrow
concepts from sample surveying, computer simulation, and formal theories for improving
the generalizability of our findings.

In contrast to McGrath’s general research methodology descriptions, the Research
Path Schema (RPS) is an analytical framework tailored to Software Engineering. It allows
Software Engineering researchers to clearly communicate the principal setup of their re-
search to their peers. It also describes a way to theory building via different research
paths [49]. Depending on the chosen research path, the three domains ins RPS – the sub-

1

10 1 Introduction

stantive, conceptual, and methodological domain – become the primary, secondary, or
tertiary concern of a study. Our instantiation of the RPS in Figure 1.4 starts from the sub-
stantive domain “Quality Assurance Methods in OSS and Commercial Software” 1⃝, makes
observations by means of a large-scale case study 2⃝ and derives a set of hypotheses on
Feedback-Driven Development that together form an initial theory 3⃝.

1.4.2 Enablement of Large-Scale Studies
To further increase their generalizability, we perform our studies in a large-scale fash-
ion, typically on hundreds of projects or developers. This brings with it a number of
complexities, from recruiting study participants over gathering large amounts of data to
processing it, a sub-field of Computer Science touted “Big Data” [50]. A point of criticism
against large-scale analyses is that findings would sacrifice deep for broad understanding.
However, more involved analyses can also provide deep insights when tailored to specific
projects, for example in the form of individual project reports. Moreover, single-project or
small-scale analyses cannot uncover general Software Engineering phenomena and thus
fail to quantify how widespread a certain issue or how large its impact is. Large-scale
analyses help us single out individual problems from issues that plague Software Engi-
neering as a craft, and thus sharpen which problems Software Engineering researchers
should tackle.

The scale and nature of our studies (2⃝ in Figure 1.4) almost forbids manual observation.
Instead, they require a heavily tool-supported approach. We followed this in two ways:

1. We relied on a Mining Software Repositories approach, a sub field of Software Engi-
neering that extracts knowledge from analyzing historic information structured in
traditional software repositories such as git or in new data sources such as Trav-
isTorrent. We used the high accuracy of the information embedded in the reposi-
tories to improve the precision of our studies.

2. Not all information about feedback loops is present in readily available reposito-
ries. While code as the artifact of developers’ work is available, it does not give us
information about the fine-grained path of how exactly they created that code 2⃝

in Figure 1.1. To learn about developers’ testing and debugging behavior, we au-
tomatically collected their testing- and debugging-related actions by instrumenting
their IDEs with telemetry plugins.

Both techniques are scalable, robust, and updateable, causing minimal interference
with the usual work habits of developers, thus increasing realism. Effects of a (physi-
cal) onlooker or researcher taking notes have been studied extensively in psychology and
medicine. Examples are the Hawthorne [51] and trial [52] effects, which describe the
phenomenon that participants tend to behave differently when under examination, typi-
cally by outperforming their normal baseline in experiments. We reduce these biases as
much as possible by using low-interference telemetry methods that do not require the
physical presence of a researcher and allow participants to stay in their normal, basically
unchanged virtual environments.

To analyze the data we gathered, we employ methods from the fields of data visualiza-
tion, descriptive statistics, statistical hypothesis testing, and probability theory [53]. We

1.4 Research Methodology

1

11

Table 1.1: Research methods used for each study.

Study Chpt. Quant. Analysis Survey Interviews

State of ASATs 2 ✓ ✓

Last Line Effect Explained 3 ✓ ✓

WatchDog IDE Testing 4 ✓ ✓

Travis CI Remote Testing 5 ✓

WatchDog IDE Debugging 6 ✓ ✓ ✓

enrich these methods with explanatory methods borrowed and adapted from the social
sciences and known under the umbrella of Grounded Theory. Grounded Theory is “a gen-
eral methodology with systematic guidelines for gathering and analyzing data to generate
middle-range theory” [54]. From the wide range of methods available in Grounded The-
ory, we use surveys, interviews, and card sorting. In line with McGrath [48], we employ a
series of mixed-methods studies that combine several of the above techniques to answer
one research question. Particularly for validating the accuracy of survey answers, we tri-
angulate answers in questionnaires with the according data extracted from IDE telemetry.
Table 1.1 gives an overview over which research methods we employed for each of the
individual studies.

1.4.3 Ethical Implications
Performing research inherently has ethical implications. Shamoo and Resnik describe
a responsible conduct of research along several dimensions such as honesty, objectivity,
carefulness, openness to share data and results, legality, and human subjects protection,
which we strove to adhere to during this thesis [55].

We can principally divide our study methods into ones which operate on openly avail-
able data and ones for which we actively collected new data. While both can be sensitive –
think of the discovery of a hidden implication revealed by our analysis of freely available
data – the analysis of repository data has been standard practice in the Software Engineer-
ing community for many years. Typically, the focus of such data is technical (for example,
the Travis CI build logs in Chapter 5) and of such low sensitivity to individuals that it
poses no risk to them. Moreover, in our studies on openly available data in Chapters 2
and 5 we usually abstract away from individuals to a group of developers working on a
project or anonymize them (Chapter 3). Similarly, surveys or interviews on technical sub-
jects typically pose minimal risks to participants as long as they are free to quit at any
time and are therefore often exempt from explicit ethics approval.

The collection of fine-grained developer interactions with WatchDog in Chapters 4
and 6 requires more thought. With WatchDog, we followed four principles:

• Informed Consent
All participants actively have to seek and install WatchDog and agree (at least two
times) to our privacy policy, once when installing the plugin in the IDE, and once
when registering a user. Moreover, the website also contains a detailed explanation
of how and which data WatchDog gathers and for which research purposes we

1

12 1 Introduction

plan to use it. Participants can stop using WatchDog or remove their data at any
time.

• Voluntary Registration
Developers could use WatchDog anonymously, without having to fill-in a registra-
tion form.

• Least Amount of Data Gathering
With WatchDog, we followed two aims: Explore developer testing and debugging.
While it would have been technically easy to log all user interactions with their
IDE, we explicitly constrained WatchDog to only the data for which we had hy-
potheses and which was the focus of the ongoing research projects. This also meant
sacrificing possible future research opportunities.

• Early Anonymization
To protect the intellectual properties of individuals and companies, we designed
WatchDog to never transfer any actual content, that is neither file content nor file
names. To differentiate files and projects, we hash file and project names, a one-
time, irreversible operation. The design of WatchDog ensures this information
never leaves the participants’ computers, since the hashing happens at the client
side and the connection to the server is secured.

Finally, the Human Research Ethics Committee of TU Delft granted retrospective ap-
proval of WatchDog onMay 8th, 2018, under application number 416 “TestRootsWatchdog
(Updated).” It categorized WatchDog as “minimal risk.”

1.5 Replicability, Open Science & Source
Open science is the “movement to make scientific research, data and dissemination ac-
cessible to all levels of an inquiring society.” [56] In the Netherlands, the Dutch Funding
Agency NWO demands that every research result funded by the public also be accessible
by the public [57]. In this section, we describe how the contributions in this thesis support
this aim.

1.5.1 Open Data Sets
Not only are all publications embedded in this thesis under open access, but so are the
data and source code contributions associated with them, to the extent data licensing and
privacy agreements allow. Our goal is to foster replicability and invite other researchers
to build on our work. To this end, we have performed all of our studies at least partly on
freely available OSS projects. Table 1.2 shows which studies include OSS and which in-
clude additional closed-source projects. OSS of course does not equate “non-professional”
or “non-commercial,” as in many cases of successful OSS projects, a business or a pro-
fessionally organized body such as the Apache or Linux foundations stand behind them.
Closed-source projects in our studies comprise a variety of proprietary sources, from com-
mercial systems to private personal projects.

With a trend toward freely accessible data comes additional responsibility on the au-
thors to also make this data consumable for others. The good practice of this is often

1.5 Replicability, Open Science & Source

1

13

Table 1.2: Overview of data sets, type of included projects, and replication packages.

Data set Chpt. Host OSS Non-OSS Size CC-License

ASAT Mapping / GDC 2 FigShare ✓ 1 MB BY 4.0
Micro-Clones 3 FigShare ✓ 57 MB BY 4.0
WatchDog Test 4 - ✓ ✓ 34 GB -
TravisTorrent 5 Website,

Archive.org,
BigQuery

✓ 3.2 GB BY-NC-ND 3.0

Travis CI Build Logs 5 Website ✓ 1.5 TB -
WatchDog Debugging 6 Archive.org ✓ ✓ 388 MB BY-NC-ND 3.0

referred to as “data stewardship” and summarized in the four FAIR principles [58], which
we have followed in the creation of our data sets listed in Table 1.2.

Findable: Wehost our data sets on search-engine indexed services such as FigShare
or Google BigQuery and gave them human-readable names like Trav-
isTorrent.

Accessible: Long-term storage solutions, The InternetArchive, FigShare, or Google
BigQuery host versioned archives of our data.

Interoperable: Our data sets use exclusively open file formats such as csv and can thus
easily be combined with other data.

Reusable: Our data sets are either self-descriptive or come with extensive descrip-
tions in standardized formats (for example, ISO dates). In addition, we
licensed all data sets over which we have authority under Creative Com-
mon licenses [59].

1.5.2 Open-Source Contributions
This thesis has also lead to the creation of a number of open-source contributions, primar-
ily the open-sourcing of infrastructure and analysis code to drive the research projects,
but also secondary patches to third-party tools. Table 1.3 gives an overview of these con-
tributions.

During the course of this thesis, we have created and maintained the active Open-
Source projects TestRoots WatchDog and TravisTorrent and contributed a number
of deployed patches to Open-Source software to address issues we found during our re-
search (for example, in the parsedate,¹ cloc,² or Samba³ projects) or to add new features
to accommodate our research, as in the case of creating a dedicated marketplace for exper-
imental scientific extensions (Eclipse).⁴,⁵ Last but not least, projects such as Eclipse⁶ or

¹https://github.com/gaborcsardi/parsedate
²https://github.com/AlDanial/cloc/issues/153
³https://bugzilla.samba.org/show_bug.cgi?id=12373
⁴https://bugs.eclipse.org/bugs/show_bug.cgi?id=450853
⁵https://bugs.eclipse.org/bugs/show_bug.cgi?id=451221
⁶https://bugs.eclipse.org/bugs/show_bug.cgi?id=498469

1

14 1 Introduction

Table 1.3: Overview of main code contributions (measured with cloc).

Project Chpt. Host #Commits SLOC Main Language

ASAT Config.-Anal. 2 GitHub 69 1,504 Java
ASAT-History-Anal. 2 GitHub 9 344 C#
UAV 2 Website,

GitHub

1,127 32,355 Java

Last Line Analysis 3 FigShare 10 307 R
WatchDog 4, 6 Website,

GitHub

1,042 13,859 Java

WatchDog Pipeline 4, 6 GitHub 1,015 10,489 R
TravisTorrent 5 Website,

GitHub

316 8,627 Ruby

Σ 3,588 67,485 Java, R, Ruby

Facebook’s ASAT pfff⁷ started to implement features or improvements that arose based
on results of our research.

1.6 Outline & Contribution
In this section, we first outline the structure of the thesis by summarizing each chapter and
referencing its originating publications. We then describe contributions performed during
the course of this dissertation that are not included in this thesis. Figure 1.5 provides a
graphical overview of the thesis contents. The most frequently occuring terms in this
thesis compose its word cloud.

In this thesis, we define and describe different constituents of the Feedback-Driven
software development process depicted in Figure 1.1. This model of the Feedback-Driven
Development process guides the reader through the remainder of thesis. Figure 1.6 en-
riches the code quality assurance methods in Feedback-Driven Development with the pa-
pers that study the associated topic. We start our investigation of FDD with an overview
analysis of how automated static analysis tools have been picked-up by state-of-the-art
GitHub projects. Given that some ASATs such as FindBugs and Checkstyle have ex-
isted for over 10 years, it seems high time to assess their practical influence. In many FDD
implementations, after an initial automated assessment follows a manual code review. The
Last Line Effect is a phenomenon we first became aware of through such manual code re-
view. While the effect itself is an observation outside the FDD model, we were able to
automatize its detection via an ASAT, making it possible to detect it consistently as part
of the “Automated Tools” stage in FDD. This also demonstrates the growing importance
of automating feedback via ASATs in FDD. Having studied static analysis, we then turn
to the dynamic analyses in FDD. We begin by studying developer testing as close as possi-
ble to its origin, namely the developers’ IDE. Having gained a picture of the intermittent
nature of developer testing locally, we study how the naturally more structured remote
quality assurance on the CI server compares to it. We call it more structured, since – if

⁷https://github.com/facebook/pfff/pull/143/files

1.6 Outline & Contribution

1

15

An Empirical Evaluation

of Feedback-Driven

Software Development
Moritz Beller

Figure 1.5: Cover variant featuring a word cloud based on the contents of the thesis (using wordclouds.com).

1

16 1 Introduction

Feedback Stages

Code Review

Testing (local)

Automated Tools

Static Analysis

Dynamic Analysis

Testing (remote)

Debugging

 The Last Line Effect Explained

Analyzing the State of Static Analysis

Developer Testing in The IDE: Patterns, Beliefs,
And Behavior

Oops, My Tests Broke the Build: An Explorative
Analysis of Travis CI with GitHub

UAV: Warnings from Multiple ASATs at a Glance

On The Dichotomy of Debugging Behavior
Among Programmers

Modern Code Reviews: Which Problems Do They Fix?

Continuous Delivery Practices in a Large Financial
Organization

The Impact of Test Case Summaries on Bug Fixing
Performance: An Empirical Investigation

TravisTorrent: Synthesizing Travis CI and GitHub for
Full-Stack Research on Continuous Integration

Soft Feedback

Figure 1.6: Inner stages of the Feedback-Driven Development model from Figure 1.1, annotated with their asso-
ciated publications. We (co-)authored the grayed-out papers during the course of creating this thesis, but chose
not to include them because we were not the leading author or because the research was done as part of our
Master’s thesis.

configured properly – it runs tests and possibly ASATs automatically with every commit.
Finding the answer to whether tests can effectively reduce the debugging burden is part
of our investigation of the last dynamic analysis stage in FDD, debugging. In many cases,
debugging only happens when the previous stages have somehow failed. This special po-
sition in FDD makes it an interesting field of study to complete our empirical study of
FDD.

1.6.1 Thesis Structure
This thesis is portfolio-based, comprising a series of independently published articles. We
have adapted these articles and in some cases merged them together to build a cohesive
thesis, but kept their principal organization intact to allow for an easy mapping of the
chapters to their originating papers. In Figure 1.6, we associate each stage in FDD with
the scientific articles that cover the topic of this stage. The order of topics in the figure
mirrors the order of chapters in this thesis. All articles are freely available under green
open access from TU Delft’s repository pure.tudelft.nl and linked to in their associated
bibliography entries.

• Chapter 2 studies how projects on GitHub use ASATs. We evaluate their prevalence

1.6 Outline & Contribution

1

17

in state-of-the-art projects on GitHub. By performing a history analysis on their
configuration files, we can identify howmuch developers customize and adapt them
throughout the evolution of the project. This chapter also introduces the tool UAV,
which we created to help developers and researchers with some of the issues uncov-
ered in our empirical analyses. The chapter’s body is based on our SANER’16 paper
“Analyzing the State of Static Analysis: A Large-Scale Evaluation in Open Source
Software” [60] and incorporates our tool paper on UAV “UAV: Warnings from Mul-
tiple Automated Static Analysis Tools at a Glance” [61], which won the SANER’17
best tool demonstration award.

• In Chapter 3, we define the “Last Line Effect,” the startling realization that the last
line or statement in a micro-clone is more likely to contain an error than all previous
lines taken together. This phenomenon lies on the intersection between manual
code review and ASATs: Checks conceived during our research and implemented
in PVS-Studio and Facebook’s pfff now allow developers to find instances of this
type of fault automatically. However, we first became aware of these types of faults
through manual code review. Collaborating with a psychologist allowed us deeper
insight into possible reasons for the existence of the last line effect, for which we
found no apparent technical explanations. We published this chapter as the invited
EMSE journal extension “The Last Line Effect Explained” [62] in 2016, based on our
ICPC Early Research Achievements (ERA) paper “The Last Line Effect” [63], which
won the best short paper award in 2015.

• Chapter 4 presents a study on how developers use the immediate testing feedback
loop in the IDE to guide the development of their software. We call this subordinate
loop of the FDD cycle “Test-Guided Development.” The study is based on telemetry
information from more than 2,400 participating developers that we measured from
within four IDEs with our WatchDog and FeedBaG++ plugins over the course of
more than 2.5 years. The chapter content comes from our TSE’17 article “Developer
Testing in the IDE: Patterns, Beliefs, and Behavior,” [64] which is an extension of
an ICSE New Ideas and Emerging Results (NIER) paper [65], an ESEC/FSE’15 tech-
nical research paper [66], and an SER&IP workshop paper [67]. The NIER paper
pitched and demonstrated the feasibility of the original WatchDog idea by empir-
ically studying how a relatively small study population of Computer Science stu-
dents tested in their IDEs. The SER&IP paper shows by example of the WatchDog
plugin family how academic Software Engineering researchers can efficiently run
generalization studies despite the limited time and development resources typically
available to them. It proposes an approach that relies on reducing maintenance
effort and increasing commonality between the different plugin instantiations.

• In Chapter 5, we focus on remote testing on the Continuous Integration server. We
compare projects written in a statically-typed and a dynamically-typed program-
ming language. This study also triggered the creation of TravisTorrent, which
provides free and open buildlog analytics. This chapter comprises the MSR’17 tech-
nical research paper “Oops, My Tests Broke The Build: An Explorative Analysis of
Travis CI with GitHub” [68] and the proposal “TravisTorrent: Synthesizing Travis

1

18 1 Introduction

CI and GitHub for Full-Stack Research on Continuous Integration” [69], which won
the call for bids for the MSR Mining Challenge 2017.

• Chapter 6 regards another dynamic feedback loop, namely debugging: developers
pose questions about a certain program behavior that they wish to answer by debug-
ging their program. In this chapter’s mixed-methods study, we triangulate data from
a debugging survey and WatchDog 2.0 telemetry from developers’ IDEs with con-
cluding interviews of debugging experts. This chapter is to appear as the technical
research paper “On the Dichotomy of Debugging Behavior Among Programmers”
at ICSE’18 [70].

In all the above publications, we (the author of this thesis) are the first and lead author,
with the exception of “UAV: Warnings from Multiple Automated Static Tools at a Glance,”
in which we guided a group of Bachelor students to their first publication.

1.6.2 Other Contributions
Apart from the publications included as part of this thesis, we co-authored a number of
papers that we shortly describe in the following.

• Our MSR’14 paper “Modern Code Reviews in Open-Source Projects: Which Prob-
lems Do They Fix?” [27] contains an empirical study into which types of problems
developers actually fix during code review.

• In the ICSE’16 technical research paper “The Impact of Test Case Summaries on Bug
Fixing Performance: An Empirical Investigation” [71], we present an automated
approach to generate natural text test case descriptions of automatically generated
test cases. In a controlled experiment, we could show that the presence of these
descriptions improves the ability of participants to find bugs with the help of the
otherwise identical test cases.

• The ICSME’16 industry track paper “Continuous Delivery Practices in a Large Fi-
nancial Organization” [14] addresses the use and adoption of CI at ING Netherlands
by means of a survey among 152 developers.

• Our ICSE’17 introspection-track paper “Double-Blind Review In Software Engineer-
ing Venues: The Community’s Perspective” [72] reports on how we as researchers
could improve the peer review process tomake it more objective and less susceptible
to apparent and hidden biases. To this end, we surveyed the Software Engineering
community’s perception of costs and benefits for the introduction of a review pro-
cess in which reviewers do not know a paper’s authors. While no major Software
Engineering conference employed a double-blind review process when we launched
our investigation in 2015, by 2017, the two major and many second- and third-tier
conferences in Software Engineering had switched to a double-blind review model.

1.6 Outline & Contribution

1

19

Figure 1.7: Eclipse Magazin 1/2015.

Based on research presented in this thesis, we also
made a number of non-academic contributions. We dis-
seminated our findings outside the scientific community
in popular-scientific developer articles: We authored
two articles in the German print magazine “Eclipse Mag-
azin” [73, 74] (Figure 1.7), wrote two posts in Travis
CI’s official blog [75, 76] and one in the IEEE Software
Blog [77] as a guest author.

2

21

2
Analyzing the State of Static

Analysis: A Large-Scale Evaluation
in Open Source Software

The use of automatic static analysis has been a software engineering best practice for decades.
However, we still do not know a lot about its use in real-world software projects: How preva-
lent is the use of Automated Static Analysis Tools (ASATs) such as FindBugs and JSHint?
How do developers use these tools, and how does their use evolve over time? We research
these questions in two studies on nine different ASATs for Java, JavaScript, Ruby, and Python
with a population of 122 and 168,214 open-source projects. To compare warnings across the
ASATs, we introduce the General Defect Classification (GDC) and provide a grounded-theory-
derived mapping of 1,825 ASAT-specific warnings to 16 top-level GDC classes. Our results
show that ASAT use is widespread, but not ubiquitous, and that projects typically do not en-
force a strict policy on ASAT use. Most ASAT configurations deviate slightly from the default,
but hardly any introduce new custom analyses. Finally, most ASAT configurations, once in-
troduced, never change. Changes are small and have a tendency to occur within one day of
the configuration’s initial introduction. Our custom-built Unified ASAT Visualizer creates an
intuitive visualization that enables developers, researchers, and tool creators to compare the
complementary strengths and overlaps of different Java ASATs.

This chapter is based on

 M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman. Analyzing the State of Static Analysis: A Large-Scale
Evaluation in Open Source Software, SANER’16 [60] and

 T. Buckers, C. Cao, M. Doesburg, B. Gong, S. Wang, M. Beller, and A. Zaidman. UAV:Warnings fromMultiple
Automated Static Analysis Tools at a Glance, SANER’17 (Tools) [61].

2

22 2 Analyzing the State of Static Analysis

A utomated Static Analysis Tools (ASATs) scan the source or binary code of a software
system for a set of pre-defined problems. ASATs can be configured to detect: (1)

functional problems, such as resource leakage or incorrect logic; and (2) maintainability
problems, such as non-compliance with best practices or violations of style conventions.

Next to testing and manual code review, ASATs have become an important pillar of
modern Software Quality Assurance approaches. By heeding the warnings that are re-
ported from ASATs, development teams can address problems before they escape into
released versions of their software. Coding standards such as NASA’s JPL C [78] and
Java [79] standards mandate the use of ASATs during the development process; stronger
still, they require that crucial software components be free of any ASAT warning.

However, aside from anecdotal evidence, little is currently known about whether and
how rigorously developers use ASATs in the ecosystem of Open-Source Software (OSS).
A deeper understanding of the real world application of ASATs can guide researchers’
future work, help ASAT developers adapt their offerings to better fit their user base, and
ultimately improve the user experience of ASATs.

In this chapter, we set out to understand the prevalence of ASATs, their configuration
in real software systems, and how those configurations evolve. To study the prevalence
of ASATs, we quantitatively and qualitatively analyze 122 popular OSS projects from the
GitHub, OpenHub, SourceForge, and Gitorious software forges in search of the use
of popular ASATs. In a second study on the configuration and evolution of ASATs, we:
(1) produce a General Defect Classification (GDC) to map the specific problems that are
detected by the 9 studied ASATs derived from the first study to a common format; and (2)
analyze how 168,214 OSS projects configure the studied ASATs with respect to the GDC.
We address the following broad research questions:

RQ I.1 How common is the use of ASATs in practice?
Half of the state-of-the-art OSS projects already employ automated static anal-
ysis, although they typically use only one ASAT in an ad-hoc fashion, where
the ASAT is not integrated with the flow of development.

RQ I.2 How are ASATs configured?
The ASAT configurations in the studied OSS projects barely deviate from the
default ASAT configuration and rarely introduce custom checks.

RQ I.3 How does the use of ASATs evolve?
Most ASAT configurations, once committed, never change. The ASAT config-
urations that do change are typically only very slightly modified within the
first week of their appearance in the studied repositories.

The remainder of this chapter is structured as follows. Section 2.1 situates this study
with respect to the literature on ASATs. Section 2.2 provides the rationale for our research
questions. Section 2.3 presents the results of our prevalence study (RQ I.1). Section 2.4
provides an overview of our GDC, while Section 2.5 leverages this classification to analyze
ASAT configuration (RQ I.2) and evolution (RQ I.3). Section 2.6 discusses the broader
implications of our results. Section 2.7 presents UAV, a Java tool we built based on our
findings, and, finally, Section 2.8 draws conclusions.

2.1 Related Work

2

23

2.1 Related Work
We first review existing research on ASATs and discuss how it is related to our study of
the prevalence and the use of ASATs. Finally, we give an overview of the classifications
that the GDC builds upon.

2.1.1 Automatic Static Analysis Tools
ASATs traditionally use techniques such as data-flow analysis and control-flow analysis
to find defects in source code [80–82]. However, because these techniques do not scale
at large, abstractions have to be introduced [81]. These abstractions, plus the fact that
checking common properties of programs is an undecidable problem [83], lead to false
positives, warnings about defects that do not exist, and false negatives, when warnings
about actual defects are missing.

While false negatives impact the efficiency of ASATs because defects are missed, false
positives cause developers to waste time investigating incorrect warnings in the code. De-
ciding whether a warning is a real defect or a false positive takes three to eight minutes
on average [84–86]. As there can be as many as 50 false positives for every accurate warn-
ing [87], analyzing warnings is a time-consuming activity. In their Faultbench data set
for research on prioritizing and classifying ASAT warnings across a number of different
projects and domains, Heckman and Williams observed roughly 40 warnings for every
thousand lines of code [88]. This overload of warnings is a prime reason for developers to
avoid using ASATs [89]. While researchers have studied the reasons why developers do or
do not use ASATs, there is little data on the prevalence of ASATs in practice. In this study,
we therefore quantitatively investigate the state of adoption of ASATs in OSS projects.

Many ASATs differ in the type of defects that they detect. However, even when
tools focus on uncovering the same defect type, the variance in defects found is still very
large [83, 90–92]. These results indicate that using several ASATs has benefits over us-
ing just a single ASAT. However, this increases the number of warnings that developers
need to investigate. Thus, deciding to use multiple ASATs is striking a balance between
an improved defect detection rate and the additional investigation effort of an increased
number of warnings. We aim to determine how common the use of multiple ASATs is.

To better deal with a large number of warnings, studies have investigated ways to
prioritize them [86, 88, 93–95]. This has the advantage that a developer can decide how
many warnings to analyze based on the importance of the warnings. In lieu of those
ranking algorithms, developers can use configuration files to indicate which rules they
consider important. This can reduce the number of warnings generated and suppress rules
that are prone to emitting false positives. Another reason to study developer preferences
is to observe if the use of ASATs reflects their potential. Wedyan et al. and others observed
that 15% of all detected defects were functional and the rest maintainability-related [92,
96, 97]. Many studies observed that ASATs rarely find any functional defects [92, 97–100].
In this paper, we analyze a large number of ASAT configuration files to see how these
previous observations are reflected in them.

2.1.2 Defect Classifications
In 1993, the IEEE published a standard for classifying defects [101]. It served as the basis
for IBM’s Orthogonal Defect Classification (ODC) scheme [102]. This scheme uses the de-

2

24 2 Analyzing the State of Static Analysis

fect type as one of the aspects from which to classify the defect. While the ODC scheme
has been used in research [103, 104], several studies conclude that it was too abstract and
required adaptations to fit any particular use in practice [27, 91, 105]. In this paper, we
propose the General Defect Classification (GDC), a remote ODC-descendant that is a gen-
eralization of the scheme refined by Beller et al. [27] and Mäntylä and Lassenius [105].
Its ancestry can be traced back to the work of El Emam et al. [106]. Central to this ge-
nealogy of classifications is their high inter-rater reliability. The GDC, in contrast to its
predecessors, is specifically tailored to reason across multiple ASATs.

2.2 Research Questions
The goal of this chapter is to increase our understanding of how static analysis tools are
used in the real-world. To that end, we study a large collection of OSS projects from both
statically (Java) and dynamically typed languages (JavaScript, Ruby, and Python) in pro-
fessional and non-professional popular OSS settings.

In pursuing our goal, we must first establish a baseline of how widely-used static anal-
ysis is in these projects. Hence, in our first research question, we ask:

RQ I.1 How common is the use of ASATs in practice?

We refine the research question into three sub-research questions that we investigate:

RQ I.1.1 What is the prevalence of ASATs?

RQ I.1.2 How common is the simultaneous use of multiple ASATs?

RQ I.1.3 Do projects enforce ASAT use?

Having gained insight into how widespread the use of ASATs is through manual anal-
ysis, we set out to study how a large corpus of projects use ASATs by automatically inves-
tigating the ASAT configuration files in their repositories:

RQ I.2 How are ASATs configured?

The answer to this this research question can be important for the creators of ASATs
and their users: Coming up with sensible defaults for software is a hard problem [107]. A
large-scale study of their user base could help ASAT developers uncover if their defaults
generally fit the tool’s use in practice so that users spend less time configuring their ASATs.
To this end, we want to gain insight specifically into the following sub-research questions:

RQ I.2.1 What type of warnings are explicitly enabled?

RQ I.2.2 What type of warnings are explicitly disabled?

RQ I.2.3 How well do default configurations reflect real-world configurations?

RQ I.2.4 How prevalent are custom rules in the OSS configurations?

Finally, in order to understand which role ASATs take in the development process, and
if and how their configurations files change over a project’s lifetime, we ask:

2.3 Prevalence Analysis (RQ I.1)

2

25

(Step 1)

Filter unsuitable

repositories

(Step 2a)

Analyze

repository

(Step 2b)

Conduct survey

Potential

Repositories

(Step 2)

Detect use of ASATs

(Step 3)

Compare survey and

repository analysis

results

Results

Figure 2.1: An overview of the study design for the prevalence analysis.

RQ I.3 How does the use of ASATs evolve?

Specifically, we answer the following sub-RQs:

RQ I.3.1 How often do ASAT configurations change?

RQ I.3.2 How much do ASAT configurations change?

RQ I.3.3 When do ASAT configurations change?

2.3 Prevalence Analysis (RQ I.1)
In this section, we address the question of how wide-spread the use of static analysis is in
popular OSS Projects.

2.3.1 Methodology
To answer this question, we followed the study design depicted in Figure 2.1. We started
by examining the four popular OSS project hosting platforms GitHub, OpenHub, Source-
Forge, and Gitorious (Step 1) in December 2014. We also considered other sources, pri-
marily other code hosting services, but found them unsuitable: Some lacked representa-
tive projects (for example, on GitLab [108], the most popular repositories belonged to the
GitLab company itself), others provided no means of ranking projects by their popularity
(for example, the now-defunct Google Code [109]).

Proportional to the number of projects that are hosted on each platform [110], we se-
lected the 100 most popular repositories on GitHub (ranked by number of stars), 20 on
Gitorious (ranked by development activity), and 10 from both SourceForge (ranked by
number of downloads) and OpenHub (ranked by number of users). In contrast to the other
three, OpenHub is not a forge, but a “public directory of free and open source software,”
which includes links to the project’s actual repository. OpenHub’s overall popularity rank-
ing was only available for the 10 most popular projects. After eliminating duplicates and
non-software repositories, we ended up with 122 unique projects to analyze.

Using a mixed methods approach, we investigated their use of ASATs in two distinct
ways (Step 2). On the one hand, in amanual analysis of the projects’ websites, contribution
guidelines and ASAT configuration files in repositories, we investigated whether and how
projects documented their ASAT use (Step 2a). On the other hand, we sent out a short
survey to contributors of the same 122 projects, asking which static analysis tools they
are using, when they are using them, if it is a necessary precondition to check code before
it can enter the main project repository, and whether ASATs are an integral part of their

2

26 2 Analyzing the State of Static Analysis

Table 2.1: Prevalence of ASATs according to our Repository Analysis.

Source Projects Use 1 ASAT Use > 1 ASATs
GitHub 83 34% 30%
OpenHub 9 67% 22%
SourceForge 10 30% 0%
Gitorious 20 30% 5%
Total 122 36% 23%

Table 2.2: Prevalence of ASATs according to our survey.

Source Projects Use 1 ASAT Use > 1 ASATs Enforce Use
GitHub 19 36% 32% 42%
OpenHub 1 0% 0% 0%
SourceForge 3 34% 66% 0%
Gitorious 10 30% 40% 30%
Other � 3 100% 66% 33%
Total 36 41% 36% 36%

� Replied for their project B as a reaction to our survey in a mailing list of another
project A (unrelated to B).

workflow (Step 2b). In order tomaximize the number of responses, we sent this question to
the projects’ mailing lists, newsgroups, or fora, and contacted the two top-committers. We
also explicitly lowered the barrier to entry of the survey by embracing a discussion-style
answer of developers directly to our informal email [111]. Finally, in Step 3, we compared
the results that we had collected using Steps 2a and 2b.

2.3.2 Results
In this section, we introduce the results from the manual repository and website analysis,
then describe the corresponding results from the surveys, and finally compare them.
Repository Analysis. Table 2.1 presents an overview of the results from analyzing the
information in project repositories and websites regarding ASATs for RQs I.1.1–1.3. Over-
all, our results stem from analyzing 122 projects (see Bholanath’s thesis [111, Appendix A]
for the complete list). Most of them (36%+23%=59%) either mention the use of ASATs in
their official project documentation, or their repository contains ASAT configuration files
or their build processes specify explicit dependencies on ASATs. Of those projects, 28 use
multiple ASATs. Examining the project sources separately, 53 out of 83 GitHub projects
use ASATs and 25 of those use multiple ASATs. Only one OpenHub project does not use
ASATs, and 2 of the other 8 projects use multiple ASATs. ASATs are not popular among
our SourceForge projects, with only three of them adopting ASATs, all of which use a
single ASAT. Finally, 7 out of 20 Gitorious projects use ASATs, but only one of them uses

2.4 General Defect Classification (GDC)

2

27

multiple ASATs.
Survey. We received responses from 36 projects, achieving a relatively high response rate
for surveys of 30%. Table 2.2 shows the corresponding results from the survey. The last
column displays the percentage of projects that use the results of these tools as one of
the factors to decide whether a code contribution should be integrated into the project
repository. This displays information that we could not always obtain from a repository
analysis. Overall, we observe that ASATs are used by 41% (Table 2.1) + 36% (Table 2.2)
= 77% of projects who answered the survey. Most respondents state that ASATs are only
sporadically used by developers when they believe that a code change warrants ASAT use.

Concerning RQ I.1.3, we observe that a slight majority of the projects that use ASATs,
15 out of 28, rely on a single tool. Five projects use more than two ASATs, with no project
using more than three comparable ASATs. Abilian [112] is the only project that uses
more than three ASATs, but for three languages (JavaScript, CSS, and Python). All other
projects only use a single ASAT or multiple ASATs that check for defects in the same
language. Slightly less than half of the projects that use ASATs (13 out of 28) place a strict
ASAT-regression policy on new code. This means that code that is submitted for review
or integrated into the project repository must not introduce new ASAT warnings.
Comparison. Using amixedmethods approach to evaluate the validity of our results [66],
we compared the detailed results that are summarized in Tables 2.1 and 2.2 for all 36 proj-
ects for which we had both sources available. For close to 20% of the projects that re-
sponded to our questionnaire, the repository analysis results deviate in someway from the
survey responses, which we consider to be the ground-truth. In three cases, the repository
analysis shows that ASATs are used, while in reality, the project does not use any ASATs.
A reason for this might be that the information that we gathered from the repository or
website might be outdated. For example, the Bash project [113] mentioned that they pre-
viously used Coverity [114], for which traces can still be found in existing sources. For
two other projects, two tools are found in the project information, while respondents only
note that one of them is in use. Moreover, two projects use a different ASAT than reported.
Furthermore, there are seven projects that used more ASATs than the repository analysis
indicated and a single project that usedASATs even though the repository analysis showed
otherwise.

2.4 General Defect Classification (GDC)
When we reason about multiple ASATs to answer RQs I.2 and I.3, we are confronted with
the problem that each tool provides a plethora of different individual rules (checks), often
without an explicit ordering scheme or a topology. If we want to derive meaningful results
from a comparison of multiple ASATs, we therefore need to design a common, more gen-
eral classification scheme to allow us to abstract over the tool-specifics. To that end, we
propose the GDC, which is based on the code review defect classification [27], which lent
itself to an adoption of ASAT warnings because it categorizes “human static analysis” (i.e.,
code reviews), similar to “automatic static analysis” warnings. One useful property of this
defect classification is that it can be used to categorize not only defects, but also warnings
(or, review suggestions), and actual code changes, as we have shown before [27].

Figure 2.2 depicts the two different high-level categories of the GDC, maintainability
and functional defects. It also shows the 16 second-level defect categories (7 functional,

2

28 2 Analyzing the State of Static Analysis

Figure 2.2: Top- and second-level categories of the GDC.

9 maintainability). Similar to our prior work [27], there are two top-levels categories,
functional and maintainability. Each of them is refined into a set of sub-categories that
further characterize the warning. As one example of a new category, “Metric” pertains to
warnings that “measure a certain attribute of the code,” like the “NestedIfDepth” warning
in Checkstyle.

In a grounded-theory-driven approach, the first two authors separately
browsed through all available FindBugs checks and tried to classify them into fitting
groups, using the code review classification scheme as a blueprint [27]. Wherever we
could not find a suitable existing category, we introduced a new one and sorted it into
the topology. Upon completion of this task, the authors met and compared their adopted
classifications, distilling a common first draft of the GDC. After this, we mapped the tradi-
tionally more maintainability-oriented Checkstyle warnings into this preliminary ASAT
warning topology. In this round, we soon reached saturation and only introduced two
new categories under the maintainability sub-level.

To stimulate future research, we distribute our GDC classification along with detailed
explanations on the error types and our manual mapping of all 2,385 checks of the nine
ASATs to their corresponding GDC categories freely.¹

2.5 Configuration & Evolution (RQ I.2, RQ I.3)
In this section, we describe the design and results of our studies that address RQs I.2 and I.3.

¹http://dx.doi.org/10.6084/m9.figshare.1603419

2.5 Configuration & Evolution (RQ I.2, RQ I.3)

2

29

(1)

Filter unsuitable

repositories

(2)

Analyze ASAT

configuration files
ASAT-using

repositories

Results

General Defect Classification

Functional Maintainability

...

Defects

Figure 2.3: An overview of the study design for the ASAT configuration analysis.

2.5.1 Study Design
Figure 2.3 depicts our high-level study design for RQs I.2 and I.3. To facilitate the tech-
nical part of our analysis, we first decided to only consider projects that are hosted on
GitHub (1). Having chosen a selection of nine ASATs, we then developed two tools:
ASAT-Configuration-Analyzer² for RQ I.2 and theASAT-History-Analyzer³ for RQ I.3.
Before we could use them, however, we had to crawl GitHub for the occurrence of any
of the supported ASAT configuration files and store a URL at which we can retrieve the
content of the file (1). The tools then receive a list of URLs to configuration files, which
it downloads and parses, applying the mapping of the individual tool checks to the GDC
from Section 2.4 (2). The results are classified distributions of warnings that capture how
developers configure their ASATs on a more abstract level than the individual tools would
allow. We answer our research questions on the basis of these distributions.

2.5.2 Methods
In this section, we describe our study methodology.
Selection of ASATs (1). We placed some restrictions on the ASATs that we could use.
First, an ASAT has to be configurable. If an ASAT is not configurable, then no study re-
garding its use is necessary. We can simply conclude that all developers use the ASAT
in the same manner. Furthermore, if an ASAT is configurable, it needs to store its con-
figuration in a separate file (and not, for example, via command line arguments). Finally,
the configuration file needs to be parsable. In practice, this means that the configuration
needs to be in a machine-readable format such as XML, JSON, or even a custom key-value
pairing.

We used the ASATs that we encountered for RQ I.1 (see Section 2.3) as a starting point.
We expanded our search with search engines and programming support sites such as Stack
Overflow [115]. Table 2.3 lists the nine tools which fit our criteria. Most tools use standard
formats to store their configuration. Two tools, JSL and Pylint, use key-value pairs in
plain text format. FindBugs is a peculiar case. The tool uses XML files to either exclude
or include rules in a specific class, file, or package. However, whether an element is an
inclusion or an exclusion of a rule is specified via command line arguments. Thus, we

²https://github.com/rbholanath/ASAT-Configuration-Analyzer
³https://github.com/rbholanath/ASAT-History-Analyzer

2

30 2 Analyzing the State of Static Analysis

Table 2.3: Description of the ASATs for RQ I.2 and I.3.

Tool Language Format Extendable Released # of Rules
Checkstyle [116] Java XML Yes 2001 179
FindBugs [117] Java Text Yes 2003 160
PMD [118] Java XML Yes 2002 330
ESLint [119] JavaScript JSON Yes 2013 157
JSCS [120] JavaScript JSON Yes 2013 116
JSHint [121] JavaScript JSON No 2011 253
JSL [122] JavaScript Text No 2005 63
Pylint [123] Python Text Yes 2006 390
RuboCop [124] Ruby YAML Yes 2012 221

could not determine this in a consistent way. Instead, we used the configuration files of
the FindBugs Eclipse plugin. This plugin also stores its configuration in plain text key-
value pairs.

One factor that could influence how developers configure their tools is what type of
defects a tool focuses on. For the Java tools, Checkstyle focuses primarily on coding style,
FindBugs on functional defects, and PMD tries to find both types. For the JavaScript
tools, JSCS focuses on coding style rules, while both JSHint and ESLint try to find all
types of defects. JSHint will refocus in an upcoming major release to functional defects
and has marked many rules as deprecated in preparation for the removal of these coding
style rules [125]. This might already have affected the configurations of developers, if
they stopped using the deprecated rules in preparation for the change. JSL, Pylint, and
RuboCop do not state a particular focus on a specific subset of defects. However, RuboCop
seems to favor checking for coding style issues, as made evident by the fact that most of
their rules are classified by the tool itself as belonging to the Style category.
Analyzing Configuration Files (2). Developers can configure most ASATs to fit their
specific needs through a configuration file. For RQs I.2 and I.3, we study how developers
use ASATs through them as a proxy. In an ASAT configuration, developers can enable
the rules that check for defects that they consider important, and disable rules they do not
deem important (e.g., perhaps because of a high false positives rate). Without a configu-
ration file, developers rely on the default, which might not align with their specific needs.
The contents of an ASAT configuration file are hence an important indicator of how devel-
opers use ASATs to check for defects in their code and how well the tool’s default settings
reflect its use. A version-controlled ASAT configuration is crucial for collaboration be-
cause it enforces consistent static checks across developers.

For RQ I.2.1 and RQ I.2.2, we were interested in the distribution of the rules that are
explicitly activated by developers and likewise those that are disabled by developers. This
indicates which types of warnings are considered important by developers, and conversely,
which types of warnings they avoid. To mitigate the influence of the set of possible ASAT
rules, we normalized these distributions according to the number of rules in a category.
To see why this is important, consider a hypothetical tool with just two defect categories,𝐴 and 𝐵, where 𝐴 has one rule and 𝐵 has two. If the developers enable the rule in category

2.5 Configuration & Evolution (RQ I.2, RQ I.3)

2

31

𝐴 once and each of the rules in category 𝐵, then a uniform distribution of defects would
show 𝐵 as being twice as actively-enabled as 𝐴. However, we can see that each individual
rule in 𝐴 and 𝐵 was enabled once. The results in this normalized form allow us to study
the relations between a category with a large number of rules and another with just one
or two rules.

For RQ I.2.3, we were interested to see if and how the configurations of developers
deviated from the defaults, as these are indications of whether the default configuration
accurately reflects the wishes of ASAT users. A developer can deviate from the default
configuration in three ways: 1) Disable a rule that was enabled by default, 2) Enable a rule
that was disabled by default, or 3) Reconfigure a rule.

Not all rules can be reconfigured. An example of a configurable rule is the “Neste-
dIfDepth,” for which the depth threshold can be customized via a simple integer value.
Reconfiguring a rule indicates that developers want to check for this convention, but do
not agree with the default convention as specified by the creators of the tool. We assume
that a rule is reconfigured when a developer includes an enabled default rule in his own
configuration.

To see if developers deviate from the default, we simply computed what percentage
of configuration files included one or more deviations for a default rule. To examine how
developers deviate from the default configurations, we computed, for each rule, howmany
configuration files included a particular type of deviation for that rule.

For RQ I.2.4, we determined the prevalence of customized warning rules in comparison
to the built-in rules of a tool. We consider a rule to be custom-made if it was not included as
a built-in rule in a recent version of the ASAT. For each tool, this can indicate whether the
developers consider the tool to be incomplete, which might result in developers writing
custom rules to find these defects. Generally, this can be an indication of whether current
ASATs can adequately cover the defects that developers wish to find.
Analyzing Configuration Evolution (2). For each identified configuration file from (1),
we then performed an analysis of its evolution over time. The first metric, for RQ I.3.1,
is simply how often a file was changed. This tells us if developers have a need to adapt
their ASAT configuration, either because the ASAT was updated or because of changing
needs among developers. For RQ I.3.2, we calculated the total number of line changes in
a file. We defined this as the difference between the number of lines added and deleted in
a single change. If this number is zero, it likely means that there are only lines modified,
which count as both an addition and a deletion in the information of a change. We did
not compute more fine-grained measures, such as an edit distance, because of the exces-
sive computing load for all changes of the more than 160,000 configuration files and its
relatively small expected information gain.

2.5.3 Study Objects
After selecting the ASATs to study, we needed to retrieve configuration files for every tool.
We expected to find enough configuration files on GitHub. However, to further augment
the study, we also collected data from Krugle [126] and OpenHub. To eliminate possible
duplicates, we excluded OpenHub results which hosted their code on GitHub.

Table 2.4 details the number of configuration files split per ASAT and hosting site.
As projects typically have one configuration, the numbers are a good estimator for the

2

32 2 Analyzing the State of Static Analysis

Table 2.4: Configuration files for each ASAT, grouped by source.

Tool GitHub OpenHub Krugle Total
Checkstyle 16,271 2,492 22 18,785
FindBugs 1,575 514 1 2,090
PMD 5,562 1,888 8 7,458
ESLint 4,427 5 3 4,435
JSCS 11,656 20 1 11,677
JSHint 105,619 3,086 65 108,770
JSL 862 0 0 862
Pylint 3,941 123 7 4,071
RuboCop 10,063 0 3 10,066
Total 159,976 8,128 110 168,214

number of different projects. We identify JSHint as the most wideley-used ASAT among
our selection. The number of added files from Krugle is minimal for all tools. Moreover,
for some tools, thereweremore configuration files hosted onGitHub thanwe could access
due to limitations in GitHub’s search (see Section 2.6.2).

2.5.4 Results
In this section, we detail the results to RQs I.2 and I.3.
Results to RQ I.2. RQ I.2.1 and 2.2 are concerned with the warning rules that develop-
ers enable and disable respectively in their configurations. As explained in Section 2.5.2,
we normalized the distribution of the enabled and disabled warning rules according to
the number of rules in a category. Figure 2.4 details these normalized results for every
tool. Every one of the 9 bars displays the percentage of normalized rules that belong to
a specific category in our classification. Due to this, the differences in Figure 2.4 from
a uniform distribution are due to developers over- or under-proportionally enabling or
disabling rules in this category. As an example, almost 10% of the normalized rules that
are enabled in FindBugs configurations belong to the Check category. The figures also
allow us to identify categories that are outliers for a specific tool. For instance, the Metric
and Migration categories contain a large percentage of the enabled rules for RuboCop. In
both the enabled and disabled distributions, some tools show categories with no enabled
or disabled rules.

For RQ I.2.3, we calculated how many configurations deviated from the default. The
second column of Table 2.5 shows how many configuration files changed one or more
default rules, i.e., disabled a rule that was enabled in the default configuration or vice versa.
The third column shows how many files did not change a default rule, but reconfigured
a default rule. Blank spaces indicate that the tool does not allow individual rules to be
reconfigured. The fourth column lists the percentage of configuration files that do not
contain a deviation for any default rule.

With Table 2.5 as the basis, we also assessed in three ways how developers deviate
from a default configuration. First, for all rules that are enabled in default configurations,

2.5 Configuration & Evolution (RQ I.2, RQ I.3)

2

33

Fi
gu

re
2.4

:N
or

m
al
iz
ed

av
er
ag

e
m
ea

ns
of

en
ab

le
d
(to

p)
an

d
di
sa
bl
ed

(b
ott

om
)c

he
ck

sp
er

A
SA

T
fo
ra

ll
16

se
co

nd
-le

ve
lG

D
C

ca
te
go

rie
s.

2

34 2 Analyzing the State of Static Analysis

we calculated how many developers disabled them. Subsequently, for every rule that was
turned off by default, we calculated in how many configurations that rule was enabled.
Finally, for every rule that was enabled in the default configuration and which could be
configured, we calculated how many configurations possibly reconfigured them.

Our results show that there iswide agreementwith the default rules that ASATproviders
ship: Only for the tools ESLint (2% of default rules affected) and JSHint (10%) did more
than 50% of configuration files deviate from the default by reconfiguring a subset of rule
defaults. For FindBugs and JSHint more than 50% of developers enabled 2 and 5 default-
disabled rules, respectively.

For RQ I.2.4, we calculated the percentage of custom rules in the configuration of de-
velopers. Table 2.6 shows the results. Custom rules never account for more than 5% of all
of the enabled rules of a tool. For 3 out of 8 ASATs, this percentage is even lower than 1%.
We omit JSL from these results because JSL does not permit custom rules.
Results to RQ I.3. Figure 2.5 shows the results for RQ I.3.1 regarding how often and how
profoundly configuration files change. A little over 80% of all configuration files are never
changed after their creation. The range in the chart represents 99.5% of the total data. Less
than 10% of all files are changed just once and less than 5% twice. The maximum number
of times that a configuration file was changed is 248, for a Checkstyle configuration.

For the 19% of configuration files that were changed after their initial creation, we
analyzed each change of every file to determine the size of the change. The distribution
in Figure 2.6 shows the results to RQ I.3.2. The total number of changes is zero for more

Table 2.5: Summary of rule changes from default configurations.

Tool Changed Reconfigured No Deviations Total
ESLint 80.5% 5.7% 13.8% 4,274
FindBugs 93.0% — 7.0% 2,057
JSHint 89.6% 0.7% 9.7% 104,914
JSL 94.6% — 5.4% 848
Pylint 53.3% — 46.7% 3,951
RuboCop 79.1% 3.2% 17.7% 9,579

Table 2.6: Average mean of custom rules in ASAT configurations.

Tool Percentage of Custom Rules
Checkstyle 0.2%
ESLint 4.1%
FindBugs 1.3%
JSCS 4.7%
JSHint 0.1%
PMD 2.9%
Pylint 1.1%
RuboCop 0.9%

2.5 Configuration & Evolution (RQ I.2, RQ I.3)

2

35

Figure 2.5: Number of changes to an ASAT configuration (median 0, mean 0.5).

than 25% of all files. This means that either lines were only modified “in-place,” or that
there were as many completely new lines added as deleted. Furthermore, there is a greater
chance that a change has more additions than deletions. The range in the chart captures
more than 90% of the data. The rest of the data is spread out from -1,126 to 2,055 total
changes.

The distribution in Figure 2.7 shows the results to RQ I.3.3. We see that 18% of the
changes are made on the same day that the file is created and 33.5% of changes are made
within the first week. The tail of the data is quite extensive, as the range shown in the chart
covers just over 65% of the data. However, no date more than 15 days after the creation of
the file individually represents more than 1% of all changes. The maximum is 11.5 years
for a Checkstyle configuration.

0%

5%

10%

15%

20%

25%

30%

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

P
e

rc
e

n
ta

g
e

 o
f

A
ll

 F
il

e
s

Total Amount of Changes (Addition - Deletions)

Figure 2.6: Distribution of size of line changes after initial configuration (median: 1, mean: 1.64).

2

36 2 Analyzing the State of Static Analysis

0%

5%

10%

15%

20%

25%

30%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

P
e

rc
e

n
ta

g
e

 o
f

A
ll

 F
il

e
s

Amount of Days After Creation of File

Figure 2.7: Distribution of changes per days after initial configuration (median: 32 days, mean: 151).

2.6 Discussion
In this section, we discuss our results and possible threats to the validity of our conclusions.

2.6.1 Results
For RQ I.1.1, we found that the percentage of projects using ASATs according to the survey
is higher than that of our repository analysis. Excluding projects that are present in both
sets, 77% of the respondents of our survey note that ASATs are used compared to 52% of
project resources. It seems highly likely that the respondents to our survey were more
inclined to use ASATs, possibly explaining the 25%-point difference.

The results of a large mining repository analysis give a useful approximation of the
real ASAT use of OSS projects. It might be inaccurate on a single project basis.

However, the results from the survey also showed that the majority of projects that
use ASATs (15 out of 28) only run these tools sporadically and without enforcing them.
Researchers should avoid using data that is solely collected from project repositories and
documentation to draw conclusions about ASAT use. This highlights the need to analyze
multiple data sources in empirical software engineering [66, 127].

Our manual repository investigation showed that less than 59% of projects use ASATs
in various levels of strictness for RQ I.1.2. These results seem to contradict prior results [89,
128, 129], which claim that ASATs have not yet achieved significant use among software
projects.

2.6 Discussion

2

37

ASATs are common, but not ubiquitous in popular OSS.

Table 2.4 shows that our ASAT selection contained six times more JavaScript projects
that used an ASAT than such Java projects. This is against our expectation since there are
only three times more JavaScript than Java projects on GitHub. Before drawing further
conclusions, we need to evaluate this initial finding on a larger set of dynamic and static
languages.

Projects in a dynamically-typed language such as JavaScript might require or benefit
more from ASAT use than projects in a statically-typed language such as Java.

The questionnaire also showed that the way in which ASATs are used varies. 64% of
projects use ASATs sporadically and without attaching any consequences to the warning
results.

Few projects have ASATs tightly integrated into their workflows and even fewer proj-
ects mandate that the codebase should be ASAT-warning free.

Past research has suggested that an important factor of improving the adoption of
ASATs was to make this integration as easy and seamless as possible [89]. For instance,
Coverity provides both GitHub and Travis CI [130] integration [131, 132], making it
easy to integrate ASATs into a feedback-driven development workflow (see Chapter 1).

In order to fully benefit from ASATs, projects should include them into their standard
workflow, for example as part of their continuous integration processes.

Concerning RQ I.1.3, we observed that most projects use one ASAT. This is in spite
of the fact that the use of multiple ASATs can provide a large increase in defect detec-
tion capabilities [83, 90–92]. Developers might be unaware of these benefits or an over-
load of warning messages generated by multiple ASATs might cause developers to avoid
them [89].

For RQ I.2.1, we observed from Figure 2.4 (top graph) that 65% of all enabled rules
belong to the GDC maintainability defect category. The other 35% of rules belong to a
functional defect category. A reason for this might be that, ASATs perform poorly at
finding functional defects [92, 97–99]. Ayewah [96] andWagner [97] argue that the reason
could be that ASATs do not knowwhat code is intended to do, which is crucial if one wants
to find functional defects. If developers notice the poor performance of these functional
defect rules they might place less importance on them and subsequently leave them out
of their configurations.

Concerning RQ I.2.2, from Figure 2.4 (bottom graph) we observe that 75% of all the
disabled rules are maintainability defects. However, the ratio of maintainability defects

2

38 2 Analyzing the State of Static Analysis

to functional defects is not significantly larger for the rules that developers disable than
it is for those rules that developers enable. Even though the ability of ASATs to find
functional defects is limited [92, 97–99], developers do not widely disable these rules. A
potential reason for this might be that these rules do not emit a lot of false positives. On
the contrary, a rule that never emitted a warning might not be worth disabling, as it might
still find a defect in the future.

The majority of actively enabled and disabled rules are maintainability-related.

As we have only compared the choices that developers make in their configuration
files explicitly, this high-level observation is not a contradiction. To investigate it in more
depth, we need a study that also takes into account the implicit defaults of configurations.

On a lower level, Figure 2.4 shows some outliers for individual tools. For instance, re-
garding enabled rules, theMetric category for RuboCop and the Logic category for Pylint
stand out. For disabled rules, the FindBugs Code Structure category and the RuboCop Mi-
gration category are noticable outliers. These outliers indicate that, for a single tool or
programming language, developers sometimes consider a specific category less or more
important than developers using other ASATs or languages.

For the results regarding RQ I.2.3, Table 2.5 shows that, for all tools, less than half of
all configurations do not change or reconfigure any rule from the default configuration.
For 5 out of 6 tools, this percentage is even lower than 20% and for 3 out of 6 tools it is less
than 10%.

Most configurations change or reconfigure rules from the default configuration, but
typically only one rule.

The results described in Section 2.5.4, and Table 2.5 and Table 2.6 in particular, indicate
that there are few rules that a noticeable percentage of all developers change or reconfig-
ure. Figure 2.4 could suggest improvement opportunities in the default configurations of
ASATs. For the enabled rules, 5 out of 7 tools have zero default rules that are disabled
by developers in more than 25% of all configuration files. Moreover, less than 5% of the
rules for the other two tools are disabled more than 25% of the time. For the rules that
are disabled by default, 3 out of 6 tools do not have any rules that are turned back on by
more than 25% of all developers. The other three tools have a higher number of such rules.
Most striking are the results for FindBugs. Even though there are just eight rules that are
disabled by default, the results show that the default configuration should probably enable
rather than disable some of those rules. Regarding the reconfigurable rules, the percent-
age of rules that are potentially reconfigured by developers are low among all three tools.
However, both ESLint and JSHint still have rules that pass the 50% mark. The creators
of these tools should therefore consider changing the default settings.

Developers only widely disagree with few rules in default configurations.

2.6 Discussion

2

39

Finally, regarding RQ I.2.4, our results show that custom rules do not comprise a siz-
able segment of all rules, amounting to less than 5% for all tools. This can indicate that
developers do consider the ASATs to be complete, in the sense that they need not create
custom rules to check for defects that are not included in the built-in rule set. Neverthe-
less, this could also be an unwillingness to create custom rules, with developers manually
checking for those rules they consider to be missing in the ASATs that they use.

Custom rules comprise less than 5% of all rules that are used by developers.

Regarding RQ I.3.1, the results show that the use of ASATs is relatively stagnant (i.e.,
does not evolve). Over 80% of all the configuration files that we analyzed are created and
then used as-is for the remainder of the project’s lifetime to date. Moreover, only 5% of
all configuration files are changed more than twice and less than 2% are altered more than
five times.

Most configuration files never change.

Looking at only the files that are changed, the results for RQ I.3.2 show that, for most
files, the total number of changed lines lies within a reduction of five lines to an increase
of five lines. Furthermore, more than 28% of all files have an equal number of added and
deleted lines, indicating that there were likely only modified lines.

Most changes to configuration files are small in size.

The results for RQ I.3.3 show that a configuration files is most likely to be changed
on the same day that it was created. Looking ahead one week, we see that slightly over
a third of all changes were made in this time span. Going even further, almost half of all
changes are made within a month after a file’s creation. Thus, we observe that developers
that make changes to their configuration files do not only do so in the period where they
are still getting used to the ASAT. Assuming that this period lasts a week, or surely no
longer than a month, at least 50% of all changes are made after the ASAT was used for a
lengthy amount of time.

A third of all changes happen in the first week after the creation of an ASAT config-
uration.

2.6.2 Threats to Validity
In this section, we explain which threats affect the validity of our study and show how we
mitigated them.

2

40 2 Analyzing the State of Static Analysis

Internal Validity.
Since most study points stem from GitHub (see Table 2.4), this might bias our results. To
minimize the bias, we looked for all code hosting services and search engines that allowed
us to find ASAT configuration files. Hence, our bias towards GitHub might simply be
reflective of its current popularity among OSS projects.

There might be errors in our measurements due to the use of our analysis tools. We
verified that the tools worked as expected on small, manually curated samples and through
automated tests. Moreover, we programmed our tool defensively, that is, the tool skips
those configuration files that do not conform to a strict specification. To mitigate this risk
further, we open-sourced our tools.

GitHub’s search only retrieves 1,000 hits. Weworked around it by strategically boxing
andmodifying its file size parameter in one-byte increments. However, this was too coarse-
grained for some searches. As a result, we could not retrieve a few hundred configuration
files for most tools, and about 220,000 for JSHint. Our sample size of over one third of the
total JSHint population is still significant.

For RQ I.2.3, we assumed that the current default settings still applied when the ASATs
were initially adopted by the studied repositories. If the default configuration changed
significantly over time, our results might be inaccurate. However, manual inspection of a
few projects showed that the default typically evolves gracefully, adding new options, but
not changing existing ones.

External Validity.
This study only considers the configurations of ASATs from OSS projects. As such, its
generalizability towards closed-source projects might be limited.

Our study targets nineASATs and four programming languages, representing a diverse
set of tools (see Table 2.4). Therefore, we expect those results that abstracted over all the
tools and presented a general view of the studied ASATs to further generalize over ASATs
outside of this study as well. However, replication studies are needed to confirm this.

2.7 Tool Construction UAV
In this section, we describe the tool UAV, which can show warnings from multiple ASATs
simultaneously to help promote the benefits of using multiple, complementary ASATs
simultaneously and thus alleviate some of the hindrances to a wider ASAT adoption un-
veiled in our case study.

2.7.1 Introduction
Developers currently have little guidance which ASATs to choose and combine for a proj-
ect. They lack a tool that allows them to explore which warnings a certain ASAT emits
where in the project, and whether there are overlaps with existing ASATs. Currently, de-
velopers and researchers can only run ASATs individually and then compare their output,
which is both tedious and leaves many features to be desired. As a result, many proj-
ects still only employ one ASAT with practically no customization and never explore the
possibility of combining multiple ASATs to their benefit Section 2.6.

To address this issue, we have created UAV, the Unified ASAT visualizer. UAV can
run multiple ASATs and facilitates comparing them by unifying their different warning

2.7 Tool Construction UAV

2

41

typologies and representing all warnings in one interactive treemap visualization. For
researchers, UAV offers a flexible means to analyze the different types of warnings gener-
ated by multiple ASATs. For software developers, our tool gives insight into the warning
distribution in their Java projects. After locating a specific class full of warnings, devel-
opers can seamlessly navigate to the source code view where the relevant warnings will
be highlighted. UAV can also support ASAT tool creators themselves by helping them
sharpen the focus of their tools: They can compare the warning types their tool detects
to its competition and thus differentiate themselves better. In the remainder of this paper,
we describe UAV from an end-user as well as a technical perspective.

2.7.2 User Story
Scott and his team of software engineers at XYZ Inc. are developing a revolutionary new
search website. They decided to use multiple ASATs to ensure a basic level of code quality,
including Checkstyle and FindBugs. After a few weeks of development, Scott checks all
warnings. To his surprise, the ASATs report a list of over a thousand warnings on the
relatively new project. Scott wants to address the warnings in an efficient manner, but
has no idea where to start. He is discouraged by the fact that he cannot get an overview
of how the warnings are distributed across the system’s components. For example, warn-
ings related to the search subsystem would take precedence over warnings in the user
interface (UI) components of the new search website. Scott knows that working through
the lengthy list of warnings one at a time will be extremely time-consuming, but sees no
other option. Working through the list Scott repeatedly notices overlaps between warn-
ings from different ASATs, albeit under slightly different names. For example, for the
method AdvanceState, Checkstyle and FindBugs emit the overlapping warnings Method-
Name and NM_METHOD_NAMING_CONVENTION. Scott realizes that he is losing significant time
on similar issues. Moreover, he has no way to exclude warnings which are irrelevant to
his team. Scott wonders: Isn’t there a tool which provides me with …

• an overview of where in the system warnings are concentrated?

• an overview of warnings which have the highest priority?

• a way to filter irrelevant warnings?

• a way to filter overlaps in the warnings from multiple ASATs?

2.7.3 Related Work
In this section, we give an overview of literature and tools that are related to UAV.

Literature
Many ASATs differ in the type of defects they detect. However, even when tools focus on
uncovering the same category of defect type, the variance in the concrete warnings they
emit and their naming is still very large [60]. This indicates that using several ASATs has
benefits over using a single ASAT. Using multiple ASATs can be time consuming, how-
ever, arbitraging a single warning can take up to eight minutes on average [86]. More-
over, ASATs have been observed to generate a large number of (false) warnings, about
40 per 1,000 lines of code in the Faultbench benchmark [88]. With UAV, developers and

2

42 2 Analyzing the State of Static Analysis

Figure 2.8: Workflow of UAV.

researchers can visually assess this rich and plentiful torrent of warnings for the potential
benefits of combining multiple ASATs. It enables developers to make an informed deci-
sion on whether the added findings and their type justify the inclusion of another ASAT
into their tool chain. Researchers have long performed comparative studies with multiple
ASATs and other quality assurance techniques such as code review, for exampleWagner et
al. in 2005 [91] and Panichella et al. in 2015 [133]. However, they lacked a tool that allows
them to visually compare the location and defect types of different ASATs on concrete
real-world projects. UAV closes this gap.

User Workflow
UAV offers a visual way of exploring which packages or classes are particularly affected
by ASAT warnings. By contrast, existing research has tackled the problem of how to
deal with a flood of warnings mainly by prioritizing them. Muske and Serebrenik give a
comprehensive overview of the approaches that have been suggested so far [134].

2.7 Tool Construction UAV

2

43

To visualize data in a structured way, UAV uses treemaps on its package and class
level views and an enriched source code view on individual files. Treemaps are a space-
filling visualization method that can display large hierarchical collections of quantitative
data intuitively [135]. This makes it ideally suited to present the nested structure of a
typical Java project. UAV uses a modified treemap view to provide an intuitive high-level
visualization of which warnings lie where in a project and a seamless switch to a source-
level view to track warnings down to individual source code lines.

Tools
Apart from the plethora of individual ASATs available today, tools such as Google’s Tri-
corder [136], Teamscale [137], SonarQube [138], or CoverityScan [139] can collect and
display the warnings of multiple ASATs, the first step of UAV. UAV goes further in that it
also categorizes the warnings from the multiple tools into one mutual topology, GDC, and
visualizes them. Alternatively, UAV displays the ASAT warnings originate from, down to
the source code level. Existing tools lack these two capabilities.

2.7.4 Implementation
In this section, we first give an overview of the workflow for a user, then describe UAV’s
architecture and inner workings, and conclude with a series of technical challenges.

Workflow
Figure 2.8 depicts the typical workflow of UAV. It begins with the user running maven site

to produce the warning files of the ASATs 1⃝. The user then indicates, in UAV’s UI 2⃝, the
source folder of the project to analyze. UAV gathers context data on the project and parses
the generated ASAT warnings 3⃝. Subsequently, it classifies and groups warnings 4⃝ by
applying the GDC 5⃝ on them. Next, it writes out the result files for the visualizer 6⃝.
Finally, UAV opens the user’s web browser and runs the visualizer 7⃝.

Architecture
Figure 2.9 depicts the two components UAV comprises. The ASATCollector 1⃝ gathers
and interprets the output generated by running the supported ASATs via Maven. Because
of its static and computation-intense nature, we have implemented the ASATCollector in
Java 1.8. The ASATVisualizer 2⃝, allows a user-interactive exploration of these warnings
transferred from the ASATCollector 3⃝. To emphasize platform independence, speed, and
user interaction capabilities, we have implemented the visualizer in JavaScript to run in
the user’s browser.

The ASATCollector first finds all warnings, along with their specific location in the
project, and groups them together. Second, it determines the structure of a project. When
one runs UAV, the ASATCollector will open up a JavaFX UI where the user can select
the source folder of the project. Once selected, the parsers of the ASATCollector read the
warning files generated by maven site for Checkstyle, FindBugs and PMD.We use jsoup to
parse GDC’s ASAT mapping, specifying which ASAT warning to map to which common
GDC category. The groupers summarize these warnings according to the read-in GDC.
Simultaneously, the ASATCollector gathers information on the structure of the project
by looking up all classes within each package, the path to each Java class file and the

2

44 2 Analyzing the State of Static Analysis

ASATCollector

GUI

Parsers

JavaFx

jsoup

Writers

Groupers

Summarizers

Gson

ASATVisualizer

Bootstrap

CodeMirror

D3.js

1 2

3

4

5

Figure 2.9: Architecture of UAV.

number of lines of code for each class and package. The last step is to write the collected
warnings and data to a JavaScript file where it is stored in JSON format and transferred to
the ASATVisualizer. The Gson library is used for the creation of JSON objects.

After it creates the output file, UAV opens the user’s default browser and shows the
visualization. Moreover, users can share its light-weight output file and without having
to distribute the visualization code. This also means that multiple users can analyze the
produced warnings of the project without having to run the independent ASATs multiple
times. The visualization itself is a ready-made template based on the Bootstrap framework
using HTML, CSS, and JavaScript. It only requires a JSON output file from the ASATCol-
lector to display its information. In the ASATVisualizer, the treemap in the center of the
visualization is implemented using D3.js, a popular JavaScript library for manipulating
documents based on data. We have chosen D3.js because of its interactive features and
freedom of customization. This enabled us to implement the different filter options of the
treemap in pure JavaScript. If the user clicks on a class in the treemap, UAVwill seamlessly
swap the treemap with the source code viewer. The source code viewer is built using the
JavaScript library CodeMirror; we modified the syntax highlighting to show the warnings
at the source code level with color-coding.

ASATVisualizer User Interface
In this section, we describe the two main UI components of UAV: Its treemap high-level
package view depicted in Figure 2.11 and its source code-level view in Figure 2.10.

UAV’s visualization provides users with a large treemap showing the structure of the
project (1⃝ in Figure 2.11). The treemap can be navigated through by clicking on the desired
block. Currently, the package ’dagger.internal.codegen’ is highlighted 2⃝. Next to the
mouse cursor, UAV displays a pop-up with descriptive statistics about the highlighted
package, such as its number of warnings per ASAT 3⃝. The user could click on this package
to zoom in on it. In the menu on the left 4⃝, users can select which ASATs to include in
the visualization. They can adjust which metric the color of the classes are based on:

• ‘Normal’ shows the amount of warnings relative to other classes.

2.7 Tool Construction UAV

2

45

Figure 2.10: Code-level view of UAV with Checkstyle and PMD warnings.

• ‘ASAT’ shows the distribution of which ASAT the warnings originate from.

• ‘Category’ shows the distribution of warnings according to which of the GDC cate-
gories (functional defects, maintainability defects, or other) they belong to.

When in ‘Normal’ color scale, users can also choose to base the intensity of the colors on
the relative amount of warnings in each class or on an absolute scale (where pure green
means no warnings and pure red means one warning per line). In the GDC panel on the
right side 5⃝, the user can see the warning categories and toggle them on or off.

The user can navigate down from package level into class level view, and finally view a
single class on code level, shown in Figure 2.10. UAV color-codes each line with a warning,
see line 16. According to the setting of 4⃝ in Figure 2.11, the color can indicate which ASAT
the warnings originate from or which category they belong to. In lines with multiple
warnings, colors alternate, see line 5. It contains a warning about code structure, namely
the import ‘java.io.IOException’ is not used. Both PMD and Checkstyle have reported this
warning.

Challenges
We have encountered three major challenges during the development of UAV. Our first
challenge was to find a way for UAV to run the ASATs. The initial solution was to use
processbuilder from Java; it is possible to run commands via processbuilder to execute the
ASATs. However, this solution required an executable of each ASAT, which restricts our
users to one version of an ASAT and makes it difficult to update. Our alternate solution is
to use Maven to produce the output files of the ASATs. For this solution there is no need
to package third-party executables of ASATs together with UAV.

The solution for the first challenge, however, is a cause of the remaining two challenges:
we had to find a way for UAV to run Maven and to gather all the output files of the ASATs.

2

46 2 Analyzing the State of Static Analysis

1

2

3

4
5

Figure 2.11: High-level package view of UAV on the Dagger project.

As Maven can be run as a standalone application, installed in the system, or incorporated
in an integrated development environment (IDE), it is difficult to determine and support
all three possible installation scenarios through UAV. Instead, we have therefore decided
to let the user run Maven on their project before they use UAV.

Finding the warning files of ASATs is a straight-forward task as long as a project only
contains one Maven configuration file. However, in many larger projects, each package
has its own pom configuration file, which produces its own ASAT outputs. Hence, before
UAV can work on these, it must unify them into a single warning file per ASAT.

2.7.5 Evaluation
In this section we report on initial evaluations of UAV on three real-world systems and a
usability study with ten CS students.

Project Case Study
To evaluate whether UAV can be used on larger real-world projects, we tested it on two
popular Java projects from GitHub, google/dagger (5,292 stars)⁴ and apache/curator (486
stars),⁵ and on itself (the Java part of UAV, ASATCollector in Figure 2.9). For each project,
we ran the tool ten times and calculated the average run time. We measured the run time
from when the tool starts to gather all information of the user’s project to the point where
the analyzer writes the output files for the ASATVisualizer. Table 2.7 shows descriptive
statistics and the run time of our tool on each project.

An interesting result from comparing the tree projects was that the amount of warn-
ings per tool depended on the project, their specific ASAT configuration. For example if
many Checkstyle rules are removed or FindBugs is set to a lower rigidity, then the amount
of warnings is visibly reduced in UAV. We could compare and observe the effect of mod-

⁴https://github.com/google/dagger
⁵https://github.com/apache/curator

2.7 Tool Construction UAV

2

47

Table 2.7: Descriptive statistics of UAV on three example projects.

Name #LOC #Checkstyle warnings #PMD warnings #FindBugs warnings Run time
google/dagger 59,864 7,521 86 0 73s
Netflix/curator 122,094 16,691 53 0 156s

UAV 4,796 5 20 14 1s

ifying the project’s configurations via UAV’s “absolute” color scheme (see Section 2.7.4).
Thus, UAV also provides insights in the development stage of software.

User Study
We invited ten second year computer science students and later a visualization expert (both
with no prior knowledge of UAV) to participate in our usability testing. We placed them
in front of a computer with UAV, accompanied by a list of questions, and a short explana-
tion of the purpose of the tool. The testers could interact with the tool while answering
questions related to its use. Questions like “Which package has the most warnings?” and
“How many warnings in the project are about Code Structure?” helped us assess how in-
tuitive to use UAV was by measuring how many students delivered a correct answer. The
last question was an open question where the testers were asked for further feedback. We
replicate the list of all questions and the in-depth results of the usability evaluation in an
online appendix [140].

Our results indicate that most testers understood the goal of the tool. At least 70%
of respondents answered each question correctly. Based on incorrect answers and the
feedback given in the evaluation, we could improve the tool in several ways. One such
improvement is the backwards navigation bar. One of the testers said: “The back button
on the top looks like you can go back to a specific folder instead of the previous folder.”
This feature was initially designed to allow users to go one level up in the visualization of
their project. After discussions within the team, we replaced the navigation feature with
the current path to the file which the user is viewing. Moreover, we made each component
of the path itself clickable. We could implement several more improvements in the UI and
UAV’s usability. Later feedback from the visualization expert showed us that this made
the navigation of the tool more intuitive [140].

2.7.6 Development Roadmap
In this section, we describe possible improvements and extensions of UAV for future work.

Due to compatibility issues with the treemap visualization and the gradient color rep-
resentation of D3.js, Chrome and Safari are the only supported browsers at this time. We
plan to resolve the cosmetic problems with Firefox.

UAV’s visualization of nested packages could be improved. It currently does not show
the nested relationship of sub-packages, but rather includes them on the top-level of the
treemap. Implementing this feature would allow UAV to handle more hierarchically com-
plex projects.

The current UAV prototype supports three Java ASATs. A natural improvement would
be adding more ASATs to broaden the selection of tools that can be compared by includ-
ing tools such as Google’s Error Prone. The ASATCollector facilitates adding new ASATs

2

48 2 Analyzing the State of Static Analysis

thanks to its modular structure. We would only need to change the UI of the ASATVisu-
alizer to handle the visualization of additional tools. Supporting more tools and program-
ming languages would also lift UAV’s status of a prototype.

A promising avenue of future work would be the integration of UAVwith GitHub and
Travis CI, a cloud service that automatically builds GitHub projects. Similar to CodeCli-
mate, a new commit on GitHub could trigger the execution of Maven on Travis CI, store
the ASAT warnings as build artifacts, and UAV in the cloud would collect these artifacts
and generate a JSON file for the visualization. The existing visualization implementation
of UAV lends itself toward such hosting in the cloud, since it is based on a web-stack and
would only require the relatively light-weight visualization file locally.

2.8 Future Work & Conclusions
In this chapter, we have performed an investigation into how a large set of OSS projects use
static analysis. Our findings show that, 60% of the most popular and (therefore arguably)
most advanced projects make use of ASATs. Projects which use ASATs typically do not
embed them in their workflow and use them only sporadically. Our results seem to suggest
that dynamically-typed languages benefit from or require more ASAT support than static
languages. Future research could broaden the group of languages for this analysis to assert
and further investigate this finding.

Our analysis into the usage of ASATs through their configuration files has shown that
the default configurations of most tools are a good fit to the majority of projects. Only
two tools contained default checks that developers regularly disagreed with. In line with
the picture of a light use of ASATs are our results on the evolution of their configuration
files: There typically is no evolution. Most ASAT configurations, after an initial period of
change of one week, remain unchanged in project repositories.

Our findings seem to suggest that OSS developers need to be made aware of the ben-
efits of using ASATs, and how easy an integration into their fixed workflow or even con-
tinuous integration process can be. On the other hand, developers might be skeptical of
the practical usefulness of ASATs due to a possible overload with irrelevant warnings.

In addition to the purely empirical analysis, this chapter also described UAV, a tool
that provides an intuitive way to compare multiple ASATs. UAV makes the following key
contributions:

• A novel structured, interactive visualization that allows for comparison between
multiple ASATs.

• Configuration options to switch the visualization between the amount of warnings
per ASAT, package, class and GDC defect type.

• A basic framework that can be expanded to include more ASATs and comparison
methods as well as additional features.

• A clear overview of warnings from different ASATs in large real-world software
projects.

In our first evaluation, our UAV prototype has demonstrated its capability of visualiz-
ing warnings by clearly representing multiple Java projects of different project sizes and

2.8 Future Work & Conclusions

2

49

ASAT warning densities. Users of our tool have a more coherent view of the types and
locations of warnings as indicated by different ASATs. Our vision is that one day, anyone
who uses code analysis can input their preferences, and UAVwill combine different ASATs
to output a result that best suits their needs.

In conclusion, this chapter also contributes the GDC and practical guidelines for users
and creators of ASATs. Possible benefiters are:

Researchers, who can replicate our study and use the classification for further studies on
ASATs. The GDCmight be especially useful for studies on the intersection of ASATs
with code review [141].

Practitioners, who could assess the strengths and weaknesses of ASATs by inspecting the
distribution profile of the number of supported checks in each category. For exam-
ple, FindBugs emphasizes functional checks.

Tool Creators of FindBugs and RuboCop, whomaywant to re-assess the defaults for their
rules in two GDC categories. Developers seem to accept the remainder of the de-
faults.

Dashboard Creators of tools, such as Teamscale [142] and SonarQube [138], who could
rank, compare, filter, prioritize, and possibly remove duplicates when they assemble
warnings from multiple ASATs in one location. Our purpose-built tool UAV can
support them in this task.

3

51

3
The Last Line Effect Explained

Micro-clones are tiny duplicated pieces of code; they typically comprise only few statements
or lines. In this chapter, we study the “Last Line Effect,” the phenomenon that the last line or
statement in a micro-clone is much more likely to contain an error than the previous lines or
statements. We do this by analyzing 219 open source projects, reporting on 263 faulty micro-
clones, and interviewing six authors of real-world faulty micro-clones. In an interdisciplinary
collaboration, we examine the underlying psychological mechanisms for the presence of these
relatively trivial errors. Based on the interviews and further technical analyses, we suggest
that so-called “action slips” play a pivotal role for the existence of the last line effect: Devel-
opers’ attention shifts away at the end of a micro-clone creation task due to noise and the
routine nature of the task. Moreover, all micro-clones whose origin we could determine were
introduced in unusually large commits. Practitioners benefit from this knowledge twofold: 1)
They can spot situations in which they are likely to introduce a faulty micro-clone and 2) they
can use PVS-Studio, our automated micro-clone detector, to help find erroneous micro-clones.

This chapter has been published as M. Beller, A. Zaidman, A. Karpov, and R.A. Zwaan. The Last Line Effect
Explained, EMSE’17 [62], an extension of M. Beller, A. Zaidman, A. Karpov. The Last Line Effect, ICPC’15
(ERA) [63].

3

52 3 The Last Line Effect Explained

S oftware developers oft need to repeat one particular line of code several times in suc-
cession with only small alterations, like in this example from TrinityCore:¹

Example 3.1: TrinityCore
1 x += other.x;
2 y += other.y;
3 z += other.y;

The 3D-coordinates of the other object are added onto the member variables repre-
senting the coordinates x, y, z. However, the last line in this block of three similar lines
contains an error, as it adds the y coordinate onto the z coordinate. Instead, the last line
should be

3 z += other.z;

Another example from the popular web browser Chromium² shows that this effect
also occurs in similar statements within one single line:

Example 3.2: Chromium
1 std:: string host = ...;
2 std:: string port_str = ...;
3 if (host != buzz:: STR_EMPTY && host != buzz:: STR_EMPTY)

Instead of comparing twice that host does not equate the empty string, in the last
position, port_str should have been compared:

3 if (host != buzz:: STR_EMPTY && port_str != buzz:: STR_EMPTY)

Lines 1–3 from Example 3.1 are similar to each other, as are the statements in the
if clause in line 3 from Example 3.2. We call such an extremely short block of almost
identically looking repeated lines or statements a micro-clone. Through our experience as
software engineers and software quality consultants, we had the intuition that the last line
or statement in a micro-clone is much more likely to contain an error than the previous lines
or statements. The aim of this chapter is to verify whether our intuition is indeed true,
leading to two research questions:

RQ II.1 Is the last line in a multi-line micro-clone more likely to contain an error?

RQ II.2 Is the last statement in a single-line micro-clone more likely to contain an
error?

As recurring micro-clones are common to most programming languages, the presence
of a last line effect can impact almost every programmer. If we can prove that the last of
a series of similar statements is more likely to be faulty, code authors and reviewers alike
will know which code segments to give extra attention to. This can increase software
quality by reducing the amount of errors in a program.

One natural way to come upwith code as in Examples 3.1 and 3.2 is to copy-and-paste it.
By closely examining the origin of micro-clone instances, we come to the conclusion that
developers employ a variety of different mechanical patterns to create micro-clones, most

¹TrinityCore is a popular open-source framework for the creation of Massively Multiplayer Online Games
(MMOGs), www.trinitycore.org.
²Chromium is the open-source part of Google Chrome, www.chromium.org

3

53

important among which is copy-and-pasting on a line-per-line basis. Copy-and-pasting
and cloning are some of the most widely used idioms in the development of software [143].
They are easy and fast to do, hence cheap, and the copied code is already known to work.
Though often considered harmful [144], sometimes (micro-)cloning is in fact the only way
to achieve a certain program behavior, like in the examples above. A number of clone
detection tools have been developed to find and possibly remove code clones [145, 146].
While these automated clone detection tools have produced very strong results down to
the method level, they are ill-suited for recognizing micro-clones in practice because of
an abundance of false-positives.

When we posted a popular science blog entry³ about the last line effect, it was picked
up quickly and excitedly in Internet fora.⁴ Many programmers agreed to our observation,
often assuming a psychological reason to cause the effect. This leads to our last research
question:

RQ II.3 What are the reasons for the existence of faulty micro-clones and the last line
effect in particular?

Through interviews, deeper technical analyses and interdisciplinary work with a psy-
chologist, we research whether and which psychological aspects could play a role in the
last line effect. We first collect phenomena from the well-established area of cognitive
psychology and then research if they explain the last line effect in micro-clones.

By building upon our initial investigation of the last line effect [63], we make the
following contributions:

• We define and introduce the term micro-clone.

• We introduce techniques for the detection of faulty micro-clones implemented in
the automated static analysis tool (ASAT, [60]) PVS-Studio, which cannot be found
with traditional clone detection.

• Wemanually investigate the error proneness of 263 micro-clones in 219 well-known
open-source systems (OSS), based on a total of 1,891 warnings.

• We provide an initial analysis of the underlying psychological mechanisms behind
the existence of the last line effect.

• We lead six interviews with authors of micro-clones in real-world systems.

• We conduct a repository analysis on four well-known OSS projects based on the
results of the interviews, investigating abnormally large commit sizes.

Our findings show that in micro-clones similar to Examples 3.1 and 3.2, the last line
or statement is significantly more likely to contain an error than any other preceding
line or statement. Rather than technical complexity of the micro-clone, psychological
reasons seem to be the dominant factor for the existence of these faulty micro-clones,
mostly related to workingmemory overload of programmers. An initial investigationwith

³www.viva64.com/en/b/0260
⁴www.reddit.com/r/programming/comments/270orx/the_last_line_effect

3

54 3 The Last Line Effect Explained

five projects reveals that all micro-clones were introduced in abnormally large commits at
often unusual work hours. This knowledge and our ASAT PVS-Studio can support human
programmers in reducing the amount of simple last line-type of errors they commit by
automating the detection of such faulty pieces of code.

3.1 Study Setup
Our study consists of two empirical studies 𝐶1 and 𝐶2. In this section, we describe how
we set-up the two empirical studies on micro-clones and which study objects we selected.

3.1.1 Study Design 𝐶1: Spread and Prevalence of the Last Line Effect
within Micro-Clones

Study 𝐶1 examines how wide-spread the last line effect is within micro-clones. We sta-
tistically examine the existence of the last line effect within micro-clones in five easily
replicable steps. Moreover, in an effort to shed light on how developers create them, we
added an analysis on the origin and destination of micro-clone instances.

1. Run the static analysis checker PVS-Studio on our study objects, with all checks
enabled. PVS-Studio is a commercial static analysis tool developed by the Russia-
based company “OOO Program Verification Systems” and incorporates dozens of
static analyses from detecting clones to recognizing anti-patterns of using specific
library functions in C. For replication purposes, a free trial of PVS-Studio is publicly
available.⁵

2. Inspect the corpus of warnings from PVS-Studio and remove false-positives and
warnings not related to micro-cloning.

3. For each faulty micro-clone, count the total number of lines (RQ II.1) or statements
(RQ II.2) and denote which lines or statements are faulty. If possible, infer the likely
origin and destination of the micro-clone (for example, in Example 3.6, the origin
would be line 2 and the destination line 3).

4. Naively, we assume each line has the same likelihood 1/𝑛 of containing an error
(𝐻0), independent of its position in an 𝑛-line long faulty micro-clone. For example,
lines 1 and 2 in a 2-liner clone each have a 0.5 probability of containing an error.
However, if we can show that the error distribution per line from step (3) signifi-
cantly differs from such a uniform distribution on a 𝜎 = 0.05 significance level, we
reject 𝐻0 and assume a non-uniform error distribution. For each micro-clone length𝑛, we use Pearson’s 𝜒2 test with 𝑛 −1 degrees of freedom to compare our empirical
distribution’s goodness-of-fit to a 1/𝑛-equipartition.

5. If the test in step 4 finds a significant difference between the two distributions, we
calculate the odds ratio between them as an intuitive measure of how strong the
effect size of the last line effect is [147].

⁵www.viva64.com/en/pvs-studio-download

3.1 Study Setup

3

55

3.1.2 Study Design 𝐶2: Analyzing Reasons Behind the Existence of
the Last Line Effect

not in
current head

in
 c

u
rr

e
n
t

h
e
a
d

Sample issues

1

Locate project
Checkout source

Locate micro-clone

Determine version
still containing it

Get introducing
commit

Contact original
author

2

3

4

Figure 3.1: Study Design of 𝐶2.

Having established the existence of the last line ef-
fect in 𝐶1, we want to gain insight into the reasons
why it exists (RQ II.3). To this aim, we build an
initial theory based on related work in the domain
of cognitive psychology together with Rolf Zwaan,
professor of cognitive psychology. To obtain anec-
dotal evidence on micro-clones through interview-
ing developers and to further corroborate these cog-
nitive explanations, in study𝐶2, we interview devel-
opers that authored last line effect instances. We
specifically interviewed developers who authored
micro-clones that we found in 𝐶1. The emerging
observations will aid us in creating an initial psy-
chological explanation. By only contacting devel-
opers who we knew had created a micro-clone, we
make our interviews (1) more focused on a concrete
instance of the phenomenon that our interviewees
could personally relate to and (2) more relevant by
approaching an audience that we could prove had
authored a faulty micro-clone in the past.

Figure 3.1 depicts our general study design. It
centers around finding and contacting the original
author of a micro-clone which in many cases is not
present in the project’s latest checkout anymore.

The design comprises four primary steps:

1. We randomly sample projects and micro-clones to investigate from these projects,
since carrying out 𝐶2 is a tedious manual process that involves contacting and in-
terviewing developers. Assuming a standard response rate for cold calling surveys
of 30%, the resulting three interviews would likely give us sufficient information to
guide the creation of our initial psycho-cognitive explanation. For each micro-clone,
we have to familiarize us with the project’s development guidelines and check out
their repository.

2. Next, we locate themicro-clone in the source tree of the project. Sincemany projects
fixed our observations in the meantime and the clone is then not present in the
current head, this step requires different search strategies: we start by checking out
the repository at the date of our inspection for 𝐶1. If this fails, for example because
the code around the micro-clone was refactored (or the history force-overwritten),
we try to track down the commit that removed the micro-clone by searching the
project’s issue tracker. If all else fails, we resort to a full text search (via ag) in every
commit of the project’s history.

3. Once we tracked down the original micro-clone, we follow its history, using git

3

56 3 The Last Line Effect Explained

blame, to ensure we receive both refactorings that were applied to it as well as its
true original author.

4. In the last step, we use git blame -e to obtain the developers’ email addresses to
contact them. In an attempt to maximize the response rate, we also perform a web
search to acquire additional personal information about the developers and verify
the timeliness of the contact email addresses. We alsomade clearwewill not disclose
their identity to incentivize honest answers. We then send short personalized emails
containing the micro-clone they authored, how it was later modified or fixed, the
context of the bug, why we do the investigation, and a set of questions on the micro-
clone at hand.

3.1.3 Study Objects
To ensure the replicability and feasibility of our study, we focused on well-known open-
source systems. Among the 219 OSS we studied in 𝐶1, we found instances of defective
micro-clones in such renowned projects as the music editing software Audacity (1 find-
ing), the web browsers Chromium (9) and Firefox (9), the XML library libxml (1), the
databases MySQL (1) and MongoDB (1), the C compiler clang (14), the ego-shooters
Quake III (3) and Unreal 4 (25), the rendering software Blender (4), the 3D visualiza-
tion toolkit VTK (8), the network protocols Samba (4) and OpenSSL (2), the video editor
VirtualDub (3), and the programming language PHP (1). For 𝐶2, we sampled 10 micro-
clones from the projects Chromium, libjingle, Mesa 3D, and LibreOffice.

3.1.4 How to Replicate This Study
To foster replication of this study, we have made the complete data set and all analyses
available as a replication package.⁶ The package includes all un-filtered warnings from
PVS-Studio, separated into the older data used for our ICPC paper [63] (findings_old/)
and the newer data added for this chapter (findings_new/). Moreover, it contains the
analyzed and categorized micro-clones (analyzed_data.csv) together with an evaluation
spreadsheet (evaluation.ods) and the results from the repository analysis of 𝐶1 and 𝐶2.
We also provide the R scripts to replicate the results and graphs in this chapter. Finally,
we share a draft of the questions we sent to developers.

3.2 Methods
In this section, we outline traditional clone detection, why it is ill-suited for the recognition
of micro-clones, and how we circumvented this problem with our tail-made static checks,
our origin inference of micro-clone instances and commit size analysis.

3.2.1 Inaptness of Current Clone Detectors
As Examples 3.1 and 3.2 demonstrate, the code blocks that we study in this chapter are
either textually identical or contain “syntactically identical cop[ies]; only variable, type,
or function identifiers have [...] changed.” [148] This makes them extremely short type-1 or
type-2 clones (usually shorter than 5 lines or statements), which we refer to asmicro-clones.

⁶http://dx.doi.org/10.6084/m9.figshare.1313697.

3.2 Methods

3

57

Traditional code clone detection works with a token-, line-, abstract syntax tree (AST),
or graph-based comparison [148]. However, to reduce the number of false-positives, all
approaches are in need of specifying a minimal code clone length for their unit of mea-
surement (be it tokens, statements, lines or AST nodes) when applied in practice. This
minimal clone length is usually in the range of 5–10 units [145, 149], which makes it too
long to detect our micro-clones of length 2 to 5 units.

Consider Example 3.1, in which all lines 1–3 together form themicro-clone class. There
are three micro-clones of this class, since each line 1–3 represents a single instance. Every
micro-clone instance in Example 3.1 consists of a variable, an assignment operator and
the assigning object and its member variable, so its length in abstracted units is four.⁷

3.2.2 How to Find Faulty Micro-Clones Instead
As clone detection is not able to reliably detect micro-clones in practice, we devised a dif-
ferent strategy to find them. Our research questions aim not at finding all possible micro-
clones, but only the ones which are faulty. With this additional constraint, we could design
and implement a handful of powerful analyses based on simple textual identity. These are
able to find faulty code that is very likely the result of a micro-clone. Table 3.1 lists and
describes the twelve analyses that found micro-clones in our study.⁸ The last column sum-
marizes the within- and multi-line code clones onto the number of all warnings found
for this error code. For example, the analysis V501 simply evaluates whether there are
identical expressions next to certain logical operators. If so, these are at best redundant
and therefore cause a maintenance problem, or at worst, represent an actual bug in the
system. Other analyses are not as specific toward micro-cloning as V501. We inspected
all 526 warnings manually and only included the 272 containing an actual micro-clone
in our study. Table 3.1 also shows that 78% of our micro-clones stem from one analysis
only (V501), which has a very low false-positive rate of 97%. Other analyses have a higher
likelihood of not only being triggered by micro-clones.

3.2.3 Inferring the Origin of an Erroneous Micro-Clone Instance
To be able to make qualified statements about why a last line effect might exist in RQ II.3,
we additionally identify, for each micro-clone class, the copied erroneous clone instance
and the instance it likely originated from. While this a-posteriori analysis cannot provide
us with absolute certainty that the clones were created in this way, we have convincing
evidence that at least some developers mechanically create micro-clones this way (see
RQ II.3). As in Example 3.1, in the majority of cases, it is most often immediately clear
which is the influencing and which the influenced unit in a micro-clone: The erroneous
line 3 contains left-over fragments from line 2, implying an influence from 2 (origin) to
3 (destination). Most micro-clones exhibit a similar natural order that determines origin
and destination, either lexicographically like x, y, z in Example 3.1 or cardinally:

⁷Some clone detectors would count the assigning object and the reference to the member variables as one unit.
Following this definition, the length in units would be three.
⁸For a more detailed description of the analyses, refer to http://viva64.com/en/d/0368/.

3

58 3 The Last Line Effect Explained

Table 3.1: Error Types from PVS-Studio and Their Distribution in our 219 OSS systems.

PVS #within #multi
Error Description line line Σ#/All
Code clones clones

V501 There are identical sub-expressions to the left and to the
right of the foo operator.

104 108 212/217

V517 The use of if (A) {...} else if (A){...} pattern was
detected. There is a probability of logical error presence.

0 8 8/58

V519 The x variable is assigned values twice successively. Per-
haps this is a mistake.

0 23 23/117

V523 The then statement is equivalent to the else statement. 0 5 5/47
V524 It is odd that the body of Foo_1 function is fully equivalent

to the body of Foo_2.
0 3 3/13

V525 The code containing the collection of similar blocks.
Check items X, Y, Z, ... in lines N1, N2, N3, ...

1 1 2/11

V537 Consider reviewing the correctness of X item’s usage. 0 8 8/10
V570 The variable is assigned to itself. 1 1 2/17
V571 Recurring check. This condition was already verified in

previous line.
0 2 2/17

V581 The conditional expressions of the if operators situated
alongside each other are identical.

0 2 2/13

V583 The ?: operator, regardless of its conditional expression,
always returns one and the same value.

0 1 1/7

V656 Variables are initialized through the call to the same func-
tion. It’s probably an error or un-optimized code.

0 4 4/8

Σ 106 166 272/535

Example 3.3: cmake
1 p[0] = 0xfc | ((wc >> 30) & 0x01);
2 p[1] = 0x80 | ((wc >> 24) & 0x3f);
3 p[1] = 0x80 | ((wc >> 18) & 0x3f);
4 p[2] = 0x80 | ((wc >> 12) & 0x3f);

Even in cases where there is no explicit natural order as in Examples 3.1 and 3.3, the
code context often motivates an implicit order, like in Example 3.2: It would be against
the order of their previous definitions to put port_str in the first place and host in the
second place in line 3. Hence, we assume that the first instance of the micro-clone host

!= buzz::STR_EMPTY is the influencing origin and the second instance is the destination.

The general problem when reasoning about the origin and destination of micro-clones
in our data set is 1) the possible variable clone length and 2) the expected relatively fewer
micro-clones of length greater than 4. In order to be able to generalize over different micro-
clone lengths nonetheless, we calculate, for each micro-clone 𝑖, 𝛿𝑖 = line𝑖(𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛) −
line𝑖(𝑂𝑟𝑖𝑔𝑖𝑛), resulting in the proximity distribution Δ𝐷𝑒𝑠𝑡−𝑂𝑟𝑖𝑔 .

A value of 1 indicates an inference from the immediately preceding unit, as in Exam-
ple 3.3. A value of 0 denotes that the error occurred within the same micro-clone instance.
A value of -1 denotes a swapped pair of clones, in which the second influenced the first:

3.3 Results

3

59

Example 3.4: UnrealEngine4
1 return cy().isRelative ()
2 || cy().isRelative ()
3 || r().isRelative ()
4 || fx().isRelative ()
5 || fy().isRelative ();

Here, we would have expected cx().isRelative in line 1, instead of
cy().isRelative, which seems to be influenced by the second line. Natural order, as
well as lines 3 and 4 suggest that the micro-clone start with return cx().isRelative()

in line 1 instead.
Hence, adding up the number of values where Δ𝐷𝑒𝑠𝑡−𝑂𝑟𝑖𝑔 = 1 orΔ𝐷𝑒𝑠𝑡−𝑂𝑟𝑖𝑔 = −1 gives us the number of clones that are direct neighbors to each other,

either on the same line or the next line, irrespective of the total length of the clone.

3.2.4 Putting Commit Sizes in Perspective
To calculate and visualize how each micro-clone inducing commit relates to the remaining
distribution of commit sizes, we first calculate the churn for each commit in the reposi-
tory. We do this by instrumenting git log to build a sequenced graph of all commits
(excluding merges) in the repository, extracting the number of added and deleted lines in
each commit, summing them up as the modified lines and outputting this churn integer
for each commit. We then compare the churn of the micro-clone inducing commits to
the overall distribution, and specifically to its median. Although our sample size of ten is
too small for statistical testing, this way, we can make substantiated statements about a
possible size difference between commits. We use the median (and not the average mean,
for example) as our distributions are non-normal, it is a single real value and we compare
other, singular observations to it.

3.3 Results
In this section, we deepen our understanding of faulty micro-clones by example and sta-
tistical evaluation.

3.3.1 Overview Description of Results
Table 3.2 presents basic descriptive statistics of our results for 𝐶2. We ran the complete
suite of all PVS-Studio analyses on our 219 OSS from mid-2011 to July 2015. Andrey

Table 3.2: Descriptive statistics of study results.

... with all ... with faulty ... with last line or statement bug
findings micro-clones (rel. to all, rel. to faulty)

Analysis time June 2011 to July 2015
Analysis software PVS-Studio versions 4.00 to 5.27

of analyses 162 12 (7%) 12 (7%, 100%)
of projects 219 106 (49%) 97 (45%, 92%)
of warnings 1,891 272 (14%) 228 (12%, 84%)
of unique clones – 263 (–) 228 (–, 87%)

3

60 3 The Last Line Effect Explained

Table 3.3: Summarized study results.

multi-line micro-clone one-line micro-clone

#errors in last line or statement 117 (74%) 95 (90%)
#errors not in last line or statement 41 (26%) 10 (10%)

effect size (odds ratio) 2.9 9.5Σ 158 (100%) 105 (100%)ΣΣ 263

Karpov, a software consultant by profession, gradually analyzed the different systems
throughout this period, using the latest then-available version of PVS-Studio. He sorted-
out false positives, so that 1,891 potentially interesting warnings with 162 different error
codes remained. We then manually investigated all 1,891 warnings and found that 272
warnings with twelve distinct error codes were related to micro-cloning. Nine micro-
clones contained two such warnings, so that we ended up with 263 micro-clones. The
statistics at the project level reveal that our analyses could identify faulty micro-clones in
half of the investigated projects. Almost all of these (92%) contained at least one instance
of the last line or statement effect.

Table 3.3 presents a high-level result summary of locating errors in 263 micro-clones.
In total, we see that 74% of multi-line micro-clones have a last line error and 90% of one-
liner micro-clones in the last statement.

3.3.2 In-Depth Investigation of Findings
To convey a better intuitive understanding of the analyses with which we identify faulty
micro-clones, in the following, we select some of the 263 PVS-Studio-generated micro-
clone warnings as representative examples for the most frequently occurring error codes
from Table 3.1.

V501 – Identical Sub-Expressions
As Table 3.1 shows, the majority of micro-clone warnings are of type V501. A prime
example for a V501-type warning comes from Chromium:

Example 3.5: Chromium
1 return !profile.GetFieldText(AutofillType(NAME_FIRST)).empty() ||

!profile.GetFieldText(AutofillType(NAME_MIDDLE)).empty()||
!profile.GetFieldText(AutofillType(NAME_MIDDLE)).empty();

In this one-liner micro-clone the second and third cloned statement are lexicographically
identical but connected with the logical OR-operator (||), thus representing a tautology.
Instead, the Boolean expression misses to take into account the surname (NAME_LAST), an
example of the last statement effect in this tricolon.

V517 – Identical if-Conditions
Error code V517 pertains to having identical entry-conditions for two branches of if-
statements.

3.3 Results

3

61

Example 3.6: linux-3.18.1
1 if (slot == 0)
2 {
3 ...
4 }
5 else if (slot == 1)
6 {
7 ...
8 }
9 else if (slot == 0)

10 {
11 ...
12 }

The body of the else if condition following the third micro-clone on line 9 is dead
code, as it can never be reached. If slot was indeed zero, it would already enter the first
if condition’s body.

V519 – Identical Assignment to Variable
Setting the value of a variable twice in succession is typically either unnecessary (and
therefore a maintenance problem because it makes the code harder to understand as the
first assignment is not effective), or outright erroneous because the right-hand side of
the assignment should have been different. In the following V519 example from MTASA,
m_ucRed is assigned twice, but the developers forgot to set m_ucBlue.

Example 3.7: MTASA
1 m_ucRed = ucRed; m_ucGreen = ucGreen; m_ucRed = ucRed;

The detection of V519-style warnings works well for most “regular” software, but is to
be taken with caution when analyzing firmware or other hardware-near code, as Exam-
ple 3.8 demonstrates:

Example 3.8: linux-3.18.10
1 f->fmt.vbi.samples_per_line = 1600;
2 f->fmt.vbi.samples_per_line = 1440;

The second line sets the value of the variable f->fmt.vbi.samples_per_line again,
even though it has just been set in line 1. Since no other method calls have been made in
the further control flow of this method, the assignment in line 1 seems to have no effect.
However, as the assignment is active for at least one CPU cycle, there might be threads
that read its value in the meantime (for example, watchdogs on the buffer state) or there
might be other intended side-effects. To be on the conservative side, we compiled the code
with release settings and if the compiler optimized the first assignment away, wewere sure
it was indeed an error.

V523 – Equivalent Behavior Despite Branching
When we find a micro-clone for different branches of if-conditions, these could be sim-
plified by collapsing them into one block, for example in Haiku:

Example 3.9: Haiku
1 if (flags & ATTR_COMPRESSION_MASK) {
2 hdr_size = 72;

3

62 3 The Last Line Effect Explained

3 // FIXME: This compression stuff is all wrong. /
4 // now. (AIA) /
5 if (val_len)
6 mpa_size = 0; // get_size_for_compressed...; /
7 else
8 mpa_size = 0;
9 ...

10 }

It is, however, more likely that mpa_size should have been set to a different value in the
else-branch. The code context of this micro-clone seems highly suspicious, as it mentions
in line 3 that “[t]his compression stuff is all wrong,” and the detected erroneous micro-
clone fits to this comment.

V524 – Equivalent Function Bodies
Two cloned functions with the same content are highly suspicious. In our Example 3.10,
line 5 should call PerPtrBottomUp.clear(). This also serves as one rare example of a two-
instance micro-clone where the origin succeeds the target (𝛿𝐸10 = −1).
Example 3.10: clang

1 MapTy PerPtrTopDown;
2 MapTy PerPtrBottomUp;
3
4 void clearBottomUpPointers () {
5 PerPtrTopDown.clear();
6 }
7
8 void clearTopDownPointers () {
9 PerPtrTopDown.clear();

10 }

V537 – Suspicious Use of Variable or Statement
An illustrative example for a V537 finding comes fromQuake III, where PVS-Studio alerts
us to review the use of rectf.X:

Example 3.11: Quake III
1 rect ->X = roundr(rectf.X);
2 rect ->Y = roundr(rectf.X);

The rectangle’s y-coordinate is falsely assigned the rounded value of rectf.X in the
second (i.e., last) line of this micro-clone.

V656 – Two Variables Bear Identical Value
V656 checks for different variables that have the same initializing function. As a result,
we need to check warnings of type V656 carefully, as they bear a high potential for false-
positives. One example for a false-positive is that the two variables are supposed to start
with the same value, and are then treated differently in the downstream control-flow. All
V656-related micro-clones in our sample stem from LibreOffice.

Example 3.12: LibreOffice
1 maSelection.Min() = aSelection.Min();
2 maSelection.Max() = aSelection.Min();

Here, maSelection.Max() is assigned not the maximum value of aSelection, but its
minimum, clearly representing an error.

3.3 Results

3

63

Counterexample
As we have already seen in Example 3.12, not for all instances of an erroneous micro-
clone does the problem lie in the last line or statement. Take this rare counterexample
from Chromium, which we counted towards the 12 instances of an error in line 2 of a
three-liner micro-clone (see Table 3.4):

Example 3.13: Chromium
1 if (std::abs(data_[M01] - data_[M10]) > epsilon ||
2 std::abs(data_[M02] - data_[M02]) > epsilon ||
3 std::abs(data_[M12] - data_[M21]) > epsilon)

In line 2, the engineers deducted data_[M02] from itself. However, theymeant to write:
2 std::abs(data_[M02] - data_[M20]) > epsilon ||

3.3.3 Statistical Evaluation
Table 3.4 shows the error-per-line distribution of our 158 micro-clones consisting of sev-
eral lines, and Table 3.5 that of our 105 micro-clones within one single line. Cells with gray
background are non-sensible. For example, in a micro-clone of 2 lines length, no error can
occur in line 3. The yellow diagonal highlights errors in the last line or statement.

For each column in Tables 3.4 and 3.5, we performed a Pearson’s 𝜒2 test on a 𝑝 =0.05 significance level to see whether the individual distributions are non-uniform. The
resulting 𝑝-values, reported in the last row, are only meaningful for micro-clone lengths
with enough empirical observations, which are columns 2–6 in Table 3.4 and columns 2–4
in Table 3.5.

Table 3.4: Error distribution for micro-clones with ⩾ 2 lines.

#total lines
1 2 3 4 5 6 7 8 9 >9

1 8 0 0 1 0 0 0 0 0
2 66 12 3 1 0 0 0 0 0
3 22 4 0 1 1 0 0 0
4 15 0 0 0 0 0 0
5 6 1 0 1 0 1
6 3 0 0 0 1
7 1 0 0 1
8 0 1 0
9 2 4>9 2Σ 0 74 34 22 8 5 2 1 3 9ΣΣ 158

#e
rr
or

s
in

lin
e

𝑝 10−106 10−27 10−15 10−5 0.0487 0.534 0.437 0.135

For RQ II.1 and RQ II.2, we received significant 𝑝-values for micro-clones consisting of
2, 3, 4, 5 or 6 lines and for micro-clones consisting of 2, 3, or 4 statements (𝑝 < 0.05). This
means that we can reject the null hypothesis that errors are uniformly distributed across
statements or lines. Instead, the distribution is significantly skewed towards the last line
or statement. We would expect similar findings for longer micro-clones, but these were

3

64 3 The Last Line Effect Explained

Table 3.5: Error Distribution for Micro-Clones within One Line.

#total statements
1 2 3 4 5 > 5

1 1 0 0 0 0
2 71 4 2 0 0
3 18 1 0 0
4 7 0 0
5 0 0>5 1Σ 0 72 22 10 0 1ΣΣ 105

#e
rr
or

s
in

st
at

em
en

t

𝑝 10−73 10−13 10−4
too rare to derive statistically valid information, shown by gray areas of the last row in
Tables 3.4 and 3.5.

We can summarize the results across micro-clone lengths into the two events “error
not in last line or statement” and “error in last line or statement”, shown in Table 3.3. Our
absolute counts show that in micro-clones similar to Example 3.1, the last line is almost
thrice as likely to contain a fault than all previous lines taken together. When looking
at the individual line lengths in Table 3.4, the last line effect is even as high as a nine-
fold increased error-proneness for the oft-appearing clone lengths 2, 4 and 5. The results
for cloned statements in micro-clones within one line, like Example 3.2, are stronger still:
We found the last statement to be 9.5 times more faulty than all other statements taken
together. In fact, for the 72 micro-clones consisting of two statements, the last statement
was the faulty one in all but one case.

In a micro-clone, the last line is almost thrice as likely to be erroneous than all previ-
ous lines combined.

In total, our findings confirm the presence of a pronounced last line and last statement
effect, accepting both RQ II.1 and RQ II.2.

3.3.4 Origin of Micro-Clones
Having found a large number of seemingly trivial micro-clone-related bugs in OSS proj-
ects, we were curious about the reasons for its presence. In RQ II.3, we therefore ask:

RQ II.3 What are the reasons for the existence of faulty micro-clones and the last line effect
in particular?

In this section, we first analyze the origin of micro-clone instances, and examine which
technical and psychological reasons might play a role for the existence of micro-clones.

Table 3.6 shows the results of the copy origin analysis broken down per clone length.
For it, we disregarded micro-clones for which we could not agree on the order of their
clones, leaving us with 245 out of 263 clone pairs.

3.3 Results

3

65

Table 3.6: Clone Length (Horizontal) and Likely Clone Origin (Vertical).

❳
❳

❳
❳
❳
❳
❳
❳

origin
clone length 1 2 3 4 5 6 7 8 9 >9

1 0 132 22 7 2 1 0 0 1 0
2 3 28 3 4 1 1 1 0 0
3 1 20 0 0 0 0 1 1
4 0 2 1 1 0 0 3
5 0 2 0 0 0 0
6 0 0 0 0 2
7 0 0 1 3
8 0 0 1
9 0 0
>9 0Σ 0 135 51 30 8 5 2 1 3 10ΣΣ 245

In Figure 3.2, we plot the distribution of the copy origin. The figure shows that for 165
out of 245micro-clones (67%), the first clone instance of amicro-clone is the influential one,
with a large drop toward the second (18%) and subsequent gradual drops from the second
to the third (9%) and fourth (3%). Only in the remaining 4% of cases does the influencing
clone instance lie beyond the fourth line or statement in a micro-clone. This seems to
indicate that the first line is most influential for the outcome of a clone. However, our
distribution of micro-clones itself is highly skewed toward 2-liner micro-clones. It follows
naturally that in most instances of a two-liner micro-clone, the origin lies in the first line.

0

50

100

150

200

1 2 3 4 5 6 7 8 NA

Micro−Clone Origin

#
 o

f
M

ic
ro

−
C

lo
n
e
s

0

50

100

150

200

−1 0 1 2 3 4 5 6 8 NA

Proximity Value ∆Dest−Orig

Figure 3.2: Copy Origin Distribution (left) and Proximity Distribution of Copy Origin and Destination within
Micro-Clones (right).

3

66 3 The Last Line Effect Explained

When considering the 117 micro-clones which are longer than two clone instances in
Table 3.6, we find that the copy origin is the first line only for 33 micro-clones (28%). As
the average length for these 117 micro-clones is 4.9, we would expect 20% of copy origins
to be in the first line, even for a uniform distribution. Our 28% indicate that the first line
only exhibits a mild influence when correcting for the influence of 2-liner micro-clones.
However, In 2-liner micro-clones, the first line is almost always the origin (rather than the
second line influencing the first).

Figure 3.2 plots the distribution Δ𝐷𝑒𝑠𝑡−𝑂𝑟𝑖𝑔 (see Section 3.2.3). It shows that over 84%
of clone instances appear in the immediate mutual neighborhood of each other (220 out
of 245), i.e. Δ𝐷𝑒𝑠𝑡−𝑂𝑟𝑖𝑔 ⩽ 1. In 89% of these cases (195 out of 220), Δ𝐷𝑒𝑠𝑡−𝑂𝑟𝑖𝑔 = 1 orΔ𝐷𝑒𝑠𝑡−𝑂𝑟𝑖𝑔 = −1, which means that the erroneous instance succeeds the correct instance
in either the next line or statement. Preceding it, i.e. Δ𝐷𝑒𝑠𝑡−𝑂𝑟𝑖𝑔 = −1, is much rarer (3 out
of 220). When we disregard 2-liner or 2-statement clones, which naturally appear next to
each other, we obtain that 81% of clone pairs appear in mutual neighborhood (66 out of
81). We can therefore summarize these findings with two general observations:

1. For 2-liner micro-clones, the first line is almost always the influencing origin. When
correcting for the effects of short 2-liner code clones, in general, the first line of a
micro-clone seems to only exhibit a mild additional influence as a source.

2. Instead, the influencing and the erroneous clone instance appear in direct textual
and visual neighborhood in the source code in four out of five micro-clones. More-
over, in nine out of ten of these cases, the erroneous clone instance appears after its
influencing origin.

In most cases, copying errors seem to originate one line (or statement) above the
erroneous instance.

3.3.5 Developer Interviews
In 𝐶2, we approached ten authors of real-world committed micro-clones with excerpts
of the micro-clone they authored and additional contextual information. We then asked
them whether they remembered

1. how they mechanically created the micro-clone (e.g., by copy and pasting).

2. how the particular error referenced occurred or slipped-through.

3. which situation they were in when they created the commit, supplied with the local
time and date of the commit.

4. in which stages of development and how often similar micro-clones are generally
created in their experience.

Table 3.7 gives an overview of the ten micro-clones and associated seven interviews
which we lead asynchronously via email and Skype. The table denotes the sampled proj-
ects and commits, the creation date of the commits, their median and individual sizes

3.3 Results

3

67

Table 3.7: Descriptive Statistics of Developer Interviews and Commit Size Analysis of sampled repositories before
6.10.2016.

Project Sampled Commit Local Commit
Date

Commit
Churn

Median
Churn #Commits Replies

Chromium

2db5310

6b7fcb4

(7b37fbb)

47fcb0e

2010-09-30 20:53
2011-02-23 05:57
(2011-03-07
16:16)
2012-10-24 3:52

123

1220

(1,635)

1,627

43 639,564 4/4

LibreOffice b90bc10

44cfc7c (rebase)
2008-08-19 22:06
2012-10-09 12:22

103,083
470 18 438,994 0/2

Samba 781ed1f 2005-12-09 05:21 45 16 241,276 1/1

Mesa 3D 0ff3b2b

45124e0

2010-07-26 23:56
2010-12-07 21:37

108
251 21 99,115 1/2

libjingle 562554d 2010-09-30 20:53 110,184 212 341 1/1∑ 10 7/10 (6 authors)

in terms of churn, and the total number of commits in the project. To protect the iden-
tity of interviewees I1–I7, we do not connect the IDs with commits in the table and also
anonymize all subsequent code fragments. If we received no reply after one week, we sent
a one-time reminder to participate to the interviewee. In the following, we summarize the
insights we obtained from the interviews. We discuss interviews I1, I2, I4, I6, and I7 at
length. As we reached a preliminary saturation, our abbreviated findings here summarize
the other remaining interviews.

One interviewee replied that he has “no interest.” Another interview ended because
the participant replied that the commit was too long ago and he does not remember it.
In one instance, 7b37fbb, the interviewee I1 told us that he merely refactored and did
not author this piece of code originally (hence we report six interviews with authors in
Table 3.7). He forwarded us to the real author of the code, whom we also interviewed
(6b7fcb4).

We asked I2 about the micro-clone:

Example 3.14: Anonymized I1
1 if (! has_mic && !has_mic) {

He told us that the mistake was not a copy-and-paste mistake. Rather, he typed
!has_mic when he should have typed !has_audio instead. In his experience, this hap-
pens a lot when working with code in which one types the same words repetitively. He
observed that “I was not under anymajor stress at the time,” but that “I will note that when
working with very large changes it is much easier for something like this to be missed.”
He added that the real error was not having a unit test that covers this line and that the
reviewer missed the absurdity of the pattern !a && !a, too.

I4 answered that, while he did not remember this case specifically, he reconstructed
what likely happened for the micro-clone of the form:

3

68 3 The Last Line Effect Explained

Example 3.15: Anonymized I4
1 return
2 field.type == trans(”text”) ||
3 field.type == trans(”twitter”) ||
4 field.type == trans(”mail”) ||
5 field.type == trans(”http”) ||
6 field.type == trans(”email”) ||
7 field.type == trans(”text”);

When creating such micro-clones, he usually comes up with the first clone instance
field.type == trans(”text”) || and copy-and-pastes it several times, ending up in a
sequence like:

Example 3.16: Anonymized I4
1 field.type == trans(”text”) ||
2 field.type == trans(”text”) ||
3 ...

He reported that he does “not carefully count how many repetitions there are – I just
guesstimate.” As a last step, he would also remember to delete any extraneous lines, but
he assumes that he did not remember in this case or got distracted. During the origin
analysis (see Section 3.2.3), we also found that two refactorings on this micro-clone were
performed, but the original error stayed. This happened because developers relied on a
tool to do the transformation for them and did not read the code carefully. I4 concluded
that he often uses these mechanics for creating micro-clones, “but I usually remember to
pare down any extraneous lines.” Similar to I1, he also stated that it should be caught by
either code review or testing.

I6 answered that “it has been a while, but [...] this seems like [a] copy/paste bug to
me. Not uncommon.” He also said “I see (and do) this kind of thing all the time.” To move
fast and save typing, I6 created the micro-clone by copy-and-pasting, then modifying each
line by varying it. “The last line got missed.” His explanation is that he forgot to modify
the last micro-clone instance, since “usually, my mind has moved on to less mechanical
thought. But then the mechanical action gets botched.” While I6 did not recall the day
particularly, they are “always trying to move fast to get improvements out.” He also said
that he sees micro-clones “all the time,” at least 10 times per day. “Of those 10, perhaps 9
get caught in self review or by the compiler. The last one gets caught by other reviewers
or unit tests mostly. But on occasion, say once a month [...], this kind of [bug] makes it
into shipping code that affects end users.”

I7 authored a micro-clone of the format

Example 3.17: Anonymized I7
1 else if(depth > 0 && width > 0 && width > 0)

He remembered that he “just typed it out, no copy/paste” and missed it because “I was
probably in a hurry and was not focused.” While he could not remember the specific date,
he noted that he is “always pretty busy in general.”

From the interviews, it seemed that one factor that might affect the likelihood of faulty
micro-clones to pass through the various measures of defense the interviewees mentioned,
might be the size of the commit. If this is the case, then micro-clone inducing commits
should be abnormally large. The term “abnormally large” only makes sense in the context

3.4 Discussion

3

69

0

10,000

20,000

30,000

40,000

50,000

0 5 10 15

Log−Churn of commit

#
 o

f
C

o
m

m
it
s

Chromium

0

10

20

30

40

3 6 9 12

Log−Churn of commit

libjingle

0

10,000

20,000

30,000

0 5 10

Log−Churn of commit

LibreOffice

0

2,000

4,000

6,000

0 5 10

Log−Churn of commit

#
 o

f
C

o
m

m
it
s

Mesa 3D

0

3,000

6,000

9,000

0 5 10

Log−Churn of commit

Samba

Figure 3.3: Median commit size over whole repository history (dashed blue) and commit size (as logarithmic
churn) of individual micro-clone introducing commits (dotted orange).

of each project’s relative commit sizes. In Figure 3.3, we therefore compare the size of the
sampled micro-clone inducing commits to the median commit size in each project. The
figures show that all micro-clone inducing commits were orders of magnitude larger than
the median commit sizes in each project.

3.3.6 Usefulness of Results
Having unveiled a large number of potential bugs in OSS, we wanted to help the OSS
community and see if our findings represented bugs that would be worth fixing in reality.
We approached the OSS projects by creating issues with our findings in their bug trackers.
Many of our bug reports lead to quality improvements in the projects, like fixing the vali-
dation bug from Example 3.2 in Chromium.⁹ The search query pvs-studio bug | issue¹⁰
shows numerous bug fixes in Firefox, libxml, MySQL, Clang, samba and many other
projects based on our findings. As one such example, on October 11th 2016 in commit
caff670, we fixed a micro-clone-related issue that had existed in samba since 2005.¹¹

3.4 Discussion
In this section, we discuss our results by merging the observed bug patterns with our
psycho-cognitive analysis. We end with an explanation of possible threats to the validity

⁹https://codereview.chromium.org/7031055
¹⁰www.google.com/search?q=pvs-studio+bug+\TU\textbar+issue
¹¹https://bugzilla.samba.org/show_bug.cgi?id=12373

3

70 3 The Last Line Effect Explained

of our conclusions.

3.4.1 Technical Complexity & Reasons
Technical reasons that could play a role for the existence of the last line effect would
assume that the last line in a micro-clone is technically more complex in comparison to
the other lines, and thus more likely to contain an error. This would include that the last
line is for example not checked by the compiler, or that, when an Integrated Development
Environment (IDE) is used and the last line indeed written as the last action in this editor
window, perhaps the compiler would not react fast enough to check it. This is not true for
two reasons:

1. Modern IDEs typically do not lag behind in syntax checking.

2. The last line or statement micro-clone instances are grammatical, i.e. a compiler
error that would draw attention to them does not occur.

On the other hand, if IDEs and compilers did include checks for micro-clones, they could
help developers catch them before committing.¹²

Another technical reason might be that coming up with the last statement in a series
of statements might be harder than the ones before. However, when observing any of the
Examples 3.1, 3.2, 3.5, 3.7 and 3.11, it becomes clear that the opposite is the case: Because
all clone instances in a micro-clone follow the same pattern, the hardest to come up with,
if any, is the first instance. The succeeding instances simply replicate its pattern.

3.4.2 Psychological Mechanisms & Reasons
As technical reasons are not a likely cause for the last line effect, we consider here psycho-
logical mechanisms that might underlie this effect. We turned to a professor in cognitive
psychology (the fourth author of this chapter) and presented our findings to him. In the
following, we give an initial overview of possible psychological effects. These psycholog-
ical reasons are preliminary at this point, because a more detailed analysis would require
psychological experimentation in which the actual process of producing these errors is ob-
served, rather than reconstructed by an origin analysis (see Section 3.2.3) and remembered
in interviews (see Section 3.3.5).

In cognitive psychology, action slips are errors that occur during routine tasks and
have been widely studied [150]. A typical example would be to put milk in a coffee twice
instead of milk and sugar. Our analysis on the origin of micro-clones concluded that devel-
opers follow a wide variety of different mechanical patterns to create micro-clones. One
of these patterns is “[write first clone instance], [copy], [copy], ..., [modify], [modify], ...”,
see I4, I6. Our interviews and origin-analysis also show that developers equally follow the
pattern “[write first clone instance], [copy, modify], [copy, modify], ...” In some extreme
cases micro-cloning in our data set, this action sequence must have been repeated 34 times.
Even though they use different mechanical methods, the task software developers are per-
forming in producing micro-clones can always be seen as a sequential action task with
different levels of automation and manual effort. From a psycho-cognitive viewpoint, er-

¹²Clang started to implement our analyses, see https://llvm.org/bugs/show_bug.cgi?id=9952.

3.4 Discussion

3

71

rors developers introduce while producing micro-clones are thus characterized as typical
action slips.

While differing on the details, models for sequential action control assume that noise
is the main explanation for action slips [151–153]. By noise, we refer to any task-irrelevant
mental representation, which includes external stress such as deadlines and internal fac-
tors such as large commits, that might draw the developer’s attention. Sequential action
control models provide a useful theoretical framework for speculating about the psycho-
logical mechanisms behind the last line effect. At this point, we only know the faulty
micro-clones instances, and their location, but we have no detailed process information
on how they came to be. However, as Section 3.3.4 showed, the anecdotal evidence from
interviews as well as our technical origin analysis does allow us to make informed infer-
ences about the creating of an erroneous micro-clone instance. The basic operations that
the programmer performs are: copying and editing. Consider Example 3.1 again. The
editing step here involves two sub-steps, updating the variable and updating the value.

Example 3.1: TrinityCore
1 x += other.x;
2 y += other.y;
3 z += other.y;

Here, line 3 contains an error. It appears that line 2 was copied to produce line 3. The
first update was performed correctly (change y into z) but the second editing sub-step was
not performed, thus producing the error. In principle, line 1 could have been copied twice
with the editing steps having been performed on the two lines. However, the presence
of a y rather than x in line 3 suggests that line 2 was copied. Section 3.3.4 shows that in
most cases of micro-clones with more than two lines, the previous line was copied. This
suggests that in such micro-clones, the sequence of actions was as follows: “[copy, modify,
modify], [copy, modify, modify], ...”

Models of action control assume that action slips occur because of noise. Such noise
is more likely to occur near the end of a sequence because the programmer’s focus might
prematurely shift to the next task, for example subsequent lines of code that need to be
produced (see evidence from I6). As noted earlier, there are subtly different psychological
explanations for why such noise might occur. To take just one account [152], the last
line effect might occur because the wrong action schema is selected (e.g., the engineer is
already mentally working on the next lines rather than completing the current one).

Although none of the engineers noted to have experienced extraordinary stress levels
at the time of the creation of the clone, the statements from I6 and I7 stand out, who
indicated a general sense of business and desire to move fast. When considering the local
commit dates of when erroneousmicro-clones in Table 3.7, it stands out that only twowere
created during core office hours, even though many interviewees did this as part of their
job. Tiredness is known to reduce brain efficiency and affect the working memory [154].
This could indicate that tiredness and a general time pressure might play a critical role in
the creation of erroneous micro-clones.

More than time pressure, however, we found that all micro-clone inducing commits
(and even refactorings) were exceptionally large – orders of magnitude larger than a nor-
mal commit in the repositories. We therefore purport that commit size is an important,
perhaps the dominant noise factor, that makes these errors go unnoticed. This finding cor-

3

72 3 The Last Line Effect Explained

roborates well with the explanations of a working memory overload and I1’s observation
that the resulting amount of code is very hard to oversee.

Our interviews with developers indicated that creating short-lived micro-clones might
be common in software development, but that the developers usually catch them early, or
at least during their own or someone else’s review of the code [27]. The cognitive error in
the remaining micro-clones we observed in this study is thus not only a production error,
but also a proofreading error [155]: During revision of the code, the engineer fails to notice
the error in the last and other lines. In fact, our interviews suggest that this seemed to
happen twice for the micro-clones that made to production: once, during self-review and
then at least one second time during code review by a peer. One plausible reason why
this proofreading error is more likely to occur in the last line than in earlier ones could be
because it is an action slip. Themind is already focused on the next task (e.g., implementing
a new feature) before the current one (proofreading), has been completed. Yet another
account could be that the error is less detectable because several very similar statements
in a row have to be proofread. This could cause the reading of the final statement to
be faster and therefore more superficial. Moreover, the visual closeness of origin and
target in micro-clones might simply make it more difficult to differentiate between the
individual lines. Research on proofreading suggests that familiarity (operationalized as
word frequency) leads to shorter processing times and has a negative impact on the ability
to detect spelling errors in text [156].

All potential causes suggest that developers are more likely to conduct last-line-type
errors in situations when their attention span is reduced through noise. Possible causes for
noise with a negative impact on micro-cloning in particular seem to be large commit sizes,
and possibly high workload, stress, being distracted, and tiredness [157]. Conversely, our
results also suggest that developers’ ability to control irrelevant noise from the environ-
ment [158], i.e. their ability to focus attention, plays an important role in how likely a
micro-clone is going to be created with an action slip related error.

3.4.3 Threats to Validity
In this section, we show internal and external threats to the validity of our results, and
how we mitigated them.

Internal Threats
An important internal threat to this study concerns how to determine in which line the
error lies. Given Example 3.2, any of the two statements could be counted as the one
containing the duplication. However, reading and writing source code typically happens
from top to bottom and from left to right [7]. Therefore, the only natural assessment is to
flag lines and statements as problematic according to this strict left-right and top-down
visual reading order: In Example 3.2, only when we have read the second statement do we
know it is a duplicate of the first. We hence flag the second statement as the one contain-
ing the error. Moreover, in many cases, as in Example 3.2, the program context around
the micro-clone (here the definition order of the variables host first and then port_str)
imposes a natural logical order for the remainder of the program (first check host, then
port_str in line 3). In order to reduce personal bias, we also separated the list of find-
ings to triage across the first two authors, and then discussed unclear cases. If we could

3.4 Discussion

3

73

not reach agreement, we discarded said finding. In this process, we also re-classified all
original previous 202 findings [63] and found almost total agreement with our previous as-
sessment. Since flagging erroneous lines is a well-defined task under these circumstances,
we are sure there is a high inter-rater reliability, ensuring the repeatability of our study.

It is likely that our checkers are not exhaustive in detecting all faulty micro-clones.
This poses only a small threat to the validity of our results, as we do not claim to cover
all micro-clones. We believe to have captured a major part of the micro-clone population
through extending our checkers to 12 (see Table 3.1). Evidence that our analyses capture
a major source of bugs comes from the fact that only our core checkers V501, V517, V519
and V537 add a substantial share of the results and that van Tonder and Le Goues found
more than 24,000 faulty micro-clones using a subset of our checkers [159].

While we are confident about the results of our origin-destination analysis, we do
not know how the clones were created and modified by the software developer. Our a-
posteriori repository mining approach assumes a top-to-bottom reading order of blocks
and a left-to-right reading order for individual lines. We know that developers “jump” in
the code when reading a file, only focusing on what seems important to solve the task at
hand [7, 160]. However, in order to understand small coherent logical units, such as micro-
clones, developers must necessarily read in the control-flow-direction of the software –
which is top-to-bottom, left-to-right. In particular, it would be interesting to see 1) how
many times the copy-paste-pattern “ctrl+c, ctrl+v” was used, 2) in which order micro-
clones are created, and 3) in which order micro-clones are read and changed, if developers
need to modify them during maintenance. In order to get to know such information, we
would require to study how developers work in-vivo, similar to the WatchDog plugin
[65–67]. To that end, we could reuse parts of CloneBoard, which captures all cut, copy
and paste actions in Eclipse [161].

Given these limitations, our psychological analysis is partly speculative at this point. A
more detailed analysis requires psychological experimentation inwhich the process of pro-
ducing these errors is examined in-vivo. With our choice of research methods, we might
potentially miss subtle steps in the creation of micro-clones. However, we believe that it
is very difficult to expose faulty micro-cloning in a laboratory setting, as our interviews
indicate that it requires a long time to expose a relatively small number of micro-clones.
Moreover, due to the artificial nature of the experiment, a possible time limit and the fact
that participants typically over-perform in experiments [51], they might not create faulty
micro-clones at all. Since the results of our mixed-methods case studies corroborate each
other, we believe to have acquired an accurate set of initial reasons for the existence of
faulty micro-clones and the last line effect in particular.

External Threats
An external factor that threatens the generalizability is that PVS-Studio is specific to C
and C++. C is one of the most commonly used languages [162]. Therefore, even if our
results were not generalizable, they would at least be valuable to the large C and C++
communities. However, our findings typically contain language features common to most
programming languages, such as the variable assignments, if clauses, Boolean expressions
and array uses in Examples 3.1, 3.2, 3.5, 3.7 and 3.11. Almost all programming languages
have these constructs. Thus, we expect to see analogous results in at least C-inspired

3

74 3 The Last Line Effect Explained

languages such as Java, JavaScript, C#, PHP, Ruby, or Python. While our overall corpus
of findings is large, the average number of ∼1.2 micro-clones per project is rather small
(see Table 3.2). This could be because PVS-Studio’s analyses for defective micro-clones
are not exhaustive, and that the projects we studied are stable, production systems with
a mature code base containing relatively little trivial errors. Our interviews gave another
explanation: extensive testing and code-reviewing significantly decreases the number of
faulty micro-clones that make it into production.

3.5 Related Work
Duplicated or similar code fragments are famously known as “code clones,” yet their defini-
tion has remained somewhat vague over the last decade [163]. This vagueness is reflected
in the definitions “[c]lones are segments of code that are similar according to some def-
inition of similarity” by Baxter et al. [164] and “code clones [...] are code fragments of
considerable length and significant similarity” by Basit and Jarzabek [165]. The latter def-
inition identifies clones as long enough pieces of code that share sufficiently many traits,
while the first has no such requirements. A widely-used definition categorizes clones into
three classes [148]: Type 1 clones are textually and type 2 clones syntactically (modulo
identifier renamings) identical. Type 3 clones have further-reaching syntactic modifica-
tions and type 4 clones are only functionally identical [163]. However, this general clas-
sification is agnostic about, for example, code clone length. Subsequently, researchers
developed a plethora of more specific clone definitions [148, 166, 167]. In this study, we
add to these taxonomies the concept of very short, but closely related code clones that
are located below the lower limit of “considerable length,” with often no more than two
duplicated statements within one clone instance. We call such extremely short duplicated
pieces of code, micro-clones.

In the following, we compare traditional code clone detection mechanisms to how we
detect micro-clones. In a 2007 comparison and evaluation of clone detection tools, Bellon
et al. evaluated six clone detectors for C and Java [145]. Depending on the clone detector,
clones had to be at least six lines or 25 tokens long in their experiment. In 2014, Svajlenko
and Roy performed a similar study and compared the recall performance of elevenmodern
clone detection tools [168]. In their configuration of the clone detectors, they usedminimal
clone lengths of 50 tokens, 15 statements, or 15 lines [168]. These thresholds are too
large to be able to detect micro-clones. However, traditional clone detectors need them to
avoid a large number of false positives. Our approach circumvents this problem by only
detecting faulty micro-clones.

In direct follow-up research on our initial investigation [63], van Tonder and Le Goues
performed a large-scale search for micro-clones in 380,125 Java repositories [159]. They
found 24,304 faultymicro-clones, demonstrating and solidifying our assumption thatmicro-
clones are a wide-spread phenomenon across software projects. By providing 43 patches
to fix faultymicro-clones of which 42were promptly integrated, they show that developers
value the removal of micro-clones and that it can be automated at scale.

Empirical investigations with traditional clone detectors suggest that ∼9% to 17% is a
typical portion of clones in the code base of software systems [169], considering all type
1, 2, and 3 clones [148]. Outliers in the so-called “clone coverage” may be lower than
5% [170] and higher than 50% [163, 171]. These ratios do not include micro-clones, which

3.6 Future Work & Conclusion

3

75

we have shown to be a frequent source of bugs in numerous OSS in this study. In the
larger perspective of how prevalent code clones are in systems, micro-clones might lead
to an increased perception of clones in the code, and to a much higher clone coverage, at
least when considering a “micro-clone coverage” measure. A high clone coverage is gen-
erally thought to be problematic, since numerous studies have shown that it is positively
correlated with bugs and inconsistencies in the system [172–175].

3.6 Future Work & Conclusion
In this section, we describe possible extensions of our study and draw conclusion.

Because our study focuses on faulty micro-clones, we cannot make predictions about
how many of all micro-clones are erroneous. A promising future research direction is to
develop a clone detector that can reliably detect all micro-clones, and then to see how
many are actually defective. This gives an indication of the scale of the problem at hand.
Anecdotal evidence from interviews suggests that micro-cloning seems to happen quite
often and catching it consumes precious code review and testing iterations. To catch faulty
micro-clones early, including our checkers for micro-clones into the IDEs of developers
seems to be fruitful direction for future work.

Our initial psychological examination of the effect warrants a larger psychological con-
trolled experiment, that, we believe, might be associated with a high risk of not exposing
enough faulty micro-clone creations. Already existing tooling could help enable this study
on a technical level.

In 219 open source projects, we found 263 faulty micro-clones. Our analysis shows
that there is a strong tendency for the last line, and an even stronger tendency for the last
statement to be faulty, called the last line effect. In fact, the last line in a micro-clone is
three times as likely to contain a fault than any of the previous lines combined, and the
last statement almost ten times as likely as any of the previous statements combined.

Psychological reasons for the existence of the last line effect seem to be largely the
result of action slips, where developers fail to carry out a repetitive and easy process cor-
rectly, caused by working memory overload by noise. We have evidence suggesting that
the effect is largely caused by the way developers copy-and-paste code. Developers seem
to have a psychological tendency to think changes of similar code blocks are finished ear-
lier than they really are. This way, they miss one critical last modification. Important
reasons for noise seem to be abnormally large commit sizes, and possibly tiredness and
stress.

Because of this observation, we advise programmers to be extra-careful when read-
ing, modifying, creating, or code-reviewing the last line and statement of a micro-clone,
especially when they copy-and-paste it. Moreover, our finding that faulty micro-clones
were only present in abnormally large commits emphasizes the importance of small, man-
ageable commits. This knowledge can help developers alleviate bugs due to faulty micro-
clones, while writing and reviewing code. Developers can spot mental situations in which
they are likely to commit errors due to working term memory overload and pay attention
to avoid them. With PVS-Studio, we have described an ASAT that supports developers
to spot when such errors have “slipped through” pre-release, for example during code
review.

4

77

4
Developer Testing in the IDE:

Patterns, Beliefs, and Behavior
Software testing is one of the key activities to achieve software quality in practice. Despite
its importance, however, we have a remarkable lack of knowledge on how developers test in
real-world projects. In this chapter, we report on a large-scale field study with 2,443 soft-
ware engineers whose development activities we closely monitored over 2.5 years in four inte-
grated development environments (IDEs). Our findings, which largely generalized across the
studied IDEs and programming languages Java and C#, question several commonly shared
assumptions and beliefs about developer testing: half of the developers in our study do not
test; developers rarely run their tests in the IDE; most programming sessions end without any
test execution; only once they start testing, do developers do it extensively; a quarter of test
cases are responsible for three quarters of all test failures; 12% of tests show flaky behavior;
Test-Driven Development (TDD) is not widely practiced; and software developers only spend
a quarter of their time engineering tests, whereas they think they test half of their time. We
compile these practices of loosely guiding one’s development efforts with the help of testing
in an initial summary on Test-Guided Development (TGD), a behavior we argue to be closer
to the development reality of most developers than TDD.

This chapter is to appear asM. Beller, G. Gousios, A. Panichella, S. Proksch, S. Amann, and A. Zaidman: Developer
Testing in The IDE: Patterns, Beliefs, And Behavior, TSE [64], an extension of

 M. Beller, G. Gousios, A. Panichella, and A. Zaidman. When, How, and Why Developers (Do Not) Test in
Their IDEs, ESEC/FSE’15 [66],

 M. Beller, G. Gousios, and A. Zaidman. How (Much) Do Developers Test? ICSE’15 (NIER) [65], and
 M. Beller, I. Levaja, A. Panichella, G. Gousios, and A. Zaidman. How to Catch ’em All: WatchDog, a Family

of IDE Plug-Ins to Assess Testing, SER&IP’16 [67].

4

78 4 Developer Testing in the IDE: Patterns, Beliefs, and Behavior

H ow much should we test? And when should we stop testing? Since the beginning
of software testing, these questions have tormented developers and their managers

alike. In 2006, twelve software companies declared them pressing issues during a survey
on unit testing by Runeson [176]. Fast-forward to eleven years later, and the questions
are still open, appearing as one of the grand research challenges in empirical software
engineering [177]. But before we are able to answer how we should test, we must first
know how we are testing.

Post mortem analyses of software repositories by Pinto et al. [178] and Zaidman et
al. [179] have provided us with insights into how developers create and evolve tests at
the commit level. However, there is a surprising lack of knowledge of how developers
actually test, as evidenced by Bertolino’s and Mäntylä’s calls to better understand testing
practices [47, 180]. This lack of empirical knowledge of when, how, and why developers
test in their Integrated Development Environments (IDEs) stands in contrast to a large
body of folklore in software engineering [177], including Brooks’ statement from “The
Mythical Man Month” [181] that “testing consumes half of the development time.”

To replace folklore by real-world observations, we studied the testing practices of 416
software developers [66] and 40 computer science students [65] with our purpose-built
IDE plugin WatchDog. While these studies started to shed light on how developers test,
they had a number of limitations toward their generalizability: First, they were based on
data from only one IDE, Eclipse, and one programming language, Java. It was unclear
how the findings would generalize to other programming environments and languages.
Second, the data collection period of these studies stretched only a period of five months.
This might not capture a complete real-world “development cycle,” in which long phases
of implementation-heavy work follow phases of test-heavy development [179, 182]. Third,
we did not know how strongly the incentives we gave developers to install WatchDog
influenced their behavior. Fourth, we had no externally collected data set to validate our
observations against.

In this extension of our original WatchDog paper [66], built on top of our initial
draft of the WatchDog idea [65] and its technical tool description [67], we address these
limitations by analyzing data from four IDEs, namely Eclipse (EC), IntelliJ (IJ), Android
Studio (AS), and Visual Studio (VS), and two programming languages, Java and C#. We
extended our study from 416 developers to an open-ended field study [183] with 2,433
developers that stretches over a data collection period of 2.5 years. By measuring how
developers use the behavior reports WatchDog provides as an incentive, we can now
estimate their impact on developers’ behavior. Thanks to Visual Studio data from the
FeedBaG++ plugin, developed independently in the KaVE project [184], we can compare
our findings against an externally collected data set.

In our investigation, we focus on developer tests [185], i.e., codified unit, integration, or
system tests that are engineered inside the IDE by the developer. Developer testing in the
IDE is often complemented by work outside the IDE, such as testing on the CI server [68],
executing tests on the command line, manual testing, automated test generation, and ded-
icated testers, which we explicitly leave out of our investigation. By comparing the state
of the practice to the state of the art of testing in the IDE [46, 186, 187], we aim to under-
stand the testing patterns and needs of software engineers, expressed in our five research
questions:

4.1 Study Infrastructure Design

4

79

RQ III.1 Which Testing Patterns Are Common In The IDE?

RQ III.2 What Characterizes The Tests Developers Run In The IDE?

RQ III.3 How Do Developers Manage Failing Tests In The IDE?

RQ III.4 Do Developers Follow Test-Driven Development (TDD) In The IDE?

RQ III.5 How Much Do Developers Test In The IDE?

If we study these research questions in a large and varied population of software engi-
neers, the answers to them can provide important implications for practitioners, designers
of next-generation IDEs, and researchers. To this end, we have set up an open-ended field
study [183] that has run for 2.5 years and involved 2,443 programmers from industry and
open-source projects around the world. The field study is enabled by the Eclipse and In-
telliJ plugin WatchDog and the Visual Studio plugin FeedBaG++, which instrument the
IDE and objectively observe how developers work on and with tests.

Our results indicate that over half of the studied users do not practice testing; even
if the projects contain tests, developers rarely execute them in the IDE; only a quarter of
test cases is responsible for three quarters of all test failures; 12% of test cases show flaky
behavior; Test-Driven Development is not a widely followed practice; and, completing
the overall low results on testing, developers overestimate the time they devote to testing
almost twofold. These results counter common beliefs about developer testing and could
help explain the observed bug-proneness of real-world software systems.

4.1 Study Infrastructure Design
In this section, we give a high level overview of our field study infrastructure design,
explore how a practitioner uses WatchDog to convey an intuitive understanding of the
plugin, and describe how our plugins instrument the IDE.

4.1.1 Field Study Infrastructure
Starting with an initial prototype in 2012, we evolved our IDE instrumentation infrastruc-
ture around WatchDog into an open-source, multi-IDE, and production-ready software
solution [188]. As of version 1.5 released in June 2016, it features the three-layer architec-
ture depicted in Figure 4.1 with a client, server, and data analysis layer, designed to scale
up to thousands of simultaneous users. In the remainder of this section, we first describe
the client layer containing the four different IDE plugins for Visual Studio, IntelliJ, Android
Studio and Eclipse (from left to right). We then describe WatchDog’s server and central
database and how we converted the KaVE project’s FeedBaG++ data to WatchDog’s na-
tive interval format. We conclude this high-level overview of our technical study design
with a short description of our analysis pipeline. In earlier work, we have already given a
more technical description of WatchDog’s architecture and the lessons we learned while
implementing it [67].

4

80 4 Developer Testing in the IDE: Patterns, Beliefs, and Behavior

KaVE to WatchDog
Transformation

Server

Client

Analytics
Pipeline

Core

Reports Reports

EclipseIntelliJ

Visual

Studio

Android Studio

Figure 4.1: WatchDog’s Three-Layer Architecture.

IDE Clients
We used two distinct clients to collect data from four IDEs: the WatchDog plugin gathers
Java testing data from Eclipse and IntelliJ-based IDEs and the general-purpose interaction
tracker FeedBaG++ gathers C# testing data from Visual Studio.

WatchDog clients for Eclipse and IntelliJ. We originally implemented Watch-
Dog as an Eclipse plugin, because the Eclipse Java Development Tools edition (JDT) is
one of the most widely used IDEs for Java programming [189]. With WatchDog 1.5, we
extended it to support IntelliJ and IntelliJ-based development platforms, such as Android
Studio, “the official IDE for Android” [190]. Thanks to their integrated JUnit support, these
IDEs facilitate developer testing.

WatchDog instruments the Eclipse JDT and IntelliJ environments and registers lis-
teners for user interface (UI) events related to programming behavior and test executions.
Already on the client side, we group coherent events as intervals, which comprise a specific
type, a start and an end time. This abstraction allows us to closely follow the workflow of a
developer without being overwhelmed by hundreds of fine-grained UI events per minute.
Every time a developer reads, modifies, or executes a JUnit test or production code class,
WatchDog creates a new interval and enriches it with type-specific data.

FeedBaG++ forVisual Studio. FeedBaG++ is a general-purpose interaction tracker
developed at TU Darmstadt. It is available for Visual Studio, as an extension to the widely
used ReSharper plugin [191], which provides static analyses and refactoring tools to C#
developers.

FeedBaG++ registers listeners for various IDE events from Visual Studio and the Re-
Sharper extension, effectively capturing a superset of the WatchDog listeners. The cap-
tured information relevant for this chapter includes how developers navigate and edit
source files and how they use the test runner provided by ReSharper. The test recogni-

4.1 Study Infrastructure Design

4

81

Figure 4.2: Exemplary wizard page of WatchDog’s project survey.

tion covers common .NET testing frameworks, such as NUnit or MSUnit. In contrast to
WatchDog, which already groups events into intervals on the client side, FeedBaG++
uploads the raw event stream.

WatchDog Server
The WatchDog IDE plugins cache intervals locally, to allow offline work, and automati-
cally send them to our server as a JSON stream. The WatchDog server accepts this JSON
data via its REST API. After sanity checking, the intervals are stored in a NoSQL database.
This infrastructure scales up to thousands of clients and makes changes in the clients’ data
format easy to maintain. Moreover, we can remotely trigger an update of all WatchDog
clients, which allows us to fix bugs and extend its functionality after deployment. Auto-
mated ping-services monitor the health of our web API, so we can immediately react if an
outage occurs. Thereby, our WatchDog server achieved an average uptime of 98% during
the 2.5 years of field study.

WatchDog Analysis Pipeline
The WatchDog pipeline is a software analytics engine written in R comprising over 3,000
source lines of code without whitespaces (SLOC). We use it to answer our research ques-
tions and to generate daily reports for the WatchDog users. The pipeline reads in
WatchDog’s users, projects, and intervals from the NoSQL database and converts them
into intermediate formats fit for answering our research questions.

4.1.2 WatchDog Developer Survey & Testing Analytics
To give an understanding of the study context and incentives that WatchDog offers, we
explore it from a practitioner’s perspective in this section. Wendy is an open-source de-
veloper who wants to monitor how much she is testing during her daily development
activities inside her IDE. Since Wendy uses IntelliJ, she installs the WatchDog plug-in
from the IntelliJ plug-in repository.

4

82 4 Developer Testing in the IDE: Patterns, Beliefs, and Behavior

Registration. Once installed, a wizard guides Wendy through the WatchDog regis-
tration process: First, she registers herself as a user, then the project for whichWatchDog
should collect development and testing statistics, and finally, she fills in an interactive vol-
untary in-IDE survey about testing. Figure 4.2 shows one of the up to five pages of the
survey. Key questions regard developers’ programming expertise, whether and how they
test their software, which testing frameworks they employ and howmuch time they think
they spend on testing. Since FeedBaG++ does not collect comparable survey data, we
exclude it from research questions relying on it. Wendy, however, continues to work on
her project using IntelliJ, as usual, while WatchDog silently records her testing behavior
in the background.

Developer Statistics. After a short development task, Wendy wants to know how
much of her effort she devoted to testing and whether she followed TDD. She can retrieve
two types of analytics: the immediate statistics inside the IDE shown in Figure 4.3 and her
personal project report on our website shown in Figure 4.4. Wendy opens the immediate
statistics view. WatchDog automatically analyzes the recorded data and generates the
view in Figure 4.3, which provides information about production and test code activities
within a selected time window. Sub-graph 1⃝ in Figure 4.3 shows Wendy that she spent
more time (over one minute) reading than writing (only a few seconds). Moreover, of the
two tests she executed 2⃝, one was successful and one failed. Their average execution run-
time was 1.5 seconds. Finally, Wendy observes that the majority (55%) of her development
time has been devoted to engineering tests 3⃝, not unusual for TDD [66].

1

2 3

Figure 4.3: WatchDog’s Immediate Statistics View in the IDE (Source: [67]).

While the immediate statistics view provides Wendy with an overview of recent activ-
ities inside the IDE, the project report gives her a more holistic view of her development
behavior, including more computationally expensive analyses over the whole project his-

4.1 Study Infrastructure Design

4

83

2

1

Summary of your Test-Driven Development Practices

You followed Test-Driven Development (TDD) 38.55% of your development changes
(so, in words, quite often). With this TDD followship, your project is in the top 2 (0.1%)
of all WatchDog projects. Your TDD cycle is made up of 64.34% refactoring and
35.66% testing phase.

Description Your value Mean

Total time in which WatchDog was active 195.8h 79h

Time averaged per day 0.6h / day 4.9h / day

Detailed Statistics
In the following table, you can find more detailed statistics on your project.

General Development Behavior Your value Mean

Active Eclipse Usage (of the time Eclipse was open) 58% 40%

Time spent Writing 13% 30%

Time spent Reading 11% 32%

Java Development Behaviour Your value Mean

Time spent writing Java code 55% 49%

Time spent reading Java code 45% 49%

Time spent in debug mode 0% (0h) 2h

Testing Behaviour Your value Mean

Estimated Time Working on Tests 50% 67%

Actual time working on testing 44% 10%

Estimated Time Working on Production 50% 32%

Actual time spent on production code 56% 88%

Test Execution Behaviour Your value Mean

Number of test executions 900 25

Number of test executions per day 3/day 1.58/day

Number of failing tests 370 (41%) 14.29 (57%)

Average test run duration 0.09 sec 3.12 sec

Figure 4.4: WatchDog’s Project Report (Source: [67]).

4

84 4 Developer Testing in the IDE: Patterns, Beliefs, and Behavior

tory. She accesses her report through a link from the IDE or directly via the TestRoots
website,¹ providing the project’s ID. Wendy’s online project report summarizes her devel-
opment behavior in the IDE over the whole recorded project lifetime. Reading the report
in Figure 4.4, Wendy observes that she spent over 195 hours in total on the project under
analysis, an average of 36 minutes per day 1⃝. She worked actively with IntelliJ in 58% of
the time that the IDE was actually open. The time spent on writing Java code corresponds
to 55% of the total time, while she spent the remaining 45% reading Java code. When
registering the project, Wendy estimated the working time she would spend on testing to
equal 50%. With the help of report, she finds out that her initial estimation was relatively
precise, since she actually spent 44% of her time working on test code.

The project report also provides Wendy with TDD statistics for the project under analy-
sis, 2⃝ in Figure 4.4. Moreover, anonymized and averaged statistics from the large Watch-
Dog user base allow Wendy to put her own development practices into perspective. This
way, project reports foster comparison and learning among developers. Wendy finds that,
for her small change, she was well above average regarding TDD use: She learned how to
develop TDD-style from the “Let’s Developer” YouTube channel.² TheWatchDog project
for “Let’s Developer” is the second highest TDD follower of all WatchDog users on 5th
June, 2017 (following TDD for 37% of all modifications).³

4.1.3 IDE Instrumentation
Here, we explain how WatchDog clients instrument the IDE. We then continue with a
description of how we transform FeedBaG++ events into WatchDog intervals.

WatchDog Clients
WatchDog focuses around the concept of intervals. Table 4.1 gives a technical description
of the different interval types. They appear in the same order as rows in Figure 4.5, which
exemplifies a typical development workflow to demonstrate how WatchDog monitors
IDE activity with intervals.

Exemplary Development Workflow. Our developer Wendy starts her IDE. The in-
tegrated WatchDog plugin creates three intervals: EclipseOpen, Perspective, and User-

Active 1⃝. Thereafter, Wendy executes the unit tests of the production class she needs to
change, triggering the creation of a JUnitExecution interval, enriched with the test result
“Passed” 2⃝. Having browsed the source code of the file 3⃝ to understand which parts need
to change (a Reading interval is triggered), Wendy performs the necessary changes. A re-
execution of the unit test shows Wendy that there is a failing test after her edit 4⃝. Wendy
steps through the test with the debugger 5⃝ and fixes the error. The final re-execution of
the test 6⃝ succeeds.

Interval Concept. WatchDog starts or prolongs intervals concerning the user’s ac-
tivity (Reading, Typing, and other general activity) once it detects an interval-type pre-
serving action. For example, if there is a Reading interval on class 𝑋 started for 5 seconds
and the plugin receives a scroll event, the interval is prolonged. However, if we detect
that the IDE lost focus (end of EclipseActive interval), or the user switched from reading

¹http://testroots.org/report.html
²http://www.letsdeveloper.com
³Project report: http://goo.gl/k9KzYj

4.1 Study Infrastructure Design

4

85

Table 4.1: Overview of WatchDog intervals and how we transformed FeedBaG++ events to them. Related
intervals appear without horizontal separation.

Interval Type WatchDog Description FeedBaG++ Transformation

JUnitExecution � Interval creation invoked through the Eclipse JDT-
integrated JUnit runner, which also works for
Maven projects (example in Figure 4.6). Each test
execution is enrichedwith the SHA-1 hash of its test
name (making a link to a Reading or Typing interval
possible), test result, test duration, and child tests
executed.

FeedBaG++ tracks the ReSharper runner for the ex-
ecution of NUnit tests. The results of running tests
are easy to match to JUnit’s result states. However,
NUnit does not differentiate between errored and
failed tests, so we map all failing runs to the latter
and only report errors for inconclusive test runs.

Reading Interval in which the user was reading in the IDE-
integrated file editor. Enriched with an abstract rep-
resentation of the read file, containing the SHA-1
hash of its filename, its SLOC, and whether it is pro-
duction or test code. A test can further be catego-
rized into a test (1) which uses JUnit and is, there-
fore, executable in the IDE, (2) which employs a test-
ing framework, (3) which contains “Test” in its file-
name, or (4) which contains “test” in the project file
path (case-insensitive). Backed by inactivity time-
out.

FeedBaG++ tracks document and window events,
allowing us to identify when a developer opens a
specific file or brings it back to focus. If no other
activity interrupts this, we count it as reading, until
the inactivity threshold is reached.

Typing Interval in which the user was typing in the IDE.
Enriched with the Levenshtein edit distance, backed
by inactivity timeout.

We use FeedBaG++’s edit events to distinguish
Reading from Typing intervals and approximate the
Levenshtein distance via the number of Typing in-
tervals.

UserActive Interval in which the user was actively working
in the IDE (evidenced for example by keyboard or
mouse events). Backed by inactivity timeout.

Each user-triggered event extends the current inter-
val (or creates a new one, if there is none). Once the
inactivity threshold is reached or the event stream
ends, we close the current interval.

EclipseActive � * Interval in which the IDE had the focus on the com-
puter.

FeedBaG++ monitors the active window in the
same way as WatchDog does. We group events
into intervals.

Perspective Interval describing which perspective the IDE was
in (Debugging, regular Java development, ...).

We approximate the manually changed Eclipse
Perspectives, with Visual Studio’s automatically
changing perspectives.

WatchDogView * Interval that is created when the user consults the
immediate WatchDog statistics. Only available in
the Eclipse IDE.

Not provided in FeedBaG++.

EclipseOpen � Interval in which the IDE was open. If the com-
puter is suspended, the EclipseOpen is closed and
the current sessions ends. Upon resuming, a new
EclipseOpen interval is started, discarding the time
in which the computer was sleeping. Each session
has a random, unique identifier.

FeedBaG++ generates specific events that describe
the IDE state. From the start-up and shutdown
events of the IDE, we generate EclipseOpen inter-
vals.

� As of WatchDog 1.5, we support multiple IDEs, so better interval names would have been TestExecution, IDEActive, and
IDEOpen.
* Not shown in Figure 4.5.

4

86 4 Developer Testing in the IDE: Patterns, Beliefs, and Behavior

file 𝑋 (Reading) to typing in file 𝑌 (Writing), we immediately end the currently opened
interval. WatchDog closes all such activity-based intervals after an inactivity timeout of16 seconds, so that we adjust for breaks and interruptions. A timeout length of roughly15 seconds is standard in IDE-based observational plugins [65, 192, 193]. Most interval
types may overlap. For example, WatchDog always wraps Typing or Reading intervals
inside a UserActive interval (which it, in turn, wraps in an EclipseActive, Perspective,
and EclipseOpen interval). However, Reading and Typing intervals are by nature mutually
exclusive. We refer to an IDE session as the time span in which the IDE was continuously
running (even in the background) and not closed or interrupted, for example, because the
developer suspended the computer. All intervals that belong to one IDE session are hence
wrapped within one EclipseOpen interval, 1⃝ in Figure 4.5.

Time

22

33

11

44 66

...

...

...

...

...

55

JUnitExecution

Reading/Typing

UserActive

Perspective

EclipseOpen

Interval Type

Figure 4.5: Exemplary workflow visualization with intervals.
Table 4.1 describes the interval types in the same order as they
appear in the different rows.

We enrich Reading and Typing

intervals with different information
about the underlying file. To all inter-
vals we add a hash of the filename and
its file type, such as XML or Java class.
For Java classes, we add their SLOC
and classify them as production or test
code. As our churn measure for the
size of a change, we also add the Lev-
enshtein edit distance [194] between
the content of the file before and after
themodification during the interval to
Typing intervals.

Test Recognition. WatchDog
has four different recognition cate-
gories for test classes (see Table 4.1):
To designate the file as a test that can
be executed in the IDE, we require the
presence of at least one JUnit import
together with at least one method that
has the @Test annotation or that fol-

lows the testMethod naming convention. This way, we support both JUnit3 and JUnit4.
Furthermore, we recognize imports of common Java test frameworks and their annota-
tions (Mockito, PowerMock). As a last resort, we recognize when a file contains “Test” in
its file name or the project file path. It is a common convention to pre- or postfix the names
of test files with Test [179], or to place all test code in one sub-folder. For example, the
standardMaven directory layout mandates that tests be placed under src/test/java [195].
Thereby, we can identify and differentiate between all tests that employ standard Java
testing frameworks as test runners for their unit, integration, or system tests, test-related
utility classes, and even tests that are not executable in the IDE.We consider any Java class
that is not a test according to this broad test recognition strategy to be production code.

FeedBaG++-to-WatchDog Interval Transformation
In contrast to the native WatchDog clients, FeedBaG++ provides us with a raw event
stream (see Section 4.1.1). To feed FeedBaG++ data into the WatchDog pipeline, we

4.1 Study Infrastructure Design

4

87

Figure 4.6: Eclipse’s visualization of the JUnitExecution constituents.

derive intervals via a post factum analysis of FeedBaG++ data. In addition to this technical
difference, several minor semantic differences exist in the instrumented IDEs. We had to
find congruent concepts for them and transform FeedBaG++ events to intervals.

Concept Mapping. The Eclipse, IntelliJ, and the Visual Studio IDEs are similar con-
ceptually, yet differ in some implementation details important to our study. In addition
to IDE concepts, we had to map C# concepts to their Java counterparts.

One such central difference is the different testing frameworks available in the C#
ecosystem. FeedBaG++ recognizes the same four categories of test classes described in
Section 4.1.3: To designate a file as a test that can be executed in Visual Studio, we require
an import of one of the .NET testing frameworks NUnit, XUnit, MSUnit, csUnit, MbUnit,
or PetaTest. Furthermore, we recognize imports of the C# mocking frameworks moq,
Rhino.Mocks, NSubstitute, and Simple.Mocking.

A difference between Visual Studio and Eclipse is that the former does not have per-
spectives that developers can manually open, but instead it automatically switches be-
tween its design view for writing code, and its debug view for debugging a program run.
We map the concept of these Visual Studio views to the Perspective intervals in Watch-
Dog.

Arguably the largest difference between IDEs is how they manage different projects
and repositories. Eclipse organizes source code in a workspace that may contain many
potentially unrelated projects. IntelliJ groups several modules in a project. Visual Studio
organizes code in a solution, which contains a number of usually cohesive projects. In Java,
a single project or module often contains both the production code and test code. This
is not the case in Visual Studio, where the two kinds of source code are typically split
into two separate projects. If not accounted for, this leads to a higher number of observed
projects in Visual Studio and distorts the answers to some of our project-level research
questions. To counter this problem, we need functions to map test code from one project
to its corresponding production code in another. The notion of a Visual Studio solution and
even more so, IntelliJ’s project matches the definition of a Watchdog project, understood as
a cohesive software development effort. To avoid confusion about the overloaded “project”
term, we asked the user explicitly whether “all Eclipse projects in this workspace belong
to one ‘larger’ project?” in the WatchDog registration dialogues (see Section 4.1.2).

FeedBaG++ does not measure the Levenshtein distance in Typing intervals. However,
WatchDog data shows that the edit distance generally correlates strongly with the num-
ber of edits: The number of production code edits correlates at 𝜌 = 0.88 with production
code churn, i.e., the amount of changed code [196], and the number of test edits is corre-
lated at 𝜌 = 0.86 with test code churn. Hence, we use the number of edits as a proxy for

4

88 4 Developer Testing in the IDE: Patterns, Beliefs, and Behavior

the missing churn in FeedBaG++ data.
Event Transformation. As a second step, we transformed the event stream to inter-

vals. We re-implemented transformation rules that work on the raw FeedBaG++ event
stream based on the interval detection logic that the WatchDog plugin family performs
within the IDE. We then store it in WatchDog’s central NoSQL database store (see Fig-
ure 4.1). In the right column of Table 4.1, we sketch howwe derive the variousWatchDog
interval types from the events that FeedBaG++ captures. From there, we simply re-use
the existing WatchDog analysis pipeline.

4.2 Research Methods
In this section, we describe the methods with which we analyze the data for our research
questions.

4.2.1 Correlation Analyses (RQ III.1, RQ III.2)
We address our research questions RQ III.1 and RQ III.2 with the help of correlation anal-
yses. For example, one of the steps to answer RQ III.1 is to correlate the test code churn
introduced in all Typing intervals with the number of test executions.

Intuitively, we have the assumption that if developers change a lot of code, they would
run their tests more often. Like all correlation analyses, we first compute the churn and
the number of test executions for each IDE session and then calculate the correlation over
these summed-up values of each session. IDE sessions form a natural divider between
work tasks, as we expect that developers typically do not close their IDE or laptop at
random, but exactly when they have finished a certain task or work step (see Table 4.1).

4.2.2 Analysis of Induced Test Failures (RQ III.3)

Algorithm 1 Sketch of Test Failure Percentage Calculation
1: procedure calcFailingTestPercentage(project)
2: tcs.ok ← successful(testcases(project)) ▷ List of every single successful execution of a test case
3: tcs.failed ← failed(testcases(project)) ▷ List of every single failed or errored execution of a test case
4: tcs ← tcs.ok ∪ tcs.failed
5: if n(unique(tcs) < 10) then ▷ Not enough test cases
6: return
7: end if
8: fail.tc ▷ Map between a test case name (key) and the relative amount of test executions in which it

failed (value)
9: for tc ∈ unique(tcs.failed) do

10: fail.tc(tc) ← n(tc ∈ tcs) / n(failed(tests(project)))
11: end for
12: values(fail.tc) ← order(values(fail.tc), descending)
13: fail.perc ▷ Per percentage of all test cases, returns which percentage of failures they are responsible for▷ Invariants: fail.perc(0) = 0 and fail.perc(1) = 1
14: for i ∈ {0%,0.1%,0.2%, ..., 100%} do
15: first.i.tcs ← head(fail.rate, round(i ⋅ n(unique(tcs))))
16: failure.rate(i) ← sum(values(first.i.tcs))
17: end for
18: return fail.perc
19: end procedure

4.2 Research Methods

4

89

We abstract and aggregate the tests of multiple projects to derive general statements
like “only 25% of tests are responsible for 75% of test failures in the IDE.” Algorithm 1
outlines the steps we use to count the number of executed test cases and the number of
corresponding test failures they have caused per project. We iterate over all failed test
cases (line 9), determine which percentage of failed test executions they are responsible
for (line 10) and put the resulting list of test cases in descending order, starting with the
test case with the highest responsibility of test failures (line 12). We then normalize the
absolute count numbers to the relative amount of test cases in the project (line 14) by
calling calcFailingTestPercentage on every project, average the results so that each
project has the same weight in the graph, and plot them.

The algorithm makes assumptions that lead to a likely underestimation of the percent-
age of test failures caused by a specific test: First, it assumes that test names are stable. If
test names change during our field study, they count as two different tests, even though
their implementation might stay the same. Second, it excludes projects that only have a
small number of test cases (< 10). If, for instance, a project only has two test cases, the
result that 50% (i.e., one) of them is responsible for all test failures would be too coarse-
grained for our purposes.

4.2.3 Sequentialization of Intervals (RQ III.3, RQ III.4)
For RQ III.3 and RQ III.4, we need a linearized stream of intervals following each other.
We generate such a sequence by ordering the intervals according to their start time. For
example, in Figure 4.5, the sequenced stream after the first test failure in (4) is:
Failing Test → Switch Perspective → Start

JUnit Test → Read Production Code → ...

4.2.4 Test Flakiness Detection (RQ III.3)
Flaky tests are defined as tests that show non-deterministic runtime behavior: they pass
one time and fail another time without modifications of the underlying source code or
test [197]. Applied to the WatchDog interval concept, we look for subsequent executions
of test cases embedded in JUnitExecution intervals that have no Typing interval to either
production or source code in-between them in the above linearized interval stream from
Section 4.2.3. If the result of those subsequent executions differs, for example Failing Test→ ... → Passing Test, we regard such a test as flaky. To control for external influences,
we only do this within the confines of a session, not across sessions. Otherwise, the risk
for external influences becomes too large, for example through updating the project via
the command line without our IDE plugin noticing.

4.2.5 Recognition of Test-Driven Development (RQ III.4)
Test-Driven development (TDD) is a software development process originally proposed
by Beck [5]. While a plethora of studies have been performed to quantify the supposed
benefits of TDD [198, 199], it is unclear howmany developers use it in practice. In RQ III.4,
we investigate how many developers follow TDD to which extent. In the following, we
apply Beck’s definition of TDD to the WatchDog interval concept, providing a formally

4

90 4 Developer Testing in the IDE: Patterns, Beliefs, and Behavior

verifiable definition of TDD in practice. Since TDD is a process sequence of connected
activities, it lends itself toward modeling as a state machine [200].

TDD is a cyclic process comprising a functionality-evolution phase depicted in Fig-
ure 4.7, optionally followed by a functionality-preserving refactoring phase depicted in
Figure 4.8. We can best illustrate the first phase with the strict non-finite automaton (NFA,
[201]) in Figure 4.7a and our developer Wendy, who is now following TDD: before Wendy
introduces a new feature or performs a bug fix, she assures herself that the test for the pro-
duction class she needs to change passes (JOk in Figure 4.7 stands for a JUnitExecution

that contains a successful execution of the test under investigation). Thereafter, she first
changes the test class (hence the name “test-first” software development) to assert the pre-
cise expected behavior of the new feature or to document the bug she is about to fix. We
record such changes in a Typing interval on test code. Naturally, as Wendy has not yet
touched the production code, the test must fail (JFail). Once work on the test is finished,
Wendy switches to production code (Type Prod.), in which she makes precisely the min-
imal required set of changes for his failing test to pass again (JOk). The TDD cycle can
begin anew.

When we applied this strict TDD process, we found that it is difficult to follow in
reality, specifically the clear separation between changes to test code and later changes
to production code. Especially when developing a new feature like the Board of a board
game in Figure 4.9, developers face compilation errors during the test creation phase of

(a) Strict

(b) Lenient

Figure 4.7: Strict and lenient NFAs of TDD. JOk stands for a passing and JFail for a failing test execution (JUni-
tExecution).

4.2 Research Methods

4

91

Figure 4.8: NFA for the refactoring phase of TDD.

Figure 4.9: Compile errors while creating a TDD test.

TDD, because the class or method they want to assert on (Board) does not exist yet, since
the test has to be created before the production code. To be able to have an executing, but
failing test, they have to mix in the modification or creation of production code. Moreover,
developers often know the result of a test without executing it (for example, because it
contains obvious compile errors like in Figure 4.9), and that a test case succeeds before
they start to work on it (for example, because they fixed the test on their previous day
at work). To adjust for these deviations between a strict interpretation of TDD and its
application, we created the lenient non-finite automaton (𝜖-NFA, [201]) in Figure 4.7b,
which is more suitable for the recognition of TDD in practice. Due to the 𝜖-edge, a TDD
cycle can directly start with modifications of test code.

TDD does not only comprise a functionality-changing phase, but also the code refac-
tor phase depicted in Figure 4.8. In this phase, developers have the chance to perform
functionality-preserving refactorings. Once they are finished with refactoring, the tests
must still pass [5]. It is impossible to separate changes between production and test classes
in the refactoring phase in practice, as the latter rely on the API of the first.

To assess how strictly developers follow TDD, we convert all three NFAs to their equiv-
alent regular expressions and match them against the linearized sequence of intervals (see
Section 4.2.3). For a more efficient analysis, we can remove all intervals from the sequen-
tialized stream except for JUnitExecution and Typing intervals, which we need to recog-

4

92 4 Developer Testing in the IDE: Patterns, Beliefs, and Behavior

Table 4.2: Descriptive statistics of study data and participants.

IDE Language Plugin & Version #Users #Countries #Projects Work Time #Sessions #Intervals Collection Period Runtime

EC Java WD 1.0 – 2.0.2 2,200 115 2,695 146.2 years 66,623 12,728,351 15 Sept. 2014 – 1 March 2017 488 min
IJ Java WD 1.5 – 2.0.2 117 30 212 3.9 years 5,511 950,998 27 June 2015 – 1 March 2017 25 min
AS Java WD 1.7 – 2.0.2 71 27 178 1.0 year 2,717 347,468 26 Jan. 2016 – 1 March 2017 13 min
VS C# FB 0.1010 – 0.1015 55 ≪ 55 423 9.7 years 2,259 239,866 12 June 2016 – 1 March 2017 13 minΣ Java, C# WD, FB 2,443 118 3,508 161 years 77,110 14,266,683 15 Sep. 2014 – 1 March 2017 541 minΣ𝐶𝑁 Java, C# WD, FB 181 38 434 33.9 years 15,928 3,137,761 15 Sep. 2014 – 1 March 2017 83 min

nize TDD. To be able to draw a fine-grained picture of developers’ TDD habits, we per-
formed the analysis for each session individually. We count refactoring activity towards
the total usage of TDD. The portion of matches in the whole string sequence gives us a
precise indication of a developer’s adherence to TDD.

4.2.6 Statistical Evaluation (RQ III.1–RQ III.5)
When applying statistical tests in the remainder of this chapter, we regard results as sig-
nificant at a 95% confidence interval (𝛼 = 0.05), i.e., iff 𝑝 ⩽ 𝛼 . All results of tests 𝑡𝑖 are
statistically significant at this level, i.e., ∀𝑖 ∶ 𝑝(𝑡𝑖) ⩽ 𝛼 .

For each test 𝑡𝑖 , we first perform a Shapiro-Wilk Normality test 𝑠𝑖 [202]. Since all our
distributions significantly deviate from a normal distribution according to Shapiro-Wilk
(∀𝑖 ∶ 𝑝(𝑠𝑖) < 0.01 ⩽ 𝛼), we use non-parametric tests: 1) For testing whether there is a signifi-
cant statistical difference between two distributions, we use the non-parametric Wilcoxon
Rank Sum test. 2) For performing correlation analyses, we use the non-parametric Spear-
man rank-order (𝜌) correlation coefficient [203]. Hopkins’s guidelines facilitate the inter-
pretation of 𝜌 [53]: they describe 0 ⩽ |𝜌| < 0.3 as no, 0.3 ⩽ |𝜌| < 0.5 as a weak, 0.5 ⩽ |𝜌| < 0.7
as a moderate, and 0.7 ⩽ |𝜌| ⩽ 1 as a strong correlation.

4.3 Study Participants
In this section, we first explain how we attracted study participants, report on their demo-
graphics, and then show how we produced a normalized sample.

4.3.1 Acquisition of Participants
We reached out to potential developers to install WatchDog (WD) and FeedBaG++ (FB)
in their IDE by:

1. Providing project websites (WD, FB).⁴

2. Raffling off prizes (WD).

3. Delivering value to WatchDog users in that it gives feedback on their development
behavior (WD).

4. Writing articles in magazines and blogs relevant to Java and Eclipse developers: Ec-
lipse Magazin, Jaxenter, EclipsePlanet, Heise News (WD).

5. Giving talks and presentations at developer conferences: Dutch TestingDay, Eclipse-
Con (WD).

⁴http://www.testroots.org, http://kave.cc

4.3 Study Participants

4

93

6. Presenting at research conferences [65, 66, 184, 192, 204] (WD, FB).

7. Participating in a YouTube Java Developer series [205] (WD).

8. Penetrating social media: Reddit, Hackernews, Twitter, Facebook (WD, FB).

9. Approaching software development companies (WD, FB).

10. Contacting developers, among them 16,058 Java developers on GitHub (WD).

11. Promoting our plugins in well-established Eclipse [206], IntelliJ [207], and Visual
Studio [208] marketplaces (WD, FB).

12. Launching a second marketplace that increases the visibility of scientific plugins
within the Eclipse ecosystem, together with the Eclipse Code Recommenders proj-
ect [209] (WD).

13. Promoting the plugin in software engineering labs at TU Darmstadt (FB).

14. Approaching an electrical engineering research group working with Visual Studio
(FB).

We put emphasis on the testing reports of WatchDog to attract developers interested
in testing. Instead, for FeedBaG++, we mainly advertised its integrated code completion
support.

4.3.2 Demographics of Study Subjects
Table 4.2 and Figure 4.10 provide an overview of the observational data we collected for
this chapter. In total, we observed 14,266,683 user interactions (so-called intervals, see Sec-
tion 4.1.1) in 77,110 distinct IDE sessions. Figure 4.10a shows how 10% of our 2,443 users
contributed the wealth of our data (80%). The majority of users and, thus, data stems from
the Eclipse IDE, shown in Figure 4.10b. Reasons include that the collection period for Ec-
lipse is longer than that of the other IDEs and that we advertised it more heavily. In this
chapter, we report on an observatory field study stretching over a period of 2.5 years, on
data we collected from the 15th of September 2014 to March 1st 2017, excluding student
data that we had analyzed separately [65], but including our original developer data [66].
Data periods for other plugins are shorter due to their later release date. As we updated
WatchDog to fix bugs and integrate new features (see Section 4.1.1), we also filtered out
data from deprecated versions 1.0 and 1.1.

Our users stem from 118 different countries. Themost frequent country of is the United
States (19% of users), followed by China (10%), India (9%), Germany (6%), The Netherlands
(4%), and Brazil (4%). The other half comes from the 112 remaining countries, with less
than 4% total share each. Our developers predominately use some variant of Windows
(81% of users), MacOS (11%), or Linux (8%). Their programming experience in Figure 4.10c
is normally distributed (a Shapiro-Wilks test fails to reject the null hypothesis that it is
not normally distributed at 𝑝 = 0.15). Generally, we have more inexperienced (< 3 years,
69% of users) than experienced users. On the other hand, very experienced developers (⩾ 7
years) represent more than 13% of our population.

4

94 4 Developer Testing in the IDE: Patterns, Beliefs, and Behavior

0

500

1000

0 500 1000 1500 2000
Developer−ID

#
S

e
s
s
io

n
s

(a) Sessions per User

10
0

10
1

10
2

10
3

10
4

10
5

AS EC IJ VS
IDE

#
S

e
s
s
io

n
s

(b) Sessions per IDE

0

300

600

900

1200

< 1 1−2 3−6 7−10 > 10
Programming Experience (Years)

#
D

e
ve

lo
p
e
rs

IDE
AS
EC
IJ
VS

(c) User Experience

Figure 4.10: Distributions of the number of sessions per developer (all IDEs), per IDE (log scale), and their
programming experience (WatchDog only).

Overall, the 2,443 participants registered 3,508 unique projects. The registered proj-
ects stem from industry as well as famous open-source initiatives, such as the Apache
Foundation, but also include private projects.

Using the average work time for OECD countries of 1770 hours per year,⁵ we observed
a total work time of 161 developer years on these registered projects in the IDE. The last
column in Table 4.2 denotes the runtime of our analysis pipeline running on a dedicated
server with 128GB RAM using eight Intel Xeon E5-2643 cores at 3.50GHz.

This chapter broadens our single-IDE study on developer testing in the IDE to a very
large set of developers (a ten-fold increase over our original WatchDog data [65]). Sur-
vey responses from 2,291 registrations of WatchDog users and projects complement our

⁵http://stats.oecd.org/index.aspx?DataSetCode=ANHRS

4.4 Results

4

95

technical IDE observations that now stem from four IDEs in two mainstream program-
ming languages. FeedBaG++ data stems from the March 1st, 2017 event data set [210].

4.3.3 Data Normalization
As discussed in Section 4.3.2, the majority of our intervals (80%) stems from only 378 users.
The long tail of users that contributed only little data might impact some of our analyses
(see Figure 4.10a). Conversely, the large amount of data we received from few developers
might affect our results with a bias toward the individual development preferences of those
few developers. To reduce both biases, we cap and normalize our data using stratified
random sampling on the number of sessions per user. We chose sessions, because they are
at a finer granularity than projects, but still allow analyses such as the TDD recognition,
which would not work when sampling random intervals that have no connection to each
other.

We first order our users by the number of sessions each user submitted and cap at
below the user at which we reached 80% of all sessions. This leaves in users with at least
88 sessions each, effectively removing the bulk of users who barely contributed data and
might, thus, skew user- or project-based analyses. The problem that few users have a
disproportionately large impact on the analyzed data remains. Hence, we normalize the
data by randomly sampling 88 of the available sessions for each user. After this, every user
has the same influence on the results in our new capped, normalized data set, depicted asΣ𝐶𝑁 in Table 4.2. In comparison to our overall population Σ, the distribution of originating
countries and IDEs is similar. The only apparent change in population demographics is an
almost three-fold increase of very experienced developers to 32% in Σ𝐶𝑁 .

Since our study is a large-scale observatory field study, we primarily use our non-
normalized data set Σ when answering research questions. Filtering criteria remain to
some extent arbitrary and might induce a bias themselves. Whenever there is a significant
difference in the capped normalized data set Σ𝐶𝑁 , we report and discuss this in the answer
to the appropriate research question.

4.4 Results
In the following, we report the results to each of our research questions individually per
subsection.

4.4.1 RQ III.1: Which Testing Patterns Are Common In the IDE?
To answer how and why developers test, we must first assess:
RQ III.1.1 How Common Is Codified Testing in the IDE?

When we apply our broad recognition of test classes as described in Section 4.1.3 and
Table 4.1, we detect test activities in only 43% of projects in our data set (EC: 46%, IJ:
26%, AS: 28%, VS: 26%), meaning that, in total, only 1,498 projects out of 3,508 contain
tests that a user either read, changed, or executed in the IDE. This is one of the analyses
that is potentially impacted by data skews due to a short amount of observed development
behavior for many users. However, even in Σ𝐶𝑁 , only 255 projects out of 434 (58%) showed
testing activity.

4

96 4 Developer Testing in the IDE: Patterns, Beliefs, and Behavior

If we restrict the recognition to tests that can be run through the IDEs, we find that
594 projects have such tests (EC: 436, IJ: 88, AS: 27, VS: 40), about 17% of the registered
projects (EC: 16%, IJ: 22%, AS: 15%, VS: 9%). In Σ𝐶𝑁 , this percentage is somewhat higher at
29%, with 124 projects with executable tests. By comparing the WatchDog projects IDE
data to what developers claimed in the survey, we could technically detect JUnit tests in
our interval data (as either Reading, Typing, or JUnitExecution) for only 43% of projects
that should have such tests according to the survey (EC: 42%, IJ: 61%, AS: 32%). Here, we
find the only obvious difference in Σ𝐶𝑁 , where the percentage of users who claimed to
have JUnit tests and who actually had them, is 73%.

Our second sub-research question is:
RQ III.1.2 How Frequently Do Developers Execute Tests?
Of the 594 projects with tests, we observed in-IDE test executions in 431 projects (73%, EC:
75%, IJ: 68%, AS: 37%, VS: 80%). In these 431 projects, developers performed 70,951 test runs
(EC: 63,912, IJ: 3,614, AS: 472, VS: 2,942). From 59,198 sessions in which tests could have
been run because we observed the corresponding project to contain an executable test at
some point in our field study, we observed that in only 8% or 4,726 sessions (EC: 8.1%, IJ:
7.4%, AS: 3.4%, VS: 8.9%) developers made use of them and executed at least one test. The
average number of executed tests per session is, thus, relatively small, at 1.20 for these 431
projects. When we consider only sessions in which at least one test was run, the average
number of test runs per session is 15 (EC: 15.3, IJ: 11.1, AS: 7.6, VS: 17.9).

When developers work on tests, we expect that the more they change their tests, the
more they run their tests to inform themselves about the current execution status of the
test they are working on. RQ III.1.3 and following can, therefore, give an indication as to
why and when developers test:
RQ III.1.3 Do Developers Execute Their Test Code Changes?

The correlation between test code changes and the number of test runs yields a moder-
ately strong 𝜌 = 0.65 (EC: 0.64, IJ: 0.60, AS: 0.41, VS: 0.66) in our data sample (𝑝-value < 0.01).
In other words, the more changes developers make to a test, the more likely are they to
execute this test (and vice versa).

A logical next step is to assess whether developers run tests when they change the
production code: Do developers assert that their production code still passes the tests?
RQ III.1.4 Do Developers Test Their Production Code Changes?
The correlation between the number of test runs and number of production code changes
is generally weaker, with 𝜌 = 0.39 (EC: 0.38, IJ: 0.47, AS: 0.20, VS: 0.60) and 𝑝-value < 0.01.

Finally, in how many cases do developers modify their tests, when they touch their
production code (or vice versa), expressed in:
RQ III.1.5 Do Developers Co-Evolve Test and Production Code?

In this case, the Spearman rank correlation test indicates no correlation (𝜌 = 0.31, EC:
0.26, IJ: 0.58, AS: 0.43, VS: 0.73) between the number of changes applied to test and pro-
duction code. This means that developers do not modify their tests for every production
code change, and vice versa.

4.4 Results

4

97

Table 4.3: Descriptive statistics for RQ III.2 and RQ III.3 in the ∑ data (similar across IDEs, hence abbreviated).

Variable Unit Min 25% Median Mean 75% Max Log-Histogram

JUnitExecution duration Sec 0 0 0.5 107.2 3.1 652,600
Tests per JUnitExecution Items 1 1 1 5.0 1 2,260
Time to fix failing test Min 0 0.9 3.7 44.6 14.9 7,048
Test flakiness per project Percent 0 0 0 12.2 15.8 100

4.4.2 RQ III.2: What Characterizes The Tests Developers Run In The
IDE?

When developers run tests in the IDE, they naturally want to see their execution result
as fast as possible. To be able to explain how and why developers execute tests, we must,
therefore, first know how long developers have to wait before they see a test run finish:
RQ III.2.1 How Long Does a Test Run Take?

In all IDEs except for Visual Studio, 50% of all test executions finishwithin half a second
(EC: 0.42, AS: 1.8s, IJ: 0.47s, VS: 10.9s), and over 75% within five seconds (EC: 2.37s, IJ: 2.17s,
AS: 3.95s, VS: 163s), see Table 4.3 for the average values. Test durations longer than one
minute represent only 8.4% (EC: 4.2%, IJ: 6.9%, AS: 6.1%, VS: 32.0%) of the JUnitExecutions.

Having observed that most test runs are short, our next step is to examine whether
short tests facilitate testing:
RQ III.2.2 Do Quick Tests Lead to More Test Executions?

To answer this research question, we collect and average the test runtime and the
number of times developers executed tests in each session, as in Section 4.4.1. Then, we
compute the correlation between the two distributions. If our hypothesis was true, we
would receive a negative correlation between the test runtime and the number of test
executions. This would mean that short tests are related to more frequent executions.
However, the Spearman rank correlation test shows that this is not the case, as there
is no correlation at 𝜌 = 0.27 (EC: 0.40, IJ: 0.24, AS: 0.83, VS: 0.41). In Android Studio’s
case, the opposite is true, indicating a strong relationship between the runtime of a test
and its execution frequency. Combined with the fact that only a small number of tests
are executed, our results suggest that developers explicitly select test cases [211]. While
test selection is a complex problem on build servers, it is interesting to investigate how
developers perform it locally in their IDE:
RQ III.2.3 Do Developers Practice Test Selection?

A test execution that we capture in a JUnitExecution interval may comprise multiple
child test cases. However, 86% of test executions contain only one test case (EC: 86%, IJ:
88%, AS: 80%, VS: 85%), while only 7.7% of test executions comprise more than 5 tests (EC:
7.8%, IJ: 4.8%, AS: 7.6%, VS: 10.3%), and only 2.2% more than 50 tests (Table 4.3, EC: 2.2%,
IJ: 0.1%, AS: 0.0%, VS: 4.4%).

Test selection likely happened if the number of executed tests in one JUnitExecution
is smaller than the total number of tests for the given project (modulo test renames, moves,
and deletions). The ratio between these twomeasures allows us to estimate the percentage
of selected test cases. If it is significantly smaller than 100%, developers practiced test

4

98 4 Developer Testing in the IDE: Patterns, Beliefs, and Behavior

selection. Our data in Table 4.3 shows that 86.4% of test executions include only one test
case.

To explain how and why this test selection happens with regard to a previous test
run, we investigate two possible scenarios: First, we assume that the developer picks out
only one of the tests run in the previous test execution, for example to examine why the
selected test failed. In the second scenario, we assume that the developer excludes a few
disturbing tests from the previous test execution. In the 1719 cases in which developers
performed test selection, we can attribute 94.6% (EC: 94.6%, IJ: 91.8%, AS: 82.4%, VS: 95.5%)
of selections to scenario 1, and 4.9% (EC: 5.2%, IJ: 0.0%, AS: 5.8%, VS: 3.6%) to scenario 2.
Hence, our two scenarios together are able to explain 99.5% (EC: 99.8%, IJ: 91.8%, AS: 88.2%,
VS: 99.1%) of test selections in the IDE.

4.4.3 RQ III.3: How Do Developers Manage Failing Tests?
Having established how often programmers execute tests in their IDE in the previous
research questions, it remains to assess:
RQ III.3.1 How Frequently Do Tests Pass and Fail?

There are three scenarios under which a test execution can return an unsuccessful
result: The compiler might detect compilation errors, an unhandled runtime exception is
thrown during the test case execution, or a test assertion is not met. In either case, the
test acceptance criterion is never reached, and we therefore consider them as a test failure,
following JUnit’s definition.

In the aggregated results of all observed 70,951 test executions, 57.4% of executions fail,
i.e., 40,700 JUnitExecutions (EC: 57.4%, IJ: 60.7%, AS: 56.8%, VS: 43.2%), and only 42.6%
pass successfully. Moreover, when we regard the child test cases that are responsible for
causing a failed test execution, we find that in 86% (EC: 95%, IJ: 84%, AS: 88%, VS: 94%)
of test executions only one single test case fails, and is, thus, responsible for making the
whole test execution fail, even though other test cases from the same test class might pass,
as exemplified in Figure 4.6.

To zoom into the phenomenon of broken tests, we ask:
RQ III.3.2 Are All Test Cases Equally Responsible for Test Failures?

In this question, we regard all test cases that have ever been executed and observed.
We then calculate and track how many times each of them failed, as described in detail
in Section 4.2.2. Since we cannot track renames of files and, therefore, treat them as two
different files, it is likely that the real error percentage for test cases is slightly higher.
Figure 4.11 depicts the results, showing that only 25% of test cases are responsible for
over 75% of test failures in Eclipse and Visual Studio. In all IDEs, 50% of test cases are
responsible for over 80% of all test errors. While slightly lower for IntelliJ-based IDEs, the
failure and growth rate of the curve is similar across IDEs, suggesting a near-logarithmic
growth.

As developers apparently often face test failures, we ask:
RQ III.3.3 How Do Developers React to a Failing Test?

For each failing test execution in our data sets, we generate a linearized stream of
subsequently following intervals, as explained in Section 4.2.3. By counting and summing
up developers’ actions after each failing test for up to 3.3 minutes (200 seconds), we can
draw a precise picture of how developers manage a failing test in Figure 4.12. Across all

4.4 Results

4

99

IDEs, the most widespread immediate reaction in ∼50% of cases within the first seconds
is to read test code.⁶ The second most common reaction, at stable 20% of reactions across
the time, is to read production code.

The next most common reactions – switching focus away from the IDE (for example,
to turn to the web browser), switching perspective in the IDE (for example to a dedicated
debugging perspective), typing test code, and being inactive – appear in different order
among IDEs. Typing test code, however, is a more common reaction to a failing test in
all IDEs than typing production code. Starting another test execution is a fairly com-
mon course of action within the first minute across all IDEs, reaching ∼15% frequency.
Switching perspective is only prevalent in the first seconds (see Figure 4.12d), since it is
an automated feature of Visual Studio (see Section 4.1.3). Altogether quitting the IDE al-
most never happens and is, therefore, not shown. After two minutes (120 seconds), the

⁶While writing this extension, we uncovered a bug in the analysis code to RQ III.3.3. The bug swapped the “Read
Test Code” with the “Read Production Code” label. This lead us to wrongly claim in the original WatchDog
paper [66] that developers dived into offending production code first, which was never the case.

0%

25%

50%

75%

100%

0% 25% 50% 75% 100%
Ratio of All Executed Test Cases

R
a

ti
o

 o
f

In
d

u
c
e

d
 T

e
s
t

F
a

ilu
re

s

IDE
AS
EC
IJ
VS

Figure 4.11: Accumulated error responsibility of test cases per IDE. Based on 134 projects with ≥ 10 run test cases
(EC: 112, IJ: 9, AS: 1, VS 12).

4

100 4 Developer Testing in the IDE: Patterns, Beliefs, and Behavior

●

●
●

0%

20%

40%

60%

0 50 100 150 200
Time (s)

F
re

q
u
e
n
c
y
 o

f
R

e
a
c
ti
o
n

(a) Eclipse

●

● ●

0%

20%

40%

60%

0 50 100 150 200
Time (s)

(b) IntelliJ

●

● ●

0%

20%

40%

60%

0 50 100 150 200
Time (s)

F
re

q
u
e
n
c
y
 o

f
R

e
a
c
ti
o
n

(c) Android Studio

●

● ●

0%

20%

40%

60%

0 50 100 150 200
Time (s)

(d) Visual Studio

Reaction
●

Switched Focus
Ran a Junit Test

Switched Persp.
Read Prod. Code

Read Test Code
Typed Prod. Code

Typed Test Code
Were inactive

Figure 4.12: Frequency of immediate reactions to a failing test over time, separated by IDE.

reactions trend asymptotically toward their overall distribution, with little variability.
The logical follow-up to RQ III.3.3 is to ask whether developers’ reactions to a failing

test are in the end successful, and:
RQ III.3.4 How Long Does It Take to Fix a Failing Test?
To answer this question, we determine the set of unique test cases per project and their
execution result. The 40,700 failing test executions were caused by 15,696 unique test
classes according to their file name hash (EC: 13,371, IJ: 959, AS: 94, VS: 1,271). We never
saw a successful execution of 32% (EC: 28%, IJ: 50%, AS: 46%, VS: 54%) of tests, and at least

4.4 Results

4

101

one successful execution of the others.
For the 10,701 failing tests that we know have been fixed later, we examine how long

developers take to fix a failing test. Table 4.3 shows that a quarter of test repairs happen
within less than a minute, half within 4 minutes, and 75% within 15 minutes.

One reason why in some cases the time between a failing and succeeding test might
be so short is that developers did not actually have to make repairs to their tests. Instead,
they might have just executed the tests without changes, since it might be flaky. A flaky
test is a test that shows non-deterministic pass behavior [212, 213], meaning it (randomly)
fails or succeeds. To answer this question, we ask for the IDE:
RQ III.3.5 Do Developers Experience Flaky Tests?

Following the research method described in Section 4.2.4, we measure the “test flak-
iness” per project, the percentage of tests that show non-deterministic behavior despite
the fact that there are no changes to the project in the meantime, including changes to
test, production, or configuration files. Table 4.3 shows that the mean flakiness value is
12.2%, with outliers of zero and 100% flaky test percentages.

4.4.4 RQ III.4: Do Developers Follow TDD In The IDE?
In RQ III.4, we aim to give an answer to the adoption of TDD in practice.

Our results reveal that sessions of only 43 developers match against a strict TDD defini-
tion, the topNFA in Figure 4.7a (EC: 42, IJ: 0, AS: 0, VS: 1). Thismakes 1.7% of all developers,
or 11.8% of developers who executed tests, see Section 4.4.1. In total, only 2.2% of sessions
with test executions contain strict TDD patterns. Only one developer uses strict TDD in
more than 20% of the development process on average. Seven of the 43 developers use
TDD for at least 5% of their development. The remaining 35 developers use strict TDD
in less than 5% of their intervals. Refactoring is the dominant phase in TDD: 39 of the
43 developers did some form of refactoring. At 69%, the majority of the intervals of the
43 developers are devoted to the refactoring phase of TDD (depicted in Figure 4.8). Most
developers who practiced strict TDD have a long programming experience: 23 declared
an experience between 7 and 10 years.

Sessions from 136 developers match against the lenient TDD NFA in Figure 4.7b (EC:
42, IJ: 18, AS: 3, VS: 3). This makes 5.6% of all developers, or 37% of developers who
executed tests (EC: 15%, IJ: 38%, AS: 33%, VS: 19%), see Section 4.4.1. Sixteen developers
use lenient TDD in more than 20% of their intervals, including the developer who has over
20% strict TDD matches. 28 developers use lenient TDD in more than 10%, but less than
20% of their intervals. 98 of the 136 developers who use lenient TDD also refactor their
code according to the TDD refactoring process in Figure 4.8. For them, 48% of intervals
that match against the lenient TDD are due to refactoring. Of the 136 developers, 49 have
little programming experience (0–2 years), 25 have some experience (3–6 years), and the
majority of 59 is very experienced (> 7 years).

In our normalized data set, the results on the use of TDD are somewhat higher, with
6% of users following strict, and 22% following lenient TDD. The distribution of testing-
and refactoring is similar to the Σ values.

However, even top TDD users do not follow TDD in most sessions. For example, the
user with the highest TDD usage has one session with 69% compliance to TDD. On the
other hand, in the majority of the remaining sessions, the developer did not use TDD at

4

102 4 Developer Testing in the IDE: Patterns, Beliefs, and Behavior

all (0%). We verified this to be common also for the other developers who partially used
TDD. These low results on TDD are complemented by 574 projects where users claimed
to use TDD, but in reality only 47 of the 574 did according to our definition.

4.4.5 RQ III.5: How Much Do Developers Test In The IDE?
In WatchDog clients, we asked developers how much time they spend on engineering
tests. To compare survey answers to their actual development behavior, we consider Read-
ing and Typing intervals, and further split the two intervals according to the type of the
document the developer works on: either a production or test class. The duration of test
executions does not contribute to it, as developers can typically work while tests execute.
The mostly short test duration is negligible compared to the time spent on reading and
typing (see Section 4.4.2). When registering new projects, developers estimated the time
they spend on testing in the project. Hence, we have the possibility to verify how accurate
their estimation was by comparing it to their actual testing behavior.

There are two ways to aggregate this data at different levels of granularity. The first is
to explore the phenomenon on a per-project basis: we separately sum up the time develop-
ers are engineering (reading and writing) production classes and test classes, and divide it
by the sum of the two. Then, we compare this value to the developers’ estimation for the
project. This way, we measure how accurate each individual prediction was. The second
way is to explore the phenomenon in our whole data set, by averaging across project and
not normalizing for the contributed development time (only multiplying each estimation
with it).

Per-project measurement. Following Halkjelsvik et al. [214], Figure 4.13 shows the
relative directional error of estimations as a histogram of the differences between the mea-
sured production percentage and its estimation per project. A value of 0 means that the
estimation was accurate. A value of 100 denotes that the programmer expected to only
work on tests, but in reality only worked on production code (-100, precisely the oppo-
site). The picture on the correctness of estimations is diverse. In Eclipse, developers tend
to overestimate their testing effort by 17%-points, see Figure 4.13a, where the median of
the distribution is shifted to the right of 0, marked by the red line. While there are much
fewer observations, the reverse is true for Figure 4.13c with an error of -23.4%-points. At
an average estimation difference of -2.2%, IntelliJ developers seemed to be most accurate.
Moreover, they have fewer extreme outliers than Eclipse (axes labels of Figure 4.13a and
Figure 4.13b). However, the distribution of estimations in Figure 4.13b shows that the
average mean value can be deceiving, as the graph demonstrates a broad proliferation of
evening-out estimations from -40% to +50%, but no spike at 0%. There are relatively few
observations for Android Studio (20) and IntelliJ (67) in comparison to Eclipse. On a per
project-base, the average mean time spent testing is 28% (EC: 27%, IJ: 38%, AS: 51%, VS:
27%). However, developers estimated a distribution of 51% on production code (EC: 56%,
IJ: 64%, AS: 73%), and 49% on tests, so they overestimated the time spent on testing by 21%
percentage points, or 1.75 times.

Averaged measurement. When we do not normalize the data per project for our
whole data set Σ, we find that all developers spend in total 89% of their time writing or
reading production classes (EC: 89.3%, IJ: 98.5%, AS: 84.0% VS: 60.0%), and 11% of their time
on testing (EC: 10.7%, IJ: 1.5%, AS: 16.0%, VS: 40.0%). These implausibly large differences

4.5 Discussion

4

103

to the normalized testing percentage of 28% and between the IDEs remind us to considerΣ𝐶𝑁 again. Its average mean test percentage of 26.2% confirms the per-project normalized
measurement we reported above (28%). We therefore use these values in the discussion.

Moreover, reading and writing are relatively uniformly spread across test and produc-
tion code: while developers read production classes for 96.6% of the total time they spend
in them, they read tests longer, namely 96.9% of the total time they spend in them.

0

30

60

90

−100 −50 0 50 100
Delta production−% reality vs. estimation (% points)

N
u

m
b

e
r

o
f

p
ro

je
c
ts

(a) Eclipse

0

2

4

6

8

−100 −50 0 50
Delta production−% reality vs. estimation (% points)

N
u

m
b

e
r

o
f

p
ro

je
c
ts

(b) IntelliJ

0

2

4

6

−100 −50 0 50
Delta production−% reality vs. estimation (% points)

N
u

m
b

e
r

o
f

p
ro

je
c
ts

(c) Android Studio

Figure 4.13: Difference between estimated and actual time spent on testing split per IDE (no data for FeedBaG++).

4.5 Discussion
In this section, we interpret the results to our research questions and put them in a broader
perspective.

4

104 4 Developer Testing in the IDE: Patterns, Beliefs, and Behavior

4.5.1 RQ III.1: Which Testing Patterns Are Common In the IDE?
In RQ III.1, we established that in over half of the projects, we did not see a single opened
test, even when considering a very lenient definition that likely overestimates the number
of tests. The test detection rate in the Eclipse-based client is almost twice as high as in the
other clients. A possible reason might be that we concentrated our testing advertisement
efforts on Eclipse. An investigation of testing practices on the popular Continuous Integra-
tion (CI) server Travis CI showed a somewhat higher test rate at 69% for Java projects [68].
Reasons might be that testing is the central phase of CI [68, 215] and that projects that
have set up Travis CI might be more mature in general. This frequency is closer to the 58%
we found in our normalized data set. Moreover, our IDE observation does not mean that
the projects contain no tests (a repository analysis might find that there exist some), but it
does indicate that testing is not a prime activity of the registered WatchDog developers.
Alarmingly, only 43% of the projects that claimed to have JUnit tests in the survey actu-
ally had intervals showing tests (“truth tellers”). For the other 57%, their developer did
not execute, read, or modify any test in the observation period. The varying amount of
data we received from users impacts this measure, since we are more likely to detect test
activity within a large amount of general activity for one user than when we have little
data overall. Our data distribution suggests that normalization should give us a more re-
alistic picture, see Figure 4.10a. Consequently, Σ𝐶𝑁 has a “truth teller” ratio of 73%. Since
we likely overestimate tests, these two discoveries raise questions: Which value does test-
ing have in practice? And, further, are (anonymous) developers’ survey answers true and
which measures are suitable to ensure correctness of our conclusions?

Roughly half of projects and users do not practice testing in the IDE actively.

Only 17% of all projects comprise tests that developers can run in the IDE. The values
across IDEs are relatively similar. We assume the real percentage is similar for Visual
Studio, but shows lower due to the fact that tests are organized in their own project, see
Section 4.1.3. For 27% of projects that have executable IDE tests developers never exercise
the option to execute them. This gives a hint that testing might not be as popular as we
thought [216]. Reasons might include that there are often no pre-existing tests for the
developers to modify, that they are not aware of existing tests, or that testing is too time-
consuming or difficult to do on a constant basis. The apparent lack of automated developer
tests might be one factor for the bug-proneness of many current software systems.

Even for projects that have tests, developers did not execute them in most of the ses-
sions. In contrast, the mean number of test runs for sessions with at least one test execu-
tion was high (15).

Developers largely do not run tests in the IDE. However, when they do, they do it
extensively.

One reason why some developers do not execute tests in the IDE is that the tests would
render their machine unusable, for example during the execution of UI tests in the Eclipse

4.5 Discussion

4

105

Platform UI project. The Eclipse developers push their untested changes to the Gerrit
review tool [27] and rely on it to trigger the execution of the tests on the CI server. In this
case, the changes only become part of the “holy repository” if the tests execute successfully.
Otherwise, the developer is notified via email. Despite the tool overhead and a possibly
slower reaction time, both anecdotal evidence and our low results on test executions in
the IDE suggest that developers increasingly prefer suchmore complex setups to manually
executing their tests in the IDE. IDE creators could improve the CI server support in future
releases to facilitate this new workflow of developers.

Every developer is familiar with the phrase “Oops, I broke the build” [217]. The weak
correlations between test churn and test executions (RQ III.1.3), and production churn
and test executions (RQ III.1.4) suggest an explanation: developers simply do not assert
for every change that their tests still run, because “this change cannot possibly break the
tests.” Evenwhen themodifications to production or test code get larger, developers do not
necessarily execute tests in the IDE more often [218]. These observations could stem from
a development culture that embraces build failures and sees them as part of the normal
development life cycle, especially when the changes are not yet integrated into the main
development line.

The weak correlation between production and test code churn in RQ III.1.5 is, on the
one hand, expected: tests often serve as documentation and specification of how produc-
tion code should work, and are, therefore, less prone to change. This conclusion is in
line with previous findings from repository analyses [179, 219]. If, on the other hand, a
practice like TDD was widely adopted (RQ III.4), we would expect more co-evolution of
tests and production code, expressed in a higher correlation. Supporting this observation,
Romano et al. found that, even when following TDD, developers “write quick-and-dirty
production code to pass the tests, [and] do not update their tests often” [220].

Tests and production code do not co-evolve gracefully.

4.5.2 RQ III.2: What Characterizes The Tests Developers Run?
Another factor that could influence how often developer run tests, is how long they take
to run. In RQ III.2, we found that testing in the IDE happens fast-paced. Most tests finish
within five seconds, or less.

Tests run in the IDE take a very short amount of time.

While still being fast, a notable exception to this are the tests run in Visual Studio,
which took an order of magnitude longer. One reason for this could be that many C# tests
might rely on additional base tests that take longer to setup. For example, the tests for
FeedBaG++ require a specific base test of ReSharper, which takes 60 seconds to initialize.
Another reason could be that Visual Studio facilitates debugging by running tests in the
debugger automatically. Pausing on a breakpoint would be added to the tests’ runtime.

We could generally not observe a relation between the test duration and their exe-
cution frequency. The reason for this could be that there is little difference between a

4

106 4 Developer Testing in the IDE: Patterns, Beliefs, and Behavior

test that takes 0.1 seconds and one that takes 5 seconds in practice. Both give almost im-
mediate feedback to the programmer. Hence, it seems unlikely that software engineers
choose not to run tests because of their duration. Instead, our positive correlation values
suggest that developers prefer tests that take slightly longer, for example because they
assert more complex constructions. Thus, they might be more beneficial to developers
than straight-forward, very short tests. In fact, short tests might be so limited in their
coverage that developers might not find them useful enough to run them more often. This
might be particularly relevant for testing mobile applications, where the typically longer
running integration tests require developers to start up an Android Emulator. Our strong
correlation for Android Studio suggests that developers prefer running such longer tests.

One reason for the generally short test duration is that developers typically do not
execute all their tests in one test run. Instead, they practice test selection, and run only a
small subset of their tests, mostly less than 1% of all available tests. This observed manual
behavior differs strongly from an automated test execution as part of the build, which
typically executes all tests.

Developers frequently select a specific set of tests to run in the IDE. In most cases,
developers execute one test.

We can explain 99.5% of these test selections with two scenarios: developers either
want to investigate a possibly failing test case in isolation (94.6% of test selections), or ex-
clude such an irritating test case from a larger set of tests (4.9%). This finding complements
and strengthens a study by Gligoric et al., who compared manual test selection in the IDE
to automated test selection in a population of 14 developers [221].

4.5.3 RQ III.3: How Do Developers Manage Failing Tests?
One other possible explanation for the short time it takes tests to run in the IDE is that
65% of them fail (RQ III.3.1): once a test fails, the developer might abort the execution of
the remaining tests and focus on the failing test, as discovered for RQ III.2.3.

Most test executions in the IDE fail.

This is a substantial difference to testing on Travis CI, where only 4% of Java builds
fail due to failing tests [68]. For 32% of the failing test cases, we never saw a successful
execution (RQ III.3.4). We built the set of tests in a project on a unique hash of their file
names, which means we cannot make a connection between a failed and a successful test
execution when it was renamed in-between. However, this specific scenario is rare, as
observed at the commit-level by Pinto et al. [178]. Consequently, a substantial part of
tests (up to 32%) are broken and not repaired immediately. As a result, developers exclude
such “broken” tests from tests executions in the IDE, as observed for RQ III.2.3.

This observation motivated us to explore which test cases failures typically stem from.

4.5 Discussion

4

107

Only 25% of test cases are responsible for 75% of test execution failures in the IDE.

This statement reminds us of the Pareto principle [222], the startling observation that,
for many events, roughly 80% of the effects stem from 20% of the causes. The principle has
been observed in Software Engineering in alike circumstances before, for example that
20% of the code contains 80% of its errors [223].

On the CI side, test executions are the main part of how fast a project builds [68].
To manage the problem of long and expensive builds, Herzig et al. built an elaborate
cost model deciding which tests to skip [224]. A simulation of their model on Microsoft
Windows and Office demonstrated that they would have skipped 40% of test executions.
Using association rulemining based on recent historical data, such as test failure frequency,
Anderson et al. demonstrated how they could reduce the duration of regression testing for
anotherMicrosoft product by also leaving out a substantial amount of tests [225]. Similarly,
Figure 4.11 shows that at least in Eclipse and Android Studio, running the right 60% of test
cases (and skipping 40%) results in catching all test failures. For IntelliJ and Visual Studio,
the results are at a comparable ∼90%. Thus, if we can select them efficiently, we can skip
executing ∼40% of test cases that always give a passing result in the IDE.

Both Microsoft studies have been performed on the build level, not as deep down as
our findings in the “working mines of software development,” the IDE. This observation
on the build level trickles down to the IDE, where one would expect more changes than
on the CI level. Moreover, it also shows that some tests never fail, even during the change-
prone phases of development, reducing the value of such tests at least for bug-uncovering
purposes.

Since test failures in the IDE are such a frequently recurring event, software engineers
must have good strategies to manage and react to them.

The typical immediate reaction to a failing test is to dive into the offending test code.

All observed IDEs support this work flow by presenting the developer with the loca-
tion of the test failure in the test class when double-clicking a failed execution. It is, thus,
a conscious choice of the programmers to instead dive into production code (20% of reac-
tions) that is being tested. Closing the IDE, perhaps out of frustration that the test fails,
or opening the debug perspective to examine the test are very rare reactions. It is only
prevalent in Figure 4.12d because Visual Studio automatically switches to this perspective
when running tests. Five seconds after a test failure, ∼15% of programmers have already
switched focus to another application on their computer. An explanation could be that
they search for a solution elsewhere, for example in a documentation PDF or on the In-
ternet. This is useful if the test failure originates from (mis-)using a language construct,
the standard library, or other well-known APIs and frameworks. Researchers try to inte-
grate answers from internet fora such as Stack Overflow into the IDE [226], to make this
possibly interrupting context switch unnecessary.

4

108 4 Developer Testing in the IDE: Patterns, Beliefs, and Behavior

12% of test case executions show a non-deterministic result.

Flaky tests are a phenomenon that has been studied on the repository [197] and build [212,
227] level. Luo et al. classified root causes of flaky tests. They found that asynchronous
waiting, concurrency, and test order dependency problems represent 77% of test flakiness
causes. Including all potential factors, we have calculated a flakiness score of on average
12% of test cases per project in the IDE. A study on the flakiness of tests run on the CI
server Travis CI [69] found a similar flakiness rate of 12.8% [227]. This is another instance
of a finding on a build server level that seems to directly translate to the IDE of individ-
ual developers. Moreover, the test flakiness of 12% fits well to an observed reaction of
(re-)executing tests 10 seconds after the initial test failure in 15% of cases for most IDEs in
Figure 4.12.

Findings on the CI level on test flakiness and error responsibility seem to trickle down
to the IDE of individual developers.

4.5.4 RQ III.4: Do Developers Follow TDD?
TDD is one of the most widely studied software development methodologies [198, 199,
228].⁷ Even so, little research has been performed on how widespread its use is in practice.
In Section 4.2.5, we developed a formal technique that can precisely measure how strictly
developers follow TDD. In all our 594 projects, we found only 16 developers that employed
TDD for more than 20% of their changes. Similar to RQ III.1, we notice a stark contrast
between survey answers and the observed behavior of developers, even in our normalized
control data set. Only in 12% of the projects in which developers claimed to do TDD, did
they actually follow it (to a small degree).

According to our definition, TDD is not widely practiced. Programmers who claim to
do TDD, neither follow it strictly nor for all their modifications.

The developers who partially employed TDD in our data set were more experienced in
comparison to the general population. We also found a higher TDD rate in our normalized
data set, likely due to the fact that Σ𝐶𝑁 has more experienced users compared to Σ and
TDD followship correlates with experience.

Two recent studies support these discoveries on TDD. Borle et al. found an almost
complete lack of evidence for TDD adoption in the repositories of open source GitHub
projects [229]. Romano et al. found that both novice and expert programmers apply TDD
in a shallow fashion even in a controlled lab experiment dedicated to TDD [230]. As a
cardinal difference to our field study they found that “refactoring [...] is not performed as
often as the process requires” [230], while we found developers devoting over 50% of their

⁷A Google Scholar search for “Test Driven Development” returned 15,400 hits onMay, 18th, 2016, while the much
older “Cleanroom Software Engineering” only returned 1,350 hits and the popular “Code Review” 17,300 hits.

4.5 Discussion

4

109

TDD development intervals to the re-adoption of code. A reason might be that refactoring
is inevitable in most real-world software projects, but can perhaps be avoided in a lab
assignment setting.

In the following, we discuss a number of possible reasons for the apparently small
adoption of TDD in practice:

1. There is no consensus on the usefulness and value of TDD.While there have beenmany
controlled experiments and case studies in which TDD was found to be beneficial,
there seems to be an equally high number of studies that showed no, or even ad-
verse effects [231–233]. Moreover, some of the pro-TDD studies contradict each
other on its concrete benefits: For example, Erdogmus measured that the use of
TDD leads to a higher number of tests and increases productivity [234], while in
a case study at IBM, TDD did not affect productivity, yet decreased the number of
defects [235]. Another study at IBM and Microsoft, done in part by the same au-
thors, found that defects decreased drastically, yet productivity declined with the
introduction of TDD [236]. In light of no clear evidence for TDD, developers might
simply choose not to employ it.

2. Technical practicalities prohibit the use of TDD. Some libraries or frameworks do not
lend themselves for development in a TDD-fashion. As an example, few graphical
toolkits allow development in a test-first manner for a UI.

3. Time or cost pressure prohibits the use of TDD. TDD is often associated with a slower
initial development time, and the hope that the higher quality of code it produces
offsets this cost in the longer run [237, 238]. At high pressure phases or for short-
lived projects, a concise decision not to use TDD might be made.

4. Developers might not see value in testing a certain functionality TDD-style. We re-
ceived anecdotal evidence from developers saying that they do not think the current
piece of functionality they are working on mandates thorough testing, or “simply
cannot be wrong.”

5. Developers skip certain phases of the required TDD process. We received anecdotal
evidence from developers saying that they “sometimes know the result of a test exe-
cution.” Consequently, they might skip the mandatory test executions in Figure 4.7.

6. The application of TDD might be unnatural. Instead of working toward a solution,
TDD puts writing its specification first. This often requires developers to specify an
interface without knowing the evolution and needs of the implementation. Romano
et al. accordingly report that developers found the “red” test phase of TDD, in which
developers are supposed to perform the above steps, particularly challenging and
demotivating [230].

7. Developers might not know how to employ TDD. TDD is a relatively light-weight
development methodology that is taught in numerous books [5], blog posts, articles,
YouTube videos, and even part of the ACM’s recommendations on a curriculum
for undergraduate Software Engineering programs [239]. By contrast, Janzen and
Saiedian noted that one common misconception among developers was that “TDD

4

110 4 Developer Testing in the IDE: Patterns, Beliefs, and Behavior

equals automated testing.” [240] Since Beck defines TDD as “driv[ing] development
with automated tests” [5], we believe practitioners have understood it correctly and
that a lack of education on TDD or a wrong understanding of it is not a likely reason
in most cases.

While TDD might be clear enough for all practitioners, for academic studies, we still
miss a precise, formally agreed-upon definition. In fact, the lack of it might explain some
of the variability in the outcomes of research on the benefits of TDD. We hope that our
precise definition of TDD in terms of automata from Section 4.2.5 can help future research
on a technical level.

We need to convene on a generally agreed-upon, formal definition of TDD.

In his 2014 keynote at Railsconf and subsequent blog posts [241, 242], Heinemeier
Hansson sparked a debate on the usefulness and adoption of TDD, leading to a series of
broadcast discussions together with Fowler and Beck on the topic “Is TDD dead?” [243].
Since our WatchDog results seemed relevant to their discussion, we approached Beck,
Fowler, and Heinemeier Hansson with our paper [66] to uncover if we made any method-
ological mistakes, for example that our model of TDD might be erroneous. Fowler and
Heinemeier Hansson replied that they were generally interested in the results of the study
and identified the potential sampling bias also discussed in Section 4.6.4. Regarding the
low TDD use, Fowler stated that he would not be surprised if developer testing of any
kind remains uncommon.

4.5.5 RQ III.5: How Much Do Developers Test?
The question of how much time software engineers put into testing their application was
first asked (and anecdotally answered) by Brooks in 1975 [181]. In contrast to our study,
Brooks’ numbers cover the entire development and not only software developers them-
selves. Nowadays, it is widely believed that “testing takes 50% of your time.” While their es-
timationwas remarkably on-par with Brooks’ general estimation (averagemean 50.5% pro-
duction time to 49.5% test time, median 50%) in Figure 4.2, WatchDog developers tested
considerably less than they thought they would at only 28% of their time, overestimat-
ing the real testing time nearly two-fold. The time developers spend testing is relatively
similar across all IDEs, with the only apparent outlier of Android Studio (51%). Mobile ap-
plication developers might indeed spend more time testing since the Android framework
facilitates unit, integration, and UI testing (“Android Studio is designed to make testing
simple. With just a few clicks, you can set up a JUnit test that runs on the local JVM or
an instrumented test that runs on a device” [244]), or our developer sample from Android
Studio might be too small. We need more research to better understand this phenomenon
and the reasons behind it.

Developers spend a quarter of their time engineering tests in the IDE. They overesti-
mated this number nearly twofold.

4.5 Discussion

4

111

In comparison, students tested 9% of their time [65], and overestimated their testing
effort threefold. Hence, real-world developers test more and have a better understanding
of how much they test than students. Surprisingly, their perception is still far from reality.

The ability to accurately predict the effort and time needed for the main tasks of a
software project (such as testing) is important for its coordination, planning, budgeting
and, finally, successful on-time completion. In a comprehensive review of the research
on human judgments of task completion durations, Halkjelsvik and Jørgensen merged the
two research lines of effort prediction from engineering domains and time-duration esti-
mation from psychology [214]. Their results showed that duration predictions frequently
(more than 60% of predictions) fall outside even a 90% confidence interval given by the es-
timators, meaning that it is normal for predictions to be as inaccurate as observed in our
study. While engineers generally seem to overestimate the duration of small tasks, they
underestimate larger tasks. As testing is the smaller activity in comparison to production
code for most projects (∼25%:75% of work time overall), this observation fits the measured
overestimation of testing effort in our study. There might be a tendency to underestimate
difficult and overestimate easy tasks, particularly in software development projects [245].
As developers often dislike testing and consider it “tedious” [246, 247], this might be a
contributing factor to our observed overestimation of testing. In a study on software
maintenance tasks by Hatton [248], developers consistently overestimated the duration
of small change requests, while they consistently underestimated larger ones. Many de-
velopers might perceive testing as the smaller task in relation to the seemingly endless
complexity of coming up with a working production implementation. Consequently, Hat-
ton’s findings could help explain why our participants overestimated it. Similar to our
study, Halkjelsvik and Jørgensen report that working professional engineers, while still
not accurate, were better in their predictions than students [214].

A prime reason for developers’ inaccurate estimations might be that predicting is an
inherently difficult task, especially in fast-changing domains like software development.
Another reason for the inaccuracy of predictions could be that people remember the time
previous tasks took incorrectly [249]. When participants had written records of their past
prediction performances, however, they became quite accurate [250]. Highly overestimat-
ing the testing effort of a software product can have adverse implications on the quality
of the resulting product. Software developers should, therefore, be aware of how much
they test, and how much their perception deviates from the actual effort they invest in
testing in the IDE. WatchDog supplies developers with both immediate and accumulated
statistics, hopefully allowing them to make more precise estimations and better planning
in the future.

In conjunction with RQ III.1 and RQ III.3, our discrepancy between survey answers
and real-world behavior casts doubt on whether we can trust untriaged answers from
developers in surveys, especially if the respondents are unknown to the survey authors.

Objectively observed behavior in the IDE often contradicted survey answers on de-
velopers’ self-estimation about testing and TDD, showcasing the importance of data
triangulation.

4

112 4 Developer Testing in the IDE: Patterns, Beliefs, and Behavior

4.5.6 A Note On Generality And Replicability
Long-running field studies and studies that generalize over multiple factors, such as IDEs
or languages, are rare in software engineering [180, 183, 251, 252], because building and
maintaining the necessary tools requires significant time efforts over prolonged periods of
time. Moreover, we show that it is possible to re-cycle data thatwas originally not intended
for this study by including the FeedBaG++ client. This chapter demonstrates that even
controversial, unexpected results such as our original observations on testing patterns [65],
can generalize across different state-of-the art IDEs. Our larger study – comprising ten
times more data and three more IDEs – confirmed most of the observations we drew from
a much shorter, less resource-intense 5-month study in only Eclipse.

If argued correctly, even a relatively small number of observations in one environment
can generalize to similar contexts in Software Engineering.

We needed to normalize only relatively few of our results, leaving most of our obser-
vations straight-forward to derive from our data. However, for some research questions,
for example to counter the appearance that developers might test 20 times longer in one
IDE than in another (see RQ III.5, Section 4.4.5), normalization was critical. Since filter
criteria always induce a bias, this chapter also shows how an observational field study can
use unfiltered and easy-to-interpret and replicate data and combine it with the smaller
normalized data sample where necessary.

Our mixed-methods study also showcased the problem of reporting survey answers
without further triaging. While normalizing the data improved their credibility, even with
it, there was a considerable mismatch between developers’ actions and their surveyed
answers and beliefs. A diverse set of factors, including psychological ones, seems to play
a key role in this.

4.5.7 Toward A theory of Test-Guided Development
Combining results from RQ III.1–RQ III.5, we find that most developers spend a substantial
amount of their time working on codified tests, in some cases more than 50%. However,
this time is shorter than expected generally and specifically by the developers themselves.
Many of the tests developers work on cannot be executed in the IDE and could, therefore,
not provide immediate feedback. There are relatively short development phases when pro-
grammers execute IDE-based tests heavily, followed by periods when they invoke almost
no tests.

Test and production code evolution in general is only loosely coupled. This corrobo-
rates with our finding that no developer follows TDD continuously and that it, thus, seems
to be a rather idealistic software development method that a small percentage of develop-
ers occasionally employs with overall little adoption in practice. We call the development
practice of loosely guiding one’s development with the help of tests, as the majority of
developers does, relying on testing to varying degrees, Test-Guided Development (TGD).
We argue that TGD is closer to the development reality of most programmers than TDD.

Two insights from our study, test flakiness and test failure rate, seem to be almost
identical in the context of CI, showing the strong connection to individual developer test-
ing in the IDE. However, there are also significant differences, namely that CI provides

4.6 Threats to Validity

4

113

no fast feedback loop to developers, by taking on average 20 minutes, several orders of
magnitudes longer than a typical IDE test execution [68]. Test failures are much more
infrequent in Java builds than in test executions in the IDE. We, therefore, argue that it
plays a different, complimentary role to testing in the IDE. Due to its different and less
immediate nature, CI testing cannot (fully) explain the observed low values on developer
testing.

4.6 Threats to Validity
In this section, we discuss limitations and threats that can affect the validity of our study
and show how we mitigated them.

4.6.1 Limitations
Our study has two main limitations, scope and a lack of value judgments, which we de-
scribe in the following.

Scope Definition. An endemic limitation of our study is that we can only capture
what happens inside the IDE. Conversely, if developers perform work outside the IDE,
we cannot record it. Examples for such behavior include pulling-in changes through an
external version-control tool, such as git or svn, or modifying a file with an external editor.
To reduce the likelihood and impact of such modifications, we typically limit analyses of
our research questions, for example RQ III.3.5 regarding test flakiness, to one IDE session
only.

Naturally, for RQ III.5, we cannot detect work on a whiteboard or thought processes
of developers, which are generally hard to quantify. However, in our research questions,
we are not interested in the absolute time of work processes, but in their ratio. As such,
it seems reasonable to assume that work outside the IDE happens in the same ratio as
in the IDE. For example, we have no indication to assume that test design requires more
planning or white board time than production code.

Our conclusions are drawn from the precisely-defined and scoped setting of codified
developer testing in IDEs. To draw a holistic picture of the state of testing, we need
more multi-faceted research in environments including dedicated testers.

Value Judgments. If we want to gain insight into whether more developer testing
manifests in an improvement for the project, we would need to define a suitable outcome
measure, for example bugs per release. One could then, for example, compare the testing
effort in days across several releases, and identify whether there is a correlation. However,
different projects would have different, possibly contradicting, definitions of the outcome
measure: A self-managed server project in the cloud might pay no attention to bugs per re-
lease, as releases are short-lived and upgrading the software is essentially cost free. On the
other hand, a server installed at a customer that cannot be reached from the outside might
have this metric as its only priority. We have not defined a uniform outcome measure be-
cause (1) we could not define a sensible uniform outcome measure across all participating
projects of their different priorities, (2) many developers preferred to stay anonymous, and
(3) do not have or (4) would not have given us access to this highly sensible data. One can

4

114 4 Developer Testing in the IDE: Patterns, Beliefs, and Behavior

argue that if a project reaches its desired outcome with the limited amount of testing we
generally found in this study, this is better than having to spend a lot of effort on testing,
it in principle wastes resources without contributing to the project’s functionality. This
remains a fruitful future area for deep studies on a small set of projects.

This chapter does not contain an outcome measurement. As such, all statements are
comparative to the respective groups and non-judgmental. A relative high (or low)
description does not mean imply “good” or “bad.”

4.6.2 Construct Validity
Construct validity concerns errors caused by the way we collect data. For capturing de-
velopers’ activities we use WatchDog and FeedBaG++ (described in Section 4.1.1), which
we thoroughly tested with end-to-end, integration, and developer tests. Moreover, 40 stu-
dents had already used WatchDog before the start of our data collection phase [65]. Sim-
ilarly, FeedBaG++ had been deployed at a company during 2015 [192] before we made it
publicly available in 2016. To verify the integrity of our infrastructure and the correctness
of the analysis results, we performed end-to-end tests on Linux, Windows, and MacOS
with short staged development sessions, which we replicated in Eclipse, IntelliJ, and Vi-
sual Studio. We then ran our analysis pipeline and ensured the analyzed results were
comparable.

When we compare data across IDEs, it is paramount that the logic that gathers and
abstracts this data (to intervals) works in the same way. WatchDog’s architecture with
its mutually shared core guarantees this by design (see Section 4.1.1). Moreover, we had a
professional software tester examine WatchDog.

To ensure the correctness of transforming FeedBaG++ events to WatchDog intervals,
we implemented an extensive test suite for the transformation on the FeedBaG++ side and
created a debugger that visualizes intervals similarly to the diagram shown in Figure 4.5.
We used this visualization for an analysis of several manually defined usage scenarios,
in which we verified that the generated intervals are accurate and that they reflect the
actually recorded interactions. Moreover, we recorded artificial mini-scenarios with Feed-
BaG++, transferred them to WatchDog intervals and ran parts of the analysis pipeline,
for example for the recognition of TDD behavior, effectively creating end-to-end tests.

4.6.3 Internal Validity
Internal validity regards threats inherent to our study.

Our study subject population shows no peculiarity (see Section 4.3.2), such as an un-
usually high number of users from one IP address or from a country where the software
industry is weak. Combined with the fact that we use a mild form of security (HTTP ac-
cess authentication), we have no reason to believe that our data has been tampered with
(for example, in order to increase the chances of winning a prize).

A relatively small set of power-users contribute the majority of development sessions
(Figure 4.10a). To control for the possible effects of a distorted distribution, we created
a normalized data set Σ𝐶𝑁 , which showed little practical difference to our main sample.

4.6 Threats to Validity

4

115

Moreover, contrary to the idea of conducting an open field study, we run the risk of arbi-
trarily selecting for certain behavior by sampling. Since WatchDog and FeedBaG++ are
freely available, we cannot control who installs it. Due to the way we advertise it (see Sec-
tion 4.3.1), our sample might be biased toward developers who are actively interested in
testing.

In the wizard in Figure 4.2 for RQ III.5, the default slider position to estimate between
production and test effort was set to 50%. This could be a reason for why we received an es-
timation of 51%:49%. To mitigate this, WatchDog users had to move the slider before they
were allowed to progress the wizard, forcing them to think about their own distribution.

The Hawthorne effect [51] poses a similar threat: participants of our study would
be more prone to use, run, and edit tests than they would do in general, because they
know (1) that they are being measured and (2) they can preview a limited part of their
behavior. As discussed in Section 4.3.1, it was necessary to give users an incentive to
install WatchDog. Without the preview functionality, we would likely not have had any
users. To measure the potential impact of our immediate IDE statistics (see Figure 4.3),
we tracked how often and how long developers consulted it via the WatchDogView interval.
In total, only 192 of the 2,200 Eclipse developers opened the view in total 720 times in
422 of 39,855 possible sessions (1%), with a median open time of 2.4 minutes per user.
This is similar with 58 times for 181 developers in Σ𝐶𝑁 . We believe that these measures
demonstrate that developers did not constantly monitor theirWatchDog recorded testing
behavior, otherwise the numbers would be significantly higher. That users engage with
reports about their behavior only for a short amount of time is not unique to our study:
Meyer et al. found similar numbers when presenting developers with a report of their
productivity [253]. Even the commercial RescueTime only had user engagement lengths
of on average five seconds per day [254]. Our long observation period is another suitable
countermeasure to the Hawthorne effect, as developers might change their behavior for a
day, but unlikely for several months.

All internal threats point in the direction that our low results on testing are still an
overestimation of the real testing practices.

4.6.4 External Validity
Threats to external validity concern the generalizability of our results. While we observed
161 years of development worktime (collected in 14,266,683 intervals originating from
2,443 developers over a period of five months), the testing practices of particular indi-
viduals, organizations, or companies are naturally going to deviate from our population
phenomenon observation. Our contribution is an observation of the general state of devel-
oper testing among a large corpus of developers and projects. However, we also examined
if certain sub-groups deviated significantly form our general observations. As an exam-
ple of this, we identified that mainly very experienced programmers follow TDD to some
extent in Section 4.4.4.

By capturing not only data from Eclipse, but also IntelliJ, Android Studio, and Visual
Studio, we believe to have sufficiently excluded the threat that a certain behavior might be
IDE-specific. While we have data from two programming languages (Java and C#), other
programming language communities, especially non-object-oriented ones, might have dif-
ferent testing cultures and use other IDEs that might not facilitate testing in the same way

4

116 4 Developer Testing in the IDE: Patterns, Beliefs, and Behavior

the Eclipse, IntelliJ, and Visual Studio IDEs do. Hence, their results might deviate from
the relatively mature and test-aware Java and C# communities.

Finally, the time we measure for an activity such as testing in the IDE does not equal
the effort an organization has to invest in it overall. Arguments against this are that devel-
oper testing per hour is as expensive as development (since both are done by the same set
of persons), and that time is typically the critical resource in software development [214].
An in-depth investigation with management data such as real project costs is necessary
to validate this in practice. To exclude the risk of a different understanding of the word
testing, we specifically asked developers about JUnit testing, i.e., automated, codified de-
veloper tests (see the description in Figure 4.2).

4.7 Related Work
In this section, we first describe tools and plugins that are methodically similar to Watch-
Dog, and then proceed with a description of related research.

4.7.1 Related Tools and Plugins
A number of tools have been developed to assess development activity at the sub-commit
level. These tools includeHackystat [255], Syde [256], Spyware [257], CodingTracker [258],
DFlow [259], the “Change-Oriented Programming Environment,”⁸ the “Eclipse Usage Data
Collector,”⁹ QuantifiedDev,¹⁰ Codealike,¹¹ and RescueTime.¹² However, none of these fo-
cused on time-related developer testing.

Hackystat with its Zorro extension was one of the first solutions that aimed at detect-
ing TDD activities [260, 261], similar to the education-oriented TDD-Guide [262] and the
prototype TestFirstGauge [263]. In contrast to WatchDog, Hackystat did not focus on
the IDE, but offered a multitude of sensors, from bug trackers such as Bugzilla to build
tool such as ant. One of Hackystat’s challenges that we addressed with WatchDog was
attracting a broader user base that allowed the recording and processing of their data.

4.7.2 Related Research
To investigate the presence or absence of tests, Kochar et al. mined 20,000 open-source
projects and found that 62% contained unit tests [264]. LaToza et al. [265] surveyed 344
software engineers, testers and architects atMicrosoft, with 79% of the respondents indicat-
ing that they use unit tests. Our findings indicate that only 35% of projects are concerned
with testing. One factor why our figure might be smaller is that we do not simply observe
the presence of some tests, but that we take into account whether they are actually being
worked with.

In a study on GitHub using a repository-mining approach, Borle et al. found that a
mere 3.7% of over 250,000 analyzed repositories could be classified to be using TDD [229].
This result strengthens our observed low TDD use in IDE sessions.

⁸http://cope.eecs.oregonstate.edu
⁹https://eclipse.org/epp/usagedata
¹⁰https://www.youtube.com/watch?v=7QKWo5SulP8
¹¹https://codealike.com
¹²https://rescuetime.com

4.8 Conclusion

4

117

Pham et al. [266] interviewed 97 computer science students and observed that novice
developer perceive testing as a secondary task. The authors conjectured that students are
not motivated to test as they have not experienced its long-term benefits. Similarly, Meyer
et al. found that 47 out of 379 surveyed software engineering professionals perceive tasks
such as testing as unproductive [247].

Zaidman et al. [179] and Marsavina et al. [219] studied when tests are introduced and
changed. They found that test and production code typically do not gracefully co-evolve.
Our findings confirm this observation on a more fine-grained level. Moreover, Zaidman
and Marsavina found that writing test code is phased: after a longer period of production
code development, developers switch to test code. Marinescu et al. [267] observed that
test coverage usually remains constant, because already existing tests execute part of the
newly added code. Feldt [268] on the other hand notes that test cases “grow old”: if test
cases are not updated, they are less likely to identify failures. In contrast, Pinto et al. [178]
found that test cases evolve over time. They highlight that tests are repaired when the
production code evolves, but they also found that non-repair test modifications occurred
nearly four times as frequently as test repairs. Deletions of tests are quite rare and if they
happen, this is mainly due to refactoring the production code. A considerable portion of
test modifications is related to the augmentation of test suites. Additionally, Athanasiou
et al. investigated the quality of developer tests, noting that completeness, effectiveness,
and maintainability of tests tend to vary among the observed projects [269].

The work presented in this chapter differs from the aforementioned works in that the
data that we use is not obtained (1) from a software repository [178, 179, 219, 264, 268]
or (2) purely by means of a survey or interview [247, 265, 266, 270]. Instead, our data is
automatically gathered inside the IDE, which makes it (1) more fine-grained than commit-
level activities and (2) more objective than surveys alone.

4.8 Conclusion
Our work studies how developers test in their IDE. Our goal was to uncover the underly-
ing habits of how developers drive software development with tests. To this end, we per-
formed a large-scale field study using low-interference observation instruments installed
within the developers’ working environment to extract developer activity. We comple-
mented and contrasted these objective observations with surveys of said developers. We
found that automated developer testing (at least in the IDE) is not as popular as often
assumed, that developers do not test as much as they believe they do, and that TDD is
not a popular development paradigm. We called the concept of loosely steering software
development with the help of testing Test-Guided Development.

This work makes the following key contributions:

1. A low interference method and its implementation to record fine-grained activity
data from within the developers’ IDEs.

2. A formalized approach to detect the use of TDD.

3. A thorough statistical analysis of the activity data resulting in both qualitative and
quantitative answers in developers’ testing activity habits, test run frequency and
time spent on testing.

4

118 4 Developer Testing in the IDE: Patterns, Beliefs, and Behavior

4. A generalized investigation of developer testing patterns across four IDEs in two
programming languages.

In general, we find a distorting gap between expectations and beliefs about how test-
ing is done in the IDE, and the real practice. This gap manifests itself in the following
implications:

Software Engineers should be aware that they tend to overestimate their testing effort
and do not follow Test-Driven Development by the book. This might lead to a lower-
than-expected quality in their software. Our work suggests that different tools and
languages that are conceptually similar might not impact the practice as much as
individuals often think, since we found few differences between data originating
from them.

IDE creators could design next-generation IDEs that support developers with testing by
integrating: 1) solutions from Internet fora, 2) reminders for developers to execute
tests during large code changes, 3) automatic test selection, and 4) remote testing
on the build server.

Researchers can acknowledge the difference between common beliefs about software
testing, and our observations from studying developer testing in the real world.
Specifically, there is a discrepancy between the general attention to testing and TDD
in research, and their observed popularity in practice. More abstractly, developers’
survey answers only partially matched their behavior in practice, and student data
deviated significantly from real-world observations. This may have implications on
the credibility of certain research methods in software engineering and showcases
the importance of triangulation with mixed-method approaches. On a positive note,
we also found that even relatively small samples from one population group might
generalize well.

5

119

5
Oops, My Tests Broke the Build:

An Explorative Analysis of Travis
CI with GitHub

Continuous Integration (CI) has become a best practice of modern software development. Yet,
at present, we have a shortfall of insight into the testing practices that are common in CI-based
software development. In particular, we seek quantifiable evidence on how central testing is
to the CI process, how strongly the project language influences testing, whether different in-
tegration environments are valuable and if testing on the CI can serve as a surrogate to local
testing in the IDE. In an analysis of 2,640,825 Java and Ruby builds on Travis CI, we find
that testing is the single most important reason why builds fail. Moreover, the programming
language has a strong influence on both the number of executed tests, their run time, and
proneness to fail. The use of multiple integration environments leads to 10% more failures
being caught at build time. However, testing on Travis CI does not seem an adequate surro-
gate for running tests locally in the IDE. To advance research on Travis CI with GitHub, we
introduce TravisTorrent.

This chapter is based on

 M. Beller, G. Gousios, and A. Zaidman. Oops, My Tests Broke The Build: An Explorative Analysis of Travis
CI with GitHub, MSR’17 [68] and

 M. Beller, G. Gousios, and A. Zaidman. TravisTorrent: Synthesizing Travis CI and GitHub for Full-Stack
Research on Continuous Integration, MSR’17 (Mining Challenge Proposal) [69].

5

120 5 Oops, My Tests Broke the Build: An Analysis of Travis CI

C ontinuous Integration (CI) is the software engineering practice in which developers
not only integrate their work into a shared mainline frequently, but also verify the

quality of their contributions continuously. CI facilitates this through an automated build
process that typically includes (developer) tests [185] and various static analysis tools
that can be run in different integration environments [271]. Originally described by Mi-
crosoft [272] and proposed as one of the twelve Extreme Programming (XP) practices in
1997 [273], CI has become a universal industry and Open-Source Software (OSS) best prac-
tice, often used outside the context of XP [274, 275].

A full CI build comprises 1) a traditional build and compile phase, 2) a phase in which
automated static analysis tools (ASATs) such as FindBugs and JSHint are run [60, 276],
and 3) a testing phase, in which unit, integration, and system tests are run. If any of these
three phases fails, the whole CI build is typically aborted and regarded as broken [277].
Researchers have explored the compile and ASAT phase of CI [276, 278]; yet, we still lack
a quantitative empirical investigation of the testing phase to gain a holistic understanding
of the CI process. This is surprising, as testing stands central in CI [271] and a better
understanding is the first step to further improve both the CI process and the build tools
involved.

In this chapter, we study CI-based testing in the context of Travis CI, an OSS CI as-a-
service platform that tightly integrates with GitHub. While there has been research on
aspects of Travis CI [279, 280], we lack an overarching explorative study to quantitatively
explore the CI domain for testing from the ground up. Moreover, as accessing data from
Travis CI and overlaying it with GitHub data involves difficult technicalities, researchers
would profit from making this promising data source more accessible.

Our explorative research into CI is steered by five concrete propositions inspired from
and raised by previous research:

P1. The use of CI is a widespread best practice. CI has become an integral quality
assurance practice [281]. But just how widespread is its use in OSS projects? One study
on Travis CI found an adoption rate of 45 to 90% [279]. This seems surprisingly high
given it was measured in 2013, when Travis CI was still very new, and also based on only
a small subset of projects.

P2. Testing is central to CI. Two studies on the impact of compilation problems and
ASATs at Google found thatmissing dependencies are themost important reason for builds
to break [276, 278]. However, these studies have not considered the testing phase of CI.
To gain a complete picture of CI, we need to measure the importance and impact of the
testing phase in a CI build process.

P3. Testing on the CI is language-dependent. While CI is a general purpose practice for
software development projects, the programming languages used in CI have been shown
to differ, e.g. in terms of programming effort [282]. As such, CI observations for one
language might not generalize to other languages. A cross-language comparison might
unveil which testing practices of a certain language community and culture might benefit
more from CI, in terms of shorter run time or fewer broken builds.

5

121

P4. Test Integration in different environments is valuable [281, Chapter 4]. Building
and integrating in different environments is time- and resource-intensive. Consequently,
it should deliver additional value over a regular one-environment integration strategy. We
currently lack data to support this claim.

P5. Testing on the CI is a surrogate for testing in the IDE for getting quick feed-
back. One of the core ideas of developer testing is to provide quick feedback to develop-
ers [283, 284]. Yet, a recent study on how 416 software developers test in their Integrated
Development Environments (IDEs) [66] could not explain the “testing paradox:” develop-
ers spent a substantial 25% of their time working on tests, but rarely executed them in
their IDE. We received anecdotal evidence that, instead, developers might offload running
tests to the CI. However, it is unclear whether the CI environment is indeed a suitable
replacement for running tests locally. In particular, while Fowler claims that CI provides
quick feedback [271], it typically does not allow developers to execute specific tests. It
also introduces other scheduling-related latencies, the magnitude of which is not known
yet.

To guide our investigation of propositions P1–P5, we derived a set of research questions,
presented below along with the propositions they address:

RQ IV.1 How common is Travis CI use on GitHub? (P1)

RQ IV.2 How central is testing to CI? (P2, P5)

RQ IV.2.1 How many tests are executed per build?

RQ IV.2.2 How long does it take to execute tests on the CI?

RQ IV.2.3 How much latency does CI introduce in test feedback?

RQ IV.3 How do tests influence the build result? (P3, P4, P5)

RQ IV.3.1 How often do tests fail?

RQ IV.3.2 How often do tests break the build?

RQ IV.3.3 Are tests a decisive part of CI?

RQ IV.3.4 Does integration in different environments lead to different test results?

Developers need to be aware of the answers to these questions to understand the state
of the art of how CI is done in the OSS community. Especially maintainers of and newcomers
to CI, whether they join an established project or plan to introduce CI, will benefit from
knowing what they can expect (“How many builds are going to fail and require additional
work?”, “Can I use CI to execute my tests instead of locally executing them?”) and how
other projects are using it (“How common is CI?,” “Can my project use it?”). It is thus
important share our results with the community [75].

5

122 5 Oops, My Tests Broke the Build: An Analysis of Travis CI

5.1 Background
In this section, we outline related CI work and build tools. We provide an overview and
description of Travis CI.

5.1.1 Related Work
Introduced as one of the twelve best practices of extreme programming in 2000 [273], CI
is a relatively new trend in software engineering. In their 2014 systematic review, Ståhl
and Bosch provided the most recent overview over CI practices and how they differ in
various settings of industrial software development [285]. Of particular interest to us is
their analysis of what is considered a failure in a CI build. The most commonly observed
stance is that if any test fails during the build, then the build as a whole is considered
failed (e.g., [277, 286]). Ståhl and Bosch found that build failures due to test failures are
sometimes accepted, however: “[I]t is fine to permit acceptance tests to break over the
course of the iteration as long as the team ensures that the tests are all passing prior to
the end of the iteration” [287].

A case study at Google investigated a large corpus of builds in the statically typed
languages C and Java [278], uncovering several patterns of build errors. While the study
is similar in nature, it focused on static compilation problems and spared out the dynamic
execution part of CI, namely testing. Moreover, it is unknown whether their findings
generalize to a larger set of OSS.

Vasilescu et al. examined whether a sample of 223 GitHub projects in Java, Python,
and Ruby used Travis CI [279]. While more than 90% had a Travis CI configuration, only
half of the projects actually used it. In follow-up research, Vasilescu et al. found that
CI, such as provided through Travis CI, significantly improves their definition of project
teams’ productivity, without adversely affecting code quality [280].

Pinto et al. researched how test suites evolve [178]. This work is different in that we
observe real test executions as they were run in-vivo on the CI server here, while Pinto
et al. performed their own post-mortem, in-vitro analysis. Their approach offers a finer
control over the produced log data, yet it bears the risk of skewing the original execution
results, for example because a build dependency is not available anymore [178].

Pham et al. investigated the testing culture on social coding sites. In particular, they
note that to nurture a project’s testing culture, the testing infrastructure should be easy to
set up. Their interviews furthermore lead to the observation that Travis CI “arranges for
low barriers and easy communication of testing culture” [275]. By analyzing build logs,
we hope to be able to see how many projects make use of this infrastructure.

With Travis CI, a public and free CI service that integrates tightly with GitHub, we
have the chance to observe how CI happens in the wild on a large basis of influential OSS
projects.

Similar to Travis CI, but typically setup and maintained by the project themselves, are
a number of other CI servers such as CruiseControl, TeamCity, Jenkins, Hudson, and
Bamboo [288].

5.1.2 Travis CI
In this section, we provide an overview over Travis CI.

5.1 Background

5

123

1

23

4

5

6

Figure 5.1: Travis CI’s UI for an OSS project (WatchDog, [67]).

Overview. Travis CI is an open-source, distributed build service that, through a
tight integrationwith GitHub, allows projects to build and run their CI procedures without
having to maintain their own infrastructure [289]. Travis CI started in 2010 as an open-
source project and turned into a company in 2012. In August 2015, it supports 26 different
programming languages including Java, C(++), Scala, Python, R, and Visual Basic [290].
Apart from the community edition, free to use for OSS, Travis CI also hosts a paid service
that provides non-public builds for private GitHub repositories. This edition features a
faster build environment [291].

User View. Figure 5.1 showcases Travis CI’s main User Interface for build number
518 in the OSS project TestRoots/WatchDog [65–67]. At marker 1⃝, we see the project
name and build status of its master branch. On the right hand side 2⃝, Travis CI shows
which git commit triggered the build, its build status (“passed”) along with information
such as the overall build time (7 minutes, 51 seconds). The description at 3⃝ indicates
that the build was triggered by a pull request. Through link 4⃝, we can retrieve the full
history of all builds performed for this project. Under 5⃝, we can see a lightly parsed and
colorized dump of the log file created when executing the build. By clicking 6⃝, developers
can trigger a re-execution of a build.

Build Setup. Whenever a commit to any branch on a Travis CI-enabled GitHub
repository is pushed, the latest commit of said branch or pull request is automatically
received by Travis CI through a GitHub web hook and subsequently built. The result
of this build is then displayed on GitHub. This seamless integration into projects’ work-
flow caters for the popular pull request model [34] and is supposedly key to Travis CI’s
popularity among GitHub projects.

Travis CI users configure their build preferences through a top-level file in their repos-
itory. This defines the language, the default environments and possible deviations from
the default build steps that Travis CI provisions for building the project. Travis CI cur-
rently only provides single-language builds, but it does support building in multiple envi-
ronments, e.g., different versions of Java. For each defined build environment, Travis CI
launches one job that performs the actual build work in this environment. If one of these

5

124 5 Oops, My Tests Broke the Build: An Analysis of Travis CI

before_install install before_script

script

after_successafter_failure

after_script

deploy

errored

failed succeeded

1

2 3

4

Figure 5.2: Travis CI build phases as a state machine.

jobs breaks, i.e. the build execution in one build environment exits with a non-successful
status, Travis CI marks the whole build as broken. Travis CI instills a maximum job
runtime of 50 minutes for OSS, after which it cancels the active job.

Build Life-cycle. Each job on Travis CI goes through the build steps depicted in
the state machine in Figure 5.2: A CI build always starts with the three infrastructure
provisioning phases before_ install, install and before_script. In CI phase 1⃝, the
Travis CI job is initialized, either as a legacy virtual machine like in step 5⃝ in Figure 5.1
or as a new Docker container [292], the git repository is cloned, additional software
packages are installed, and a system update is performed. If a problem occurs during these
phases, the job is marked as errored and immediately aborted. The script phase actualizes
the build, for example for a Java Maven project, Travis CI calls mvn -B to build and test
the application, and for Ruby, it calls rake per default, CI phases ASAT and test runs, 2⃝

and 3⃝. The build can either succeed or fail, denoted in a Unix-fashion non-zero return
value from the script phase. The deploy phase 4⃝ is optional and does not influence the
build result.

Travis CI pipes the console output from the different build phases into the build log
of the job, separated as so-called folds. For example, the git.checkout is part of the be-
fore_install phase in Figure 5.1. The output generated in the script phase contains the
typical console output of build tools: build status, execution time, possible compilation
problems, test executions, and failures. The format of this output depends on the actual
build and test framework used.

Build Status. Travis CI features a canceled build status that can occur in any phase
and is triggered from the outside. We call an errored or failed build more generally broken,
opposed to a succeeded build.

REST API. Next to its normal user interface in Figure 5.1, Travis CI provides an
unrestricted RESTful Web-API [293], using which data from all publicly built OSS reposi-
tories can be queried. The API allows us to conveniently access build-related information

5.2 Research Setup

5

125

to perform our deeper build analysis.

5.2 Research Setup
In this section, we give a high-level overview of our research design and describe our
research methodology in detail.

5.2.1 Study Design
The main focus of this study is to evaluate how testing works in the context of CI. We
performed a purely quantitative study to address our propositions, combining multiple
data sources and RQs. We use the GHTorrent database [41] as a source of projects to
examine and apply filtering to select the most appropriate ones. The results for RQ IV.1
lead us to the projects we would analyze in RQs IV.2 and IV.3.

These remaining research questions require a deep analysis of the project source code,
process and dependency status at the job level. Moreover, as we needed to examine test
tool outputs, we restricted our project search space to Ruby and Java. Both languages
enjoy wide popularity among developer and have a strong testing tradition, evidenced
by the plethora of available automated testing tools. Using the projects selected in the
previous step as a starting point, we filtered out those that are not written in Ruby or Java
and are not integrated with Travis CI. Then, we extract and analyze build information
from Travis CI build logs and the GHTorrent database, combining both data sources in
the newly implemented TravisTorrent.

5.2.2 Tools
In this section, we detail the tools we used to carry out our study. Our data extraction
and analysis pipeline is written in Ruby and R. For replication purposes and to stimulate
further research, we created TravisTorrent [69], which disseminates tools and data set
on http://travistorrent.testroots.org.

TravisPoker. To find out which and howmany projects on GitHub use Travis CI, we
implemented TravisPoker. This fast and lightweight application takes a GitHub project
name as input (for example, rails/rails), and finds out if and how many Travis CI builds
were executed for this project.

TravisHarvester. We implemented TravisHarvester to aggregate detailed informa-
tion about a project’s Travis CI build history. It takes as input a GitHub project name
and gathers general statistics on each build in the project’s history in a CSV file. Associ-
ated with each build entry in the CSV are the SHA1 hash of the git commit, the branch
and (if applicable) pull request on which the build was executed, the overall build status,
the duration and starting time and the sub jobs that Travis CI executed for the different
specified environments (at least one job, possibly many for each build). TravisHarvester
downloads the build logs for each build for all jobs and stores them alongside the CSV file.

While both TravisPoker and TravisHarvester utilize Travis CI’s Ruby client for
querying the API, we could not use its job log retrieval function (Job:log) due to amemory
leak [294] and because it does not retrieve all build logs. We circumvented these problems
by also querying the Amazon AWS server that archives build logs [295].

5

126 5 Oops, My Tests Broke the Build: An Analysis of Travis CI

To speed up the process of retrieving thousands of log files for each project, we paral-
lelize our starter scripts for Travis Harvester with GNU Parallel [296].

BuildlogAnalyzer. BuildlogAnalyzer is a framework that supports the general-
purpose analysis of Travis CI build logs and provides dedicated Java and Ruby build an-
alyzers that parse build logs in both languages and search for output traces of common
testing frameworks.

The language-agnostic Buildlog Analyzer reads-in a build log, splits it into the dif-
ferent build phases (folds, see Section 5.1.2), and analyzes the build status and runtime of
each phase. The fold for the script phase contains the actual build and continuous testing
results. The Buildlog Analyzer dispatches the automatically determined sub-Buildlog
Analyzer for further examination of the build phase.

For Java, we support the three popular build tools Maven, Gradle, and Ant [297]. In
Java, it is standard procedure to use JUnit as the test runner, even if the tests themselves
employ other testing frameworks, such as PowerMock or Mockito. Moreover, we also
support TestNG, the second most popular testing framework for Java. Running the tests
of an otherwise unchanged project through Maven, Gradle and Ant leads to different,
incompatible build logs, with Maven being the most verbose and Gradle the least. Hence,
we need three different parsers to support the large ecosystem of popular Java build tools.
As a consequence, the amount of information we can extract from a build log varies per
build technology used. Some build tools give users the option to modify their console
output, albeit rarely used in practice.

Example 5.1: Standard output from Maven regarding tests
1 ---
2 T E S T S
3 ---
4 Running org.testroots.watchdog.ClientVersionCheckerTest
5 Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.04 sec
6
7 Results :
8
9 Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

10
11 [INFO] All tests passed!

Example 5.1 shows an excerpt of one test execution from the TestRoots/WatchDog
project. In the output, we can see the executed test classes (line 4), and how many tests
passed, failed, errored andwere skipped. We also get the test execution time (line 5). More-
over, Maven prints an overall result summary (line 9) that the Buildlog Analyzer uses
to triage its prior findings. Line 11 shows the overall test execution result. Our Buildlog
Analyzer gathers all this information and creates, for each invoked project, a CSV table
with all build and test results for each job built. We then aggregate this information with
information from the build status analyzer step by joining their output. TravisTorrent
provides easy access to this data.

Example 5.2 shows the equivalent Gradle output. The silent Gradle becomes more
verbose when a test fails, providing us with similar information to Example 5.1.

Example 5.2: Standard output from Gradle regarding tests
1 :test

5.2 Research Setup

5

127

By contrast, in Ruby, the test framework is responsible for the console output: it is
no different to invoke RSpec through Rake than through Bundler, the two predomi-
nant Ruby build tools [297]. For Ruby, we support the prevalent Test::Unit and its off-
springs, such as MiniTest. We capture behavior driven tests via RSpec and Cucumber
support [298].

5.2.3 Build Linearization and Mapping to Git
If we want to answer questions such as “how much latency does CI introduce” (RQ IV.2.3),
we need to make a connection between the builds performed on Travis CI and the repos-
itory which contains the commits that triggered the build. We call this build linearization
and commit mapping, as we need to interpret the builds on Travis CI as a directed graph
and establish a child-parent relationship based on the git commits that triggered their exe-
cution. Because there is no 1:1 relationship between builds and commits, we identified six
different scenarios (a–f) arising from git’s non-linear nature that make mapping a hard
task. During this step, we also assessed the status of the project at the moment each build
was triggered by extracting and synthesizing information from two sources: the project’s
git repository and its corresponding entry in the GHTorrent database.

Figure 5.3 exemplifies a typical GitHub project that uses Travis CI for its CI. In the
upper part 1⃝, we see the Travis CI builds (§1–§9), which are either passed (§1–§6, §9),
canceled (§7), or broken (§8). In the lower part 2⃝, we see the corresponding git repository
hosted on GitHub with its individual commits (#A–#H). Commits #D1–#D3 live in a pull
request, and not on the master branch, traditionally the main development line in git.

a) Build §1 showcases a standard situation, in which the build passed and the commit
id stored with the build leads to the correct commit #A that triggered build §1. However,
there are a number of more complex situations.

b) If multiple commits are transferred in one git push 3⃝, only the latest of those
commits is built (§2). In order to get a precise representation of the changes that lead to
this build result, we have to aggregate commits #B and #C.

c) It is a central function of Travis CI to support branches or pull requests 4⃝, such as
commit #D1. When resolving builds to commits, we know from the API that §3 is a pull
request build. Its associated commit points us to a virtual integration commit #V1 that
is not part of the normal repository, but automatically created as a remote on GitHub 5⃝.
This commit #V1 has two parents: 1) the latest commit in the pull request (#D1), and 2) the
current head of the branch the pull request is filed against, the latest commit on the master
branch, #C. Similarly, when resolving the parent of §4, we encounter a #V2, resolve it to
#D2 and the already known #C. We also know that its direct parent, #D1, is branched-off
from #C. Hence, we know that any changes from build result §4 to §3 were induced by
commit #D2.

d) In the case of build §6 on the same pull request 6⃝, its direct predecessor is unclear:
we traverse from #V3 to both 1) commit #D2 in the pull request, which is known, and
to 2) #E on the master branch, which is unknown and cannot be reached from any of
our previous commits #D2, #D1, or #C. This is because there was an intermediate commit
#E on the master branch in-between, and pull requests are always to be integrated onto
the head commit of the branch they are filed against. In such a case, one build can have
multiple parents, and it is undecidable whether the changes in #D3, #E or a combination

5

128 5 Oops, My Tests Broke the Build: An Analysis of Travis CI

B
u
il
d
 §

7
B

u
il
d
 §

8
B

u
il
d
 §

2

B
u
il
d
 §

3

c
o
m

m
it

 #
C

c
o
m

m
it

 #
E

c
o
m

m
it

 #
D

1

c
o
m

m
it

 #
V

1

c
o
m

m
it

 #
A

B
u
il
d
 §

1
B

u
il
d
 §

5

B
u
il
d
 §

6

c
o
m

m
it

 #
V

3 c
o
m

m
it

 #
F

c
o
m

m
it

 #
G

m
e
rg

e
 #

H

B
u
il
d
 §

9

c
o
m

m
it

 #
D

3

c
o
m

m
it

 #
B

v
ir

tu
a
l
b
ra

n
c
h

m
a
s
te

r
b
ra

n
c
h

p
u
ll
 r

e
q
u
e
s
t

p
u
ll
 r

e
q
u
e
s
t

v
ir

tu
a
l
b
ra

n
c
h

tr
a
n
s
fe

rr
e
d
 i
n
 o

n
e
 g

it
 p

u
s
h

1 2

4

5

6
B

u
il
d
 §

4

c
o
m

m
it

 #
D

2

p
u
ll
 r

e
q
u
e
s
t

c
o
m

m
it

 #
V

2

v
ir

tu
a
l
b
ra

n
c
h

3

7

8

Figure 5.3: Exemplarymethod of how tomatch commits from aGitHub repository to their corresponding Travis
CI builds (source: [68]).

5.3 The TravisTorrent Data Set

5

129

of both lead to the build result §6.
e) Build §5 shows why a simple linearization of the build graph by its build number

would fail: It would return §4 as its predecessor, when in reality, it is §2 7⃝. However, even
on a single branch, there are limits to how far git’s complex commit relationship graph
can be linearized and mapped to Travis CI builds. For example, if a build is canceled (§7),
we do not know about its real build status – it might have passed or broken. As such, for
build §8, we cannot say whether the build failure resulted from changes in commit #F or
#G.

f) Whenmerging branches or pull requests 8⃝, a similar situation to c) occurs, in which
one merge commit #H has two predecessors.

5.2.4 Statistical Evaluation
When applying statistical tests in the remainder of this chapter, we follow established
principles [53]: we regard results as significant at a 95% confidence interval (𝛼 = 0.05), i.e.
if 𝑝 ⩽ 𝛼 . All results of tests 𝑡𝑖 in the remainder of this chapter are statistically significant
at this level, i.e. ∀𝑖 ∶ 𝑝(𝑡𝑖) ⩽ 𝛼 .

For each test 𝑡𝑖 , we perform a Shapiro-Wilk Normality test 𝑠𝑖 [202]. Since all our distri-
butions significantly deviate from a normal distribution according to it (∀𝑖 ∶ 𝑝(𝑠𝑖) < 0.01 ⩽𝛼), we use non-parametric tests: for testing whether there is a significant statistical differ-
ence between two distributions, we use the non-parametric Wilcoxon Rank Sum test.

Regarding effect sizes, we report Vargha-Delaney’s (Â12) [299], a non-parametric effect
size for ordinal values [300]. The Â12(𝐴,𝐵) measure has an intuitive interpretation: its
ratio denotes how likely distribution 𝐴 outperforms 𝐵.
5.3 The TravisTorrent Data Set
In this section, we give an overview of the TravisTorrent data set and ways to access it.

5.3.1 Descriptive Statistics
From the 17,313,330 active OSS repositories on GitHub in August, 2015, our data set con-
tains a deep analysis of the project source code, process and dependency status of 1,359
projects. To be able to do this, we restricted our project space using established filtering
criteria to all non-fork, non-toy, somewhat popular (> 10 watchers on GitHub) projects
with a history of Travis CI use (> 50 builds) in Ruby (936) or Java (423). Both languages
are very popular on GitHub (2nd and 3rd, respectively) [68]. Then, we extracted and
analyzed build information from Travis CI build logs and the GHTorrent database for
each Travis CI build in its history, detailed in Section 5.3.3. Well-known projects in the
TravisTorrent data set include all 691,184 builds from Ruby on Rails, Google Guava
and Guice, Chef, RSpec, Checkstyle, ASCIIDoctor, Ruby and Travis.

5.3.2 Data-Set-as-a-Service
TravisTorrent¹ provides convenient access to its archived data sets and free analytic
resources: Researchers can directly access an in-browser SQL shell to run their queries on
our infrastructure, and download SQL dumps or the compressed data set as a CSV file (1.8

¹http://travistorrent.testroots.org

5

130 5 Oops, My Tests Broke the Build: An Analysis of Travis CI

GB unpacked). It also provides documentation and a getting started tutorial. We share all
tools we wrote to crave the data on TravisTorrent as OSS, allowing for future extensions
and bug fixes by the community.

5.3.3 Data Sample
In this section, we outline all fields available in TravisTorrent and describe an abbrevi-
ated data sample.

General Data Structure. In the TravisTorrent data set, each data point (row) repre-
sents a build job executed on Travis. Every such data point synthesizes information from
three different sources: The project’s git repository (prefixed git_), data extracted from
GitHub through GHTorrent (prefixed gh_), and data from Travis’s API and an analysis of
the build log (prefixed tr_). In total, we provide 55 data fields for each build. These are
described in detail in Table 5.1.

Sample. The last column of Table 5.1 features an exemplary data point from the fa-
mous rails/rails project (note that there currently are 2,640,824 data points more like
this in TravisTorrent). Here, we shortly highlight a few key observations.

The data sample we picked is a pretty interesting, as it is quite unusual for Rails. Not
surprisingly, Rails’s project_name is rails/rails. When the commit was made, 168 peo-
ple had made contributions to it (it is important to realize that all metrics are calculated
for the point in time in which the commit was made, so gh_team_size for example will
grow over time). The build we are looking at (§1543966) comprises two commits (the
latest commit built, #c1d9c11, and a predecessor #87a2f021), most likely because both
commits were pushed in one go and Travis naturally builds the latest available commit.
This commit is not a Pull Request (gh_is_pr is false), but made directly onto the stable
development branch (4-1-stable). We could resolve a predecessor build, §39557888. By
searching TravisTorrent for the predecessor, we could for example see whether this un-
usual commit directly onto the stable branch was made in order to fix an urgent problem.
We can see that our BuildLogAnalyzer picked up a Ruby build with the testunit frame-
work. 310 tests were executed successfully, until one test (SerializedAttributeTest) failed,
which took 28.2 seconds (tr_testduration). Very unusual for Rails is that despite the fail-
ing test (tr_tests_fail), the overall build status was still considered passed (tr_status).
A deeper investigation could now look into how many times this happens, and if it only
occurs with specific tests, which might be ignored.

Figure 5.4: TravisTorrent (http://travistorrent.testroots.org) on July, 20th, 2016.

5.3 The TravisTorrent Data Set

5

131

Table 5.1: Description of TravisTorrent’s data fields and one sample data point from rails/rails

Column Name Description Unit Example

row Unique identifier for a build job in TravisTorrent Integer 1543966
git_commit SHA1 Hash of the commit which triggered this build (unique world-

wide)
String c1d9c11

git_merged_with If this commit sits on a Pull Request (gh_is_pr true), the SHA1 of the
commit that merged said pull request

String

git_branch Branch git_commit was committed on String 4-1-stable
git_commits Preceding commits that were not built (e.g., transferred in one push,

...) this build comprises
List of Strings 87a2f021

git_num_commits The number of commits in git_commits, to ease efficient splitting String 1
git_num_committers Number of people who committed to this project Integer 1
gh_project_name Project name on GitHub (in format user/repository) String rails/rails
gh_is_pr Whether this build was triggered as part of a pull request on GitHub Boolean false
gh_lang Dominant repository language, according to GitHub String ruby
gh_first_commit_created_at Push date of first commit in git_commits to GitHub ISO Date (UTC+1) 2014-04-18

20:12:32
gh_team_size Size of the team contributing to this project Integer 168
gh_num_issue_comments If git_commit is linked to an issue on GitHub, the number of comments

on that issue
Integer 0

gh_num_commit_comments The number of comments on git_commit on GitHub Integer 0
gh_num_pr_comments If gh_is_pr is true, the number of comments on this pull request Integer 0
gh_src_churn The churn of git_commit, i.e. how much production code changed in

the commit, based on lines
Integer 4

gh_test_churn The churn of git_commit, i.e. how much test code changed in the com-
mit, based on lines

Integer 8

gh_files_added Number of files added in git_commit (correlated with churn) Integer 0
gh_files_deleted Number of files deleted in git_commit (correlated with churn) Integer 0
gh_files_modified Number of files modified in git_commit (correlated with churn) Integer 3
gh_tests_added How many test cases were added in git_commit (e.g., for Java, this is

the number of @Test annotations)
Integer 0

gh_tests_deleted How many tests were deleted in git_commit (e.g., for Java, this is the
number of @Test annotations)

Integer 0

gh_src_files Number of production files in the repository Integer
gh_doc_files Number of documentation files in the repository Integer
gh_other_files Number of remaining files which are neither production code nor doc-

umentation
Integer

gh_commits_on_files_touched Number of commits that touched (added/deleted/modified) the files in
git_commit previously

Integer 93

gh_sloc Number of executable production source lines of code, in the entire
repository

Integer 53421

gh_test_lines_per_kloc Test density. Number of lines in test cases per 1,000 gh_sloc Double 2191.011
gh_test_cases_per_kloc Test density. Number of test cases per 1,000 gh_sloc Double 188.3342
gh_asserts_cases_per_kloc Assert density. Number of assertions per 1,000 gh_sloc Double 535.0143
gh_by_core_team_member Whether this commit was authored by a core team member Boolean true
gh_description_complexity If gh_is_pr is true, the Pull Request’s textual description complexity Integer
gh_pull_req_num Pull request number on GitHub Integer
tr_build_id Unique build ID on Travis String 23298954
tr_status Build status (pass, fail, errored, cancelled) String passed
tr_duration Overall duration of the build Integer (in seconds) 23389
tr_started_at Start of the build process ISO Date (UTC) 2014-04-18

19:12:32
tr_jobs Which Travis jobs executed this build (number of integration environ-

ments)
List of Strings [23298955, ...]

tr_build_number Build number in the project Integer 15459
tr_job_id This build job’s id, one of tr_jobs String 23298981
tr_lan Language of the build, as recognized by BuildLogAnalyzer String ruby
tr_setup_time Setup time for the Travis build to start Integer (in seconds) 0
tr_analyzer Run BuildLogAnalyzer (ruby, java-ant, -maven, or -gradle) String ruby
tr_frameworks Test frameworks that tr_analyzer recognizes and invokes (junit, rspec,

cucumber, ...)
List of Strings testunit

tr_tests_ok If available (depends on tr_frameworks and tr_analyzer): Number of
tests passed

Integer 310

tr_tests_fail If available (depends on tr_frameworks and tr_analyzer): Number of
tests failed

Integer 1

tr_tests_run If available (depends on tr_frameworks and tr_analyzer): Number of
tests were run as part of this build

Integer 311

tr_tests_skipped If available (depends on tr_frameworks and tr_analyzer): Number of
tests were skipped or ignored in the build

Integer

tr_failed_tests All tests that failed in this build List of strings Serialized-
AttributeTest

tr_testduration Time it took to run the tests Double (in seconds) 28.2
tr_purebuildduration Time it took to run the build (without scheduling and provisioning) Double (in seconds)
tr_tests_ran Whether tests ran in this build Boolean true
tr_tests_failed Whether tests failed in this build Boolean true
tr_num_jobs How many jobs does this build have (length of tr_jobs) Integer 30
tr_prev_build Serialized link to the previous build, by giving its tr_build_id String 39557888
tr_ci_latency Latency induced by Travis (scheduling, build pick-up, ...) Integer (in seconds) 1408

5

132 5 Oops, My Tests Broke the Build: An Analysis of Travis CI

5.4 Results
Here, we report the results to our research questions.

5.4.1 RQ IV.1: How common is Travis CI use on GitHub?
Before investigating the testing patterns on Travis CI, we must first know 1) how many
projects on GitHub use Travis CI, and 2) what characterizes them and their use of Travis
CI. In August 2015, we were in a good position to measure the Travis CI adoption rate
on a broad scale, as projects interested in using free CI had two years of adoption time to
start to use Travis CI (see Section 5.1.2). We conjecture that, if projects have a primary
interest in CI, this was enough time to hear about and set up Travis CI.

According to GHTorrent, GitHub hosted 17,313,330 active OSS repositories (includ-
ing forks) in August, 2015. However, many of these 17 million projects are toy projects
or duplicated (forks with no or tiny modifications). In our analysis, we are interested in
state-of-the-art software systems that have a larger real-world user base. To retrieve a
meaningful sample of projects from GitHub, we follow established project selection in-
structions [301]: we selected all projects that are not forks themselves, and received more
than 50 stars.

This filtering resulted in 58,032 projects. For each project, we extracted five GitHub
features from GHTorrent: main project language ∈ {C, C++, Java, Ruby, ...}, number of
watchers ∈ [51;41,663], number of external contributors ∈ [0;2,986], number of pull re-
quests ∈ [0;27,750], number of issues ∈ [0;127,930] and active years of the project ∈ [0;45];
using Travis Poker we collected how many Travis CI builds were executed. In total,
we found that our 58,032 projects were written in 123 unique main repository languages.
16,159 projects used Travis CI for at least one build, resulting in an overall Travis CI
usage rate of 27.8%. The majority of the 123 primary languages of our projects are not
supported by Travis CI (see Section 5.1.2). When reducing the main project language to
the 26 languages supported by Travis CI, we have 43,695 projects (75.3% of all projects).
Out of these, 13,590 (31.1%) used Travis CI for at least one build.

Figure 5.5 details these findings, showing the number of projects using Travis CI ag-
gregated per programming language. Inspired by Vasilescu et al., who found that many
projects were configured for Travis CI but did not really use it, we group projects into
categories with 1) no, 2) a shorter (⩽ 50 builds), and 3) a longer (> 50) Travis CI history. If
there is a smaller number of Travis CI builds, this means that the project either recently
started using Travis CI, or that Travis CI was quickly abandoned, or that the project was
not active since introducing Travis CI. Due to their short build history, we have to ex-
clude such projects from our onward analyses: it is questionable whether these projects
ever managed to get CI to work properly, and if so, there is no observable history of the
projects using CI. We, however, are interested in how projects work and evolve with an
active use of CI.

While 31.1% is a closer approximation of the real Travis CI usage rate, Figure 5.5
hints at the fact that also projects whose main language is not supported, use Travis CI,
expressed as “Other”.

In total, Travis CI executed 5,996,820 builds on all 58,032 sampled projects. Figure 5.6
gives a per-language overview of the number of builds executed per each project, based

5.4 Results

5

133

Other

JavaScript

Python

Ruby

Java

Objective−C

PHP

C

C++

Go

C#

Clojure

Scala

Perl

Haskell

Rust

R

Groovy

0 5000 10000 15000
#Projects

M
a

in
 R

e
p

o
s
it
o

ry
 L

a
n

g
u

a
g

e

Does Not Use Travis Uses Travis (<= 50 builds) Uses Travis (> 50 builds)

Figure 5.5: Travis CI adoption per language.

on all 16,159 projects that had at least one build. Next to the standard boxplot features,
the ⊕-sign marks the mean number of builds.

From our 13,590 projects in a Travis CI-supported main language, we selected the
ones which were best fit for an analysis of their testing patterns. We therefore ranked
the languages according to their adoption of Travis CI as depicted in Figure 5.5. We also
requested that they be popular, modern languages [302], have a strong testing background,
one language be dynamically and the other statically typed, and the number of available
projects be similar. Furthermore, there should be a fairly standard process for building
and testing, widely followed within the community. This is crucial, as we must support all
variants and possible log output of such frameworks. Moreover, it would be desirable if
both languages show a similar build frequency in Figure 5.6. The first two languages that
fulfilled these criteria were Ruby and Java. From these two languages, we sampled the
1,359 projects (Ruby: 936, Java: 423) that showed considerable Travis CI use (> 50 builds
in Figure 5.5).

All further analyses are based on an in-depth investigation of 1,359 Java and Ruby
projects, for which we downloaded and analyzed 2,640,825 build logs from Travis CI
(1.5 TB). This is the TravisTorrent data set travistorrent_5_3_2016.

5

134 5 Oops, My Tests Broke the Build: An Analysis of Travis CI

●● ●●● ● ●● ● ●● ●● ●● ●● ●● ●● ●● ● ●●● ●●● ● ●●● ●● ● ●● ●● ● ●●●●● ● ●● ●● ● ●● ● ●●●● ●●●●● ●● ● ●● ●● ●● ●●● ●● ●● ●● ● ●● ● ●●● ●●●● ●● ●●●● ● ●●● ●● ●● ●● ● ●● ●● ●● ●● ●● ● ●● ●●● ●●● ● ●●● ● ●●●●● ● ● ● ● ●●● ●● ●● ● ●●● ●● ● ●●●● ●● ●●● ● ●● ● ●● ●●● ● ● ● ●●● ● ●● ● ●●●● ● ● ●● ●●● ● ● ●●●● ● ● ●● ●●● ● ●● ●● ●● ●●●● ●● ● ●

● ●● ●● ●● ●● ● ● ●● ● ●●● ●● ●● ●●● ●● ●● ● ● ●● ● ●●● ● ●●● ●● ●●●●● ● ●●● ● ●● ●● ● ●● ●●● ●● ●● ●●●●●● ● ●● ●● ●● ● ● ●●●● ● ● ●● ●● ●●●●●● ●● ●●● ● ●● ● ●● ● ●●● ● ● ●●● ● ●● ●● ● ●● ●●● ●● ●● ● ●● ●●● ●●● ●●● ● ●● ●● ● ●●● ● ●●● ●● ●● ● ●●● ● ●●●● ●●●● ●●●●● ●●● ●● ●● ● ●● ●● ●●● ● ●●●● ●● ●● ● ● ●● ●●● ● ● ●● ●●●● ● ●●● ●● ● ● ●● ●● ●● ● ●●● ●●● ● ●● ● ● ●●● ●● ●●●●● ● ●● ●● ● ● ●●●● ●● ●●●● ● ● ●●● ● ●●●● ●● ● ●●● ● ●● ● ●● ● ●● ●●● ● ●● ●● ●●● ●●● ●● ● ● ●●● ●●

● ●●● ● ●●● ● ● ●●●● ● ●●●● ●●● ● ●● ●●● ● ●● ●● ● ●●● ● ●● ●●●● ●●●● ●● ● ●● ●●●● ●● ●● ●●● ● ●●● ●●● ● ● ●● ●●● ● ●●● ●● ●●● ● ● ●● ● ●● ● ●● ● ●

● ● ● ●●●● ● ●● ●●● ●● ●● ● ●● ● ● ●●● ●● ●● ● ●● ● ●●● ●●●● ●● ● ●●●● ● ●● ●●●●● ●● ●● ●●●● ● ●● ●●● ●● ●● ● ●● ●●● ●●● ●●● ●●● ●●● ●● ● ● ●● ●● ●● ●● ●● ● ● ●●● ● ●●●● ●● ● ●● ● ●●●●● ● ● ●●● ● ● ●●●● ●●● ●● ● ●● ● ●● ●● ● ●●● ●● ●● ●● ●● ●●●● ● ●● ●● ● ●● ● ● ●● ● ●●●

● ●● ●● ●● ● ● ● ●● ●● ● ● ●● ●● ● ●● ●● ● ●● ●●● ● ●● ●● ● ●● ● ●● ●● ● ● ● ●● ●● ● ●● ● ● ●● ●●● ●●● ●

● ●● ●●● ●● ●● ●● ●●● ● ●● ● ●● ●● ●● ●●●●● ● ●●● ●● ● ●●● ●● ● ●● ●● ●●●● ●

● ●●● ●● ●● ●● ●●● ●●●● ● ●● ● ●●● ● ●●●● ● ●● ● ●●●● ●● ● ●● ●●●●● ●●● ●● ●●●●● ● ●●●●● ● ●● ● ●● ●● ●● ●● ●● ●● ●● ●● ● ●● ●●● ●● ●● ●●

●● ● ●●●●●● ●● ●● ● ●●●

● ●●●

● ● ●●● ● ●● ●● ●● ●● ●● ●● ● ●●●● ●●● ● ●●● ●●●●● ● ●● ●● ●● ● ●●●●● ●

● ●● ●

●● ●● ●● ●●● ● ●●● ● ●● ●

●● ●● ●●●● ●● ● ● ● ●●

●● ●● ● ● ●● ●

●●●● ●

●●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Other

JavaScript

Python

Ruby

Java

Objective−C

PHP

C

C++

Go

C#

Clojure

Scala

Perl

Haskell

Rust

R

Groovy

0 500 1000 1500
#Travis Builds/Project

M
a

in
 R

e
p

o
s
it
o

ry
 L

a
n

g
u

a
g

e

Figure 5.6: Horizontal boxplot of the #builds per project and language.

5.4.2 RQ IV.2: How central is testing to CI?
The purpose of CI is usually twofold: first, to ensure that the project build process can
construct a final product out of the project’s constituents and second, to execute the proj-
ect’s automated tests. The testing phase is not a mandatory step: in our data set, 31% of
Java projects and 12.5% of the Ruby projects do not feature test runs. Overall, 81% of the
projects we examined feature test runs as part of their CI process. On a per build level,
96% of the builds in our sample feature at least one test execution.
RQ IV.2.1 How many tests are executed per build? Figure 5.7 presents a histogram of
the number of tests run per build on the left, and an analysis of the tests run per language
on the right in the beanplot.

As expected, the histogram follows a near-power law distribution often observed in
empirical studies [66]: most projects execute a smaller amount of tests, while a few run
a lot of tests (mean: 1,433; median: 248; 95%: 6,779). A particular outlier in our data set
was a project that consistently executed more that 700,000 tests per build. Upon manual
inspection of the project (google/guava), we found that it automatically generates test
cases at test runtime.

The right hand side of Figure 5.7 shows the distribution of test runs across the two
programming languages in our sample; on average, Ruby builds run significantly more
tests (median: 440) than Java builds (median: 15), revealed by a pairwise Wilcoxon test
with a very large (Â12 = 0.82) effect size.
RQ IV.2.2: How long does it take to execute tests on the CI? Figure 5.8 depicts a

5.4 Results

5

135

10

1,000

100,000

0 20,000 40,000
Tests run

N
u

m
b

e
r

o
f

b
u

ild
s

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●●

●●

●●

●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●

●

●

●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●

●

●●

●●

●●●

●

●●●●●●

●●

●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●

●

●●●●●●●●●●

●●●●●●●●●

●●●●●

●●●●●●●

●●●●●

●●●●●

●●●

●●

●●●●●

●

●●●●●●●●

●●●●●

●●

●●●

●

●●●●●●●●●●●●

●●

●

●●●

●●

●●

●●

●●

●

●●

●

●●

●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●

●

●

●

●●●●

●●●●●●

●

●●●●●●●

●●●

●●

●●●●

●●

●

●●●

●

●●●●●●●

●

●

●

●●●●●●

●●

●●●

●

●

●●●●

●●●

●●●

●●

●

●

●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●●●

●

●●

●

●●●

●

●●

●●

●●●●

●●●●●●

●

●

●●

●●

●●

●●●●●●●●

●●●

●

●

●●

●

●

●

●●

●●

●●

●●

●

●●

●

●

●●

●●●●●

●

●●●●●●●●

●●●

●●●●

●●

●●

●

●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●

●

●

●●

●●

●

●

●

●●●●●●

●

●●●

●●

●●●●●●

●●●

●●●●●●●●●●●●

●

●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●

●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●●●●

●

●

●●●

●●●

●

●

●

●

●●

●●●●●●●●●●●●●●●

●

●●●●●●

●●●

●●●

●

●●●

●●

●●●●●

●●●●●●●●●●●●

●

●

●

●●●●

●●●

●●●●●●●

●

●

●

●

●●●●●

●

●●

●

●●

●

●

●●

●

●

●●●●●●●●●●●●●

●

●●●

●●●●●●●●●●●●

●●●

●

●

●●●●●●●●●●●●●●●●●●●●

●●

●●●●

●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●●●●●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●

●

●●

●

●

●

●

●●●

●●

●●●●●●●●

●●●●

●

●

●●●●

●

●●●●●●●●

●

●●●●●●●

●

●

●●●

●

●●

●

●●

●

●●●

●

●●

●

●

●●

●

●●

●

●●●

●●

●●

●

●

●●●●●

●●

●

●

●

●●

●●●

●●

●

●●●●●

●

●●●●

●●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●●●

●

●●●●●●●●●

●

●●

●

●●

●

●

●

●●

●

●

●●●

●

●●●

●

●●

●●●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●●

●

●●●●●●●

●

●●

●

●●

●●●

●

●

●●

●●

●

●

●●

●●●●

●

●●

●

●●

●

●●●●

●

●●●●●●

●

●

●●

●

●

●

●●●●●●●●

●●

●●●●●●●●●

●

●●●●●●●●●●●●

●●●●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●●●

●●●●●●●●●●●●●

●●●●●

●●●●●●●●●

●

●

●●

●●

●●●●●●●●●

●

●●●

●

●●●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●●●●●●●●●

●●●

●

●

●

●

●●

●

●●●

●

●●

●

●●●●●

●●

●●●●

●●

●●

●

●●

●

●●●

●●

●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●●●●

●●●●

●

●

●●●●

●

●

●

●
●●●

●●

●

●●●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●●●●●

●●●●

●●

●●●●●

●●

●●●●

●

●

●

●

●

●

●●●●●

●

●●●

●

●

●

●

●

●

●●

●●

●●●

●●●●

●

●●

●●●●●●●
●

●●

●●●●●●●●●●
●●
●
●●
●●●
●
●●●●●

●

●●●

●●●

●●

●●●●

●

●●
●●●

●

●
●●●●

●

●●

●●●

●
●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●

●

●●●

●

●●

●

●

●

●

●

●

●●

●

●●●●●●●●

●

●●●
●●●●
●●●●●●●
●
●
●●●
●●●●●●●●
●
●●●●●
●
●●●●●●
●
●●●

●

●

●

●

●

●●
●
●

●

●

●

●●

●●

●
●

●

●

●●

●●●●

●

●

●●●●●●●

●●

●

●

●

●●
●●
●
●

●

●●

●●●●●

●

●●●●●●

●

●●●

●

●●

●

●

●
●

●

●

●

●

●

●

●●●●●●

●

●

●

●●●●●●

●

●●

●

●●

●●
●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●●●●●●●●
●
●

●

●●●

●

●●●●●

●

●●

●

●●●●●●●●●●

●●

●

●●●●●

●●

●
●●●●

●●

●

●

●

●

●

●●●

●

●●●●

●●●

●

●●

●●

●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●

●

●

●●●

●

●

●

●●●●

●

●●●●●●

●

●

●

●

●

●

●

●●●●●

●

●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●●

●●

●

●●

●

●

●

●

●

●

●●●

●●

●●

●

●●

●

●●

●●

●●●●

●●●●●●

●

●

●●●●

●

●

●●

●

●

●●

●

●●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●●

●●

●●●

●●●

●

●

●

●

●

●

●●●●●●●

●

●●●

●

●

●●

●●●

●

●

●●●●●●

●●

●

●

●●●●●

●

●●

●●●

●●

●

●●●●●●●●●

●●●

●

●●●

●

●

●

●●

●

●●

●

●

●

●

●

●●●●

●●

●●●●

●●

●●●

●●

●

●

●●

●●●●

●

●

●●

●●

●

●●

●●●●

●

●

●

●●●

●●

●

●●

●

●●●●

●

●

●●

●●●●●●●

●

●

●●●

●

●●

●

●

●●

●●●●

●

●●

●

●

●●●●●●●●●●●●●●●●●●●

●●

●

●

●●●

●

●●●●●●●●

●

●●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●●●●●●●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●

●●●

●

●●●●

●●●●

●

●●●●●●●●●●●●●

●●●●

●●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●●

●●●●●●

●●

●●●●●●●●●

●

●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●

●

●

●

●

●●

●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●

●●●

●●●●●

●

●

●●

●

●

●●●●

●

●●●●

●

●●

●

●●●●●

●

●●●

●

●●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●

●

●●

●

●●

●●●●

●●●●●●●●

●

●

●

●

●

●

●●●●●●●●●●●

●

●●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●

●●●

●

●

●

●●

●

●●

●

●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●●

●

●

●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●

●●

●●

●

●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●

●

●●●●●●

●●

●

●

●●

●

●●●●●●●●

●

●

●●●●●

●●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●●●●●●●

●●●●●●●

●

●●●●●●

●

●●●

●

●●

●

●

●

●

●

●●

●●

●●●●●

●

●

●●●●

●

●●●

●

●●

●

●●●

●

●●●

●

●●●

●

●

●

●●

●●

●●

●

●●●●

●●●

●●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●

●●

●●●●

●●●●

●●●

●

●

●

●

●●●●●

●●

●●●●●

●●●

●

●●

●●●●

●●●

●

●●●●

●●●●●●●

●

●●●

●

●●

●●●

●●●

●

●

●

●●●

●●

●●

●

●●

●●

●

●●●●●

●

●

●

●●

●●

●●●●

●

●

●

●●●

●

●

●●●●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●●

●

●

●

●●●●

●

●●●●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●●

●●

●●

●

●●

●

●

●●●●●●●

●

●●●

●

●●●

●●

●

●

●●

●●

●●●●●●●●●●

●

●●●●

●

●

●●●●●●●●●

●

●

●●●

●

●●●●●●●●

●●●

●

●●●

●●●

●●

●

●●

●

●

●●●●●

●●

●

●●●

●

●

●

●

●

●

●●●

●

●●

●

●

●●

●

●

●●

●

●

●●●●

●

●●●●

●

●

●

●●

●●●●

●

●●●

●

●●

●

●

●

●

●●

●●

●

●●

●●

●●●

●●

●

●●●●●●●●●●

●

●

●●

●

●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●●

●●

●●

●●

●●

●

●

●●●●●●

●

●●

●

●

●●●●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●●●

●

●●●

●●●

●

●●

●●

●

●

●

●

●

●●●●●

●

●●

●●

●●

●●●●

●●

●

●

●

●●●●●●●●●●●●

●
●

●

●

●

●●

●

●

●

●●●●●

●

●

●●●

●

●●●●

●●

●

●●●●

●

●

●

●●●●●●●

●

●●

●●●

●

●

●

●●●●●●●●●●●

●●

●●

●

●●●●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●●●

●

●●

●

●●●

●●

●●

●

●●●●●

●

●

●

●

●

●●●

●●●●

●●●

●●●●

●

●

●

●

●

●●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●●

●

●●

●

●●●●●●

●

●●●●

●

●

●

●●

●●●

●●●●

●●●●

●

●

●●

●

●

●

●●●●

●

●

●

●

●●

●

●●●

●

●

●

●●●

●

●●●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●●●

●

●●●

●●

●

●●●

●

●●●●

●

●

●

●●

●

●●●●●●●●

●●

●

●

●●

●

●●●●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●●●●

●●

●●●

●

●

●

●●

●

●

●

●

●●●

●

●●●●

●

●●

●

●

●●

●

●●●

●

●●●●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●●●

●

●●

●

●

●●●●●●●●●

●●

●

●●●

●●●

●

●●●

●

●

●

●●●●

●●●

●

●●●●●●

●●●●

●

●●●●●●

●

●

●●●●●●

●●●●●●●●●●

●

●●●

●

●

●

●

●●●●

●

●

●●●●

●●

●●●●●●●●●●●●●

●

●●●

●●

●

●

●

●●●●

●

●●

●

●

●

●●

●

●

●

●●

●●●

●

●●●●●●●

10

1,000

100,000

Java Ruby
Language

T
e

s
ts

 r
u

n
 (

lo
g

 s
c
a

le
)

Figure 5.7: Number of tests run per build (left, log-scale) and number of tests per build per language (right,
log-scale).

log-scale bean- and box-plot of the test duration, split by language. We observe that the
median test duration is relatively short, at ∼1 minute for Java and 10 seconds for Ruby
projects. Despite the significant differences in the test duration, both languages feature a
similar set of large outliers, reaching maximum test execution times of over 30 minutes.
RQ IV.2.3: How much latency does CI introduce in test feedback? CI introduces a
level of indirection between developers and the feedback that they receive from testing,
especially when compared to testing in the IDE. In the Travis CI and GitHub setting,
latency can be broken down into: the time 1) between locally committing and pushing to
GitHub (commit-push latency), 2) to schedule a build after a push (job scheduling latency),
3) to provision the infrastructure (build environment setup latency), and 4) to execute the
build (build execution latency). To calculate latencies, we exploit the fact that Travis CI
builds are always triggered by GitHub push events. The process to connect builds to
commits is as follows:
1) We identify all commits that were built on Travis CI and map commits and builds to
each other (Section 5.2.3).
2) For each commit, we search for the GitHub push event that transferred it. As multiple
push events might exist that contain a specific commit (e.g. a push to a repository that is
cherry-picked by a fork and pushed to a different branch), we always select the earliest.
3) We list all commits in the push event and select the first one as our reference. We chose
to keep the information about the first commit (and not e.g. the commit actually built)
as this allows us to calculate the total latency induced by the developer (not pushing a
commit creates latency to the potential feedback received by the CI) and compare it to the
latency introduced by the CI.

Table 5.2 presents an overview of the latencies involved in receiving feedback from
testing on the CI environment. The results reveal two interesting findings: firstly, de-
velopers tend to push their commits to the central repository shortly after they record

5

136 5 Oops, My Tests Broke the Build: An Analysis of Travis CI

●●●●●●
●●
●●●●●●●●●●
●
●●
●
●●●
●
●●●●●●●●●
●
●●
●
●●
●

●●
●●
●●
●●●●
●●
●●●
●
●
●
●
●●
●●●
●
●●
●
●●●●●●
●
●●
●
●●●
●
●●
●

●
●●●
●

●

●

●●●
●●
●

●
●●
●

●

●●
●
●
●●●●●

●

●●
●
●
●●

●
●●●●
●●
●●●
●

●

●
●
●
●
●
●
●●●●●
●
●
●
●
●

●
●
●●
●
●●●
●
●●●●

●
●●
●●
●
●●
●
●

●

●
●
●●●●
●
●
●●●●
●
●

●

●●
●●●
●●
●
●
●
●
●
●●●

●

●●
●●
●●●●

●●●
●●
●●
●
●●●●
●●
●

●
●
●●●

●

●
●●●●
●

●
●
●
●
●●
●

●●

●●●●●

●

●●
●
●●
●
●

●●●
●

●
●
●
●

●

●

●

●
●
●
●
●

●

●●●

●●
●

●

●●

●

●

●
●

●●

●

●●●

●●

●

●●●

●●●●●

●●●●●●●●

●●●●●

●

●

●●

●●●

●●●●●●
●●

●

●●
●
●●●●

●

●

●

●

●

●●●●

●

●●
●●●
●

●●●●

●

●●

●

●

●●

●●●●

●

●●●●●●

●●●

●

●
●●●
●●●

●

●●

●

●
●

●●

●

●●●

●

●●

●●

●

●

●
●●

●

●

●

●

●

●●

●
●
●

●

●

●
●●

●

●●●
●●

●

●

●

●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●●

●

●●●●

●

●

●

●

●

●

●●●●

●

●●

●

●

●●●●

●
●
●●●

●

●
●
●●●●

●

●●
●●
●

●

●
●

●

●●●

●

●

●

●●

●

●
●

●●

●●

●●●

●

●

●

●

●●

●

●

●●●●

●

●

●

●●
●●
●●

●

●●

●

●●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●●

●●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●●
●

●●●●●

●

●

●
●●●

●

●

●

●

●

●

●
●●
●●●●●
●●

●

●

●

●
●
●
●
●
●●
●

●

●

●

●●

●

●

●

●●

●

●
●
●

●

●

●
●

●
●●
●
●

●
●
●
●
●

●

●

●

●

●

●●

●●●●●

●
●

●●

●
●

●

●

●

●

●
●
●

●

●●

●

●

●●
●
●●

●

●
●●
●
●

●

●
●
●●●
●
●

●

●●

●●

●●

●

●

●
●

●●●●●

●

●

●

●

●

●●●●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●
●

●●

●

●●

●

●

●

●

●

●●●

●

●
●●

●

●
●

●

●●
●
●
●●
●●
●
●●

●

●
●
●

●

●

●

●

●

●

●●●
●●●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●
●

●●●
●
●
●
●

●

●●
●●
●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●●●

●

●●●●●

●

●

●●●

●

●●●●●

●●●●●

●●●

●

●

●

●

●

●

●●●

●●
●●
●●
●
●
●
●
●

●

●

●●●●●
●
●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●
●●
●
●
●
●
●
●

●●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●●

●

●●●●●●●●

●●●

●
●
●
●●
●
●●●

●

●

●

●
●

●
●

●

●●●

●
●
●
●
●●
●

●●●●
●●

●

●

●
●

●

●●●●●●●●●●●

●
●
●

●●

●●●
●
●

●●●

●

●●●●

●
●
●

●

●

●●
●

●

●●

●
●●
●
●

●●

●

●

●●

●

●

●

●

●
●
●

●

●●

●
●
●●●

●●

●

●
●

●

●
●
●
●●●

●●

●

●
●

●

●

●

●

●

●●

●●

●●●●●

●

●

●

●●

●
●●
●

●

●●
●
●

●

●
●

●●

●

●

●
●

●

●

●
●

●●

●

●
●●

●

●●●●
●
●
●

●
●
●
●●
●
●
●
●

●

●●

●●

●

●

●●

●

●
●
●

●

●●

●

●●

●●

●●●
●●●●

●

●
●
●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●●

●●

●
●

●●●

●

●●

●

●

●●

●

●●●●

●

●●●●

●

●

●

●●●●●●

●●

●●

●●

●●●

●●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●●●

●

●●●

●

●
●

●

●●

●●

●

●
●●●●

●

●
●

●

●

●

●●●

●

●●

●
●
●
●●●
●
●
●●●●
●
●●
●
●

●●●

●
●
●●

●

●
●
●
●

●

●
●

●
●●
●
●●
●

●

●●●

●

●●●

●●

●●●●

●

●●

●

●

●●

●

●

●

●●●

●

●●

●●●●●●

●

●

●●●

●●●

●

●●●

●

●

●

●●
●

●

●
●
●
●

●

●●

●●

●

●

●

●

●●

●

●

●●

●

●●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●●
●

●

●●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●

●●

●

●

●●●

●●

●●●●●●●●●●●●

●

●

●

●●●

●●●●●

●

●●

●

●●●●●

●

●

●●

●●●●●

●

●

●●●

●●

●●●

●

●

●●

●●

●●●

●

●●●●●●●●

●

●●●

●●

●

●●

●

●

●●

●●●●

●

●●

●●●●●●

●

●●

●

●

●

●

●

●

●●

●

●●●

●●

●●

●

●●●

●

●●

●

●●

●

●●●●●●●●

●●●●

●

●●●●

●

●

●●●

●

●

●

●●●●●

●●

●

●

●

●●●●

●●●●●

●

●

●●

●●

●●

●

●

●

●●●●

●

●

●●

●

●●

●●●●

●

●

●

●

●●

●●●●●●

●

●

●

●

●

●

●●

●

●●

●●●

●●

●●

●●●●●●●●●●

●

●

●

●●●

●

●●●●●●●

●

●

●●

●

●

●

●

●●●●●●

●●

●●●●

●

●●●

●●●

●

●

●

●

●●●●●●

●

●●●

●

●●

●●

●●●

●●●●●

●

●●●●

●●●

●

●●●

●

●

●●●●

●

●●

●●

●

●●

●

●●●●

●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●●

●●

●●●●●●

●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●●

●●●●●●●

●●

●●●●●●●●●●●●●●●

●●

●●

●●

●●●●●

●

●●●●●●●●●●

●●

●●●●●●●●●

●●

●●●

●

●

●

●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●●

●●

●

●

●●●●●●

●●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●

●●

●●●●●●●●●●●●●●●●

●●

●●●●●●●●

●

●●●●●●

●●●

●

●

●●●●

●●

●●●

●

●●●●●●●

●●●

●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●

●

●●

●●●

●

●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●

●

●●●●●●

●●

●●●●●●●●●●●●●●

●●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●

●●

●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●

●●

●●

●●

●

●

●●●●●●●

●●●●

●●

●●●

●●

●●●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●●

●

●

0.1

10.0

1,000.0

Java Ruby
Language

T
e

s
t

d
u

ra
ti
o

n
 (

s
e

c
o

n
d

s
,

lo
g

 s
c
a

le
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

Java Ruby
Language

P
e

rc
e

n
ta

g
e

 o
f

b
u

ild
s
 i
n

 w
h

ic
h

 t
e

s
ts

 f
a

ile
d

Figure 5.8: Beanplots of test duration (left) and percentage of test failures broken down per project and language
(right).

Table 5.2: Descriptive statistics for CI latencies (minutes)

Latency type 5% median mean 80% 95%

Commit push latency 0.1 0.4 182 17.1 1,201
Job scheduling latency 0.3 1.2 33.9 8.7 85.9
Build environment setup latency 0 0 0.05 0.05 0.35
Build execution latency 0.8 8.3 19.64 30.2 77

them locally; secondly, the total time the code remains within the Travis CI environment
dominates the latency time.

Developers typically push their commits quickly after their creation to the remote
repository. The commit push latency distribution is very skewed; 80% of the commits
only stay on the developer’s local repositories for less than 17minutes, and 50% are pushed
even within one minute. The distribution skewness is a result of using distributed version
control; developers have the option to commit without internet access or to delay showing
their changes until perfected. Our data shows that this only happens in few cases.

On Travis CI, a build is scheduled immediately (average latency is less than a second)
after commits are pushed to a repository. The time between scheduling and actual build
execution depends upon resource availability for free OSS projects. The added latency is
about one minute in the median case, but can reach up to nine minutes for the 80% case.
While this latency is significant, it represents the price to pay for the free service offered
by Travis CI; builds on commercial versions are scheduled immediately.

Moreover, before executing each build, Travis CI needs to provision a virtual machine
or Docker container with the required programming language and runtime combination.
This operation is usually fast: on average, across all builds, it takes 3.1 seconds (median:

5.4 Results

5

137

0; 80%: 3; 90%: 22). However, as build job execution is mostly serial on Travis CI, the
time cost to be paid is linear in the number of executed jobs or build environments. As the
average project in our data set spawns 5 jobs (median: 3; 80%: 7; 90%: 10), running the build
in multiple environments induces an average time overhead of 25s just for provisioning
operations on the CI server.

The build process itself adds another 8.5 minutes of median latency to the test run. As
there is a strict 50 minute cap on the length of build jobs, 80% of builds last 30 minutes or
less.

To sum up the findings, the use of CI adds a median of 10 minutes to the time required
to get feedback from testing, while the 80% case is significantly worse. The build time,
which is entirely in each project’s domain, dominates the feedback latency.

5.4.3 RQ IV.3: How do tests influence the build result?
With this research question, we aim to unveil how often tests fail when executed on the
CI server, how often they break the build, whether they are a decisive part of CI, and if
multiple build environments are useful in terms of causing different test results.
RQ IV.3.1: How often do tests fail? In RQ IV.3.1, we are interested in how often tests
fail, when they are executed as part of the script phase of a Travis CI build.

For all 1,108 projects with test executions, Figure 5.8 shows a beanplot of the ratio of
builds with at least one failed test, broken down per language. With a median of 2.9%
for Java (mean: 10.3%) and a median of 12.7% (mean: 19.8%) for Ruby, the ratio of test
failures among all builds is significantly higher in Ruby than in Java projects, confirmed
by a Wilcoxon rank sum test with a large effect size (Â12 = 0.70).
RQ IV.3.2: How often do tests break the build? Beyond merely knowing how often
tests fail, we want to research which impact this has in the bigger picture of the CI process.

Figure 5.9 shows an aggregated-per-project break-down of the build outcomes of all
1,108 projects which executed tests, separated by Java and Ruby. Next to each stacked bar,
we report its participation in the overall build result. The graphs of Java and Ruby are
largely comparable, with a similar build result distribution, and small differences within
the groups. In total, cancels are very rare and infrastructural problems cause builds to
break in around 5% of cases. Failures during the build process are responsible for most
broken builds, and they are more frequent in Ruby (21.3 percentage points) than Java (14.4
% p.). In both cases, the single largest build-breaking phase is testing, with failed tests
responsible for 59.0% of broken builds in Java and 52.3% in Ruby projects.
RQ IV.3.3: Are tests a decisive part of CI? Table 5.3 shows the number of builds with
test failures, which have an overall failed result, and aggregates this on a per-project level.
For this aggregation, a project has to consistently ignore the result of the test execution
for all its history. This means that if the tests failed, this never led to a failing build. The
table shows that, in general, the test execution result is decisive for the overall build result,
at a per-project aggregated level of 98.3%.

Consistently ignoring the test execution result is very rare (1.7%). However, it is quite
common that the failed test execution result of individual builds has no influence on the
whole result (35.2%). Ignoring such individual test failures in a build is more common in
Ruby (39.8%) than Java (13.6%).

5

138 5 Oops, My Tests Broke the Build: An Analysis of Travis CI

0.1%
4%

3.9%

9.5%

82.4%

0.4%

5.6%

7%

14.3%

72.7%

0%

25%

50%

75%

100%

Java Ruby

Language

P
e

rc
e

n
ta

g
e

 o
f

b
u

ild
s

passed
failed, tests
failed, general
errored
canceled

Figure 5.9: Distribution of build status per language.

Table 5.3: How often are test results ignored in a build result?

Tests Fail → Build Fail Tests Fail E Build Pass Total

Build
level

Java 7,286 (86.4%) 1,146 (13.6%) 8,432
Ruby 23,852 (60.2%) 15,773 (39.8%) 39,625
Both 31,138 (64.8%) 16,919 (35.2%) 48,057

Project
level

Java 197 (98.0%) 4 (2.0%) 201
Ruby 727 (98.4%) 12 (1.6%) 739
Both 924 (98.3%) 16 (1.7%) 940

RQ IV.3.4: Does integration in different environments lead to different test re-
sults? Each build comprises 𝑛 ⩾ 1 job(s), which perform the same build steps in altered
environments on the same git checkout (see Section 5.1.2). However, integration in dif-
ferent environments is also expensive, as the required build computation time becomes𝑛× the individual build time. One might argue that it therefore only makes sense to do
continuous integration in several environments when their execution leads to different
results, capturing errors that would not have been caught with one single environment.
In RQ IV.3.4, we set out to answer this question.

Table 5.4 gives an overview of how many times the execution of tests in different
environments leads to a different build outcome. We observe that in total, 11.4% of builds
have a different integration result, meaning that there were at least two jobs in which the
test execution resulted in a different status. This effect is much more pronounced for Ruby
(15.6%) than for Java (2.3%) systems. In total, over 60% of projects have at least one build
in which there was a different test execution result among jobs.

5.5 Discussion

5

139

Table 5.4: Results of same build in different integration environments.

Build Result Identical Different Total

Jobs
Java 74,666 (97.7%) 1,725 (2.3%) 76,391
Ruby 140,833 (84.4%) 25,979 (15.6%) 166,812
Both 215,499 (88.6%) 27,704 (11.4%) 243,203

Projects
Java 196 (66.0%) 101 (34.0%) 297
Ruby 240 (29.3%) 579 (70.7%) 819
Both 436 (39.1%) 680 (60.9%) 1,116

5.5 Discussion
In this section, we discuss our propositions by combining the results of RQs IV.1–3 and
then show how we mitigated threats to their validity.

5.5.1 Results
Before we started this study, we had one data point that indicated Travis CI use might be
as high as 90% [279]. By contrast, regarding P1, we found in RQ IV.1 that around a third
of all investigated projects used Travis CI in 2015. While this is significantly lower, it
still shows a relatively widespread adoption. We attribute this to the facts that Travis CI
provides easy-to-use default build configurations for a wide array of languages and that
it is gratis.

Around 30% of GitHub OSS projects that could potentially use Travis CI for free,
also make active use of it (P1).

Compared to about 60% of state-of-the-art GitHub projects using ASATs [60] and
some 50% of projects in general doing testing [66], a number of reasons might hinder
an even more-widespread use of Travis CI: Famous GitHub projects such as scala/s-
cala [303] often run their own CI server [304] (see Section 5.1.1). This exemplifies that
from the 30% adoption rate, it does not follow that 70% of projects do not use CI. For high-
profile projects with a complex CI process, the migration to Travis CI would involve high
initial risks and costs. One interesting line of future research therefore is to find out the
overall CI adoption among top-GitHub projects. It might be that word about the benefits
of CI, or Travis CI itself has not spread to every project maintainer yet.

A paradoxical finding was that a few projects written in languages that are not sup-
ported by Travis CI, still used it (Figure 5.5 “Other”). Amanual investigation into a sample
of such projects revealed that they also contained a smaller portion of code written in a
language supported by Travis CI, for which they did enable CI. Travis CI has tradition-
ally had deep roots in the Ruby community [305]. We found that this bias towards the
Ruby community has largely vanished nowadays.

Travis CI adoption is uniform among most languages Travis CI supports (P1).

5

140 5 Oops, My Tests Broke the Build: An Analysis of Travis CI

In RQ IV.1, we also found that the number of builds for projects varies per language,
but this variation is contained. Figure 5.6 is a measure of how active projects in specific
languages are and how frequently they push, thereby triggering an automated CI build and
thus leveraging the full potential of CI: for each push with new commits on one branch, a
new Travis CI build is triggered on the head of the branch (see Section 5.1.2). This stresses
the fact that CI is a software engineering concept orthogonal to the chosen programming
language used, as it applies to many languages in a similar way. Thanks to homogeneous
CI use and adoption of Travis CI, researchers find a large corpus of comparable projects
with similar CI patterns. This eases the interpretation of research results and decreases the
need for an extensive control of external variables that would be necessary if the projects
came from heterogeneous build systems. Specifically, factors such as build duration and
setup process are more reliable in the homogeneous Travis CI case.

With P2, we were interested in the importance of testing. Overall, we found that test-
ing stands central in CI.

Testing happens in the majority of builds. Only ∼20% of projects never included a
testing phase in their CI (P2).

Failed tests have a higher impact, both relative and absolute and irrespective of the
programming language, than compile errors, dependency resolution problems and other
static checks combined. This puts the finding by Seo et al. [278] that most build errors
stem from missing dependencies in perspective. Our investigation shows that issues in
the compilation phase represent only a minority of the causes for broken builds (3.9% in
Java, 7% in Ruby) in the bigger picture of a CI environment.

Failing tests are the dominant reason for broken builds (P2).

Having established that the median number of builds in which tests fail is modest
(RQ IV.3.1), but that test failures are responsible for over half of all broken builds (RQ IV.3.2),
the question stands in how many instances tests fail, but the developers configured their
CI in such a way that the negative test execution result does not influence the overall build
status. In such cases, the test execution would not be a crucial factor to the build success.
As described in Section 5.1.2, Travis CI runs tests per default and it would be a deliberate
choice by developers to ignore the test result.

Projects which consistently ignore the test result are very rare. However, ignoring
individual builds is common (P2).

One possible reason for the difference between projects in Java and Ruby might stem
from the fact that projects which do not run tests on the CI only make use of a sub-set
of CI features, and therefore also have fewer builds. It might make more sense to just
compile Java applications than have a CI setup for a Ruby application (that does not need
to be compiled) without tests.

5.5 Discussion

5

141

The typical Ruby project has ten times more tests than the typical Java project (P2,
P3).

Given the size of our samples (423 Java and 936 Ruby projects), we believe that this
difference might be attributable to the fundamental differences in the Java and Ruby pro-
gramming languages. Specifically, the lack of a type system in Ruby might force devel-
opers to write more tests for what the compiler can check automatically in the case of
Java [306]. We need a broader study with a larger sample of dynamic and static languages
to verify whether this holds generally. With more tests, we naturally expect more test
failures as a result.

Ruby projects have a four-times higher likelihood for their tests to fail in the CI envi-
ronment than Java projects (P3).

While CI testing also happens in Java, these findings raise the question whether Java
in general and JUnit test cases in particular are the best study objects for researching
testing.

Having established that the large majority of projects execute tests as part of their CI,
it remains to find out which indirection in the feedback cycle their execution causes (P4)
and compare it to local test executions in the IDE (P5).

Multiple test environments are only useful when they also lead to different tests re-
sults in practice (P4). Otherwise, they just consume unnecessary resources and time. Our
analysis in RQ IV.3.4 showed that test execution results vary per environment for ∼10% of
test executions. Some differing test results of these 10%, stem from a sheer re-execution of
tests, uncovering flickering tests. One way to uncover these would be to re-execute failed
builds on Travis CI and observe execution result changes. We refrained from doing so, as
it would involve large costs on Travis CI.

The average project on Travis CI is tested in five integration environments (P4).

Our results suggest that by exposing more test failures, integration in multiple envi-
ronments 1) is helpful in uncovering a substantial part of test failures and thus likely bugs
that would otherwise be missed and 2) does lead to uncovering failing tests that would
not be captured by running the tests locally, at the cost of an increased feedback latency.
It might be more helpful for languages such as Ruby than Java.

Having established that CI adoption is relatively widespread (P1), that testing is inte-
gral to CI (P2), that it depends very much on the project language (P3), and that multiple
integration environments are helpful in practice, it remains to discuss whether testing on
the CI could replace local testing in the IDE in terms of providing quick feedback (P5). For
this, we consider the latency induced by CI.

In RQ IV.2.3, we observed that commits only live shortly (typically, less than 20 min-
utes) in the developer’s private repositories before developers push them upstream to the

5

142 5 Oops, My Tests Broke the Build: An Analysis of Travis CI

remotemainline. Popular belief about distributed version control indicates that developers
should perfect their changes locally before sharing them publicly, which one would nor-
mally assume to take longer than 20 minutes. Why do developers apparently go against
this norm? Previous work on developer usage of pull requests [33, 34] might provide
an indication about potential reasons. In a “fail early, fail often” approach, integrators
and contributors overwhelmingly rely on their tests to assess the quality of contributed
code. Instead of perfecting code in a dark corner, this has the advantage of building global
awareness through communication in the pull request discussion. While collaborating
developers crave for fast feedback, with 8.3 minutes build time in the median, the CI in-
troduces measurable delays into this feedback process.

The main factor for delayed feedback from test runs is the time required to execute
the build (P5).

By contrast, an empirical investigation of the testing habits of 416 developers found
that the median test duration (“latency”) in the IDE is 0.54 seconds [66]. This is three
orders of magnitude faster than running tests on the CI: testing in the IDE is fast-paced,
most test executions fail (65% in comparison to 15% on the CI) and developers usually
only execute one test (in contrast to all tests on the CI). Hence, the aim, the length of
the feedback cycle and their observed different use in practice, suggest that testing on the
CI may not be a suitable surrogate for local testing, if fast feedback is required. These
findings contradict empirical evidence of projects like the “Eclipse Platform UI,” which
reported to increasingly offload their test executions to the CI [66]. This calls for future
research: developers spend a quarter of their time working on tests [66], yet rarely execute
them in the IDE. If they do, testing in the IDE is immediate and most tests fail. On the CI,
most test executions pass and there is a notable delay between creating code and receiving
feedback (usually, 10minutes for pushing plus 10minutes for building). This leaves uswith
the question where else developers run their tests. One such place could be building on
the command line.

5.5.2 Threats to Validity
In this section, we discuss limitations and threats that affect the validity of our study, and
show how we mitigated them.

Construct validity concerns errors caused by the way we collect data. For capturing
build data, we relied on the custom-created tools Buildlog Analyzer, Travis Poker and
Travis Harvester. To gain confidence that these tools provide us with the correct data
and analysis results, we tested them with several exemplary build logs, which we also
packaged into their repository and made them publicly available for replication purposes.

Threats to internal validity are inherent to howwe performed our study. We identify
two major technical threats: 1) Through the use of git push force, developers can
voluntarily rewrite their repository’s history, leading to a wrong build linearization. By
counting the number of commits that we could not resolve with the strategies described
in Section 5.2.3, we received an upper bound for the severity of this threat. Since less than
10% of all commits are affected, we consider its impact small. 2) Developers can re-execute

5.6 Future Work

5

143

builds (marker 6⃝ in Figure 5.1), for example to re-run a build that failed due to a Travis
CI infrastructural problem. In such rare cases, Travis CI overrides the previous build
result. This can possibly lead to a large time difference between having pushed commits
to GitHub and Travis CI starting the build, which is why we excluded the top 1% quantile
of builds. As our study does not retroactively re-build projects, we are sure to observe the
real build problems developers ran into.

Threats to external validity concern the generalizability of our results. While we
examined 58,032 projects for answering RQ IV.1 and 1,359 projects for RQs IV.2–3, all
projects stem from a single CI environment, namely Travis CI. We explicitly opted for
Travis CI because it is frequently used along by projects hosted on GitHub, which in
turn allowed us to combine two data sources and triage data such as time stamps. Nev-
ertheless, we do not know how strongly the idiosyncrasies of both services affect the
generalizability of our results on the CI-based software development model. For example,
the build duration and latency measurements in RQ IV.2 depend strongly on the load and
resources provided by Travis CI. When compared to other build servers, they might only
be proportionally correct.

Due to the fact that we could only study the publicly visible part of Travis CI and
GitHub, our study gives no indications of the practices in private projects.

Similarly, for RQ IV.2 and RQ IV.3 we only considered Java and Ruby projects to reduce
the variety of build technologies and test runners. We only compared Ruby as one instance
of a dynamically-typed language to Java as one instance of a statically-typed language.
Some of the differences we found between them might be more attributable to the specific
differences between Ruby and Java, rather than the general nature of their type system. As
programming language communities have different testing cultures, an important avenue
of future work is to increase the number of programming languages that are part of this
investigation.

5.6 Future Work
Our work opens an array of opportunities for future work in the CI domain, both for
researchers and CI tool builders.

Researchers can build on top of our results, the curated TravisTorrent data set,
and open research questions. For example, we have shown that there is such significant
use of Travis CI among GitHub projects that it might often be a valid shortcut to study
only the streamlined Travis CI project instead of several more diverse CI sources. In
particular, our investigation raises the question whether projects in dynamically-typed
languages such as Ruby generally have a higher CI failure rate, and whether and which
effects this has, particularly when they switch between languages. While often considered
annoying and a bad smell, we do not know whether prolonged periods of broken builds
or following the “break early, break often” strategy translates into worse project quality
and decreased productivity. In fact, it is unclear whether breaking the build has adverse
effects at all, depending on the developmentmodel. The approach proposed in Section 5.2.3
enables such studies that require previous build states. Deeper studies into integration
environments could unveil howmuch of their uncovering 11.4%more build failures benefit
is due to simply the repeated re-execution of the build (“flaky tests”).

5

144 5 Oops, My Tests Broke the Build: An Analysis of Travis CI

CI Builders can use our tooling to improve their user experience. By directly indi-
cating the nature of a build breakage, they remove the need for developers to manually
inspect potentially large build logs. We strongly believe this improves developers’ effi-
ciency when dealing with failing builds.

5.7 Conclusion
In conclusion, we found that a third of popular GitHub projects make use of Travis CI,
and their adoption is mostly uniform (P1). This finding contrasts prior research that found
a far higher adoption rate of 70%. Our investigation shows that testing is an established
and integral part in CI in OSS. It is the single most important reason for integration to
break, more prevalent than compile errors, missing dependencies, build cancellations and
provisioning problems together (P2). Testing is configured as a crucial factor to the success
of the build, but exceptions are made on an individual level. We found that testing on the
CI is highly dependent on the language, and that a dynamically typed language such as
Ruby has up to ten times more tests and leads to a higher build breakage rate due to
tests than a statically typed language like Java (P3). CI introduces a feature that local test
execution cannot provide: integration in multiple environments. This is commonly used
on Travis CI, and tests show different behavior when executed in multiple environments
in about 10% of builds (P4), showcasing the value of multiple integration environments.
Contrary to prior anecdotal evidence, testing on the CI does not seem a good replacement
for local test executions and also does not appear to be used as such in practice (P5): with
a latency of more than 20 minutes between writing code and receiving test feedback, the
way developers use CI induces a latency that stands in contrast to the fast-paced nature
of testing in the IDE and the idea that developer tests should provide quick feedback. The
low test failure rates hint at the fact that developers send their contributions pre-tested to
the CI server.

Apart from research on our five propositions P1–P5, this chapter makes the following
key contributions:

• A novel method of analyzing build logs to learn about past test executions in the
context of CI.

• A comparative study of CI testing patterns between a large corpus of projects writ-
ten in a statically and a dynamically typed language.

• The implementation and introduction of TravisTorrent, anOSS open-access database
for analyzed Travis CI build logs combined with GitHub data from GHTorrent.

6

145

6
On the Dichotomy of Debugging
Behavior Among Programmers

Debugging is an inevitable activity in most software projects, often difficult and more time-
consuming than expected, giving it the nickname the “dirty little secret of computer science.”
Surprisingly, we have little knowledge on how software engineers debug software problems in
the real world, whether they use dedicated debugging tools, and how knowledgeable they are
about debugging. This study aims to shed light on these aspects by following amixed-methods
research approach. We conduct an online survey capturing how 176 developers reflect on
debugging. We augment this subjective survey data with objective observations on how 458
developers use the debugger included in their integrated development environments (IDEs) by
instrumenting the popular Eclipse and IntelliJ IDEs with the purpose-built plugin Watch-
Dog 2.0. To clarify the insights and discrepancies observed in the previous steps, we followed
up by conducting interviews with debugging experts and regular debugging users. Our results
indicate that IDE-provided debuggers are not used as often as expected, as “printf debugging”
remains a feasible choice for many programmers. Furthermore, both knowledge and use of
advanced debugging features are low. These results call to strengthen hands-on debugging
experience in computer science curricula and have already refined the implementation of
modern IDE debuggers.

This chapter has been published as M. Beller, N. Spruit, D. Spinellis, and A. Zaidman. On the Dichotomy of
Debugging Behavior Among Programmers, ICSE’18 [70, 193].

6

146 6 On the Dichotomy of Debugging Behavior Among Programmers

D ebugging, the activity of identifying and fixing faults in software [307], is a tedious,
but inevitable activity in almost every software development project [308]. Not only

is it inevitable, but according to Kernighan and Plauger [309] and Zeller [310], so difficult
that it often consumes more time than creating the bogus piece of software in the first
place.

During debugging, software engineers need to relate an observed failure to its under-
lying defect [311]. To complete this step efficiently, they often need to acquire a deep
understanding and build a mental model of the software system at hand [312]. This is
where modern debuggers come in: they aid software engineers in gathering observing
the system’s dynamic behavior. However, they still require them to select the parts on
which to focus and to perform the deductive reasoning to pinpoint the fault from the ob-
served behaviors.

While the scientific literature is rich in terms of proposals for (automated) debugging
approaches, e.g., [310, 313–316], there is a gap in knowledge of how practitioners actually
debug. Debugging has thus remained the dirty little secret of computer science [317]. How
and how much do software engineers debug at all? Do they use modern debuggers? Are
they familiar with their capabilities? Which other tools and strategies do they know?

The lack of knowledge regarding developers’ debugging behavior is in part due to an
all too human characteristic: admitting, demonstrating, and letting others do research
on how one approaches what are essentially one’s own faults is a precarious situation
for both a developer and a researcher. Nevertheless, by continuing to keep debugging
practices secret, we miss an important opportunity for advancing software engineering
theory and for delivering efficiency improvements in software development practice.

Knowledge on how developers debug can help researchers to invent more practice-
relevant techniques, educators to improve their debugging curricula, and tool builders to
tailor debuggers to the actual needs of developers. To open up the art of debugging, we
conducted a large-scale behavioral field study on what developers think about debugging
and how they debug in their IDEs. The following main questions steer our research:

RQ V.1 What do developers know about debugging and how do they reflect on it?

RQ V.2 How do developers debug in their IDEs?

RQ V.3 How do individual debugger users and experts interpret our findings from
RQ V.1 and RQ V.2?

The key contributions of this chapter are:
• A triangulated, large-scale empirical study of how developers debug in reality using a
mixed methods approach, supported by a replication package.¹

• The addition of debugging features in WatchDog 2.0, an open-source, multi-platform
infrastructure that allows detailed tracking of developers’ debugging behavior.²

• Improvement suggestions for current IDE debuggers that have in part already been im-
plemented in practice.

¹https://archive.org/details/debugging-replication-package
²https://testroots.org/testroots_watchdog.html

6.1 Related Work

6

147

Online Survey

IDE Case Study

Observations Interviews

3

1

2

Figure 6.1: Research design overview.

Research Design
To answer these research questions, we employed a multi-faceted research approach out-
lined in Figure 6.1. 1⃝ We conducted an online survey to capture developers’ opinions
on debugging and obtained an overview of the state of the practice (see Section 6.2, Sur-
vey Results, SR). 2⃝ Simultaneously, we began using the automated WatchDog 2.0 infras-
tructure to track developers’ fine-grained debugging activities in the IDE (see Section 6.3,
WatchDog Results, WR). By instrumenting the IDE, we obtained objectively measured
data, which we can compare against subjective, but richer data from the survey. We came
up with a list of several, sometimes conflicting, observations that needed further explana-
tion. 3⃝ To help us explain the findings in depth, we conducted interviews with developers,
some of whom are actively developing debugging tools (see Section 6.4, Interviews).

6.1 Related Work
Work related to our study comprises debugging tools, processes, techniques, empirical
debugging evidence, and IDE instrumentation.
Debugging Tools. By “debuggers,” we usually mean symbolic debuggers, such as the
GNU Project Debugger (GDB) [318]. These debuggers allow developers to specify points
in the programwhere the execution should halt, breakpoints. A typical symbolic debugger
supports different types of breakpoints, such as line, method, data access, or more advanced
exception or class prepare breakpoints, and options to refine the breakpoint [319]. Examples
include specifying a conditional breakpoint, a hit count, a suspension policy, or whether the
entire program or one thread should pause upon hitting a breakpoint.

Once a program halts, developers can use the symbolic debugger to permanentlywatch
or ad-hoc inspect memory entities such as variables, work through the call stack, line-wise
step through the code, or evaluate arbitrary expressions [318, 319]. Graphical debuggers
such as the early dbxtool [320] and DDD [321] evolved from command line symbolic de-
buggers, such as VAX DEBUG [322], dbx [323], and GDB [324]. Most symbolic debugging
features have since been integrated in the integrated graphical debuggers of IDEs, such as
Eclipse, Visual Studio, NetBeans, and IntelliJ. This study focuses on how developers use
IDE debuggers.
Debugging Process. Researchers have developed systematic process descriptions of de-
bugging and recommendations to reduce the time programmers have to spend on find-
ing and fixing a defect that causes a program failure. We investigate whether developers

6

148 6 On the Dichotomy of Debugging Behavior Among Programmers

explicitly or implicitly use debugging strategies inspired by the scientific method; for ex-
ample, Zeller’s TRAFFIC approach [310] comprises seven steps that cover every action in
the debugging process, from the discovery of a problem until the correction of the defect.
Three of the steps regard “the most time consuming” Find-Focus-Isolate loop, as devel-
opers often need to follow them iteratively to find the root cause of a failure. Therefore,
much research has gone into techniques to, at least partially, automate this loop to reduce
debugging effort [325].

In 1991, Gilmore suggested a new psychological model to understand debugging [326].
Component 1 of his model, namely that debugging is a “flexible, incomplete comprehen-
sion process [...] according to task demands, tools and skill,” provides a theory-grounded
description of our observations.

Automated Debugging Techniques. Arguably the most researched debugging tech-
nique is delta debugging, which can be used to systematically narrow down possible fail-
ure causes by comparing a successful and an erroneous program execution [327]. Other
types of debugging technique include slicing [310], focusing on anomalies [310],mining dy-
namic call graphs [328], statistical debugging [329], spectra-based fault localization [313],
angelic debugging [314], data structure repair [316], relative debugging [330], automatic
breakpoint generation [331], automatic program fixing using contracts [315], and combina-
tions thereof [332–336]. Orso presents a detailed overview of some of these automated
debugging techniques [337]. However, as our study shows, automated debugging tech-
niques have not yet reached the mainstream debugging practices and are not part of IDE
debuggers. As such, we do not discuss them further.

Empirical Debugging Evidence. Only few studies exist that empirically evaluate how
developers debug.

Perhaps most closely related to our study, Perscheid et al. and Siegmund et al. studied
debugging practices of professional software developers [311, 338] via a survey and man-
ual observations of each of their eight participants over “some hours during one workday”
through think-aloud protocols and short interviews. Despite the fact that our studies dif-
fer significantly in population, length, and methodology, we could replicate most of their
key results: the wide use of printf, a lagging adoption of advanced debugging tools and
features, and developers’ generally low education on debugging. We partly refined these
observations, showing 1) that there is a strong dichotomy on printf use among developers,
2) which debugging features are empirically used and 3) that the complexity of operating
debuggers is a main reason for these usage patterns. As in our survey, concurrency issues
and external libraries seem to be the root causes of the hardest bugs. However, we also
partly refuted [35]: Our developers did not run the debugger in 91% of IDE sessions and
they did not spend a “huge amount of their daily work” [338] in the debugger, but less
than 14%.

In a general 2006 study on how developers use Eclipse, Murphy et al. found that 90%
of their 41 studied developers used the debugger [339]. This is similar to our debugger use
rate inWR1when only considering the top 10% of users. Parnin and Rugaber observed that
13% of their 10,000 recorded sessions included debugging, compared to an IDE debugger
use in 9% of the sessions in our study [340] (WR1).

Despite differences in study populations and methods, Layman et al. found similar

6.2 Debugging Survey

6

149

challenges and improvement wishes such as concurrency (SQ13 in Section 6.2) and back-
in-time debugging [341]. However, they do not mention some of the critical challenges
found in this paper, such as debugging across languages.

Piorkowski et al. studied qualitatively how programmers forage for information [342,
343]. They found that developers spent half of their debugging time foraging for infor-
mation. This complements our study as it shows what parts of the IDE are often used for
finding information during debugging.

Böhme et al. studied individual steps in the debugging process, i.e., how developers
localize, diagnose, and fix faults [344, 345]. Through an experiment with 12 professional
software engineers they observed that fault localization is complex due to errors from an
interactions of several statements. They also found that participants diagnosed bugs in a
remarkably similar way. However, when fixing a fault, while the patches submitted by the
participants were plausible, only 58% were correct.
IDE Instrumentation. Petrillo et al. developed the Swarm Debug Infrastructure (SDI),
which “provides [Eclipse] tools for collecting, sharing, and retrieving debugging data” [346].
Developers can use the collective knowledge of previous debug sessions to “navigate se-
quences of invocation methods” and “find suitable breakpoints.” SDI was evaluated in a
controlled experiment involving 10 developers. Our Eclipse instrumentation for RQ V.2 is
technically similar to SDI, but focuses on understanding current behavior. To increase gen-
eralizability, we also support IntelliJ and performed a longitudinal study of how dozens
of developers debug in the wild.

While several WatchDog-like plugins for IDE-instrumentation exist [192, 256, 258,
261], none of them have been used to study the debugging behavior of developers, man-
ifesting our knowledge gap of empirical debugging. Ko and Myers showed the practical
usefulness of the “live IDE” wish expressed in SQ13 in Section 6.2 with their Whyline
prototype [325], which helps developers reason about assumed program behavior.

6.2 Debugging Survey
In this section, we describe our online survey.

6.2.1 Research Methods
Survey Design. To investigate developers’ self-assessed knowledge on debugging for
RQ V.1, we set up a survey, consisting of 13 short questions (SQ1–SQ13) organized in
four sections; the first gathers general information about the respondents, such as pro-
gramming experience and favorite IDE. The second asks if and how respondents use the
IDE-provided debugging infrastructure. Developers who do not use it were asked for the
reason why, while others got questions on specific debugging features, thus assessing how
well the respondent knows and uses several types of breakpoints. In addition, we asked
questions about other debugging features ranging from stepping through code to more
advanced features like editing at run time (hot swapping). The third part, presented to
all respondents, assessed the importance of codified tests in the debugging process; we
gauged whether the participant uses tests for reproducing bugs, checking progress, or to
verify possible bug fixes. SQ13 was an open, non-mandatory question about participants’
opinion on the statement “the best invention in debugging was printf debugging,” inspired

6

150 6 On the Dichotomy of Debugging Behavior Among Programmers

by Brian Kernighan’s quote “[t]he most effective debugging tool is still careful thought,
coupled with judiciously placed print statements” [347, 348]. We included the question
because research on survey design has shown that posing a concrete, controversial state-
ment that evokes strong opinions leads to more insightful answers [349]. Before publicly
releasing the survey, we sharpened it in several iterations and ran six trials with outsiders.
Card Sort. To gain an overview of the topics that concern developers, we performed an
open card sort [350] on SQ13. The first two authors individually built and then mutually
agreed on a set of 33 tags from a sub-sample of responses. After labeling all responses
(possibly with multiple labels), the fourth author sampled 20% of the tagged responses,
re-tagged them independently and compared them to the reference tag set. We then con-
verged our tag sets into a homogeneous classification with 34 tags, agreed upon by all
authors.
DependencyAnalysis. To gain insights into the correlation between survey answers, we
performed statistical tests. For SQ7–12, we had to convert each categorical answer to an
ordinal scale using a linear integer transformation on its rank. This was sound because our
predefined answer options have a naturally ranked order (“I don’t know” = 1, “I know” = 2,
…). We then computed a pair-wise Pearson Chi-Squared (𝜒2) test of independence [351], as
we are dealing with categorical variables. If variables depended on each other (𝛼 = 0.05),
we calculated the strength of their relationship with a Spearman rank-order correlation
test for non-parametric distributions [203]. For interpreting the results of dependency
analyses 𝜌, we use Hopkins’ guidelines [53]. They call 0 ≤ |𝜌| < 0.3 no, 0.3 ≤ |𝜌| < 0.5 weak,0.5 ≤ |𝜌| < 0.7 moderate and 0.7 ≤ |𝜌| ≤ 1 a strong correlation.
Subject Recruitment. To attract survey participants (SP), we spread the link to the sur-
vey through social media, especially Twitter, and via an in-IDE WatchDog registration
dialog, advertising a raffle with three 15 Euro Amazon vouchers.
Study Subjects. We attracted 176 software developers who completed our survey. The
majority of them have at least three years of experience in software development, with a
third over 10 years (< 1 year: 2.8%, 1–2 years: 6.8%, 3–6: 31.8%, 7–10: 21.6%, > 10 years36.9%). 84.1% indicated that they use Java, followed by 55.1% for JavaScript and 39.2% for
Python. The languages PHP, C, C++ and C# were each selected by around 25% of partic-
ipants, followed by R (16.5%), Swift (6.3%) and Objective-C (5.1%). Finally, 44 developers
indicated the use of another language (24 different in total), of which Scala (11) and Ruby
(8) prevail. The most used IDEs are Eclipse (31.8%), IntelliJ (30.7%), and Visual Studio
(11.9%). We asked for the language to understand whether we can compare the survey
results to our Java-based field study, and because certain language features define their
debugging possibilities, for example the availability of a virtual machine in Java [352] or
Pharo’s introspection design concept, which lends itself to debugging [353, 354].

6.2.2 Results
Analysis of Survey Answers. In this section, we describe key results of our survey and
RQ V.1.
SR1: Most developers use IDE debuggers in conjunction with log files and print statements.
In our first question, 143 developers (81.3%) indicated that they use the IDE-provided de-

6.2 Debugging Survey

6

151

bugging infrastructure, 15 (8.5%) that they do not, and 18 (10.2%) that their selected IDE
does not have a debugger. Besides using the IDE debugger, respondents indicated they
examine log files (72.2%), followed closely by using print statements (71.6%). Other an-
swers included the use of an external program (21.0%), or additional other, internal or
non-generalizable techniques (30.1%). 19 developers indicated the use of a complemen-
tary method, of which adding or running tests and using web development tools built into
the browser were mentioned most (both four times).

SR2: Developers not using the IDE debugging find external programs, tests, print statements,
or other techniques more effective or efficient. Of the 15 developers not using the debugging
infrastructure, eight think that print statements and six that techniques other than print
statements are more effective or efficient. Six use an external program, while four do not
know how to use a debugger.

SR3: Line breakpoints are used by the vast majority of developers. More advanced types are
unknown to most. The 143 developers using an IDE debugger were asked more detailed
questions on whether they know and use specific debugging features. The Likert scale
plots in Figure 6.2 show that most developers are familiar with line, exception, method
and field breakpoints, while temporary line breakpoints and class prepare breakpoints are
known by fewer developers. The vast majority of developers also uses line breakpoints,
but other breakpoint types are used by less than half of the respondents; Class prepare
breakpoints are used by almost none.

SR4: Most developers answered to be familiar with breakpoint conditions, but not with hit
counts and suspend policies. Figure 6.2 indicates that the majority of developers specify
conditions on breakpoints. However, specifying the hit count or setting a suspend policy
are both known and used less. The results in Figure 6.2 show that over 80% of the devel-
opers seem to know all major debugging features found in modern IDEs, strengthening
Siegmund’s findings [311]. The more advanced features, such as defining watches or a
suspend policy, seem to be known and used less.
SR5: Survey answers indicate testing is an integral part of the debugging process, especially at
the beginning and end. Figure 6.3 shows the use of codified tests throughout the debugging
process based on all 176 responses. It indicates that tests are often used at the start and
end of the debugging process, for reproducing bugs and verifying bug fixes, but slightly
less during the process.

SR6: Experience has limited to no impact on the usage of the IDE-provided debugging infras-
tructure and tests. Examining our survey answers for dependencies allows us to under-
stand how certain answers relate, for example whether and how strongly programmer
experience correlates with the use of debugger features such as breakpoints, watches or
the use of testing to guide debugging. We find that there is no correlation between the use
of an IDE debugger or (unit) tests for debugging and experience in software development.
There is a weak correlation between experience and specifying hit counts and a moderate
correlation between experience and the usage of watches during debugging.

SR7: Developers who use tests for reproducing bugs are likely to use them for checking progress
and very likely to use them for verifying bug fixes. We also find that there is a moderate
correlation between the use of tests at the beginning and end of the debugging process to

6

152 6 On the Dichotomy of Debugging Behavior Among Programmers

1%

18%

28%

25%

46%

74%

90%

57%

47%

44%

31%

6%

9%

25%

24%

31%

24%

20%

Line breakpoint

Temporary line breakpoint

Class prepare breakpoint

Method breakpoint

Exception breakpoint

Field watchpoint

100 50 0 50 100

18%

34%

68%

57%

23%

13%

25%

43%

19%

Specifying a condition

Specifying hit/pass count

Setting the suspend policy

1%

2%

4%

7%

15%

12%

19%

90%

90%

80%

73%

60%

60%

47%

10%

8%

16%

20%

26%

28%

34%

Stepping through the code

Inspecting variable values

Inspecting the call stack

Defining watches

Evaluating expressions

Modifying variable values

Editing code at runtime

100 50 0 50 100
Percentage

Response I don't know I know I know and I use

Figure 6.2: Answers in SQ7–9 on breakpoint types, breakpoint options, and debugging features (𝑛 = 143).
20%

25%

47%

80%

75%

53%

Reproducing bug

Checking debugging progress

Verifying possible bug fixes

100 50 0 50 100
Percentage

Response No Yes

Figure 6.3: Answers in SQ10–12 on unit tests (𝑛 = 176).
reproduce and verify bug fixes, and a weak to moderate correlation between using tests
at the beginning or end and throughout the process for checking progress.

Card Sorting. In total, 108 respondents gave a response to the statement that “the best
invention in debugging still was printf debugging.” In the open card sorting process, we
identified 34 different tags. To understand important topics and their co-occurrence, we
use an intuitive graph-based representation of the tag structure. Vertices correspond to
the tags and undirected, weighted edges to the strength of relation between two tags. The
size of the vertices in is determined by the occurrence frequency of the tag, while the
weight of the edges is determined by the relative number of co-occurrences. To ease the
interpretation the graph, (1) we normalized the weights of the edges based on the occur-
rence frequencies of its end points, (2) we filtered out all edges with a very low normalized

6.2 Debugging Survey

6

153

1
2

3

5
4

6

Figure 6.4: Intuitive visualization of the tag network in SQ13.

weight (cleaning the graph from “background noise”), and (3) we removed vertices that
did not have any outgoing or incoming edge (removing unrelated concepts). The resulting
graph in Figure 6.4 allows us an intuitive understanding and overview of responses and
how they relate to each other, without having to read hundreds of responses [355].³ The
tags abbreviate concepts given as answers by survey respondents and are self-explanatory.
The tags ‘debugger jittery’, ‘debugger overhead’ and ‘debugger interference’ mean that re-
spondents think debuggers have too much impact on the thinking process, performance
or program execution, respectively. ‘First printf’ means that developers first use printf
debugging and ‘before debugger’ indicates that developers use some other technique(s)
before using the debugger.

As the two main strongly connected subgraphs 1⃝ and 2⃝ in Figure 6.4 suggest, there
was a strong dichotomy between survey respondents: Many enthusiastically agreed with
our statement (“Totally agree!”, SP13, SP23), while others rejected it, stating that “[p]eople
saying that never learned how to use a debugger” (SR54). Developers mostly seemed to
agree that IDE debuggers are methodologically superior to print statements, explaining
the strong link 2⃝. Independently, reasons for resorting back to printf are when no de-
bugger is available or when the presence of the debugger interferes with the program
execution order 3⃝. Many of the respondents who agreed with the statement also saw
drawbacks of printf debugging, like SP10: “Print is often most flexible but often least ef-

³We explicitly avoided statistical tests. Given open-ended survey answers, the meaning of such tests is unclear,
or might convey a false sense of statistical precision at worst. The graph conveys our understanding having
intensely worked with survey answers.

6

154 6 On the Dichotomy of Debugging Behavior Among Programmers

ficient.” Developers indicated to use printf debugging as an ad-hoc, universal technique
that is easy to do and often the first step in a possibly longer debugging strategy. However,
sometimes it is not enough 4⃝, as a combination of techniques is required. The answers
also pointed to problems with IDE debuggers: they are sometimes too jittery, provide too
many features and are not suited for concurrent debugging as they interfere too much.
Moreover, their complicated graphical user interface (GUI) can get in the way of working
(fast). Instead of printf debugging, developers seemed to prefer a live IDE with a console
that has a read-eval-loop (REPL) 5⃝. Summarizing this discussion, SP75 concluded that
“printf is travelling by foot, a GUI debugger is travelling [by] plane. You can go to more
places by foot, but you can only go that far.” Few developers also tried to avoid debugging
by testing better 6⃝.

6.3 IDE Field Study
In this section, we describe our field study with WatchDog 2.0.

6.3.1 Study Methods
Data Collection. To investigate the debugging habits of developers in the IDE, we ex-
tended our WatchDog infrastructure [64–67] to also track developers’ debugging behav-
ior for RQ V.2, resulting in WatchDog 2.0 for both Eclipse and IntelliJ. We had previ-
ously used WatchDog as a research vehicle to verify common expectations and beliefs
about testing [64–66]. WatchDog is technically centered around the concept of inter-
vals that capture the start and end of common development activities such as reading and
writing code as well as running JUnit tests. We extended its interval concept to cover
debugging sessions and introduce a new, orthogonal concept, singular events, that unlike
intervals have no end date. Such events track when developers add, change or remove
breakpoints, for example. An IDE session is an uninterrupted sequence of WatchDog
intervals in which the developer does not close the IDE or suspend the computer. A de-
bugging session is an IDE session, in which the developer used the debugger at least once.

Analysis Methods. To analyze the data collected with WatchDog 2.0, we created an
open-source data processing pipeline. The pipeline, which comprises 4,000 lines of code,
extracts the data from WatchDogs’ MongoDB and loads it into R for further analysis.
The analysis methods we used for some of these research questions require some more
explanation detailed below.

For RQ V.2.1 and RQ 2.2, we assessed activity measured via WatchDog intervals. For
RQ V.2.4, we assessed the intervals that occur before a debugging session is started. We
chose a search range of 16 seconds before, matching the interval inactivity timeout of 16
seconds in WatchDog. This means that activity-based intervals such as reading or typing
intervals are automatically closed after this period of inactivity to account for e.g. coffee
breaks. A timeout length of 15 seconds is standard in IDE plugins [65, 192].

For RQ V.2.4 and RQ 2.5, we consider a file “under debugging” if we receive reading
or typing intervals during a debugging interval on it, i.e. for all the files the user steps
through, reads, or otherwise modifies during a debugging session.

Subject Recruitment. To attract participants to our field study, we relied on Watch-

6.3 IDE Field Study

6

155

Dog’s recruitment processes [65]. Users could join or leave the field study at any time.

Study Subjects. Since the release of WatchDog 2.0 on 22 April 2016, we collected user
data for a period over two months, until 28 June 2016. Of the 458 users, 21% come from
China, 12% from India, 12% from the US, 5% from Brazil, 4% fromGermany, and the remain-
ing 46% from 65 other countries. Users could opt to share their programming experience,
and 186 (41%) did: 68% had up to two years of programming experience, 16% between
three to six years, and 16% seven years and more. Nine users were running MacOS X (5%),
14 Linux (6%), 162 Windows (89%), and 272 chose not to answer. Our study includes a
heterogeneous mix of private, open-source, and commercial projects, with sizes ranging
from green field projects to several 100,000 lines of code

The median study participation was 6 days (mean: 13 days), the maximum the full
66 days. In this period, we received 1,155,189 intervals from 458 users in 603 projects.
Of these, 3,142 were debug intervals from 132 developers. In total, we recorded 18,156
hours in which the IDE was open, which amounts to 10.3 observed developer years based
on the 2015 average working hours for OECD countries [356]. We also collected 54,738
debugging events from 192 users, 218 projects and 723 IDE sessions. Only 48 users (𝑡𝑜𝑝10%)
are responsible for 90% of the sessions, but they represent a globally diverse population
with varying experience and companies working in different domains (consultancies, tool
creators, financial institutions, mobile application development). In total, we recorded
both at least one debug interval and one event for 108 users.

6.3.2 Results
In this section, we describe key results of our WatchDog 2.0 observational field study for
RQ V.2.

RQ V.2.1: How prevalent and frequent is IDE debugging?
WR1: The majority of developers does not use the IDE-provided debugging infrastructure. Ta-
ble 6.1 presents the number of occurrences of the different event types. Only 132 of the458 users (28.8%) started a debugging session during the data collection period, with no
significant difference between Eclipse (28.9%) and IntelliJ (27.6%) users. Of these, 108
study subjects (23.6%) have used the debugger and at least one of its features (transferred
both intervals and events). In 𝑡𝑜𝑝10%, every user had at least one debugging session (100%
debugger use). No debugger use is therefore likely a result of little transferred data. How-
ever, it is not contradictory to use the debugger and not transfer any of the events listed
in Table 6.1, since the debugger provides several other benefits like hot-swapping of code.
In total, we observed a debugger run in 9% of all 723 IDE sessions. In the onward analyses,
we only take into account data from users who used the debugger.

WR2: About 20% of the developers are responsible for over 80% of the debugging intervals
in our sample. For RQ V.2.1 we are interested in knowing the frequency and length of
debugging sessions. We first analyzed the number of debug intervals per user for the132 developers that have used the debugger during the collection period. The resulting
numbers range from a single debug interval to 598 debugging intervals, with an average
of 23.8 and a median of 4 debug intervals per user. Next, we analyzed the duration of the3,142 debug intervals and found values ranging from 3milliseconds to 90.8 hours, with an

6

156 6 On the Dichotomy of Debugging Behavior Among Programmers

average and median duration of 13.8 minutes and 42.3 seconds, respectively. About half
of the users using the IDE-provided debugging infrastructure have launched the debugger
four times or less during the data collection, 21% launched their debugger more than 20
times.
RQ V.2.2: How much time is spent in IDE debugging?
WR3: Debugging consumes, on average, less than 14% of the active in-IDE development time.
For RQ V.2.2, we first computed the total duration of all intervals of a particular type and
based it on the total duration of ‘IDE open’ intervals (18,156.9 hours, 100%) in the collec-
tion period. We recorded 25.2 hours of running unit tests (0.1%), 721.5 hours of debugging
intervals (4.0%), 2,568.8 hours of reading (14.1%), and 1,228.6 hours of typing (6.8%). These
intervals are themain contributors of how developers spend their time in the IDE, included
in the ‘IDE active’ intervals (28.9%). Next, we analyzed the duration and percentages on
a per user basis. For the users with at least one debug interval, Table 6.2 shows the de-
scriptive statistics of the interval duration and percentages. From the results in Table 6.2
and the fact that the total recorded active IDE time was 5250.7 hours, we conclude that
debugging consumes 13.7% of the total active in-IDE development time, while reading or
writing code and running tests take 48.6%, 23.4% and 0.5%.
WR4: Most debugging sessions consume less than 10 minutes. Furthermore, about half of
the debugging sessions take at most 40 seconds, while about 12% of them last more than10 minutes.
RQ V.2.3: Which IDE debugger features do developers use?
WR5: Line breakpoints are used most and by most developers, other breakpoint types are
used less and by fewer developers. The results in Table 6.1 show that line breakpoints are
by far the most used breakpoint type. The other, more advanced, types account for less
than 7% of all breakpoints set during the collection period. Furthermore, line breakpoints
are used by most developers using the debugging infrastructure, while the other types of
breakpoints are used by only 7.6–20.5% of these developers.
WR6: Breakpoint options are not used by most WatchDog 2.0 users; the most frequently used
option is changing their enablement. When considering how breakpoints evolve over their
lifetime, the breakpoint change type frequencies in Table 6.1 (second column) indicate that
almost all of these changes are related to the enablement or disablement of the breakpoints.
The other change types account for only 10.9% of all breakpoint changes. Furthermore, the
number of users that generated these events range from 1 (0.8%) to 12 (9.1%). Moreover,
events related to specifying a hit count on the breakpoint have not been recorded during
the collection period.
WR7: Setting breakpoints and stepping through code is done most, other debugging features
are far less used. Table 6.1 shows that most of the recorded debugging events are related
to the creation (4,544), removal (4,362) or adjustment of breakpoints, hitting them during
debugging and stepping through the source code. The more advanced debugging features
such as defining watches and modifying variable values have been used much less. Fur-
thermore, the same holds for the number of users generating these events: the majority of
users have added and/or removed breakpoints and stepped through the code, while only
2.3–15.2% modified variable values, evaluated expressions and/or defined watches.

6.3 IDE Field Study

6

157

RQ V.2.4: What is the relation between testing and debugging?
WR8: Most debugging sessions start after reading or changing the code, not after running tests.
Regarding RQ V.2.4, we assessed the intervals that occur immediately before a debugging
session starts. The resulting frequencies and their percentages of all intervals occurring
before any debug interval are: 46 (0.5%) for running unit tests, 119 (1.2%) for other debug
intervals, 4,991 (51.9%) for reading and 1,802 (18.7%) for typing intervals. About 70% of
the debugging sessions start after reading or writing code, only 0.5% of them start after a
failing or passing test run.

WR9: Developers who spend more time executing tests are likely to proportionally debug
more. Next, we investigated the relation between the total duration of running unit tests
and debug intervals per user. We only considered the 25 developers with at least one debug
interval and one unit test execution. At 𝜌 = 0.58, we find a moderate correlation between
the two duration spans.

WR10: Developers who read or modify test classes longer are not likely to debug less. To
complete RQ V.2.4, we studied the relation between the amount of time the user spends
inside test classes (i.e., either reads or modifies tests) and the debugging time. For the 248
developers with at least one debug interval or one opened test class, we find no correlation
at 𝜌 = −0.08. Furthermore, we find no correlation (𝜌 = 0.23) when focusing on the 84 users
with both at least one debug interval and one opened test class.

RQ V.2.5: How are file length and debugging effort related?
WR11: Smaller classes are debugged more than larger classes. Here we examined whether
there is a correlation between the file size of a class (in source lines of code [357]), and the
number of times the developer visits it in the source code editor in a debugging session.
At 𝜌 = −0.75, we find a strong negative correlation. We also investigated the relation
between the file sizes and the duration of the debug intervals in which they are opened and
found no apparent correlation (𝜌 = 0.19). For RQ V.2.5, we aggregated and compared the
number of classes in single debug intervals to: 1. the total number of classes we observed
with WatchDog for this project (also through other intervals such as reading, writing, or
running tests); and 2. the number of different classes that have been debugged during any
debug interval of the project.

For 1), we found that on average only 4.8% (median: 1.7%) of all project classes we
observed inWatchDog intervals were ever debugged. The value ranges from 0.2% to 100%,
where the 100%-cases possibly stem from small projects with only one or two classes. For
2), the results range from 0.8% to 100% with an average of 14.5% (median: 4.5%). Both
results seem to indicate that debugging is focused on a relatively small set of classes in the
project. In 75% of debugging sessions, at most 5% of the project’s classes are debugged.

RQ V.2.6: Do developers often step over the point of interest?
WR12: Developers might step over the point of interest and have to start over again in 5%
of debugging sessions. To answer RQ V.2.6, we first computed the total duration of all de-
bug intervals per user. Then, we performed a Spearman rank-order correlation test using
these values and the programming experience the user entered during WatchDog 2.0’s
registration process by applying a linear integer transformation (see Section 6.2.2). For
the 58 users that have entered their experience and generated at least one debug interval,

6

158 6 On the Dichotomy of Debugging Behavior Among Programmers

0

50

100

150

200

0 250 500 750

Maximum time between debug intervals (in seconds)

N
u
m

b
e
r

o
f
p
o
s
s
ib

le
 o

v
e
rs

h
o
o
t
c
a
s
e
s

Figure 6.5: Possible cases of stepping over the point of interest per maximum time period between consecutive
debug intervals.

this resulted in a weak correlation (𝜌 = 0.38), i.e. more experienced developers are more
likely to spend more time in the IDE debugger.

During our research into debugging, we sometimes heard anecdotal reports of frus-
trated developers stepping over the point of interest while debugging. To this end, we
sought objective data to support how severe the problem is by identifying possible cases
of stepping over the point of interest. “Stepping over” means that the developer steps one
time too far and has to start debugging all over again. Reasons for this include pressing
the proceed key too fast or realizing too late that the actually interesting location was in
a past step. To model this with our interval and event concept, we look for a set of debug
intervals that satisfy the following conditions: 1. the last event occurring within the debug
interval is a stepping event; and 2. the interval is followed by another debug interval in the
same IDE session. We then created subsets of these debug intervals by imposing a maxi-
mum time 𝑡𝑚𝑎𝑥 between two consecutive debug intervals. Figure 6.5 shows the possible
cases of stepping over the point of interest for the subsets with 𝑡𝑚𝑎𝑥 ≤ 15 minutes.

The trend line in Figure 6.5 shows that the amount of new possible cases of stepping
over the point of interest starts to decrease significantly after about four minutes. At this
point, about 150 possible overshoot cases can be identified, which corresponds to 4.8% of
the debugging intervals.

6.3 IDE Field Study

6

159

Ta
bl
e
6.1

:F
re
qu

en
ci
es

of
br
ea

kp
oi
nt

ty
pe

s,
m
od

ifi
ca

tio
ns

,a
nd

W
at

ch
D
og

2.0
de

bu
gg

in
g
ev

en
ts
.

Br
ea

kp
oi

nt
ty

pe
Fr

eq
ue

nc
y

Br
ea

kp
oi

nt
m

od
ifi

ca
ti
on

Fr
eq

ue
nc

y
Ev

en
tt

yp
e

Fr
eq

ue
nc

y
Ev

en
tt

yp
e

Fr
eq

ue
nc

y

Cl
as
sp

re
pa

re
99

Ch
an

ge
co

nd
iti
on

3
Ad

d
br
ea

kp
oi
nt

4,5
44

(c
on

tin
ue

d)
Ex

ce
pt
io
n

37
D
isa

bl
e
co

nd
iti
on

1
Ch

an
ge

br
ea

kp
oi
nt

24
7

Re
su

m
e
cl
ie
nt

8,2
92

Fi
el
d

78
En

ab
le

co
nd

iti
on

19
Re

m
ov

e
br
ea

kp
oi
nt

4,3
62

Su
sp

en
d
by

br
ea

kp
oi
nt

13
,27

6
Li
ne

4,2
29

D
isa

bl
e

18
0

D
efi

ne
w
at
ch

34
3

Su
sp

en
d
by

cl
ie
nt

16
M
et
ho

d
77

En
ab

le
40

Ev
al
ua

te
ex

pr
es
sio

n
10

1
St
ep

in
to

3,4
80

Un
de

fin
ed

24
Ch

an
ge

su
sp

en
d
po

lic
y

4
In
sp

ec
tv

ar
ia
bl
e

17
9

St
ep

ov
er

19
,54

3
M
od

ify
va

ria
bl
e
va

lu
e

4
St
ep

ou
t

35
1

Σ4,54
4

Σ247
(c
on

tin
ui
ng

...)
Σ54,7

38

Ta
bl
e
6.2

:D
es
cr
ip
tiv

e
us

ag
e
st
at
ist

ic
sf

or
ke

y
in
te
rv

al
ty
pe

s(
re
la
tiv

e
to

to
ta
lo

bs
er
ve

d
tim

e)
.

Va
ri
ab

le
U
ni

t
M

in
25

%
M

ed
ia
n

M
ea

n
75

%
M

ax
Lo

g-
H
is
to

gr
am

D
eb

ug
gi
ng

H
ou

rs
(%

)
0.0

0
(0
.0%

)
0.0

3
(0
.1%

)
0.3

0
(0
.5%

)
5.4

7
(2
.5%

)
1.4

2
(2
.4%

)
33

3.7
0
(3
0.8

%)

Re
ad

in
g

H
ou

rs
(%

)
0.0

0
(0
.0%

)
0.1

4
(1
.7%

)
0.6

0
(3
.2%

)
5.7

0
(4
.9%

)
2.0

7
(5
.7%

)
59

1.1
0
(5
2.7

%)

Ty
pi
ng

H
ou

rs
(%

)
0.0

0
(0
.0%

)
0.2

1
(1
.5%

)
1.0

1
(3
.6%

)
2.9

5
(4
.8%

)
2.7

8
(6
.9%

)
63

.87
(2
8.3

%)

Ru
nn

in
g
JU

ni
t
te
st
s

H
ou

rs
(%

)
0.0

0
(0
.0%

)
0.0

0
(0
.0%

)
0.0

1
(0
.0%

)
0.6

8
(0
.2%

)
0.5

6
(0
.2%

)
9.1

9
(2
.1%

)

6

160 6 On the Dichotomy of Debugging Behavior Among Programmers

6.4 Interviews
In this section, we describe how we conducted developer interviews for RQ V.3 and merge
and discuss results from RQ V.1 and RQ V.2.

6.4.1 Study Methods
Interview Design & Method. To validate and obtain a deeper understanding of our
findings from RQ V.1 and RQ V.2 and to mitigate apparent controversies, we ran the com-
bined observations from survey, objective IDE measurements, and anecdotal interview
insights across two sets of debugging experts. A question sheet helped us steer the semi-
structured interviews, which we conducted remotely via Skype and took from 36 minutes
to 67 minutes. In one case (E3), we performed the interview asynchronously via email.
Subsequently, we transcribed the interviews and extracted insightful quotes.
Study Subjects. Table 6.3 gives an overview of our nine interviewees. We sampled the set
of “regular developers” from our survey population to gain insights into what hinders the
use of debuggers, why printf debugging is still widely used, and whether they regularly
step over the line of interest. We chose the experts based on their industrial and academic
position in the debugging field.

6.4.2 Results
This section juxtaposes survey (RQ V.1) and IDE study (RQ V.2) results and discusses them
with the qualitative insights from RQ V.3.
Use of the IDE Debugger. In WR1, we found that two thirds of the WatchDog 2.0 users
were not using the IDE-provided debugger in our observation period, an obvious contra-
diction to SR1, in which 80% of respondents claimed to use it. Moreover, no single user
spent more than 30% of his development time debugging. There might be several reasons
for the discrepancy: 1) The study populations are different, and the survey respondents
were likely self-selecting on their interest in debugging, resulting in a higher than real use
of the debugger. 2) As often observed in user studies, most relevant data stems from a rela-
tively small percentage of users. 3) WatchDog users were free to start and stop using the
plugin at any time in the observation period. Hence, for some users the actual observation
period might be much shorter, perhaps coinciding with not having to debug a problem. 4)

Table 6.3: Interviewed developers and debugging experts

ID Occupation Dev. Experience Country Area

I1 Freelancer > 20 years Germany Rich Client Platforms
I2 Developer ≥ 15 years India E-commerce
I3 Developer 11 years USA Real-Time Systems
I4 Developer 10 years UK Data Scraping
E1 3 Eclipse Debugging Project Leaders Switzerland, India Eclipse Development
E2 Professor > 20 years Greece Software Engineering
E3 Debugger Developer 18 years Russia IDE Development

6.4 Interviews

6

161

Almost equally many developers conceded to use printf statements for debugging in SR2.
We have anecdotal evidence from RQ V.3 that they might use them even more: When we
asked I3 about printf debugging, he was very negative about it. Later in the interview, he
still conceded to use printf “very rarely.” We believe a similar observation might hold for
manyWatchDog users. As we cannot capture printf debugging or debugging outside the
IDE with WatchDog, our finding does not mean two thirds of developers did not debug.
5) The phenomenon of a discrepancy between survey answers and observed behavior is
not new. Beller et al. observed a similar phenomenon with developers claiming to spend
more time on testing than they really were [66]. As a consequence, we emphasize their
finding that survey answers always be cross-validated by other methods.
PrintfDebugging. FromRQV.1 and RQV.2, it seemed that developerswerewell-informed
about printf debugging and that it is a conscious choice if they employ it, often the begin-
ning of a longer debugging process. Interviewees praised printf as a universal tool that
one can always resort back to, helpful when learning a new language ecosystem, in which
one is not yet familiar with the tools of the trade. About left-over print statements that
escape to production, I2 was “not worried at all, because we have a rigorous code review
process.” While frequently used, developers are also aware of its shortcomings, saying that
“you are half-way toward either telemetry or toward tracing” and “that it is insufficient for
concurrent programs, primarily because the [output] interleave[s] in strange ways” (I3).

There is a strong dichotomy between developers on whether to use printf debugging.

Use of Debugging Features. SR3 and SR4 indicated that most developers use line break-
points, but do not use more advanced breakpoint types like class prepare breakpoints.
While many developers knew and used conditional breakpoints, they were widely igno-
rant of hit counts and the debugger’s othermore advanced functions. WR5 toWR7 support
this result, finding that conditional breakpoints are indeed the second most used feature in
the IDE debugger. A similar result is visible in other debugging features such as stepping
through code. In both cases we found that these features get used less as they becomemore
advanced. However, the observed numbers on the use of these features are much lower
than the claimed usage visualized in Figure 6.2. For example, while 60% of the survey re-
spondents indicated to define watches during debugging, only 15.2% of theWatchDog 2.0
users who use the debugger have defined a watched expression. Through our interviews
with the debugging experts, we identify three possible causes for this.

1) More advanced debugging features are seldom required. I1 and I2 said that specifying
conditions or hit counts is often “fuzzy (is it going to happen the 16th, 17th, or 18th time?)”
and that once one knows the condition, one almost automatically understands the problem.
Then, there is no need for the conditional breakpoint anymore. Moreover, “the types of
problems where you need a conditional breakpoint happen very rarely” (I2). For example,
when we presented the breakpoint export feature of Eclipse to I2, he replied “I did not
know such a feature exists.” Others said it is a “very esoteric thing” and that they have used
it “maybe once or twice” (I3). This strengthens our intuition that debugging is an internal
thought process not usually shared and that breakpoints are “like a one-shot. Ideally I
wouldn’t like them to be, but I just set them anew” (I4).

6

162 6 On the Dichotomy of Debugging Behavior Among Programmers

2) Debuggers are difficult to use. Another reason given by interviewees, even though
seasoned engineers, was that “the debugger is a complicated beast” (I2) and that “debug-
gers that are available now are certainly not friendly tools and they don’t lend toward
self-exploration.” Given our results on the use of features, we asked interviewees whether
it might simply be enough to reduce the feature set. Both developers and E1 to E3 emphat-
ically declined, arguing that “once you get into these crazy cases, they are really useful”
(I2).

3) There is a lack of knowledge on how to use the debugger. When we asked developers
where their knowledge of debugging comes from, many said that “big chunks are self-
taught” and “[I] picked up various bits and pieces on the Internet” (I4). Even I3, the only
interviewee who indicated that “debugging was explicitly covered [in my undergraduate],”
said it is “partly self taught, partly [...] through keymentor ships.” Making a case for hands-
on teaching, he elaborated that “one of the engineers that mentored me [...] was some kind
of wizard with GDB. I think when you meet someone who knows a very powerful tool it’s
very impressive and their speed to resolving something is much faster but it takes a lot
of time to get to that point.” Since we measured experience to have limited to no impact
on (which) debugging features developers used (SR6), this hints at a lack of education on
debugging that is pervasive from beginners and Computer Science students to experts.
New Computer Science curricula that put debugging upfront could be an effective way to
steer against it [358].

Time Effort for Debugging. Our study results WR3 to WR4 point to the fact that debug-
ging in most cases is a short, “get-it-done” (I1) type of activity that, with only 14% of active
IDE time (WR3) we found to consume significantly less than the 30–90% for testing and
debugging reported by Beizer [359] at a general, project-level and the estimations by our
interviewees, who gave a range of 20% to 60% of their active work time. One reason why
our measured range is so much lower might be that developers (and humans in general)
have a tendency to overestimate the duration of unpleasant tasks, as previously observed
with testing [66]. Another is that developers included debugging tasks such as printf and
the use of external tools, which we cannot measure. We need more studies to quantify
this initial surprising finding. A common intuition in Software Engineering is that “small
is better,” since it is easier to manage and understand, see for example the recommenda-
tions to micro services, small commits, or short files. Contrary to this claim, we found
that short classes need considerably more debugging (WR11) and that the longer amount
of time developers spend in larger classes does not nearly compensate for it. Our inter-
viewees agreed in unison that the hardest problems to debug are ones where interfaces or
transactions between components are involved. Interfaces are typically short since they
contain little logic, but represent a common source of integration problems and thus, the
answers suggest, debugging effort. Then, longer classes are likely to have increased lo-
cality of features, which makes them often easier to understand [360] and thus probably
also easier to troubleshoot. We need more research on this interaction between file length
and debugging probability. Future studies could try to exploit the finding to recommend
optimal system designs as a compromise between modularity and the ability to debug
them.

Use of Tests for Debugging. In the survey, most respondents think (unit) testing is an

6.4 Interviews

6

163

integral part of the debugging process, especially for reproducing bugs at the beginning
of the process (SR5, SR7). However, there is mixed evidence on this in RQ V.2, as shown
by WR8, WR9 and WR10. On the one hand, failing tests do not seem to be a trigger for the
start of debugging sessions. On the other hand, running tests in the IDE seems to be corre-
lated with debugging more, while reading or modifying tests is not. Two factors can play
a role: Developers who are more quality-concerned execute their tests more often and
therefore also debug more. This is contrary to intuition and the answers of some of our
interviewees, who claimed that as testing goes up, the debugging effort should decrease
(E2): “Debugging is born of unknowns, and effective testing reduces these” (I3). An ex-
planatory finding might be that the creation of tests itself adds code and complexity that
might need to be debugged. We need more studies to research this interesting discovery.
Stepping Over the Point of Interest. We found that in less than about 5% of the de-
bugging sessions the developer might have stepped over the point of interest and had to
start debugging anew (WR12). This indicates that there is a limited, but existent gap in
current debuggers process that might be filled by back-in-time debuggers [361]. Back-in-
time debuggers allow developers to step back in the program execution in order to arrive
at the point of interest without having to completely restart the debugging process. All
our interviewees could relate to situations in which this occurred to them, stating that “it
happens all the time” (I1) to “back in time debugger would be wonderful” (I3). However,
WR12 indicates that it might not be as frequent as some stated. While the drop frame
feature allows developers to go to the beginning of the current method, it does not revoke
side effects that already occurred and was therefore only found to be “helpful in a limited
way” (I3). Currently, mainstream IDEs do not support back-in-time debugging.
Improvements in IDE Debuggers. We asked our interviewees how debugger creators
could better support them. Their answers fall into two categories: 1) Make the core fea-
tures easier to use while preserving all existing functionality. 2) Create tools that capture
the holistic debugging process better. Elaborating on 2), I1 denotes: “If you’re in Java
and have to debug across language boundaries, [...] you really get to a point where you
feel helpless.” Other wishes included the ability to do back-in-time debugging similar to
Chronon [362], to have a live REPL, a feature the IDE xcode introduced [363].

Developers have a strong need for back-in-time debuggers and an integrated REPL.

To improve the design of existing IDE debuggers with findings from our study, we
arranged a meeting with three debugging project leads from Eclipse, E1, and an IDE de-
veloper from a commercial company, E2. The Eclipse leads said that, while they had
sporadic evidence on how some individual developers use their debugger, they were un-
aware of the debugging behavior of a large population and the usage detail our study could
provide. They started or updated six feature requests for the debugger based on our study,
commencing work on bugs that had been dormant since 2004.⁴ In the following, we fo-
cus on two already implemented features that are scheduled to roll out as part of Eclipse
release 4.7.

⁴See umbrella bug 498469: https://bugs.eclipse.org/bugs/show_bug.cgi?id=498469.

6

164 6 On the Dichotomy of Debugging Behavior Among Programmers

In our field study and interviews, we identified left-over breakpoints as a recurrent
annoyance, which developers have to remove manually, with I1 saying that suspending
on old breakpoints unexpectedly interrupts his flow and that “every so often, once a week
or so, I just delete all of them.” After making the Eclipse leads aware of this problem,
they implemented age deprecation for breakpoints. It lets developers remove old break-
points with one click. Although often referred to as a “dirty hack” (since it interferes with
and pollutes production code), our study found that printf debugging also provides an ad-
vantage over the debugger’s watch view in that it preserves the history of past logs (for
example, of memory entities in the watch view). Conversely, developers cannot enrich
third-party libraries for which no source code is available with printf statements, but they
can place debugger breakpoints in e.g. their Java byte code. To keep a history of logs
when using the debugger, before our study, Eclipse and IntelliJ users had to set up an ar-
tificial construction of placing a conditional breakpoint that would print the information
and always return false, thus never suspend. This hack of a “conditional breakpoint that
is not conditional” (Bugtracker description) required intimate familiarity with the idiosyn-
crasies of the debugger and had bad performance, since code embedded in conditional
breakpoints runs via the Java Debugging Infrastructure, which adds unnecessary over-
head for a simple printout. By offering the new breakpoint type “tracepoint,” developers
can now conveniently produce fast logs of debug traces. The Eclipse project implemented
this simplified solution in Bug 71020, which had been in hibernation since 2004 and on
which work commenced after our discussion.

6.5 Threats to Validity
In this section, we examine threats to the validity of our study and show howwemitigated
them.

Construct Validity. The manual implementation of new functionality, such as the ad-
dition of the debug infrastructure to WatchDog, is prone to human errors. To minimize
these risks, we extended WatchDog’s automated test suite. Furthermore, we use this
test suite to make sure we introduced no regressions. In addition, we tested our plugins
manually. Finally, we performed rigorous code reviews before we integrated the changes.
Debug sessions might not correspond to actual debug work, e.g. a user might have inad-
vertently left the debugger in the IDE running, explaining our 90 hour outlier. However,
such outliers are expected in an observational study of several months [64, 65]. Similarly,
we approximate the number of classes in a project by the number of different classes we
observe with WatchDog. Due to privacy reasons, we cannot mine the repositories of
projects to gain an entirely correct figure.

Internal Validity. Since our survey in RQ V.1 dealt with debugging, participation might
have been self-selecting, i.e. developers more interested and knowledgeable in debugging
are more likely to have responded. We tried to contrast this with objective WatchDog
observations, which is not advertised specifically as a debugging tool. An important inter-
nal threat is that the populations for RQ V.1 and RQ V.2 are different and their intersec-
tion is small (six users participated in both studies). However, we are confident we only
encounter a small sampling or comparison bias because key characteristics of both pop-
ulations are similar, as 1) 80% of respondents answered the survey for Java, which both

6.6 Conclusion

6

165

plugins work with in RQ V.2, 2) the majority in RQ V.1 used one of the IDEs supported
in RQ V.2, 3) the experience distributions of both populations are similar and 4) both pop-
ulations should be large enough to even out individual influences. Due to the fact that
WatchDog gathers data automatically, it is harder for potentially evil-minded users to
fabricate data than in surveys. Moreover, that the majority of data comes from a relatively
small “power user” population (48 developers in our case, 𝑡𝑜𝑝10% in WR1) is both normal
in service use, for example on Twitter [364], and other observational studies [192, 365].
Discrepancies between some survey answers and the objective IDE observations have pre-
viously been observed in other studies [65].

External Validity. During our data collection period of more than two months we col-
lected 1,155,189 intervals with a total duration of over ten developer years, spread over458 users. The fact that over 80% of the survey respondents stem from the Java commu-
nity means that little survey data is available about other communities. The same holds
for the analysis of the WatchDog 2.0 data, which is restricted to the Java programming
language and to the Eclipse and IntelliJ IDEs. Other IDEs are not included in our analy-
sis and the results with them might deviate. However, at least imperative, statically typed
languages similar to Java, such as C, C++, C#, or Objective-C, would likely yield similar re-
sults and are so widespread that researching them alone impacts many, if not the majority
of, developers.

6.6 Conclusion
We set out to obtain a first cross-validated understanding of developers’ debugging knowl-
edge and contrasted it with their real-world IDE debugging behavior.

We found strong dichotomies in developers’ opinions, knowledge, and behavior: Many
believe modern debuggers to be superior to printf debugging, yet still employ it for many
good reasons. IDE observations confirmed this finding, as only a third of developers ever
invoked the debugger. We found that debugging is a technique defined by necessities: It
is a relatively fast-paced and short-lived activity that is by nature so complicated that the
tools around it should be as simple as possible. Consequently, developers use only basic
features and seldom resort to more advanced breakpoint types or debugging techniques.
Developers spend surprisingly little time in the debugger; only 13% of their total develop-
ment time on average, in stark contrast to previous findings claiming more than 50%. As
developers become more experienced, they seem to use the debugger slightly more, possi-
bly because they educated themselves on its advanced affordances over printf debugging.
We also found that having more tests in the code generally does not reduce the debugging
burden, possibly because test code adds to the overall code that needs debugging.

In general, developers’ theoretical knowledge and practical use of specialized debug-
ging features are relatively shallow, just the amount that is seemingly sufficient for their
debugging problems. Most developers said debugging was self-taught and not part of their
curriculum. We believe that more educators can include practical, hands-on teaching, start
in first year courses. Astonishingly, although bugs are inevitably linked with software and
students learn programming in their introductory courses, they are only taught to prop-
erly debug much later, if ever.

Adding to this lack of debugging education, even experienced developers admitted

6

166 6 On the Dichotomy of Debugging Behavior Among Programmers

that debuggers are not easy to use. Apart from the wish for back-in-time debuggers, de-
velopers never expressed the wish for more debugging features. Instead of introducing
ever more esoteric features, we therefore call to make using the already existing debugger
features easier to use and more accessible. With the help of three Eclipse project leads,
we identified several areas of improvement in the Eclipse debugger, leading to new sim-
plified debugging features. One example is the introduction of a new breakpoint type in
Eclipse that combines the advantages of debugger-instrumentation with the flexibility of
printf debugging. Other IDE and debugger creators could follow this example and use our
findings to further improve their debuggers.

7

167

7
Conclusion

This chapter revisits our original research questions, presents threats of validity concern-
ing the thesis at large, contains concluding remarks on FDD and its implications, gives
an overview of the contemporary scientific reception of the papers included in this thesis,
and finishes with an outlook into future work on FDD.

7.1 Research Questions Revisited
In this section, we revisit and answer the research questions from Chapter 1.

RQ 1 How do developers use static analysis within FDD?

Our research shows that most state-of-the-art projects use at least one ASAT, but do
not yet make use of the benefits of combining multiple ASATs. To make it easier for
developers to see the benefits of combining ASATs on their projects, we invented the UAV
prototype for Java. Moreover, by the example of the Last Line Effect, we have shown that
even effects that we traditionally thought can only be revealed by manual code review,
can be detected by an ASAT. An increasing number of ASATs and analyses enabled by
them and a reluctance of developers to add new ASATs or update their configurations,
call to increase automated notifications not maintained or setup by projects themselves,
similar to the security vulnerabilities that GitHub has begun to send out. In particular,
we examined this research question in two studies:

We first performed a qualitative and a quantitative studies on nine different ASATs for
the programming languages Java, JavaScript, Ruby, and Python with populations of over
100 and 100,000 open-source projects respectively. Our results show that ASAT usage is
widespread, but not ubiquitous, and that projects typically do not enforce a strict policy
on ASAT use. Most ASAT configurations deviate slightly from the default, but hardly any
introduce new custom analyses. Only a very small set of default ASAT analyses is widely
changed. Finally, most ASAT configurations, once introduced, never change. If they do,
the changes are small and have a tendency to occur within one day of the configuration’s
initial introduction. The results highlight developers’ reluctance to introduce, change, or

7

168 7 Conclusion

remove an ASAT once officially introduced in the project. While this is good for con-
sistency on the one hand, it might be an indication that the position of ASATs in most
projects is not as central as they could be.

We then introduced and studied the “Last Line Effect,” the phenomenon that the last
line or statement in amicro-clone ismuchmore likely to contain an error than the previous
lines or statements. We became aware of this phenomenon through manually reviewing
source code first, and then used automated analyses that spotted so-called “micro-clones.”
With their help, we analyzed 219 open source projects and reported on 263 faulty micro-
clones. We interviewed six authors of these real-world faulty micro-clones to understand
more about the circumstances under which they created them. We also examined the
underlying mechanisms for the presence of these relatively trivial errors. Based on the
interviews and further analyses, we suggest that, instead of technical reasons or the com-
plexity of the task, so-called “action slips” play a pivotal role for the existence of the last
line effect: Developers’ attention shifts away at the end of a micro-clone creation task
due to noise and the routine nature of the task. All micro-clones whose origin we could
determine were introduced in unusually large commits. Practitioners benefit from this
knowledge twofold: 1) They can spot situations in which they are likely to introduce a
faulty micro-clone and 2) they can use PVS-Studio, an automated micro-clone detector,
to help find erroneous micro-clones. The implementation of a static check for Last Line-
type errors shows that we can efficiently reduce the burden of code reviewers who would
otherwise have to manually look for them. This indicates a possible rising importance for
ASATs in the future, in particular in a FDD world.

RQ 2 How do developers use dynamic analysis within FDD?

Dynamic analysiswithin FDD comprises local and remote testing and debugging, see Fig-
ure 1.1. Similar to RQ 1, we find that developers have an ad-hocmentality to using dynamic
analysis. In particular, testing in the IDE is characterized by large gaps in which develop-
ers do not test, followed by relatively test-heavy development phases. Debugging is even
more of a spontaneous activity, complemented by hard problems and a partly insufficient
education on debugging. Moreover, testing did not seem to reduce the amount of debug-
ging an individual developer had to do, possibly because the creation of tests leads to the
discovery of further problems a developer has to debug. Debugging is driven by the de-
sire to troubleshoot the problem at hand as quickly as possible and then (hopefully) forget
about the experience. Subsequently, developers showed little interest to persist the results
of their debugging sessions, for example through automatically generated tests. The more
structured testing on the CI server is somewhat of an anti-pole to this and ensures that cer-
tain project rules and quality guidelines be followed. Nonetheless, developers also know
how to “bend the rules” to use this concept to their advantage, for example to execute
tests more efficiently than they locally could. We came to this conclusion by combining
the results of three studies on dynamic analysis in FDD:

Our findings on developer testing in the IDE question several commonly shared as-
sumptions and beliefs about developer testing: half of the developers in our study do not
test at all. Developers rarely run their tests in the IDE, and consequently, most program-
ming sessions in it end without them having executed any of their tests. Only once they
start testing, do they do it extensively. A quarter of test cases run in the IDE are responsi-

7.2 Threats to Validity

7

169

ble for three quarters of all test failures. 12% of tests show non-deterministic behavior.
Test-Driven Development (TDD) is not widely practiced. Finally, software developers
only spend a quarter of their time engineering tests, whereas they think they test half
of their time. Our initial theory on Test-Guided Development summarizes these practices
of loosely guiding one’s development efforts with the help of testing, a behavior we argue
to be closer to the development reality of most developers than TDD.

In an analysis of over 2 million Java and Ruby builds on Travis CI, we found that
testing is the single most important reason why builds fail. Moreover, the programming
language had a strong influence on both the number of executed tests, their run time,
and proneness to fail. The use of multiple integration environments lead to 10% more
failures being caught at build time. However, testing on Travis CI does not seem to be an
adequate surrogate for running tests locally in the IDE, as the time to feedback from the
CI is typically two orders of magnitudes slower than in the IDE.

In a mixed-methods study, we found that IDE-provided debuggers are not used as of-
ten as expected, because “printf debugging” remains a feasible choice for many, a topic
of heated discussion among programmers. Furthermore, both knowledge and use of ad-
vanced debugging features are low, further lowered by the complexity of most modern
debuggers. Correlations on the individual developer level between the amount of time
developers spent testing and debugging showed that there was no negative effect in our
data. Thus, testing more did not seem to bare one from debugging, at least on the individ-
ual level. While debugging involves a lot of effort and often manually testing a piece of
code, its only result is often a one liner code fix. Even so, developers showed little inter-
est in trying to automatically persisting the fruits of their debugging efforts, for example
by creating tests. Our results call for strengthening hands-on debugging experience in
computer science curricula and have already refined the implementation of modern IDE
debuggers.

7.2 Threats to Validity
In this section, we outline two general threats to validity that affect the conclusions of
this thesis. These are of summarizing and complementary nature to the detailed threats
for each study in their corresponding chapter.

• External Validity
Generalizability and Incompleteness of Studied Systems. As we follow the obser-
vational path in the RPS (see Section 1.4.1), our case studies are naturally confined
to a limited set of observations, tools, and environments. For example, in Chap-
ter 2, we studied nine ASATs. A curated, but likely also incomplete list of static
analysis tools on GitHub¹ alone lists 341 static analysis tools. Similar arguments
can be made for WatchDog, which focuses on Java (GHTorrent lists 354 different
programming languages on GitHub on April 1st, 2018) and TravisTorrent, which
supports four programming languages out of the 26 supported by Travis CI (see
Chapter 5). Moreover, in the WatchDog case, we only observe actions inside the
IDE. We cannot measure actions that happen outside the IDE or when WatchDog
is switched off.

¹https://github.com/mre/awesome-static-analysis

7

170 7 Conclusion

We based our choice of studied tools and languages on several criteria: selecting
tools that 1) have apparent practical relevance (for example, Java, FindBugs, or Ec-
lipse), 2) represent the state-of-the-art in OSS for which we had some personal ex-
perience, and 3) which were likely to be generalizable outside their context (for
example, Java could stand prototypical for most object-oriented languages). Strictly
speaking, although we aimed for generality, the findings in this thesis are thus only
true for the systems, the context, and the time period in which we studied them.
However, we argue that it is likely we would find them replicable in other related
contexts, as we did with our findings on automated developers tests. We first only
studied developers in Eclipse and then could then replicate the findings in the IntelliJ
and Visual Studio IDEs in Chapter 4.

• Internal Validity
A large part of our studies rely on custom-made software (such as WatchDog and
TravisTorrent) and bespoke data analyses written in R. In total, these comprise
over 60,000 lines of code (see Table 1.3). Bugs in it could distort our results, as they
have in the past (see Figure 4.12). Our research is not unique in this threat [366].
Where applicable, we covered our software with unit and integration tests and cross-
validated the results in mixed-methods studies.

7.3 A Speculative Perspective on Feedback-Driven Devel-
opment

In this section, we give a high-level compilation of our research findings, how they relate
to each other and to the FDDmodel at large. We conclude with a more speculative outlook
into the future of FDD.

By performing a history analysis on the configuration files of ASATs, we found that
most of the over 100 top state-of-the-art projects on GitHub only use one ASAT.Moreover,
this ASAT is typically only slightly customized and its customization normally does not
evolve throughout a project’s life time [60]. To help developers unleash the potential of
multiple ASATs, we created the tool UAV [61]. On the intersection between manual code
review and ASATs, we discovered the last line effect [62, 63], the startling realization that
the last line or statement in a micro-clone is much more likely to contain a fault than any
of the previous lines. Instead of technical, we singled out psychological reasons as the
prime cause of the last line effect, most likely a working term memory overload due to
the repetitive nature of the task. We also created ASAT rules to integrate the detection
of faulty micro-clones in an automated FDD loop. Overall, our studies suggests that the
integration of ASATs in the FDD cycle is currently still lacking behind the integration of
dynamic analysis, particularly testing.

We found that the concept of “Test-Guided Development” best describes most devel-
opers’ local testing practices [64–66], as they do not follow strict processes like TDD rig-
orously and tend to overestimate their testing efforts in the IDE twofold. With our family
of WatchDog plugins [67], we studied the testing habits of more than 2,400 Java and C#
developers in four different IDEs over the course of 2.5 years. Results suggest that testing
practices largely generalize across (imperative) programming languages and IDEs. Most
local testing is immediate, with a much shorter feedback loop than running the entire

7.3 A Speculative Perspective on Feedback-Driven Development

7

171

test suite, which is usually offloaded to the CI. Accordingly, an analysis of our Travis-
Torrent “build log treasure trove” (Mathias Meyer, then-CEO of Travis CI [76]) shows
that remote testing is the central phase of CI, causing more CI build failures than all other
reasons combined [68]. Normally, contributions thus need to be reworked if they failed
the testing stage of FDD 6⃝ in figure 1.1. Finally, debugging is a somewhat opaque topic
to developers not nearly as automated and streamlined as the other FDD quality assur-
ance techniques: many developers still employ crude printf techniques, for lack of better
knowledge or tools [70].

More generally, our investigation shows that the proposed FDD cycle is flexible enough
to describe most contemporary software engineering projects, yet precise and distinct
enough to distinguish itself clearly from past development methodologies like TDD that
did not contain a tight integration of a multitude of feedback loops. While modern soft-
ware development is principally characterized by its speed, we found several orders of
magnitude of difference within the different feedback loops embedded in FDD: local test-
ing is immediate, remote testing on the CI causes a notable delay, and waiting for a human
reviewer to find time can further prolong the process. Reducing these delays, particularly
in code review via the use of automated bots, would be one way to further increase devel-
opment speed and robustness with regard to persons leaving a project.

On a higher level, a common denominator among our different study results is that
instead of confining themselves on the methodologically correct usage of a method, de-
velopers constantly seem to seek ways and shortcuts in which they can use the method
to their advantage. This way, they might achieve higher development speed in the FDD
cycle, for example: instead of blocking their machine for 10 minutes to execute all UI tests,
developers in the Eclipse project stated that they phase out these UI tests to the CI via
their Gerrit code review system. Having not completed their local test-feedback loop
yet, they did this knowing full well that the contribution was not ready for code review.
Another instance of this is the dedicated use of “printf” statements to debug issues, which
most developers agree to be far from ideal in a methodological sense. However, for many
practical purposes, it seems to get the job done in the most efficient way.

Similarly, developers perform a test-guided development approach with test-heavy
development sessions as they see fit. FDD can thus also capture this hacker’s mindset
to software development, which has recently been propagated at companies such as Face-
book [367]. A programmer consciously makes a decision to deviate from a norm to further
one’s direct goal, as far as the FDD tools employed by the project allow. In some sense,
this is a trend to go back to the roots of computer programming, leaving processes and
methodologies behind that seemed to hinder progress, while still making use of recently
developed tools such as CI and pull-based development. Researchers need to take this
cleverness of the developers they study into account. Developers should be aware of the
fallacies that skipping corners brings with it, which bears the risk of manifesting itself in
bugs visible to the user. A relatively rigid, highly automated FDD process with some room
for flexibility on an individual contributor’s side could thus be both a driver of creativity
(“form liberates”) and act as a safety net against too much corner cutting.

7

172 7 Conclusion

7.4 Implications
In this section, we give an outline of how scientists and developers could and in part have
already used the work in this thesis to further the development of Software Engineering
research and tools.

Figure 7.1: GitHub displaying push-based security vulnerabilities to a project maintainer.

The FDD model gives us a framework that can steer our thinking of how program-
mers drive software development by defining a vocabulary that allows us to efficiently
communicate about modern-day collaborative software development. In this thesis, we
have (1) introduced the notion of FDD and (2) defined and empirically characterized its
sub-components. Scientists can further refine this preliminary model empirically, for ex-
ample by augmenting our studies on ASATs (Chapter 2) and remote testing on the CI
(Chapter 5) with data from closed-source projects. This would align the study population
with the studies on local testing and debugging, which already comprise a mix of OSS and
closed source data. Researchers could further study and compare different instantiations
of the FDDmodel across projects and so ultimately come up with recommended best prac-
tices by identifying which parts and particular implementations of the FDD are useful to
achieve better software quality in practice.

7.4.1 Individual FDD Stages
In November 2017, GitHub started to send developers notifications about potential secu-
rity problems in their projects like the ones shown in Figure 7.1 [368]. These push-based
notifications are different from the pull-based feedback that developers receive from set-
ting up their own ASATs – GitHub analyzes all repositories for possible vulnerabilities
without further actions by the project owners. It then automatically notifies the project
owners if one is found. This has the advantage that projects do not need to configure an
additional ASAT, which developers are reluctant to do, as we have shown in Chapter 2.
It would be interesting to study whether this approach leads to more-widespread fixes of
these security vulnerabilities than would otherwise be the case. However, in FDD, devel-
opers are also concerned with a high number of false positive warnings (Chapter 2). To
reduce these, we need to define more precise methods than just checking on the package-
level whether projects are susceptible to a certain vulnerability of a dependency feature
they might not even be using. While our investigation focused on a largely quantitative
analysis of software artifacts, Vassallo et al. took a developer-centric stance on ASATs

7.4 Implications

7

173

and re-used our GDC [369]. Their survey of 41 developers confirmed core findings of our
study, for example that developers tend to only evolve ASAT configurations hesitantly.

In Chapter 3, we introduced the Last Line Effect. Based on our definition and algo-
rithms to identify micro-clones, van Tonder implemented checks for faulty micro-clones
in Facebook’s ASAT for PHP, pfff. Van Tonder and Le Goues then performed a study on
the prevalence of suchmicro-clones amongmore than 380,000 Java repositories on GitHub
and found more than 24,000 faulty micro-clones in them. They provided fixes to projects
for 43 of these, directly having an impact on the quality of OSS projects. While technically
challenging to detect, researchers have not nearly exhausted the research possibilities that
the definition of micro-clones has opened up.

Chapter 5 introduced the concept of Continuous Integration build log analysis. We
used it to gain insights into testing in a CI environment. The next logical step was to apply
the same approach to study ASATs use, as discussed in Chapter 2, in a CI environment,
which Zampetti et al. followed up with [370]. Rausch et al. also used and described the
two underlying technologies we devised to study Travis CI, namely an automatic buildlog
parsing and a method to link Travis builds to Git commits on GitHub [371]. Chapter 5
also suggested a method to discern flaky tests by triggering a re-execution of their builds
on Travis CI. Labuschagne et al. used this method to determine the flakiness of tests on
Travis CI [372].

With our study on Travis CI (Chapter 5), we have done research into the CI server.
Our study was confined to the Ruby and Java ecosystems. We need a comparison of CI
practices across a wider-body of languages, particularly from other programming para-
digms such as functional languages, to gain a holistic understanding of CI. TravisTor-
rent has seen adoption in- and outside the MSR community (Section 7.4). The Travis-
Torrent data set has already allowed fellow researchers to predict the outcome of a build
or its duration with very high accuracy [373, 374], measure the difference of external ver-
sus internal contributions [375], determine the influence of the sentiment expressed in a
commit message on its build outcome [376], do a general factor analyses to discover the
components influencing CI build outcomes [377, 378], or perform time-dependent anal-
yses [379]. At this point, TravisTorrent is a static snapshot of a data set over a fixed
number of projects that requires considerable manual efforts to update. A live version
of TravisTorrent with streaming analytics would allow not only researchers to obtain
information from other than our pre-selected projects, but also give project maintainers
and developers the option to retrieve build statistics about their own projects. Coupled
with highly accurate build prediction (Section 7.4), the use of such data could significantly
shorten the feedback cycle from remote testing. Practitioners do not necessarily have to
resort to complex machine learning algorithms to gain advantages from it: Having the CI
environment order test executions based on historic run information could be an easy and
efficient way to make builds fail fast without having to build a prediction model.

With WatchDog, we studied how dynamic analysis works locally (Chapter 4). Simi-
larly, researchers could re-purpose WatchDog to study how developers work with feed-
back from ASATs in their IDEs. In fact, as an infrastructure, WatchDog lends itself to
generalization studies of any phenomenon about development work a researcher might
be interested in. As such, scientists could use it to study for example the exact code cre-
ation process 2⃝ in Figure 1.1, which is outside the scope of FDD. Local testing (or ASAT

7

174 7 Conclusion

use), however, is not intrinsically refined to the IDE. Other places where it happens is on
the command-line or the CI server. Similarly, the primary environment of our study on
debugging (Chapter 6) was the IDE, but debugging can happen in a myriad of environ-
ments, for example in distributed systems. We need knowledge on how prevalent the use
of each of the different environments is and how developers’ usage patterns varies across
each other. Closely replicating some of our research questions on developer testing in the
IDE (Chapter 4), Blondeau et al. studied the testing habits of developers in one large IT
company [380]. Using their purpose-built IDE plugins for IntelliJ and Elcipse, they were
able to quantify that the testing behavior of the developers at the company in some cases
outperformed our participants, and in other cases very closely confirmed our observations.

7.4.2 Conclusion and Future Work on FDD
One could argue that channels such as the Q&A site Stack Overflow form a feedback-
loop, too, and characterize them in an extended version of FDD. Channels like chats such
as IRC, Q&A sites, fora, andmailing lists also differ in substantial aspects from code review-
ing. One key aspect is that developers can utilize crowd knowledge from programmers
outside their own organization. In contrast to code review, however, participation in such
fora is typically completely voluntary. These qualities make such fora unusual and inter-
esting to study, since we do not fully understand their impact on development and their
own dynamics.

In this thesis, we also studied the relationship between different components of FDD.
For example, intuitively, one would assume that spending more effort on testing would at
least eventually reduce developers’ debugging burden. However, at least at the individual
contributor level, that did not seem to be the case. Instead, it might have other benefits,
by pushing the discovery of problems upfront, rather than when the software is already
running in production. Moreover, we do not know how the presence of tests in the project
overall influences debugging, because we did not have insight into howmany tests existed
in the project in total. We need more holistic research also capturing a project’s repository
to understand this relationship better. Generally, the implementation of any stage in the
FDD process should lead to higher developer productivity or more efficient discovery of
problems, a promising avenue for future work.

Our FDD model describes and focuses on how developers interact with quality as-
surance methods that generate feedback. It is not, however, a complete theory of how
software development works. For example, interactions with other stakeholders, projects,
or the entire programming ecosystem are outside its current scope. Following Sjøberg et
al. [381], to build a theory from the FDD model requires us to follow a principled struc-
tured research approach, which would holistically address and validate the FDD model.
Going further, researchers could create a comprehensive theory of modern day Software
Engineering and embed FDD as one of its components.

175

Bibliography
URLs in this thesis have been archived on Archive.org. Their link target in digital editions
refers to this timestamped version.

References
[1] Moritz Beller. Toward an empirical theory of feedback-driven development. In 40th

International Conference on Software Engineering, ICSE 2018, Student Research Com-
petition, Gothenborg, Sweden, 2018. Open Access version: https://pure.tudelft.
nl/portal/files/40152814.

[2] Kevin Forsberg and Harold Mooz. The relationship of systems engineering to the
project cycle. Engineering Management Journal, 4(3):36–43, 1992.

[3] Martin Fowler and Jim Highsmith. The agile manifesto. Software Development,
9(8):28–35, 2001.

[4] LBS Raccoon. The chaos model and the chaos cycle. ACM SIGSOFT Software Engi-
neering Notes, 20(1):55–66, 1995.

[5] Kent Beck. Test Driven Development – by Example. Addison Wesley, 2003.

[6] Carlos Solis and Xiaofeng Wang. A study of the characteristics of behaviour driven
development. In Software Engineering and Advanced Applications (SEAA), 2011 37th
EUROMICRO Conference on, pages 383–387. IEEE, 2011.

[7] Janet Siegmund, Christian Kästner, Sven Apel, Chris Parnin, Anja Bethmann,
Thomas Leich, Gunter Saake, and André Brechmann. Understanding understand-
ing source code with functional magnetic resonance imaging. In Proceedings of the
International Conference on Software Engineering (ICSE), pages 378–389. ACM, 2014.

[8] Diomidis Spinellis. Reading, writing, and code. Queue, 1(7):84, 2003.

[9] Georgios Gousios, Martin Pinzger, and Arie van Deursen. An exploratory study of
the pull-based software development model. In Proceedings of the 36th International
Conference on Software Engineering, pages 345–355. ACM, 2014.

[10] Jean Hartmann and David J. Robson. Techniques for selective revalidation. IEEE
Software, 7(1):31–36, 1990.

[11] Gerald Kotonya and Ian Sommerville. Requirements engineering: processes and tech-
niques. Wiley Publishing, 1998.

176 Bibliography

[12] Laura Lehtola, Marjo Kauppinen, and Sari Kujala. Requirements prioritization chal-
lenges in practice. Product focused software process improvement, pages 497–508,
2004.

[13] Len Bass, Ingo Weber, and Liming Zhu. DevOps: A Software Architect’s Perspective.
Addison-Wesley Professional, 2015.

[14] Carmine Vassallo, Fiorella Zampetti, Daniele Romano, Moritz Beller, Annibale
Panichella, Massimiliano Di Penta, and Andy Zaidman. Continuous delivery prac-
tices in a large financial organization. In 2016 IEEE International Conference on Soft-
ware Maintenance and Evolution, ICSME 2016, Raleigh, NC, USA, October 2-7, 2016,
pages 519–528, 2016. Open Access version: https://pure.tudelft.nl/portal/

files/9159936/vassalloICSME2016.pdf.

[15] Chris Parnin, Eric Helms, Chris Atlee, Harley Boughton, Mark Ghattas, Andy
Glover, James Holman, John Micco, Brendan Murphy, Tony Savor, et al. The top 10
adages in continuous deployment. IEEE Software, 34(3):86–95, 2017.

[16] Katja Kevic, Brendan Murphy, Laurie Williams, and Jennifer Beckmann. Character-
izing experimentation in continuous deployment: a case study on bing. In Proceed-
ings of the 39th International Conference on Software Engineering: Software Engineer-
ing in Practice Track, pages 123–132. IEEE Press, 2017.

[17] Selman Ercan, Quinten Stokkink, and Alberto Bacchelli. Predicting answering times
on stack overflow. In Proceedings of the 12th Working Conference on Mining Software
Repositories, pages 442–445. IEEE Press, 2015.

[18] Kenneth Orr. Stack overflow is pretty amazing, 2010. https://explodingpixels.

wordpress.com/2010/01/08/stack-overflow-is-pretty-amazing/. Accessed Jan-
uary 19, 2018.

[19] Luca Ponzanelli, Alberto Bacchelli, and Michele Lanza. Seahawk: Stack overflow in
the ide. In Proceedings of the 2013 International Conference on Software Engineering,
pages 1295–1298. IEEE Press, 2013.

[20] Bogdan Vasilescu, Vladimir Filkov, and Alexander Serebrenik. Stackoverflow and
github: Associations between software development and crowdsourced knowledge.
In Social computing (SocialCom), 2013 international conference on, pages 188–195.
IEEE, 2013.

[21] Ashton Anderson, Daniel Huttenlocher, Jon Kleinberg, and Jure Leskovec. Discov-
ering value from community activity on focused question answering sites: a case
study of stack overflow. In Proceedings of the 18th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 850–858. ACM, 2012.

[22] Vaclav Rajlich and Prashant Gosavi. Incremental change in object-oriented pro-
gramming. IEEE software, 21(4):62–69, 2004.

References 177

[23] BA Wichmann, AA Canning, DL Clutterbuck, LA Winsborrow, NJ Ward, and DWR
Marsh. Industrial perspective on static analysis. Software Engineering Journal,
10(2):69–75, 1995.

[24] Bas Cornelissen, Andy Zaidman, Arie Van Deursen, Leon Moonen, and Rainer
Koschke. A systematic survey of program comprehension through dynamic analy-
sis. IEEE Transactions on Software Engineering, 35(5):684–702, 2009.

[25] Nathaniel Ayewah, William Pugh, J David Morgenthaler, John Penix, and YuQian
Zhou. Evaluating static analysis defect warnings on production software. In Proceed-
ings of the 7th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software
tools and engineering, pages 1–8. ACM, 2007.

[26] Alberto Bacchelli and Christian Bird. Expectations, outcomes, and challenges of
modern code review. In Proceedings of the 2013 international conference on software
engineering, pages 712–721. IEEE Press, 2013.

[27] Moritz Beller, Alberto Bacchelli, Andy Zaidman, and Elmar Juergens. Modern code
reviews in open-source projects: which problems do they fix? In Proceedings of
the 11th Working Conference on Mining Software Repositories, pages 202–211. ACM,
2014.

[28] Brittany Itelia Johnson et al. A tool (mis) communication theory and adaptive ap-
proach for supporting developer tool use, 2017. PhD Thesis.

[29] C. Lebeuf, M. A. Storey, and A. Zagalsky. Software bots. IEEE Software, 35(1):18–23,
January 2018.

[30] Josh Lerner and Jean Tirole. Some simple economics of open source. The journal of
industrial economics, 50(2):197–234, 2002.

[31] A Guzzi. Supporting Developers’ Teamwork from within the IDE. PhD thesis, TU
Delft, Delft University of Technology, 2015.

[32] JimWhitehead, Ivan Mistrík, John Grundy, and André Van der Hoek. Collaborative
software engineering: concepts and techniques. In Collaborative Software Engineer-
ing, pages 1–30. Springer, 2010.

[33] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli. Work practices
and challenges in pull-based development: The contributor’s perspective. In Pro-
ceedings of the 38th International Conference on Software Engineering, ICSE, May
2016.

[34] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie van Deursen.
Work practices and challenges in pull-based development: The integrator’s perspec-
tive. In Proceedings of the International Conference on Software Engineering (ICSE),
pages 358–368. IEEE, 2015.

178 Bibliography

[35] Vinod Valloppillil. Open source software: A (new?) development methodology.
Internal Microsoft memo, 1998. http://www.catb.org/esr/halloween/halloween1.

html. Accessed November 29, 2017.

[36] MicrosoftCorp. Microsoft open source programs office - providing open source com-
munity tooling, guidance and playbooks, 2017. https://opensource.microsoft.

com/resources. Accessed November 29, 2017.

[37] Steven Vaughan-Nichols. Why microsoft is turning into an
open-source company, 2017. http://www.zdnet.com/article/

why-microsoft-is-turning-into-an-open-source-company/. Accessed Novem-
ber 29, 2017.

[38] Amanda Lee, Jeffrey C Carver, and Amiangshu Bosu. Understanding the impres-
sions, motivations, and barriers of one time code contributors to floss projects: a
survey. In Proceedings of the 39th International Conference on Software Engineering,
pages 187–197. IEEE Press, 2017.

[39] Nadia Eghbal. Roads and bridges: The unseen labor behind our digital infrastructure.
Ford Foundation, 2016.

[40] Nolan Lawson. What it feels like to be an open-source
maintainer, 2017. https://nolanlawson.com/2017/03/05/

what-it-feels-like-to-be-an-open-source-maintainer/. Accessed Novem-
ber 29, 2017.

[41] Georgios Gousios. The GHTorrent dataset and tool suite. In Proceedings of the Work-
ing Conference on Mining Software Repositories (MSR), pages 233–236. IEEE, 2013.

[42] Barry Boehm, Hans Dieter Rombach, andMarvin V Zelkowitz. Foundations of empir-
ical software engineering: the legacy of Victor R. Basili. Springer Science & Business
Media, 2005.

[43] Laurent Bossavit. The Leprechauns of Software Engineering. Lulu.com, 2015.

[44] Mary Shaw. Writing good software engineering research papers: minitutorial. In
Proceedings of the 25th international conference on software engineering, pages 726–
736. IEEE Computer Society, 2003.

[45] B. Kitchenham and S Charters. Guidelines for performing systematic literature re-
views in software engineering, 2007.

[46] Antonia Bertolino. The (im)maturity level of software testing. SIGSOFT Softw. Eng.
Notes, 29(5):1–4, September 2004.

[47] Mika V Mäntylä, Juha Itkonen, and Joonas Iivonen. Who tested my software?
testing as an organizationally cross-cutting activity. Software Quality Journal,
20(1):145–172, 2012.

References 179

[48] E Mcgrath. Methodology matters: Doing research in the behavioral and social sci-
ences. In Readings in Human-Computer Interaction: Toward the Year 2000 (2nd ed.
Citeseer, 1995.

[49] Klaas-Jan Stol and Brian Fitzgerald. Theory-oriented software engineering. Science
of Computer Programming, 101:79–98, 2015.

[50] Foster Provost and Tom Fawcett. Data science and its relationship to big data and
data-driven decision making. Big Data, 1(1):51–59, 2013.

[51] John G Adair. The Hawthorne effect: A reconsideration of the methodological arti-
fact. Journal of applied psychology, 69(2):334–345, 1984.

[52] David A Braunholtz, Sarah JL Edwards, and Richard J Lilford. Are randomized
clinical trials good for us (in the short term)? evidence for a “trial effect”. Journal
of clinical epidemiology, 54(3):217–224, 2001.

[53] Will G Hopkins. A new view of statistics. 1997. http://sportsci.org/resource/

stats/. Accessed March 27, 2017.

[54] Kathy Charmaz and Linda Liska Belgrave. Grounded theory. Wiley Online Library,
2007.

[55] Adil E Shamoo and David B Resnik. Responsible conduct of research. Oxford Univer-
sity Press, 2009.

[56] Wikipedia. Open science, 2018. https://en.wikipedia.org/wiki/Open_sciencex.
Accessed February 6th, 2018.

[57] NWO. Open science, 2018. https://www.nwo.nl/en/policies/open+science. Ac-
cessed February 6th, 2018.

[58] Mark D Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Apple-
ton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino
da Silva Santos, Philip E Bourne, et al. The FAIR guiding principles for scientific
data management and stewardship. Scientific data, 3, 2016.

[59] Creative Commons. About the licenses. 2018. https://creativecommons.org/

licenses/. Accessed February 7th, 2018.

[60] Moritz Beller, Radjino Bholanath, Shane McIntosh, and Andy Zaidman. Analyzing
the state of static analysis: A large-scale evaluation in open source software.
In Proceedings of the 23rd IEEE International Conference on Software Analysis,
Evolution, and Reengineering, pages 470–481. IEEE, 2016. Open Access version:
https://pure.tudelft.nl/portal/files/8928493/2016_beller_bholanath_

mcintosh_zaidman_analyzing_the_state_of_static_analysis_a_large_scale_

evaluation_in_open_source_software.pdf.

180 Bibliography

[61] Tim Buckers, Clinton Cao, Michiel Doesburg, Boning Gong andg Sunwei Wang,
Moritz Beller, and Andy Zaidman. UAV: warnings from multiple automated static
analysis tools at a glance. In IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering, SANER 2017, Klagenfurt, Austria, February 20-24, 2017,
pages 472–476, 2017. Open Access version: https://pure.tudelft.nl/portal/

files/32869492/buckersSANER2017_2.pdf.

[62] Moritz Beller, Andy Zaidman, Andrey Karpov, and Rolf A. Zwaan. The last line ef-
fect explained. Empirical Software Engineering, 22(3):1508–1536, Jun 2017. Open
Access version: https://pure.tudelft.nl/portal/files/13457316/llee.pdf or
https://link.springer.com/article/10.1007%2Fs10664-016-9489-6 (publisher).

[63] Moritz Beller, Andy Zaidman, and Andrey Karpov. The last line effect. In 23rd Inter-
national Conference on Program Comprehension (ICPC), pages 240–243. ACM, 2015.
Open Access version: https://pure.tudelft.nl/portal/files/8957994/8928291.
pdf.

[64] Moritz Beller, Georgios Gousios, Annibale Panichella, Sebastian Proksch, Sven
Amann, and Andy Zaidman. Developer testing in the ide: Patterns, beliefs, and
behavior. IEEE Transactions on Software Engineering, PP(99):1–1, 2017. To appear.
Pre-print: http://ieeexplore.ieee.org/document/8116886/.

[65] Moritz Beller, Georgios Gousios, and Andy Zaidman. How (much) do de-
velopers test? In Proceedings of the 37th International Conference on Soft-
ware Engineering (ICSE), NIER Track, pages 559–562. IEEE, 2015. Open
Access version: https://pure.tudelft.nl/portal/files/8928078/2015_beller_

gousios_zaidman_how_much_do_developers_test.pdf.

[66] Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy Zaidman. When,
how, and why developers (do not) test in their IDEs. In Proceedings of the 10th
Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE), pages 179–190.
ACM, 2015.

[67] Moritz Beller, Igor Levaja, Annibale Panichella, Georgios Gousios, and Andy
Zaidman. How to catch ’em all: Watchdog, a family of ide plug-ins to assess
testing. In 3rd International Workshop on Software Engineering Research and
Industrial Practice (SER&IP 2016), pages 53–56. IEEE, 2016. Open Access ver-
sion: https://pure.tudelft.nl/portal/files/8928027/2016_beller_levaja_

panichella_gousios_zaidman_how_to_catch_em_all_watchdog_a_family_of_

ide_plug_ins_to_assess_testing.pdf.

[68] Moritz Beller, Georgios Gousios, and Andy Zaidman. Oops, my tests broke the
build: An explorative analysis of Travis CI with GitHub. In Proceedings of the 14th
International Conference on Mining Software Repositories (MSR), 2017. Open Access
version: https://pure.tudelft.nl/portal/files/21809641/bellerMSR2017.pdf.

[69] Moritz Beller, Georgios Gousios, and Andy Zaidman. Travistorrent: Synthesizing
travis ci and github for full-stack research on continuous integration. In Proceedings

References 181

of the Proceedings of the 14th International Conference on Mining Software Reposito-
ries (MSR), 2017. Open Access version: https://pure.tudelft.nl/portal/files/
21809391/bellerMSR2017miningchallenge.pdf.

[70] Moritz Beller, Niels Spruit, Diomidis Spinellis, and Andy Zaidman. On the di-
chotomy of debugging behavior among programmers. In 40th International Con-
ference on Software Engineering, ICSE 2018, Gothenborg, Sweden, 2018. Open Access
version: https://pure.tudelft.nl/portal/files/38319543/paper.pdf.

[71] Sebastiano Panichella, Annibale Panichella, Moritz Beller, Andy Zaidman, and Har-
ald C. Gall. The impact of test case summaries on bug fixing performance: an empiri-
cal investigation. In Proceedings of the 38th International Conference on Software Engi-
neering, ICSE 2016, Austin, TX, USA, May 14-22, 2016, pages 547–558, 2016. Open Ac-
cess version: https://pure.tudelft.nl/portal/files/8927923/PID4080971.pdf.

[72] Alberto Bacchelli and Moritz Beller. Double-blind review in software engineer-
ing venues: the community’s perspective. In Proceedings of the 39th International
Conference on Software Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-
28, 2017 - Companion Volume, pages 385–396, 2017. Open Access version: https:

//pure.tudelft.nl/portal/files/17721365/1589a385.pdf.

[73] Moritz Beller. Wie viel testen ist genug? Eclipse Magazin 1.15, Frankfurt am Main
(Germany), 2014.

[74] Moritz Beller. Test oder nichttesten, das ist hier die frage. Eclipse Magazin 2.16,
Frankfurt am Main (Germany), 2016.

[75] Moritz Beller. What we learned from analyzing 2+ million travis builds. A
summary of the paper [68] in the Travis CI blog. https://blog.travis-ci.com/
2016-07-28-what-we-learned-from-analyzing-2-million-travis-builds/.

[76] Moritz Beller. Become a travis ci logminer in themsr mining challenge 2017! https:
//blog.travis-ci.com/2017-01-16-travis-ci-mining-challenge/.

[77] Moritz Beller, Andy Zaidman, Tim Buckers, Clinton Cao, Michiel Doesburg, Boning
Gong, and SunweiWang. The unified asat visualizer (uav), a tool for comparingmul-
tiple asats on your java projects. IEEE Software Blog. http://blog.ieeesoftware.

org/2017_01_01_archive.html.

[78] NASA. JPL C Standard, 2015. Accessed on: November 14th, 2015.

[79] NASA. JPL Java Standard, 2015. Accessed on: November 14th, 2015.

[80] S. C. Johnson. Lint, a c program checker. In Computer Science Technical Report 65.
Bell Laboratories, 1977.

[81] Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. A survey of automated
techniques for formal software verification. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 27(7):1165–1178, 2008.

182 Bibliography

[82] David Hovemeyer andWilliam Pugh. Finding bugs is easy. SIGPLANNot., 39(12):92–
106, 2004.

[83] Pär Emanuelsson and Ulf Nilsson. A comparative study of industrial static analysis
tools. Electronic Notes in Theoretical Computer Science, 217(0):5–21, 2008.

[84] Coverity Inc. Effective management of static analysis vulnerabilities and defects.
White paper, Coverity Inc., 2009.

[85] Sarah Heckman and Laurie Williams. A systematic literature review of actionable
alert identification techniques for automated static code analysis. Information and
Software Technology, 53(4):363–387, 2011.

[86] Joseph Ruthruff, John Penix, David Morgenthaler, Sebastian Elbaum, and Gregg
Rothermel. Predicting accurate and actionable static analysis warnings: an exper-
imental approach. In Proceedings of the 30th international conference on Software
engineering, pages 341–350. ACM, 2008.

[87] Jasper Kamperman. Automated software inspection: A new approach to increased
software quality and productivity. White paper, Reasoning Inc., 2002.

[88] Sarah Heckman and Laurie Williams. On establishing a benchmark for evaluating
static analysis alert prioritization and classification techniques. In Proceedings of the
Second ACM-IEEE international symposium on Empirical software engineering and
measurement, pages 41–50. ACM, 2008.

[89] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. Why
don’t software developers use static analysis tools to find bugs? In 2013 35th Inter-
national Conference on Software Engineering (ICSE), pages 672–681. IEEE, 2013.

[90] Nick Rutar, Christian Almazan, and Jeffrey Foster. A comparison of bug finding
tools for java. In 15th International Symposium on Software Reliability Engineering,
pages 245–256, 2004.

[91] Stefan Wagner, Jan Jürjens, Claudia Koller, and Peter Trischberger. Comparing Bug
Finding Tools with Reviews and Tests, volume 3502 of Lecture Notes in Computer Sci-
ence, book section 4, pages 40–55. Springer Berlin Heidelberg, 2005.

[92] Fadi Wedyan, Dalal Alrmuny, and James Bieman. The effectiveness of automated
static analysis tools for fault detection and refactoring prediction. In International
Conference on Software Testing Verification and Validation, pages 141–150. IEEE,
2009.

[93] Sarah Heckman. Adaptively ranking alerts generated from automated static analy-
sis. Crossroads, 14(1):1–11, 2007.

[94] Sunghun Kim and Michael Ernst. Which warnings should i fix first? In Proceedings
of the the 6th joint meeting of the European software engineering conference and the
ACM SIGSOFT symposium on The foundations of software engineering, pages 45–54.
ACM, 2007.

References 183

[95] Ted Kremenek and Dawson Engler. Z-Ranking: Using Statistical Analysis to Counter
the Impact of Static Analysis Approximations, volume 2694 of Lecture Notes in Com-
puter Science, book section 16, pages 295–315. Springer Berlin Heidelberg, 2003.

[96] Nathaniel Ayewah, William Pugh, David Morgenthaler, John Penix, and YuQian
Zhou. Evaluating static analysis defect warnings on production software. In Proceed-
ings of the 7th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software
tools and engineering, pages 1–8. ACM, 2007.

[97] Stefan Wagner, Florian Deissenboeck, Michael Aichner, Johann Wimmer, and
Markus Schwalb. An evaluation of two bug pattern tools for java. In 1st Inter-
national Conference on Software Testing, Verification, and Validation, pages 248–257,
2008.

[98] Nathaniel Ayewah and William Pugh. The google findbugs fixit. In Proceedings of
the 19th international symposium on Software testing and analysis, pages 241–252.
ACM, 2010.

[99] Cesar Couto, João Montandon, Christofer Silva, and Marco Tulio Valente. Static
correspondence and correlation between field defects and warnings reported by a
bug finding tool. Software Quality Journal, 21(2):241–257, 2013.

[100] Akash Kumar Tripathi and Atul Gupta. A controlled experiment to evaluate the ef-
fectiveness and the efficiency of four static program analysis tools for java programs.
In Proceedings of the 18th International Conference on Evaluation and Assessment in
Software Engineering, page 23. ACM, 2014.

[101] IEEE. Ieee standard classification for software anomalies. IEEE Std 1044-1993, pages
1–32, 1994.

[102] Ram Chillarege, Inderpal Bhandari, Jarir Chaar, Michael Halliday, Diane Moebus,
Bonnie Ray, and Man-Yuen Wong. Orthogonal defect classification-a concept for
in-process measurements. IEEE Transactions on Software Engineering, 18(11):943–
956, 1992.

[103] Nachiappan Nagappan, Laurie Williams, John Hudepohl, Will Snipes, and Mladen
Vouk. Preliminary results on using static analysis tools for software inspection.
In 15th International Symposium on Software Reliability Engineering, pages 429–439,
2004.

[104] Jiang Zheng, Laurie Williams, Nachiappan Nagappan, Will Snipes, John Hudepohl,
and Mladen Vouk. On the value of static analysis for fault detection in software.
IEEE Transactions on Software Engineering, 32(4):240–253, 2006.

[105] Mika Mäntylä and Casper Lassenius. What types of defects are really discovered in
code reviews? IEEE Transactions on Software Engineering, 35(3):430–448, 2009.

[106] Khaled El Emam and Isabella Wieczorek. The repeatability of code defect classifi-
cations. In Proceedings of the Ninth International Symposium on Software Reliability
Engineering, pages 322–333, 1998.

184 Bibliography

[107] Jay P Kesan and Rajiv C Shah. Setting software defaults: Perspectives from law,
computer science and behavioral economics. Notre Dame L. Rev., 82:583, 2006.

[108] GitLab Inc. Code, test, and deploy together, 2015. https://about.gitlab.com/

about/. Accessed November 14, 2015.

[109] Google Inc. Bidding farewell to google code, 2015. http://google-opensource.

blogspot.nl/2015/03/farewell-to-google-code.html. Accessed November 6,
2017.

[110] Georgios Gousios, Bogdan Vasilescu, Alexander Serebrenik, and Andy Zaidman.
Lean ghtorrent: Github data on demand. In Proceedings of the 11th Working Confer-
ence on Mining Software Repositories, pages 384–387. ACM, 2014.

[111] R. Bholanath. Analyzing the State of Static Analysis: A Large-Scale
Evaluation in Open Source Software. Master’s thesis, Delft Univer-
sity of Technology, 2015. http://repository.tudelft.nl/view/ir/uuid:

3d834130-8dd7-420a-9af9-6e77761cdad6/.

[112] The Abilian Team. Abilian github repository, 2015. Accessed on: November 14th,
2015.

[113] GNU. The bash shell, 2015. https://gnu.org/software/bash/bash.html. Accessed
November 14th, 2015.

[114] Coverity Inc. Software testing and static analysis tools | coverity, 2014. http://www.
coverity.com/. Accessed October 3, 2014.

[115] Stack Exchange Inc. Stack Overflow, 2015. http://stackoverflow.com/. Accessed
November 9, 2017.

[116] Oliver Burn. checkstyle - checkstyle 5.9-snapshot, 2017. http://checkstyle.

sourceforge.net/. Accessed October 14, 2017.

[117] FindBugs. Findbugs™ - find bugs in java programs, 2014. http://findbugs.

sourceforge.net/. Accessed October 2, 2015.

[118] PMD. Pmd, 2014. http://pmd.sourceforge.net/. Accessed November 7, 2017.

[119] ESLint. Eslint - pluggable javascript linter, 2015. http://eslint.org/. Accessed
November 7, 2015.

[120] JSCS. Jscs - about, 2015. http://jscs.info/. Accessed May 7th, 2015.

[121] Anton Kovalyov. Jshint, a javascript code quality tool, 2015. http://jshint.com/.
Accessed November 7, 2015.

[122] Matthias Miller. Javascript lint, 2015. Accessed on: November 7th, 2015.

[123] Logilab. Pylint - code analysis for python | www.pylint.org, 2015. http://pylint.
org/. Accessed May 7, 2015.

References 185

[124] Bozhidar Batsov. Rubocop | a ruby static code analyzer, 2015. http://batsov.com/
rubocop/. Accessed November 7, 2017.

[125] Anton Kovalyov. http://jshint.com/docs/options/. jshint option reference, 2015.
Accessed May 8, 2015.

[126] Aragon Consulting Group, Inc. Krugle – #1 for enterprise code search, 2015. http:
//www.krugle.com. Accessed November 14, 2015.

[127] Stas Negara, Mohsen Vakilian, Nicholas Chen, Ralph Johnson, and Danny Dig. Is it
dangerous to use version control histories to study source code evolution?, pages 79–103.
ECOOP 2012–Object-Oriented Programming. Springer, 2012.

[128] Rahul Kumar and Aditya Nori. The economics of static analysis tools. In Proceedings
of the 2013 9th Joint Meeting on Foundations of Software Engineering, pages 707–710.
ACM, 2013.

[129] Georgios Gousios, Andy Zaidman, Margaret-Anne D. Storey, and Arie van Deursen.
Work practices and challenges in pull-based development: The integrator’s perspec-
tive. In Proceedings of the International Conference on Software Engineering (ICSE),
pages 358–368. IEEE, 2015.

[130] Travis CI GmbH. Travis continuous integration, 2015. Accessed on: November 14th,
2015.

[131] Coverity Inc. Coverity scan - github integration, 2015. https://scan.coverity.

com/github. Accessed October 21, 2015.

[132] Coverity Inc. Coverity scan - travis ci integration, 2017. https://scan.coverity.

com/travis_ci. Accessed November 6, 2017.

[133] Sebastiano Panichella, Venera Arnaoudova, Massimiliano Di Penta, and Giuliano
Antoniol. Would static analysis tools help developers with code reviews? In Proc.
International Conference on Software Analysis, Evolution, and Reengineering (SANER),
pages 161–170. IEEE, 2015.

[134] Tukaram Muske and Alexander Serebrenik. Survey of approaches for handling
static analysis alarms. In Proc. International Working Conference on Source Code
Analysis and Manipulation (SCAM), pages 157–166. IEEE, 2016.

[135] Brian Johnson and Ben Shneiderman. Tree-maps: A space-filling approach to the
visualization of hierarchical information structures. In Proc. of the 2nd Conference
on Visualization (VIS), pages 284–291. IEEE, 1991.

[136] Caitlin Sadowski, Jeffrey van Gogh, Ciera Jaspan, Emma Soederberg, and Collin
Winter. Tricorder: Building a program analysis ecosystem. In International Confer-
ence on Software Engineering (ICSE), 2015.

[137] Lars Heinemann, Benjamin Hummel, and Daniela Steidl. Teamscale: Software qual-
ity control in real-time. In Companion Proceedings of the Int’l Conference on Software
Engineering (ICSE), pages 592–595. ACM, 2014.

186 Bibliography

[138] G Campbell and Patroklos P Papapetrou. SonarQube in Action. Manning Publica-
tions Co., 2013.

[139] Coverity Scan Static Analysis. https://scan.coverity.com/. Accessed November
6, 2017.

[140] Tim Buckers, Clinton Cao, Michiel Doesburg, Boning Gong, Sunwei Wang,
Moritz Beller, and Andy Zaidman. Online Appendix for UAV: Warnings
From Multiple Automated Static Tools At A Glance. https://figshare.com/s/

05658ac8ff03d57a8d60.

[141] Sebastiano Panichella, Venera Arnaoudova, Massimiliano Di Penta, and Giuliano
Antoniol. Would static analysis tools help developers with code reviews? In
IEEE 22nd International Conference on Software Analysis, Evolution and Reengineer-
ing, pages 161–170. IEEE, 2015.

[142] Lars Heinemann, Benjamin Hummel, and Daniela Steidl. Teamscale: Software qual-
ity control in real-time. In Proceedings of the 36th ACM/IEEE International Conference
on Software Engineering (ICSE’14), 2014.

[143] Miryung Kim, Lawrence Bergman, Tessa Lau, and David Notkin. An ethnographic
study of copy and paste programming practices in oopl. In Proc. International Sym-
posium on Empirical Software Engineering (ISESE), pages 83–92. IEEE, 2004.

[144] Cory J Kapser and Michael W Godfrey. Cloning considered harmful–considered
harmful: patterns of cloning in software. Empirical Software Engineering, 13(6):645–
692, 2008.

[145] Stefan Bellon, Rainer Koschke, Giuliano Antoniol, Jens Krinke, and Ettore Merlo.
Comparison and evaluation of clone detection tools. IEEE Transactions on Software
Engineering, 33(9):577–591, 2007.

[146] Chanchal Roy, James Cordy, and Rainer Koschke. Comparison and evaluation of
code clone detection techniques and tools: A qualitative approach. Science of Com-
puter Programming, 74(7):470–495, 2009.

[147] J Martin Bland and Douglas G Altman. The odds ratio. Bmj, 320(7247):1468, 2000.

[148] Rainer Koschke. Survey of research on software clones. In Rainer Koschke, Ettore
Merlo, and Andrew Walenstein, editors, Duplication, Redundancy, and Similarity in
Software, number 06301 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2007.
Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss
Dagstuhl, Germany.

[149] Elmar Juergens, Florian Deissenboeck, Benjamin Hummel, and Stefan Wagner. Do
code clones matter? In Proceedings of the International Conference on Software Engi-
neering (ICSE), pages 485–495. IEEE, 2009.

[150] John R Anderson. Cognitive psychology and its implications. WH Freeman/Times
Books/Henry Holt & Co, 1990.

References 187

[151] M. Botvinick and D. C. Plaut. Doing without schema hierarchies: A recurrent con-
nectionist approach to routine sequential action and its pathologies. Psychological
Review, 111:395–429, 2004.

[152] R.P. Cooper and T. Shallice. Hierarchical schemas and goals in the control of se-
quential behaviour. Psychological Review, 113:887–916, 2006.

[153] J. G. Trafton, E. M. Altmann, and R. M. Ratwani. A memory for goals model of
sequence errors. Cognitive Systems Research, 12:134–143, 2011.

[154] Michael J Kane, Leslie H Brown, Jennifer CMcVay, Paul J Silvia, InezMyin-Germeys,
and Thomas R Kwapil. For whom the mind wanders, and when an experience-
sampling study of workingmemory and executive control in daily life. Psychological
science, 18(7):614–621, 2007.

[155] Alice F Healy. Proofreading errors on the word the: New evidence on reading units.
Journal of Experimental Psychology: Human Perception and Performance, 6(1):45,
1980.

[156] Julia E Moravcsik and Alice F Healy. Effect of meaning on letter detection. Journal
of Experimental Psychology: Learning, Memory, and Cognition, 21(1):82, 1995.

[157] JOHN J O’Malley and John Gallas. Noise and attention span. Perceptual and motor
skills, 44(3):919–922, 1977.

[158] Keisuke Fukuda and Edward K Vogel. Human variation in overriding attentional
capture. The Journal of Neuroscience, 29(27):8726–8733, 2009.

[159] Rijnard van Tonder and Claire Le Goues. Defending against the attack of the micro-
clones. In Program Comprehension (ICPC), 2016 IEEE 24th International Conference
on, pages 1–4. IEEE, 2016.

[160] Teresa Busjahn, Roman Bednarik, Andrew Begel, Martha Crosby, James H Paterson,
Carsten Schulte, Bonita Sharif, and Sascha Tamm. Eye movements in code reading:
Relaxing the linear order. In Proceedings of the International Conference on Program
Comprehension (ICPC), pages 255–265. ACM, 2015.

[161] Michiel deWit, Andy Zaidman, and Arie van Deursen. Managing code clones using
dynamic change tracking and resolution. In Proceedings of the International Confer-
ence on Software Maintenance (ICSM), pages 169–178. IEEE, 2009.

[162] Leo Meyerovich and Ariel Rabkin. Empirical analysis of programming language
adoption. In ACM SIGPLAN Notices, volume 48, pages 1–18. ACM, 2013.

[163] Chanchal K. Roy, Minhaz F. Zibran, and Rainer Koschke. The vision of software
clone management: Past, present, and future (keynote paper). In 2014 Software Evo-
lution Week - IEEE Conference on Software Maintenance, Reengineering, and Reverse
Engineering, (CSMR-WCRE), pages 18–33. IEEE, 2014.

188 Bibliography

[164] Ira D. Baxter, Andrew Yahin, Leonardo Mendonça de Moura, Marcelo Sant’Anna,
and Lorraine Bier. Clone detection using abstract syntax trees. In Proceedings of
the International Conference on Software Maintenance (ICSM), pages 368–377. IEEE,
1998.

[165] Hamid Abdul Basit and Stan Jarzabek. Efficient token based clone detection with
flexible tokenization. In Proceedings of the 6th joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering (ESEC/FSE), pages 513–516. ACM, 2007.

[166] Magdalena Balazinska, Ettore Merlo, Michel Dagenais, Bruno Lagüe, and Kostas
Kontogiannis. Measuring clone based reengineering opportunities. In Proceedings
of the International Software Metrics Symposium (METRICS), pages 292–303. IEEE,
1999.

[167] Cory Kapser and Michael Godfrey. A taxonomy of clones in source code: The re-
engineers most wanted list. In 2nd International Workshop on Detection of Software
Clones (IWDSC-03), volume 13, 2003.

[168] Jeffrey Svajlenko and Chanchal Kumar Roy. Evaluating modern clone detection
tools. In 30th IEEE International Conference on Software Maintenance and Evolution
(ICSME), pages 321–330. IEEE, 2014.

[169] Minhaz F. Zibran, Ripon K. Saha, Muhammad Asaduzzaman, and Chanchal K. Roy.
Analyzing and forecasting near-miss clones in evolving software: An empirical
study. In Proceedings of the International Conference on Engineering of Complex Com-
puter Systems (ICECCS), pages 295–304. IEEE, 2011.

[170] Chanchal K. Roy and James R. Cordy. A survey on software clone detection research.
Technical Report TR 2007-541, Queens University, 2007.

[171] Matthias Rieger, Stephane Ducasse, and Michele Lanza. Insights into system-wide
code duplication. In Proceedings of the Working Conference on Reverse Engineering
(WCRE), pages 100–109. IEEE, 2004.

[172] Debarshi Chatterji, Jeffrey C Carver, Beverly Massengil, Jason Oslin, Nicholas Kraft,
et al. Measuring the efficacy of code clone information in a bug localization task: An
empirical study. In Proceedings of the International Symposium on Empirical Software
Engineering and Measurement (ESEM), pages 20–29. IEEE, 2011.

[173] Nils Göde and Rainer Koschke. Frequency and risks of changes to clones. In Proceed-
ings of the International Conference on Software Engineering (ICSE), pages 311–320.
ACM, 2011.

[174] Katsuro Inoue, Yoshiki Higo, Norihiro Yoshida, Eunjong Choi, Shinji Kusumoto, Ky-
onghwan Kim, Wonjin Park, and Eunha Lee. Experience of finding inconsistently-
changed bugs in code clones of mobile software. In Proceedings of the International
Workshop on Software Clones (IWSC), pages 94–95. IEEE, 2012.

References 189

[175] Shuai Xie, Foutse Khomh, and Ying Zou. An empirical study of the fault-proneness
of clonemutation and clonemigration. In Proceedings of the 10thWorking Conference
on Mining Software Repositories (MSR). IEEE, 2013.

[176] Per Runeson. A survey of unit testing practices. IEEE Software, 23(4):22–29, 2006.

[177] Andrew Begel and Thomas Zimmermann. Analyze this! 145 questions for data
scientists in software engineering. In Proceedings of the International Conference on
Software Engineering (ICSE), pages 12–13. ACM, 2014.

[178] Leandro Sales Pinto, Saurabh Sinha, and Alessandro Orso. Understanding myths
and realities of test-suite evolution. In Proceedings of the Symposium on the Founda-
tions of Software Engineering (FSE), pages 33:1–33:11. ACM, 2012.

[179] Andy Zaidman, Bart Van Rompaey, Arie van Deursen, and Serge Demeyer. Study-
ing the co-evolution of production and test code in open source and industrial de-
veloper test processes through repository mining. Empirical Software Engineering,
16(3):325–364, 2011.

[180] Antonia Bertolino. Software testing research: Achievements, challenges, dreams. In
Proceedings of the International Conference on Software Engineering (ISCE), Workshop
on the Future of Software Engineering (FOSE), pages 85–103, 2007.

[181] Frederick Brooks. The mythical man-month. Addison-Wesley, 1975.

[182] Andy Zaidman, Bart Van Rompaey, Serge Demeyer, and Arie Van Deursen. Mining
software repositories to study co-evolution of production & test code. In Software
Testing, Verification, and Validation, 2008 1st International Conference on, pages 220–
229. IEEE, 2008.

[183] P. Runeson, M. Host, A. Rainer, and B. Regnell. Case Study Research in Software
Engineering: Guidelines and Examples. Wiley, 2012.

[184] Sebastian Proksch, Sarah Nadi, Sven Amann, and Mira Mezini. Enriching in-ide
process informationwith fine-grained source code history. In Proceedings of the 24th
International Conference on Software Analysis, Evolution, and Reengineering, pages
250–260. IEEE, 2017.

[185] Gerard Meszaros. xUnit Test Patterns: Refactoring Test Code. Addison-Wesley, 2007.

[186] Robert L. Glass, Ross Collard, Antonia Bertolino, James Bach, and Cem Kaner. Soft-
ware testing and industry needs. IEEE Software, 23(4):55–57, 2006.

[187] John Rooksby, Mark Rouncefield, and Ian Sommerville. Testing in the wild: The
social and organisational dimensions of real world practice. Comput. Supported
Coop. Work, 18(5-6):559–580, December 2009.

[188] TestRoots WatchDog. https://github.com/TestRoots/watchdog. Accessed June 6,
2017.

190 Bibliography

[189] Paul Muntean, Claudia Eckert, and Andreas Ibing. Context-sensitive detection of
information exposure bugs with symbolic execution. In Proceedings of the Inter-
national Workshop on Innovative Software Development Methodologies and Practices
(InnoSWDev), pages 84–93. ACM, 2014.

[190] Google Inc. and the Open Handset Alliance. Download android studio and sdk tools.
Accessed 2017/05/31.

[191] ReSharper Plugin Gallery. https://www.jetbrains.com/resharper/. Accessed June
6, 2017.

[192] Sven Amann, Sebastian Proksch, Sarah Nadi, and Mira Mezini. A study of visual
studio usage in practice. In 23rd International Conference on Software Analysis, Evo-
lution, and Reengineering (SANER), volume 1, pages 124–134. IEEE, 2016.

[193] Moritz Beller, Niels Spruit, and Andy Zaidman. How developers debug. PeerJ
Preprints, 5:e2743v1, 2017.

[194] Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. In Soviet physics doklady, volume 10, pages 707–710, 1966.

[195] Apache Maven Conventions. http://maven.apache.org/guides/getting-started.
Accessed June 6, 2017.

[196] John C. Munson and Sebastian G. Elbaum. Code churn: A measure for estimating
the impact of code change. In Proceedings of the International Conference on Software
Maintenance (ICSM), page 24. IEEE, 1998.

[197] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. An empirical
analysis of flaky tests. In Proceedings of the 22nd ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, pages 643–653. ACM, 2014.

[198] Hussan Munir, Krzysztof Wnuk, Kai Petersen, and Misagh Moayyed. An experi-
mental evaluation of test driven development vs. test-last development with indus-
try professionals. In Proceedings of the International Conference on Evaluation and
Assessment in Software Engineering (EASE), pages 50:1–50:10. ACM, 2014.

[199] Yahya Rafique and Vojislav B. Misic. The effects of test-driven development on
external quality and productivity: A meta-analysis. IEEE Transactions on Software
Engineering, 39(6):835–856, 2013.

[200] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling Language
Reference Manual, The (2Nd Edition). Pearson Higher Education, 2004.

[201] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction to Automata
theory, languages, and computation. Prentice Hall, 2007.

[202] S. S. Shapiro and M. B. Wilk. An analysis of variance test for normality (complete
samples). Biometrika, 52(3-4):591–611, 1965.

References 191

[203] J. L. Devore and N. Farnum. Applied Statistics for Engineers and Scientists. Duxbury,
1999.

[204] Sven Amann, Sebastian Proksch, and Sarah Nadi. FeedBaG: An Interaction Tracker
for Visual Studio. In Proceedings of the 24th International Conference on Program
Comprehension, pages 1–3. IEEE, 2016.

[205] Let’s Develop With TestRoots’ WatchDog. http://youtu.be/-06ymo7dSHk. Ac-
cessed June 7, 2017.

[206] Eclipse Marketplace: WatchDog Plugin. https://marketplace.eclipse.org/

content/testroots-watchdog. Accessed June 6, 2017.

[207] IntelliJ Marketplace: WatchDog Plugin. https://plugins.jetbrains.com/plugin/
7828-watchdog. Accessed June 6, 2017.

[208] ReSharper Plugin Gallery: FeedBaG++ Plugin. https://resharper-plugins.

jetbrains.com/packages/KaVE.Project/. Accessed June 6, 2017.

[209] Code Trails Marketplace: WatchDog Plugin. http://www.codetrails.com/blog/

test-analytics-testroots-watchdog. Accessed June 6, 2017.

[210] KAVE Datasets: Interaction Data, March 1, 2017. http://www.kave.cc/datasets/.
Accessed June 6, 2017.

[211] G. Rothermel and S. Elbaum. Putting your best tests forward. IEEE Software,
20(5):74–77, Sept 2003.

[212] Jonathan Bell, Gail Kaiser, Eric Melski, andMohan Datattreya. Efficient dependency
detection for safe java test acceleration. In Proceedings of the 10th joint meeting on
the Foundations of Software Engineering, pages 770–781. ACM, 2015.

[213] Fabio Palomba and Andy Zaidman. Does refactoring of test smells induce fixing
flaky tests? In Proceedings of the International Conference on Software Maintenance
and Evolution (ICSME), pages 1–12. IEEE, 2017.

[214] Torleif Halkjelsvik andMagne Jørgensen. From origami to software development: A
review of studies on judgment-based predictions of performance time. Psychological
Bulletin, 138(2):238, 2012.

[215] Carmine Vassallo, Gerald Schermann, Fiorella Zampetti, Daniele Romano, Philipp
Leitner, Andy Zaidman, Massimiliano Di Penta, and Sebastiano Panichella. A tale
of ci build failures: an open source and a financial organization perspective. In
Proceedings of the International Conference on Software Maintenance and Evolution
(ICSME), pages pages 183–193. IEEE.

[216] Andrew Patterson, Michael Kölling, and John Rosenberg. Introducing unit testing
with BlueJ. ACM SIGCSE Bulletin, 35(3):11–15, June 2003.

[217] Esther Derby, Diana Larsen, and Ken Schwaber. Agile retrospectives: Making good
teams great. Pragmatic Bookshelf, 2006.

192 Bibliography

[218] Victor Hurdugaci and Andy Zaidman. Aiding software developers to maintain de-
veloper tests. In Proceedings of the European Conference on Software Maintenance
and Reengineering (CSMR), pages 11–20. IEEE, 2012.

[219] Cosmin Marsavina, Daniele Romano, and Andy Zaidman. Studying fine-grained co-
evolution patterns of production and test code. In Proceedings International Working
Conference on Source Code Analysis and Manipulation (SCAM), pages 195–204. IEEE,
2014.

[220] Simone Romano, Davide Fucci, Giuseppe Scanniello, Burak Turhan, and Natalia Ju-
risto. Findings from a multi-method study on test-driven development. Information
and Software Technology, 2017.

[221] Milos Gligoric, Stas Negara, Owolabi Legunsen, and Darko Marinov. An empirical
evaluation and comparison of manual and automated test selection. In Proceedings
of the 29th ACM/IEEE international conference on Automated software engineering,
pages 361–372. ACM, 2014.

[222] Abraham Bookstein. Informetric distributions, part i: Unified overview. Journal of
the American Society for Information Science (1986-1998), 41(5):368, 1990.

[223] Roger S Pressman. Software engineering: a practitioner’s approach. Palgrave Macmil-
lan, 2005.

[224] Kim Herzig, Michaela Greiler, Jacek Czerwonka, and Brendan Murphy. The art
of testing less without sacrificing quality. In Proceedings of the 37th International
Conference on Software Engineering-Volume 1, pages 483–493. IEEE Press, 2015.

[225] Jeff Anderson, Saeed Salem, and Hyunsook Do. Improving the effectiveness of test
suite through mining historical data. In Proceedings of the 11th Working Conference
onMining Software Repositories, MSR 2014, pages 142–151, NewYork, NY, USA, 2014.
ACM.

[226] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Michele Lanza. Mining stackoverflow to turn the ide into a self-confident program-
ming prompter. In Proceedings of the Working Conference on Mining Software Repos-
itories (MSR), pages 102–111. ACM, 2014.

[227] Inozemtseva, Laura M. M. Data Science for Software Maintenance. PhD thesis, 2017.

[228] David Janzen and Hossein Saiedian. Test-driven development: Concepts, taxonomy,
and future direction. Computer, (9):43–50, 2005.

[229] Neil Borle, Meysam Feghhi, and AbramHindle. Analysis of test driven development
on sentiment and coding activities in github repositories. PeerJ PrePrints, 4:e1920,
2016.

[230] Simone Romano, Davide Fucci, Giuseppe Scanniello, Burak Turhan, and Natalia Ju-
risto. Results from an ethnographically-informed study in the context of test driven
development. In Proceedings of the 20th International Conference on Evaluation and

References 193

Assessment in Software Engineering, EASE ’16, pages 10:1–10:10, New York, NY, USA,
2016. ACM.

[231] Jerod W Wilkerson, Jay F Nunamaker Jr, and Rick Mercer. Comparing the defect
reduction benefits of code inspection and test-driven development. Software Engi-
neering, IEEE Transactions on, 38(3):547–560, 2012.

[232] Andy Oram and Greg Wilson. Making software: What really works, and why we
believe it. ” O’Reilly Media, Inc.”, 2010.

[233] Sami Kollanus. Test-driven development-still a promising approach? In Quality of
Information and Communications Technology (QUATIC), 2010 Seventh International
Conference on the, pages 403–408. IEEE, 2010.

[234] Hakan Erdogmus, Maurizio Morisio, and Marco Torchiano. On the effectiveness of
the test-first approach to programming. IEEE Transactions on software Engineering,
31(3):226–237, 2005.

[235] LaurieWilliams, EMichaelMaximilien, andMladen Vouk. Test-driven development
as a defect-reduction practice. In Software Reliability Engineering, 2003. ISSRE 2003.
14th International Symposium on, pages 34–45. IEEE, 2003.

[236] Nachiappan Nagappan, E Michael Maximilien, Thirumalesh Bhat, and Laurie
Williams. Realizing quality improvement through test driven development: results
and experiences of four industrial teams. Empirical Software Engineering, 13(3):289–
302, 2008.

[237] Matthias M Müller and Frank Padberg. About the return on investment of test-
driven development. In 5th International Workshop on Economic-driven Software
Engineering Research, page 26, 2003.

[238] Gerardo Canfora, Aniello Cimitile, Felix Garcia, Mario Piattini, and Corrado Aaron
Visaggio. Evaluating advantages of test driven development: a controlled experi-
ment with professionals. In Proceedings of the 2006 ACM/IEEE International Sympo-
sium on Empirical Software Engineering, pages 364–371. ACM, 2006.

[239] Joint Task Force on Computing Curricula, IEEE Computer Society, and Association
for Computing Machinery. Curriculum guidelines for undergraduate degree pro-
grams in software engineering. http://www.acm.org/binaries/content/assets/

education/se2014.pdf. Accessed June 6, 2017.

[240] David S Janzen and Hossein Saiedian. Does test-driven development really improve
software design quality? Software, IEEE, 25(2):77–84, 2008.

[241] David Heinemeier Hansson. TDD is dead. long live testing. http://

david.heinemeierhansson.com/2014/tdd-is-dead-long-live-testing.html. Ac-
cessed June 6, 2017.

194 Bibliography

[242] David Heinemeier Hansson. Test-induced design damage. http://david.

heinemeierhansson.com/2014/test-induced-design-damage.html. Accessed June
6, 2017.

[243] David Heinemeier Hansson, Kent Beck, and Martin Fowler. Is TDD dead? https:

//youtu.be/z9quxZsLcfo. Accessed April 13, 2016.

[244] Android Studio Documentation: Test Your App. https://developer.android.com/
studio/test/index.html. Accessed June 12, 2017.

[245] Terry Connolly and Doug Dean. Decomposed versus holistic estimates of effort
required for software writing tasks. Management Science, 43(7):1029–1045, 1997.

[246] Ilinca Ciupa. Test studio: An environment for automatic test generation based on
design by contract, 2004.

[247] André N. Meyer, Thomas Fritz, Gail C. Murphy, and Thomas Zimmermann. Soft-
ware developers’ perceptions of productivity. In Proceedings of the International
Symposium on Foundations of Software Engineering (FSE), pages 19–29. ACM, 2014.

[248] LesHatton. How accurately do engineers predict softwaremaintenance tasks? Com-
puter, (2):64–69, 2007.

[249] Michael M Roy, Nicholas JS Christenfeld, and Craig RMMcKenzie. Underestimating
the duration of future events: memory incorrectly used or memory bias? Psycho-
logical bulletin, 131(5):738, 2005.

[250] Michael M Roy, Scott T Mitten, and Nicholas JS Christenfeld. Correcting memory
improves accuracy of predicted task duration. Journal of Experimental Psychology:
Applied, 14(3):266, 2008.

[251] Magne Jørgensen and Dag Sjøberg. Generalization and theory-building in software
engineering research. Empirical Assessment in Software Eng. Proc, pages 29–36, 2004.

[252] Dag IK Sjoberg, Tore Dyba, and Magne Jorgensen. The future of empirical methods
in software engineering research. In Future of Software Engineering, 2007. FOSE’07,
pages 358–378. IEEE, 2007.

[253] André N Meyer, Thomas Fritz, Gail C Murphy, andThomas Zimmermann. Software
developers’ perceptions of productivity. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pages 19–29. ACM,
2014.

[254] Emily IMCollins, Anna L Cox, Jon Bird, and Daniel Harrison. Social networking use
and rescuetime: the issue of engagement. In Proceedings of the 2014 ACM Interna-
tional Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication,
pages 687–690. ACM, 2014.

References 195

[255] Philip M Johnson, Hongbing Kou, Joy Agustin, Christopher Chan, Carleton Moore,
Jitender Miglani, Shenyan Zhen, and William EJ Doane. Beyond the personal soft-
ware process: Metrics collection and analysis for the differently disciplined. In Pro-
ceedings of the 25th international Conference on Software Engineering, pages 641–646.
IEEE Computer Society, 2003.

[256] Lile Hattori andMichele Lanza. Syde: a tool for collaborative software development.
In Proceedings of the International Conference on Software Engineering (ICSE), pages
235–238. ACM, 2010.

[257] Romain Robbes and Michele Lanza. Spyware: a change-aware development toolset.
In Proceedings of the International Conference on Software Engineering (ICSE), pages
847–850. ACM, 2008.

[258] Stas Negara, Nicholas Chen, Mohsen Vakilian, Ralph E. Johnson, and Danny Dig. A
comparative study of manual and automated refactorings. In Proceedings of the 27th
European Conference on Object-Oriented Programming, pages 552–576, 2013.

[259] Roberto Minelli, Andrea Mocci, Michele Lanza, and Lorenzo Baracchi. Visualizing
developer interactions. In Proceedings of the Working Conference on Software Visu-
alization (VISSOFT), pages 147–156. IEEE, 2014.

[260] Hongbing Kou, Philip M Johnson, and Hakan Erdogmus. Operational definition and
automated inference of test-driven development with zorro. Automated Software
Engineering, 17(1):57–85, 2010.

[261] PhilipM Johnson. Searching under the streetlight for useful software analytics. IEEE
software, (4):57–63, 2013.

[262] Oren Mishali, Yael Dubinsky, and Shmuel Katz. The TDD-Guide training and guid-
ance tool for test-driven development. In Agile Processes in Software Engineering
and Extreme Programming, pages 63–72. Springer, 2008.

[263] YihongWang andHakan Erdogmus. The role of process measurement in test-driven
development. In 4th Conference on Extreme Programming and Agile Methods, 2004.

[264] P.S. Kochhar, T.F. Bissyande, D. Lo, and Lingxiao Jiang. An empirical study of adop-
tion of software testing in open source projects. In Proceedings of the International
Conference on Quality Software (QSIC), pages 103–112. IEEE, 2013.

[265] Thomas D. LaToza, Gina Venolia, and Robert DeLine. Maintaining mental models:
a study of developer work habits. In Proceedings of the International Conference on
Software Engineering (ICSE), pages 492–501. ACM, 2006.

[266] Raphael Pham, Stephan Kiesling, Olga Liskin, Leif Singer, and Kurt Schneider. En-
ablers, inhibitors, and perceptions of testing in novice software teams. In Proceed-
ings of the International Symposium on Foundations of Software Engineering (FSE),
pages 30–40. ACM, 2014.

196 Bibliography

[267] Paul Dan Marinescu, Petr Hosek, and Cristian Cadar. Covrig: a framework for the
analysis of code, test, and coverage evolution in real software. In Proceedings of
the International Symposium on Software Testing and Analysis (ISSTA), pages 93–104.
ACM, 2014.

[268] Robert Feldt. Do system test cases grow old? In Proceedings of the International
Conference on Software Testing, Verification and Validation (ICST), pages 343–352.
IEEE, 2014.

[269] Dimitrios Athanasiou, Ariadi Nugroho, Joost Visser, and Andy Zaidman. Test code
quality and its relation to issue handling performance. IEEE Trans. Software Eng.,
40(11):1100–1125, 2014.

[270] Michaela Greiler, Arie van Deursen, and M Storey. Test confessions: a study of
testing practices for plug-in systems. In Software Engineering (ICSE), 2012 34th In-
ternational Conference on, pages 244–254. IEEE, 2012.

[271] Martin Fowler and Matthew Foemmel. Continuous integration. 2006.
http://www.dccia.ua.es/dccia/inf/asignaturas/MADS/2013-14/lecturas/

10_Fowler_Continuous_Integration.pdf.

[272] Michael A Cusumano and Richard W Selby. Microsoft secrets: how the world’s
most powerful software company creates technology, shapes markets, and manages
people, 1997.

[273] Kent Beck. Extreme programming explained: embrace change. Addison-Wesley Pro-
fessional, 2000.

[274] Martin Brandtner, Emanuel Giger, and Harald C. Gall. Sqa-mashup: A mashup
framework for continuous integration. Information & Software Technology, 65:97–
113, 2015.

[275] Raphael Pham, Leif Singer, Olga Liskin, Fernando Figueira Filho, and Kurt Schnei-
der. Creating a shared understanding of testing culture on a social coding site. In
Proceedings of the International Conference on Software Engineering (ICSE), pages
112–121. IEEE, 2013.

[276] Caitlin Sadowski, Jeffrey Van Gogh, Ciera Jaspan, Emma Soderberg, and CollinWin-
ter. Tricorder: Building a program analysis ecosystem. In Software Engineering
(ICSE), 2015 IEEE/ACM 37th IEEE International Conference on, volume 1, pages 598–
608. IEEE, 2015.

[277] Jonathan Rasmusson. Long build trouble shooting guide. In Carmen Zannier, Hakan
Erdogmus, and Lowell Lindstrom, editors, Extreme Programming and Agile Methods
- XP/Agile Universe 2004, volume 3134 of LNCS, pages 13–21. Springer, 2004.

[278] Hyunmin Seo, Caitlin Sadowski, Sebastian Elbaum, Edward Aftandilian, and Robert
Bowdidge. Programmers’ build errors: A case study (at Google). In Proceedings of
the International Conference on Software Engineering (ICSE), pages 724–734. ACM,
2014.

References 197

[279] Bogdan Vasilescu, Stef Van Schuylenburg, Jules Wulms, Alexander Serebrenik, and
Mark GJ van den Brand. Continuous integration in a social-coding world: Empirical
evidence from GitHub. In Proceedings of the International Conference on Software
Maintenance and Evolution (ICSME), pages 401–405. IEEE, 2014.

[280] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir
Filkov. Quality and productivity outcomes relating to continuous integration in
GitHub. In Proceedings of the 10th Joint Meeting of the European Software Engineer-
ing Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE), pages 805–816. ACM, 2015.

[281] P. M. Duvall, S. Matyas, and A. Glover. Continuous integration: improving software
quality and reducing risk. Pearson Education, 2007.

[282] Lutz Prechelt. An empirical comparison of seven programming languages. Com-
puter, 33(10):23–29, 2000.

[283] Per Runeson, Carina Andersson, Thomas Thelin, Anneliese Andrews, and Tomas
Berling. What do we know about defect detection methods? Software, IEEE,
23(3):82–90, 2006.

[284] David Janzen and Hossein Saiedian. Test-driven development: Concepts, taxonomy,
and future direction. IEEE Computer, 38(9):43–50, 2005.

[285] Daniel Ståhl and Jan Bosch. Modeling continuous integration practice differences
in industry software development. Journal of Systems and Software, 87:48–59, 2014.

[286] R. Ablett, E. Sharlin, F. Maurer, J. Denzinger, and C. Schock. Buildbot: Robotic
monitoring of agile software development teams. In Proceedings of the International
Symposium on Robot and Human interactive Communication (RO-MAN), pages 931–
936. IEEE, 2007.

[287] R.O. Rogers. Scaling continuous integration. In Extreme programming and agile
processes in software engineering, number 3092 in LNCS, pages 68–76. 2004.

[288] Christina Watters and Peter Johnson. Version numbering in single development
and test environment, December 29 2011. US Patent App. 13/339,906.

[289] What is Travis CI. https://github.com/travis-ci/travis-ci/blob/

2ea7620f4be51a345632e355260b22511198ea64/README.textile#goals.

[290] Travis CI. Travis ci api documentation. http://docs.travis-ci.com/user/

getting-started/.

[291] Travis CI. Travis ci plans and costs. https://travis-ci.com/plans.

[292] Dirk Merkel. Docker: lightweight Linux containers for consistent development and
deployment. Linux Journal, 2014(239), 2014.

[293] Travis CI. Travis ci rest api. https://api.travis-ci.org/.

198 Bibliography

[294] Moritz Beller (Inventitech). Travis ci memory leak issue. https://github.com/

travis-ci/travis.rb/issues/310.

[295] Travis CI. Undocumented travis log archive server. http://s3.amazonaws.com/

archive.travis-ci.org.

[296] O. Tange. GNU Parallel - the command-line power tool. ;login: The USENIX Maga-
zine, 36(1):42–47, Feb 2011.

[297] Shane McIntosh, Meiyappan Nagappan, Bram Adams, Audris Mockus, and
Ahmed E. Hassan. A large-scale empirical study of the relationship between build
technology and build maintenance. Empirical Software Engineering, 20(6):1587–
1633, 2015.

[298] David Chelimsky, Dave Astels, Bryan Helmkamp, Dan North, Zach Dennis, and
Aslak Hellesoy. The RSpec Book: Behaviour Driven Development with Rspec, Cucum-
ber, and Friends. Pragmatic Bookshelf, 1st edition, 2010.

[299] András Vargha and Harold D Delaney. A critique and improvement of the CL com-
mon language effect size statistics of mcgraw and wong. Journal of Educational and
Behavioral Statistics, 25(2):101–132, 2000.

[300] Vigdis By Kampenes, Tore Dybå, Jo E Hannay, and Dag IK Sjøberg. A systematic
review of effect size in software engineering experiments. Information and Software
Technology, 49(11):1073–1086, 2007.

[301] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M. Ger-
man, and Daniela Damian. The promises and perils of mining github (extended
version). Empirical Software Engineering, 2015. Accepted for publication.

[302] Github. Language trends on GitHub. https://github.com/blog/

2047-language-trends-on-github.

[303] Scala. Github repository of scala. https://github.com/scala/scala.

[304] Scala. The ci server of scala. https://scala-ci.typesafe.com/.

[305] MathiasMeyer. The Travis CI blog: Supporting the ruby ecosystem, together. https:
//blog.travis-ci.com/2016-02-03-supporting-the-ruby-ecosystem-together.

[306] L. Tratt and R. Wuyts. Guest editors’ introduction: Dynamically typed languages.
IEEE Software, 24(5):28–30, 2007.

[307] Diomidis Spinellis. Effective Debugging: 66 Specific Ways to Debug Software and
Systems. Addison-Wesley, 2016.

[308] Qin Zhao, Rodric Rabbah, Saman Amarasinghe, Larry Rudolph, and Weng-Fai
Wong. How to do a million watchpoints: efficient debugging using dynamic in-
strumentation. In Proceedings of the Joint European Conferences on Theory and
Practice of Software and 17th international conference on Compiler construction
(CC’08/ETAPS’08), pages 147–162. Springer, 2008.

References 199

[309] Brian W Kernighan and Phillip James Plauger. The elements of programming style.
The elements of programming style, by Kernighan, Brian W.; Plauger, PJ New York:
McGraw-Hill, c1978., 1978.

[310] Andreas Zeller. Why Programs Fail, Second Edition: A Guide to Systematic Debugging.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2nd edition, 2009.

[311] Benjamin Siegmund, Michael Perscheid, Marcel Taeumel, and Robert Hirschfeld.
Studying the advancement in debugging practice of professional software develop-
ers. In Software Reliability Engineering Workshops (ISSREW), 2014 IEEE International
Symposium on, pages 269–274. IEEE, 2014.

[312] P.W. Oman, C.R. Cook, and M. Nanja. Effects of programming experience in debug-
ging semantic errors. Journal of Systems and Software, 9(3):197––207, 1989.

[313] Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. A model for spectra-based
software diagnosis. ACMTrans. Softw. Eng. Methodol., 20(3):11:1–11:32, August 2011.

[314] Satish Chandra, Emina Torlak, Shaon Barman, and Rastislav Bodik. Angelic debug-
ging. In Software Engineering (ICSE), 2011 33rd International Conference on, pages
121–130. IEEE, 2011.

[315] Yi Wei, Yu Pei, Carlo A. Furia, Lucas S. Silva, Stefan Buchholz, Bertrand Meyer, and
Andreas Zeller. Automated fixing of programs with contracts. In Proceedings of
the 19th International Symposium on Software Testing and Analysis, ISSTA ’10, pages
61–72. ACM, 2010.

[316] Muhammad Zubair Malik, Junaid Haroon Siddiqi, and Sarfraz Khurshid. Constraint-
based program debugging using data structure repair. In Software Testing, Verifica-
tion and Validation (ICST), 2011 IEEE Fourth International Conference on, pages 190–
199. IEEE, 2011.

[317] Henry Lieberman. The debugging scandal and what to do about it (introduction to
the special section). Commun. ACM, 40(4):26–29, 1997.

[318] Richard Stallman, Roland Pesch, Stan Shebs, et al. Debugging with GDB. Free Soft-
ware Foundation, 10 edition, 2011.

[319] Ed Burnette. Eclipse IDE Pocket Guide. O’Reilly Media, Inc., 2005.

[320] Even Adams and Steven S. Muchnick. dbxtool: A window-based symbolic debugger
for Sun workstations. Software: Practice and Experience, 16(7):653–669, July 1986.

[321] Norman Matloff and Peter Jay Salzman. The Art of Debugging with GDB, DDD, and
Eclipse. No Starch Press, San Francisco, 2008.

[322] Bert Beander. VAXDEBUG: An interactive, symbolic, multilingual debugger. InM.S.
Johnson, editor, Proceedings of the Software Engineering Symposium on High-Level
Debugging, pages 173–179. ACM SIGSOFT/SIGPLAN, March 1983.

200 Bibliography

[323] Bill Tuthill and Kevin J. Dunlap. Debugging with dbx. In UNIX Programmer’s Sup-
plementary Documents, Volume 1. Computer Systems Research Group, Department
of Electrical Engineering and Computer Science, University of California, Berkeley,
California 94720, April 1986. 4.3 Berkeley Software Distribution.

[324] Andreas Zeller and Dorothea Lütkehaus. DDD – a free graphical front-end for unix
debuggers. ACM Sigplan Notices, 31(1):22–27, 1996.

[325] Andrew Ko and Brad Myers. Debugging reinvented. In Software Engineering, 2008.
ICSE’08. ACM/IEEE 30th International Conference on, pages 301–310. IEEE, 2008.

[326] David J Gilmore. Models of debugging. Acta psychologica, 78(1):151–172, 1991.

[327] Andreas Zeller. Isolating cause-effect chains from computer programs. In Proceed-
ings of the 10th ACM SIGSOFT symposium on Foundations of software engineering,
pages 1–10. ACM, 2002.

[328] Frank Eichinger, Klaus Krogmann, Roland Klug, and Klemens Böhm. Software-
defect localisation by mining dataflow-enabled call graphs. In Machine Learning
and Knowledge Discovery in Databases, pages 425–441. Springer, 2010.

[329] Saeed Parsa, Mojtaba Vahidi-Asl, Somaye Arabi, and Behrouz Minaei-Bidgoli. Soft-
ware fault localization using elastic net: A new statistical approach. In Advances in
Software Engineering, pages 127–134. Springer, 2009.

[330] David Abramson, Clement Chu, Donny Kurniawan, and Aaron Searle. Relative
debugging in an integrated development environment. Software: Practice and Expe-
rience, 39(14):1157–1183, 2009.

[331] Cheng Zhang, Juyuan Yang, Dacong Yan, Shengqian Yang, and Yuting Chen. Auto-
mated breakpoint generation for debugging. Journal of Software, 8(3), 2013.

[332] Jeremias Rößler, Gordon Fraser, Andreas Zeller, and Alessandro Orso. Isolating fail-
ure causes through test case generation. In Proceedings of the 2012 International Sym-
posium on Software Testing and Analysis, ISSTA 2012, pages 309–319. ACM, 2012.

[333] Yan Lei, Xiaoguang Mao, Ziying Dai, and Chengsong Wang. Effective statistical
fault localization using program slices. In Computer Software and Applications Con-
ference (COMPSAC), 2012 IEEE 36th Annual, pages 1–10, July 2012.

[334] Saeed Parsa, Farzaneh Zareie, and Mojtaba Vahidi-Asl. Fuzzy clustering the back-
ward dynamic slices of programs to identify the origins of failure. In Experimental
Algorithms, pages 352–363. Springer, 2011.

[335] Michael Perscheid and Robert Hirschfeld. Follow the path: Debugging tools for
test-driven fault navigation. In Software Maintenance, Reengineering and Reverse
Engineering (CSMR-WCRE), 2014 Software Evolution Week-IEEE Conference on, pages
446–449. IEEE, 2014.

References 201

[336] Kai Yu, Mengxiang Lin, Jin Chen, and Xiangyu Zhang. Practical isolation of failure-
inducing changes for debugging regression faults. In Automated Software Engineer-
ing (ASE), 2012 Proceedings of the 27th IEEE/ACM International Conference on, pages
20–29. IEEE, 2012.

[337] Alessandro Orso. Automated debugging: Are we there yet? https://www.youtube.

com/watch?v=WJHQnzLpVXk&feature=youtu.be, 2014. Accessed July 11, 2016].

[338] Michael Perscheid, Benjamin Siegmund, Marcel Taeumel, and Robert Hirschfeld.
Studying the advancement in debugging practice of professional software develop-
ers. Software Quality Journal, 25(1):83–110, 2016.

[339] Gail C Murphy, Mik Kersten, and Leah Findlater. How are Java software developers
using the Elipse IDE? IEEE software, 23(4):76–83, 2006.

[340] Chris Parnin and Spencer Rugaber. Resumption strategies for interrupted program-
ming tasks. Software Quality Journal, 19(1):5–34, 2011.

[341] Lucas Layman, Madeline Diep, Meiyappan Nagappan, Janice Singer, Robert Deline,
andGina Venolia. Debugging revisited: Toward understanding the debugging needs
of contemporary software developers. In Empirical Software Engineering and Mea-
surement, 2013 ACM/IEEE International Symposium on, pages 383–392. IEEE, 2013.

[342] David Piorkowski, Scott D. Fleming, Christopher Scaffidi, Margaret Burnett, Irwin
Kwan, Austin Z. Henley, Jamie Macbeth, Charles Hill, and Amber Horvath. To fix
or to learn? how production bias affects developers’ information foraging during
debugging. In Proceedings of the 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 11–20. IEEE, 2015.

[343] David J Piorkowski, Scott D Fleming, Irwin Kwan, Margaret M Burnett, Christopher
Scaffidi, Rachel KE Bellamy, and Joshua Jordahl. The whats and hows of program-
mers’ foraging diets. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 3063–3072. ACM, 2013.

[344] Marcel Böhme, Ezekiel O. Soremekun, Sudipta Chattopadhyay, Emamurho
Ugherughe, and Andreas Zeller. How developers debug software the dbgbench
dataset: Poster. In Proceedings of the 39th International Conference on Software Engi-
neering Companion (ICSE Companion), pages 244–246. IEEE, 2017.

[345] Marcel Böhme, Ezekiel O. Soremekun, Sudipta Chattopadhyay, Emamurho
Ugherughe, and Andreas Zeller. Where is the bug and how is it fixed? an exper-
iment with practitioners. In Proceedings of the 11th Joint Meeting of the European
Software Engineering Conference and Symopsium on the Foundations of Software En-
gineering (ESEC/FSE). IEEE, 2017.

[346] Fabio Petrillo, Zéphyrin Soh, Foutse Khomh, Marcelo Pimenta, Carla Freitas, and
Yann-Gaël Guéhéneuc. Understanding interactive debugging with swarm debug
infrastructure. In Proceedings of the 24th International Conference on Program Com-
prehension, pages 1–4. ACM, 2016.

202 Bibliography

[347] Brian W Kernighan. UNIX for Beginners. Bell Laboratories Murray Hill, NJ, 1978.

[348] Diomidis Spinellis. Debuggers and logging frameworks. IEEE Software, 23(3):98–99,
May/June 2006.

[349] Marcel Das, Peter Ester, and Lars Kaczmirek. Social and behavioral research and the
internet: Advances in applied methods and research strategies. Routledge, 2010.

[350] Donna Spencer. Card sorting: Designing usable categories. Rosenfeld Media, 2009.

[351] Priscilla E Greenwood andMichael S Nikulin. A guide to chi-squared testing, volume
280. John Wiley & Sons, 1996.

[352] Cay S Horstmann and Gary Cornell. Core Java 2: Volume I, Fundamentals. Pearson
Education, 2002.

[353] Jorge Ressia, Alexandre Bergel, and Oscar Nierstrasz. Object-centric debugging.
In Proceedings of the 34th International Conference on Software Engineering, pages
485–495. IEEE Press, 2012.

[354] Andrei Chiş, Tudor Gîrba, and Oscar Nierstrasz. The moldable debugger: A frame-
work for developing domain-specific debuggers. In International Conference on Soft-
ware Language Engineering, pages 102–121. Springer, 2014.

[355] Daniel A. Keim. Visual exploration of large data sets. Commun. ACM, 44(8):38–44,
2001.

[356] Organisation for Economic Co-Operation and Development. Average annual hours
actually worked per worker. http://stats.oecd.org/index.aspx?DataSetCode=

ANHRS, 2015. Accessed July 11, 2016].

[357] Vu Nguyen, Sophia Deeds-Rubin,Thomas Tan, and Barry Boehm. A SLOC counting
standard. In COCOMO II Forum, volume 2007, 2007.

[358] DevonH. O’Dell. The debuggingmind-set. Communications of the ACM, 60(6):40–45,
2017.

[359] Boris Beizer. Software testing techniques. New York, ISBN: 0-442-20672-0, 1990.

[360] Remodularizing Java programs for improved locality of feature implementations in
source code. Science of Computer Programming, 77(3):131–151, 2012.

[361] Guillaume Pothier and Éric Tanter. Back to the future: Omniscient debugging. IEEE
software, 26(6):78–85, 2009.

[362] Chronon Systems. Chronon, a DVR for Java. http://chrononsystems.com/, 2017.
Accessed November 9, 2017.

[363] Apple Inc. Xcode 8. https://developer.apple.com/xcode/, 2015. Accessed August
24, 2016.

References 203

[364] Gina Masullo Chen. Tweet this: A uses and gratifications perspective on how active
twitter use gratifies a need to connect with others. Computers in Human Behavior,
27(2):755–762, 2011.

[365] Roberto Minelli, Andrea Mocci, and Michele Lanza. I know what you did last sum-
mer: an investigation of how developers spend their time. In Proceedings of the 2015
IEEE 23rd International Conference on Program Comprehension, pages 25–35. IEEE
Press, 2015.

[366] David AW Soergel. Rampant software errors may undermine scientific results.
F1000Research, 3, 2014.

[367] Erik Meijer. Goto 2015 • one hacker way.

[368] Miju Han. Introducing security alerts on github, 2017. https://github.com/blog/
2470-introducing-security-alerts-on-github. Accessed January 26, 2018.

[369] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian Proksch, Andy
Zaidman, and Harald Gall. Context is king: The developer perspective on the usage
of static analysis tools. 2018.

[370] Fiorella Zampetti, Simone Scalabrino, Rocco Oliveto, Gerardo Canfora, and Massi-
miliano Di Penta. How open source projects use static code analysis tools in con-
tinuous integration pipelines. In Proceedings of the 14th International Conference on
Mining Software Repositories, pages 334–344. IEEE Press, 2017.

[371] Thomas Rausch, Waldemar Hummer, Philipp Leitner, and Stefan Schulte. An empir-
ical analysis of build failures in the continuous integration workflows of java-based
open-source software. In Proceedings of the 14th International Conference on Mining
Software Repositories, pages 345–355. IEEE Press, 2017.

[372] Adriaan Labuschagne, Laura Inozemtseva, and Reid Holmes. Measuring the cost of
regression testing in practice: A study of java projects using continuous integration.
In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2017, pages 821–830, New York, NY, USA, 2017. ACM.

[373] Ansong Ni and Ming Li. Cost-effective build outcome prediction using cascaded
classifiers. In Proceedings of the 14th International Conference on Mining Software
Repositories, pages 455–458. IEEE Press, 2017.

[374] Ekaba Bisong, Eric Tran, and Olga Baysal. Built to last or built too fast?: evaluating
prediction models for build times. In Proceedings of the 14th International Conference
on Mining Software Repositories, pages 487–490. IEEE Press, 2017.

[375] Marcel Rebouças, Renato O Santos, Gustavo Pinto, and Fernando Castor. How does
contributors’ involvement influence the build status of an open-source software
project? In Proceedings of the 14th International Conference on Mining Software
Repositories, pages 475–478. IEEE Press, 2017.

204 Bibliography

[376] Rodrigo Souza and Bruno Silva. Sentiment analysis of travis ci builds. In Proceedings
of the 14th International Conference on Mining Software Repositories, pages 459–462.
IEEE Press, 2017.

[377] Md Rakibul Islam and Minhaz F Zibran. Insights into continuous integration build
failures. In Proceedings of the 14th International Conference onMining Software Repos-
itories, pages 467–470. IEEE Press, 2017.

[378] Aakash Gautam, Saket Vishwasrao, and Francisco Servant. An empirical study of
activity, popularity, size, testing, and stability in continuous integration. In Pro-
ceedings of the 14th International Conference on Mining Software Repositories, pages
495–498. IEEE Press, 2017.

[379] Abigail Atchison, Christina Berardi, Natalie Best, Elizabeth Stevens, and Erik Lin-
stead. A time series analysis of travistorrent builds: to everything there is a season.
In Proceedings of the 14th International Conference on Mining Software Repositories,
pages 463–466. IEEE Press, 2017.

[380] Vincent Blondeau, Anne Etien, Nicolas Anquetil, Sylvain Cresson, Pascal Croisy,
and Stéphane Ducasse. What are the testing habits of developers? a case study
in a large it company. In Software Maintenance and Evolution (ICSME), 2017 IEEE
International Conference on, pages 58–68. IEEE, 2017.

[381] Dag IK Sjøberg, Tore Dybå, Bente CD Anda, and Jo E Hannay. Building theories
in software engineering. In Guide to advanced empirical software engineering, pages
312–336. Springer, 2008.

205

Glossary
ASAT Automated Static Analysis Tools (described in Chapter 2).

CI Continuous Integration.

FDD Feedback-Driven Development, a model of the modern code creation cycle that in-
volves acquiring and integrating feedback frommultiple sources and passing quality
gates in a highly customizable way (described in Chapter 1).

GDC General Defect Classification (described in Chapter 2).

GHTorrent A scalable, queriable, offline mirror of data offered through the GitHub REST
API.

GitHub Themost widely used collaborative software building platform (2018), free to use
for OSS.

IDE Integrated Development Environment. Common examples include Eclipse, IntelliJ,
Visual Studio, or Visual Code.

OSS Open-Source Software.

SLOC Source Lines of Code, a measure for the size of a software system, without whites-
paces and comments.

TDD Test-Driven Development, the method of continuously co-evolving test and produc-
tion code, originally proposed by Beck [5].

TestRoots Name of the NWO project under which this thesis has been carried out.

TGD Test-Guided Development, the act of loosely guiding one’s development efforts with
the help of tests (described in Chapter 4).

Travis CI The most wide-spread CI server on GitHub (2018), free to use for OSS.

TravisTorrent A free and open database of analyzed CI build logs from Travis CI (de-
scribed in Chapter 5).

UAV Unified ASAT Visualizer (described in Chapter 2).

WatchDog Infrastructure and series of plugins to assess telemetry data from developers’
behavior in the IDE (described in Chapters 4 and 6).

207

Curriculum Vitæ

Moritz Marc Beller

1988/07/30 Date of birth in Schweinfurt, Germany

Education

1/2014–1/2018 Ph.D. Student, Software Engineering Research Group,
Delft University of Technology, The Netherlands,
An Empirical Analysis of Feedback-Driven Development
Supervisor: Dr. Georgios Gousios
Promotors: Prof. Dr. Arie van Deursen, Dr. Andy Zaidman

10/2011–10/2013 M.Sc. Computer Science, Technische Universität München,
Germany,
Thesis: Quantifying Continuous Code Reviews, 1.0

9/2008–9/2011 B.Sc. Computer Science, Technische UniversitätMünchen, Ger-
many,
Thesis: Static Validation of ConQAT Architecture Descriptions,
1.0

8/2010–3/2011 Erasmus Abroad Studies, Linköpings Universitet, Sweden

9/1999–6/2008 University Entrance Diploma,
Celtis-Gymnasium, Schweinfurt, Germany, 1.7

Experience

6/2017–9/2017 Research Intern, Empirical Software Engineering Group,
Microsoft Research, Redmond (WA), USA,
Supervisor: Dr. Thomas Zimmermann

1/2016–2/2016 Visiting Researcher, The Computer Human Interaction &
Software Engineering Lab of Prof. Dr. Margaret-Anne Storey,

208 Curriculum Vitæ

University of Victoria, Canada

10/2011–3/2013 Student Intern as Software Engineer and Consultant
on ConQAT and Teamscale (teamscale.eu), CQSE GmbH,
München, Germany

1/2011–3/2011 Student Intern as Software Engineer in “Research &
Development,” Sick IVP A/B, Linköping, Sweden

8/2009–9/2009 Trainee, SKF Sverige A/B, SKF Competence Centre,
Gothenborg, Sweden

2/2009–9/2009 Student Researcher, Chair for Software and Systems Engineer-
ing, Technische Universität München, Germany

7/2007–8/2007 Student Intern, Central Department Research & Development,
SICK AG, Waldkirch, Germany

Academic Service

Chair Mining Challenge Chair, MSR 2017

Social Media Co-Chair, SCAM 2016

PC Member ISSTA 2018, Artifact Evaluation
MSR 2018, Mining Challenge
MSR 2018
ESEC/FSE, Tool Track, 2017
SANER, Tool Track, 2017
SCAM, Tool Track, 2015

Reviewer JSS 2016, 2017
EMSE 2015, 2017
ESEC/FSE 2015, 2017
SANER 2015, 2016
MSR 2014, 2016
SCAM 2014

Council Member PhD council of the Institute for Programming
Research and Algorithmics (IPA)

(Co-)Supervisor Radjino Bholanath’s Master Thesis “Analyzing the State of
Static Analysis: A Large-Scale Evaluation in Open Source Soft-
ware,” 2014–2015

Curriculum Vitæ 209

Niels Spruit’s Master Thesis “What Programmers Know About
Debugging And How They Use Their IDE Debuggers,” 2016

Igor Levaja’s Master Thesis on Developer Testing, 2015–2016

Context Project of a group of five Bachelor students, who cre-
ated a static analysis visualization tool, 2016

Bachelor End Project of a group of three students developing
an app for flight risk assessment, 2016

Teaching Assistant Software Testing and Quality Engineering, Prof. Dr. Arie van
Deursen, 2014
Software Engineering Methods, Dr. Alberto Bacchelli, 2014

Invited Talks & Lectures

Guest Lectures When, How, and Why Developers (Do Not) Test in Dr. Ali Mes-
bah’s Software Verification and Testing course at the University
of British Columbia (UBC), Vancouver, Canada, 22.2.2016

Empirical Studies in Software Engineering: 3 Examples in Dr. Al-
berto Bacchelli’s Mining Software Repositories course, Delft,
The Netherlands, 7.12.2015

Industry Talks Manual And Automated Static Analysis in Open Source Software:
Prevalence and Usage at Microsoft Research, Redmond, USA,
8.2.2016

How (Much) Do Developers Test? in Software Industry Confer-
ence (SINC), Bussum, The Netherlands, 12.3.2015.

TestRoots: Learn From Past Test Failures at TNG Techday, Mu-
nich, Germany, 28.11.2014.

When, How, and Why Developers (Do Not) Test at the Project
Quality Day, EclipseCon Europe 2015, Ludwigsburg, Germany,
4.11.2015.

How (Much) Do Developers Test? at Eclipse Democamp, Kassel,
Germany, 9.12.2014.

Test Analytics: How Much Testing Is Enough? in BOF-Session,
EclipseCon Europe 2014, Ludwigsburg, Germany, 28.10.2014.

211

List of Publications
 16. Moritz Beller : Toward an Empirical Theory of Feedback-Driven Development. To appear in

40th International Conference on Software Engineering (ICSE), Student Research Competi-
tion (SRC), Gothenborg, Sweden, 2018. Acceptance Rate 43% (10/23)

 15. Moritz Beller, Niels Spruit, Diomidis Spinellis, and Andy Zaidman. On the Dichotomy of
Debugging Behavior Among Programmers. To appear in 40th International Conference on
Software Engineering (ICSE), Gothenborg, Sweden, 2018. Acceptance Rate 21% (105/502)

 14. Moritz Beller, Georgios Gousios, Annibale Panichella, Sebastian Proksch, Sven Amann, Andy
Zaidman: Developer Testing in the IDE: Patterns, Beliefs, and Behavior. To appear in IEEE
Transactions on Software Engineering (TSE), 2018.

13. Alberto Bacchelli, Moritz Beller : Double-Blind Review in Software Engineering Venues. In
39th International Conference on Software Engineering (ICSE), Introspection track, Buenos
Aires (Argentina), 2017.

 12. Moritz Beller, Georgios Gousios, Andy Zaidman: Oops, My Tests Broke the Build: An Ex-
plorative Analysis of Travis CI with GitHub. In 14th International Conference on Mining
Software Repositories (MSR), Buenos Aires (Argentina), 2017. Acceptance Rate 31% (37/121)

 11. Moritz Beller, Georgios Gousios, Andy Zaidman: TravisTorrent: Synthesizing Travis CI and
GitHub for Full-Stack Research on Continuous Integration. In 14th International Conference
on Mining Software Repositories (MSR), Buenos Aires (Argentina), 2017. Acceptance Rate
25% (1/4)

 10. Tim Buckers, Clinton Cao, Michiel Doesburg, Boning Gong, Sunwei Wang, Moritz Beller,
Andy Zaidman: UAV: Warnings from Multiple Automated Static Tools at a Glance. In 24th
IEEE International Conference on Software Analysis, Evolution, and Reengineering (SANER),
Tool track, Klagenfurt (Austria), 2017. Acceptance Rate 55% (12/22)

 9. Moritz Beller, Andy Zaidman, Andrey Karpov, Rolf A. Zwaan: The Last Line Effect Explained.
In Empirical Software Engineering (EMSE), 2016.

8. Carmine Vassallo, Fiorella Zampetti, Daniele Romano, Moritz Beller, Annibale Panichella,
Massimiliano Di Penta, Andy Zaidman: Continuous Delivery Practices in a Large Financial
Organization. In 32nd International Conference on Software Maintenance and Evolution (IC-
SME), Industrial track, Raleigh (USA), 2016. Acceptance Rate 55% (12/22)

7. Sebastiano Panichella, Annibale Panichella, Moritz Beller, Andy Zaidman, Harald Gall: The
Impact of Test Case Summaries on Bug Fixing Performance: An Empirical Investigation. In
38th International Conference on Software Engineering (ICSE), Austin (USA), 2016. Accep-
tance Rate 19% (101/530)

212 List of Publications

 6. Moritz Beller, Igor Levaja, Annibale Panichella, Georgios Gousios, Andy Zaidman: How to
Catch ’Em All: WatchDog, a Family of IDE Plug-Ins to Assess Testing. In 3rd International
Workshop on Software Engineering Research and Industrial Practice (SER&IP 2016), Austin
(USA), 2016. Acceptance Rate 32% (10/31)

 5. Moritz Beller, Radjino Bholanath, Shane McIntosh, Andy Zaidman: Analyzing the State of
Static Analysis: A Large-Scale Evaluation. In Open Source Software in 23rd IEEE Inter-
national Conference on Software Analysis, Evolution, and Reengineering (SANER), Osaka
(Japan), 2016. Acceptance Rate 37% (52/140)

 4. Moritz Beller, Georgios Gousios, Annibale Panichella, Andy Zaidman: When, How, and Why
Developers (Do Not) Test in Their IDEs. In 10th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE), Bergamo (Italy), 2015. Acceptance Rate 25% (74/291)

 3. Moritz Beller, Andy Zaidman, Andrey Karpov: The Last Line Effect. In 23rd International
Conference on Program Comprehension (ICPC), Early Research Achievements (ERA) track,
Florence (Italy), 2015. Acceptance Rate 32% (7/22)

 2. Moritz Beller, Georgios Gousios, Andy Zaidman: How (Much) Do Developers Test? In 37th
International Conference on Software Engineering (ICSE), New Ideas and Emerging Results
(NIER) track, Florence (Italy), 2015. Acceptance Rate 18% (25/135)

1. Moritz Beller, Alberto Bacchelli, Andy Zaidman, Elmar Jürgens: Modern Code Reviews in
Open-Source Projects: Which Problems DoThey Fix? In 11thWorking Conference onMining
Software Repositories (MSR), Hyderabad (India), 2014. Acceptance Rate 34% (29/85)

 Included in this thesis.
 Won a best paper, tool demonstration, or proposal award.

Titles in the IPA Dissertation Series since 2015

G. Alpár. Attribute-Based Identity Man-
agement: Bridging the Cryptographic De-
sign of ABCs with the Real World. Fac-
ulty of Science, Mathematics and Com-
puter Science, RU. 2015-01

A.J. van der Ploeg. Efficient Abstractions
for Visualization and Interaction. Faculty
of Science, UvA. 2015-02

R.J.M. Theunissen. Supervisory Control
in Health Care Systems. Faculty ofMechan-
ical Engineering, TU/e. 2015-03

T.V. Bui. A Software Architecture for Body
Area Sensor Networks: Flexibility and Trust-
worthiness. Faculty of Mathematics and
Computer Science, TU/e. 2015-04

A. Guzzi. Supporting Developers’ Team-
work from within the IDE. Faculty of Elec-
trical Engineering, Mathematics, and Com-
puter Science, TUD. 2015-05

T. Espinha. Web Service Growing Pains:
Understanding Services and Their Clie-
nts. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2015-06

S. Dietzel. Resilient In-network Aggre-
gation for Vehicular Networks. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2015-07

E. Costante. Privacy throughout the Data
Cycle. Faculty of Mathematics and Com-
puter Science, TU/e. 2015-08

S. Cranen. Getting the point — Obtaining
and understanding fixpoints in model check-
ing. Faculty ofMathematics andComputer
Science, TU/e. 2015-09

R. Verdult. The (in)security of proprietary
cryptography. Faculty of Science, Mathe-
matics and Computer Science, RU. 2015-10

J.E.J. de Ruiter. Lessons learned in the
analysis of the EMV and TLS security proto-
cols. Faculty of Science, Mathematics and
Computer Science, RU. 2015-11

Y. Dajsuren. On the Design of an Ar-
chitecture Framework and Quality Evalua-
tion for Automotive Software Systems. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2015-12

J. Bransen. On the Incremental Evaluation
of Higher-Order Attribute Grammars. Fac-
ulty of Science, UU. 2015-13

S. Picek. Applications of Evolutionary
Computation to Cryptology. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2015-14

C. Chen. Automated Fault Localization
for Service-Oriented Software Systems. Fac-
ulty of Electrical Engineering, Mathemat-
ics, and Computer Science, TUD. 2015-15

S. te Brinke. Developing Energy-Aware
Software. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2015-16

R.W.J. Kersten. Software Analysis Meth-
ods for Resource-Sensitive Systems. Faculty
of Science, Mathematics and Computer
Science, RU. 2015-17

J.C. Rot. Enhanced coinduction. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2015-18

M. Stolikj. Building Blocks for the Inter-
net of Things. Faculty of Mathematics and
Computer Science, TU/e. 2015-19

D. Gebler. Robust SOS Specifications of
Probabilistic Processes. Faculty of Sci-
ences, Department of Computer Science,
VUA. 2015-20

M. Zaharieva-Stojanovski. Closer to Re-
liable Software: Verifying functional be-
haviour of concurrent programs. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2015-21

R.J. Krebbers. The C standard formalized
in Coq. Faculty of Science, Mathematics
and Computer Science, RU. 2015-22

R. van Vliet. DNA Expressions – A Formal
Notation for DNA. Faculty of Mathematics
and Natural Sciences, UL. 2015-23

S.-S.T.Q. Jongmans. Automata-Theoretic
Protocol Programming. Faculty of Mathe-
matics and Natural Sciences, UL. 2016-01

S.J.C. Joosten. Verification of Intercon-
nects. Faculty of Mathematics and Com-
puter Science, TU/e. 2016-02

M.W. Gazda. Fixpoint Logic, Games,
and Relations of Consequence. Faculty
of Mathematics and Computer Science,
TU/e. 2016-03

S. Keshishzadeh. Formal Analysis and
Verification of Embedded Systems for
Healthcare. Faculty of Mathematics and
Computer Science, TU/e. 2016-04

P.M. Heck. Quality of Just-in-Time
Requirements: Just-Enough and Just-in-
Time. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2016-05

Y. Luo. From Conceptual Models to Safety
Assurance – Applying Model-Based Tech-
niques to Support Safety Assurance. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2016-06

B. Ege. Physical Security Analysis of Em-
bedded Devices. Faculty of Science, Mathe-
matics and Computer Science, RU. 2016-07

A.I. van Goethem. Algorithms for Curved
Schematization. Faculty of Mathematics
and Computer Science, TU/e. 2016-08

T. van Dijk. Sylvan: Multi-core Deci-
sion Diagrams. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2016-09
I. David. Run-time resource manage-
ment for component-based systems. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2016-10
A.C. van Hulst. Control Synthesis us-
ing Modal Logic and Partial Bisimilarity –
A Treatise Supported by Computer Verified
Proofs. Faculty of Mechanical Engineering,
TU/e. 2016-11
A. Zawedde. Modeling the Dynamics of
Requirements Process Improvement. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2016-12
F.M.J. van den Broek. Mobile Communi-
cation Security. Faculty of Science, Mathe-
matics and Computer Science, RU. 2016-13
J.N. vanRijn. Massively Collaborative Ma-
chine Learning. Faculty of Mathematics
and Natural Sciences, UL. 2016-14
M.J. Steindorfer. Efficient Immutable Col-
lections. Faculty of Science, UvA. 2017-01
W. Ahmad. Green Computing: Effi-
cient Energy Management of Multiprocessor
Streaming Applications via Model Checking.
Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2017-02
D.Guck. Reliable Systems – Fault tree anal-
ysis via Markov reward automata. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2017-03
H.L. Salunkhe. Modeling and Buffer Anal-
ysis of Real-time Streaming Radio Applica-
tions Scheduled on Heterogeneous Multipro-
cessors. Faculty of Mathematics and Com-
puter Science, TU/e. 2017-04
A. Krasnova. Smart invaders of private
matters: Privacy of communication on the
Internet and in the Internet of Things (IoT).

Faculty of Science, Mathematics and Com-
puter Science, RU. 2017-05

A.D. Mehrabi. Data Structures for Analyz-
ing Geometric Data. Faculty of Mathemat-
ics and Computer Science, TU/e. 2017-06

D. Landman. Reverse Engineering Source
Code: Empirical Studies of Limitations
and Opportunities. Faculty of Science,
UvA. 2017-07

W. Lueks. Security and Privacy via Cryp-
tography – Having your cake and eating it
too. Faculty of Science, Mathematics and
Computer Science, RU. 2017-08

A.M. Şutîi. Modularity and Reuse of
Domain-Specific Languages: an exploration
with MetaMod. Faculty of Mathematics
and Computer Science, TU/e. 2017-09

U. Tikhonova. Engineering the Dynamic
Semantics of Domain Specific Languages.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2017-10

Q.W. Bouts. Geographic Graph Con-
struction and Visualization. Faculty of
Mathematics and Computer Science,
TU/e. 2017-11

A. Amighi. Specification and Verification
of Synchronisation Classes in Java: A Prac-
tical Approach. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2018-01

S. Darabi. Verification of Program Paral-
lelization. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2018-02

J.R. Salamanca Tellez. Coequations and
Eilenberg-type Correspondences. Faculty of
Science, Mathematics and Computer Sci-
ence, RU. 2018-03

P. Fiterău-Broştean. Active Model Learn-
ing for the Analysis of Network Protocols.

Faculty of Science, Mathematics and Com-
puter Science, RU. 2018-04

D. Zhang. From Concurrent State Ma-
chines to Reliable Multi-threaded Java Code.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2018-05

H. Basold. Mixed Inductive-Coinductive
Reasoning Types, Programs and Logic. Fac-
ulty of Science, Mathematics and Com-
puter Science, RU. 2018-06

A. Lele. Response Modeling: Model Re-
finements for Timing Analysis of Runtime
Scheduling in Real-time Streaming Systems.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2018-07

N. Bezirgiannis. Abstract Behavioral
Specification: unifying modeling and pro-
gramming. Faculty of Mathematics and
Natural Sciences, UL. 2018-08

M.P. Konzack. Trajectory Analysis: Bridg-
ing Algorithms and Visualization. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2018-09

E.J.J. Ruijters. Zen and the art of railway
maintenance: Analysis and optimization of
maintenance via fault trees and statistical
model checking. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2018-10

F. Yang. A Theory of Executability: with a
Focus on the Expressivity of Process Calculi.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2018-11

L. Swartjes. Model-based design of bag-
gage handling systems. Faculty of Mechan-
ical Engineering, TU/e. 2018-12

T.A.E. Ophelders. Continuous Similar-
ity Measures for Curves and Surfaces. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2018-13

M. Talebi. Scalable Performance Analy-
sis of Wireless Sensor Network. Faculty
of Mathematics and Computer Science,
TU/e. 2018-14
R. Kumar. Truth or Dare: Quantitative se-
curity analysis using attack trees. Faculty
of Electrical Engineering, Mathematics &

Computer Science, UT. 2018-15

M.M. Beller. An Empirical Evalua-
tion of Feedback-Driven Software Devel-
opment. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2018-16

