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A B S T R A C T

Bathymetric Airborne LiDAR technology is used to map the depth of water bodies.
It uses a green light sensor which is able to penetrate the water surface and reach
the bottom part of the interesting water areas.

However, water conditions affect the capability of the green laser penetration.
Factors such as the water clarity, the water turbidity (waves) and the vegetation are
some of the crucial restrictions for green light to penetrate the water; particularly in
shallow inland water areas.

This research examined the capability of green LiDAR data to improve the bathy-
metric surveys in case of muddy and shallow inland Dutch water bodies. The
potential of green LiDAR increases as the monitoring of water depths is getting
easier, faster and more efficiently in terms of cost than manual GPS measurements.

The main challenges of this thesis are concentrated both on the existence of vari-
ous sparse and dense parts in the point-cloud and on the limitations of the data in
terms of quality due to the not ideal water conditions.

Specifically, this thesis presents a workflow with required procedures that aim
to process a raw green LiDAR point clouds of water bodies and then classify them
into three classes: water surface, underwater and bottom points. Pulse and Neigh-
bourhood based algorithms were implemented in order to perform a classification
process with high level of automation. Point characteristics such as intensity, num-
ber of returns, return number were analysed per pulse. Voxelization was used as a
spatial method to divide the 3D space into water columns (3D Voxels).

The spatial distribution of the water points into the water columns was examined
based on different factors such as elevation, density, intensity. By comparing and
partially combining those methods the detection process was improved to deal with
shallow and muddy water bodies. A classification confidence value was calculated
and stored for each potential bottom point. The resulting output is a classified green
LiDAR point cloud based on the confidence values. Using elevation, density and
confidence values, raster DTMs with multiple bands were created for each water
body.

To sum up, this thesis proposed an efficient workflow to process and automati-
cally classify green LiDAR water-body data using both voxel and pulse based meth-
ods.
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1 I N T R O D U C T I O N

The Netherlands, a flat and low-altitude country where four rivers merge into a
delta area, has over 50% of its total area protected by dikes against floods. The
existence of a well-organized infrastructure with ditches and pumping stations can
cope with all the dangers posed by a wet and shallow country (Vázquez et al.,
2017). Ditches possess an important role for the drainage of the whole country of
Netherlands and their total length is estimated at around 30.000km.

Part of this system is the so called Dutch polder model. The country’s water
boards are responsible for managing the regional water system, maintaining the
water level, protecting the water quality and supervising regional flood infrastruc-
ture. In order to control this complex and well-balanced water system with 237.000

km of canals and ditches consisted of sand, peat and clay (Vázquez et al., 2017),
accurate bathymetric information plays a vital role in the water management.

The regional water systems that are maintained by water boards consist of muddy
and shallow water bodies (water depth around 50cm to 3-4 meters). In order to ac-
quire accurate bathymetric data for these shallow inland water bodies, an efficient
and cost-effective way is demanded. A technique such as echo-sounding is not suit-
able because of the shallowness of water or the presence of obstacles above and
below the water surface. Another technique is to use the gauging rod, but it is pre-
ferred only for small area surveys and not for large ones (Vázquez et al., 2017).

However, the airborne LIDAR bathymetry (ALB) technology has been successfully
used in recent decades in deep waters and clear coastal wetted areas (Figure 1.1).
This technology can be used to improve the bathymetric surveys in the case of
muddy and shallow inland Dutch water bodies. That is why several water boards
in collaboration with private companies are examining the potential of bathymetric
LIDAR through pilot project. Particularly, green bathymetric LIDAR is used in order to
monitor the water depths efficiently, easier and cheaper than manual measurements
(i.e. GPS measurements).

The green LIDAR pulse uses a wavelength of 532 nm that propagates into the water
and can be reflected from the bottom surface of the water body (Mandlburger et al.,
2015). Its laser can penetrate greater depth measurements compared to image based
methods. Consequently errors due to shadows or surface disturbance do not exist.
Other factors such as sun angle and shining water surface do not affect the ALB
and the data collection is not limited only during desired light conditions (Hilldale
and Raff, 2008).

These acquired green LIDAR data can in theory be used in order to distinguish the
3D geometries of the waterbeds of the shallow water bodies in Netherlands. That is
a complex and challenging problem as the bottom sediments of Dutch water canals
are mainly contained dark sands, peat, clay and mud. Many of the sediments con-
tain organic matter which makes them look like dark colour and decreases their
reflectivity to the ALB technology. Also, they present high concentrations of chloro-
phyll during the seasons and usually have a soft layer of sludge that attenuate the
laser signal. These general conditions of the water and bottom surface of the shal-
low water bodies increase the complexity for ALB measurements.

Bathymetric data is essential for applications related to agriculture, floods protec-
tion and maintaining water supply during drought periods (Vázquez et al., 2017).
The knowledge of water depths in water bodies provides useful information for
dredging and water transportation purposes, used to maintain the water quantity
and quality of the water.

1



2 introduction

The complexity of the ALB measurements in combination with the existing need
for more bathymetric data make bottom detection from Airborne Laser Scanning
(ALS) data still critical problem. This thesis considers the problem of automatically
detecting the bottom areas (points) of muddy water bodies from ALS point clouds.

(a)

(b)

Figure 1.1: Bathymetric scanners (AeroData, 2015)

1.1 research motivation
Previous studies have been conducted to detect waterbeds in water bodies using
bathymetric LIDAR data in case of Netherlands. However, the developed methods
did not succeed to detect bottom points with high certainty and accuracy (see Sec-
tion 3.2). Further research needs to be carried out by applying other techniques and
algorithms.

The high need for both classified green LIDAR point clouds and produced DTM
raster outputs with multiple bands containing information such as depth values
is certain. Deltares is a company that is currently interested in collecting and
analysing green bathymetric LIDAR data, especially for shallow water areas, and
then creating automatic processes to effectively get valuable end products (e.g.
DTMs). This is why this thesis is carried out in close collaboration with them.

Deltares is a Dutch technological institute for applied research in the field of wa-
ter, soil and infrastructure. Other institutes and organizations (e.g. Water boards,
Rijkswaterstaat) benefit from accurate and dense bathymetric LIDAR data. Pilot
projects have been run under the collaboration of Deltares and them. Particularly,
aeroplanes flew and collected LIDAR data over the water areas (i.e. shallow and
muddy water canals) throughout the Netherlands. Big data acquisitions costs a lot
and requires good organization, as it should be done once. However, there is not
an automatic operation that using these data detects the waterbeds of shallow and
muddy water-bodies in the Netherlands.

Pulse and Neighbourhood-based methods could improve the detection process
and deal particularly with shallow and muddy water bodies. Specific point charac-
teristics such as intensity, number of returns, return number can be analysed both
per pulse and in the whole dataset area. Also, the spatial analysis of the dataset
using voxelization approach could provide promising outputs. Voxelization is a
spatial method that based on the creation of volumes (water columns - 3D voxels)
using the 3D points in the 3D space of the dataset. Therefore, this research needs
to fill this gap by implementing algorithms that enhance the ability to classify the
water bodies and then detect the interesting bottom points.
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1.2 objectives & research questions
This thesis explores the possibilities of automatically detecting the waterbeds of
shallow and muddy water-bodies in Netherlands using green airborne LIDAR data.
The main goal is to classify the given dataset of water points into three classes:
water surface, underwater and bottom points based on some criteria (e.g. point
density, distance between points) This can by done by applying:

• pulse based methods (i.e. taking into account the point’s characteristics such
as intensity, return number, number of returns)

• voxel based methods

This study focuses on how different spatial algorithms can be used, and how to
possibly combine them to come to a final classification. The effectiveness of the
proposed method will be assessed in terms of confidence of the classified points;
especially for the bottom points. The confidence value of a potential bottom point
is determined according to the amount of points (i.e. density) in its local neigh-
bourhood and its distance (i.e. depth) from the water surface point and its intensity
value. These values are used to assess how confident is a point to be bottom or not
(see reference methodology section). It is not the actual goal to provide a method
that will just automatically classify the point cloud, but to provide a more accurate
and automatic bottom detection tool. Therefore, the corresponding main research
question is:

Question 1. Can the bottom points of shallow and muddy water-bodies in the Nether-
lands be automatically detected using ALB?

As seen in Figure 1.2, this question incorporates the whole process from a raw air-
borne LIDAR dataset to a final classified point cloud using an automatic procedure.
Besides this main research question, it is also significant to investigate the perfor-
mance of the proposed methods, the properties of the dataset and the visualisation
approach. These details are formulated in the following sub-questions:

Question 2. Can pulse and/or neighbourhood based methods - in a green airborne LIDAR

- be used to classify and detect the bottom points?

Question 3. What is the influence of different voxel resolutions for classification, in
terms of accuracy and computation load?

Question 4. How does the various point cloud quality (i.e. density, outliers) affect the
classification process?

Question 5. Can a confidence value of water points be calculated?If it’s possible, how?

1.3 scope of research
This thesis will not deal with the detection of water courses from an unclassified
green LIDAR dataset. The provided datasets (i.e. topo-bathymetric) contain urban
structures (e.g. buildings, bridges) and vegetation that are going to filtered them
out in the pre-processing step. This will happen by just using the Top10NL dataset
with the water boundaries, whereas a hard-coded threshold will be used for the z
dimension. Only if necessary, ground filtering methods will be run to extract the
ground points which correspond to water-bodies’ points in this study (Ledoux et al.,
2019).
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(a) (b)

(c) (d)

Figure 1.2: Illustration of topo-bathymetric LIDAR data in different stages. 1.2a Raw airborne
LIDAR dataset with noisy points (i.e. points in the air space between airplane and
ground surface). 1.2b Cropped based on the extent of water canals 1.2c Clipped
on specific height level threshold 1.2d Interesting unclassified water areas

Furthermore, this research uses a group of discrete airborne LIDAR points. The
point data correspond to high intensities in the waveform of the laser pulse inter-
acting with the water surface and the water particles in the water column. This
means that may be 1 up to 4-5 returns per pulse, where each correspond to an
individual reflection event from an object on or beneath the water surface (J. Sum-
nall et al., 2015). The given raw datasets have already been processed by the point
cloud collector in order to derive-identify proximal peaks (i.e. returns) from the full
waveform. The analysis and interpretation of the full profile of a return signal is
complex and demands high computational level. That is why the provider (i.e. the
lidar company) does this pre-processing to the derived raw data and then delivers
them.

The main focus of this study is to automatically distinguish the bottoms of the
shallow water-bodies by applying different methods. By detecting those interested
bottom points, the original water points can be classified into the 3 classes: water
surface, underwater and bottom points. LIDAR data handling techniques like filter-
ing methods based on the points’ characteristics (e.g. return number, number of
returns, intensity value) and neighbourhood based methods will be implemented
(i.e. voxelization). The later ones take advantage of specific spatial search criteria
that are tested on the 3D extent of a voxel.

Also, the research aims to develop an efficient workflow in terms of accuracy
and execution time that should be applicable on various green LIDAR datasets in the
Netherlands; specifically for muddy and shallow water areas. Important to mention
that the input point clouds may have various densities and are not classified at all.
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If few ground truth data (GPS measurements) are provided, the validity of the
achieved results can be checked by computing statistics. For instance, the Mean
Error (ME), the Standard Deviation (SD) and the Root Mean Square Error (RMSE)
can be calculated for evaluating the closeness agreement between the observed and
resulted data.

The various point cloud quality in terms of density and errors might affect the
classification process of the LIDAR data and needs to be investigated. Also, 3D
geometry and 2D rasters (DTM surface) can be created using the classified point
cloud in order to visually check the geometry and classification of water bodies,
but also to validate the results comparing with few ground truth data.

Moreover, this study aims to develop an efficient method that is applicable on
large data sets. To get high speed for the computational analysis of the point cloud,
all the algorithms are implemented in Julia programming language. It is a novel lan-
guage that combines the functionality of quantitative environments (e.g. R, Python)
with the speed of programming languages like C++ to solve big data and analytics
problem. The developed prototype in Julia1 can be used by Deltares to run further
experiments with other LIDAR data sets.

1.4 thesis outline
This thesis is structured as the following chapters:

• Chapter 2 provides the necessary theoretical background of this thesis. It cov-
ers the fundamentals of LIDAR and especially the green bathymetric ones.

• Chapter 3 introduces and analyses existing approaches in the field of map-
ping water bodies using LIDAR data. Characteristics and limitations of those
methods are described.

• Chapter 4 explains the methodology of this research. It demonstrates the pro-
posed workflow and the conceptual ideas behind it. The challenges and the
potential solutions are described.

• Chapter 5 focuses on the implementation and experiments of the proposed
methods. It transfers the conceptual ideas to code. The provided datasets and
the used tools are described here.

• Chapter 6 presents results, discussions and validations of the proposed method.

• Chapter 7 provides the conclusions of the research. All the research questions
are answered here. Conclusions and future ideas are presented.

1 https://julialang.org





2 T H E O R E T I C A L B A C KG R O U N D

This chapter provides an overview of the theoretical background for this thesis.
Firstly, the fundamental basics of airborne LIDAR are given in Section 2.1, to under-
stand how the point clouds are captured, which are their properties and the existing
errors. In Section 2.2, a further explanation on the use of green LIDAR for bathymet-
ric purposes is given. Moreover, the environmental factors that can affect the green
laser pulse’s transmission are presented. Following, processing techniques that are
used to extract valuable information from a point cloud are described in Section 2.3.
Lastly, different techniques that are used in this research to represent the point
cloud are discussed in Section 2.4.

2.1 airborne light detection and ranging
In the mid 60s, the laser scanners (LIDAR) began to be known as they were placed
on aeroplanes and used for airborne applications. However, only few decades ago
LIDAR became a popular method for acquiring accurate geospatial measurements
after the introduction of GPS (Sharma, 2019). It has evolved and recognized as
a geospatial technology with many advantages in a variety of applications (e.g.
topography, bathymetry, agriculture, archaeology).

LIDAR is a remote sensing method that uses light in the form of a pulsed laser to
measure distances of objects on the earth’s surface (Sharma, 2020). The light pulses
generate the three - dimensional information (i.e. points) about the shape of earth’s
surface and its surface characteristics. The generated set of points (i.e. point cloud)
can contain up to some thousands of points for just a small -few kilometres- area.
The quick and automated data capturing make it usable for large areas of the real
world.

The three basic components of the instrument are the scanner, laser and GPS
receiver. Other elements such as optics have crucial role in the data collection pro-
cedure, too. The LIDAR systems are divided into two categories based on their func-
tionality: Airborne & Terrestrial systems (Sharma, 2019). Following, there are two
types based on the application purposes; the topographic and bathymetric ones. A
topographic LIDAR uses a near-infrared (1064nm) laser to capture the ground, while
bathymetric one uses green light (532nm) that can penetrate the water surface and
measure sea-floor (Sharma, 2020).

2.1.1 Discrete Return and Full Waveform LIDAR

In a LIDAR system, a laser pulse (light) is emitted from the laser light source and
travels to the ground. When it hits on the ground or on other objects (e.g. trees,
buildings), an amount of the light energy is reflected and returns back to the LiDAR
sensor, where it is recorded (Wasser, 2020). Some part of the energy may continue
towards the ground surface and multiple reflections can be recorded from just one
light pulse.

Specifically, the system measures the time that takes for the light to hit on an
object and return back. That time is used to calculate the travelled distance, and
then the distance is converted to elevation. The final measurements are done by
taking into account the x,y,z location (GPS measurement) of the light source.

7



8 theoretical background

The light energy distribution that returns to the sensor creates a ”waveform”.
That amount of returned energy is the so called intensity. Areas with more light
energy present peaks in the waveform and often correspond to objects like branches
of trees. This return may be recorded in two ways:

• The Discrete Return system identify peaks in the waveform and stores a point
(i.e. returns) at each peak location in the waveform curve. This kind of system
can record 1 up to 4 returns per laser pulse. (Wasser, 2020)

• The Full Waveform system captures the distribution of returned energy (i.e.
waveform) the full profile of a return signal. The handling, interpretation and
analysis of the waveform is quite more complex. However, more informa-
tion may be captured than to discrete system, but more data does not always
translate into better information for data analysis (Ussyshkin and Theriault,
2011).

A group of discrete return LiDAR points is known as a LiDAR point cloud. In this
study all the LiDAR datasets are acquired based on this format.

(a)
(b)

Figure 2.1: Airborne LiDAR systems. 2.1a An emitted laser pulse and the reflected signal
(waveform); in case of forest, bare ground and branches of tree (LiDARNews,
2018), 2.1b differences between discrete return and full waveform systems; in a
forest application (Ferraz et al., 2009)

2.1.2 Properties of LIDAR

A LiDAR point cloud is usually stored into .las, an American Society of Photogram-
metry and Remote Sensing (ASPRS) data format. In addition, the .laz format has
been developed, which is a compressed version of .las. It is often used to transfer
large amounts of LiDAR data.

The attributes of a point cloud can vary, depending on the collection and process
procedure. The point’s attributes are defined in the metadata and they are specified
based on their LAS point data format. The LAS standard, currently at version 1.4, is
maintained by the ASPRS organisation (more info (ASPRS, 2013)). Attributes such as
x, y, z coordinate values and probably intensity are the primary elements of a point.
Other point clouds include attributes like classification index, representing the type
of an object where the point belongs to (e.g. vegetation, water, building). The
classification is a complex procedure and various algorithms are needed to detect
the classes. Some LiDAR products may be classified as ground and non-ground, or
other may further processed to distinguish the type of infrastructure (e.g. buildings,
factories).

A point cloud dataset; specifically .las/.laz formats, consists of a header block and a
point records part. The header part is at the beginning of the file and supplemental
information (e.g. metadata) are placed there. Then, the point records part contains
all the points with their attributes.
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The points are stored in an array, where each row represents a point and the
columns correspond to each attribute (e.g. x, y, z coordinates). Also, there are
other important attributes based on the point data format such as intensity, Return
Number (RN), Number of Returns (NR), classification and GPS time. In particular,
the intensity value represents the magnitude of the pulse return. This value is
usually included in the LIDAR system and stored to the data, otherwise it must be
set to zero. The return number is the pulse return number of a pulse. A pulse can
have many returns and they marked in a sequence of return. Specifically, the first
return has a RN of one, the second of two and so on up to five returns. The number
of returns represents the total number of returns for a given pulse. For instance,
a point may have RN of two with a total number of three returns. Moreover, the
classification represents the class attribute of a point. If the points has never been
classified is set to zero, otherwise takes number from 1 to a few dozen. Each number
corresponds to a class; part of the real world (e.g. buildings, agriculture, water). The
GPS time is stored for every points and is the standard GPS time (satellite GPS time)
in the new .las versions. The original of standard GPS time is defined as midnight
of the morning of January 6, 1980 (ASPRS, 2013).

2.1.3 Errors in airborne LIDAR

As a LiDAR system contains various sensor components, many different sources
of errors exist. A few important errors are presented in the Table 2.1, as stated in
(Lohani, 2010).

Errors Description
1 Sensor’s position Due to errors in GPS, IMU and GPS-IMU integration.

2 Laser’s angle
The laser instrument is not perfectly aligned with the aircraft (roll, pitch, yaw axis).
The scanner angle may have error.

3 Laser’s range Due to time measurement error and wrong atmospheric correction
4 (in) LiDAR data Due to complexity of an object space, e.g., terrain with steep slopes

5 Multipath (2.2b)
Laser may reflect in specular surface and pulse’s direction changes
Then, a wrong point is capture (see Figure 2.2b) )

6 Refraction(2.2a)
The laser travels in the air and encounters surface like water.
Part of it passes from one medium (air) into the other (water).
Then, it continues on a new straight path

Table 2.1: Errors during the collection of LiDAR data

Two of the most significant errors are the multipath reflection and refraction effect.
The first is caused when the laser pulse may reflect in a surface with low or high
reflectance (A) (e.g. wall of a building), then the pulse direction changes and hits
other object(B). This will result in a point measurement which was never measured
by the LiDAR, thus error in the LiDAR data (see Figure 2.2b). The second, refrac-
tion effect (see Figure 2.2a), is caused when a part of the light array is reflected on a
surface (water) and returns back to the atmosphere, while the transmitted light ray
bends (refraction). In addition to the refraction of the laser beam, the slowdown ef-
fect (as the speed of light in the water is smaller) occurs. As a result, the underwater
point (C) is written with incorrect coordinates (B) in the point cloud file.
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Figure 2.2: Laser scanning errors. 2.2a Refraction and slowdown effects where the underwa-
ter point (B) is written with incorrect coordinates, while it should in position (C).
2.2b Multipath effect where a laser pulse is reflected of an object (B) before it re-
turns to the scanner. The travelled path is way longer. This results in an another
point location below ground surface (C).

2.2 airborne bathymetric LIDAR

The technology of airborne LiDAR for mapping terrestrial topography has grown
significantly the last decades. However, the use of airborne lasers to measure
bathymetry is both promising and challenging. Bathymetric LiDAR operates in
a way that is similar to topographic LiDAR. It emits green laser beams with a wave-
length: of 532 nm (see Figure 2.3). This wavelength penetrates the water and gets
reflected by the bottom surface in the water. The bathymetric LiDAR is also called
green LiDAR.

Figure 2.3: LiDAR wavelengths in the visible and near-infrared regions of the electromag-
netic spectrum (Wasser, 2020)

2.2.1 Operational properties

The ALB system uses a high energy laser pulse with wavelengths in visible green and
sometimes also near-infrared (1064nm) in order to detect both the bottom sediment
and the reflection from the water surface (see Figure 2.4). The green wavelength is
preferred as it is capable to penetrate the water surface and may reach the bottom,
while the near-infrared is used to get measurements both around the topography
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of coastal waters and water levels (Vázquez et al., 2017). Particularly, ALB allows
collecting data in areas, that usually are not suitable for sonar technology due to
the shallowness of the waters or underwater obstacles.

Many limiting factors in ALB can influence the strength and shape of the laser
pulse that returned to the aircraft, and therefore the data collection procedure. In
bathymetry, the laser beam needs to pass through the atmosphere, the air/water
interface and the water column both in the transmitted and returned way (Vazquez,
2017b). For instance, the water can attenuate the light energy with depth by causing
absorption or scattering effects to the light. As seen in Figure 2.4, the laser travels
in the water column and expands in a cone form due to the scattering effect by the
water particles.

Figure 2.4: Airborne LiDAR bathymetric in operation
(Mandlburger et al., 2015)

2.2.2 Environmental factors

Many ALB systems use only green LiDAR as it is suitable for the waterbed detec-
tion of water bodies. Even if the green LiDAR wavelength can penetrate the water
surface of water areas and can potentially reach the bottom part, many factors can
negatively influence the direction, strength and shape of the returned laser pulse to
the aircraft. For instance, the laser pulse’s transmission is affected by various envi-
ronmental conditions (e.g. water clarity, suspended sediments, organic particles,
water turbidity (waves), vegetation) (Guenther et al., 2000). Also, the composition
and the roughness of the bottom play important role on the reflectivity of the laser
beam.

• Water clarity is one of the most important factors that limits the depth penetra-
tion of the laser pulse. It causes absorption (energy reduction) and scattering
of the pulse. The water clarity can be measured using Secchi depth method,
which is the depth at which a standard black and white disk is lowered into
the water until no longer can be seen by the observer.

• Organic particles & Suspended sediments increase the scattering effects of
the laser pulse. The amount of organic materials in the water and the quan-
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tities of the suspended organic and inorganic particles influence the redistri-
bution of the laser pulse’s energy (scattering) back to the airborne receiver.
For example, the presence of mud over the bottoms of water-bodies cause the
absorption of the laser signal rather than the reflection (Vazquez, 2017a).

• Water turbidity (waves) increases the backscattering effect and causes the lack
of bottom returns depending also on the season of the year when the flight
done, as the turbidity varies (Vazquez, 2017a).

• Vegetation under water affects negatively the ALB measurements because
they can block the laser pulse to reach the bottom sediments.

2.3 pulse & neighbourhood based methods
As mentioned in Chapter 1, accurate bathymetric data for large water areas are es-
sential for the Dutch water managers to maintain the water quantity and quality of
the water canals. Thus, the acquisition of bathymetric green LiDAR data can primar-
ily be used to detect the waterbeds of water bodies. Indeed, this detection procedure
demands further analysis and processing of the point cloud points through spatial
algorithms. Many algorithms operate on a single discrete point without using any
context information. That makes them ineffective for distinguishing any features in
the point cloud. Thus, there are algorithms that take into account the neighbours of
a points. Those algorithms can be based either on the grouping of points per pulse
or on geometric attributes of points in a local neighbourhood (e.g. sphere, cylinder
or water column). These methods are also called grouping LiDAR data handling tech-
niques and commonly used to compute a variety of LiDAR metrics (Koma, 2017).
Two significant techniques are:

• Pulse-based method: uses specific attributes (e.g. return number, number of
returns) of points in order to group them into a pulse form; knowing that the
dataset is sorted already by the GPS time. This method tries to reconstruct the
original pulse (full waveform) that has been discretized into multiple points.

Particularly, a water surface point usually present Number of Returns bigger
than 1 (i.e. a sequence of multiple points) and Return Number equal to 1 (i.e
the first point of the laser pulse). The corresponding underwater points needs
to follow up the water surface in the file with Return Number and Number of
Returns bigger than 1. Also, there are few exceptions such as the case where a
pulse contains just one point (e.g. RN = NR = 1), which may correspond to the
water surface.

Index Return Number Number of Returns
6 2 2

7 1 1

8 2 2

10 1 3

11 2 3

12 3 3

Table 2.2: Water-surface point (blue) and underwater points (red)

For instance, the 10th point has RN=1 and NR=3 indicating that could be a
water-surface point. The following 11th point has RN=2 and NR=3 and is
a corresponding underwater point, while the 12th point has RN=NR=3 and
probably is a bottom point.
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• Neighbourhood-based method: uses a defined search shape in a neighbour
points. The search shape can be a sphere, cylinder, a voxel or nearest neigh-
bours. Within the neighbourhood, it is possible to derive descriptive or spatial
characteristics for the features within the shape.

Figure 2.5: Cylinder and 3D Voxel; group of points are located in them

2.3.1 Voxelization

Voxelization of LiDAR data is a process where the entire point cloud can be divided
into a collection of 3D regular cubes, which can be called voxels. Each point of the
point cloud is allocated to 3D voxels, and voxel values are assigned based on the
attribute values of the LiDAR point inside the corresponding voxel (Wang et al.,
2018).

An Axis-Aligned Bounding Box (AABB) is used to define the 3D extent of the
point cloud, where:
AABB = (x, y, z)|xmin <= x <= xmax, ymin <= y <= ymax, zmin <= z <= zmax,
where (xmax,ymax,zmax) and (xmin,ymin,zmin) are the maximum and minimum values
of the bounding box, respectively. The AABB can be divided into uniform 3D voxels
based on the voxel resolution.

The voxel resolution is the most important parameter during the voxelization of a
point cloud. If the resolution is high, the number of voxels that contain no points
become larger. But if the resolution is low, then more points fall into a voxel and
the loss of information is increased. In order to reduce the redundancy and the
information loss, an appropriate resolution should be selected. If the LiDAR data
are well-distributed and form a regularized grid, then the horizontal resolution can
be determined from the equation ∆x = ∆y =

√
Axy/n, where δx and ∆y are the

voxel resolution in x and y axes respectively, and Axy is the horizontal projected
area of the points. The vertical resolution ∆z is determined by the equation: ∆z =
min[
√

Axz/n,
√

Ayz/n], where Axz and Ayz are the projected areas of the points in
xz and yz planes.

Based on the voxel resolution, the bounding box (AABB) is divided into rows (r),
columns (c) and layers (l) and they will be stored into a 3D array. The LiDAR points
are distributed to the voxels using the formulas

ri = [
xi − xmin

∆x
], ci = [

yi − ymin

∆y
], li = [

zi − zmin

∆z
] (2.1)

Afterwards, descriptive and spatial statistics can be computed for every voxel in
order to classify the LiDAR point cloud into water surface, underwater and bottom
points (Fig. 2.5). In particular, the number of points that fall into each voxel can
be summed, while the minimum, maximum,mean and the standard deviation of z
values can be calculated (Habel et al., 2018).
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Moreover, skewness and kurtosis of the data can measured in order to indicate
points’ distribution inside the voxel. Skewness is a measure of symmetry, or more
specifically, the lack of symmetry. The distribution of the data is symmetric if it
looks the same to left and right of the centre point in a histogram. Kurtosis is a
measure of whether the data are heavy or light tailed relative to the normal distri-
bution. High kurtosis means heavy tails (or outliers), whereas low kurtosis indicates
lack of outliers.

2.4 3d & 2d digital representations
Airborne LIDAR constitutes a tool that can also provide accurate digital terrain model
(DTM) of the earth’s surface. Using a big-finite number of points-measurements with
specific accuracy we can approximate the 3D surface of an area by creating its 3D
model. DTM are popular due to the applicability in many fields such as surveying,
landscape architecture, agriculture, road design etc. Several techniques have been
used to derive DTMs with LiDAR systems, such as Delaunay triangulation (DT) and
Voronoi diagram (VD).

DT or triangular irregular network (TIN) and VD are fundamental data structures
for the 3D representation of terrains and for their processing (e.g. interpolation)
(Ledoux et al., 2019). Additionally, a point cloud can be represented as a 2.5D grid
(’rasterized’) and then exported to a raster image (e.g. geotiff).

2.4.1 TIN triangulation

TIN or DT is a vector-based representation of the physical land surface or sea bottom.
It is consisted of irregularly distributed nodes and edges that arrange a network of
triangles. The triangular network of vertices (3D points) connected with edges form
a triangular tessellation. A TIN used to represent terrain is called digital elevation
model (DEM).

The vertices of TIN are formed by the points of a LiDAR dataset, creating the 3D
representation. An advantage of using TIN over the rasterized DTM is that the points
of the TIN are represented with a vertex in the model. However, TIN may suit less
than a raster DEM for GIS applications with analysis of surface’s slope, tends to be
more expensive to build and process and processing tends to be less efficient due
to its complex data structure (ArcMap, 2016).

TIN can be based on the DT, which conforms triangles to certain constrains. This
happens because the output TIN may have long, thin triangles which are not desir-
able. The resulting triangulation satisfies the DT criterion, if no vertex lies within the
interior of any of the circumcircles of the triangles in the network. If this criterion
is satisfied everywhere in the triangulation, then the minimum interior angle of all
triangles is maximized. As a result, the long and skinny triangles are eliminated
(see Fig. 2.6).
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Figure 2.6: Triangulated irregular network; a set of irregularly distributed points

2.4.2 Rasterization

Rasterized LIDAR data provide valuable output products using points’ attributes
such as elevation, intensity or classification indexes to represent the space in a 2D
model. A raster model is an array of cells (or pixels) organized in rows and columns.
The value of a pixel can represent a discrete or continuous phenomenon that corre-
sponds to an actual location in the earth. For instance, a pixel with specific elevation
corresponds to a real place on earth (Guiotte et al., 2019).

The structure of raster data is simple and really useful for a wide range of appli-
cations. Rasters are suited for representing data that change dynamically across a
surface area. They can store the continuity of data as a surface, such the previous
example of elevation data. The advantages of raster are the simple structure of the
format (row,columns), the further spatial and statistical analysis, the ability to store
uniformly different types of data (e.g. points, lines, polygons) and the fast way to
represent various complex datasets into different band layers. However, in contrast
with TIN or DT, the exact point locations will be not retained in the raster cells. Thus,
some spatial inaccuracies will exist in the raster structure due to the raster cell too.
Raster datasets can be very large in size as the resolution increases and the pixel
size decreases. There is also potential loss of precision as the data structured into a
grid-cell format.

The space partitioning of LIDAR data into a regular grid works the same as the
2D rasterization of data previously mentioned (see 2.7). The spatial resolution or
voxel size (corresponding to pixel) affects the voxel structure. Many geographical
features will not be retained when a large voxel size is chosen and other voxels may
not have any features. On the other side, a small voxel size may contain too less
information (points) to extract valuable results for the contained points.
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Figure 2.7: 3D points irregularly distributed into a grid, then stored into a raster structure

Moreover, some rasters have a single or multiple bands (i.e. layers of data). Each
band is represented by a single matrix of cell values. In case of multiple bands, the
raster contains multiple matrices with same spatial extent that represent the same
spatial area. For instance, a DEM is a single-band raster, where each cell only one
value representing surface elevation. When there are multiple bands, every cell has
more than one value associated with it (e.g. elevation, classification codes).

In this thesis, I may use rasters with pixel (voxel) size to represent the bottom
surface and do further analysis on the raster bands. Multiple bands may be used in
order to associate points’ characteristics in different bands. Also, TIN representation
might be used to visualize the water-bed’s surface into a 3D model.



3 R E L AT E D W O R K

Several studies have been done in the field of mapping river and shallow water body
bathymetry using green LiDAR. Green LiDAR is widely used for coastal surveys.
Many studies focus on water depth measurement quality and limits, in particular
for rivers and surface water, and take advantage of this technology. Some of them
are concentrated on the mapping of the water-bodies acquired from LiDAR data
either green or green with additional ones (e.g. near-infrared (NIR)). Then, methods
are applied to classify the water points into water surface and bottom points.

Some studies only deal with the detection of the water regions from a point
cloud. This is not part of this study, but the implemented methods (e.g. fuzzy
logic concept) give insight for the classification part of the proposed methodology
of this research. This chapter describes other studies for mapping water bodies
using LiDAR data in Section 3.1, using only green in Section 3.1.1 or additional
data in Section 3.1.2. Thereafter, previous bathymetric surveys for Dutch shallow
inland water bodies are presented in Section 3.2. In Section 3.3 methods to filter
and classify points are thoroughly described. This chapter ends with a conclusion
Section 3.4 to overview the methods that match with the goal of the thesis and form
the gaps of the research.

3.1 classifying water bodies using lidar data
In general, the methods for mapping the shallow water-bodies can be separated
based on the use of LiDAR data. Either only green LiDAR or green combined with
additional LiDAR data (e.g. NIR).

3.1.1 Using only green LiDAR

Throughout the year, many studies have been developed in order to analyse the 3D
geometry of water bodies. The detection of the water surface and subsequently the
bottom parts using only green LiDAR data.

Allouis et al. (2015) introduced a specific green LiDAR full waveform GLFW model
in order to detect the minimum depth detectable estimation Hinf. The Hinf assess-
ment is done on four steps: 1. GLFW modelling for a specific set of LiDAR system
and river parameters, 2. bathymetry estimation from the GLFW model with approx-
imation methods, 3. determination of minimum Hinf from the approximated model,
4. confidence interval computation using the Monte Carlo method.

This methodology is targeted on low deep waters and only focuses on the us-
age of surface and bottom returns from the green LiDAR signal in order to deter-
mine the minimum depth. In order to develop a suitable model for rivers, Allouis
et al. (2015) did some assumptions. The water surface has a non-zero slope in the
longitude, the turbidity of water is homogenous without algae and the roughness
of the water surface is uniform. Afterwards, using the GLFW (see Figure 3.1) the
bathymetry Hinf from peaks detection of water surface and bottom parts was es-
timated using an approximation method. The method is based on a combination
of Gaussian laws fitted in a least squares algorithm. The water depth Ĥ from the
model can be estimated.

17
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Figure 3.1: A GLFW model using fitted Gaussian density functions; Actual surface position
(left) and bottom position (right) are the vertical dotted lines (Allouis et al., 2015)

Mandlburger et al. (2015) proposed a method to determine the water surface us-
ing only the available reflections from green LiDAR, and then classify the water
echoes. The classification of the water points into three classes: 1. surface 2. body
3. bottom points relied on full waveform features and spatial features based on local
neighbourhood. When the green laser interacts with the water, the signal either
reflects back due to the water surface or scatters at water particles (i.e. backscatter).
The classification procedure is difficult particularly in deep waters. The density of
points near to the bottom of the river drops significantly as the laser pulse passes
through the water column. The low point density in the bottom part causes misin-
terpretation of the volume backscatter echo as a ground point.

The surface returns are identified by their low reflectance values and small water
depth. Points that have higher reflectance near the water surface and their majority
belong to a spherical 3D neighbourhood are classified as water surface, too. The
backscatter points are detected by their low reflectance and sparse point spacing.

To avoid misclassification of water points, especially the water bed points at the
maximum depth, three thresholds were used: 1. water depth 2. object reflectance
3. neighbourhood definition. The water depth threshold is related to the maximum
penetration depth based on Secchi depth of the water body. The Secchi depth mea-
surement is done by a circular disk 30cm in diameter. This disk used to measure the
turbidity of the water by lowering it down in the water. The depth where the disk
is no longer visible is taken as measure of transparency. Also, the reflectance thresh-
old depends on environmental conditions such as the attenuation with atmosphere
and the water column. The neighbourhood threshold is used for the dimension of
the search (e.g. spheres, cylinders). The dimension of the search shape differs based
on the overall point density of the point cloud. As seen in Figure 3.2, the LiDAR
points were classified based on their reflectance value, their distance from the water
surface (i.e. water point’s depth) and their spatial distribution.

Also, surveyed reference points were measured in order to validate the classified
point cloud. Those field points were categorized into classes such as river bed, road,
vegetation, forest, as all these categories exist in the study area. Then, the height
differences between the LiDAR and reference points were calculated and accuracy
was estimated. The height discrepancies were ranged between few centimetres.



3.1 classifying water bodies using lidar data 19

Figure 3.2: Classification of water echoes based on reflectance value, water depth and spatial
distribution (Mandlburger et al., 2015)

Another study on the classification of water surface and bottom points was done
by Andersen et al. (2017). Specifically, a methodology to process green LiDAR data
in tidal environments was proposed. The water surface detection is based on deter-
mining depth and surface extent by creating a digital water surface model (DWSM).
The water surface elevation is acquired by the water surface points, while the ex-
tent is determined by inferring the intersection of water surface and the surface
topography.

In particular, a 2D grid was adjusted on the point cloud extent with 0.5m cell
size. Then, the shallow and deep surface were extracted from the point cloud by
selecting the highest point and lowest point per grid cell, respectively. The shallow
surface displays the topography along with the water surface, whereas the deep
surface displays the topography and the riverbed (if it is reached by the laser). Also,
the shallow surface was used to determine the actual water depth. In order to better
simulate the water level, the average elevation of 2m cells was used as the estimated
water surface elevation. Thus, the water points were classified into water surface
and bottom ones, while they have been corrected from the refraction effect. All
these steps appear in Figure 3.3.

(a) Shallow (red) and deep
(yellow) water surface

(b) Water surface elevation
(blue)

(c) Water surface extent
(blue)

(d) Refracted point cloud
(green)

Figure 3.3: Water surface and bottom detection. 3.3a Extract both surfaces using 0.5m grid
size. 3.3b Determine the water surface elevation. 3.3c Determine the water sur-
face extent. 3.3d Refract the point cloud. (Andersen et al., 2017)

Kinzel et al. (2013) proposed algorithms that used to detect the location of a
water surface and bottom return in waveforms for shallow depths (<1m) and deeper
depths. The elevation of the bottom is found by firstly correcting the refraction
effect and taking into account the slowdown effect in the speed of light. Also, the
attenuation of laser pulse and the backscatter effect due to the water turbidity.

Thus, after correcting the waveform from these effects, the first algorithm searches
for the most significant peak (maximum peak (MP)) which corresponds to the bot-
tom return in waveforms returned from shallow waters (¡1m). Also, the last peak
(LP) algorithm, like the MP, first corrects the waveform and then finds all inflection
points in the waveforms (using 1st derivative), and then selects the last peak based
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on a threshold value. This reduces the change to select a stronger peak due to the
turbidity of the water instead of a weaker bottom reflection.

3.1.2 Using additional LiDAR data

The way to acquire water depth measurements using bathymetric LIDAR data is to
compute the two time moments between the surface and bottom returned peaks,
as seen in Figure 3.4b). Using only green LiDAR on very shallow waters (<2m) is
quite challenging and difficult to extract the water surface and bottoms positions,
as they are typically mixed in the green signal (Allouis et al., 2010). This means that
the two peaks (water surface, bottom) are so near in the time frame, only few ns
time difference, that makes hard to easily distinguish them.

For depths lower than 2 meters, the difficulty is the discrimination of the two
mixed peaks. For that reason, Allouis et al. (2010) proposed the use of two methods:
the first one used green and near-infrared (NIR) wavelength (1064 nm) and the
second the red wavelength Raman signal (647 nm) in a regression model based on
principal component analysis (PCA) in order to estimate the depth. In the first
one, the NIR wavelength is reflected on the water surface, and thus it is easy to
distinguish dry land from water surface. In the second one, the Raman wavelength
is useful to locate the air/water interface when facing incorrect surface detections
due to land reflection or to undesired targets such as birds. Consequently, both
NIR and Raman signals helped to accurately measure the water surface position
and water column, respectively in the methods (see Figure 3.4). Also, if depth
measurements are missing in muddy shallow waters in green waveforms, Raman
signal can be used instead.

The NIR and green method gave satisfactory results without using reference data,
while the method based on Raman regression model needs large amount of refer-
ence data.The Raman signal is sensitive to water characteristics like temperature,
turbidity.

(a)
(b)

Figure 3.4: 3.4a Bathymetric LIDAR with green, NIR and Raman wavelengths. 3.4b Green
LIDAR waveform showing the surface and bottom position. (Allouis et al., 2010)

Zhao et al. (2017) proposed a method to accurately detect water surface and water
bottom heights combining green LiDAR and corrected by the near water surface
penetration (NWSP) model. The NWSP is the phenomenon where the first return can
not exactly correspond to the water surface but reflects a penetration level in the
water column. However, the use of integrated infrared (IR) and green LiDAR solve
this phenomenon and improves the accuracy, but it cost a lot and adds extra weight
to the ALB system. That’s why only the green LiDAR is preferred to be used. In this
case, if the NWSP model can be accurately estimated, the green LiDAR can obtain
accurate measurements. The model can be build using LiDAR and hydrological
ground truth data and then apply further statistical analysis.

∆d = β1φ + β2φ2 + β3F + β4F2 + β5Turb + β6Turb2 + β7 (3.1)
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The NWSP model can be expressed as an equation (see Eq.3.1), where different
parameters are taken into account. Particularly, the water turbidity (Turb), the inci-
dent angle (φ) of laser beam to the local vertical and the laser spot diameter (F) on
the water surface. Also, it is important to mention that the results of this method
are affected by the given reference water surface height data (IR data) and the water
turbidity.

Figure 3.5: Bathymetric LiDAR principle; red and green colours represent the infrared (IR)
and green laser pulses, respectively(Zhao et al., 2017)

In Figure 3.5, the propagation way of the laser pulse with green and IR wave-
lengths is presented. At the time t1 the IR laser hits the water surface, while the
time t2 the green laser. The water bottom points (time t3) are captured only by
the green laser. The time delay Dt12 between the two lasers is calculated using φ:
incidence angle in the air, θ: refracted angle in the water and ∆d: vertical distance
between the water surface height from green laser and measured water surface from
hydrological data.

3.2 bathymetric surveys in shallow dutch inland
water bodies

Bathymetric data have a crucial role for the water managers and Dutch water boards
as they give valuable information to control groundwater level in the country (see
also in Chapter 1). The knowledge of water depths especially in water bodies is
useful for dredging and water transport purposes (Vazquez, 2017a). In order to
obtain these data, there is not any effective and cost-efficient method. Even echo-
sounding is not suitable everywhere due to the shallowness of the water (<1m) and
the presence of under water obstacles.

On 2015, the waterboards collected an ALB dataset with data acquired from both
near-infrared and green laser pulses (AeroData, 2015). In order to validate the
results, water depth measurements were done from a boat that was navigated in
the shallow water canals. Factors such as the presence of vegetation in the water
and sludge as bottom sediments block the laser signal to reach the real bottom.
Also, it was hard to discriminate between the two peaks in the waveform in case of
really shallow and muddy water bodies.

Another study was conducted in 2017 (in a laboratory (Vazquez, 2017a)). Vazquez
(2017a) tested the use of yellow wavelength (590nm) for lower attenuation in the wa-
ters in combination with short laser pulses for shallow measurements and Single-
Photon Counting or Supercontinuum lasers in laboratory conditions. The main goal
of this research was to develop a new technique for bathymetric measurements in
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Dutch shallow inland waters. This was done, because the previous project (Aero-
Data, 2015) didn’t manage to capture the water points in small shallow ditches, due
to the shallowness and turbidity of the waters. The study performed measurements
with green and yellow wavelengths in the laboratory and compared the results. In
addition, it aimed to understand how the properties of the Dutch waters can af-
fect the laser pulse transmission and to define the optimal time window for ALB

measurements.
The results were promising for the very shallow inland waters (i.e. under 30cm

depth). Bottom returns in dark sands and sludge were captured, so as measure-
ments in sediments can be achieved. Also, the results demonstrated that the sludge
presents higher scattering values than any other bottom soil (e.g. sand), while the
absorption levels are low and same in both wavelengths. Also, the Secchi depth
measurements can provide accurate measurements regarding the water turbidity.
The best time period for bathymetric measurements in the inland waters is between
February and March, since parameters such as water vegetation and algae took into
consideration.

In addition, the comparison between yellow and green measurements showed
that green wavelengths failed to capture deep waters with high turbidity, whereas
the yellow presented less failures. However, the role of bottom sediments is more
important than the differences between the wavelengths. Moreover, the low en-
ergy per pulse makes difficult to get airborne measurements in deeper and turbid
waters. The Single-Photon Counting (time-of-flight approach) presents better mea-
surements (more points) in turbid waters and the Supercontinuum lasers gave a po-
tential for more accurate measurements, since they have a multi-wavelength setup
(i.e. green with NIR wavelengths in one laser). The laboratory data were validated
with field (water) measurements.

Even if few pilot projects have be done to collect ALB data, the automatic and ac-
curate classification of the water points into water surface, underwater and bottoms
points is still a remaining issue. The effectiveness of the various combinations of
wavelengths (e.g. green, NIR, both of them) have been studied in case of the Dutch
water bodies and the different environmental factors have been analysed too.

Moreover, a following study used these bathymetric data in order to assess the
water depth and detect the bottom points of the waterbeds (van Tol, 2019) and
conducted in cooperation with Deltares. The proposed methodology was done
in steps: first the noisy points were filtered out using a height threshold, then the
remaining points were classified into ground and low points. In order to distinguish
the water surface and sediments points, the echoes and the intensity values were
used. All this process were done using HydroVish and Terra Scan Solid software.
The results were not so satisfying as the classification process was based on cross
sections analysis without taking into account the whole group of 3D points, and
further research needs to be done.

3.3 pulse-based vs. neighbourhood-based meth-
ods

There are many point cloud algorithms that aim to compute features or detect in-
teresting points (e.g. lamp posts or other objects). These techniques use either the
points of a laser pulse or the points within a local neighbourhood (e.g. 3D Voxel).

Grouping per pulses approach has a vital role in the LIDAR data, as it can used
to detect and extract features. Mahphood and Arefi (2019) proposed a method
to detect structures (e.g. buildings) from point cloud, depending on a method
called Virtual First and Last Pulse (VFLP). This method concentrates on the height
difference between the virtual first pulse (VFP) and virtual last pulse (VLP). In this
method, the main assumption is the zero scan angle which corresponds in a vertical
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laser beam direction. By calculating this height difference, the vertical features (e.g.
building walls) can be extracted. This method is effective to detect structures such
as buildings and eliminate other features such as trees. Another study used the
return numbers and number of returns from point cloud’s characteristics just for
ground filtering purposes. When the LiDAR dataset had multiple returns, the last
returns may be used for filtering the ground level (Meng et al., 2010).

Neighbourhood-based methods aim to extract information from a local neigh-
bourhood of points. For instance, the division of point cloud into a regular grid
cells (voxel) helps to group a set of points in order to further analyse their spatial
distribution. Grid representations and voxels can be used to speed up point cloud
classification (Plaza-Leiva et al., 2017). Other studies such as (Boerner et al., 2017),
proposed the voxel structure for ground segmentation; able to cluster the point
cloud into ground and non-ground points.

Also, green LIDAR is used to evaluate the extent, the density and the height of
aquatic reed beds at a lake (Corti Meneses et al., 2017). In order to detect the
bottom of the reed, a classification process was applied to the point cloud. First, the
water points have shifted due to refraction effect and therefore had to be corrected.
Then, the points were selected based on an infinite vertical cylinder. For those
points, statistics were calculated for identifying patterns based on the rank and
point density parameters. The rank was the relative height position within this
vertical neighbourhood, while the point density is the amount of points per square
meter in the cylinder (Corti Meneses et al., 2017).

(Boerner et al., 2017) proposed a method to cluster the point cloud data into
ground and non-ground points using voxel structure. First, the ground voxels are
identified with a region growing algorithm, and then the non-ground voxels are
searched in order to filter out remaining ground segments. In particular, the al-
gorithm uses octree data structure to create the voxel structure and divide the 3D
space into voxels. It searches the lowest ground voxels in a local neighbourhood
and get its point with the lowest z value. In order to assure that the ground voxels
are properly selected, the attributes of points fall into a voxel are used. When the
return number and the number of returns are equal, then the point is the last one in
a pulse. Therefore, the voxels which do not contain mostly last points of pulses are
marked as non-ground voxels. Also, it uses local gradient between neighbouring
voxels to identify the ground voxels (e.g. in a flat ground the gradient is zero) using
a threshold value.

3.4 summary & conclusions
Many studies recognize that classifying the water points of a bathymetric LIDAR

dataset is a complex and hard-demanding procedure. Some attempts are made and
discussed why they can not be applied in the case of this research.

A few studies claimed to successfully classify the point cloud and then detect the
bottom points of water bodies just using green LIDAR [Allouis et al. (2015) ; Man-
dlburger et al. (2015); Andersen et al. (2017); Kinzel et al. (2013)]. However, not
every author followed the same approach to distinguish the surface and bottom
returns. Allouis et al. (2015) used the green LIDAR waveform and applied a simula-
tion approach (Monte Carlo). Others based on the full green waveform and spatial
features in a local neighbourhood by using external thresholds Mandlburger et al.
(2015). Most potential is shown in methods of Andersen et al. (2017) and Kinzel
et al. (2013). Both authors applied refraction correction to the water points. The
first author detected the water surface by fitting a line, and then detected the bot-
tom surface used the remaining lower points. The other one detected the peaks
from the green waveforms, the 1st corresponds to the water surface and the last to
the bottom using threshold values.
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Furthermore, few others combined the green LIDAR data with additional wave-
lengths such as NIR (1064nm) or Red (647nm) [(Allouis et al., 2010); Zhao et al.
(2017)]. Both approaches used NIR data to enhance the detection of water surface,
and then only use the green ones to detect the waterbeds. In this study, the pro-
vided data are only green bathymetric LIDAR and therefore the methods of these
studies can not be treated here.

In addition to these studies, pilot projects with further studies have been carried
out for the case of shallow inland water bodies in the Netherlands. Two differ-
ent projects; one with field airborne bathymetric measurements (AeroData, 2015)
and one with laboratory tests (Vazquez, 2017a) were done to identify the suitable
combination of LIDAR wavelengths for the shallow and muddy Dutch water areas.
Particularly, those wavelengths that can accurately capture water points by over-
coming the existing environmental water conditions (e.g. sludge, algae, turbidity).
Also, van Tol (2019) did an first analysis of the point cloud and tried to classify it
without the desired results.

The processing and analysis of point cloud data is a demanding procedure. Many
studies used methods that extracted valuable information from the laser pulses (e.g.
first and last pulse returns) (Mahphood and Arefi, 2019), while other author used
them for ground filtering purposes (Meng et al., 2010). However, not any study
was found that used the pulse based approach in green LIDAR to classify the water
points according to their characteristics (i.e. RN, NR). This study will explore the
potential of exploiting those characteristics for the classification procedure.

Different studies used different approaches for constructing a neighbourhood of
points, such as (Plaza-Leiva et al., 2017), (Corti Meneses et al., 2017) and (Boerner
et al., 2017). Plaza-Leiva et al. (2017) divided the 3D space into voxels and grouped
the points per voxel to further analyse them, while Corti Meneses et al. (2017) used
the vertical cylinder shape to group them and then classify according the height
and point density. Boerner et al. (2017) used octree to create the voxel structure in
order to distinguish the ground and non-ground voxels. From the ground voxels ex-
tracted the lowest point corresponding to the ground. All in all, voxelization shows
great potential to reduce the computational cost and to enhance the classification
procedure. Consequently, the voxelization seems to be an interesting method and
will be implemented in this study.

Study Input LiDAR data Waveform Approach
(Allouis et al., 2015) green Full GLFW model

(Mandlburger et al., 2015) topobathymetric Full Classification water surface and waterbeds returns
(Andersen et al., 2017) topobathymetric Full 2D grid cells; highest point water surface, lowest point waterbed

(Kinzel et al., 2013) green - Maximum peak (MP) and Last Peak (LP) algorithms
(Allouis et al., 2010) NIR, green, Raman Full Combine NIR and green to detect the water surface and bottom parts

- - - Raman waveforms using PCA to estimate the depth
(Zhao et al., 2017) green Discrete Determine water surface and waterbed ,use the NWSP model for validation
(Vazquez, 2017a) yellow - Laboratory tests between green and yellow wavelengths

(van Tol, 2019) green Discrete Classification of point cloud using HydroVish and Terra Scan

Table 3.1: Summary of water classification cases using various ALB data (1/2)

Tables 3.1, 3.2 summarize the general findings of the various water classification
cases using various wavelengths. Comparing those studies with my study case few
differences are spotted. Regarding the input data, the waveform form, the main
approach, the parameters, the comments-assumptions and the existence or not of
ground truth data. Some of them used only green LIDAR data, others combined
them either with near-infrared (topo) or Raman measurements, or tried another
wavelength. Moreover, most of them had full waveform LIDAR and only a few had
discrete LIDAR, as in my study. Different approaches were implemented in order
to classify the water areas. Some created models based on specific parameters (see
Parameters in Table 3.2) and others based the analysis either on pulse’s characteris-
tics or lowest/highest point of a 2D grid cell. Also, the majority of the studies used
ground truth data to validate the results.
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Study Parameters Comments - Assumptions GT Data
(Allouis et al., 2015) LiDAR system (power, time function,angle), river parameters (surface, bottom) non-zero slope in longitude No

- homogeneity of turbidity No
- uniform rough water surface No

(Mandlburger et al., 2015) water depth, object reflectance, neighbourhood definition using only green LiDAR Yes
(Andersen et al., 2017) water surface is horizontal using only green LiDAR Yes

(Kinzel et al., 2013) threshold value, maximum number of points - Yes
(Allouis et al., 2010) - very shallow waters (<2m) Yes

- very shallow waters (<2m) Yes
(Zhao et al., 2017) scanning angle, spot laser diameter, turbidity shallow waters, hydrological data Yes
(Vazquez, 2017a) sludge, water turbidity shallow waters -

(van Tol, 2019) - shallow and muddy inland waters Yes

Table 3.2: Summary of water classification cases using various ALB data (2/2)

In addition, the Table 3.3 presents all the pulse and neighbour-based methods of
this chapters. Even if few studies were used to process different LIDAR data, their
methodology was essential to define the current workflow (see Chapter 4) of this
study.

Study Method
(Mahphood and Arefi, 2019) Pulse
(Meng et al., 2010) Voxel
(Plaza-Leiva et al., 2017) Voxel
(Corti Meneses et al., 2017) Cylinder
(Boerner et al., 2017) Voxel

Table 3.3: Summary of pulse and neighbour-based methods

To conclude, this study will try to establish and apply an automatic classification
workflow that will be based on both the characteristics of the points and their spatial
distribution in the 3D space. In my study, compared to the others, I will only use
green discrete LIDAR. Also, ground truth data will also be used to validate the
output.
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As described in Chapter 3, different approaches already exist to classify the water
surface and bottom parts of water bodies using green LIDAR. Even while many
studies tried to classify the water points using green LIDAR and sometimes with
additional data, classifying and detecting water beds remains a challenging issue.
In Chapter 3, various attempts with few promising results are described. A few
studies, particularly, for shallow inland water areas in the Netherlands are shown
and discussed. However, an improvement can be made in order to automatically
classify those points using spatial algorithms.

Pre-processing steps are necessary to extract the appropriate extent of water bod-
ies. The pulse and neighbourhood-based methods presented in this chapter aim
to establish an automatic classification process for the water bodies. Using points
characteristics, pulse grouping and voxelization to further analyse and classify the
points.

This chapter begins with an overview of all the essential pre-processing proce-
dures in Section 4.1, how the areas of shallow water canals are extracted (Sec-
tion 4.1.1) and the further sorting criteria (Section 4.1.2). Following the pulse and
voxel based methods presented in Section 4.2 and Section 4.3, respectively. The Sec-
tion 4.3.3 describes how the confidence values for the potential bottom points are
defined. Lastly, the Section 4.4 presents the ways to visualize the classified point
cloud. Figure 4.1 gives a summary of the whole classification process of the green
LIDAR.
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Figure 4.1: An overview of the workflow

4.1 overview of pre-processing procedures
This study uses a raw and unclassified airborne topo-bathymetric LIDAR dataset,
as presented in Chapter 1 and notably in Figure 1.2. In general topo-bathymetric
LIDAR uses two wavelengths; the Near-infrared (NIR) (1064nm) and green (532nm)
visible electromagnetic spectrum. In this thesis, only the green will be used since it
can capture the water areas that we are interested in. Millions of points have been
captured in both topography and water bodies. Also, some thousands of points
are probably outliers (i.e. noisy points), which have been recorded due to external
environmental conditions (e.g. air particles, reflection).

As a result, the pre-processing procedure (see Figure 4.1) is an essential first step
to filter out outliers. Also many undesired points, such as urban structures (e.g.
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buildings, bridges) and vegetation, need to be removed from the given raw point
cloud. Implemented tools can be used to remove the errors or duplicate points in
this step (see Chapter 5). Thereafter, the filtering and cropping steps aim to extract
only the water areas of interest out of the whole dataset.

4.1.1 Extract shallow water bodies

Airborne bathymetric LIDAR covers a wide range area and capture millions of points.
These huge datasets need to be meticulously processed in order to obtain only the
valuable information. As a result, all the unnecessary points are removed and the
shallow water bodies can be extracted by applying a quick and effective technique.

The main idea is concentrated on the use of an external datasets with the exact
shape of the water bodies. Since the area of the provided datasets cover big parts of
the country, the use of an official digital base map; called TOP10NL, freely provided
by Dutch Kadaster is chosen.

The TOP10NL is a digital topographic base map of the Kadaster. It is uniform,
consistent and a map basis for the whole extent of the Netherlands. It consists
of various topographic elements which were categorized in classes such as road
sections, buildings, terrain. The most significant class is the water part as it contains
all the registered water areas in the country. This means rivers, water canals, lakes,
water polders and sometimes parts of the exclusive economic zone (EEC) in the sea
(see Figure 4.2).

(a)

(b)

Figure 4.2: Top10NL dataset; 4.2a Registered water parts. 4.2b Inland water bodies in a small
region.

Additionally, the extent of the various datasets (see Chapter 5) cover inland water
parts. In most cases, the water areas are actual inland water bodies in the urban
environment and not any river or sea parts as seen in Figure 4.2b. Moreover, this
dataset was created by combining aerial photographs, field records and other exter-
nal sources. This means that the shape and size of the water areas may differ from
the reality due to low accuracy of used sources. Even though these differences are
not so big (just few meters), the actual shape of the water bodies will differ and few
undesired points will remain in the extracted water body point cloud. However,



4.1 overview of pre-processing procedures 29

these few points can be filtered out in the next steps and will not affect the final
classified output.

Figure 4.3: 3D view of a water body; existence of outliers in the higher and lower z level

Obtaining the 2D extent of a water body using the TOP10NL polygons, there are
still many outliers and unnecessary points (e.g. buildings) in the z level (see Figure
4.3). In order to eliminate them, a threshold range in the z level is used and only
the water points are extracted, as seen in Figure 4.4. This threshold range varies
per dataset and is selected by visually inspecting it. Then, the up and low z values
of the range is used to crop and store only the water areas of every dataset. More
details are seen in Table 6.1.

Figure 4.4: 3D view of a water body; cropped in the z extent

4.1.2 Sort criteria

As the shallow water bodies have been selected in the Section 4.1.1, the points can
be processed based on their characteristics. An important factor for the LIDAR data
is the quality checking (Isenburg, 2019). The main quality check is concentrated
on the completeness and correctness of the discrete returns of each laser pulse.
In particular, the existence of all returns in the file and the correct numbering of
them, respectively (Isenburg, 2019). Thus, the completeness and correctness is an
important issue that needs to be taken into account for every LIDAR dataset.
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Every laser pulse usually collects from one up to five returns. Each of these
returns contain an exact GPS time stamp that corresponds to the time the point-
return was captured. By having these time stamps for all the points of the point
cloud, the set of points per pulse can be recovered. Also, other problems in the
set such as missing returns, duplicate returns or inconsistencies with the values of
number of returns can be detected and removed. Existing tools (e.g. LAStools) are
used in this research and restore the quality of the data.

Knowing the time stamp of each point, the point cloud can be sorted by GPS time.
The group of points per pulse can be selected and further processed to distinguish
which point possibly corresponds to the bottom surface of a water body. Note that
the grouping procedure can be based also in the return number RN and number of
returns NR, as explained in Table 2.2. However, even if the previous problems could
be removed from the dataset, it is more secure to additionally use the GPS time
stamp for the grouping procedure. Mainly because the used functions (e.g. lassort,
lasreturn) try to restore the data without indicating how exactly they do it.

4.1.3 Refraction correction

Another issue is the refraction and slowdown effect of a laser pulse, when it is
transmitted in the air interface and hits on the water surface (see Section 2.1.3).
Both horizontal and vertical errors are introduced in the point data, resulting in
points that are deeper and further away from the nadir than the real measurement
(Parrish et al., 2019). The slowdown effect occurs because the speed of light in the
water is getting smaller due to the transition from air to water interface. As a result,
the distance between the underwater point and the water surface point (1st laser
hit) is smaller. This is presented in the Figure 2.2a in the theory Chapter 2.

However, this refraction effect does not practically affect the classification pro-
cedure of this study; specifically the detection of the bottom points. Even if the
geometrical position of the underwater points is a bit shifted, their relative spatial
distribution may remain similar (see Figure 4.5). Thus, the refraction correction is
not going to be applied in this study.
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Figure 4.5: Vertical section of original and corrected water points due to refraction and slow-
down effect

4.2 pulse-based method
Since the LIDAR points have been restored and sorted per GPS time, then the points
of every pulse can be identified. Next, the waveform of a pulse approximation
can be generated by using the discrete intensity values of its corresponding points,
which is quite useful for the classification of the water bodies.



4.2 pulse-based method 31

When the laser beam starts penetrating the water surface, the intensity value
starts decreasing over distance due to multiple effects (e.g. due to the reflectivity of
the water interface). The water surface point has a high intensity value as it is the
first point that laser pulse hits on, while the following underwater points present
gradually decreasing values. As the pulse goes deeper to the water column, it can
possibly reach either the bottom surface or hit on any other objects or structure
or it is absorbed completely. This reflection on a solid object, except the water
particles, is translated to a small peak in the intensity graph. In other words, after
the discretization of the waveform that reflection will correspond to the last point of
that current laser pulse. The last point of the pulse can be interpreted in this study
as a potential bottom point of the water body, since that small peak in the intensity
graph has been presented (see Figure 4.6).

Figure 4.6: The three components of echoes from water area of green LiDAR consist of water
surface return, water volume backscatter and bottom return (IQmulus, 2019)

It is important to mention that the laser beams of the given raw point cloud are
not stored as a full waveform, but as discrete values that correspond to the stored
points of every laser beam. For instance, the first intensity value (first point) of
a pulse in the point cloud corresponds to the water surface echo pulse and the
following values to the underwater points. The last value (last point) may indicate
the sea floor (bottom) echo pulse, but it might be noise, too. Thus, the intensity
value of a point varies per pulse as the environmental conditions (see Section 2.2.2)
are not the same for the entire area of a point cloud. For example, seaweed and
mud may be present in specific parts of the dataset.

The set of points per pulse needs to be selected based on certain criteria. As
described also in previous Section 4.1.2, the GPS time stamp and the characteristics:
RN and NR are known for each point. The recommended grouping procedure per
pulse combines all these elements of points, especially, the GPS time, the RN and
NR. In this study, the intensity value is not included in this grouping procedure
since it may not have the expected format, as seen in Figure 4.6. In Section 4.2.2,
the expected and undesired cases are discussed, while the pulses that reach the
bottom can be distinguished. This is a challenging step as many errors (i.e. wrong
NR of a point) may still remain in the characteristics of the points that will affect the
grouping method. More detailed steps are described in the next Section 4.2.1.

4.2.1 Grouping per pulse

To identify the points of a pulse, an algorithm that iterates through the points is
established. For every point, RN, NR and GPS time are retrieved. Since the points
are sorted by their time stamp, time differences between following points are calcu-



32 methodology

lated. Then, the points can be categorized into three tags: 1. firstpoint 2. midpoint
3. lastpoint as seen in Algorithm 1.

In Algorithm 1, many different cases are considered in order to ensure the cor-
rectness of the grouped points. In particular, the common occasion is when all the
points of a pulse exist in the dataset, they can be recognized and grouped. However,
there are a few cases where points have been remained during the previous filtering
procedure (see Section 4.1.1 and Section 4.1.2). For instance, the last point of a pulse
remains, while the other points were out of the z threshold range and eliminated.
Also, the case where a pulse captured just one point on the water surface. All these
case studies taken into account were removed.

Algorithm 1: Grouping per laser pulse
Data: Point cloud
Result: List of points per laser pulse
// Initialize of a list with pulses

1 pulses← [];
2 n← 0 ;
3 for p ∈ dataset do
4 rn← return number (p) ;
5 nr← number of returns (p) ;
6 dt← gps time(p) - gps time(previous p);
7 if rn == n and nr > 1 then
8 if rn == 1 then
9 pulse[p]← f irstpoint;

10 else if rn < nr and dt < 1e-7 then
11 pulse[p]← midpoint;
12 else if rn == nr and dt < 1e-7 then
13 pulse[p]← lastpoint;
14 if rn == nr then
15 n← 0 ;
16 end

// Case: one point!

17 else if nr == rn == 1 then
18 pulse[p]← f irstpoint;

// Case: one point!

19 else if nr >= 1 and rn == 1 then
20 pulse[p]← f irstpoint;

// Case: individual points of a pulse e.g. rn=3, nr=3

21 else if nr == rn and nr ! = 1 then
22 pulse[p]← lastpoint;
23 n + = 1

24 end

4.2.2 Identifying bottoms

Since the points have been successfully grouped per pulse, the next step is to iden-
tify which pulses have reached the bottom of a water body. Due to the environmen-
tal factors, as described in Section 2.2.2, the laser pulse’s transmission is affected.
Also, the roughness and composition of the bottom have a crucial effect on the re-
flectivity of the pulse. For example, the bottom might have an extra layer of sludge
on it. The laser pulse will reflect on this layer and not on the real bottom. In case
the bottom surface is bumpy, the laser pulse might capture a point not on the real
bottom due to its reflectivity.

Thus, a pulse may present either an expected or an undesired behaviour, as it
penetrates the water surface of a water body and tries to reach the bottom part.
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According to other studies, as presented in Chapter 3, the intensity of the pulse’s
waveform changes with respect to the depth. When the laser beam hits on the water
surface, that time, the intensity value is quite high. As the beam pass through the
water, the value decreases until to hit on an object or ideally on the bottom surface.
Then, it shows a peak in the intensity value. This can be easily seen in Figures 4.6
and 3.4b, and presents the ideal expected pulse form.

The expected and undesired behaviour can be distinguished based on the inten-
sity values of the discrete returns (points) of a pulse as they z value increases. For
every pulse, the intensity values are normalized in order to be comparable between
different pulses.

• Expected: the intensity of the 1st point (water surface) is high, the following
points have lower intensities and the last one (bottom surface) a bit higher
than the previous one (see Figure 4.7a)

• Undesired: the intensity of the 1st point (water surface) is high, following
point present lower value while the last one (bottom surface) is lower than the
previous one (see Figure 4.7b)

(a)

(b)

Figure 4.7: Normalized Intensity and Z value of points of a pulse; 4.7a Expected behaviour.
4.7b Undesired behaviour.

To select only the pulses with the expected behaviour, the intensity values of
their points are used. Specifically, in the case of triple or more points in a pulse, the
intensities of middle and last points are checked. When the ratio of intensity values
between last point/ middle point is bigger than 1, then the last point has a peak and
can be described as a potential bottom point. As for the double of points in pulses,
the last point is considered directly as the bottom point.
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4.3 neighbourhood-based method
A neighbourhood-based method determines the position of an interesting point
using some similarity measures between the point and its neighbourhood. As men-
tioned in Section 2.3, a search shape is used to select a neighbour of points. This
shape may differ in many cases according to its application. For this study, the
proposed shape is a 3D rectangular cube, called voxel. It offers an efficient and
organized data model where the space division into voxels is a straight-forward
procedure. Also, finding neighbouring cells and analysing the spatial relations
of points is more easy. This voxel-based approach is computationally efficient in
comparison to algorithms like k-Nearest Neighbors (kNN). The kNN identifies the
k-nearest neighbours of a point of interest based on a query (e.g. distance). Its main
drawback is its sensitivity to the scale of data as it may become slow for processing
huge bathymetric data compared to the voxel-based method.

4.3.1 Voxelization

The first step is the creation of a 2D regular grid. The process to create this structure
is based on the space partitioning of the point cloud. The 3D bounding box of the
dataset is defined and all the points’ coordinates are stored, but their topological
relations are not defined. In a 3D grid, voxel locations are defined indirectly by
their location in the grid. However, a grid may contain voxels with and without
data points. In this process, all the empty voxels will not be stored to save memory
space and maximize the processing time.

Another important factor is the spatial resolution or voxel resolution, i.e. the size
of the voxel (see also Section 2.3.1). This resolution determines also the amount of
voxels contained in the 2D grid. If the resolution is lower, the number of voxels is
smaller and more voxels contain points. On the other case, the opposite happens.

The choice of the proper voxel resolution depends on three parameters:

• Density the amount of points in the dataset. When the point density is low
and voxel resolution too high (lower voxel size), many empty voxel exist and
gaps between them may be present. On the contrary, using bigger voxel size,
more points will fall into the same voxel and lower level of detail will exist.

• Area the extent of area of the points in the 3 planes (i.e. Axy, Ayz, Axz) in
correspondence with a certain number of points.

• Processing time should be kept to reasonable level. The processing time in-
creases with the larger size and extent of a point cloud.

Figure 4.8: 3D Voxel; with (i,j,k) coordinates

The voxelization algorithms can be used for geospatial applications using point
datasets. Nourian et al. (2016) described a voxelization algorithm for point cloud



4.3 neighbourhood-based method 35

data. The algorithm creates a bounding box larger or equal to the bounding box of
the dataset. It checks how many voxels fit in each dimension. Then, it creates a 3D
array with all the voxels (i,j,k) and stores the points that fall into every voxel. The
number of rows and columns is determined by the voxel size and the minimum
(lower left) and maximum (upper right) points in the dataset.

Inspired by this study, the voxelization approach is changed for this case. Instead
of assigning (i,j,k) coordinates for every voxel, the space division is done into vox-
els (also called water columns) were the k parameter is every time the z extent of the
bounding box. This is an important modification of the algorithm, as the voxel’s
points in the whole z extent are essential for the further classification process. The
detailed steps are presented in the following Algorithm 2.

Algorithm 2: Voxelization algorithm
Data: Point cloud
Result: Points per voxel

1 voxel size← constant value ;
// Extend the bounding box by voxel in all sides

2 new min point← min point - voxel-size;
3 new max point← max point + voxel-size;

// Number of voxels in x,y dimensions

4 nx← (new max point (x) - new min point (x)) / voxe-size(x);
5 ny← (new max point (y) - new min point (y)) / voxe-size(y);

// Initialize a 2D array with voxels

6 voxels← [nx,ny];
// Compute voxel (i,j) for each point

7 dictionary [point]← (i,j);
8 for every point ∈ dataset do
9 i← (point(x) - new min point (x))/ voxe-size(x);

10 j← (point(y) - new min point (y))/ voxe-size(y);
11 dictionary← (i,j);
12 end

// all the points with the same i,j coordinates are contained in the same voxel

13 voxels← (i,j);

See Algorithm 2, the algorithm starts with identifying the new lower left and up-
per right points that define the new extent of the bounding box. Then, the number
of rows and columns of the 2D array are calculated. Every point in the dataset has
a unique combination of (i,j) coordinates, which correspond to the voxel where it
belongs to. All the points with the same (i,j) are contained in the same voxel. Thus,
the points are grouped per voxel.

4.3.2 Histogram per Voxel

Since the point cloud contains sparse and dense parts, it is obvious that the distri-
bution of points, in the z level, of a voxel varies compared to the neighbour vox-
els. This happens when the laser beam hits on the water surface and then passes
through the water to reach the bottom. Its direction and intensity value inevitably
change. Therefore, the amount of points that a pulse can capture during its trans-
mission in the water varies. It is clear that more points will be measured in the
water surface as they can belong to the first returns of a pulse. As the laser pulse
goes deeper, less points will be captured and possibly the last point may be at the
bottom surface. Also, other factors (see Section 2.2.2) can affect the LIDAR collection
procedure, and therefore the amount of captured data. Specifically, the top and
right side view of a voxel are presented in Figure 4.10. The points cover almost all
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the parts of the 2D extent of the voxel, while from the right side is shown that many
points are accumulated near the water surface and just few in the lower part.

Thus, considering all the points that fall into a voxel, the next step is to analyse
their spatial distribution in order to detect the point that may possibly correspond
to the bottom surface (see Figure 4.9). The approach is to create a histogram that
captures the point distribution with respect to the z axis and has a fixed bin size (e.g.
0.1m) per voxel. This is helpful to determine on which depth large concentrations
of points are located in a voxel.

Figure 4.9: 3D Voxel with distributed points

(a) (b)

Figure 4.10: 4.10a Top view. 4.10b Right side view.

For example, Figure 4.11 illustrates two cases of voxels. In both cases, there is
a high peak near the water surface (i.e. bin with highest z level) where there are
a lot of points compared to other regions in the voxel. However, they do not have
the same distribution of points in the deeper parts of the voxels. In particular, the
number of points gets smaller as the z decreases in the voxel (Fig.4.11), but not
any second peak is presented in the figure. On the other hand, a second peak is
shown at the deepest part of the voxel (Fig.4.11). This means that there is a quite big
number of points captured by the laser pulses and could be part of the waterbed.

They may also not have the same number of bins, as in this Figure 4.11, where
the Figure 4.11(a) has five bins, whereas the Figure 4.11(b). The number of bins is
related to both the constant width size and to the fixed vertical extent of the voxel
(i.e. z value of the bounding box). Thus, in case there are no points in the deepest
part, then no bin appears in the graph. The same can happen in the middle z level
of the voxel, and then no bin will exist (see Figure 4.11(b)).
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water surface

water bed

(a)

(b)

water surface

Figure 4.11: Histogram with bins (size=0.1m); Count of points with respect to Z value in a
voxel; (a) Voxel with one peak (water surface) (b) Voxel with two peaks, water
surface and water bed

This process is to be done for all the acquired voxels of a water body. For each
voxel, a histogram is constructed. The highest peak and the 2nd high peak (if it
exists) can be detected, but the location and height of the peaks may vary greatly per
graph. For instance, all the bins have the same height or there are only two peaks
with the same height. Therefore, it is complicated to determine how effectively
the peaks may correspond to the water surface and the bottom part, respectively.
Further parameters need to be taken into account and are presented in the following
Section 4.3.3.

4.3.3 Definition of Confidence values

Provided that all the points of a voxel have been grouped into separate bins, the
proposed algorithm aims to automatically extract the relevant points of the interest-
ing bins. First, the algorithm needs to identify the peaks in the graph. A peak is
defined when a bin is surrounded by lower bins or has one lower neighbour. For
instance, the histogram (see Figure 4.12) presents three peaks: the highest (right bin
with higher z) and two others; one in the middle and another at the end (left bin
with lower z).
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Figure 4.12: Peaks (red dots) of a histogram

Considering the peaks have been detected, the relevant points of the 1st and 2nd
high peak can be extracted. However, three parameters are taken into consideration
before the extraction of the points. The density, the intensity and the distance
are important to evaluate the situation of a histogram. In particular, the density is
defined as a fraction between the amount of points in a bin and the total number of
points in the corresponding voxel (density = bin points/all points). The intensity of
point is related to the return strength of the laser pulse that generated the point. It is
based on the reflectivity of the object hit by a laser pulse. In addition, the distance is
specified as the absolute z difference between the two interesting peaks (distance =
1rst peak z/2nd peak z). In case of more than two peaks, the 2nd highest peaks is
selected. Those three parameters will define the confidence level of a point to be a
potential bottom point.
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Algorithm 3: Create and process data of histogram
Data: A VoxelGrid V
Result: Interesting points of every voxel: Inter

1 for voxel ∈ V do
// Extract points per voxel

2 n← number of points in voxel;
3 points← get all the points of a voxel;

// Initialize histogram parameters

4 bin size← constant value ;
5 nbins← (maximum(points) - minimum (points)) / bin size;

// Create histogram for every voxel

6 counts, bins← histogram (points, nbins);
7 peaks← findpeaks(counts);
8 distance← constant negative value;

// Define the cases

// Just one peak

9 if length(peaks) == 1 then
10 z value← peaks[1];
11 density← amount of points in the bin / n;
12 if value <= mean(bins) then
13 bottom point← lowest point in the bin;
14 Inter← [density, distance, intensity] ;
15 else
16 high point← highest point in the bin;
17 end

// Multiple peaks

18 else if length(peaks) > 1 then
19 first peak← peaks[1];
20 second peak← peaks[2];
21 z value← first peak;
22 density← amount of points in the bin / n;
23 if z value <= mean(bins) then
24 bottom point← lowest point in the bin;
25 Inter← [density, distance, intensity] ;
26 else
27 z value← second peak;
28 density← amount of points in the bin / n;
29 distance← first peak - second peak;
30 Inter← [density, distance, intensity] ;
31 end
32 end

As seen in Algorithm 3, there are multiple cases that the algorithm needs to take
into account in order to process the data of histograms. For instance, voxels with
only one peak, where the peak may be below or above the mean z value of the
voxel. For this case, if the peak is below and near to the left side of the histogram is
assumed that it may correspond to the bottom area. The opposite happens when the
peak is near to end of the graph, where the points of water surface are concentrated.
The most common case is when multiple peaks exist. Then, if the 1st peak is above
the mean z, it presents the water surface, whereas the 2nd peak below the mean z
display the bottom surface.

The main steps of the Algorithm 3 are summarized below:

1. The algorithm iterates over every voxel, finds its peaks and the corresponding
points.
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2. For every voxel, a histogram is created with dynamic parameters (i.e. bin size,
number of bins) based on the number of points in the voxel.

3. The peaks are identified.

4. If peak is one and its z values is below the mean z, the lowest point of the bin
is extracted.

5. For that point, density and distance values are calculated.

6. For that point, the density, distance and its intensity value are stored. (see
Algorithm 4)

7. For that point, a confidence value is defined based on three elements: normal-
ized density (NormDensity), normalized distance (NormDistance) and nor-
malized intensity (NormIntensity) values. The results are stored in a dictio-
nary with key: the voxel ID of the lowest point.

In case of more peaks, the lowest point of the 2nd highest peak (bin) is defined as
bottom point.

As far as the confidence value, the Algorithm 4 illustrates the three thresholds:
density, distance and intensity that taken into account. Thus, the main idea is to check
three things: 1. the bulk of points in the interesting bin 2. the distance between the
detected water surface and bottom part. 3. the intensity of the lowest point

In order to have a comparable confidence value for all the voxels in the point
cloud, the three elements are normalized. In particular, the maximum values of
density, distance and intensity of all the lowest points are extracted. Then, the
density, distance and intensity values of every point divided with the corresponding
maximum ones, and the results varied from 0 to 1.

In the next Chapter 5, many experiments have been performed to arrive at the
most promising threshold values. Different classes that were used to define the
level of confidence did not present promising results. The ranges of the threshold
values were neither realistic nor dynamic for the real datasets.

Algorithm 4: Confidence value
Data: normalized Density: (NormDensity), normalized Distance:

(NormDistance), normalized Intensity: (NormIntensity),
density threshold (τden), distance thershold (τdis), intensity thershold (τinten)
Result: Confidence value: Conf

1 if Den < τden & Dis < τdis & Inten < τinten then
2 Conf← high confidence ;
3 else
4 Conf← low confidence ;
5 end

Therefore, a more dynamic and robust solution for the threshold values is pro-
posed. The median and mean values of the NormDensity, NormDistance and NormInten-
sity are calculated in order to get insight about the range in the entire dataset.

It is important to mention what is the difference between these values. The mean
is the average, where all the numbers are added and then divided by their total
number. The median is the middle value of all the numbers. In this case, the median
is selected to be used for the NormDensity and NormIntensity, and the mean for the
NormDistance. The reason is that the median can be more realistic for these data, as
extreme values may exist and can certainly affect the mean value. The median is
not used for the NormDistance, because the points extracted from a histogram with
one peak had zero distance. That’s why they affect the median value and not the
mean used.

The threshold values are defined as follows: (τden): median of NormDensities,
(τdis): mean of NormDistances and (τinten): median of NormIntensities, as seen in
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Table 4.1. Eight classes (1-8) are defined, where one (1) corresponds to the highest
confidence and eight (8) to the lowest one. The threshold parameters are combined
based on their significance in this procedure.

In particular, both density and intensity are bigger than their median values in
the first two classes. Greater density means a bigger amount of points in the bin of
the selected point, while greater intensity is interpreted as more chances of getting
points at the bottom. The distance is bigger than its threshold value for the first
class, as the bigger distance between the two peaks in the histogram means that
second peak’s point are deeper in the z axis of the voxel. Next, the following
three classes (3-6) have distances bigger than the threshold since it is important as
explained before. Then, the density parameter is chosen to play a more critical role
than the intensity. That’s why the density is higher than its threshold in the class
(3), while the intensity in the class (4). In class (5), both are smaller than the critical
value. Afterwards, the same order follows in the next three classes (5-8), where the
distance remains below its critical value.

Density (τden) Distance (τdis) Intensity (τinten) Confidence Value
> τden > τdis > τinten 1

> τden <= τdis > τinten 2

> τden > τdis <= τinten 3

<= τden > τdis > τinten 4

<= τden > τdis <= τinten 5

> τden <= τdis <= τinten 6

<= τden <= τdis > τinten 7

<= τden <= τdis <= τinten 8

Table 4.1: Confidence values based on τden, τdis and τinten thresholds

4.4 visualization of a point cloud
Since the water surface and bottom points have been detected, the next step is to
present this new information. It can be either integrated in the original point cloud
as an extra attribute or exported in a new output product (e.g. raster/TIN).Both
ideas can be implemented as they offer different capabilities.

In particular, the class information (e.g. water surface, underwater, bottom) of a
point can be stored in the classification attribute. Then, using 3D viewers the points
can be colourized and presented based on those unique classification codes. For
example, the 4.13 presents two example water bodies that have been classified and
colourized based on their classification codes. The water surface points are shown
with light blue colour, the underwater with dark blue and the bottom points with
purple.

(a)

(b)

Figure 4.13: Classified water bodies; water surface (light blue), underwater ( dark blue) and
bottom (purple) points 4.13a . 4.13b .
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Moreover, the classified point cloud can be exported into a 2D raster output as
explained in Section 2.4.2. Specifically, the grid structure can contain filled or empty
grid cells based on the existence of a detected bottom point in that region of the
dataset. Also, the bottom points can be interpolated and then exported to a raster in
order to have a uniform surface, if gaps exist due to no existence of data. Also, other
characteristics such as the height, intensity and confidence value information can
be visualized through a raster output. More outputs are presented and discussed
in the Chapter 6.

Another approach is to create the 3D bottom surface (DTM) of a water body by
triangulating the bottom points. For instance, the bottom points are the vertices of
the TIN in order to reconstruct the 3D geometry of the waterbed (see Figure 4.14).

(a) (b)

Figure 4.14: Triangulated bottom points of a water body 4.14b Points are vertices of the
triangles. 4.14a Triangles of the bottom surface.



5 I M P L E M E N TAT I O N , E X P E R I M E N T S
A N D C O M PA R I S O N

This chapter explains the implementation of the pulse and voxel-based methods
introduced in Chapter 4. This achieved by running number of experiments on vari-
ous datasets. Firstly, the Section 5.1 describes the areas, the datasets, the tools and
software that are used in the implementation. The Section 5.1.2 explains how the
implementation was done and in what degree this procedure is automated.Then,
Section 5.3 presents some experiments that were done to create and test the classifi-
cation code and they were not promising. Section 5.4 describes the comparison and
the potential combination of the two methods. Lastly, the Section 5.5 displays the
quality validation of the results using ground truth data.

5.1 datasets & tools

5.1.1 Areas and Datasets

In this thesis, several airborne bathymetric LIDAR datasets are used. The datasets
are provided by Deltares and correspond to six different regions in the Netherlands.
Several water boards had organized a pilot project in cooperation with Deltares 1,
Stowa 2 and Waternet 3. They tried to examine the potential of green LiDAR for the
shallow and muddy Dutch water-bodies. These six areas are located in the western,
middle and north-eastern part of the country, which all together represent a variety
of environments. For instance, rivers, parts of sea, inland muddy water canals,
deeper and shallower waters. In this thesis, inland shallow water bodies and river
parts will be the test cases for the classification method. That project had to show
which areas in the Netherlands can de detected with green LiDAR, if it worked or
not and the future potential of these data. The acquired data from this project will
be processed and used in order to run and test the implemented algorithms.

Moreover, the LIDAR sensor characteristics have a vital role for the quality of this
study. The Riegl VQ-880-G laser system was used, as it is a fully integrated airborne
laser scanning system for combined topobathymetric surveying (RIEGL, 2016). This
system has integrated GNSS, IMU and cameras, while its scanner pattern is circular
(see 5.1). Also, it has an effective measurement rate is up to 550.000 measurements
per second and a scan angle of 40 degrees. It is widely efficient for applications such
as coastline and shallow water mapping and surveying for hydraulic engineering
(RIEGL, 2016).

1 https://www.deltares.nl/en/
2 https://www.stowa.nl/english
3 https://www.waternet.nl

43



44 implementation, experiments and comparison

Figure 5.1: Scan pattern of Riegl VQ-880-G; field of view ±20◦ and circular pattern for the
green laser scanner (RIEGL, 2016)

Borders of Netherlands

Regions with Topobathymetric LiDAR Data

Base map: OSM Standard

Figure 5.2: Location of the six regions in the Netherlands

The six different point cloud datasets are displayed on a background map, as
shown in Figure 5.3. The various colours indicate the water depth in specific parts
of each region. In particular, dark blue colour illustrates the water areas whereas
yellow one the non-existence of water. The water bodies from all these regions
were extracted into separate .laz files using Top10NL dataset (more details in Sec-
tion 4.1.1). Then, they were used as experiments to run the implemented algorithms
and eventually to classify them.
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(a) Westerchelde (b) Gevelingenmeer (c) Regio Rotterdam

(d) Oss (e) Regio Vechtgebied (f ) Regio Dinkelgebied

Figure 5.3: Datasets of six different regions in the Netherlands (van Tol, 2019)

Furthermore, the characteristics of these datasets have been calculated by (van
Tol, 2019). The measured surface (per km2), the average point density (points per
m2) and maximum soil depth (m) differ per location.

Location Measured surface (km2) Average Point Density (points per m2) Maximum soil depth (m) Number of points
Westerschelde 14,263 37,33 -5.04 1.136.543.997

Gevelingenmeer 12,304 58,89 -5,24 1.391.822.923

Regio Rotterdam 13,458 17,63 -2.46 1.721.510.390

Oss 18,263 15,70 -2,30 1.764.699.685

Vechtgebied 14,041 23,167 -1,08 1.631.270.918

Dinkelgebied 7,527 52,63 -1,12 1.105.047.875

Table 5.1: Characteristics of green LiDAR datasets from six different regions in the Nether-
lands (van Tol, 2019)

Moreover, the various water boards have conducted ground truth measurements
in those regions by selecting depth and transparency data. Those measurements
have been captured one day after the flight over that regions. These reference data
are going to be used in the last steps of this study for validation of the results of the
implemented algorithms. For instance, the field depth measurements were made in
a few profile sections of a water body as seen nn Figure 5.4. Several water points
were measured on that sections (see Figure 5.5). The z values of points are measured
with respect to the nap vertical datum. Those data are going to be compared with
the LIDAR point data in that areas in order to calculate the z differences.
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Figure 5.4: Ground truth measurements; Profile sections (1,2,3,4) in a water body

It is important to mention that the field measurements may contain errors in their
quality as they can be affected by the water conditions. The possible presence of
a layer of sludge above the ground is an important factor. Many points can be
measured as bottom points because of this layer. Also, the turbidity of the water
and the underwater vegetation (e.g. algae) implies difficulties to the process. As a
result, even though field measurement are provided, it may be difficult to trust the
quality assessment due to the previous factors.

(a) (b)

(c) (d)

Figure 5.5: Profile sections of water body as seen in Figure 5.4. The profile sections present
the depth (z values) measurements of several bottom points with respect to the
nap vertical datum
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5.1.2 Tools and Software

A large number of tools were used in this study to implement the methodology
described in Chapter 4. In this Section 5.1.2 listed the software were used to process
and visualize the dataset. A number of algorithms are used in this thesis that were
not implemented by me. Furthermore, many Julia and Python packages are used
to structure the algorithms and process the data, which are presented here as well.

All the algorithms in this study are developed in a laptop with 64-bit Window10

operating system. The details of the laptop are:

Model Processor RAM CPU

HP ZBook 15 G5

Intel(R) Core(TM) i7-8750H
GPU @ 2.20 GHz

32 GB Quadro P1000

Table 5.2: Hardware characteristics

Programs

In this thesis, I used the following programs for processing, converting and visual-
ising my dataset.

• QGIS or Quantum GIS 4: is an open source and free cross platform geo-
graphic information system (GIS) application that used to view, edit and anal-
yse geospatial data. Also, there is an integrated toolbox with Geospatial Data
Abstraction Library (GDAL), SAGA (saga) and GRASS (grass) geographic sys-
tems.

• LAStools 5: is a software suite with a collection of tools for processing LIDAR

data. It is also available as a LIDAR processing toolbox in QGIS.

• CloudCompare 6: is an open source and processing software for 3D point
cloud and meshes.

• Displaz 7: is a cross platform viewer for displaying LIDAR. It is flexible for
exploring large datasets, and easy to visualize them by creating custom point
visualizations based on their attributes.

• MeshLab 8: is an open source system for processing, editing and visualizing
3D meshes

Implemented Algorithms

Some implemented algorithms, that are not created by me, are used in this study to
process the data.

• lasindex: creates a .lax file for a given point cloud file .laz, that contains spatial
indexing information. The presence of this file in the directory of the .laz file
speeds up the access to the point data whenever a spatial query is used.

• lasclip: clips an input point cloud file based on a shapefile file with one or
more polygons. It can clip all the point that fall into the polygons and store
points to separate point cloud files. It was used to crop the interesting water
bodies using the Top10NL water boundaries.

• lassort: sorts the points of a point cloud file based on an attribute. In this
study, it is used to sort them based on their GPS time.

4 http://www.qgis.org.
5 https://rapidlasso.com/lastools/
6 https://www.danielgm.net/cc/
7 https://github.com/c42f/displaz
8 https://www.meshlab.net
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• lasreturn: finds sets of points of a laser pulse with incomplete returns or fixes
the NR based on the GPS time stamp.

Julia and Python packages

The Julia and Python languages are used in this thesis for data processing and
analyses. A number of libraries have been used, which are presented here:

• LasIO 9: Julia package for reading and writing LAS lidar format

• LazIO 10: extends LasIO with Laszip integration

• FileIO 11: Main Package for IO, loading all different kind of files

• StaticArrays 12: provides package for statically sized arrays for Julia

• Dataframes 13: run with tabular data

• Plots 14: for data visualization purposes

• ArchGDAL 15: A high level API for GDAL, to rasterize the lidar data

• GeoArrays 16: Simple geographical raster interaction

• Numpy 17: stores the data into arrays and matrices and provides a collection
with mathematical functions

• Rasterio 18: reads and writes gridded raster datasets

• Startin 19: a Delaunay triangulator for processing TINs

5.2 implementation of algorithms
To test the proposed method as described in Chapter 4, an algorithm with many
sub-algorithms is implemented. This developed algorithm should run for every
ALB dataset, process the data and return the classified output. This is possible with
Julia programming language (used by Deltares), as many packages for point cloud
processing already exist. All the packages are freely available, where few of them
are in this Deltares GitHub repository. As far as my implemented algorithms can
be found in this repository: Green LiDAR —Automatic Detection of Waterbeds.

5.2.1 Implementation of algorithms

This section presents the main parts of the implemented algorithm based on the
proposed classification model. The first step involves the pre-processing proceed-
ings (see Section 4.1.1, Section 4.1.2). Then, the two separate classification methods
are developed: the pulse and neighbour (voxel) based.

The pulse-based method is structured and grouped points per pulse as intro-
duced in Section 4.2.1. Intensity vs Z values plots were created for every pulse and
they categorized into expected and unexpected (see ??). These plots visualized the

9 https://github.com/visr/LasIO.jl
10 https://github.com/evetion/LazIO.jl
11 https://github.com/JuliaIO/FileIO.jl
12 https://github.com/JuliaArrays/StaticArrays.jl
13 http://juliadata.github.io/DataFrames.jl/stable/
14 http://docs.juliaplots.org/latest/
15 https://github.com/yeesian/ArchGDAL.jl
16 https://github.com/evetion/GeoArrays.jl
17 https://numpy.org
18 https://rasterio.readthedocs.io/en/latest/
19 https://github.com/hugoledoux/startin

https://github.com/Deltares
https://github.com/VasilisAle/GreenLiDAR---AutomaticDetectionofWaterbeds
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differences into the behaviour of the laser pulses. This process is shown in Figure
5.6, but it wasn’t used into the final step of the classification procedure. The voxel-
based method involves creating the voxel grid data structure. All the points that
fall into a voxel are extracted and processed separately. A histogram is created per
voxel with a fixed bin size. In particular, the bins that correspond to the water and
bottom surface are selected, respectively. The lowest point of all the points in the
bin (2nd peak) is classified as bottom point. Whereas the highest point of the points
in the bin (1st peak) is categorized as the water surface.

Point cloud 
(.las/.laz)

Group points per pulse
(z value, intensity, rn, nr, GPS time)

Intensity vs Z_value
 plots

Classified points

1. Water surface
2. Underwater

3. Bottom 

Figure 5.6: Pulse-based method

The neighbourhood-based method; voxelization structure is initially created from
a .las or .laz file as described in Section 4.3.1. The process creates a data structure
which describes the data points that are contained in each voxel (see Algorithm
2). Then, a histogram is created per voxel which depicts the amount of points per
bin with respect to the z values (see Algorithm 3). The points of the bin which
presents the 2nd highest peak in the histogram were extracted. The lowest one
from them was assumed as potential bottom point. Thus, a confidence value was
assigned to estimate how likely or not is to be a bottom point (see Algorithm 4).
As mentioned in Section 4.3.3, the confidence value was based on three parameters:
density, distance and intensity. More details about further experiments can be seen
in Section 5.3.
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Point cloud 
(.las/.laz)

Voxel data structure

Histogram per voxel
Confidence value

(density, distance, intensity)

Classified points

1. Water surface
2. Underwater

3. Bottom 

Figure 5.7: Voxel-based method

5.3 experiments with not promising results
This section describes the performance of few implementations that failed to give
any valuable information during the classification procedure.

5.3.1 Pulse-based classification

During the pulse-based method, the intensity value of points was tested to be
used and to enhance the classification; especially the grouping per pulse procedure.
Graphs with intensity value of a point with respect its z information were created.
As described in Section 4.2.2, the reconstructed waveforms of pulses usually didn’t
display the expected curve; where the intensity of the last return is higher than that
of the previous point (see Figure 4.7b).

In order to research the behaviour of pulses, pulses with three returns were plot-
ted in the same Figure 5.8 and 5.9. The waveforms of pulses do not follow any
similar pattern. In particular, there are cases where the intensity value of last return
(blue point) of a pulse is higher or lower than that of its previous (red point). Only
in cases where the intensity of the last point presents a peak compared to the pre-
vious one can it be considered as reliable element of a point. Thus, all points that
pass this test are identified and considered as potential bottom points during the
grouping per pulse procedure.
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Figure 5.8: 10 pulses; point triplets per pulse with normalized intensity and z values. First
return (blue point), middle return (green point) and last return (red point)

Figure 5.9: More than 100 pulses; per pulse with normalized intensity and z values. First
return (blue point), middle return (green point) and last return (red point)

Figure 5.10 illustrates the correspondence of intensity and return number value
for set of points in a pulse. It is evident also that the intensity of the last return (red
point) varies per pulse. The waveforms of pulses do not follow any similar pattern
using only the return number with respect to the intensity factor.

Figure 5.10: 4 pulses; point triplets per pulse with normalized intensity and return number.
First return (blue point), middle return (green point) and last return (red point)

Following the implementation of these experiments, both the intensity and return
number were considered to be important factors in the pulse-based approach.
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5.3.2 Threshold values in voxel-based method

Table 5.3 displays the eight different classes (from 1 to 8), which are defined based
on specific combinations of different thresholds values. The range of density (0 to
1) split into four equal groups. The same grouping was done for the range of the
intensity. As far as the distance is concerned, it was separated into two groups;
below and above 10cm. Value of a point is 1, then it is very certain to be a bottom
point. On the other hand, when the point has value 8, then it means that it is not
enough at all to belong to the bottom surface. The middle numbers ranging from 2

to 7 indicate the increasing confidence in these points.
However, these ranges were neither realistic nor dynamic for the real datasets.

Figure 5.11 illustrates the classified point cloud, where the points with confidence
value (6) are coloured purple. Few points are red (8) and light blue (5) in the
upper part of the dataset, whereas all the blue points have not been classified. Thus,
the classification of the bottom points failed. This happened since the range of
thresholds’ values do not have any practical meaning for the point cloud and needs
to be dynamic.

Density (τden) Distance (τdis) Intensity (τinten) Confidence Value
>0.75 - <=1.0 >0.10 >0.75 - <=1.0 1

>0.5 - <=0.75 >0.10 >0.5 - <=0.75 2

>0.25 - <=0.50 >0.10 >0.25 - <=0.50 3

<= 0.25 >0.10 <= 0.25 4

>0.75 - <=1.0 <=0.10 >0.75 - <=1.0 5

>0.5 - <=0.75 <=0.10 >0.5 - <=0.75 6

>0.25 - <=0.50 <=0.10 >0.25 - <=0.50 7

<= 0.25 <=0.10 <= 0.25 8

Table 5.3: Confidence values based on hard coded thresholds

If there is only one peak in the histogram and this value is below the mean Z
of the graph, then the distance value for the extracted point is setted to -1 (see
Algorithm 3). The NormDistance is certainly negative number and is included in
one of the classes 4 to 8. This output is not satisfying, and a more dynamic and
robust solution is implemented as described in the methodology (see Section 4.3).
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Figure 5.11: Water body (NL1 51): Classified with confidence values. Only points in class
(8) and few in (5) and (6)

5.4 comparing and combining pulse grouping and
voxelization

Both pulse and voxel-based methods have been separately developed in order to
enhance the classification procedure of the point cloud. The pulse-based method
aims to reconstruct the waveforms of the pulses using the discrete LIDAR data, while
the voxel-based method divides the 3D space into a 3D regular grid with voxels.

However, the pulse method is only based on the points’ attributes (e.g. RN,NR) in
order to group them per pulse in contrast with the voxel method, which examines
the spatial distribution of the points in a voxel. Thus, merging the point’s infor-
mation with the geometrical data of a voxel may have the potential to increase the
effectiveness; in terms of the accuracy of the classification method.

Experiments with many datasets showed that it is extremely difficult to recon-
struct the waveform of pulses containing in voxel. Due to the voxel size and the
pre-processing procedures (see 4.1.2), many points have been eliminated. In addi-
tion, the direction of a pulse alters, when it hits on the water surface and surely
does not follow a vertical route with respect to the water surface. Therefore, it is
evident that few returns of the pulses; specifically the last ones, may be cropped
out of the voxel due to its geometry. Thus, it is complex to define the right voxel
size which will not exclude significant points of a pulse.

A procedure that combines both pulse and voxel-based methods is practically not
sufficient. As the pulses that hit on the water surface contained in a voxel, many
of their last returns may fall out the voxel. Therefore, only a comparison of the
separate classified results can be visually done.
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5.5 validation of data
The simplest way to assess the results of classification procedure is by visual inspec-
tion. By colourizing the three different classes: the water surface, underwater and
bottom points; the water surface and bottom parts can be roughly shown. In addi-
tion comparing the classified dataset and especially the bottom points with ground
truth data is more effective.

Since the ground truth data are measured in few profile sections of a water body,
the quantitative assessment will be conducted only for those parts. In particular,
the data points on that profile sections will be extracted and then compared with
the relevant ground truth ones. The comparison is based only on the z differences
among them.



6 R E S U LT S A N D D I S C U S S I O N

This chapter presents the classification results and the validation analysis of this
research. The classification results of the pulse and neighbourhood (voxel) based
methods are discussed. Different datasets are used to test these approaches. The
validation is done by making a comparison with ground truth data. The computa-
tion time and scalability are also discussed in this chapter.

6.1 classification results of datasets
First, the overall performance of the proposed methods is described in detail in
Chapter 4. Five different water bodies (see Figure 6.1) from the six regions in the
Netherlands, as presented in Section 5.1.1, are chosen to implement the algorithm.
As seen in Table 6.1, the selected water bodies vary in area size, number of points
and point density.

Region 3
Water body 376

Region 3
Water body 378

Region 1
Water body 51

Region 2
Water body 130

Region 4
Water body 199

Figure 6.1: Water bodies extracted from different regions

The water bodies are extracted from the 4 out of 6 regions, as these regions
showed variation in the size and density of the water areas (see Table 6.1). Also,
the range in z level was chosen after a visual inspection of each dataset. Thus, the
z boundaries can vary per water body in order to contain only water points (i.e.
water surface till bottom part). The area size and number of points differ per water
area and have an important role in the neighbourhood-based approach; particularly,
the selection of voxel size (see Section 4.3.1). The point density is related with the
amount of points per unit area of 1 m2.

55



56 results and discussion

Region Name Z Range (m) Area size (km2) Number of points Point Density (points/m2)
1 NL1 51 -3.6 to -2.6 168,03 511.914 ∼25 to ∼100

2 NL2 130 -2 to 0 91,31 1.164.170 ∼35 to ∼130

3 NL3 376 -4.2 to -3 23,75 2.033.586 ∼325 to ∼660

3 NL3 378 -4.5 to -3.3 12,8 607.216 ∼250 to ∼430

4 NL4 199 1 to 4 23,9 3.256.278 ∼215 to ∼250

Table 6.1: Characteristics of chosen water bodies

As shown in Table 6.1, the datasets NL1 51, NL3 376 and NL3 378 correspond to
shallow water areas as their z range is 1m and below. However, these three datasets
differ in area size and number of points. The NL1 51 dataset has almost half a
million points in an area of 168,03 (km2), whereas the NL3 376 and NL3 378 cover
smaller areas of approximately 24 and 13 (km2), respectively. In terms of number
of points, the NL3 376 is denser than the NL3 378 with four times as many points.

The NL2 130 and NL4 199 datasets are selected as they are deeper with a depth
of 2-3m, compared to the previous datasets. The NL2 130 has just over 1 million
points in an area size of 91,31 (km2), whereas the NL4 199 has around 3,3 million
points in a small area of 23,9 (km2).

Also, the selected datasets present different point density (points/m2). This factor
indicates how dense or sparse is a point cloud based on the amount of points that
are concentrated in 1 (m2) area. It has been measured in different parts of each
water body in order to obtain its range, as there may be dense and sparse parts. The
NL1 51 has the smallest range of (25 - 100) points in 1 (m2), whereas the NL3 376

contains the biggest amount of points from 325 up to 660. The other datasets present
different point densities as shown in Table 6.1.

Therefore, all these five datasets are representative to cover various cases of water
bodies, which differ in area size, number of points, z range and point density. Pulse
and voxel-based approaches will be performed using these datasets to evaluate the
classification results and methods’ performance.

6.1.1 Pulse based approach

As mentioned in Section 4.2, the LIDAR points have been sorted per GPS time and
based on RN, NR and their GPS time, grouped per laser pulse. For this water body,
the pulse approach is able to group the points and then assign a classification code
for each point. The classification codes are three: water surface, underwater and
bottom points. Also, there is an extra class with all the unclassified points. In
particular, they are left over from pulses that have been cut in the pre-processing
stages and their RN, NR and their GPS time does not correspond to the previous
classes.
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Figure 6.2: Classified water body (NL4 199) into: water surface (light blue), underwater
(dark blue) and bottom (brown) points. Vertical section of the dataset (rectan-
gular shape) is selected with 1m width

Figure 6.3: Water body (NL4 199): Profile section with the classified points

Figure 6.2 shows the results based on the pulse approach. Light blue points
(1.016.207) correspond to the water surface, the dark blue (723.379) to the underwa-
ter, while the brown (760.894) ones to the bottom surface. This water body (NL4 199)
is a small lake in reality with around 2.800.000 in total. As seen in Table 6.1, its point
density varies from 215 to 250 points per square meter, while the point distribution
is uniform everywhere. Therefore, the amount of points per unit area is large, and
thus no gaps exist in the water area. The laser pulse managed to penetrate the
water body and likely reach the bottom part, since based on the pulse approach
bottom has been detected. A small part was randomly selected to visualize the
points through a section. Its side view shows the horizontal distribution of points
in this area (see Figure 6.3). There are a lot of bottom points (brown colour) that
can represent the bottom surface, while the left edge can be clearly seen.
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Figure 6.4: Classified water body (NL3 378) into: water surface (light blue), underwater
(dark blue) and bottom (brown) points. Vertical section of the dataset (rectan-
gular shape) is selected with 1m width

Figure 6.5: Water body (NL3 378): Profile section with the classified points

Figure 6.4 presents a water body (NL3 378) with 351.031 points that belongs to
an inland water canal. A small part (rectangular shape) was randomly selected
in order to visualize the classified points through a section. Its side view shows
the horizontal distribution of points in this small part (see Figure 6.5). The water
surface (light blue) points have been correctly classified as they form a horizontal
surface with the higher z values. As far as the bottom (brown) points, they do exist
in the whole extent of the section and are usually the lower ones. There are more
brown than dark blue dots in the water part, as more pulses consist of just two
returns. The first is classified as water surface and the last as bottom point.

However, there are many points that are classified as bottom ones, but they proba-
bly belong to the middle water (dark blue) part. This happens because many pulses
may contain only two returns, as they didn’t manage to continue deeper in the wa-
ter body. Therefore, their last return is near the water surface and is classified as
bottom point.
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In addition, few brown dots (i.e. bottom points) exist on the water surface. The
reason is that these points are the last returns of laser pulses that were eliminated
in the pre-processing stage. The same applies for the dark blue dots near or on the
same water surface level.

Figure 6.6: Classified water body (NL2 130) into: water surface (light blue), underwater
(dark blue) and bottom (brown) points. Vertical section of the dataset (rectan-
gular shape) is selected with 1m width

Figure 6.7: Water body (NL2 130): Profile section with the classified points

Another water body (NL2 130) with around 1.164.000 points has been classified,
as seen in Figure 6.6. More than two thirds (971.954) of all the points belong to the
water surface, while several points (1.456) are only underwater and 42.936 are clas-
sified as bottom ones. Similarly, a random section from the initial water body was
created (see Figure 6.6). The distribution of points across this section is displayed.
The majority of points have been categorized as water surface (light blue), while
rarely few are only underwater (dark blue) and just few points correspond to the
bottom part. It is obvious that there are not so many below the water surface. The
point density is too low (below 200 points) compared to other water bodies, as seen
in Table 6.1.
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Moreover, there are not many misclassified points on the water surface, but only
two or three underwater (dark blue). The bottom points are sparse to each other
and in some parts do not exist points.

Figure 6.8: Classified water body (NL1 51) into: water surface (light blue), underwater (dark
blue) and bottom (brown) points. Vertical section of the dataset (rectangular
shape) is selected with 1m width

Figure 6.9: Water body (NL1 51): Profile section with the classified points

Figure 6.8 shows the results for the water body (NL1 51) from the region 1. In this
case, the majority of the points (282.818) have been selected as water surface, while
the bottom points are more than the one third (71.909) of the total (391.309) points.
However, the distribution of points is different compared to the other cases. Again
a section was randomly selected. Even if the water surface is constructed with a
big amount of points, bottom points do exist in the whole extent of the section (see
Figure 6.9). However, there are not so many (dark blue) points. This means that
there are more pulses with 2 returns. Also, the water surface points do exist a bit
lower in the water. This means that individual points, with RN=1 and NR=1, exist
and classified in the water surface.
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Figure 6.10: Classified water body (NL3 376) into: water surface (light blue), underwater
(dark blue) and bottom (brown) points. Vertical section of the dataset (rectangu-
lar shape) is selected with 1m width

Figure 6.11: Water body (NL3 376): Profile section with the classified points

The last used water body is in the region 3 and contains a bit more than 2 million
points (2.033.586). The classified water surface points are just below the 1 million;
specifically (900.114). The underwater points are (256.504), while the bottom ones
are more than the one quarter (630.772) of the total points. Again a random section
was extracted from the initial water body (NL3 376) (see Figure 6.10) and its side
view is completely different than the other datasets. In particular, it is evident that
the density of points is quite high; between 325 to 660 points per 1 square meter
(see also Table 6.1). The water surface (light blue) is displayed without gaps and
the bottom (brown) part is also clear and uniform in the whole extent of the section.
In addition, many underwater (dark blue) points exist, which means that the laser
managed to collect more than two returns per pulse.

Table 6.2 summarizes the number of classified points per class for the five tested
datasets. It is important to mention that there are a few unclassified points for all
the cases. The percentage of these points in the total amount of points varies per
dataset from 1% up 10%. The percentage is calculated by dividing the number of
unclassified by the total points for each case. Moreover, the presence of unclassified
points does not prevent the detection of bottoms in most cases, while the water
surface has been detected in all datasets. The presence of short pulses (up to two
returns) affects the quality, in terms of density, of a dataset. According to this
pulse approach, all the last returns are classified as bottom surface, but this is not
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correct in reality. Many pulses are affected by external environmental factors (see
Section 2.2.2) and did not manage to penetrate more the water body and reach its
water bed. This is obvious in Figure 6.7, where many bottom points are located
near the water surface in such a small area of the entire water body.

Region Name Water surface Underwater Bottom Unclassified Total
1 NL1 51 282.818 30.477 71.909 6.105 391.309

2 NL2 130 971.954 7.155 42.936 1.456 1.023.501

3 NL3 376 900.114 256.504 630.772 85.152 1.872.542

3 NL3 378 365.361 19.493 155.780 8.285 548.919

4 NL4 199 1.016.207 723.379 760.894 351.032 2.851.512

Table 6.2: Pulse-based classification results for the five datasets; number of points per class

6.1.2 Neighbourhood based approach

As mentioned in Section 4.3, the 3D space is divided into voxels or water columns.
The LIDAR points that fall into every voxel are detected, stored and grouped per
voxel. In this section, the voxel-based method was applied to classify a water-body
into water surface, underwater and bottom points. Then, the results of various
datasets with different voxel sizes are presented and discussed. A workflow of
this implementation is visualised in Figure 5.7, which presents the process from an
unclassified to a classified water body.

First of all, the median and mean values of the density, distance and intensity
are calculated in order to get an insight about their range in the entire dataset. As
seen in Table 6.3, the median and mean values of the NormDensity do not differ so
much (i.e. almost 2 points), while the values for NormIntensity is around 0.6 and
for the NormDistance 13cm.

Parameters Mean Median
NormDensity 7.81 6
NormDistance 0.13 0

NormIntensity 0.52 0.6

Table 6.3: Water body (NL1 51): Mean and Median Values of three parameters

Figure 6.12 illustrates the classified bottom of water body (NL1 51) based on
confidence values as presented in Table 4.1. It is evident that two green shades
show the first two categories (1,2). This means that the points that belong to them
are very likely to belong to the bottom surface of the water body. In addition,
classes (7,8) have the minimum confidence and presented with blue shades. Their
points only exist in a few small parts of the point cloud. Also, points in class (8)
are presented with an light red shade colour. In Table 6.4, the amount of points per
class is shown. The classes (1,2,8) collect the majority of the points in this dataset.
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Confidence value (1) Confidence value (5)

Confidence value (8)

Confidence value (2)

Figure 6.12: Water body (NL1 51): Classified with confidence values

Name 51NL1

Class 1 1396

Class 2 1950

Class 3 293

Class 4 1070

Class 5 1256

Class 6 984

Class 7 391

Class 8 2307

Total 9647

Table 6.4: Water body (NL1 51): Number of points per class

Furthermore, the voxel based approach was tested with another water body
(NL4 199) dataset. As seen in Table 6.5, the median and mean values were computed
for the three normalized parameters (NormDensity, NormDistance, NormIntensity).
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The median values of both NormDensity and NormIntensity are used as threshold
values, while the mean value for the NormDistance. It is important to mention
that the mean and median values of the NormIntensity are exactly the same. This
means that NormIntensity values probably follow the normal distribution and not
a bimodal distribution. The intensity values of the lowest points range in a certain
amplitude, as they belong to the deepest part of the voxel and not near to the wa-
ter surface, where the values are high. Thus, it is unlikely that there is a bimodal
distribution.

Parameters Mean Median
NormDensity 0.001 0.004
NormDistance 0.25 0

NormIntensity 0.194 0.194

Table 6.5: Water body (NL4 199): Mean and Median Values of three parameters

Confidence value (7)

Confidence value (2)

Confidence value (5)

Figure 6.13: Water body (NL4 199): Classified with confidence values
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Name 199NL4

Class 1 3882

Class 2 3423

Class 3 1913

Class 4 2050

Class 5 1924

Class 6 181

Class 7 1738

Class 8 7153

Total 22264

Table 6.6: Water body (NL4 199): Number of points per class

Figure 6.13 displays the classified bottom surface of the water body (NL4 199). All
the eight classes are presented in this point cloud. Both classes (1,2) contain more
than a third (7.305) of the total points. They have NormDensity and NormIntensity
above their threshold values, while the distance is above and below its threshold,
respectively. This means that the amount of points and the intensity values are
quite big in both cases. Also, the fact that many points (7.153) in class (8) have
distances below the mean value, it makes clear two things. First, the depth of the
corresponding voxels is small as the laser pulse captured points in a low z level.
Second, for all the pulses with just one peak below the mean z, their points are near
to the bottom part and have distance zero. Thus, all these points are concentrated
in class (8). Regarding the class (4), the number of points is quite big (2.050), but it
has distances bigger than the mean distance value.

Figure 6.14 displays the classified bottom surface of the water body (NL3 376).
All the eight classes are presented in this point cloud. Both classes (2,4) contain
more than a quarter (3.321) of the total points. These classes have NormIntensity
above their threshold values, while the distance is below and above its threshold,
respectively. The NormDensity is above and below the threshold values in the two
classes, too. Also, the fact that many points (2.103) in class (6) have distances below
the mean value, it makes clear that the depth of the corresponding voxels is small
as the laser pulse captured points in a low z level. Also, the points (near to the
bottom part) of the pulses with just one peak below the mean z have distance zero.
As seen in Table 6.7, quite few points are concentrated in class (1) with the highest
confidence level. Regarding the class (8), the number of points is quite sizeable
(1.369), but it has distances bigger than the mean distance value.
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Confidence value (2)
Confidence value (4)

Confidence value (7)

Figure 6.14: Water body (NL3 376): Classified with confidence values

Name 376NL3

Class 1 338

Class 2 1636

Class 3 96

Class 4 1685

Class 5 618

Class 6 2103

Class 7 523

Class 8 1369

Total 8368

Table 6.7: Water body (NL3 376): Number of points per class

Moreover, the voxel-based approach was tested with another two water bodies
(NL3 378) and (NL2 130). The Table 6.8 presents the amount of classified points in
the eight classes. It is evident that the one third (1.007) of the total points belongs
to class (1), while another third (1.069) belongs to the less confident class (8). Figure
6.15 shows the classified bottom surface of the water body (NL3 378). In particular,
the dark green points correspond to the high confident bottom points, which are
distributed throughout the whole area of the water body. The brown shadow points
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belong to the less confident classes (7,8) and they also exist in all parts of this water
area.

Confidence value (1)

Confidence value (8)

Confidence value (6)

Figure 6.15: Water body (NL3 378): Classified with confidence values

Name 378NL3

Class 1 1007

Class 2 96

Class 3 211

Class 4 577

Class 5 191

Class 6 368

Class 7 149

Class 8 1069

Total 3668

Table 6.8: Water body (NL3 378): Number of points per class

Figure 6.16 displays the classified bottom points of the water body (NL2 130).
As shown in Table 6.9, more than the half amount (6.609) of total points (11.636)
are concentrated in the classes (1 up to 4). Specifically, the high confident class
(1) contains (1.059) points, which are distributed near the shore of the water body.
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Indeed, these points belong to the shore part of the water body, as they have been
captured by LIDAR and are the lowest points of voxels. In the middle part of the
water body, the points belong to the less confident classes (7,8) as they are deeper in
the z range and the distance between the first and last peak is below the threshold
value.

Confidence value (2)

Confidence value (7)

Confidence value (5)

Confidence value (8)

Figure 6.16: Water body (NL2 130): Classified with confidence values

Name 130NL2

Class 1 1059

Class 2 3502

Class 3 987

Class 4 1061

Class 5 2808

Class 6 51

Class 7 189

Class 8 1979

Total 11636

Table 6.9: Water body (NL2 130): Number of points per class
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Applying various voxel sizes

As the voxel-based approach was applied to five datasets, different voxel sizes were
used to detect how the number of voxels generated and the lowest (bottom) points
were affected. As seen in Table 6.10, the number of voxels decreases rapidly as the
voxel size increases, while the number of lowest points follows the same trend. It
is important to note that the voxelization has not been performed with 0.5m voxel
size in most of the used datasets; due to the high and inefficient computation time.
Only in the case of NL2 130 dataset was this done, but the runtime was extremely
high.

Name Total Voxel Size Voxels Lowest points Time (sec)
0.5m x 0.5m - -
1m x 1m 13.048 9.647 305

NL1 51 511.914 2m x 2m 4.435 2.933 105

3m x 3m 2.493 1.605 65

4m x 4m 1.640 1.082 48

0.5m x 0.5m 57.124 37.393 1.326

1m x 1m 17.295 11.636 457

NL2 130 1.164.170 2m x 2m 5.320 3.836 150

3m x 3m 2.665 1.960 85

4m x 4m 1.620 1.272 62

0.5m x 0.5m - - -
1m x 1m 10.163 8.368 293

NL3 376 2.033.586 2m x 2m 2.868 2.419 107

3m x 3m 1.416 1.232 49

4m x 4m 862 766 30

0.5m x 0.5m - - -
1m x 1m 4.402 3.668 141

NL3 378 607.216 2m x 2m 1.272 929 44

3m x 3m 637 439 25

4m x 4m 397 292 12

0.5m x 0.5m - - -
1m x 1m 28.504 22.264 1.214

NL4 199 3.256.278 2m x 2m 7.458 6.152 525

3m x 3m 3.417 2.902 300

4m x 4m 1.916 1.705 187

Table 6.10: Voxel based method: general characteristics for the five classified water bodies

Figure 6.17 illustrates the classified point cloud of water body (NL1 51) using
different voxel sizes. As shown in Table 6.10, the number of lowest points has been
significantly decreased from 9.647 to 1.082 while the voxel size increased from 1m
to 4m. Furthermore, a small part (rectangular shape) was randomly selected in
order to visualize the classified points through sections (see Figure 6.18). Its side
view visualizes the horizontal distribution of points in this small part. Again, the
number of points is smaller as the size of voxel increases, while gaps are created
in the bottom surface. In particular, the first section (1m) has bottom points in its
whole extent, where green points (high confidence) do exist near its borders. There
are more red dots in the middle water part, as these points are less confident (class
7,8). This is because the NormDistance of these points is below the corresponding
threshold value.
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Voxel size 1m Voxel size 2m

Voxel size 3m Voxel size 4m

Voxel size 2m

Figure 6.17: Water body (NL1 51): Classified with different voxel sizes: 1m, 2m, 3m, 4m

Voxel size: 1m

Voxel size: 2m

Voxel size: 4m

Npoints: 51m

Npoints: 18m

Npoints: 7m

Voxel size: 3m Npoints: 10m

Figure 6.18: Water body (NL1 51): Classified sections with different voxel sizes
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Furthermore, Figure 6.19 illustrates the classified point cloud of water body (NL2 130)
using different voxel sizes. As shown in Table 6.10, the number of lowest points has
been rapidly decreased from 37.393 to 1.272 while the voxel size increased from
0.5m to 4m. Similarly, a small part (rectangular shape) was randomly selected in
order to visualize the classified points through sections (see Figure 6.20). The distri-
bution of points across this section is displayed.

Voxel size 0.5m

Voxel size 1m

Voxel size 2m

Voxel size 3m

Voxel size 4m

Figure 6.19: Water body (NL2 130): Classified with different voxel sizes: 0,5m, 1m, 2m, 3m,
4m

The number of points drops as the size of voxel increases, while gaps are created
in the bottom surface of sections with voxel size 3m, 4m and 5m. The first section
(1m) has bottom points in its whole extent, where few green points (high confidence)
do exist near its borders. There are many points (red shades) in the middle water
part, as these points are less confident (class 7,8).

Figure 6.21 presents the classified water body (NL3 376) with different voxel sizes.
A small part (rectangular shape) was randomly selected in order to visualize the
classified points through sections (see Figure 6.22). The number of points decreases
as the size of voxels increases, while gaps are created in the bottom surface of the
last two sections. It is obvious that the bottom surface can not be reconstructed
using so few bottom points.
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Voxel size: 1m

Voxel size: 2m

Voxel size: 4m

Npoints: 86m

Npoints: 25m

Npoints: 9m

Voxel size: 0.5m Npoints: 501m

Voxel size: 3m Npoints: 16m

Figure 6.20: Water body (NL2 130): Classified sections with different voxel sizes

Figure 6.23 shows the results of the classified water body (NL3 378) with different
voxel sizes. Again, a small part (rectangular shape) was randomly selected in order
to visualize the classified points through sections (see Figure 6.24). The number of
points decreases as the size of voxels increases. Few small gaps are created in the
bottom surface of the third section, specifically in the middle part. As far as the last
section, there is only one green point with high confidence and it is near the shore
of the water body.

The last used water body is the (NL4 199), as shown in Figure 6.25. It has been
classified similarly with four different voxel sizes. In order to study the distribution
of bottom points in sections, a rectangular part was randomly chosen (see Figure
6.26). The number of points drops as the size of voxels increases. However, there
are not big gaps in the bottom surface of all the sections compared to the previous
datasets. Green points do exist in all parts of the sections, while red and light brown
points are usually presented in the middle water part.
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Voxel size 3m
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Figure 6.21: Water body (NL3 376): Classified with different voxel sizes: 1m, 2m, 3m, 4m
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Figure 6.22: Water body (NL3 376): Classified sections with different voxel sizes
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Figure 6.23: Water body (NL3 378): Classified with different voxel sizes: 1m, 2m, 3m, 4m
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Figure 6.24: Water body (NL3 378): Classified sections with different voxel sizes
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Figure 6.25: Water body (NL4 199): Classified with different voxel sizes: 1m, 2m, 3m, 4m

Voxel size: 1m

Voxel size: 2m

Voxel size: 3m

Voxel size: 4m

Npoints: 293m

Npoints: 94m

Npoints: 45m

Npoints: 27m

Figure 6.26: Water body (NL4 199): Classified sections with different voxel sizes
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After applying the voxelization approach in various datasets with different voxel
sizes, the classification results have been affected. In particular, the number of
bottom points significantly decreases, as the voxel size increases. Therefore, many
gaps do exist in the bottom part of the water body that make difficult to reconstruct
the water bed’s surface.

6.1.3 Rasterized point cloud

The above two water bodies are classified based on the three parameters (Norm-
Density, NormDistance, NormIntensity). The confidence value (class) of each point
is assigned as a classification code in the original point cloud. Then, the points are
colourized and visualized in a 3D viewer software (i.e. Displaz, CloudCompare) as
seen in the Section 6.1.2.

However, the classified bottom of the water bodies can be exported into a 2D
raster output or a 3D surface by triangulating them as explained in Section 2.4.2
and Section 4.4.
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surface of the water body NL1_51

Figure 6.27: Water body (NL1 151): Rasterized confidence values of bottom points with res-
olution 1m

Figure 6.27 displays the rasterized confidence values of the classified water body
(NL1 151) on an RGB Ortho-photo of the Netherlands with 25cm resolution. It
is evident that many pixels have confidence values one (1) and two (2) visualized
with dark brown shades. Therefore, they are highly confident to be bottom points.
Moreover, many points have confidence value five (5) (i.e. belong to the class 5) and
are presented with dark orange colour. These points are concentrated in the middle
part of the water body, as seen in lower right image. Another important remark
is the presence of while pixels at the border of the water canals (see upper right
image). These points have confidence value eight (8), and they the lowest confident
to belong to the bottom surface. The reason is that the water body borders are
enlarged with 5m buffer in order to contain surrounding topographic points. In
most cases, that points are classified as bottom (class 1) with dark brown colour,
whereas there are only a few cases that they wrongly classified.

The same rasterized water body (NL1 151) is displayed also with respect to the
AHN3 05 dtm (see Figure 6.28). The AHN3 05 dtm is intended as a ground level
file, while all the non-ground objects (e.g. trees, buildings) has been removed from
the point cloud. Also, in Figure 6.29 rasterized with 0.5m resolution.
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Figure 6.28: Water body (NL1 151): Rasterized confidence values of bottom points with res-
olution 1m compared to the AHN3 05 dtm
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Figure 6.29: Water body (NL1 151): Rasterized confidence values of bottom points with res-
olution 0.5m compared to the AHN3 05 dtm

Moreover, the classified point cloud is rasterized based on the confidence values,
but also multiple bands are created. In particular, the Band1 contains the z infor-
mation, the Band2 has the density values, the Band3 the distances, the Band4 the
intensity values and the Band5 has the final confidence value or class of each point.
Many figures are created to visualize the information of each band of the water
body (NL1 151).

As seen in Figure 6.30, the points have z value below -3 metres in the most parts
of the water body.The normalized density is quite low, especially below 0.26 in the
entire datasets. Only few more points may exist at the borders of the water area (see
Figure 6.31). The normalized distances are usually below 0.26m and it can be seen
in the upper left part of the dataset. This means that the laser pulse managed to
penetrate the water around 30cm in that part. In addition, the normalized intensity
is around 0.50 in the middle part of the dataset. Then, the confidence values resulted
based on the threshold values of the Table 6.3 and used in Table 4.1.
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Figure 6.30: Water body (NL1 151): Rasterized bottom points of the water body 51 NL1,
categorized by z values
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Figure 6.31: Water body (NL1 151): Rasterized bottom points of the water body 51 NL1,
categorized by normalized density values
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Figure 6.32: Water body (NL1 151): Rasterized bottom points of the water body 51 NL1,
categorized by normalized distance values
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Figure 6.33: Water body (NL1 151): Rasterized bottom points of the water body 51 NL1,
categorized by normalized intensity values
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Figure 6.34: Water body (NL1 151): Rasterized bottom points of the water body 51 NL1,
categorized by confidence values

6.2 validation

6.2.1 Pulse vs Voxel based method

To understand which method works better and gives more valuable results, each
dataset needs to be evaluated. This section gives a detailed look into the perfor-
mance of each approach for a given dataset (i.e. water body 51NL1). Both methods
have been described in Chapter 4 and their results presented in Section 6.1. There-
fore, the comparison between them in terms of accuracy and limitations are focused
in this section.

As described in Section 4.2, the pulse based approach uses the point’s characteris-
tics (e.g. NR, RN, GPS time stamp) in order to group the points into the three classes,
without taking into account their spatial information. On the other hand, this is
completely different in voxel based approach. The 3D space is divided into a 2D
voxel structure and the points grouped into voxels based on their x,y,z information.
Thus, all the points that fall into a voxel have been generated from various pulses.
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Entire pulse (i.e. all its returns) may belong to one voxel, depending also on the
voxel size, while individual returns of other pulse can exist in that voxel, too.

For example, using both methods the detected bottom points are displayed in the
Figure 6.35. In particular, the same vertical section is extracted from both classified
point clouds (see Figure 6.10). By looking at the Figure 6.35, it is evident that the
amount of bottom points (brown colour) in pulse approach is bigger than in the
voxel one. This is logical as all the points of the dataset are used during the group-
ing per pulse procedure, whereas in the voxel approach only one point extracted
per voxel. Also, the number of extracted points is directly affected by the selection
of a voxel size. If the voxel size is large, then less bottom points are extracted. The
opposite happens if it is small. In this case, the voxel size was selected to be 1m x
1m.

Voxel based method
Water body 51NL1

Pulse based method
Water body 51NL1

Figure 6.35: Water body (NL1 151): Pulse vs Voxel based method to detect the bottom points

However, it is easier to create a 3D bottom surface by triangulating the points of
the voxel method. The points are not so densely distributed along the water body,
and a smoother surface can be easily generated. In the case of the pulse method, the
density of the points is higher and more triangles will be generated. Thus, using all
the points ,but also the wrong classified ones (i.e. near the water surface), the result
will a bumpy 3D surface. This surface will not be so realistic and the computation
time will be certainly higher.
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Voxel based method
Water body 199NL4

Pulse based method
Water body 199NL4

Figure 6.36: Water body (NL4 199): Pulse vs Voxel based method to detect the bottom points

Figure 6.36 shows the bottom points identified by both methods for the water
body (NL4 199). The voxel-based result has fewer bottom points than the pulse-
based one, as explained previously. The distribution of points in both cases is
uniform everywhere and there are no gaps. Therefore, a 3D TIN bottom surface
can be created in both cases.

In addition, 2D rasters using the z values of the points can be created to represent
the waterbed surface in both cases (see Figure 6.30). It is also simpler to compare
the classified output by overlapping the two rasters. Z differences can be calculated
by subtracting the values of the overlapping pixels.

6.2.2 Classified point cloud vs ground truth data

As described in Section 5.1.1, the water boards and Deltares that captured and
provided me the used green LIDAR dataset, they collected few ground truth data
(i.e. GPS measurements) for the specific regions. These data are going to be used in
order to validate the classified outputs of both methods.

For the validation process, the water body (NL1 151) is used. There are four
measured profile section in this dataset, as seen in Figure 5.5. Many bottom points
are measured along each profile line. All the profile sections are displayed as line
shapefiles. In order to extract the related points of the point cloud, a buffer of 0.5m
was created for each line segment and they are polygons. Then, the water body was
cropped based on the new polygons.

The new extracted point cloud parts are going to be validated with the field
measurements. In Figure 6.37, the points of the four profile sections are shown
and the number of them is presented in Table 6.11. Important to mention that the
number of points in this Table 6.11 correspond to all the points, and not to the
detected bottom ones from the two methods. As a result, the lowest points of this
section are used for the rasterization process and the z differences are computed
between them and the ground data.
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Figure 6.37: Water body (NL4 199): Profile sections with extracted points

Name Profile section 1 Profile section 2 Profile section 3 Profile section 4
51NL1 217 683 616 897

Table 6.11: Water body (NL1 151): Number of point cloud points per profile section

Name Profile section 1 Profile section 2 Profile section 3 Profile section 4
51NL1 53 68 66 47

Table 6.12: Water body (NL1 151): Number of GPS measurements per profile section

In order to compare the two datasets, the ground data are rasterized with pixel
size 0.5m and the point cloud section with resolution 0.5m, as well. This proce-
dure has been done for all the profile sections. Following Figures 6.38 present the
raster outputs and then their z differences, which were computed by using raster
calculator tool.

(a) (b)

(c)

(d)

Figure 6.38: Profile section 1 of water body (NL1 151): 6.38a Ground truth data. 6.38b Ras-
terized ground truth data with 0.5m pixel size. 6.38c Rasterized bottom points
6.38d Computed z differences between the two rasters.
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Similarly, the comparison was done for the other three profile sections.

(a)
(b)

(c) (d)

Figure 6.39: Profile section 2 of water body (NL1 151): 6.39a Ground truth data. 6.39b Ras-
terized ground truth data with 0.5m pixel size. 6.39c Rasterized bottom points
6.39d Computed z differences between the two rasters.

(a)
(b)

(c) (d)

Figure 6.40: Profile section 3 of water body (NL1 151): 6.40a Ground truth data. 6.40b Ras-
terized ground truth data with 0.5m pixel size. 6.40c Rasterized bottom points
6.40d Computed z differences between the two rasters.

(a)
(b)

(c)
(d)

Figure 6.41: Profile section 4 of water body (NL1 151): 6.41a Ground truth data. 6.41b Ras-
terized ground truth data with 0.5m pixel size. 6.41c Rasterized bottom points
6.41d Computed z differences between the two rasters.
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As seen in Figures 6.39, 6.40 and 6.41, the z differences are almost always below
the 0,65m (white pixels), and only a few pixels (light grey) show a difference bigger
than 1m.

The next step is to apply the same procedure, but using now the detected bottom
points of both pulse and voxel based methods. In addition, since the point cloud
contains now only the detected bottom points, the profile sections were extracted
using 1m buffer zone in order to have bigger number of surrounding points.

(a)

(b)

Figure 6.42: Profile section 1 of water body (NL1 151): 6.42a Rasterized detected bottom
points of voxel-based method. 6.42b Computed z differences (m) between ras-
terized ground truth data and Figure 6.42a.
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(a)

(b)

Figure 6.43: Profile section 2 of water body (NL1 151): 6.43a Rasterized detected bottom
points of voxel-based method. 6.43b Computed z differences Computed z dif-
ferences (m) between rasterized ground truth data and Figure 6.43a.

(a)

(b)

Figure 6.44: Profile section 3 of water body (NL1 151): 6.44a Rasterized detected bottom
points of voxel-based method. 6.44b Computed z differences (m) between ras-
terized ground truth data and Figure 6.44a
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(a)

(b)

Figure 6.45: Profile section 4 of water body (NL1 151): 6.45a Rasterized detected bottom
points of voxel-based method. 6.45b Computed z differences (m) between ras-
terized ground truth data and Figure 6.45a

As seen in Figures 6.42, 6.43, 6.44 and 6.45, the detected bottom points using the
voxel-based approach rasterized with pixel size (0.5m), and then the z differences
with the ground truth data were computed. The detected points do not cover the
entire extent of the profile section, and therefore the raster output presents gaps (i.e.
missing pixels). Thus, the z differences were computed only for the overlapping
pixels of the ground data and bottom points. It is evident that these differences
vary from few centimetres (10cm) to maximum 1m. For instance, in case of Figure
6.44b most of the pixels have values (light blue) around 50cm, whereas in Figure
6.45b the majority of them (white shades) ranges from 15cm to 27cm.

Furthermore, the detected bottom points of the pulse-based method compared
with the ground truth data. The approach was the same as both data points were
rasterized. The Figures 6.46, 6.47, 6.48 and 6.49 show the rasterized last returns
(i.e. bottom points) of the pulses. The number of pixels is bigger in the rasterized
pulse points as opposed to the voxel points. This makes sense as the original point
cloud was grouped per pulses without removing any points. In the voxel approach,
only one point per voxel was stored. Thus, the number of points changes when the
number of voxels changes, as long as it is related to the voxel size.

The z differences range from 1.5m to up a few centimetres (0.25m). The number
of pixels also differs per profile section. For example, the Figure 6.49b has points
almost all across the section line, whereas the Figure 6.46b only in the middled part
of the profile. In case of section 3, the results are quite promising as the differences
are small (20cm - 40cm) in the majority of pixels. Whereas most pixels have high
values (around 60cm) in section 2.
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(a)

(b)

Figure 6.46: Profile section 1 of water body (NL1 151): 6.46a Rasterized detected bottom
points of pulse-based method. 6.46b Computed z differences (m) between ras-
terized ground truth data and Figure 6.46a.

(a)

(b)

Figure 6.47: Profile section 2 of water body (NL1 151): 6.47a Rasterized detected bottom
points of pulse-based method. 6.47b Computed z differences (m) between ras-
terized ground truth data and Figure 6.47a.
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(a)

(b)

Figure 6.48: Profile section 3 of water body (NL1 151): 6.48a Rasterized detected bottom
points of pulse-based method. 6.48b Computed z differences (m) between ras-
terized ground truth data and Figure 6.48a.

(a)

(b)

Figure 6.49: Profile section 4 of water body (NL1 151): 6.49a Rasterized detected bottom
points of pulse-based method. 6.49b Computed z differences (m) between ras-
terized ground truth data and Figure 6.49a.
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To sum up, the ground truth data is essential to validate the results of the two pro-
posed methods. This section presents the raster outputs of pulse and voxel-based
approach and the comparison with the field measurements. Three comparisons
were applied:

1. Lowest points of section vs ground truth data

2. Bottom points (i.e. last returns) of pulse-based method vs ground truth data

3. Bottom points of voxel-based method vs ground truth data

The Table 6.13 presents the amount of data points that used during the rasteriza-
tion procedure. It is evident that the number of bottom points between pulse and
voxel approach differs a lot. This affects both the number and the values of pixels.
Points may have lower than 0.5m (pixel size) distance in the pulse approach, and
therefore the pixel value will take into account more than one point. In the voxel
approach, it is rare as the points extracted with voxel size 1m.

Points Profile section 1 Profile section 2 Profile section 3 Profile section 4
Section 217 683 616 897

Bottom (pulse) 82 266 234 358

Bottom (voxel) 10 44 55 35

Table 6.13: Water body (NL1 151): amount of points used for the rasterization process.
* For the section points, the lowest points used based on the resolution (0.5m)

Next the z differences of the profile section 3 are presented for all the comparisons.
By using a point sampling tool and the exact location of the field points (x,y,z), the
z difference values of the three rasters were extracted and presented in Table 6.13.
All the points (p4 - p9) in the voxel based method have smaller differences with
the ground truth data than with the pulse ones. This is just a small validation
example for few points of this profile section. This can be created for the other
profile sections, too.

Dataset (51NL1) Profile section 3
Points p4 p5 p6 p7 p8 p9

Section - - -1.09 - -1.198 -1.478

Pulse - based method -0.716 -0.941 -1.112 -1.021 -1.198 -1.485

Voxel - based method -0.637 -0.843 -0.958 -0.958 -1.086 -1.226

Table 6.14: Z Differences between the ground truth data and the pulse and voxel-based meth-
ods. The lowest points of section had only three differences

6.3 computation time and scalability
Factors that can affect the effectiveness of the method in terms of computation time
and memory allocations are: the voxel size and the dataset size. This section presents
the evaluation of these parameters for different datasets. The experiments have been
implemented in a computer with specific characteristics as seen in Section 5.1.2.

6.3.1 Voxel size

The voxel size obviously is a difficult selection and has a major influence in the
computation time and the accuracy of the results. The number of voxels increases
as the voxel size decreases and the computation time may be unpractical for this
case. The high density of points in a voxel; the points inside a voxel, influence
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the complexity of the process. Thus, a point cloud with sparse density may be
processed faster during the voxelization procedure.

Table 6.15 presents the computation time with respect to the different voxel sizes
of the water body (NL1 151).

Input point size Voxel size (m) Voxels Time (sec)
511.914 0.5 43.806 1.015

511.914 1 13.048 326

511.914 2 4.435 132

511.914 3 2.493 90

511.914 4 1.640 75

Table 6.15: Water body (NL1 151): Various voxel sizes with the corresponding number of
voxels and computation time

Figure 6.50: Water body (NL1 151): Computation time per spatial resolution

Figure 6.51: Water body (NL1 151): Number of voxels with respect to various voxel sizes

The computation time is directly affected by the spatial resolution (voxel size)
during the voxelization procedure. When the voxel is less than 1m (0.5m), the
computation time increases rapidly and is tripled (1015 sec) compared to voxel size
1m (326 sec) (see Figure 6.50). The time is also related to the amount of voxels in
the dataset. When the voxel size decreased to 0.5m, the number of voxels increased
to almost 44.000. However, it was around 13.000 when the voxel size was 1m.
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6.3.2 Dataset size

The size of a point cloud affects the computation time, too. A large point cloud def-
initely needs more processing during the voxelization and pulse-based procedure.
Computation time mainly in voxelization grows rapidly as the number of voxels
increases. Table 6.15 presents how the computation time for a dataset with around
511.000 points changes based on the voxel size. For instance, the shape of bounding
box is rectangular and all the points are allocated in its diagonal. Then, the voxels
at the corners of the bounding box will be empty.





7 C O N C L U S I O N A N D F U T U R E W O R K

This chapter presents the conclusion of this study. First the research questions
are answered here in Section 7.2. Secondly, the research contribution are given in
Section 7.3. Lastly, the future work are summarized in Section 7.4.

7.1 conclusion
This study described a proposed workflow to classify the shallow and muddy water
bodies in the Netherlands using green LIDAR data. Two methods, pulse and voxel-
based, are implemented to classify the water bodies and especially distinguish their
water beds. Also, ground truth data (i.e. GPS measurements) of their bottom sur-
face have been collected and they have been used to validate the classified outputs
of the two methods. It showed that the voxel-based approach resulted to less bot-
tom points than the pulse one as it is influenced by the selection of a voxel size.
However, the validation results were better using the voxel approach. The z differ-
ences between the ground truth data and the detected bottom points of the voxel
method were smaller (20-40cm) than of the pulse method (>60cm). Furthermore,
the voxelization of the source point cloud requires a careful selection of the voxel
size to achieved satisfying results.

It is important to mention that even if the waterbed detection achieved with
promising results compared to the ground truth data, some issues need attention.
The major issue on the voxel-based method as implemented in this study, is the
selection of the voxel size. It is a trade-off between the computation time and the
number of voxels. Small voxel size (e.g. 0,5m) may result to more points per voxel,
if the point cloud is dense, and bigger number of voxels. Definitely, the computa-
tion time sharply increases (see Section 6.3.1) and may be unpractical for the entire
process. A bigger voxel size (e.g. 1m) results in less voxels and might less points
per voxel. Therefore, the amount of detected bottom points will be less since one
points extracts per voxel.

In addition, using the pulse-based method, more potential bottom points were
detected as the procedure was based solely on their characteristics and not on their
spatial distribution. More points may wrongly be classified as waterbed due to the
presence of errors in point’s attributes such as RN and NR. These errors can affect
the grouping per pulse procedure. This can be the reason why the z differences
between the ground truth data and pulse-based detected bottoms are larger in most
cases.

Potential bottom areas can be detected using both methods. Nonetheless, this
thesis showed the benefits of the voxel-based method compared to the pulse one in
terms of accuracy in the detection.

7.2 research questions
This section answers the research questions stated in Section 1.2, starting with the
sub-questions, and ending with the main research question.

93
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Question 2. Can pulse and/or neighbourhood based methods - in a green airborne LIDAR

- be used to classify and detect the bottom points?

Both the pulse and voxel-based methods manage to classify green LIDAR point
clouds and especially detect the bottom parts.

For the pulse-based method, the point cloud is classified into three classes: water
surface, underwater and bottom points, unclassified. The points are grouped per
pulses using their NR, RN and the GPS time attributes. The first return of a pulse
is classified as a water surface point, as it is the first point that the laser beam
hit during its transmission from the air to water interface. The middle returns
correspond to the under water surface points, while the last returns considered as
bottom point. Thus, a classification code is assigned for each point based on its
order in a pulse. In addition, the class with all the unclassified points contains the
left overs from pulses that have been cut in the pre-processing procedure and may
not be classified in the other classes.

For the voxel-based method, the point cloud is divided into 3D voxels (i.e. water
columns). The x,y dimensions of a water column are the same (e.g. 1m x 1m) and
the z dimension matches with the z extent of the point cloud. For each voxel, a
histogram is created with fixed size bins. The highest bin corresponds to the water
surface while the second highest to the bottom surface. Then, the lowest point of
all the points of the second bin is extracted and assumed as potential bottom point.
Based on three parameters: density, distance and intensity the confidence value for
each bottom point are calculated. Thus, all the bottom points can have a value that
estimates how confident they are to be at the bottom. This method takes account
the spatial distribution of points and not their descriptive characteristics.

Question 3. What is the influence of different voxel resolutions for classification, in
terms of accuracy and computation load?

The voxel size has a major influence on the accuracy of the proposed voxel-based
method. A size larger than 1m results to a small number of voxels to capture the
details in the bottom surface (see Figure 6.51). Even though more points may fall
into a voxel, its coverage area (x,y) increases, but again only one point is extracted -
as bottom point - from its entire area. Thus, the detected bottom points will certainly
be less in number and more sparse.

On the other hand, a resolution smaller than 1m (e.g. 0.5m) results to a big
number of voxels as seen in Figure 6.51. The number of voxels has been sharply
increased. Every voxel might contain less points than before, but more empty voxels
will exist as its extent shrinks.

Moreover, the voxel size directly affects the computation time. A too fine reso-
lution (e.g. < 0.5m) increases a lot the running time as seen in Figure 6.50. This
means that using a small voxel size and dealing with a large dataset (e.g. 500.000

points), the processing time reaches unpractical levels even if the number of de-
tected bottom points can increase. Also, the existence of sparse and dense parts in
a point cloud directly influences the running times. The use of 1m voxel size seems
satisfied for the tested dataset to represent the bottom surface.

Question 4. How does the various point cloud quality (i.e. density, outliers) affect the
classification process?

The point cloud quality in terms of density and outliers play a vital role in the
classification process of both proposed methods. During the pulse based-method,
especially in the grouping procedure, many points remained ”unclassified”. This
is related to the existence of outliers in the water body even if few pre-processing
steps are applied. In particular, the original green LIDAR clipped in x,y dimensions
using an external dataset (Top10NL) with the water boundaries. In the z level, it
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has been cropped using hard-coded threshold values, after a visual inspection of
the dataset. This is a certain reason why outliers exist, especially near the water
surface, in a water body.

However, as stated in Section 1.3, the scope of this research is to use water
body point clouds and not to extract them automatically from an unclassified green
dataset. Therefore, there are expected to be some outliers that may influence the
classification process. This is a limitation of the process that needs to be taken into
account.

During the voxel-based method, the potential presence of outliers below the bot-
tom of a water body can not affect the detection of bottom points. Even if there are
a few outliers a bit lower (e.g. 10cm away) from the potential water bed of the water
body, they will not affect the procedure. The created histogram of a voxel contains
bins with certain width size (5cm). Therefore, the outliers will not be so many as to
create a peak in the histogram and be interpreted as a bottom area.

The classification procedure in both methods can be influenced by the point cloud
density. A denser point cloud affects the computation time of the grouping per
pulse process and the voxelization (see Table 6.15). A sparse point cloud does not
cost computation time, but it could result into less accurate output. In this study,
the processed water body datasets presented an acceptable number of points per
square meter (see Table 6.1) and did not influence negatively the classification pro-
cess.

Question 5. Can a confidence value of water points be calculated?If it is possible, how?

Yes, a confidence value was calculated and assigned for every detected bottom
point during the voxelization procedure. The confidence value is defined based on
three parameters: the density, the distance and the intensity (see also Section 6.1.2).
Since a histogram per voxel has been created and the second highest bin (i.e. bin of
interest) has been also detected, the lowest point from all the points of that bin is
extracted. In order to be known how confident or not is a bottom point, the three
parameters are calculated.

The density of points in the bin of interest are measured and normalized with
respect to the maximum density of the corresponding bin in all the other voxels.
The normalized density is value then assigned to the point (NormDensity). Similarly,
the intensity value of that point normalized (NormIntensity). Also, the distance is
the vertical distance between the highest point of the bin of interest (water surface)
and the lowest point of the second highest bin. The distance per voxel has been
normalized (NormDistance) with the maximum one.

In order to define the various confidence classes, the median of the NormDensity,
the NormIntensity and the mean of the NormDistance were used for each water
body dataset. The median can give a more generic overview of these two values
in the entire extent of a dataset. Instead of using hard-coded values that may be
useful only for a certain dataset, the median is used for the definition of confidence
classes for all the datasets.

And finally, the main research question is answered:

Question 1. Can the bottom points of shallow and muddy water-bodies in the Nether-
lands be automatically detected using ALB?

Yes, the two proposed methods managed to automatically classify the water beds
of the Dutch shallow and muddy water-bodies. However, based on the quality met-
rics presented in Table 6.14, the voxel-based method performs well in terms of accu-
racy with the ground truth data. The comparisons between the pulse-based/ground
truth data and the voxel-based/ground truth data showed that the voxel-based is
more accurate to the original GPS measurements. However, the amount of detected
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bottom points is directly affected by the selection of the voxel size and the density of
points in a voxel. Thus, less but more accurate points represent the bottom surface
than in the pulse-based, where more bottom points exist.

7.3 research contribution
The main contributions of this thesis are:

• The design of a detailed workflow from the pre-processing until the final clas-
sification results of an unclassified ALB dataset.

• The implementation of two methods to classify a green LIDAR dataset using
either the LIDAR points’ characteristics or their spatial distribution. This study
explores the performance of both methods.

• The comparison of the pulse and voxel-based methods in terms of accuracy.
Quality metrics are presented with the provided ground truth measurements.

• This study shows that the voxel-based method can provide more accurate
bottom points, while the pulse-based approach contains bigger number of
bottom points.

7.4 future work

7.4.1 Point cloud classification with machine learning

This section gives a few recommendations that may be helpful for this research
topic.

1. Deep Learning on point cloud The PointNet++ algorithm uses a deep net
architecture that manipulates a set of points without applying voxelization.
It learns from both global and local point features, and they can be used
for object classification and segmentation purposes. Starting from the entire
point cloud, the points are grouped into some clusters and then compressed
into a single point that carries this information. This procedure continues
by taking the new points and grouping them into new clusters. Then, the
process reverses and tries to build the original point cloud (Singer, 2019). The
possibilities of this algorithm for the classification of water body datasets can
be explored. Especially, for the detection of the bottom points based on their
distances from the water surface.

2. Different point cloud densities To evaluate the limits of the pulse and voxel
based methods, the implementations should be tested with other green LIDAR

datasets of different densities. I assume that both methods could also work for
less denser datasets, even though I tested them with quite dense ones. Also,
using a denser dataset, more bottom points may be detected using the voxel-
based method. For example, datasets from other regions that have shallower
and more muddy waters can be a big challenge for the algorithms.

3. Pre-processing automation The unclassified green LIDAR contains also topo-
graphic features (e.g. buildings) from which only the water bodies must be
extracted. This is an essential pre-processing step that relies on the use of
procedures in LAStools and QGIS. This was an easy and required step as it
saved a lot of development time to choose the water bodies. A further de-
tailed description of the step-by-step pre-processing procedures may help the
optimization.
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4. Ground filtering Instead of cropping the point cloud in the z level using
some hard coded range values, the ground filtering approach can be used.
Thus, during the voxelization procedure, the points of every voxel could be
classified into ground and non-ground points. Ground points are those points
that are part of the water body, while non-ground points are vegetation (e.g.
bushes) or structures (e.g. buildings) near the water body.
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a.1 marks for each of the criteria

Figure A.1: Reproducibility criteria to be assessed.

Criteria for reproducible research:

- Input Data: 2

- Pre-processing: 1

- Methods: 2

- Computational environment: 3

- Results: 2

a.2 self-reflection
The processing and experiments of this study were performed in collaboration with
Deltares; an independent institute for applied research in the field of water and sub-
surface. All the information related to the input data can not be publicly available.
In particular,

• Input Data: During this thesis, airborne bathymetric LIDAR datasets. The
datasets are provided by Deltares and correspond to six different regions in
the Netherlands. Several water boards had organized a pilot project in coop-
eration with Deltares 1, Stowa 2 and Waternet 3. These datasets are an internal
part of Deltares and are not publicly available.

1 https://www.deltares.nl/en/
2 https://www.stowa.nl/english
3 https://www.waternet.nl
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• Pre-processing: datasets and all the pre-processing procedures are documented
with text and workflow descriptions. Most of the procedures were performed
through open source toolboxes and software such as LAStools, CloudCom-
pare, Displaz.

• Methods: the source code of the classification methods (i.e. pulse and voxel-
based) used in this research is available online in GitHub. The algorithms are
documented with text, pseudo codes and workflow descriptions.

• Computational environment: this study is conducted by using publicly avail-
able Julia and Python libraries to process, manipulate and analyse the pro-
vided LIDAR datasets.

• Results: are documented through text, graphs, plots, but they may also be
available by running the freely available source code.
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