
 
 

Delft University of Technology

Generating Highly-structured Input Data by Combining Search-based Testing and
Grammar-based Fuzzing

Olsthoorn, M.J.G.; van Deursen, A.; Panichella, A.

DOI
10.1145/3324884.3418930
Publication date
2020
Document Version
Accepted author manuscript
Published in
Proceedings - 2020 35th IEEE/ACM International Conference on Automated Software Engineering, ASE
2020

Citation (APA)
Olsthoorn, M. J. G., van Deursen, A., & Panichella, A. (2020). Generating Highly-structured Input Data by
Combining Search-based Testing and Grammar-based Fuzzing. In Proceedings - 2020 35th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2020 (pp. 1224-1228). Article 9286098
(Proceedings - 2020 35th IEEE/ACM International Conference on Automated Software Engineering, ASE
2020). IEEE / ACM. https://doi.org/10.1145/3324884.3418930
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3324884.3418930
https://doi.org/10.1145/3324884.3418930


Generating Highly-structured Input Data by Combining
Search-based Testing and Grammar-based Fuzzing

Mitchell Olsthoorn
Delft University of Technology

Delft, The Netherlands
M.J.G.Olsthoorn@tudelft.nl

Arie van Deursen
Delft University of Technology

Delft, The Netherlands
Arie.vanDeursen@tudelft.nl

Annibale Panichella
Delft University of Technology

Delft, The Netherlands
A.Panichella@tudelft.nl

ABSTRACT

Software testing is an important and time-consuming task that is
often done manually. In the last decades, researchers have come
up with techniques to generate input data (e.g., fuzzing) and auto-
mate the process of generating test cases (e.g., search-based testing).
However, these techniques are known to have their own limita-
tions: search-based testing does not generate highly-structured
data; grammar-based fuzzing does not generate test case structures.
To address these limitations, we combine these two techniques. By
applying grammar-based mutations to the input data gathered by
the search-based testing algorithm, it allows us to co-evolve both
aspects of test case generation. We evaluate our approach, called
G-EvoSuite, by performing an empirical study on 20 Java classes
from the three most popular JSON parsers across multiple search
budgets. Our results show that the proposed approach on average
improves branch coverage for JSON related classes by 15 % (with
a maximum increase of 50 %) without negatively impacting other
classes.

CCS CONCEPTS

• Software and its engineering → Search-based software en-

gineering; Software testing and debugging.

KEYWORDS

search-based software testing, test case generation, grammar-based
fuzzing, unit testing

ACM Reference Format:

Mitchell Olsthoorn, Arie van Deursen, and Annibale Panichella. 2020. Gen-
erating Highly-structured Input Data by Combining Search-based Test-
ing and Grammar-based Fuzzing. In 35th IEEE/ACM International Con-

ference on Automated Software Engineering (ASE ’20), September 21–25,

2020, Virtual Event, Australia. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3324884.3418930

1 INTRODUCTION

Software testing is a critical activity for quality assurance and can
take up to 50 % of developers’ time [8]. Manually writing test cases
that are meaningful and small in size is an expensive and error-
prone task. With the ever-increasing complexity of modern applica-
tions, designing meaningful test cases with high coverage becomes

ASE ’20, September 21–25, 2020, Virtual Event, Australia

© 2020 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in 35th IEEE/ACM

International Conference on Automated Software Engineering (ASE ’20), September 21–25,

2020, Virtual Event, Australia, https://doi.org/10.1145/3324884.3418930.

harder each day. As a consequence, researchers have developed vari-
ous techniques to automate the generation of test cases over the last
decades [22]. Recent advances show that search-based approaches
can achieve higher code coverage compared to manually written
test cases [23, 28]. They can also detect unknown bugs [1, 3, 14]
and have been successfully used in industry (e.g., [4, 7, 21]). More-
over, automatic test case generation significantly reduces the time
needed for testing and debugging [31].

Search-based test case generation relies on evolutionary algo-
rithms (EAs) to evolve an initial pool of randomly generated test
cases, which include both the test structure and input data. While
recent studies improved the effectiveness of EAs, automatic test
case generation has limitations on creating highly-structured input
data. Previous work shows that automatically generated inputs
are usually unstructured and can be difficult to read and inter-
pret [2, 11]. These limitations are critical when testing applications
with highly-structured input data. Parsers are a typical example of
such applications. With the move towards Application Program-
ming Interfaces (APIs) and microservices, many systems nowadays
heavily rely on parsers [5]. Common data formats for these APIs
are JavaScript Object Notation (JSON) and Extensible Markup Lan-
guage (XML) and are used to exchange data among different parts
of applications. For this reason, properly testing these parsers is
critical for application testing [17].

Grammar-based fuzzing is very effective in generating highly-
structured input data based on a user-specified grammar [15, 33].
For this reason, fuzzing has been widely used for security and
system testing [9, 16]. When applied to data formats, fuzzers can
generate and manipulate well-formed input data. However, devel-
opers need to specify the entry points (for system testing) and
manually create a test structure for each method under test.

In this paper, we address these limitations by combining the
strength of grammar-based fuzzing and search-based test case gen-
eration with a focus on the JSON data format. More precisely, evo-
lutionary algorithms create and evolve the test case structure (state-
ment sequence) while grammar-based fuzzing is used to evolve
parts of the input data. The fuzzer injects structured JSON inputs
in the initial population of the EA with some probability and ma-
nipulates this data to maintain a well-formed JSON structure.

To assess the efficacy and feasibility of our idea, we implemented
the grammar-based fuzzing approach in EvoSuite [13], a state-of-
the-art test case generator for Java. We conducted an empirical
study with 20 classes from the three most popular JSON parser
libraries, namely GSON, fastjson, and org.json. In particular, we
selected 16 classes that expect JSON input and 4 non-JSON related
classes. We use the former group to assess whether our approach
improves code coverage and use the latter to assess whether our

https://doi.org/10.1145/3324884.3418930
https://doi.org/10.1145/3324884.3418930
https://doi.org/10.1145/3324884.3418930


ASE ’20, September 21–25, 2020, Virtual Event, Australia Mitchell Olsthoorn, Arie van Deursen, and Annibale Panichella

approach is negatively impacting coverage for non-JSON related
classes. We evaluate the performance (code coverage) for different
search budgets (60 s, 120 s, and 180 s) to measure the effectiveness
and efficiency over time.

Our preliminary results show that combining search-based test-
ing with grammar-based fuzzing leads to higher code coverage for
classes that parse and manipulate JSON without decreasing code
coverage for non-JSON related classes (i.e., it has no side effect).
On average, our approach achieves +15 % of branch coverage com-
pared to standard EvoSuite (without fuzzing). In our experiment,
the improvement on the branch coverage is up to 50 % for the class
JSONReader from the fastjson project with a search budget of
180 seconds. This confirms the feasibility of our approach and the
benefits of combining the strengths of different techniques that
are often considered as alternatives rather than complementary
solutions. While our approach is applied to the JSON data format, it
can be extended and generalized to other data formats. We foresee
further work in this line of research.

In summary, we make the following contributions: (i) a novel
approach that combines grammar-based fuzzing and search-based
software testing to maximize the code coverage in JSON parsers
in a shorter amount of time; (ii) an empirical evaluation involving
3 major Java JSON projects that shows the effectiveness and effi-
ciency of the proposed approach; (iii) We provide a full replication
package including our code and results [24].

2 BACKGROUND AND RELATEDWORK

In this section, we briefly describe the related work in the fields of
test case generation and grammar-based fuzzing. We also describe
the pros and cons of the two testing strategies.

Search-based Test Case Generation. Various search-based
test case generation approaches have been proposed in the literature
(e.g., [13, 22, 29]). These approaches rely on test adequacy criteria
(e.g., branch coverage [22, 30]) and evolutionary algorithms (e.g.,
genetic algorithms [10, 22, 27]). Adequacy criteria are used to define
search heuristics (or objectives) to optimize. For example, approach
level and branch distance are well-known heuristics (or objectives)
for line and branch coverage [22]. Evolutionary algorithms evolve
test data or test cases and use the heuristics as guidance toward
generating tests with high coverage and fault detection.

EvoSuite is a state-of-the-art test case/suite generation tool
for Java. EvoSuite implements several evolutionary algorithms
(AEs), such as monotonic genetic algorithms, local solvers, and
many-objective algorithms [10]. EvoSuite can optimize multiple
adequacy criteria simultaneously [26, 30]. We use EvoSuite as the
starting point to implement our approach and also as the baseline in
our empirical evaluation. Among the evolutionary algorithms avail-
able in EvoSuite, we choose the Dynamic Many-Objective Sorting
Algorithm (DynaMOSA) [25]. DynaMOSA evolves test cases and
optimizes multiple coverage targets (e.g., branches) simultaneously.
We opted for DynaMOSA since recent studies showed its better ef-
fectiveness and efficiency compared to other EAs for testing [10, 27].
DynaMOSA uses a many-objective genetic algorithm that encodes
test cases as chromosomes. Each chromosome is a sequence of state-
ments (constructor, method invocation, primitive statements, and
assignments) with variable length. Hence, the structure of the test

cases evolves across the generations. The single-point crossover gen-
erates new test cases by recombining statements (genes) from the
parent tests. The uniform mutation further modifies the offspring
by adding, removing, or replacing statements. Lastly, DynaMOSA
selects the fittest chromosomes using the preference criterion, the
non-dominance relation, and the crowding distance [25].

Grammar-based fuzzing. Whitebox fuzzing is anothermethod
to automate software testing. Differently from test case generation,
fuzzing focuses on generating test data (rather than test case struc-
tures), and it is very popular in security testing to find security
vulnerabilities in software [12]. To fuzz, developers need to specify
the entry points of the application under test. White-box fuzzing
aims to generate test inputs that, when applied to specified entry
points, allow satisfying/covers different program conditions [20].
Fuzzing can use different engines for the test data generation [20],
such as symbolic execution [9], metaheuristics [32], grammars [15],
and hybrid approaches [19].

Grammar-based fuzzing generates well-formed inputs by relying
on a user-specified grammar [15, 34]. It creates random variants
of well-specified inputs using the grammar derivative rules (here-
after called grammar-based mutations). This guarantees that the
variants are still well-formed but diverse [20]. Typically, the gram-
mars encode application-specific knowledge of the program under
test [15]. As shown by previous work, grammar-based fuzzers are
very effective in creating highly-structured inputs for applications
like compilers and interpreters [15, 33].

Reasons for combining. On the one hand, search-based test-
ing allows synthesizing the test case structure without requiring to
specify the program entry points. It can evolve complex input data
like Objects in Java, primitive data types, and strings. However, it
is not effective in generating highly-structured input strings, such
as the JSON data format. On the other hand, grammar-based fuzzing
can effectively generate highly-structured input strings. However,
it requires the user to specify both the entry points of the program
under tests and the grammar. Besides, programs can have multiple
entry points, not all requiring the same type of grammar. In our
case, JSON parsers have some entry points (methods) that require
data in JSON formats but also other entry points with different
input types, such as complex Objects, or primitives.

3 APPROACH

Our approach, called G-EvoSuite, aims to combine the strengths
of search-based test case generation and grammar-based fuzzing.
We use EvoSuite as the test case generator tool, and we imple-
mented a JSON fuzzer, i.e., fuzzer based on JSON grammar. The
fuzzer is built on top of snodge 1, a mutation engine for JSON
strings. Our approach uses EvoSuite to create and evolve the test
case structures and the JSON fuzzer to generate highly-structured
input strings when needed. To implement our approach, we mod-
ified DynaMOSA in EvoSuite (see Section 2). In the following
paragraphs, we explain the changes we introduced in DynaMOSA
to incorporate the grammar-fuzzer.

1https://github.com/npryce/snodge



Generating Highly-structured Input Data by Combining Search-based Testing and Grammar-based Fuzzing ASE ’20, September 21–25, 2020, Virtual Event, Australia

Initialization. To start the evolutional process, DynaMOSA
creates an initial genetic pool of test cases. The initialization rou-
tine is designed to generate a well-distributed set of tests that call
different methods of the target class. Each test is created in Dy-
naMOSA randomly by adding method calls to the class under test.
Before inserting each method callm, EvoSuite also instantiates an
object of the class containingm and generates proper input param-
eters, such as other objects or primitives. The number of method
calls to insert in an initial test case is randomly chosen. Therefore,
EvoSuite creates different initial tests with different structures
(method sequence). The input data is either generated at random
or selected from the literals (constants) that statically appear in the
class under test (constant pool).

Our approach modifies the initialization phase by using well-
formed JSON strings generatedwith the fuzzer as test data. Injecting
JSON strings in every method call with string inputs is not effective
because not all methods under tests (or not all input parameters
of the same method) require JSON inputs. Therefore, we inject
JSON strings only into a portion of the initial population. Given
a population P = {T1, . . . ,TN } of size N , we randomly select test
cases from P and inject them with JSON data. Given an initial test
T to modify, its string inputs have a probability of mutating equal
to p = 1/k , where k is the number of input strings in T .

Selection. In each generation, the fittest test cases (structure +
data) are selected using tournament selection. These test cases are
ranked on different code coverage criteria (Line, Branch, Exception,
Weak Mutation) using the preference sorting algorithm [25]. If test
cases with JSON data are ranked first, they will be selected for
reproduction (i.e., to create new tests) and will survive in the next
generations. If not, the genetic characteristics of the tests with
the JSON files will not be transmitted to the next generations. In
this way, the portion of test cases that are created using the fuzzer
changes across the generations depending on whether they are
useful to improve coverage or not.

Grammar-based mutation. To introduce variation in the ge-
netic pool, DynaMOSA makes use of mutations. The use of muta-
tions makes it less likely for the algorithm to reach a local optimum.
In our approach, we extend the uniform mutation in DynaMOSA,
which adds, removes, or inserts new statements in each newly gen-
erated test T . At the end of the uniform mutation, we inspect all
input data in T , identify string inputs, and use JSON parsers to
check whether they are well-formed JSON strings. If valid JSON
strings are found, we mutate them using the grammar-based fuzzer.

A well-formed JSON string is a sequence of ⟨key, value⟩ pairs.
Keys must be strings, and values must be one of the following
JSON data types: string, number, object, array, boolean, or null.
Based on this structure, we define five different mutation operators:

• Adding new ⟨key, value⟩ pairs: it adds a ⟨key, value⟩ pair
at the root level of the JSON structure. The key is generated
using the constant pool in EvoSuite. The value is randomly
generated and can be any of the JSON data types.

• Adding JSON objects: it adds a new JSON object as a value to
an existing ⟨key, value⟩ pair in a random position.

• Removing ⟨key, value⟩ pairs: it randomly removes a ⟨key,
value⟩ pair in the JSON structure.Which element is removed
is randomly selected.

• Modifying ⟨key, value⟩ pairs: This mutation randomly se-
lects a ⟨key, value⟩ pair from the JSON structure, and mu-
tates either the key or the value. The replacing element is
proportionately divided across all JSON primitives. The ar-
ray and dictionary primitives are replaced as is. The other
primitives are sourced from the constant pool of EvoSuite.

• Reordering ⟨key, value⟩ pairs: it randomly shuffles the ⟨key,
value⟩ pairs inside the JSON structure. The pair to be re-
ordered is selected randomly. The new location is also se-
lected randomly.

The five operators can be applied to a test T with equal proba-
bility. If the test case T contains multiple JSON strings, each string
has a probability of being replaced equal to p = 1/k , where k is the
number of well-formed JSON strings in T .

4 EMPIRICAL STUDY

This section details the empirical study we conducted to assess the
performance of our approach (hereafter G-EvoSuite) compared to
standard test case generation (EvoSuite). Our empirical evaluation
is steered by the following research questions:
RQ1 To what extend does grammar-based fuzzing improve the ef-

fectiveness of test case generation in EvoSuite?

RQ2 What is the effectiveness of combining grammar-based fuzzing

and search-based testing over different search budgets?

For our empirical study, we selected a total of 20 classes from the
three most popular Java JSON parsers. These parsers are the GSON
library from Google, fastjson from Alibaba, and the org.json
standard library. 16 classes are related to JSON data. This was de-
termined based on class name and by manually inspecting the
individual classes. The remaining four classes (indicated with an
asterisk in Table 1) are used to assess whether our approach nega-
tively impacts classes not related to parsing JSON.

Search budget. To assess the effectiveness of our approach over
different search budgets, we selected three commonly-used values:
60 seconds, 120 seconds, and 180 seconds [3, 18, 23].

Parameter setting. For this study, we have chosen to adopt
the default search algorithm parameter values set by EvoSuite.
Previous studies have shown that although parameter tuning has
an impact on the performance of the search algorithm, the default
parameters provide a reasonable and acceptable result [6]. The pa-
rameters used for both the EvoSuite and G-EvoSuite approaches
are: population size of 50 test cases; single-point crossover with a
probability of 0.75; mutation with a probability of 1/n, where n is
the number of statements in the test case; and tournament selection,
the default selection operator in EvoSuite.

Statistical analysis. Since both approaches used in the study
are randomized, we can expect a fair amount of variation in the re-
sults. To mitigate this, ever experiment has been repeated 20 times
so an average can be taken. To determine if the results are statisti-
cally significant, we use the unpairedWilcoxon test with a threshold
of 0.05. This is a non-parametric statistical test that determines if
two data distributions (coverage values by the two approaches) are
significantly different. We combine this with the Vargha-Delaney
statistic to measure the effect size, which determines how large the
difference between the two approaches is.



ASE ’20, September 21–25, 2020, Virtual Event, Australia Mitchell Olsthoorn, Arie van Deursen, and Annibale Panichella

Table 1: Median branch coverage achieved by our approach (G-EvoSuite) and the baseline (EvoSuite) over 20 independent

runs. We report the p-values produced by the Wilcoxon test together with the Vargha-Delaney statistics (Â12). For the effect

size, we use the labels S, M, and L to denote small,medium, and large effect size. Â12 > 0.50 indicates a positive effect size.

ID Class Under Test 60 s 120 s 180 s

EvoSuite G-EvoSuite p-value Â12 EvoSuite G-EvoSuite p-value Â12 EvoSuite G-EvoSuite p-value Â12

1 fastjson.JSON 0.76 0.74 0.12 S (0.35) 0.81 0.81 0.51 — (0.56) 0.82 0.83 0.01 M (0.73)
2 fastjson.JSONArray 0.77 0.76 0.35 S (0.41) 0.83 0.82 0.53 — (0.44) 0.82 0.84 0.17 S (0.62)
3 fastjson.JSONObject 0.49 0.49 0.94 — (0.51) 0.51 0.52 0.26 S (0.53) 0.52 0.53 0.14 S (0.62)
4 fastjson.JSONPath 0.36 0.36 0.92 — (0.48) 0.41 0.41 0.06 M (0.30) 0.42 0.44 0.09 M (0.67)
5 fastjson.JSONReader 0.22 0.22 0.07 M (0.67) 0.23 0.70 <0.01 L (0.89) 0.23 0.73 <0.01 L (0.83)
6 fastjson.JSONValidator 0.52 0.75 <0.01 L (1.00) 0.58 0.83 <0.01 L (1.00) 0.59 0.84 <0.01 L (1.00)
7 fastjson.DefaultJSONParser 0.28 0.50 <0.01 L (1.00) 0.33 0.58 <0.01 L (1.00) 0.36 0.61 <0.01 L (1.00)
8 fastjson.JSONReaderScanner 0.72 0.72 0.82 — (0.48) 0.75 0.76 0.72 — (0.53) 0.77 0.78 0.02 M (0.70)
9 fastjson.JSONScanner 0.31 0.36 <0.01 L (0.90) 0.34 0.44 <0.01 L (0.95) 0.35 0.44 <0.01 L (0.98)
10* gson.Gson 0.77 0.79 0.02 M (0.72) 0.81 0.81 0.55 — (0.44) 0.81 0.82 0.30 S (0.59)
11 gson.JsonTreeReader 0.88 0.89 0.76 — (0.53) 0.90 0.90 0.54 — (0.44) 0.90 0.91 0.37 S (0.43)
12 gson.JsonTreeWriter 0.91 0.91 1.00 — (0.50) 0.91 0.91 0.60 — (0.52) 0.91 0.91 0.77 — (0.49)
13* gson.LinkedHashTreeMap 0.43 0.43 0.71 — (0.47) 0.50 0.47 0.20 S (0.38) 0.50 0.51 0.60 — (0.54)
14 gson.JsonReader 0.68 0.74 <0.01 L (0.98) 0.72 0.78 <0.01 L (1.00) 0.73 0.80 <0.01 L (0.97)
15 gson.JsonWriter 0.90 0.90 0.95 — (0.49) 0.91 0.91 0.77 — (0.47) 0.91 0.91 0.70 — (0.47)
16 json.JSONArray 0.74 0.77 0.03 M (0.70) 0.78 0.82 0.01 M (0.73) 0.80 0.81 0.15 S (0.62)
17 json.JSONObject 0.66 0.69 0.02 M (0.72) 0.74 0.77 <0.01 L (0.86) 0.75 0.78 <0.01 L (0.89)
18 json.JSONTokener 0.78 0.82 0.17 S (0.63) 0.83 0.88 0.25 S (0.60) 0.89 0.91 <0.01 L (0.75)
19* json.XML 0.75 0.76 0.82 — (0.52) 0.77 0.77 0.77 — (0.47) 0.77 0.78 0.12 S (0.63)
20* json.XMLTokener 0.99 0.99 0.70 — (0.54) 0.99 0.99 0.87 — (0.52) 0.99 0.99 0.15 S (0.61)

4.1 Results

Table 1 summarizes the results of the comparison between Evo-
Suite and G-EvoSuite. The table is divided into the three different
search budgets used for the empirical evaluation. For each search
budget, we show the median branch coverage for the baseline, Evo-
Suite, and G-EvoSuite, the statistical significance produced by the
Wilcoxon test, and the effect size with the Vargha-Delaney statistic.
In the table, we denote the classes with a negligible effect size with
“—”, and highlight results that are statistically significant with a gray
color. Next, we discuss the results for each search budget separately.

For 60 seconds, our approach achieves significantly higher cover-
age than EvoSuite in seven out of 20 classes. The effect size is large
in four cases and medium in the other three cases. The average
improvement in branch coverage with the G-EvoSuite approach is
9.02 %. The class with the least improvement is gson.Gson with an
average improvement of 1.77 %. The class with the most improve-
ment is JSONValidator (ID=6) with an average improvement of
23.35 % which corresponds to 46 additionally covered branches.

For 120 seconds, seven out of 20 classes show a significant
improvement with our approach. The effect size is large in six
cases and medium in only one case. The average improvement in
branch coverage is 17.1 %. The class with the least improvement is
JSONArray (ID=16) with an average increase of 3.20 %. The most
improved class is JSONReader (ID=5) with an average increase of
47.83 % resulting in 49 branches being covered additionally.

Lastly, for 180 seconds, our approach significantly outperforms
EvoSuite in nine out of 20 classes. The effect size is large in seven
cases andmedium in two cases. The average improvement in branch
coverage is 13.6 %,with aminimumof +1% for JSONReaderScanner
and a maximum of 50.87 % (+52 branches) for the class JSONReader
(ID=5). In terms of the number of covered branches, the biggest im-
provement (+166 branches) can be observed for DefaultJSONParser.

It is worth to notice that in none of the classes, we observed a
decrease in branch coverage when using G-EvoSuite. This shows

that our approach improves the overall effectiveness of test case
generation in EvoSuite without negatively impacting coverage of
non-JSON related classes (RQ1).

When looking at how the two approaches perform over time, we
can see that the delta between EvoSuite and G-EvoSuite does not
substantially decrease, and in most cases even increases. For exam-
ple, the JSONReader (ID=5) class shows that the delta of the branch
coverage goes from 0% at 60 s to 50 % at 180 s. This shows that just
injecting JSON strings in the initial population is not sufficient to
reach a higher coverage. Otherwise, we would have observed a
large difference already at the 60 s search budget. Therefore, for
our benchmark, the benefit of combining search-based testing and
grammar-based fuzzing increases with time (RQ2).

5 CONCLUSIONS AND FUTUREWORK

In this paper, we have combined search-based testing with grammar
based-fuzzing to achieve higher code coverage for programs with
highly-structured inputs. We implemented our approach in Evo-
Suite and evaluated it on a benchmark with 20 Java classes. Our
results show that G-EvoSuite significantly improves code coverage
independently of the search budget.

In future work, we plan to improve our grammar-based fuzzer
and extend it to more data formats. Our current approach makes use
of grammar-based mutation operators that are specific to the data
format of the target application, in this case JSON. These operators
only work on valid input and therefore limit the output to also be
valid. Investigating mutation operators for invalid input is part of
our future agenda. Next to JSON, the XML data format is commonly
used for APIs and it is similarly hard to test. We plan to extend our
approach to include mutators for other data formats.

A further next step is to look into using machine learning to infer
the data format accepted by an application. Data format specific
mutators can then be created based on this model without requiring
pre-defined mutators for all possible data formats.



Generating Highly-structured Input Data by Combining Search-based Testing and Grammar-based Fuzzing ASE ’20, September 21–25, 2020, Virtual Event, Australia

REFERENCES

[1] Raja Ben Abdessalem, Annibale Panichella, Shiva Nejati, Lionel C Briand, and
Thomas Stifter. 2018. Testing autonomous cars for feature interaction failures
using many-objective search. In Proceedings of the 33rd ACM/IEEE International

Conference on Automated Software Engineering. 143–154.
[2] Sheeva Afshan, Phil McMinn, and Mark Stevenson. 2013. Evolving readable

string test inputs using a natural language model to reduce human oracle cost.
In 2013 IEEE Sixth International Conference on Software Testing, Verification and

Validation. IEEE, 352–361.
[3] M Moein Almasi, Hadi Hemmati, Gordon Fraser, Andrea Arcuri, and Janis Bene-

felds. 2017. An industrial evaluation of unit test generation: Finding real faults
in a financial application. In 2017 IEEE/ACM 39th International Conference on

Software Engineering: Software Engineering in Practice Track (ICSE-SEIP). IEEE,
263–272.

[4] Nadia Alshahwan, Xinbo Gao, Mark Harman, Yue Jia, Ke Mao, Alexander Mols,
Taijin Tei, and Ilya Zorin. 2018. Deploying search based software engineering
with Sapienz at Facebook. In International Symposium on Search Based Software

Engineering. Springer, 3–45.
[5] Andrea Arcuri. 2019. RESTful API automated test case generationwith Evomaster.

ACM Transactions on Software Engineering and Methodology 28, 1 (2019), 1–37.
[6] Andrea Arcuri and Gordon Fraser. 2013. Parameter tuning or default values? An

empirical investigation in search-based software engineering. Empirical Software

Engineering 18, 3 (2013), 594–623.
[7] Raja Ben Abdessalem, Shiva Nejati, Lionel C Briand, and Thomas Stifter. 2016.

Testing advanced driver assistance systems using multi-objective search and
neural networks. In Proceedings of the 31st IEEE/ACM International Conference on

Automated Software Engineering. 63–74.
[8] Frederick Brooks. 1975. The mythical man-month. Addison-Wesley.
[9] Cristian Cadar, Vijay Ganesh, Peter M Pawlowski, David L Dill, and Dawson R

Engler. 2008. EXE: automatically generating inputs of death. ACM Transactions

on Information and System Security (TISSEC) 12, 2 (2008), 1–38.
[10] José Campos, Yan Ge, Nasser Albunian, Gordon Fraser, Marcelo Eler, and Andrea

Arcuri. 2018. An empirical evaluation of evolutionary algorithms for unit test
suite generation. Information and Software Technology 104 (2018), 207–235.

[11] Ermira Daka, José Campos, Gordon Fraser, Jonathan Dorn, and Westley Weimer.
2015. Modeling readability to improve unit tests. In Proceedings of the 2015 10th

Joint Meeting on Foundations of Software Engineering. 107–118.
[12] Joeri De Ruiter and Erik Poll. 2015. Protocol State Fuzzing of {TLS} Implementa-

tions. In 24th {USENIX} Security Symposium ({USENIX} Security 15). 193–206.
[13] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: automatic test suite generation

for object-oriented software. In Proceedings of the 19th ACM SIGSOFT Sympo-

sium and the 13th European Conference on Foundations of Software Engineering

(ESEC/FSE ’11). ACM Press, 416–419.
[14] Gordon Fraser and Andrea Arcuri. 2015. 1600 faults in 100 projects: automatically

finding faults while achieving high coverage with evosuite. Empirical software

engineering 20, 3 (2015), 611–639.
[15] Patrice Godefroid, Adam Kiezun, and Michael Y Levin. 2008. Grammar-based

whitebox fuzzing. In Proceedings of the 29th ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation. 206–215.
[16] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with code frag-

ments. In Presented as part of the 21st {USENIX} Security Symposium ({USENIX}

Security 12). 445–458.
[17] Sadeeq Jan, Cu D Nguyen, and Lionel Briand. 2015. Known xml vulnerabilities are

still a threat to popular parsers and open source systems. In 2015 IEEE International

Conference on Software Quality, Reliability and Security. IEEE, 233–241.
[18] Fitsum Kifetew, Xavier Devroey, and Urko Rueda. 2019. Java unit testing tool

competition-seventh round. In 2019 IEEE/ACM 12th International Workshop on

Search-Based Software Testing (SBST). IEEE, 15–20.
[19] Fitsum Meshesha Kifetew, Roberto Tiella, and Paolo Tonella. 2017. Generating

valid grammar-based test inputs bymeans of genetic programming and annotated
grammars. Empirical Software Engineering 22, 2 (2017), 928–961.

[20] Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen, and Jian Zhang. 2018.
Fuzzing: State of the art. IEEE Transactions on Reliability 67, 3 (2018), 1199–1218.

[21] Reza Matinnejad, Shiva Nejati, Lionel C Briand, and Thomas Bruckmann. 2016.
Automated test suite generation for time-continuous simulink models. In pro-

ceedings of the 38th International Conference on Software Engineering. 595–606.
[22] Phil McMinn. 2004. Search-based software test data generation: a survey. Software

testing, Verification and reliability 14, 2 (2004), 105–156.
[23] Urko Rueda Molina, Fitsum Kifetew, and Annibale Panichella. 2018. Java unit test-

ing tool competition-sixth round. In 2018 IEEE/ACM 11th International Workshop

on Search-Based Software Testing (SBST). IEEE, 22–29.
[24] Mitchell Olsthoorn, Arie van Deursen, and Annibale Panichella. 2020. Replication

package of "Generating Highly- structured Input Data by Combining Search-based

Testing and Grammar-based Fuzzing". https://doi.org/10.5281/zenodo.4001744
[25] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. 2017. Au-

tomated test case generation as a many-objective optimisation problem with
dynamic selection of the targets. IEEE Transactions on Software Engineering 44, 2
(2017), 122–158.

[26] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. 2018. In-
cremental control dependency frontier exploration for many-criteria test case
generation. In International Symposium on Search Based Software Engineering.
Springer, 309–324.

[27] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. 2018. A large
scale empirical comparison of state-of-the-art search-based test case generators.
Information and Software Technology 104 (2018), 236–256.

[28] Annibale Panichella and Urko Rueda Molina. 2017. Java unit testing tool compe-
tition - Fifth round. Proceedings - 2017 IEEE/ACM 10th International Workshop on

Search-Based Software Testing, SBST 2017 (2017), 32–38.
[29] IS Wishnu B Prasetya. 2013. T3, a combinator-based random testing tool for java:

benchmarking. In International Workshop on Future Internet Testing. Springer,
101–110.

[30] José Miguel Rojas, José Campos, Mattia Vivanti, Gordon Fraser, and Andrea
Arcuri. 2015. Combining multiple coverage criteria in search-based unit test
generation. In International Symposium on Search Based Software Engineering.
Springer, 93–108.

[31] Mozhan Soltani, Annibale Panichella, and Arie Van Deursen. 2018. Search-Based
Crash Reproduction and Its Impact on Debugging. IEEE Transactions on Software

Engineering (2018), 1–1.
[32] Spandan Veggalam, Sanjay Rawat, Istvan Haller, and Herbert Bos. 2016. Ifuzzer:

An evolutionary interpreter fuzzer using genetic programming. In European

Symposium on Research in Computer Security. Springer, 581–601.
[33] Jingbo Yan, Yuqing Zhang, and Dingning Yang. 2013. Structurized grammar-

based fuzz testing for programs with highly structured inputs. Security and

Communication Networks 6, 11 (2013), 1319–1330.
[34] Hyunguk Yoo and Taeshik Shon. 2016. Grammar-based adaptive fuzzing: Evalua-

tion on SCADA modbus protocol. In 2016 IEEE International Conference on Smart

Grid Communications (SmartGridComm). IEEE, 557–563.

https://doi.org/10.5281/zenodo.4001744

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Approach
	4 Empirical Study
	4.1 Results

	5 Conclusions and Future Work
	References

