MODELLING AND INVERSION
OF
PULSED EDDY CURRENT DATA

Simon van den Berg






TR 458 S

Stellingen

behorend bij het proefschrift

Modelling and Inversion
of
Pulsed Eddy Current Data

door

Simon van den Berg

Delft, 10 december 2003



1. PEC (Perfectly Electrically Conducting) randvoorwaarden zijn niet geschikt
om de PEC (Pulsed Eddy Current) techniek te modelleren.

2. Als een discreet signaal, gedefiniéerd op de punten {kAz;k = 0,...,2"Y — 1},
na het toepassen van een FFT slechts op de discrete subset van punten
{2PkAz;p€ {0,...,N};k=0,...,2¥"P — 1} benodigd is, verdient het de
aanbeveling gridreductie toe te passen.

3. Tijddomein of multifrequentie inversie, gekoppeld aan een geparametriseerd
defectmodel, zal gebruikt moeten worden om defecten te reconstrueren met
behulp van "Pulsed Eddy Current” data.

4. Het expanderende ”smoke ring” model van Nabighian voor diffuse velden
moet vervangen worden door een niet-expanderend model voor velden in
metaal (Nabighian, M.N., Quasi-static transient response of a conducting
half-space - An approzimate representation).

5. Bij het oplossen van de gekoppelde integraalvergelijkingen voor het elek-
trisch en magnetisch veld zijn ontwikkelingsfuncties voor de vectorpoten-
tialen nodig die in iedere richting tenminste stuksgewijs lineair zijn.

6. Bij gelijktijdige inversie van conductiviteit en permeabiliteit is er minder
afhankelijkheid tussen de gereconstrueerde parameters dan tussen conduc-
tiviteit en permittiviteit in een vergelijkbare configuratie.

7. Een fundamenteel voordeel van een elektromagnetische inspectiemethode ten
opzichte van een akoestische inspectiemethode is dat bij de eerste geen ma-
teri€el contact nodig is tussen de sensor en het te onderzoeken object.

8. In het huidige financieringsklimaat voor universiteiten staat korte-termijn
utiliteit gelijk aan maatschappelijke relevantie. Hierbij wordt voorbij gegaan
aan de lange-termijn utiliteit van wetenschappelijk relevant onderzoek.

9. Gemiddeld genomen is het gemak waarmee men een bericht kan versturen
omgekeerd evenredig met het belang van de inhoud.

10. Het nut van computers in het onderwijs wordt overschat en de schade on-
derschat.

Deze stellingen worden verdedigbaar geacht en zijn als zodanig goedgekeurd door de
promotor:
Prof.dr.ir. H. Blok
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1. PEC (Perfectly Electrically Conducting) boundary conditions are not suit-
able for modelling the PEC (Pulsed Eddy Current) technique.

2. Grid reduction should be used when a discrete signal, defined on the points
{kAz;k = 0,...,2N — 1}, is needed only on the discrete subset of points
{2PkAz;p € {0,...,N};k =0,...,2NV-P — 1} after application of an FFT.

3. Time domain or multifrequency inversion, together with a parametric defect
model, should be used to reconstruct defect parameters from "Pulsed Eddy
Current” data.

4. Nabighians expanding ”smoke ring” model for diffusive fields has to be re-
placed by a non-exanding model for fields in metals (Nabighian, M.N., Quasi-
static transient response of a conducting half-space - An approzimate repre-
sentation).

5. Expansion functions for the vector potentials that are at least piecewise
linear in each spatial direction are necessary to solve the coupled integral
equations for the electric and magnetic fields.

6. There is less dependence between the reconstructed parameters in simulta-
neous inversion of conductivity and permeability than for conductivity and
permittivity in a comparable configuration.

7. A fundamental advantage of electromagnetic inspection techniques over
acoustic inspection techniques is that the former are non-contact methods.

8. In the present financial climate for universities, short term usefulness is taken
to be equal to social relevance. In this way, the long-term usefulness of sci-
entifically relevant work is neglected.

9. On average, the ease with which one can send a message is inversely propor-
tional to the importance of the contents of that message.

10. The usefulness of computers in education is overrated, while the negative
effects are underrated.

These propositions are considered defendable and as such have been approved by the
supervisor:
Prof.dr.ir. H. Blok
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Chapter 1

Introduction

This thesis deals with the Non-Destructive Evaluation (NDE) of materials, specif-
ically the Pulsed Eddy Current (PEC) technique for detecting corrosion in metals.
In this chapter, we provide some background information and a general overview
of NDE techniques. We define the problems that are discussed in this thesis and
introduce the general concepts of forward and inverse problems. An outline of the
thesis can be found in Section 1.6 of this chapter.

1.1 Non-Destructive evaluation

In this section we aim to give a short, general overview of Non-Destructive Evaluation
(NDE) or Non-Destructive Testing (NDT), as it is also called. Non-Destructive
Evaluation enables one to see inside an object or inside a domain, specifically to
locate and size defects without damaging said object. In a broad sense, one could
even call the use of radar a form of NDE, since it enables us to see into the air around
us (the domain) and locate moving objects (the defects). However, NDE techniques
do not necessarily involve the location of defects. For example, the thickness of
a paint layer on a metal surface can be measured using NDE techniques, as can
stress in materials. Since this thesis deals with corrosion detection, we will confine
ourselves to the testing of objects and materials for defects. For this application,
one could say that Non-Destructive Evaluation is akin to an MRI scan of the human
body. This analogy is where the 'Non-Destructive’ part of NDE is especially clear:
the MRI scan does not harm the patient who is undergoing it, similarly, after NDE
testing, the object that was tested is still intact.
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If we consider nondestructive evaluation for detecting defects, we can distin-
guish between qualitative and quantitative NDE. In qualitative NDE, we are only
concerned with detecting the defect and no information is recovered concerning its
location or size. With quantitative NDE, on the other hand, more parameters are
recovered, such as the location, size or medium parameters of the defect. Which
NDE technique should be applied depends on the configuration, the type of defect
that one aims to find and the required accuracy.

1.1.1 NDE Techniques for corrosion detection

We will now focus on NDE techniques for corrosion detection. Presently, a large
number of NDE techniques are available for this application, depending on the con-
figuration and the object that has to be inspected. Generally, an NDE technique
works by applying energy (for example a wavefield) to the object via some probe,
after which the reflected signal is examined. One should be aware that some tech-
niques are more suitable for the detection and/or sizing of certain types of defects
than others. The type of energy, be it acoustic, electromagnetic or elastodynamic,
and the manner of application must be such that the presence of a defect has a
significant influence on the reflected signal. The following list, which is by no means
complete, gives some common NDE techniques and their application

e Ultrasonic
The ultrasonic inspection technique consists of a transducer which induces
high-frequency sound waves in the test object. The round-way travel time of
the sound waves provides information on the thickness of the test object. This
technique is widely used, and an example of a common application is testing
welds for integrity.

¢ X Ray
This is analogous to the use of X rays in hospitals. It gives high resolution,
but is cumbersome and expensive. An example of its use is checking castings
for voids or inclusions.

e Magnetic Flux Leakage
The magnetic flux leakage technique magnetizes the test object using a static
magnetic field, after which a Hall-sensor is used to detect the stray field which
results from defects in the test object. This is an electromagnetic technique
which is used to check the integrity of pipes and vessels.

e Acoustic (Seismic) Subsurface Survey
An acoustic or elastodynamic wavefield is generated in the ground and the
reflected signals are then recorded. One can look at the direct reflections or
run complete inversion schemes on the data. This technique is used to find
new oil fields or mineral deposits.
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e Ground Penetrating Radar (GPR)

A radar antenna is placed close to the ground in order to generate an elec-
tromagnetic wavefield in the ground. The reflected signals are picked up and
processed. Using GPR one can form a high-resolution image of the ground to
a depth of several meters.

e Eddy Current

The frequency domain eddy current technique entails the generation of induc-
tion currents in the test object by means of a coil with a sinusoidally varying
driving current. The electromagnetic field generated by the eddy currents is
picked up and information on the test object is recovered from the amplitude
and the phase of the received signals.

On the other hand, time domain eddy current uses a pulsed current in the
transmitting coil, after which the secondary fields generated by the induced
eddy currents is picked up. The time dependence of the received signals con-
tains information on the object under test. This is a relatively new technique,
and it forms the subject of this thesis.

1.1.2 Defect types

The number of different defect types that can be encountered is, if anything, even
larger than the number of inspection techniques. We will confine ourselves to the
defect types which involve some loss of material (one could also think of a defect
as an area where locally the material has slightly different medium parameters).
Therefore, with the rest of the thesis in mind, we will give this summary of defect
types (see also Figure 1.1).

1. Pit defect

A defect where a relatively large (in the order of the thickness of the pipe,
or larger) piece of material has disappeared. This type of defect is frequently
found in pipelines.

2. Inclusion defect/delamination

This type of defect is located within the test object. An example of this is
delamination, where a gap or inclusion occurs within the metal. This can be
caused by material imperfections, and occurs frequently in composites as well.

3. Erosion defect

A type of defect found on the inside of pipelines, often in bends and corners.
The product which flows through the pipeline has eroded the metal of the pipe
wall. '
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1. Pit defect 2. Inclusion defect

product .

3. Erosion defect 4. Crack defect

5. Gradual wall loss

Figure 1.1: Schematic overview of different defect types.

4. Crack defect

A small defect (an order or more smaller in size than the wall thickness), which
can occur because of repeated stressing of the material. This type of defect
occurs frequently near welds.

5. Gradual wall loss

Very large defect (in the order of several times the wall thickness), where there
is a small, gradual decrease in wall thickness. This type of defect can be easily
detected using the PEC technique.

The type of defect will vary with the type and use of the ob ject, for example, aircraft
will exhibit crack-type defects, while larger corrosion spots will mostly occur in
pipelines. In this thesis we will focus mainly on the pit-type corrosion defects.
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1.2 Eddy current nondestructive evaluation

Since the topic of this thesis is the Pulsed Eddy Current NDE technique (hereafter
referred to as the PEC technique), we will now describe this technique in more
detail. In doing this, we will distinguish between frequency domain and time domain
(pulsed) eddy current NDE.

1.2.1 Frequency domain Eddy Current NDE

In frequency domain eddy current testing, the simplest setup is one with two coils: a
transmitting coil and a receiving coil. A sinusoidally varying current with a constant
frequency in the transmitting coil generates eddy currents in the test object. These
eddy currents generate a secondary electromagnetic field and the combination of the
driving (primary) field from the transmitting coil and this secondary field induces a
voltage on the receiving coil. Often the impedance of the receiving coil is used as a
measure of the object under test. When a defect is present, it will disrupt the eddy
current flow, and thus produce a change in the secondary field. This change in the
field can be measured at the receiving coil, where both phase and amplitude of the
received signal can be used to get an indication of the size of the defect.

Frequency domain eddy current testing has widespread applications, rang-
ing from large-scale geophysical measurements to measurements of delaminations in
composite structures. It came of age in the aviation industry, where it is still widely
used to detect hairline cracks caused by metal fatigue.

1.2.2 Time domain Eddy Current NDE

The general setup for time domain Eddy Current NDE is the same as its frequency
domain counterpart: a transmitting coil which induces the eddy currents in the
object and a receiving coil to pick up the secondary electromagnetic field. However,
it is the manner in which the eddy currents are induced that is different. The current
in the transmitting coil does not have a constant frequency, but instead it is pulsed.
This pulsed driving current induces eddy currents in the ob ject that decay over time,
which causes the secondary electromagnetic field to decay over time as well. It is
that decay over time that provides the information on the object under test. The
measured voltage is plotted as a function of time, and from this graph observations
concerning the test object can be made.

Since Pulsed Eddy Current NDE is a relatively new technique, its applications
are not as widespread as those of frequency domain EC. It was originally developed
to detect corrosion under insulation (CUI), but is currently used in a much more
diverse manner. Applications for PEC include corrosion monitoring, inspection of
support structures for spheres and columns and underwater inspection of risers. Its
ability to handle large lift-off and high temperatures, as well as good repeatability
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give it an advantage over other NDE techniques. For a detailed explanation of the
workings of the PEC technique and the PEC tool, the reader is referred to Chapter
3.

1.3 Eddy current Non-Destructive Evaluation in
the petrochemical industry

The petrochemical industry has an abundance of pipelines, vessels, and other metal
objects, which must be inspected regularly. A refinery plant is shut down period-
ically, and in this period all replacement and maintenance must take place which
cannot be carried out in-service. It is obviously a great advantage if the components
that need replacement are known in advance. Furthermore, continuous monitoring
of certain critical pipes and vessels can give an indication of the rate of wear of
these components, and hence of the need for shorter or longer maintenance inter-
vals. Therefore, the need for regular inspection of these pipes and vessels by some
NDE technique is clear. However, this is not as trivial as it may seem. The objects
which need to be tested are often insulated for energy conservation and personnel
protection reasons. This insulation usually consists of a rockwool blanket wrapped
around the object, covered by an aluminium layer to prevent weather damage (see
Figure 1.2). This poses a problem, in that most inspection techniques cannot pen-
etrate this insulation effectively. The insulation also gives rise to another problem:
the aluminium weather protection which has aged is not watertight and this will
accelerate the corrosion process, making an adequate inspection technique all the
more desirable.

Frequency domain eddy current techniques have been used extensively in the
petrochemical industry in recent years, especially for the inspection of heat exchanger
pipes and the detection of small cracks in larger pipelines. To this end, the eddy
current tools are mounted on so-called ’pigs’, which are then pushed through the
pipe by the flow of the product inside. A ’pig’ is more or less a cylindrical plug,
which fits narrowly in the pipe. Pigging has its drawbacks : dedicated sections must
be present in the pipeline for inserting and removing the pigs, and the frequency
domain eddy current tools on the pig are not suitable for detecting large defects on
the outside of the pipe.

Since it is very difficult to penetrate the insulation using frequency domain
eddy current and ultrasonic measurement techniques, and since the removal of the
insulation is a time-consuming and costly affair, one would like a measurement tech-
nique which is capable of direct measurement of the thickness of an object through
the insulation that covers it. This is where the PEC NDE technique comes into play,
since it is capable of taking wall thickness measurements through the insulation. This
property of being able to take non-contact measurements at large lift-off and through
plating makes the technique suitable for measurements on high-temperature ob jects
as well (Ultrasonic techniques do not work well for this type of application, since
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Figure 1.2: Corroded pipe with insulation and weather jacket.

the contact paste needed to improve energy transfer between the transducer and the
object vaporizes at high temperatures).

The PEC technique has been implemented by Shell Global Solutions at the
Shell Research and Technology Centre Amsterdam (SRTCA), who have produced a
tool capable of measuring the wall thickness of a pipe through insulation. The tool
can also be used to detect the presence of defects and is able to determine size and
location of these defects, depending on size and defect type. The PEC project for
the detection of corrosion under insulation started in 1993 and the author has been
involved since 1997, first as part of an MSc project and for the last 4 years on a PhD
project, which resulted in this thesis. Since 1995, 4 students have been involved in
this project, leading to close cooperation between Delft University of Technology
and SRTCA. The research reported on in this thesis was financially supported by
Shell Research and Technology Centre, Amsterdam.
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- X

Figure 1.3: Schematic plot of the measured (solid) and actual (dotted) wall
thickness (wt) for a scan over a defect using the PEC tool.

1.4 Description of the problem

The development of the PEC tool has now reached a stage where corrosion can
be reliably detected under a variety of circumstances. However, when a corrosion
spot has been detected, it would be advantageous to be able to recover the defect
dimensions (especially the remaining wall thickness, i.e., nominal pipe thickness mi-
nus defect depth) from the measurements. This would be particularly useful for
applications where the pipe is under pressure and where removal of the corrosion
products can be dangerous. By using the PEC tool we make a volume measure-
ment of the metal directly underneath the sensor, which can lead to difficulties for
the determination of the defect depth using only the measured wall thickness (see
Figure 1.3). However, if the influence of the defect on the measured PEC signal is
known, it may be possible to determine the actual defect depth. We would therefore
like to investigate the influence of defects on the measured PEC signals in detail by
constructing a mathematical model (the so-called forward problem). By using such
a model we are able to isolate the influence of a defect on the measured signal and
we can calculate these effects for various configurations. Furthermore, we would like
to use this model to investigate the possibility of recovering the defect parameters
(width and depth) from the measured data (which is called the inverse problem).
The configuration that we use for the model, the forward problem and the inverse
problem are now briefly discussed.

1.4.1 The configuration

The configuration that we will model in the thesis consists of 2 transmitting coils and
2 receiving coils located some distance above a flat metal layer, which can contain a
defect. In applications where the PEC tool is used on a pipe there is also the question
of the curvature of the pipe, but experiments have shown that the approximation
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Defect

Figure 1.4: Parametrization of a defect using ellipses.

using a flat layer works well for most applications. For the exact setup of the coil
system, the reader is referred to Chapter 3, which deals with the PEC tool itself.

1.4.2 The forward problem

The forward problem entails the calculation of the electromagnetic field quantities
at the receiver location and within the defect, when the sources and the defect are
known. The pipe wall is modelled as an infinitely large flat plate, which means that
the curvature of the pipe is neglected; this is an approximation that has shown to
be valid in most practical cases. Using the forward model, we can calculate the
influence of the defect on the signals that are received using the PEC tool.

1.4.3 The inverse problem

The inverse problem consists of recovering the dimensions and the medium parame-
ters (conductivity and permeability) of the defect from a set of measurements. Since
the conductivity and permeability of the defect are assumed to be known, we can
use a binary inversion scheme, whereby only the width and depth of the defect are
reconstructed. Furthermore, often the geometry of the defect is such that we can
use a parametrization of the defect. In this approximation, the defect is modelled
by using a number of ellipses (see Figure 1.4), which enables us to characterize the
dimensions of the defect with only a few parameters. - This drastically reduces the
number of unknowns in the inversion scheme, increasing computational speed.

Because of the physical nature of the test setup, where measurements are
taken only on the outside of the pipe, full-angle coverage cannot be obtained. This
restriction on the data set that can be obtained has consequences for the inverse
problem, and is discussed in Chapters 7 and 8.
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1.5 Review of literature

For the purpose of this review, we distinguish between frequency domain eddy cur-
rent testing and pulsed (time domain) eddy current testing. Frequency domain eddy
current testing has been around a long time and much research has been done in this
area. Early work (before any significant computing power was available) started with
analytical solutions for the probe impedance near halfspaces and layered structures.
Dodd and Deeds (28] gave solutions to the problem of a coil located above a two-
conductor plane and a coil surrounding an infinitely long conducting rod coated with
another conductor. Further important contributions were the paper by Wait and
Hill [88] and the paper by Cheng et al. [21]. Bowler (12] used halfspace and dyadic
Green’s functions to calculate coil responses for coils located above & conducting
halfspace.

The modelling of defects received a major contribution by the work of Burrows
[19] in 1964. His results were later verified by Dodd and Deeds [28]. They measured
impedance changes from artificial defects in aluminium plates and tubes and com-
pared these results with their numerical calculations. It was found that when the
defect was small compared to the skin depth but large enough to have a measurable
influence on the impedance, the accuracy of the model was good. However, this
meant that their work was limited to very small defects.

The Born approximation has been used with some success in the reconstruc-
tion of defects and conductivity profiles (Sabbagh [70] and [71]). The field inside the
scatterer is taken to be the incident field, which amounts to saying that the scatterer
is weak. By doing this, the integral equation for the field is linearized and can then
be solved. Later on, more accurate 3D models were made, enabling larger defects
to be modelled, including surface- breaking defects, see for example Bowler et al.
[16] . Looijer [51] used the Born approximation to calculate the effect of coaxial
cylindrical defects on the PEC signal.

Reconstruction (imaging) of defects

The reconstruction (imaging) of defects entails the determination of the dimensions
(lateral extent and depth) of the defect. Especially for corrosion applications on
pressurized objects, the depth of the defect is an important parameter. For the case
of corrosion of a metal layer, Luong and Santosa [53] developed a method to deter-
mine the material loss with eddy current impedance measurements. They derived
a linearized relation between the observed impedance change and the loss profile,
which resulted in a 2D convolution problem. The linearized inverse problem was then
proven to have a unique loss profile provided that impedance data is obtained for
all observation locations. They present numerical results for which a least-squares
algorithm with either positivity constraints or total variation regularization was used
to obtain estimates of the material loss depth.
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Reconstruction of medium parameters

Reconstruction of the medium parameters is the full inverse problem, where both
the size of the defect and the medium parameters are resolved. This can be done by
linearizing the problem by applying, for example, the Born approximation. Nair and
Rose [57] used this in combination with a combined Fourier-Laplace transformation
to reconstruct the conductivity and thickness of a conducting coating on a conducting
halfspace. Sabbagh and Lautzenheiser [70] use gradient techniques to solve both the
electric field and the conductivity from the integral equation. They conclude that
Fletcher-Reeves and Polak-Ribiére algorithms are superior to the steepest descent
algorithm and the choice of initial value for the field and contrast are important for
the convergence of the scheme. Upda and Upda [80] give an overview of techniques
used in the solution of inverse problems in eddy current NDE. Jenkins [39] used
dyadic Green’s functions and integral equations for 3D modelling of small cracks
and slots in conducting halfspaces and slabs.

For high-frequency eddy current NDE of cracks in metals, one usually only
takes the contrast in conductivity into account. When the defect size increases
and/or the metal has a relative permeability greater than one, it is necessary to take
the additional contrast in permeability into account. For geophysical applications,
Zhang and Oldenburg, [94] and [95], have reconstructed one-dimensional conductiv-
ity and permeability from measurements obtained using a horizontal loop antenna.
They use model objective functions for the conductive and permeable contrast sep-
arately, which are then simultaneously minimized by a least-squares algorithm. The
scheme is also used on 3D electromagnetic data, which shows that the addition of
a permeability contrast serves to enhance the solution of the conductivity contrast.
For the imaging of 3D objects with magnetic susceptibility, Sepulveda et al. [73]
describe a technique where they use matrix inversion with singular value decompo-
sition (SVD) to obtain a least-squares solution. For the method to work, the source
and measurement locations must be such that the matrix containing the Green’s
function is well-conditioned. Finally, we mention the work of Dos Reis et al. [29]
» who reconstruct defects in a thin metal layer using an exponential mapping with
the contrast source inversion algorithm. They use a dyadic Green’s function to solve
the electric field integral equation where the conductivity of the contrast and the
contrast source are the unknown quantities. The magnetic permeability of the con-
figuration is taken to be equal to yo throughout and a frequency of either 150 kHz
or 300 kHz is used.

Numerical techniques for modelling eddy current NDE

The use of a local method such as the FDTD method for eddy current NDE of metal
objects has its problems in that the contrasts are usually very high for these con-
figurations. This can either be solved by very fine sampling, which is not realistic,
or solving an additional integral equation for the fields along the boundary of the
scatterer (see Oristaglio and Hohmann [59] ). Badics et al. [6] presented a 3D finite
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element scheme for computing electromagnetic field distortions due to defects. A
simplification to the scheme for small, crack-like defects leads to reduced compu-
tational costs, however, this limits the type of defect that can be handled. Kriezis
et al. [45] give a comprehensive overview of analytical and numerical methods for
solving eddy current problems, including BEM and FEM methods. However, inte-
gral equations are most widely used, see for example Sabbagh [71] and Luong and
Santosa [53].

Idemen and Akduman [42] consider the 2D inverse scattering problem for
a configuration where dielectric and/or conductive cylinders are located within a
dielectric slab. Taking the slab and the halfspaces to be non-conductive and non-
magnetic, they then use integral equations and the Born approximation to determine
the conductivity and permittivity of the object within the layer. Cui {25] and [26]
uses a CG-FFT method and steepest descent path integration to evaluate the Som-
merfeld integrals which result from the problem of a buried ob ject. He then uses the
method of moments (MoM) to solve the resulting matrix equations.

Time domain (pulsed) eddy current

Compared to the frequency domain eddy current techniques, time domain (pulsed)
eddy current NDE is relatively new, and consequently, not as much has been pub-
lished in this area. However, in the last decade, more and more research has been
done, since the technique has several advantages, such as an inherent large data
content and the ability to detect defects in structures with large dimensions.

Early work was done by Beissner and Fisher [9]. They considered different
pulse shapes and concluded that a step-like (hyperbolic tangent) pulse gave the best
results. For geophysical applications, more work has been done on time domain
pulsed sources. We mention here the work of Wait and Hill (88], Cheesman [20], and
Lee and Lewis [48]. Preda et al. [66] presented a FEM-BEM method for the recon-
struction of cracks using pulsed eddy currents, while Rose and Uzal [68] used pulsed
eddy currents to detect wall loss due to corrosion. They modelled a ferrite-cored
probe located above a layered aluminium structure and then considered the tran-
sient voltage difference due to a step-function current. Instead of more commonly
used Fourier transformation, Bowler and Johnson (18] used a Laplace transforma-
tion with respect to time and considered a configuration where the inverse Laplace
transformation is reducible to a standard form which can be evaluated exactly using
contour integration. They reported a good agreement between the model and exper-
imental measurements acquired using a Hall sensor. Ludwig and Dai [52] describe a
2D weighted-residual-based finite element model for the calculation of eddy current
distributions in a conducting halfspace and compare the results to analytical models
which use an inverse Laplace transformation.

It should be noted that most publications in this area only consider contrasts
in conductivity and/or permittivity, setting the permeability to pg. For further
information on time domain inversion, which is beyond the scope of this thesis,
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the reader is referred to Farquharson and Oldenburg [31], Wang et al. [89] and
Bloemenkamp [10].

In the context of the PEC project for the detection of corrosion under insula-
tion, Looijer [51] has calculated the sensitivity of the received voltage with respect
to plate thickness and defect size for defects that are coaxial with the transmitting
coil and which are cylindrically symmetric. He also derived the Green’s function for
the case of an axially symmetric configuration of a loop source above a metal layer,
which can be found in this thesis in Appendix A. For the design of the transmitting
coils, Morsink [55] used FFTs to calculate the electromagnetic fields within a metal
layer for a transmitting coil that is composed of wire segments.

Probe design

Attention has been paid to the design of the probe to maximize effectiveness and
Signal-to-Noise Ratio (SNR). Sabbagh and Vernon [72] gave a model, numerical and
experimental results for a coil with a ferrite core, showing good agreement between
the model and the experiments. Later, Sabbagh [69] presented a more complete
model of a coil with a ferrite core in the presence of a conducting halfspace. He used
the method of moments (MoM) to solve the integral equation for the field in the
ferrite core. This was extended to 3D models of ferrite-core probes by Bowler et al.
[16]. Placko and Dufour [65] present a fully shielded probe design, where the coil is
completely enclosed within a ferrite structure, leading to enhanced directivity and
gain.

General information on Non-Destructive Evaluation

For more general material on NDE techniques, the reader is referred to the Nonde-
structive Testing Handbook, especially to Volume 4 [54], which deals with electro-
magnetic testing methods.

1.6 OQOutline of the thesis

In this chapter, we have given a short introduction to Non-Destructive Evaluation
techniques, with a focus on Eddy Current and Pulsed Eddy Current NDE. Section 1.5
deals with the literature on electromagnetic methods in Non-Destructive Evaluation
to give an overview of the work that has already been done in this field. We described
the background of the project and discussed the motivations for this thesis.

In Chapter 2 we will discuss Maxwell’s equations for the electromagnetic field
quantities and the associated constitutive relations, as well as the boundary condi-
tions for the electric and magnetic field components. We also introduce the necessary
integral transformations which we need to calculate the electromagnetic fields in our
configuration.
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Chapter 3 deals with the actual PEC tool and the measurement setup. We
start by describing the working principles of the tool, followed by a discussion of
the two main components of the tool: the probe and the data processing unit.
The configuration of the transmitting and receiving coils within the probe is briefly
discussed, and we give a short description of the various components of the data
processing unit, as well as a few examples of the actual operation of the tool. We
then use the computational model, which is described in Chapter 4, to calculate the
influence of various configuration and medium parameters on the PEC signals. In
the last part of Chapter 3, we present a simple physical model for the PEC technique.
This model describes the physics behind the PEC technique in terms of a mutually
coupled system of current filaments. By calculating the eigenvalues and eigenvectors
of the resulting system matrix, we can explain the electromagnetic diffusion of the
eddy currents in terms of modes that are excited in the test object.

To obtain a mathematical model for the PEC technique, and specifically for
the configuration where a defect is present, we use Maxwell’s equations to derive
expressions for the electromagnetic field quantities for a loop source located above a
metal layer. We start Chapter 4 with a 2D configuration where no defect is present.
In that case, we can use the symmetry properties of the configuration to obtain ex-
pressions for a scalar Green’s function (derived in Appendix A), which we then use
to calculate the electromagnetic field quantities at the receiver positions. For the
configuration where a defect is present, we are no longer able to use this symmetry
and hence we need to calculate the dyadic Green’s function for a layered configura-
tion. We start with the case of a homogeneous 3D configuration, for which we derive
the integral equations for the electromagnetic field quantities in terms of the vector
potentials. By using linear expansion functions, we end up with the finite difference
approximation for the differential operators working on the vector potentials. We
then use a Conjugate Gradient scheme to calculate both the electric and magnetic
field quantities. Subsequently, the effect of the layer is taken into account by in-
troducing the reflected part of the Green’s functions. These are calculated in the
spatial Fourier-transform domain, after which we use FFTs to calculate the Green'’s
function in the spatial domain. Combined with the solution for the homogeneous
configuration, this leads to a model for a defect that is located within a (metal)
layer. The derivation of the reflected part of the Green’s function is discussed in
Appendix B, while in Appendix C we discuss a method whereby the number of grid
points for the FFT can be considerably reduced. The numerical results pertaining
to the forward problem are presented in Chapter 5.

Having completed the forward model, we now turn our attention to the inverse
problem in Chapter 6. We extend the Contrast Source Inversion method described
by Van den Berg and Kleinman [82] to reconstruct both electrical and magnetic
contrasts and derive a formulation for binary inversion for homogeneous objects,
where the contrast values are known and only the supporting domains of the objects
have to be determined. In that case we use a non-linear mapping function for the
contrasts, which gives improved reconstruction results, or we can use a regulariza-
tion method such as TV-regularization. The numerical results obtained with the



1.6. Outline of the thesis 15

algorithms that are presented in this chapter are given in Chapter 7.

We end this thesis with a discussion of the methods that were used and the
corresponding results, which can be found in Chapter 8, where we also discuss our
conclusions and offer suggestions for further research.
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Chapter 2

Basic Equations

In this chapter we will discuss the basic equations pertaining to the electromagnetic
field. We will consider electromagnetic fields in a 3-dimensional space defined by
a right-handed Cartesian reference frame with origin @. The reference frame is
defined by three mutually independent base-vectors {i1, 12,13} of unit length, where
the iz-axis is oriented downward. The position vector is specified by x = z,i; +
Tolp + z3i3. Partial differentiation with respect to time is denoted by &;, while
partial differentiation with respect to a spatial coordinate is denoted by 9;, where
7 € {1,2,3}. Latin subscripts range over the values {1,2,3}, while Greek subscripts
range over the values {1,2}.

Both subscript and vector notations are used, therefore we introduce the sym-
metrical unit tensor of rank 2 (Kronecker delta) as

_J1 Jifm#n
inn={ 5 THmET (2.1

Further, we define

0 , if not all subscripts are different, (2.2)

1 ,if {k,n,p} is an even permutation of {1,2,3},
€knp =
-1 ,if {k,n,p} is an odd permutation of {1,2,3},

which is the Levi-Civita tensor of rank 3. Using these definitions, the vector outer
product and inner product become

€knrAnBr = A x B, (2.3)
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and
A.,B,=A-B, (2.4)

respectively.
2.1 Maxwell’s equations

The electromagnetic field quantities in the previously defined coordinate frame are
described by Maxwell’s equations, which are given by

—€kmpOmHp + Ji + 0Dy = —J&%, (2.5)
€&m,rOmEr + 0, B; = _K;zts (2.6)
or, in vector notation
-VxH+J+6D = -Je¢ (2.7)
VXE+8B = -K* (2.8)

The quantities in Egs. (2.5) - (2.8) are

E.E = electric field strength (V/m),
Hp)H = magnetic field strength (A/m),
Je,J = volume density of electric current (A/m?),
Dy, D = electric flux density (C/m?),
B;,B = magnetic flux density (T),
JiT I = volume source density of electric current (A/m?),
K, K*** = volume source density of magnetic current (V/m?).

The relationship between the electric and magnetic field strengths {E,,Hj} and
the quantities {J, Di, B;} is given by the constitutive relations, which describe
the influence of the electromagnetic properties of the media that are present. In
this thesis we will restrict ourselves to linear, isotropic, locally and instantaneously
reacting and time-invariant media, which leads to

Jk(x,t) = a’(X)Ek(x,t), (29)
Di(x,t) = e(x)Ek(x,1), (2.10)
Bj(x,t) = u(x)H;(x,t), (2.11)
where
o(x) conductivity (S/m),

permittivity (F/m),
permeability (H/m).

&(x)
B(x)
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—~-HC

Figure 2.1: Hysteresis curve.

Note that we use both vector and subscript notation throughout this thesis. This is
done because it is easier to implement formulae in computer code when written in
subscript notation. However, since subscript notation is not as widespread as vector
notation, we will also use vector notation.

2.2 Magnetic hysteresis losses

The relative permeability of an object determines to which extent the ob ject can be
magnetized. At microscopic level, the medium can be viewed as a set of domains, in
each of which the magnetic moments of the atoms are aligned. At macroscopic level
and in the magnetized state, the magnetic moments of the domains are randomly
aligned and the resulting net magnetization is zero. When an external magnetic field
is applied, the magnetic moments of the domains will be aligned and the material
will be magnetized.

Generally, the magnetic flux density depends nonlinearly on the applied mag-
netic field, as can be seen in Figure 2.1. Starting from the demagnetized state and
for small values of the magnetic field strength, the magnetic flux density depends
approximately linearly on the magnetic field strength. However, at high magnetic
field strengths the relation becomes strongly nonlinear. This corresponds to the sit-
uation that at high magnetic field strengths no more domains can be aligned, and
therefore the slope of the curve in Figure 2.1 will become o for field strengths higher
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than the saturation field strength HS. For field strengths much smaller than HS,
the slope of the B-H curve is approximately u,ug.

The hysteresis curve is not a single-valued function, as can be seen in Fig-
ure 2.1. This is because when the applied magnetic field H is 0, the object can
have a remanent flux density B, or in other words, the object is still magnetized
even though there is no external magnetic field. In order to totally demagnetize
the object, a coercive magnetic field HC is needed. When an object is alternatively
magnetized and demagnetized, losses occur and these hysteresis losses are given by
the area spanned by the B-H curve in Figure 2.1. In this thesis, we will assume
that the fields that we encounter are of such a magnitude that we can take a lin-
ear relation between the magnetic flux density and the magnetic field strength, i.e.,
magnetic hysteresis losses are not taken into account.

2.3 Boundary conditions

Across an interface where one or more medium properties show a jump discontinuity
the electromagnetic field quantities may exhibit discontinuous behavior. Therefore,
Maxwell’s equations have to be supplemented by boundary conditions at the inter-
face. Let S denote an interface between domains D; and D,. The interface S is
assumed to have a unique tangent plane everywhere. Next, let v,, denote the unit
vector oriented along the normal to S such that upon traversing S in the direction
of Vm, we pass from domain D; to domain D, (see Figure 2.2). We require the
tangential components of {E,, Hp} to be continuous, which leads to the following
boundary conditions for a source free interface

€,mrVmE-  is continuous across S, (2.12)
€k,mp¥mHHp,  is continuous across S. (2.13)

2.4 Frequency domain equations
We employ a Fourier transformation with respect to time, given by
flxyw) = /t _, SXP(it) (1)t (2.14)
The inverse transformation is defined as
Fx8) = % /u _ SP(=it) o). (2.15)

Here, we have assumed excitations sinusoidally varying with a time factor exp(—iwt).
Applying the rule that 8, transforms to —iw, we obtain the following expressions for
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Figure 2.2: Interface S between two domains D, and D, with different electro-
magnetic properties.

Maxwell’s equations in the frequency domain

—€kmpOmHy + (0 —iwe) By = —J&=t, (2.16)
Gj,m,ramE'r - zwpI;T, = __K;zt, (217)
or, in vector notation
~VxH+ (0 —iwe)E = -Jjet, (2.18)
VxE—iwpH = -—Ket (2.19)

2.5 Spatial Fourier transformation

In Chapter 4 we will consider stratified configurations, where the interfaces between
the layers are oriented in the i;- and ip-directions. Therefore we introduce a two-
dimensional spatial Fourier transformation to take advantage of the invariance of
this configuration in the i;- and ip-directions. The spatial Fourier transformation
acting on a frequency domain quantity f(x,w) is given by

b z0,0) = [

[ ekt w)dasdn,, (2.20)
z1€R Jz2€R
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where it is understood that Greek subscripts run through {1,2} only. The inverse
spatial Fourier transformation is defined as

1

2
fow) = (= / exp(— k2, )E(k, , 23, w)dkydk. (2.21)
2m ki1€R Jko€R

The application of this transformation to Maxwell’s equations is given in Appendix
B. We will also consider a configuration of a loop source above a layered configuration
that is symmetric with respect to the axis of the loop. In that case it is advantageous
to use cylindrical coordinates, given by

1 = 7cos(q), (2.22)
zz = rsin(¢), (2.23)
T3 = z3. (2.24)

Using this coordinate transformation and the symmetry properties of the configura-
tion, we end up with a two-dimensional problem. To take advantage of the invariance
in the r-direction, we introduce the one-dimensional spatial Fourier transformation
in cylindrical coordinates (also known as the Hankel transformation) as

re=i

f(k,,za,w) = / . f(r, z3,w)Jy (kpr)rdr, (2.25)
while the inverse Hankel transformation is given by
Frzs,w) = /k _ Ftke 0,00 (ker i, (2.26)

where J; is the Bessel function of the first kind and order one and k, is the Hankel
transform parameter. The application of this transformation to Maxwell’s equations
is given in Section 4.2 Appendix A.

2.6 The frequency domain reciprocity theorem

The Lorenz reciprocity theorem interrelates in a specific manner the field quanti-
ties of two non-identical physical states that can occur in one and the same time-
invariant, bounded domain. We will use this theorem to derive the integral relations
for the field quantities in the forward problem. The domain is denoted by D with an
enclosing surface 8D. The unit vector along the normal to D is denoted by v, (or
v in vector notation), and is pointing outward from D. We will distinguish between
the two states that can occur by using the superscripts A and B. Neither the media
nor the sources present in the two states need be the same (Figure 2.3). Let state
A be characterized by the following field quantities, constitutive parameters and
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{Ef, H} {EE, HE}
{o#,e4, ut} {0B,¢8, 1B}
{jl:zt;A’f{;zt;A} aD {j;xt;B,}?;Zt;B}
Figure 2.3: Configuration for the application of the reciprocity theorem:.
volume source quantities
{E B} x,w) = {Ef Af}xw), (2.27)
{06, p}(x) = {aA’ €A’ F‘A}(x), (2.28)
U K mw) = (T4 R4y (x,w). (2.29)
Maxwell’s equations relevant to state A are then given by
—€kmpOmHy + (04 —iweh)EE = b4, (2.30)
€mrOmEf —iwptHE = -R5™H4, (2.31)

Similarly, state B is characterized by the field quantities, constitutive parameters

and volume source quantities that are defined as

{Ek71?j}(xaw) = {EkB»ﬁjB}(xaw)a

{0’ €, :u'}(x) {aB?EB) “B}(x)s
U B xw) = {JE™8, Reo8) (x, w).

]

Then, Maxwell’s equations relevant to state B are given by

yB | (B _ B fezt; B
—€kmpOmHy +(0F —iweB)EE = -Jje=uB,

B __ ., BB rext; B
&m,rOm by — iwp HY = -K;7"7,

(2.32)
(2.33)
(2.34)

(2.35)
(2.36)
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The fundamental interaction quantity between the two states is ek ;0m (EAH. P -
EBHA), or V- (B4 x HE — BB x HA) in vector notation, which can be rewritten as

emiiOm(EfHY — EFAL) = (2.37)
—tw(uf - uB)E’fﬁf +iw(e? = eBYEPEA - (04 - oBYEBEA

A jext;B ~ Jext; A 3 Frext; A5 irext;
+ BEJFE - BRJiA — HARSE + HP R4,

which is the local form of the Lorenz reciprocity theorem. The global form of the
reciprocity theorem is obtained by integrating Eq. (2.37) over the domain D and
applying Gauss’ theorem, which results in

[ emns(BARP - BRAdA, - 239
x€JD
/ [P — P BP RS (e - B BB — (o4 - o®)ERE] av
X
BA JeTtiB _ pB jextiA _ fyAprestiB | fyB frextiA
+ /x o B — BR et — BARe® 4 HPR™4) av,
or, in vector notation
/ v (EA x HE — BB x ﬁA) dA = (2.39)
x€EAD
/ [—iw(p“‘ -uB)HE . HA + (w(e? —eB) — (04 - oB))EZ . EA
x€D
+/ [EA . jczt;B _ EB . jeztiA _ I'_'IA .Kext:B + HE. Kezt;A] dav.
x€D

When the medium parameters in states A and B are chosen to be identical, the first
three terms on the right-hand side of Eq. (2.37) and the first integrals on the right-
hand sides of Egs. (2.38) and (2.39) vanish. Under these conditions, the interaction
between the two states is solely related to the source distributions in each state.
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The PEC tool and the measurement setup

The Pulsed Eddy Current (PEC) tool will be described in this chapter, as well as
the effect of various medium and configuration parameters on the received signals.
An intuitive description of the operation of the PEC tool is given, which serves to
help to understand the behavior of the electromagnetic fields in the test object (i.e.,
the metal layer). We start by giving a description of the tool and the measurement
setup, with some examples of applications from actual field use. Next, we will give
an intuitive circuit-based model for the electromagnetic fields and received signals,
followed by an overview of the effect of the medium and configuration parameters
on the signals.

3.1 PEC tool

Shell Global Solutions have developed a man-portable inspection tool based on the
PEC technique. The PEC tool consists of two elements (see Figure 3.1):

¢ The probe, which contains the transmitting and receiving coils.

¢ The data processing unit, which contains an on-board computer and memory
for data processing and storage. ’

The tool is designed to be used by a single operator who carries the data processing
unit (DPU) on a carrying-band. The probe containing the transmitting and receiving
coils is hand-held. When the unit is triggered, the data processing unit gives an
immediate reading of the wall thickness, while the data is stored in the onboard
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Figure 3.1: The Pulsed Eddy Current tool.

memory for off-line processing. For this purpose, the DPU has a serial interface by
which the data can be transferred to a PC. The general measurement configuration
is given in Figure 3.2, with on the left-hand side the actual configuration and on the
right-hand side the model configuration. The model configuration will be further
elaborated in Chapter 4 and is given here to show the relation to the actual physical
configuration with curved pipe walls (see also Figure 1.2). The numbers in Figure 3.2
denote the following

1. Transmitting coil.

2. Receiving coil.

3. Weather jacket (Usually aluminum).

4. Thermal insulation (e.g., rockwool).

5. Metal layer or object under test (Pipe wall, vessel, etc).

The lift-off of the probe from the object under test is the distance between the coil
system in the probe and the metal layer. The insulation layer is usually rockwool
or a similar material, which has the electromagnetic properties of air. The weather
jacket, however, which is the aluminium layer that protects the insulation, has a
very distinct effect on the PEC signal, but only at the start of the signal (the first
1 to 5 ms). In this thesis we will confine ourselves to a configuration where only a
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Figure 3.2: Measurement configuration and planar approximation, with trans-
mitting coil (1), receiving coil (2), weather jacket (3), insulation (4)
and pipe wall (5).

single metal layer is present (no weather jacket), since we are primarily interested in
the effects of a defect in the metal layer and the influence of the medium parameters
and thickness of that layer.

3.1.1 Operating principles of the PEC tool

The tool derives its name, Pulsed Eddy Current tool, from its operating principles.
First, a block-pulse current is generated in the transmitting coil. After some time,
the initial switch-on effects of the block pulse current are no longer present and
the field generated by the transmitting coil can then be considered to be a quasi-
static magnetic field. When the switch-off part of the block pulse current occurs,
eddy currents are again induced in the test object. These eddy currents generate
a secondary electromagnetic field (the quasi-static magnetic field generated by the
transmitting coils being the primary field). This secondary field induces a time-
varying voltage on the terminals of the receiving coils, and this signal contains
information on medium parameters and wall thickness. As the term "Pulsed’ in the
name of the tool implies, the information is extracted from a time domain signal.



28 Chapter 3. The PEC tool and the measurement setup

Separate transmitting and receiving coils are necessary because there are dif-
ferent requirements for each type of coil : the transmitting coils must be able to
handle a large current capable of generating a strong static magnetic field, while
the receiving coils must have a large number of windings to be able to pick up the
weak secondary field generated by the eddy currents. Furthermore, the receiving
coils must ideally be as small as the footprint of the eddy currents in the layer to
maximize sensitivity.

The use of the tool in NDT lies in the fact that information on the thickness of
the object under test (often pipes, vessels or metal plating) is present in the measured
signal. Decreasing wall thickness can be evidence of corrosion or erosion, but can
also be caused by varying medium parameters and/or configuration parameters. In
the following sections we will discuss the effect of these parameters on the measured
signal, keeping in mind that the wall thickness is the parameter of interest.

3.1.2 The probe

The probe section of the tool houses the transmitting and receiving coils. It consists
of a plastic housing in which the coils are located. There are two transmitting coils
side by side with the current in each of the coils flowing in opposite direction. This
has the effect that at the location where the two coils touch, the current density,
and hence the field, is approximately twice as high as would have been the case had
there only been a single transmitting coil. Consequently, this results in a focussing
effect and a higher amplitude of the electromagnetic fields (and thus the eddy cur-
rents) induced in the test object (see Section 5.1). A schematic drawing of the probe
configuration is given in Figure 3.3. The pair of receiving coils is located just un-
der the transmitting coils, symmetrically around the point where the transmitting
coils touch. Two receiving coils are used for greater sensitivity and higher received
voltage.

The signals picked up by the receiver coils are sent along a cable to the data
processing unit. This cable also houses the power feed for the transmitting coils.
Different probes with varying transmitting coil radii have been produced for various
applications. For example, for measuring wall thickness at large lift-off, the radius
of the transmitting coil should be increased to maintain depth resolution, while for
taking precise measurements at low lift-off one should use a probe with small-radius
transmitting coils. For use underwater the coils are embedded in plastic in order to
be able to withstand the water pressure.

Research has been done on the shape of the transmitting coil to maximize
the focussing effect (see Morsink [55]). It was found that the configuration with two
circular transmitting coils was the best compromise between focussing capability
and ease of manufacture, therefore this type of coil has been used throughout the
project.



3.1

PEC tool 29

Top view

Side view

Figure 3.3: Schematic PEC probe layout with two transmitting coils and two

receiving coils.

3.1.3 Data processing unit

The data processing unit (DPU) processes and stores the signals, giving an indication
of the wall thickness to the operator. The unit is small enough to be carried on a
shoulder strap, enabling the operator to move around freely. Schematically, the DPU
consists of the following subunits (see Figure 3.4)

1
2.

Signal amplifier, amplifies the received signal.

Processing unit (CPU), performs the wall thickness calculation and controls
the operation of the tool.

. Memory, a removable flash memory card on which the measurements can be

stored.

- Display/control section, user interface to display wall thickness and control the

tool.

. Serial interface which enables the data to be downloaded to a PC for further

processing.

. Battery pack.
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{ Probe 1. Amplifier '\.

"""""""" 2. CPU 4. Display

5. Serial Interface

Figure 3.4: Schematic layout of the Data Processing Unit.

The operator controls the tool by means of buttons next to the display. In the
field, the tool only gives a basic wall thickness reading, but the data can be stored
and downloaded to a personal computer for more detailed analysis.

3.1.4 Operation of the tool

The operator carries the Data Processing Unit on a sling across his shoulder, while
holding the probe in hand. The tool is then operated by placing the probe against
the object under test and pressing the button on the probe which starts the mea-
surement. The tool then takes a number of measurements, the results of which will
be averaged to obtain a reliable result. The probe should not be moved during the
time it takes for the measurement to be completed, since this would give an inac-
curate reading of the wall thickness. The reason for this is that the electromagnetic
diffusion of the eddy currents in the object takes a finite amount of time (between
10 and 150 ms, depending on the thickness of the metal), during which the receiver
coils must not be moved. The measurement is more or less a volume measurement,
the area of the *footprint’ or *hot spot’ of the eddy current distribution and the size
and location of the receiving coils determine the size of the volume where the wall
thickness is measured. Depending on the orientation of the probe, crack defects
much smaller than the footprint can be detected. Note that this footprint depends
on the lift-off of the probe above the test object.

The tool has been used for a number of applications within the oil indus-
try, including corrosion detection in pipelines and vessels, corrosion monitoring and
underwater inspection of risers. It has been used to measure the wall thickness
of high-temperature vessels, something that cannot easily be done using ultrasonic
techniques because the contact paste necessary for ultrasonic measurements is not
capable of withstanding these high temperatures. Since the PEC technique is a
non-contact measurement this does not pose a problem. Because of the small size
of the tool it can be used in locations where space and weight are at a premium (see
Figure 3.5a).
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(a) (®)

Figure 3.5: PEC inspection of a high-pressure gas riser on an offshore platform
in Brunei (2) and a column skirt at an LNG plant in Malaysia (b)

Special fixtures have been made to keep the probe at a constant lift-off to
ensure good repeatability and to ease operation. A version has been produced for use
with remotely operated underwater vehicles for inspection of offshore-platform legs
and underwater pipelines. For this application the DPU was located in & pressure
vessel, while the probe was modified to withstand the water pressure. The measured
data was stored in the DPU and was processed when the tool returned from its
underwater journey.

3.2 PEC signals

This section covers the PEC measurement signals. The secondary electromagnetic
field generated by the eddy currents in the metal gives rise to a time-varying voltage
on the receiver coils. This signal is recorded by the data processing unit and can
then be transferred to a PC for detailed analysis. The effects of the diffusion of the
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Figure 3.6: Generic PEC signal corresponding to the reference parameters in
Table 3.1.

electromagnetic field within the layer can be seen best when the signal is plotted in
a log-log plot, as is done for a generic PEC signal in Figure 3.6. We can discern two
distinct parts in the signal. The first part until ¢ = 79 =~ 16 ms, where the curve is
approximately straight (in the log-log plot), is the diffusive part. For times larger
than 16 ms the signal exhibits exponential decay. These two parts of the signal
correspond to different behavior of the electromagnetic fields in the layer :

Diffusion part: There is electromagnetic diffusion of the fields within the layer, the
amplitude of the signal is proportional to ™7,
where n = 1.5.

Decay part:  The electromagnetic diffusion of the fields has stopped, the signal
only exhibits an exponential amplitude decay.

The point in time where the two parts of the signal meet is denoted 7o (70 =~ 16 ms
for the reference signal shown in Figure 3.6). This parameter varies as function of
the wall thickness of the metal layer: for thick layers 7o has a higher value than for
thin layers. In the data analysis, the parameter 79 is extracted from the measured
data and compared to the value of 79 s of a reference measurement. It is then
possible to determine the thickness of the layer with respect to the thickness at the
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reference point. Note that it is not possible to make an absolute measurement of the
wall thickness using the PEC tool. The presence of corrosion means that some metal
is converted into rust, resulting in a thinner metal layer and consequently a change
in the parameter 75. However, other configuration parameters, such as lift-off and
medium parameters of the metal, also have an influence on 79. Therefore we will
now discuss the influence of various configuration parameters on the PEC signals,
with respect to a reference configuration.

3.2.1 Effects of medium and configuration parameters

In this section, we will discuss the influence of medium and configuration parameters
(such as wall thickness and lift-off) on the PEC signals. From the plot of the generic
PEC signal in Figure 3.6, we can distinguish the three basic parameters that describe
the PEC signal

To - Time at which the diffusion phase ends.
n - Slope of the PEC signal (in log-log scale) during the diffusion phase.

A - Initial amplitude of the signal.

The decay rate of the signal for ¢ > 7¢ is not taken into account, since this infor-
mation is difficult to extract from the data due to noise and the very low amplitude
of the signal for these values of t. In the following sections we will discuss the
influence of each of the configuration parameters on these signal parameters. In
order to investigate the influence of a certain parameter on the PEC signal, we will
take a reference configuration and change one parameter while holding the others
constant. This enables us to isolate the effect that the variation of the parameter
under investigation has on the signal. In doing so, we assume that the parameters
are mutually independent and that the effects of the different parameters can be
linearly added. The reference configuration is specified in Table 3.1. The plots of
the received voltage as function of time in the following sections are obtained by the
2D forward model described in Section 4.2.

3.2.2 Influence of test wall parameters on the PEC signal

In this section we will discuss the influence of the test wall parameters (thickness,
permeability and conductivity) on the PEC signal. Note that throughout this thesis
we take the permittivity equal to that of free space, i.e., ¢ = 5. While discussing
the influence of the medium parameters on the PEC signals, we refer to a lumped
circuit model, which is described in the next section.
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Table 3.1: Configuration parameters, with the corresponding values for the ref-
erence configuration.

Test wall parameters
Wall thickness (dyqn) 10 [mm]
Permeability (pwan) 200uo [H/m]
Conductivity (owen) 6.7¢6  [S/m]
Probe parameters
Coil radius (ry;) 25 [mm]
Lift-off (1) 50 [mm]

Influence of wall thickness on the PEC signal

We consider a reference configuration where no weather jacket (cladding) is present
and vary the wall thickness d,,,;; between 2 mm and 20 mm, in steps of 2 mm, which
gives the signals plotted in Figure 3.7. We can see from Figure 3.7 that an increase
in wall thickness causes an increase in 7y, while the slope n and the initial amplitude
A stay the same. Furthermore, we observe from Figure 3.8 that the relation between
the wall thickness and 7y is quadratic, i.e., 79 ~ d?bau- This means that information
about the thickness of the test wall can be directly obtained from the parameter 7.

Influence of permeability on the PEC signal

Keeping the rest of the parameters again at their reference values, we
now vary the relative permeability of the test wall over the range u,. €
{1, 50,100, 150, 200, 250,300}. The effect of this variation on the PEC signal is
given in Figure 3.9.  Variation of the relative permeability of the test wall has
the following effects

e An increase in the parameter 75, which indicates that the electromagnetic
diffusion process takes longer. The parameter 7, varies linearly as function of
the relative permeability. In terms of the lumped circuit model presented in
the next section, an increase in the relative permeability of the test wall has
the effect that the coupling between adjacent current filaments in the lumped
circuit model are stronger (see Section 3.3).

¢ A decrease in the initial amplitude of the signal when the relative permeability
of the test wall increases. This is due to the fact that for higher relative
permeability, the electromagnetic fields are more confined within the layer. In
the frequency domain, this is readily apparent from the expressions for the
reflection and transmission coefficients.
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Figure 3.7: Influence of wall thickness variation on the PEC signal, wall thick-
ness values are indicated in mm.
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Figure 3.8: Relation between 7y and wall thickness dyq;.
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Figure 3.9: Influence of relative permeability variation on the PEC signal, values
of p, as indicated.
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Figure 3.10: Influence of conductivity variations on the PEC signal, values of o
in S/m as indicated.
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Figure 3.11: Influence of lift-off variation on the PEC signal, values of lift-off in
mm as indicated.

Influence of conductivity on the PEC signal

Variation of the conductivity of the test wall over the range ¢ € {10%,6.7 x
108,107,108} S/m gives the signals plotted in Figure 3.10. We can see that the
effects are similar to the effects obtained by varying the relative permeability of the
test wall, which gives the following influence of the conductivity variation

o As with the variation of the relative permeability, we see that the parameter 1
depends linearly on the conductivity of the test wall. In terms of the lumped
circuit model (see Section 3.3), an increase in the conductivity of the test wall
has the effect that the resistance of a current filament drops, which results in
the maximum of the current distribution taking longer to reach the center of
the layer.

o For increased conductivity of the test wall, the initial amplitude of the PEC
signal increases as well, contrary to the effect seen for variation of the relative
permeability.
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3.2.3 Influence of probe parameters on the PEC signal

In Figure 3.11, we vary the lift-off of the probe above the test wall from [ = 10 mm
to ! = 100 mm in steps of 10 mm. From the PEC signals, we see that the influence
of the variation of the lift-off parameter has the following effects

o A slight decrease in the parameter 75. This means that it is necessary to either
measure the lift-off at each measurement point, or to keep the lift-off constant
for all measurements.

e The initial amplitude of the PEC signal decreases for increasing lift-off because
the distance between the transmitters/receivers (the probe) and the test wall
increases.

3.3 Lumped circuit model

In this section, we will derive a simple model based on a single transmitting (primary)
coil to give insight into the physical processes that take place in the layer during the
diffusion and decay phases of the signal. To this end, we make the observation that
the eddy currents induced in the metal layer approximately flow in coaxial paths,
which can be considered as secondary current filaments. These current filaments
constitute multiple (secondary) circuits, each with a self-inductance and a finite
resistance (see Figure 3.12). Note that we assume all current filaments to have the
same radius. Nabighian [56] showed that for the case of a half space the radius of
the current filaments increases with depth. However, from the numerical results for
the current distribution within a layer (see Section 5.1) we see that the radius of the
current filaments can be taken constant. This discrepancy is probably due to the
difference in configuration, since Nabighian considered a half-space problem with an
air-earth interface having dimensions in the order of meters, while here we have a
slab-configuration with significantly higher values for the medium parameters and
dimensions in the order of centimeters.

To derive the lumped circuit model we consider the medium parameters of
the (sourcefree) layer, which are given by o = 6.7 x 108 S/m, p = 200 and € = &,
while the thickness of the layer is assumed to be 10 mm. Given these values, we can
calculate the characteristic times for the electroquasistatic, magnetoquasistatic and
wave solutions to Maxwell’s equations. These characteristic times are defined as 7. =
€/0, Tm = pol? and Tem = 1,/Z7, respectively, where | is the characteristic dimension
of the problem (in this case the layer thickness). Calculation of the characteristic
times shows that 7, € Tem < 7m and therefore we can use the magnetoquasistatic
approximation, i.e., we can neglect the displacement currents. We now consider a
single current filament as current path (Figure 3.13). Using the fact that

V-B = 0, (3.1)
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Primary coil !

lift-off

Figure 3.12: Secondary current filaments inside metal layer induced by primary
coil located above layer.

where B = yH, we write B in terms of the electric vector potential A as
B = VxA. (3.2)
Using Faraday’s law, i.e., V x E + u8,H = 0, we now write
Vx(E+8A) = 0, (3.3)

from which we can see that the electric field can be written in terms of a scalar
electric potential ® and an electric vector potential A, resulting in

E = —-V&-5A. (3.4)

To obtain the Kirchoff voltage law for the current filament, we integrate Eq. (3.4)
over the contour C in the current filament, which gives

f;E-dl = -f;(v&)-dl—at}iA-dl, (3.5)

The first integral on the right-hand side of Eq. (3.5) is zero by definition, while we
can rewrite the other integrals as

fE-dz = l]{J.dz=RI, (3.6)
C gJc

and

Bgfc;A-dl = at//sB~dS=8t1,bm, (3.7
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Figure 3.13: Current filament and corresponding lumped circuit model.

respectively. In Eq. (3.6), o is the conductivity corresponding to the current fila-
ment, the quantity 9, in Eq. (3.7) is the magnetic flux, which can be written in
terms of the self-inductance of the filament L and the current I as

Ym = LI (3.8)

Combining these equations, we obtain the lumped circuit expression for the current
in the filament as

LaI+RI = o (3.9)

Since the current flowing in filament i induces currents in all the other current
filaments, we introduce a coefficient of mutual induction M;;, and for N filaments
with mutual induction we get the following expression for the current in filament 7

N
Rili+ 8 [ L+ Y Myl | =0, jk=1,...,N (3.10)
ket ‘
which can be written in matrix notation as
M&,1+ RI =0, (3.11)

where R = diag(R,, ..., Ry) and diag(M) = L,,...,Ly. The off-diagonal elements
of M are the coefficients of mutual induction. It can easily be seen that the matrix
M must be symmetric. The differential equation for the current vector I is then

ol=-M"R)L - (3.12)

This system of equations can be solved by taking a Laplace-transformation with
respect to ¢, but we chosen to use a simple finite difference approximation. However,
we must first find expressions for the resistance and inductance coefficients, which we
will do in the next section. When we have found those expressions, it is instructive
to take a look at the eigenvalues and eigenvectors of the system matrix M—1R.
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3.3.1 Expressions for the resistance and inductance
coeflicients

For the resistance of each current filament we take the following expression

0 ee 071277,
Acc Wechee

in which le is the length of the path along which the eddy currents flow in the
filaments, A.. is the cross-sectional area of the eddy currents. This can be expressed
in more convenient variables, where r.. is the radius of the eddy current path, we,
is the width (with a typical, numerically determined value of 6 x 10~3m for the
reference configuration given in Table 3.1) and .. is the height of the eddy current
path. This is defined as

Bec = % (3.14)
where dyen is the layer thickness and N is the number of filaments. The width
Wec is determined by means of numerical experiments. An approximate (empirical)
expression for the radius of the eddy current path which takes into account the effect
of transmitting coil lift-off is given by

Tec = Tir + tan(%)l’ (315)

in which 4, is the radius of the transmitting coil and [ is the transmitting coil lift-off.

For the self-inductance of a current filament with circular cross-section in free
space we can write (see Johnk [40])

L = Lint+ Leas, (3.16)

where L;y; is the internal self-inductance and Lez: is the external self-inductance.
For the internal self-inductance, we have

Line = L‘%’ (3.17)

in which ! is the length of the current filament. This expression represents the
internal self-inductance for the DC case, however we will use it as an approximation
in our configuration. For the external self-inductance we write

Lzt = u\/rec(r,c - w—;‘i) [(% - k) K(k) - %E(k)] , (3.18)

where k is given by

E o= 4"'ec(rec - wec/ 2)
(2rec — wee/2)? '

(3.19)
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Figure 3.14: Effective permeability for the cases where a) w/rec € 1, b) w/rec =
1 and ¢} w/re. > 1.

and K (k) and E(k) are the complete elliptic integrals of the first and second kinds,
respectively.

Since the filaments with index 1 and N are located near the edges of the
layer, it would not be correct to use the permeability of the layer itself in Eq. (3.18).
Instead, we should use some effective permeability, the distribution of which over the
thickness of the layer is governed by the location of the filament and the thickness of
the layer. We choose to use a parabolic distribution for the permeability, where the
maximum and minima are a fraction of the normal permeability (see Figure 3.14).
The dotted lines indicate the actual permeability of the test wall. The coupling
between filaments i and j is modelled by means of a mutual induction coefficient

Mij = k\/ L,'Lj. (320)
The coefficient k is defined by the geometry of the filaments, and is given empirically
by
_(la—zlw -2
k= ( hra +1 , (3.21)

in which 2; and z; are the coordinates of filaments i and j, respectively. We solve
the system of differential equations for the currents in Eq. (3.11) numerically using
a backward difference approximation, which is given by

It + At] = — (M + AtR) ™ MI[t), (3.22)

where At is the discrete time step.

3.3.2 Eigenvalues and eigenvectors of the system matrix

Given the expressions for the resistance and inductance coefficients, we can calculate
the eigenvalues and eigenvectors of the system matrix for a certain set of values
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Figure 3.15: Eigenvectors corresponding to the three smallest (a) and the three
largest (b) eigenvalues (in absolute sense) of the system matrix.

for the coefficients. The eigenvectors are the set of fundamental solutions to the
differential equation for the current distribution in the layer. In Figure 3.15a we plot
the eigenvectors corresponding to the three smallest (in absolute value) eigenvalues,
in Figure 3.15b the eigenvectors corresponding to the three largest eigenvalues.

Since the system matrix is symmetric, the eigenvalues will be real-valued.
If we write the solution to the system of first order differential equations for the
current distribution in terms of time-dependent exponential functions, we see that
the eigenvectors are the current distributions corresponding to an exponential func-
tion, the amplitude of which decreases rapidly or slowly in time depending on the
magnitude of the corresponding eigenvalue. Consequently, we would expect that the
current distribution corresponding to the eigenvalue with the smallest absolute value
is the current distribution that is present in the layer for late times. For early times,
the eigenvectors corresponding to large (in absolute value) eigenvalues dominate the
current distribution. These eigenvectors have mostly zero amplitude at the center
of the layer, but large amplitudes near the edges (see Figure 3.15b). However, since
the absolute values of the corresponding eigenvalues are large, these modes decay
much faster in time than the modes of which the eigenvalues have a small absolute
value. This has the effect that the maximum of the current distribution moves from
the edge of the layer to the center, which is equivalent to saying that the electro-
magnetic fields exhibit diffusive behavior over time. Comparing Figures 3.15a and
3.15b, we see that the eigenvectors corresponding to eigenvalues with large absolute
values have a larger amplitude that the eigenvectors corresponding to eigenvalues
with small absolute values. For early times therefore, the effect of the modes cor-
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Figure 3.16: Normalized eddy current distribution within the layer, ¢ = 0.1 ms
(1), t=02ms (2),t =03 ms (3), t = 0.6 ms (4), t = 1 ms (5),
t=18ms (6),t=3.2ms (7),¢=25.6 ms (8).

responding to eigenvalues with large absolute values will be dominant, leading to
an eddy cuwrrent distribution with a maximum near the edge of the layer. For later
times, those modes decay faster than the modes corresponding to the eigenvalues
with small absolute values, which causes the maximum of the eddy current distri-
bution to shift to the center of the layer (in effect giving rise to electromagnetic
diffusion), as can be seen in Figure 3.16.

If we compare the eddy current distributions within the layer calculated us-
ing the current filament based model (Figure 3.16) to those calculated using the 2D
model described in Section 4.2 (see Figure 5.1), we see that the eddy current distri-
bution exhibits behavior similar to what the current filament based model predicts.
Thus, the maximum of the eddy current distribution is located at the center of the
layer for late times, while for early times, the maximum of the eddy current distribu-
tion is located near the edge of the layer. The effects of the electromagnetic diffusion
can therefore be explained in terms of the different decay-rate of the fundamental
modes that are excited within the layer by the switch-off current in the transmitting
coil.




Chapter 4

The Forward Problem

As stated in Chapter 1, the forward problem entails the calculation of the field
quantities when the sources and the medium parameters in the configuration are
known (i.e., the PEC tool in the presence of a defect where the configuration of the
defect is known and where we need to calculate the received signals). For modelling
the PEC tool in the presence of a defect, we introduce a layered configuration,
where the sources and receivers are located above the layer. We then solve the
electromagnetic field equations to obtain the PEC signals.

This chapter is split into four parts. We start by giving an overview of the
computational methods that we used to solve the forward problem. Next, we discuss
the configuration where we have a circular loop source above a layer in which no
defect is present, in which case we can use the symmetry of the configuration to
obtain 2D scalar expressions for the field quantities. Finally we discuss the full
vectorial 3D problem, where we have a layer in which a defect can be present.
To solve this problem, we first discuss the solution to the field equations for a
configuration with a homogeneous background, after which we take into account the
presence of the layer.

4.1 Review of computational techniques

We start with a brief review of the computational techniques that can be used
to calculate the forward problem. We distinguish between local methods, where
Maxwell’s equations are solved in local form, and global methods, where Maxwell’s
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equations are solved in integral form. For the forward problem of the PEC tool, we
considered both local (FDTD) and global (integral equations) methods.

4.1.1 The FDTD method

In the Finite Difference Time Domain method we start from the local Maxwell equa-
tions. The domain is discretized in a rectangular grid, where we take the medium
parameters to be piecewise constant. Next, the differential operators occurring in
Maxwell’s equations are replaced by finite differences according to a certain sten-
cil which determines the accuracy. Unfortunately, it is difficult to handle large
contrasts without a prohibitively large increase of the number of grid points. For
2D planar structures, Oristaglio and Hohmann [59] and Goldman et al. [34] have
derived an analytical boundary condition, but this method cannot be used for non-
planar boundaries, as would be the case when a corrosion defect is present in the
configuration.

Using a local method such as the FDTD method has some advantages: the
electromagnetic fields are calculated directly in the time domain and the field values
are known everywhere within the computational domain, which would enable us to
visualize the current flow around the defect. On the other hand, the method also
has some distinct disadvantages: as previously mentioned, large contrasts cannot
readily be handled and since the fields are calculated directly in the time domain,
we would need a time domain Green’s function for a layered medium to calculate
the fields at the receiver positions outside the layer. Because of these difficulties we
have chosen to use integral equations to model the problem, as described in the rest
of this chapter.

4.1.2 Integral equations

Since we only need the values of the field quantities within the defect to be able to
calculate the fields at the receiving coils, it would be advantageous to use a global
technique such as integral equations. Using this technique, we limit our computa-
tional domain to the defect, which gives a large reduction in computer storage. The
disadvantage is that it is difficult to solve the integral equations directly in the time
domain. In order to get the time domain voltage on the receiver coil terminals we
must calculate the frequency domain voltage for a number of frequencies, after which
a temporal Fourier transformation gives the desired voltage in the time domain.

For the integral equation method, the computational domain is again dis-
cretized into a rectangular grid, on which expansion functions are defined. We then
follow the method described by Kooij and Van den Berg [44], to discretize the integral
equations. Since we have both a contrast in conductivity and permeability, we have
chosen to solve the full Maxwell’s equations for both the electric and magnetic field
quantities. It is possible to rewrite Maxwell’s equations such that we end up with a
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Z3

Figure 4.1: Configuration for the 2D layered configuration.

single field quantity, but this would involve more complicated expansion functions
for the vector potentials.

For the PEC configuration of a source above a metal layer, the problem is split
into two parts: first we need to solve the integral equations for a source radiating in
a homogeneous medium, after which we introduce the Green’s functions for a layered
medium to calculate the field quantities within a scatterer located within the layer.
Using the Green’s functions, we then calculate the scattered field quantities at the
receiver locations which are located outside the layer.

Note that for a circularly symmetric defect that is coaxial with the transmit-
ting coil axis, we would have been able to solve the problem in two dimensions (see
Looijer [51]). However, this severely limits the type and location of the defect with
respect to the probe, hence we have chosen not to use this configuration.

4.2 2D Stratified configuration

First we will discuss the 2D stratified configuration, where a coil is located some
distance above the layer (see Figure 4.1). This layer is then divided into three sub-
layers, each of which can have different medium parameters. In the derivation of
the expressions for the field quantities, we have included the permittivity. To obtain
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the diffusion approximation it suffices to let 5 — 0. Since the configuration is
rotationally symmetric around the coil axis, the problem reduces to a 2D problem
in the r — z3 plane. We write Maxwell’s equations in cylindrical coordinates (see
Chapter 2), which gives

O3H, — 0, H3 — (0 + €00,)Ey = J5™, (4.1)
-03Ey + uosH, = 0, (4.2)
%8,(TE¢) +pdHs = 0. (4.3)
In the frequency domain, with time excitation exp(—iwt), this becomes
8H, — 0. Hs — (0 —iweg)Ey = J5*, (4.4)
—83Fy —iwwuH, = 0, (4.5)
%a,(réd,) —iwpH; = 0. (4.6)

In order to measure the fields generated by the eddy currents in the layers, receiving
coils are used. The time-dependence of the voltage on the terminals of these coils
gives information on how the fields in the layers change, and consequently contains
information about the material parameters and thickness of the layers. The voltage
on the terminals of a receiving coil is given by either

Vieo = i j Hy(r, 25)dA, 47)
Aree
or
Viee = / E(r,:c3)-dl, (4.8)
C"Gc

WhereAA,.ec is the area of the receiving coil and Cy.. its contour. In our analysis we
take Ey as the primary unknown field value. The partial differential equation for
the electric field E,; within a layer is given by

BBy + 0.2 0,(rEy)| + (o — iweo)ipinEy = —iopmJ3, (4.9)

where the index n denotes the layer. We introduce the Green’s function as the
solution to Eq. (4.9) when Jj is a loop source, i.e.,

A 1 A . oA :
82G + Br[;&-(rG)] + (0n — tweg)iwp,G = — 1;’::

8(r—r',z3-x5). (4.10)

where the primed coordinates denote the source position. Using the Hankel trans-
formation with respect to r, the Green’s function can be written as (see Appendix
A) b

00
é(r,z3;r’,a:§)=/; 0G(k,-,z;;;r’,zg).]l(krr)k,dk,., (4.11)
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in which J; is a Bessel function of the first kind and of order one. The Green's
functions for the 2D configuration are given in Appendix A. We will neglect the
direct contribution from the transmitting coil to the receiving coils, since this part
of the field does not contain any information on the properties of the layer. In the
actual measurement configuration, the direct contribution and the contribution from
the layer are separated in time. The electric field is now given by

Ey(r,z3) = /D , G(r,z3:7, 2') I (r', 23)dA, (4.12)

in which D¢ is the source domain, i.e., the domain occupied by the transmitting coil
when the transmitting coil has finite thickness and width. When J§*t reduces to an
infinitely thin loop source we obtain

Ey(r,z3) = G(r,z3;7", z4). (4.13)

Using the properties of the Bessel function, we can write the following expressions
for the components of the magnetic field (again for the case where J§* is a loop
source)

w -~
Ho(r,zs) = _ﬁ . (83G(kr,z3;r’,z§)) Ji(ker)kpdly,  (4.14)
Hy(r,z) = :w17 [ Gtk mair’ ) Jo(ber )R, (4.15)

where Jp is the Bessel function of the first kind and of order zero.

4.2.1 Scattering formulation

We now consider scattering by a layer with a contrast in conductivity and/or per-
meability and define the background configuration as the configuration where all the
layers have medium parameters {0y, us,€0}. When a scatterer is present, i.e., when
one of the layers has one or more medium parameters {0s, s} differing from those
of the background, we write the electric field as

E, = Eire 4+ B3, (4.16)

Note that we assume that there are no contrasts in permittivity present. The incident
field E‘g“' corresponds to the background configuration, where all layers have medium
parameters {0, iy, €0}. We now assume that the layer with the contrasting medium
parameters is Dj, see Figure 4.1. Furthermore, we assume that the sources in our
configuration are loop sources, and consequently the incident field E;"C in Eq. (4.16)

is given by Eq. (4.13). The scattered field E5* is given by

E;Ct (7'1 :L‘3) =27 / G’(T, T3 T,’ $§)X(1’", xé)E¢ (7_1’ z{-})dAv (417)
DS
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where DS is the scattering domain (which, in this case, is the layer D3). The
equivalent electric contrast x is given by

x =40+ (05— iwso)&, (4.18)
Hy
in which
Ao = o,—o0p, (4.19)
Ap = pg—~ py. (4.20)

For x € D%, Eq. (4.17) represents an integral equation for the total electric field
within the scatterer. Because the scatterer is unbounded in the r-direction, we
can simply calculate the total electric field using the Green’s function defined in
Appendix A and perform inversion in the Fourier-transform domain. If the scatterer
had been bounded in the r-direction, Eq. (4.17) would have to be solved using (for
example) the method of moments.

4.2.2 Sensitivity

We will now consider the sensitivity of the field quantities using the configuration
given in Figure 4.1. Calculating the sensitivity functions for the 2D configuration
gives us an indication for the 3D case, while enabling us to use the Green’s functions
for the 2D stratified configuration as defined in Appendix A. To derive the sensitivity
functions, we follow the method of Oristaglio and Habashy [60]. We start by defining
the medium parameters as

5
o(x) = ) ondalzs), (4.21)

n:l
Bx) = ) pnda(zs), (4.22)

n=1

where the expansion function ¢, (z3) is given by
$n(zs) = { X 73 € Dn, (4.23)
0, otherwise.

The permittivity is set to € = ¢ for the entire configuration. To derive the sensitivity
functions with respect to the medium parameter of a layer, we now need to calculate
the derivatives 8, E and 8, E, where we have considered the electric field only
(partial derivatives of the magnetic field are calculated in the same manner). Taking
the partial derivatives of the source-free Maxwell equations with respect to o, and
Un leads to

-V x (6,,‘171) + (0 — wwep) (8,“133) = —¢n(z3)E,

¥ x (.8) — ion (6,.58) = o, (42
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Table 4.1: States of the reciprocity theorem for the sensitivity with respect to
conductivity (State A1) and permeability (State A2).

State Al State A2 State B
E4A! = §, E E4 = §, E Ef = E
HY* = §,H |HA2 = 5, H H?2 = H
o4l = ( ) c4? = o(x) B = ox)
pt = pu(x) 2 = u(x) pB = ux)
edl = g e42 = g eB = g
JU = g@)E| J22 = o B = 3J
K4 = 0 K% = _jwé,(z3)H | KB = K

and
-V x (8,‘,,1:1) + (0 — iweg) (6“,‘]:3) = 0,

. . R (4.25)
V x (BynE) — Wy (6,,,‘H) = ¢n(z3)H,

respectively. We can see that Egs. (4.24) - (4.25) represent Maxwell’s equations
with new source terms and different field quantities. To derive the sensitivity with
respect to the conductivity of the layers, we use the states Al and B as indicated in
Table 4.1 in the frequency domain reciprocity theorem Eq. (2.39), which yields

/x p (60.E) - 3-E-9(za)B - (0, H1) R]dx = 0,  (426)

where we have used the fact that the medium parameters of both states are equal
We now consider the 2D configuration, where a transmitting coil is located at x’
{r',z3} and where we want to calculate the sensitivity of the electric field w1th
respect to the conductivity of layer D3. We assume that the receiver is located
at x = x’, which simplifies calculations. Furthermore, we observe that the field
quantities in this configuration are given by E= E¢1¢ and H = H,i, + Hisiz. If we
now take J = §(x — x')iy and K = 0 as sources for state B, we obtain the following
relation for the sensitivity with respect to o3

. o 2
(a.,sE) (r,z5w) = 2« f (G(r',xé;r,xs;w)) rdrdzs,  (4.27)

z3=d; Jr=0

where we have used the fact that E4(x) = G(x,x’) for an infinitely thin loop source
located at x = x'. Note that G(r, x3;7,Z3;w) is the electric field within layer D3 at
x = (r,z3), generated by a source at X’ = (', z}).

To calculate the sensitivity relations with respect to permeability, we use
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states A2 and B in the reciprocity relation Eq. (2.39), which leads to
/ [(a,‘"E) i (a““ﬁ) K—-iwH- ¢(33)131] dx = 0. (4.28)
xXEDn

Using the same configuration as for the sensitivity with respect to conductivity, we
obtain the relation

(8,‘3 E) (', z5w) = (4.29)

do o0 . .
27r'iw/ / (Hf(r, z3;w) + H32(r, 23;w)) rdrdzs.
z r=0

3=d,;

where H, and Hj are given in Egs. (4.14) and (4.15). We can see that the sensitiv-
ity function with respect to permeability is proportional to w, which suggests that
reconstruction of the permeability is very difficult at low frequencies (see also the
numerical results in Chapter 7). Numerical results for the sensitivity functions can
be found in Section 7.2.1.

4.3 3D Configuration with a homogeneous back-
ground

If we have a configuration where a scatterer (defect) is located within a layer and
this scatterer is not axially symmetric around the axis of the transmitting coil, then
we have to solve the full 3D field problem. In that case the contrast function cannot
be written as to include both the electric and magnetic contrasts (as was done in
Eq. (4.18)). Instead, we must apply a discrete grid over the scatterer and solve the
integral equations for the field quantities within the scatterer itself, after which we
can calculate the field quantities at the receiver positions. For a scatterer located
within a layer, we distinguish between the direct contribution from the sources and
the reflections from the interfaces (see Figure 4.5). In this section we will discuss
the direct contribution from the sources (which can be viewed as a problem in a
homogeneous background medium, where the medium parameters are those of the
layer), the effects of the presence of the interfaces will be discussed in Section 4.9.
Again, we take ¢ = & throughout the configuration and consider only contrasts
in conductivity and/or permeability. We only consider contrasts in conductivity
and/or permeability.

For the homogeneous background configuration, we start from Maxwell’s
equations in the frequency domain for the total field quantities in the scatterer

~-VxH+ (a_—- iweg)E = 0,

S
VxBoiwufl = 0,}, x € D, (4.30)
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where D° denotes the scattering domain. The equations for the incident field are

-V x H! + (03 — iweg)E* = 0, s
A o~ . 31
VXxE —iwuH = 0, |’ xeD (431)
We can now write the equations for the scattered field in which the incident field
appears as a distributed source

-~V x ﬁs + (U - iw&‘o)E" = —AO'E";, s
¥V x Es — iw,u,I:Is = iwA#I:Ii’ xX€ D ) (432)
where
Ao = -0y, (4.33)
Ap = p=p (4.34)

The medium parameters ¢ and p correspond to the scatterer and ¢, and u; corre-
spond to the background medium. It is noted that in Egs. (4.32) the medium pa-
rameters are those of the actual scatterer. If we would have manipulated Maxwell’s
equations such that the total field is present in the source term (see Section 4.9), then
the medium parameters occurring in the equations would be those of the background
medium. We now use the reciprocity theorem given in Eq. (2.39) to derive integral
representations for the field quantities. We choose for state A in the reciprocity
theorem the actual state in which the scatterer is present

{E4HA} = (B°,0°, (4.35)
{34, K4} = {AoE}, —iwAuA‘Y, (4.36)
{o*,uf e = {o,u.c0}. (4.37)

For state B we choose either

{EB,HB} = (GFE ,GHE}, (4.38)
{ijKB} = {6(x—xl)1,0}’ (439)
{8, uB,eB} = {ob,p,50}- (4.40)
or
{E®,H?} = {G®H,GFE} (441)
{38, KB} = {0,6(x —x"I}, (4.42)
{037”3’53} = {ob’ﬂ'b’eO}' (4‘43)

which represents an electric or magnetic point source radiating in a homogeneous
background medium, respectively. The I symbol in the source term denotes a unit
vector. Since the background medium is homogeneous, the dyadic Green’s functions
occurring in Eqgs. (4.38) and (4.41) are those of a homogeneous medium.
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Using the aforementioned states in the reciprocity relation given in Eq. (2.39),
we can write the following expressions for the electric field and magnetic field integral
representations

B(x) = Bi(x) + /

(AO’GEE (x,x") - B(x') — iwApGEH (x,x') - I:I(x')) dx’,
xIeDl

(4.44)

(AaéH E(x,x) - B(x') — iwApGHE (x,x') - H(x' )) dx’.

(4.45)
In deriving Eqs. (4.44) and (4.45), we have used the fact that GEH(x,x') =
—GHE(x' x). Since both electric and magnetic contrasts are present, we can ei-
ther rewrite Eqgs. (4.44) and (4.45) to a single integral representation for the electric
field or we can use a combined-field method, where we solve for both the electric and
magnetic field quantities. We have chosen the latter to avoid introducing more dif-
ferentiation operators on the vector potentials. Introducing the normalized electric
and magnetic contrasts as

ﬁ®=ﬁm+/

x'eDs

E g —0p Ac
= = , 4
X Op—iWwey  Op — ey (4.46)
= Bt _ B (4.47)

Hb Bo '
the integral representations are rewritten as

E(x) =E'(x) + /

(655 (x %) - XFBE) + G5% (x,x') - xFH(x) ) dx', (4.48)
xIeDl

H(x) = Hi(x)+ / (gHE(x, x') - xPB(') + GFH (x,x') -XHfI(x')) dx’. (4.49)
x'€Ds

When x € DS, Egs. (4.44) - (4.45) and (4.48) — (4.49) constitute a system of coupled

integral equations for the electric and magnetic field quantities. In that case we will

use the term Integral Equation of the Electric type (IEE) for Egs. (4.44) and (4.48)

and Integral Equation of the Magnetic type (IEM) for Eqs. (4.45) and (4.49). The

dyadic Green’s functions occurring in these equations are given by

GFE(x,x') = (ki+VV:)Gx-xI, (4.50)
GEH(x,x') = iwmV x G(x—x)]I, (4.51)
GHB(x,x') = (0op—iweo)V x G(x — x')I, (4.52)
GHE(x,x") = (k2 +VV.)G(x-x]I, (4.53)

where G(x — x') is the scalar Green’s function, given by

A tkp|x — x’
Gx—x) = ___exi(ﬂ;'_ = ), (4.54)
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in which the wave number k; is defined as
ky = (weous + iwubab)é, Re(ks) > 0. (4.55)

Note that the differential operators in the expressions for the dyadic Green’s func-
tions work on the unprimed variables. The equations pertaining to the diffusion
approximation can obtained by setting €o = 0 in Egs. (4.46), (4.52) and (4.55).
Using subscript notation, we can write the integral equations as

Ek = Ei + k‘gx‘ik + 6k8nAn + ’iw/.tbekzmalﬁm, (4.56)
= Ei 4+ kA, + A, +iwmFL, (4.57)
Hj = I':(; + kgﬁ’j + ajakﬁk + (op — iwso)éjklakfi[, (4.58)
= H}+kF; + F] + (0p — iweo) AL, (4.59)

or, in vector notation,

E = E+kA+VV A +iwpV x F, (4.60)

H = H +F+VV-F+ (0, — iwe)V x A, (4.61)

where we have introduced the electric and magnetic vector potentials, which are
defined as

Ap(x) = / . G(x — x")xE (x') Ex(x")dx’, (4.62)
Fx) = /x epe G(x — x")xH (x')H;(x')dx'. (4.63)

4.3.1 Discretization of the computational domain

To solve the system of integral equations, we discretize the computational domain
using a rectangular grid D, where the boundaries of D are located along the Carte-
sian axis (see Figure 4.2). The domain occupied by the scatterer itself is denoted by
DS, where D¥ € D and D° and D can have a common boundary. The subdomains
are given by

1 1
Dmnp = {(21,22,%3 € Rs)lxl;m - §A$1 <z < Zym+ §A$1, (4.64)
1 1 1 1
Tom — §Az2 < Ty < Tgyn + §A~’L'2,$3;p - §Aa:3 < 23 < T3p+ -2—A:z;3},

where the center point of Dy, is
Tym = T2+ (m - 1)A:L‘1, m=1,--- M (465)

T2;1/2 + (n - I)Az% n=1,---, N (466)
T3;1/2 + (p - 1)A$3, p=1,--- )P (467)

Z2un
T3;p
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A$1

Figure 4.2: Discretization of the computational domain.

or
Xmnp = zk;m,n,pik = xl;mil +z2;ni2 +$3;pi3. (4.68)

In each subdomain we will assume both electric and magnetic contrasts to be con-
stant with values xfm,p and xﬁ,nm, respectively.

4.3.2 'Weighting procedure

In order to calculate the field quantities at the grid points, we must first obtain a
discrete formulation of the domain integral equations defined in the previous section.
This is done by performing a weighting procedure on Eqs. (4.56) and (4.58), i.e., by
multiplying with an appropriate weighting function and integrating over the com-
putational domain. The electric and magnetic vector potentials are then expanded
using the same functions as those used for the weighting procedure. We define the
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discrete quantities

Eimnp = Ex(@1m, T2m, T3p), (4.69)
Hjmnp = Hj(@1m,Toin, T3:p), (4.70)
Agmnp = Ax(@im, T2m, Z3:p), (4.71)
Bemnp = Fe(@im, T, T3;p), (4.72)

where {m,n,p} are defined as before. The electric and magnetic vector potentials
are expanded as

A(x) = D Agmmp¥map(X), (4.73)
m,n,p

Bi(x) = > Fimnp¥mnp(X), (4.74)
m,n,p

in which tm np(x) are the as yet undefined expansion functions. Using these ex-
pressions, the domain integral equations now become

Ek;m,n,p = Alic;m.n,p + kg/ik;m,nm + All’c;m.n.p + Z"“’iubi':‘l,:l:m,n,}.-n (4'75)
ﬁj;m»"m = ﬂ;:m.n,p + kgﬁ?f;m,mp + ﬁ}{;m.n,p + (Ub - iweO)A;";m,n,p' (4'76)
The weighted forms of A;c;m,n,p and F‘;;m,n,p are given by
im,n,p fxED 'wm,n,p(x)dx )
and )
. x)0; 0k Fi (x)dx
R Lt Lol Lk (4.78)
B JxeD Ymnp(X)dx
while the weighted forms of fi;';mm,p and F’,:;m,n,p are given by
Bt fxe D ¥Ymnp (x)fk,n,ranﬁ (x)dx
km,np = s (4.79)
e Jxep ¥mnp(x)dx
and N
fi;-'. g = fxeD Yrm.n,p(X)€j,n,rOn Ar(X)dx (4.80)
B fxeD Ym,n,p(x)dx

Note that we have used the same functions for the weighting procedure as those for
the expansion of the vector potentials.

The expansion functions m n p(x) are chosen such that the differential oper-
ators that are present in Egs. (4.77) - (4.80) and act on the expansion functions do
not generate Dirac delta functions. The second order derivatives acting on the vector
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A(z) 8zA(z)
1 '} 1 [
T az 1T ¥ ¢
N . : T+ Az
0]z — Az T T+ Az 0]z - Az ‘T o
L .
Az W

Figure 4.3: The hat expansion function and its derivative.

potentials in Eqs. (4.77) and (4.78) can be reduced by using integration by parts
(which is described in the next section), therefore we can see that the expansion
functions must be at least continuous in each of the vectorial directions. Because
of the presence of the curl operator, we cannot use the expansion functions defined
by Kooij [44] and Abubakar [2] , who use a combination of pulse and hat expansion
functions to solve the electric field integral equation. Consequently, we define on the
domain D the expansion functions ¥m,» p(X), which are continuous in each vectorial
direction. To construct these expansion functions we first introduce an auxiliary
function, the hat function, as

1+£&), if —Az<z<0,
A(z|]2Az) =¢ (1- &), if 0<z <Az, (4.81)
0, elsewhere,
which is piecewise linear and continuous with support 2Az (see Figure 4.3). Using
this function we write
Vrnp(X) = AZ1 — 21;m|2821)A(z2 — T2,0|2A29) X
A(.’L‘a - £3;p|2A23), (4.82)
form=1,--- ,M,n=1,--- ,Nandp=1,---, P. This choice of expansion function
satisfies the condition that it must be at least one time differentiable in each vectorial

direction. In the next section we use this expansion function to obtain weighted forms
for the gradient-divergence and curl operators acting on the vector potentials.

4.3.3 Weighted forms of A, . and £/

In this section we will discuss the weak formulation of the gradient-divergence op-
erator acting on the electric and magnetic vector potentials. We start by rewriting
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the nominator of Eq. (4.77) as

b Yrm.npOk[B1 A1 + By Ay + B3 A3)dx = (4.83)
x€

b ak{‘(,bm'n,p[alfil -+ 32A2 + 33A3]}dx
X€

- / D(3k¢m,n,p)[311‘i1 + B2 Ap + 83A;)dx.
x€
We rewrite the first integral on the right-hand side of Eq. (4.83) as

/ Oubmmlord + 2o + Buds]}x = (4.84)
x€

/ Vi{Wm,n,p[01A1 + B2 A2 + 8343)}dx = 0,
x€8D

where vy is the unit vector normal to dD. The integral over 8D in Eq. (4.84)
reduces to an integral over the domain spanned by the expansion function ¥m, n p,
which means that this integral is zero because the expansion function is zero on the
boundary of its support. By employing integration by parts, we let one differential
operator work on the weighting function and the other on the expansion function
of the vector potential, which are both given by ¥mnp. Consequently, we have
only single differentiations acting on these functions and we can suffice by requiring
Ym,n,p t0 be piece-wise linear and continuous.

Using the expansions for the vector potentials as defined in Eqs. (4.73) -
(4.74), in Eq. (4.83), we encounter the following types of integrals over the expansion
functions

AzsAx
/GD(alwm,n,p)(alwq,r,s)dx = _—:ﬁtl-s (6q,m—1 - 25q,m + 5q,m+1) X
x
(‘Sr,n—l + 461',7: + 6r,n+1) (‘ss,p—l + 453,1: + 63,p+1) ) (485)

and
A

/ (O ) @agraix = =2 Bqmes = bymot)

x€E€

((Sr’n+1 - r,n—l) (63,1)—1 + 458,? + 6s)p+1) . (4-86)

The other integrals over the expansion functions occurring in Eq. (4.83) are of the
same type as those shown above. Furthermore, we have

Ym,np(X)dX = Az Az AT (4.87)
x€D :

Combining these results, we arrive at the following expression for the discretized
form of A}, 1 »

M N

3 P
k m,n,p Z Z Z Z a'g: DT 3Aj;q.r,s; (4.88)

j=1 g=1 r=1 =1
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(,)

where the difference operator amnp,q.r,s is defined as

1
aS'rlx }\),p q,rs m(‘sq,m-l - 26q.m + 6q,m+1) X
(&r’n—] + 467-," + dr,n.l.]_) (Js)p—l + 463,p + 5s,p+1) v (4-89)
1
aSrlt 3t)uo,q.rs = m(‘sq.m—l - 5q,m+1)(5r,n—1 - 5r,n+1) X
(0s,p—1 + 4055 + 65.p+1)
= as:’}‘),p,q 7,82 (4'90)
1
ag,i),p,q.r,s = M(éq,m—l - 5q,m+1)(6r,n—1 + 46r.n + 5r,n+1) X
(68 p-1- 68,p+1)’
= 0(3,}1);:,(; T,$) (4'91)
1
ag 12'1)13,4,1-, = W(‘s ;m—1+40g,m + 0g,m+1)(Or,n-1 — 207, + O n41) X
(68.1?—1 + 468,9 + Ja,p-i-l)v (4‘92)
1
anpans = 24Azshz, Gam=1+4gm + g me1) X
(5r.n-1 - 5r,n+1)(53,p-—1 - ¢5.«x,p+1),
= a(a,ﬁ),p'q’rﬁs’ (4-93)
1
agﬁ),p,q,r,s = m(5q.m—1 +48g,m + 0g,m+1)(Orn-1 + 407, + Opne1) X
(0s,p-1 — 205,p + 05,p41), (4.94)

in which 6, , denotes the Kronecker delta function. It is noted that o' ,;),p qr,s 1S
symmetric. Substltutlon of Egs. (4.89) - (4.94) into Eq. (4. 88) gives the explicit
expressions for Ak ;m,n,p- Ve can write similar expressions for F}.,, . ., therefore

3 M N P

J m,n.p Z Z Z Z m n p q r,st;Q.f,S’ (4.95)

k=1 q=1r=1 s=1
in which
(3.k) = o0k}
mnpars = fmnpqrs (4.96)

The discretized expression for F F 1 np has a form similar to that of fi}c;m',w.

and F"

k MNP imn,p

4.3.4 Weighted forms of A

We recall A/ as
A,k, = ek’m,ramﬁr. (4.97)
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The weighted form is given by
in - fxED Pm,n,p(X)€k,v,00 Zq s A, wig,rs¥a,r, s(x)dx
Ko fxeu Ym,n,p(X)dx

The integrals occurring in this expression are similar to those discussed in the pre-
vious section. Using those results, we write Ak m.n,p S

(4.98)

3 M M P

k m,n.p Z Z Z Z a'm(l:;,p Qs J q,7,81 (499)

J=1g=1 r=] s=1

. . . "k, .
in which the difference operator am(,n,’g,q.r,s is defined as

//(1 1)

Amnpars = 0’ (4.100)
ivigars = 3 A (Squm—1 + 48q.m + bgm+1) (rin-1 + 467n + brins)
X (5s,p—1 ~sp+1) (4.101)
a;;z(,lfi,s;z,q,r,s = 72; (0gm—1 + 40g,m + 0g,m+1) (Or.n—1 — 6r,nt1)
X (5s,p-1 + 4850+ 0s,p41) s (4.102)
a'l"n(?';,lxlq,r,s = _a’r'n(,h?g.q,r,u (4.103)
a;;;(,%{,zg,q,r,s = 0’ (4.104)
Irln(,%:?x},q.r,s = 7 Aa: (8g,m—1 = dgm+1) (Orn—1 + 46,1 + 8r nt1)
X (8s.p—1 +405p + 65 pr1) (4.105)
Crinpars =~ (4.106)
OB s = =0 Z3 (4.107)
:1(31.312« rs = 0 (4.108)

It can be seen that a;:,(,’ﬁ;fg,q,,-‘s is antisymmetric. The expression for F” is

obtained in a similar manner as
X S M M P R
F;gm,n,p = Z Z Z Z fm("kf;,)’q)r’ng;q,f‘,S’ (4.109)

. e
in which the elements of the operator fm(;’,;f‘,),q,r,s are the same as those of am(;’,;’f,l,q,,,,.

m,n,p

4.3.5 Weighted forms of A, and EFimnp

The scalar Green’s functions occurring in the electric and magnetic vector potentials
contain a singularity at x = x’ which can be dealt with by taking the spherical mean
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of the vector potentials. We integrate Ag and FJ over a spherical domain (in the
Cartesian space) with the center point (21;m, Z2;n, Z3,p)- The spherical domain has
radius %Az = %min(Azl,Aa:g,Aza). The result is then divided by the volume of
the spherical domain. We may then write

-

Ai(Xm,n,p) =
A " ’
flx"K%Az Ar(ZT1;m + T, Toin + T4, T3,p + 24 )z drydTy
' " "
Jo1<3 on 457 A2y

- / e TCkminp =X E0) B )

where we have changed the order of integration, such that

G(z1,22,23) = (4.110)
G(zy + 2V, 72 + 2, z3 + z4)dz} dzldz}
dz{dzydzy )

f[(zi’)ﬁ+(z5’)’+(z§)’1*<%A=

fl(x’,’)’+(=’,’)2+(zg)2]é <}asz

The spherical mean G(x) is calculated as

[1 - -;—ikbAz] exp (%ikbAz) -1
I , if R(x) =0,
Ewkg(Az)a
G(x) = sinh ( zikAg .
exp(ikpR(x)) — cosh (-—ikbAz>
SiksAz 2
2 ) Az
1 ) lfR(X) > _2'1
\ Ew(kbAz)zR(x)
(4.111)
in which the distance function R(x) is given by
R(x) = (2} + 23 + 23)% = |x|. (4.112)

In the same way we arrive at the expression for the weak form of the magnetic vector
potential as

ﬁj(xm.n.p) = /

x'e

I(%mnp = X)X (VA (x)ax,  (4113)

where the Green’s function is again given by Eq. (4.111). Alternatively, we could
also take only the spherical mean for the singular point of the Green'’s function and
use Eq. (4.54) for all other points. Numerical experiments have shown that this
does not make a significant difference.
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After this weighting procedure, we can now write the integrals over the compu-
tational domain in Eqgs. (4.62) and (4.63) in discrete form. In view of the functional
properties of Ej and HJ, we approximate the integrals in Eqs. (4.62) and (4.63)
using a midpoint rule. We then arrive at

Arimnp = (4.114)
M N P .
Az1AzyAzy Z Z Z G(Xm,np — xm’,n',p’)Xf,,l,n/,p/ Ej;m it pts

m'=1n'=1p'=1
and

Ejmnp = (4.115)
M N P

" .
Az, Az7A73 E \ E , E :g(xm,n,p_xm’,n',p’)Xm’.n’.p’ jsm/in',p’-

m'=ln'=1p'=1

The discrete convolutions appearing in Egs. (4.114) and (4.115) can be efficiently
computed using 3D FFT routines.

4.4 Operator formulation

Now that we have obtained the weak forms of the pertaining (discrete) integral
equations, we can form a system of linear equations for the electric and magnetic
field quantities, in which the known electric and magnetic contrasts occur. We then
proceed to solve this system using a conjugate gradient (CG) scheme, which we will
describe in the next section. To this end we introduce the operator form of the
system of integral equations for E and H as

[fp] = (I-KDx)[?{], (4.116)

in which
I = disg(Z,7), (4.117)
x = diag (X% x¥), (4.118)

where T is the identity operator. The operator matrix K2 is defined as

D.,EE D.,EH
K X ] (4.119)

KP = [’CD,HE ) DHH

where the superscript D denotes the direct part of the Green’s function, correspond-
ing to a configuration with a homogeneous background. The elements of the operator
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matrix K? are defined as

KPEEVER = R2A+ A/ (4.120)
KPEHEYHE = juuF, (4.121)
KPDHHEHE = R2F +F, (4.122)
KPHEVER = g,A”, (4.123)

4.4.1 Inner product and norm
For the CG method we need to define an inner product over the computational

domain. In the continuous case and for three-dimensional vectorial quantities, this
is given by

<EH>p= / E(x) - H(x)dx. (4.124)
D

in which the overbar symbol denotes the complex conjugate. The discrete version
of the inner product is defined as

3 M N P —_
<EH>p= AnldnAzsy ) 3 3 ExmmpHemnp: (4.125)

k=1m=1 n=1p=1

We now define the norm on D to be

IElp = /< E,E>p. (4.126)

4.5 Conjugate Gradient scheme

In the conjugate gradient method a system of equations is solved by iteratively
reducing a cost functional, which in our case is defined as

Fon = nBlE|l + 8 B3, (4.127)
. . o~ 2
= ng “Et _ (I _ ’CD’EEXE)En + KD’EHXHH‘R”D
+nf “ﬁ; — (T KDHEHEEE ,CD,HEXEEn'IZ ’

where the residuals for the field components at iteration n are given by

[:ﬁ ]” [g:]-(I—KDx)[gL, (4.128)
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and the normalization coefficients ng and ng are defined as

1
B = ——
= EE (4.129)
1

Note that the residuals are normalized such that the cost functional is dimension-
less. The CG algorithm constructs sequences for the field vectors E and H, which
iteratively reduce the value of the cost functional defined in Eq. (4.127). The field
vectors are updated as follows

[fl],, [EIL_I““O‘"[?,L, (4.131)

in which a, is a constant (scalar) weighting parameter and the update directions &,
and h,, are functions of position. The residuals at the nt* iteration can be written

as
I:rE:|
I'H
n

and the error at iteration n is defined as

ERRZ = n[[x2|% +nB |25 (4.133)

The algorithm will be completely specified when the starting values, update di-
rections and weighting parameter are known. For the starting values of the field
quantities we can take either zero or the incident field values (Born approximation).
Additionally, when we need to use the CG scheme for a large number of frequencies
and for the same configuration, we can use an extrapolation of the previously cal-
culated field values as the starting values. This method is described by Tijhuis and
Peng [77] and is called the Marching-on-in-Frequency method. We will discuss this
technique in Section 4.7.

~

[ :f; ]n_l —on (I-KPx) [ : L, (4.132)

4.5.1 Update directions

The update directions are given by

e oe é
[a L = [aﬁ L*""[HL_; (4.134)

For the first iteration, the update directions are simply the gradients of the cost
functional with respect to the field values, i.e.,

é oé ]
< = : , (4.135)
[ h ]n=1 [ ah n=1
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where
n 6E Din-1, .
8ﬁ = —-FD n— (4 13?)
" BH“ et )

These gradients are calculated by using the Fréchet derivative, which is given by

7] o Fp(Bn_y +6&,) — Fp(Ea_1)
6_EFD;n-1 = }1_11'2.) 3 y (4138)
0 o FD(I:In—l +éﬁn)“FD(I:In—1)
EﬁFDm—l = }12) 3 . (4139)
Using the definition of the inner product, the gradients are obtained as
on |, = 00T ]
- = (I-XK“*)T| \ (4.140)
[ dh n ( ) r n—1
where the * symbol denotes the adjoint of the operator, which is given by
. KD:EEs  §-D,HE«
Kp’ = [ xD,EHt nD,HHt 3 (4'141)
and
X = disg(x5,x7), (4142)

in which the overbar symbol again denotes the complex conjugate. The normaliza-
tion matrix I in Eq. (4.140) is defined as

I = diag(ng,nf). (4.143)
The coefficient =y, for the update directions is defined as

03 + 19Bal13,

- -2l (4.144)
19811 + 8B %

Tn

for Fletcher-Reeves update directions and

(880,08, — 88n-1)p + (OBn, O — By )
o = - , (4.145)
108n-1}ip + 9B},

for Polak-Ribiére update directions.
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4.5.2 Weighting parameters

The weighting parameter o, determines the length of the step taken along the CG
direction at iteration n of the minimization scheme. The value of @, is determined by
setting the derivative of the cost functional with respect to the weighting parameter
to zero, and solving for o, i.e.,

1o}
. Fpn, = 0. (4.146)
This leads to
" 2
a, = [ng H(I — KDEEyBys | ICD’EHxth”D +

nH H(I - KDHENE 4 KZD’HEXEénH;] - X
[(Gém én)p + <6ﬁn,ﬁn>D]. (4.147)

It should be noted that it is also possible to calculate the field quantities by using
a CG scheme where two separate update coefficients and update directions are used
for the fields. Strictly speaking this would not be a CG scheme since orthogonality
between the update sequences is lost and consequently convergence is not guaran-
teed. Furthermore, it was found that numerical convergence for this pseudo CG
scheme is slower.

4.5.3 The object operator and adjoint object operator

We will now define the operators and adjoint operators as described in the previous
section, using the expressions for the electric and magnetic vector potentials and
their derivatives, as given in Section 4.3. We recall that

M N P
Ak;m,n.p = Az AzAz3 Z Z Z g(xm,n,p ‘xm’,n',p’)Xﬁ',n',p'Ek;m',n’,p’y

m/=1n'=1p'=1
(4.148)
M N P

H .
Fjmmp = Az1AzAzs z Z Z G(Xm,np = Xmt .2 ) Xme n pr Hjimt 75

m'=1n'=1p/'=1

(4.149)
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3 M N P )
kmnp = Z Z Z aly n),p,q,r,sAJ,q,r 8 (4.150)
j=1g¢=1r=1 s=1
3 M N P
'F?j;m,n,p = Z Z Z 3’£,p,q,r,st,q,r,s, (4151)
k=1 g=1r=1 s=1
3 M N P
2 " k ~
;cl;m,n,p = Z Z Z Z arn(t »P)QJ‘.-’A.qurys’ (4'152)
J=1g=1r=1 s=1
3 M N P ) )
FJ”m»'an = Z Z Z Z fm(,‘;;,’;)),q,r,s Fk;q,r,s- (4-153)

kol
]
A

o
il
-
-
Il
-
%
I
-

Using the definition of the inner product over D, we substitute Eq. (4.148) and
Eq. (4.150) into Eq. (4.125) and interchange the various summations, which results
in the expressions for the elements of the adjoint operator KP* pertaining to the
integral equation of the electric type
(KD,EEtnIE)rE) kmnp = (4154)
M+1 N+1 P41

A:l:;lezAzaT)g Z Z Z a(x";,n,p - Xm"n/’p’)MkE;"E‘/,nl,pl,
m’'=0n'=0p'=0

in which
_ 38 M N P
Mk AT, TP = kgrlf;m,n,p + Z Z Z Z ag:%),p'q.r,s M.f' §° (4'155)
i=1 g=1 r=1 s=1
For the XPHE* clement of KP* we obtain
(ICD’H ExpH H ) = (4.156)
k;m,n,p

M+1 N+1 P+1
H a HE
Az AzoAzyng Z Z Z G(Xmnp — Xmnt0 ) Mot o>

m/=0n'=0p' =
in which
3 M N P
Miirinp = (00 — iweo) Z Z PIPIP A I S (4.157)
Jj=1 q=1 r=1 s=1
Note that the summations occurring in Eqs. (4.154) and (4.156) are discrete convo-
lutions, which can be efficiently calculated using FFT routines. For the components
of the a.dJomt Dperator pertaining to the integral equation of the magnetic type,
KD-EH* , we follow a similar procedure, leading to
(ch'EH *nEr ) = (4.158)
Jim,n,p
M+1N+1P+1
A31A1'2A$3"71E) E z Z g(xmrnrp - x'nlvn,\pl)MjE;'{{'rn'\pl’

m/=0n'=0p’'=0
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where
3 M N P
Mf’g"vl’ Wt Z Z Z Z m(]T,llyczz aimys k,q s (4.159)
k=1 g=1 r=1 s=1
For KXPHH* glement of KP* we obtain
(ommter) - .
J;m‘n’P

M+1 N+1 P+1

A.’E1A$2AJ}3T}D Z Z Zg x’rn n,p — Xm/ n p)A’]m nLp

m/=0n'=0p'=

in which

. 3 M N P
Mf”}f"!? g Jim +ZZZZ 1S'{’:i?wz T\ qus (4.161)

k=1 g=1 r=1 s=1

The discrete convolutions occurring in Eqgs. (4.158) and (4.160) are again calculated
using FFT routines. Since the summations in the expressions for the elements of the
adjoint operator run from m’ =0to M +1,n ' =0to N+landp =0to P+1,
we set

Tomnp = 0, for m=-1,0,M+1,M+2, Vn,p, (4.162)
eanp = 0, for n=-1,0N+1,N+2, Vm,p, (4.163)
r,cE;’,f,{n,p = 0, for p=-1,0,P+1,P+2, Vm,n, (4.164)

in Egs. (4.185), (4.157), (4.159) and (4.161). In Figure 4.4, we illustrate the dif-
ferent areas in the computational domain where the vector potentials are defined
and where the residuals are set to zero to obtain a boundary condition for the finite
difference scheme. The contrasts are constrained to the shaded domain D;, which
isdefined bym=1,....M,n=1,...,Nand p = 1,...,P. Because of the finite
difference operators acting on the vector potentials, we calculate the vector poten-
tials on domain D;, which is defined by m = 0,...,M +1,n=0,...,N+1 and
p=0,...,P+ 1. Note that if we had used a larger finite difference stencil, domain
D, would have to be larger as well. Finally, the residuals need yet another extra layer
of grid cells (again because of the finite difference operators), hence the residuals are
defined on domain D3, which is given by m = -1,...,. M +2, n=-1,..., N +2
and p= -1,...,P+2. Note that the residuals are set to zero for the cells indicated
in Egs. (4.162) - (4.164).

4.5.4 The data operator and the adjoint data operator

The data operator maps the total fields E and H from the scattering domain D to
the receiver domain S. It is assumed that the receiver domain and the computational
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Figure 4.4: Slice of the discretized computational domain, with D, the domain
where the contrasts are defined, D, the domain where the vector
potentials are defined and D3 the domain where the residuals are
defined.

domain do not overlap, i.e., DN S = 0. The scattered electric and magnetic fields
at the receiver locations are given by

B0 = [ (67Pxx) xTB(X) + 05 (%) - X H(X))
x'€DS
(4.165)
HS(x) = / (GHH(x, x') - xTH(x') + GHE(x,x') - XEE(X')) dx’
x'eDS
(4.166)
We can write this in operator form as
BS] s [E
HESH wasn)

where the contrast matrix x is defined in Eq. (4.118),>and the data operator K° is
given by

XSEE  xSEH
K5 = [,CS,HE KSHH ] (4.168)
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The elements of the operator matrix K5 are given by

(o52xPB) ) = [ (+V9) G- BN, (4169)
x'€D

(KSFHXTR) (x) = dwm | VxGx-xxTEOHK),  (4170)
x'e€D

(KS,HH XHI:I) (x)

1l

/ (k2 +VV.) Gx — x')x M (x'YH(x')dx’, (4.171)
x'eD

(K:S'HEXEE) (X) = (op —iweo) U x G"v(x _ X/)XE(XI)E(XI)dx/‘ (4.172)
x/'eD

Note that the differentiations act on the scalar Green’s function only. Since the two
domains D and S do not overlap, we have no singularity in the Green’s function
and hence the differentiations occurring in Eqs. (4.169) - (4.172) can be performed
analytically, which results in

o+ _ exp(ikyR)

0kG(x) = 4nR3 (ikbR - 1) Tk, (4.173)

and
A 1|1 [3zxz; tky [ 3zrT;
0:0;G(x) = o [ﬁ (75_] N ak’j) "R <_R?—J' - 6"")

. 2 )
+———(”;;) —zl’%f,’] exp(ikyR), (4.174)

where the distance function R(x) is defined by

Rx) = (a? + 2% +22) % = |x]. (4.175)

Adjoint data operator

For the inverse problem, we will need the adjoint data operator. In order to be able
to define the adjoint data operator, we first need to define an inner product and a
norm on the receiver domain S. The inner product of a three-dimensional vector on
S is defined as

<BSHS>s = Y ES(x) AS(x), (4.176)
xES

where the superscript ’S’ denotes a scattered field quantity at the receiver positions.
The norm on the receiver domain $ is given by

IES|3 = <EBS5ES>g. (4.177)
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Using the definition of the inner products on S and D, we can now define the adjoint
data operator K5* as the complex conjugate transpose of K5, giving

S, EEx S,HEx
K X ] (4.178)

K% = |:K:S,EHn oS- HHx

Discretized data operator

Using the definitions of the various vector quantities and discretizing the integrals
gives the discrete representation for the scattered electric and magnetic fields at the
receiver positions.

M N P .
Efcs (xs) = kaa:lAngx;; Z Z ZG(XS - xm,n.p)sz,n,pEk;m.n,p
m=1n=1p=1
M N P R .
+A21822873 Y YD 005G(X° — Xemin,0)XE  p Esimnunip (4.179)
m=1n=1 p=1
M N P . R

+ WAL AZATS Y D ) ek s0rG(XS = Xmnp)XE n pHeiminp-

m=1n=1 p=1

The magnetic field at the receiver points is given by

M N P
Hf(xs) = kgAzlAa:zAx‘«, Z Z ZG(xs - xm,nm)xg,n,ij;m,n,P
m=1n=1p=1
M N P . R
+ 821822833 3 3D 8;006(X5 — Xmn )X p Hiimunp (4.180)
m=1n=1p=1
M N P o R
+ (0p — tweg) A1 Az Az Z Z Z €i,r,sOrG (x5 — xm,n,p)x,ﬁ,n,pE,;m,,, P
m=1 n=1 p=1

Note that we have used point-matching to calculate the scattered fields at the receiver
positions.
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Discretized adjoint data operator

The elements of the discrete adjoint data operator working on ES and HS are given
by

(Feooo8s) = 35, Y [MGtmns - x)E)
1 1 7p xses
+ 8:8;C(Xmynp — x5)ES (xS)] , (4.181)
(X_HKZS’EH*ES) o = iwubyz’n’p Z €k s0rG(Xmmp —xV)ES,  (4.182)
e xS€s
(X_H’CS’HH*I:IS> A = Y‘rffz,n,p E [kgé(xm,n,p - xs)gf
B xS€S
+ 0:0;G(Xm np — xs)ﬁf] , (4.183)
(X_EICS’HE‘I:IS) ey = (05 — e Xmnp D €kir,s0rG(Xmmp — x5)HE.
) 17, xses

(4.184)

4.6 Preconditioning operator

To accelerate the convergence of the CG scheme for configurations with high con-
trasts, we will now discuss a preconditioning operator for the CG scheme based on
the extended Born approximation. The extended Born approximation was intro-
duced by Habashy et al. [36] and [79], who have shown that this technique works
very well for diffusive problems over a wide range of frequencies. We can write the
preconditioned system of integral equations as

] , (4.185)

m) =

P[ IE_’I} = P(I—KDX)[

in which P is the preconditioning operator. Ideally, the preconditioning operator P
should be chosen such that the product P (I — KP X) is the identity operator, in
which case the system of equations would be solved. However, this is usually not
possible, and therefore we must find an approximation to this ’ideal’ preconditioning
operator. In our case, we choose to use a preconditioning operator derived from the
extended Born approximation.
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Preconditioned gradients

Using the preconditioning operator, we obtain new expressions for the gradients with
respect to the fields

n P N
[ SE ] = PP* [ SE } , (4.186)
n A 5
= PP (I-XK *)r[r,,] , (4.187)
n-1

where the superscript P denotes the preconditioned gradients and the * symbol
denotes the adjoint of the operator. The preconditioning operator P is calculated
once at the start of the CG scheme for all points in the computational grid. Apart
from the preconditioned gradients, the CG scheme is implemented as before.

Extended Born approximation

Following Abubakar [2], who used this technique for preconditioning of a CG scheme
for integral equations of the electric type, we first write our system of integral equa-
tions (cf. Eq. (4.116)) as

E (x) = E: (x) + KP(x,x') Wf, (x", (4.188)
H H w

where we have explicitly indicated the spatial dependence of each quantity (note that
the integral operator K2 works on the primed coordinates). The contrast sources
WE and WH in Eq. (4.188) are defined as

A

[ o | &) = x| R ] e (4.189)
We now rewrite Eq. (4.188) as

[ 1}-31 ] (x) = [ I‘i ] (%) (4.190)

+K2(x,x') ([ vv‘zfl ] (x) - [ gﬁ ] (x)) +KP(x,x') [ v“‘sz }(x).

Note again that the integral operator matrix K2 works on quantities with the primed
coordinates. We now move the last term on the right-hand side of Eq. (4.190) to
the left-hand side and rewrite the contrast sources occurring in this term in the
form given in Eq. (4.189). The left-hand side of Eq. (4.190) is now given by
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2

(I-xKPI) [ fl } Using these expressions, Eq. (4.190) can be rewritten as

~ -1
[ IF{: ] (x) = <I(X) - x(x)KP(x, X’)I(x')) x (4.191)

([ & | e+ ([ W [0 - e | <x))>.

Because of the singularity of the Green’s function, we now assume that the main
contribution to the convolution integrals in the operator K? comes from points
around x’ = x. In that case, we can neglect the terms containing the contrast
sources in Eq. (4.191), since the term W (x') - WE-H (x) is close to zero around
x’ = x. Therefore we can approximate the field quantities by writing

: i
HEER IR (4192)
which is the extended Born approximation. This amounts to assuming that the
field quantities within the scattering domain D can be accurately approximated
by their first order Taylor expansion around the point X’ = x (i.e., we state that

W) = W(x), which is referred to as the localized approximation). The operator
P(x) is defined by

-1
P(x) = <I - xKDI) (x), (4.193)
or, explicitly
P(x) = (4.194)
I- XE(X) fx’eDS gEE (x’ xl) - Idx' —XH(X) fxleps gEH (x’ xl) - Iax' - .
~XB(%) fyeps GFF (x,%) - Tdx’  1—xH (%) [ eps GFH (x,x) - Tdx’ |

Writing the preconditioning operator as

[ PEE pEH ]-1

P = |Pur Pun (4.195)

we can see that this is a 6 by 6 matrix for each discrete grid position. The sub-
matrices PEZ and PFH are symmetric, while the submatrices PZ¥ and PH¥ are
antisymmetric, with zeroes on the diagonal. It is possible to derive a simplified
preconditioning operator by setting PE¥ and PHF to 0, creating a block-diagonal
matrix for P, which has an inverse that is simpler to implement and is computation-
ally less costly. The preconditioning operator is calculated using the same numerical
techniques that we use to calculate the integral operator matrix KP.
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4.7 Marching-on-in-frequency

When performing the CG scheme for a series of values of the same parameter (such
as stepping in frequency) while the rest of the configuration is invariant, one can
use the previously obtained results to calculate an improved initial guess for the CG
scheme (see Tijhuis and Peng [77], [64]). Since calculating the response of the PEC
tool (i.e., solving the forward problem) involves calculating a time domain signal, we
need to solve the previously described system of integral equations for a large number
of frequencies, where the configuration is invariant. Therefore we use the marching-
on-in-frequency scheme to solve the forward problem, calculating the field quantities
in the scatterer for a number of frequencies wy +kAw, k = 1,..., K, while implicitly
assuming that the field solution does not change considerably over one frequency
step. In that case it is advantageous not to start with a zero initial estimate for the
fields at the start of the CG scheme, but instead we can extrapolate the previously
calculated field quantities to obtain the initial guess. By using marching-on-in-
frequency for the initial guess of the CG scheme, we are able to reduce the number
of iterations significantly (see Section 5.3).

The marching-on-in-frequency method is based on the fact that when the
frequency step is small, the successive field solutions will not differ significantly at
each frequency step. If that is the case, we can write the initial guess for the field
quantities at frequency wx as linear combination the previous results, i.e.,

[fl]n BO(“”‘) = iﬁm[g](wk-m), (4.196)

m=l

where the w symbol between brackets denotes the frequency dependence of the cor-
responding quantity and the quantity &, denotes the (complex) extrapolation coef-
ficients. Substituting this in Eq. (4.116) results in

A .

L(wx) (f: &m [ 1]?1 ] (wk-m)) = [ g: ] (wk), (4.197)

ma=1
where the integral operator L is given by
L(wky) = I-KP(w)x. (4.198)

Defining Li = L(wg), Uk = [E H|T(wx) and U} = [Bf H¢|T(wy), we now write Eq.
(4.197) in matrix form as

&

&2 .
Eli-y Lilkoy oo Lilk-p]- | . = Ui (4.199)

Ex
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Next, we choose the extrapolation coefficients such that Eq. (4.199) is satisfied in a
least-squares sense, leading to

LiUk-1 17 &
LkUk_z 52
: LeUk-1 LgUg—1 -+ LgUg_p]- : =

LUy Em
LUk
LiUk—2 .

: UL, (4.200)

LiUk—um

Using the definition of the inner product, we now obtain the following system of
linear equations for the extrapolation coefficients &,,

i < L(ws) [ II?I ] (Wrk=m), L(wk) [ I]?I } (Whem) >D my =

m/=1

< L(wy) [ f‘l ] (Weerm)s [ g ] (k) >p, m=1,...,M, (4.201)

-~

By taking this choice of extrapolation coefficients, the vector of incident
fields [Ef H|T at frequency wy is projected onto the space spanned by the
vectors {L(wi)[E HT (Wkem), m = 1,...,.M } . Consequently, the residual
[rf rH]I_(wk) at first iteration of the CG scheme at frequency wy is orthogo-
nal to that space and the CG scheme will search for update directions which are
orthogonal to that space as well. The value of M determines the type of extrapola-
tion, for example M = 2 gives linear extrapolation, whereas M = 3 gives quadratic
extrapolation. For large values of M the previous field solutions will become almost
linearly dependent, hence no further improvement can be obtained. Note that it
is also possible to do ’marching-on-in-scatterer-size’, where the frequency is kept
constant and the only changing parameter is, for example, the size of the scatterer.
Note that we have not used marching-on-in-frequency for the inverse problem, we
only consider single-frequency inversion in this thesis.

4.8 Calculation of the incident fields

In this section we will calculate the incident fields corresponding to a magnetic
dipole. The incident field of a circular loop source is obtained using the expressions
derived in Appendix A. These sources are assumed to be located in a homogeneous
space with conductivity o3, permeability u, and permittivity eo.
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4.8.1 Incident field of a magnetic dipole

In the case of a magnetic dipole oriented in the is-direction, we have the following
source terms for Maxwell’s equations

Jeot(x) = 0, (4.202)
K*(x) = iwupd(x —x5)is, (4.203)

where x° denotes the source position. The incident fields are then given by
Bx) = -V x / G(x — x YR (x)dx, (4.204)
X'E Dczt

H"(x) = ‘ﬁ (% +VV] / e GO XK, (4.205)
xl ext

in which G(x) is the scalar Green’s function defined in Eq. (4.54). Substitution of
the sources given in Egs. (4.202) and (4.203) into these equations yields

Ene(x) = —iwpV x [G‘(x - x’)i;;] , (4.206)
= —iwp [azc‘;(x —x')i, - 3,6 (x — x’)ig] , (4.207)
and _
H(x) = —[R+VV] (c‘:(x - x’)is) : (4.208)
= - [8133é(x — X')i1 + 8285G(x — X' )i + (82 + k) G(x — x’)i3] .
(4.209)

The differentiations occurring in these expressions can be calculated analytically (see
Section 4.5.4), since we calculate the incident field at locations other than the source
coordinates and hence the singularity in the Green’s function causes no problems.

4.9 3D Stratified configuration

In this section, we will discuss the calculation of the forward problem in the case
where the background medium is layered. Specifically, we will focus our attention on
a single-layer configuration, i.e., the 3-media problem, where the scattering object is
assumed to be located within the layer. For the Green'’s function we will have direct
and reflected contributions from the source, as indicated in Figure 4.5. Since we are
solving the full vectorial problem, we need to use the dyadic Green’s functions for this
layered medium, which are discussed in Appendix B. Using the expressions derived
in Appendix B, we calculate all components (EE, EH, HH and HE) of the reflected
part of the Green’s function directly in the Fourier-transform domain, hence there
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]

Z3

Figure 4.5: Direct (G?) and reflected (G®) contributions from a source located
within a layer.

is no need to use expansion functions for the reflected part of the Green’s function.
We use FFTs to perform the inverse spatial Fourier transformation, which can be
done very efficiently using a grid-reduction technique (see Appendix C).

The integral operator which was introduced in the previous sections is now
modified to include the effects of the layered configuration. We start again from
the integral representations for the electric and magnetic field quantities, which are
given by Eqs. (4.44) and (4.45). The Green’s functions are split into direct and
reflected parts, which leads to

Ex) = E'(x)+ / (QEE'D'xEE+QEH'D'x”I:I) dx’ (4.210)
x’'€D

+ / ((az, - iwso)GEE’R . XEE - icuybC‘.EH’R . XHI:I) dax’,
x'eD

Hx) = Hi(x) +/ o (GHH’D -XHI:I+QHE;D-XEIA*)) dx’' (4.211)
xl
N / (("b ~ tweg) GHEE . XFE — jwp, GHEE. XHI:I) dx’.
x'eD

Where the presence of the interfaces is taken into account by the reflected Green’s




80 Chapter 4. The Forward Problem

functions (see Figure 4.5). Written in (normalized) operator form, this becomes
E E

where the total operator K = (KP + KF) contains the direct and reflected con-
tributions from the source. The direct part of the operator, K2, is given in Eq.
(4.119), while the reflected part is written in similar form as

EE.R EH.R
KR = [’C K ] (4.213)

K:HE',R ’cHH,R

(’CEE,R . XEE) x) = (op- iw€o)/ GEE’R(X, x') - XE(XI)E(X')dx', (4.214)
x'eD

(REHRXTH) (1) = —ioms | GFER(xX) X T(x)AR)EK,  (4.215)
x'eD

(KHER PR (x) = ~iwm | GHER(xx) 3T (x)AK)K,  (4216)
D

x'€

(KHE'R . XEE (x) = (0',, - ‘iwé‘o) / GHE'R(x, X') M XE(x’)E(x')dx',(4.217)
x'€D

where we have used the fact that (},f:f’R(x, x') = -gka’R(x' ,X). Note that we

calculate the gradient-divergence and curl terms for the reflected part of the Green’s
function in the Fourier-transform domain, making the need for dedicated expansion
functions for this part of the Green’s function superfluous.

To solve the forward problem for a layered configuration we use the CG scheme
as defined in Section 4.5, where the operator KP is now replaced with the new
operator K. Next, we must define the components of the discrete operator K and
discrete adjoint operator K?* to complete the description of the CG scheme.

4.9.1 Discretized operators and adjoint operators

In order to define the components of the discretized operator and adjoint opera-
tor corresponding to the reflected part of the Green’s function, we must first split
this reflected part of the Green's function into an even and an odd part to take
into account the convolution and correlation structures that are present (see Ap-
pendix B.3). We distinguish between even and odd parts by using the superscripts
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'e’ and ’0’, respectively. The components of the operator are now given by
(KZEE’R . XEE) = (0p — tweg) Az AzoAzs (4.218)
kim,n,p
M N P

3
EE Rie A
x Z Z Z G (xm,n,p Xm' ,n K4 )Xml o’ ,p' Ejim! 0’ p’

]

where we have used point-matching for the reflected part of the Green’s function.
Note that for the even part we have a convolution structure in the iz-direction, while
for the odd part we have a correlation structure in the iz-direction. In the i;- and
ip-directions, we have a convolution structure for both even and odd parts. For the
other components of the operator K we obtain

(’CEH'R ' XHﬁ) = —iwpAz1 Azy Ay (4.219)

k;m,n,p

3 M
EH Rie H N
x Z Z Z Z G (xm,n,p - xm'yn',P')Xm’,n'.P'H.‘i;m’,n'.P'

j=lm/=1n'=1p'=1
3 M

EH Rio . " N
+ Z Z Z Z G (Xm,n = Xm'n'; Ta;p + z3;;7’))(,7;',11’,1# jim' np | s

j=lm'=ln'=1p'=1
(’CHH’R | Xﬂﬁ) = —wppAz1 Az, Az (4.220)
3 M N P
A HH,R; .
x Z Z Z Z GJ: e(xm »ThP xm’)n,)p’)Xﬁ',nlyplﬂk;m’,ﬂ’ypl

3 M N P
~HH,R;o . H ~
+ Z Z Z Z G (Xmn = Xmrn'5 Tapp + 23,0 ) Xom! st g Hbsme 0 |

and
(’CHE’R : XHﬁ) . = (ob — iweo) Az1AT2A73 (4.221)
jimn,p
3 M N P ’ )
X220 30 D0 D G (mump = X v )Xot Bt
k=1m'=1ln'=lp'=

3 M N
AHE,R;
+ Z E E G.‘l,k 0(xm n — Xm/,n'; T3;p + T3;p’ )Xm’.n ,p’Ek,m’,n’.P
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The adjoint operators are again obtained by using the inner product, which results
in

(;E-ICEE BB E ) = (op — iwso)me}n,pngAxl AzoAzy (4.222)

kim,n,p

AN it -—EE,Re

3 M
E
X Z Z Z Z Gr;  (Xmnp = Xm ! p )i e g
3 M N .
. E
+ }: Z Z Z Grj  (Rmn = Xm0/ 830 + Taip Wit | »

= —(op — iweo);(—Em,n,png Az Az Az (4.223)

—EH,R;e

3 M N
X Z Z Z Z Gk-i (x‘"’»,n.p - xm',n',p')rﬁm:‘n,’p/
N P
+ E Z Z E Gkv] (xm.,'n. — Xm'.n'y T3;p + :B;;;,,:)rﬁm,,n,,p, ,

(;E—KI_H BRepH H )J__m = iwybx—”m,n,png Az Azo Az (4.224)

—HH,R;e

3 N P
H
x Z Z Z Z Gk (Rmnp = Xmin' o Wim e

THH,R;O

3 M N P
. H
+ Z Z Z Z G;x (Xm.n = Xm',n'; T3ip + T30 Whime v | 5

(X_HICEH 'R‘nBrE ) S = —wubx—Hm‘n,pngAm AzaAzg (4.225)

P __HE,Re

3 M N
x Z Z Z Z GJxk (aninfp - xm',n‘,p')rf;m’,n’,p'

Im/=1n'=1p'=1

k=

3 M N P
—:—HE,R;O

+ Z Z Z Z Gk (%mn — Xm'n' T3ip + T30 hmt e v

Note that we have used point matching for the components of KE. Now that the
operators and adjoint operators corresponding to the reflected part of the Green’s
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Table 4.2: Steps necessary to calculate the PEC signals for a configuration with
a defect.

I - Green’s functions and incident fields
e Loop over K frequencies
Create datafile with contrast data
Calculate domain Green’s function
Calculate receiver Green’s function
Calculate direct part of the domain Green'’s function
Calculate incident fields within the computational domain
Calculate incident fields at the receiver positions
End loop over frequencies

II - CGFFT scheme
e Loop over K frequencies
e Load data and calculate starting values
o Iteratively reduce error to calculate fields in defect
e Calculate scattered electric field at receiver positions
End loop over frequencies

IIT - Voltage in time domain
Load incident and scattered electric fields at receiver positions
Calculate the received voltage in the frequency domain
Use inverse FFT to calculate the voltage in the time domain
Filter and save data

function are defined we can use the CG scheme to calculate the fields within the scat-
terer. The derivation of the reflected part of the Green’s function and its symmetry
properties are discussed in Appendix B. Finally we note that for the PEC configu-
ration, where the material parameters of the defect are 0 =4 S/m and u = o, the
normalized contrasts are always negative, since the conductivity and permeability
of a defect that is not filled with corrosion product will be lower than those of the
layer.

4.9.2 Calculation of the PEC signals

In Table 4.2 we give a schematic description of the steps that are necessary to calcu-
late the time domain PEC signal for a configuration where a defect is present. We
start by calculating the Green’s functions and the incident fields within the com-
putational domain for each frequency. This data can be reused as long as the con-

* figuration parameters (such as thickness, medium parameters) remain unchanged.

Next, we need the incident fields at the receiver positions. When we have a (loop)
source above a layer with a defect, there are three contributions to the total field at
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the receiver positions. First we have the direct contribution from source to receiver,
which is neglected in our case, since this part of the signal does not contain any
information about either the layer or the defect and can be filtered from the mea-
sured signals. Second, we have the part of the field caused by scattering from the
undamaged layer, which we consider to be the incident field at the receiver positions,
since the background configuration consists of an undamaged layer. This part of the
field is calculated using the 2D formulation given in Appendix A. Finally, we have
the part of the field which is caused by scattering from the defect, this is the part
of the field that we calculate using the CGFFT scheme.

When the Green’s functions and the incident fields within the scatterer are
known, we can proceed to calculate the total electromagnetic fields within the defect
by using the CGFFT scheme that was formulated in this chapter. This process is
repeated for all frequencies. When the calculated fields satisfy the prescribed error
criterion, we calculate the scattered electric field at the receiver positions. Combined
with the incident electric field generated by scattering from an undamaged layer, this
gives us the total electric field at the receiver positions, from which we are able to
calculate the frequency domain voltage on the terminals of the receiving coils. Since
convergence for the lower frequencies is very slow, we use a marching-up/marching-
down scheme, whereby the starting values for the first two frequencies are zero. Due
to the slow convergence, it would be prohibitive to iterate until the error criterion is
reached, therefore the CG scheme is stopped after a predetermined number of itera-
tions and the results are used in the marching-on-in-frequency method to calculate
the starting values for the subsequent frequencies. When the fields have been calcu-
lated for all frequencies, we recalculate for those frequencies where convergence to
the error criterion was not reached, using the results obtained for higher frequencies
in a marching-down method to calculate the initial values.

In the third step of the scheme, we calculate the time domain voltage on the
terminals of the receiving coils by calculating the contour integral of the electric field
over the contour spanned by the receiving coils (Eq. (4.8)). Performing an inverse
temporal Fourier transformation results in the desired time domain voltage.



Chapter 5

Numerical Results for the Forward
Problem

In this chapter we present numerical results for the two- and three-dimensional for-
ward problems. For the 2D forward problem we calculate the transient electric field
within a metal layer using the theory from Section 4.2 and Appendix A. We can
also use this configuration to calculate the response of the PEC tool for various
medium and configuration parameters, these results are given in Chapter 3. Next,
we test the 3D model for a homogeneous background by comparing it with previous
results and the analytical solution for scattering by a conducting and permeable
sphere. Subsequently, we validate the preconditioning operator described in Sec-
tion 4.6. To calculate the influence of a defect on the PEC signals, we use the theory
of Sections 4.3 and 4.9 to first calculate the field quantities with the defect, and
subsequently the voltage on the receiving coil terminals.

5.1 2D Configuration

For the 2D configuration we have a coil configuration as shown in Figure 5.1, with
two transmitting and two receiving coils, where the transmitting coils are circular
with a radius of 25 mm and the receiving coils are square with dimensions 25 x
25 mm. A rectangular pulse current is generated in the transmitting coils, which
is modelled using a switch-off time signature since we are only interested in the
response to the switch-off part of the block pulse. To calculate the voltage on
the terminals of the receiving coils we determine the electric field in the frequency
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Transmitter coils
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Figure 5.1: Configuration for the 2D model, computational domain is shaded.
Medium parameters of the metal layer are ¢ = 6.7 x 10 S/m and
4 = 200u9, medium parameters for the halfspaces are 0 = 4 S/m,
U = po. Permittivity is g9 throughout the configuration.

domain on the contour spanned by the receiving coils (see Figures 5.9 and 5.10
for a view of the coil configuration in the z,-z, plane where the location and size
of the receiving coils can be found), after which we perform an inverse temporal
Fourier transformation to obtain the time domain signal. These voltages (PEC
signals) as function of time for various configurations can be found in Chapter 3.
In the figures in this section, we use a time-scale where ¢ = 0 ms corresponds to
the instant when the block-pulse in the transmitting coils is switched off. We also
give a normalized time, where we have used the characteristic diffusion time of the
metal layer as the normalization factor. This diffusion time is given by 7, = uod?,
where d is the thickness of the layer. For the reference configuration defined in
Section 3.2.1, the value of the characteristic diffusion time is 7, = 168.4 ms. To
visualize the electromagnetic diffusion of the field quantities within the layer, we
calculate the electric field on a grid in the computational domain (indicated by the
shaded area in Figure 5.1), after which we perform an inverse temporal Fourier
transformation for each position. We calculated the frequency domain electric field
at each position for 800 frequencies, evenly spaced from 0 Hz to 2 kHz, after which
the time domain electric field was obtained using an FFT. The metal layer was taken
to be 10 mm thick and the conductivity and permeability were taken to be 6.7 x
106 S/m and 20040, respectively. The permittivity was taken to be &y throughout
the configuration. The computational domain is indicated by the shaded area in
Figure 5.1, and ranges from 0 to 10 mm in the z3-direction and from -100 mm to
100 mm in the z)-direction. In Figure 5.2 we plot the electric field distribution
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within the computational domain for various times. The focussing effect of the
two transmitting coils can be clearly seen, as well as the diffusion of the electric
field in the z3-direction. Since the induced current density is proportional to the
electric field, Figure 5.2 also represents the current distribution within the layer. The
conductivity of the halfspaces is taken to be 4 S/m to move poles and branch point
off the integration axis (see Appendix A). These values of the medium parameters
correspond to seawater, and this does not affect the calculated PEC signals and
electric fields within the layer. This fact has been experimentally verified during
underwater inspections of offshore platforms. It can be seen that the frequency
domain reflection coefficient is very small due to the large difference in medium
parameters between the halfspaces and the metal layer. This has consequences for
the sensitivity with respect to a contrast within the layer and for the inversion, as
can be seen from the results in Chapter 7.



88 Chapter 5. Numerical Results for the Forward Problem

Ssoluw value ofB. att=0001g Absolute value ofE' at=0002s

x1

cx‘l

x,m)

6|
8|
18 X 3 83 =005 ) 005 64
x, (m) x, [m]
(a) t =1 ms, 5.94 x 10~37, (b) t =2 ms, 11.9 x 10~ 37y,

Alsolute valuc of E_ att =0.004 5
10
F RN

%y (m}

Wi 08 9 005 01
=, m}
(c) t = 4 ms, 23.8 x 10~37,, {(d) t = 6 ms, 35.6 x 10~37,
g eolute valos of B, a1 1=001 5 cx1°l_§§toluuvalneot£‘ul=0.02s cro®

E E
“ﬂ ‘P\
(-]
8
1—8 1 -0.05 o 0.08 0.1
X 1 [m)

(e) t = 10 ms, 59.4 x 10~ 37, (f) t = 20 ms, 119 x 10~37,

Figure 5.2: Absolute value of the electric field within the layer at ¢ = 1 nis (a),
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|E°| within layer at x, = 1e-3m
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Figure 5.3: Absolute value of E¢ in the z,-z; plane at 3 = 1 mm, generated
by two transmitting coils.

In the lateral directions (the z;- and z-directions) the focussing of the electric
field is also readily apparent when we plot the absolute value of the electric field in
the z;-z5 plane (Figure 5.3). The electric field was calculated at 3 = 1 mm, i.e., just
within the layer. Material and configuration parameters are those of the reference
configuration defined in Section 3.2.1, the field was calculated for a single frequency
only, in this case 50 Hz. The presence of the two transmitting coils can be deducted
from the two minima that are present in Figure 5.3. At the location where the
current density has a maximum (i.e., exactly halfway between the centers of the
transmitting coils), the flow of the induced current is in the z-direction.
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5.2 3D Configuration with a homogeneous back-
ground

In this section we will present numerical results for the 3D model for configurations
with a homogeneous background. We will compare the model to the scheme de-
scribed by Abubakar [2], which takes electric contrasts into account (conductivity
and permittivity) and we will also consider the problem of scattering by a conducting
and permeable sphere, which can be solved analytically.

5.2.1 Conducting cube

First we compare the 3D model for a homogeneous background with the model
by Abubakar [2], which uses a combination of piecewise constant and piecewise
continuous expansion functions to solve the electric field integral equation when
a contrast in conductivity or permittivity (in case of the wave problem) or only
conductivity (in case of the diffusive problem) is present. Since we consider contrasts
in conductivity and/or permeability only, we take a contrast in conductivity to
compare both methods. The scatterer is a cube with sides of 20 m, centered at
the origin, and the computational domain is discretized using 14 x 14 x 14 grid
points. The background medium parameters are o, = 0.1 S/m and up = ug. The
conductivity of the cube is taken to be 0cype = 1 S/m, making the contrast xZ = 9.
The source is a vertical magnetic dipole (i.e., oriented in the z3-direction) and at
the receiver positions we calculate the z3 component of the scattered magnetic field.
There are 33 receivers positions, located on a circle around the cube in the z; — z»
plane at a distance of 25 m from the origin (see Figure 5.4). The frequency used was
20 kHz. In Figure 5.5 we compare the real and imaginary parts of the z3-component
of the scattered magnetic field at the receiver positions to the results obtained with
Abubakars model. It can be seen that there is good agreement between the two
models, with some differences in the real part of H§® for the receiver positions
which are closest to the source. The expansion functions used in the two schemes
are not equal, leading to different finite difference stencils in the operators. This
explains the small differences that can be seen in Figure 5.5. The desired error
criterion was set to 10™° for both models, in Figure 5.6 we plot the normalized
errors in both the integral equation of the electric type and the integral equation
of the magnetic type, together with the combined error. It can be seen that the
normalized error of either individual integral equation is not uniformly decreasing,
but the total error is, which is conform the CG scheme. The computation time for
Abubakars method was 273 s, for the method presented here 629 s. This does not
include the time needed to calculate the Green’s functions and the incident fields.
The difference in computation time between the methods lies in the fact that we
solve both the integral equation of the electric type and of the magnetic type, which |
results in more FFT's that need to be calculated, as well as a larger finite difference

stencil. Abubakar solves only the integral equation of the electric type, which is

]
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3 I3

(a) Cube configuration (b) Sphere configuration

Figure 5.4: Configurations for scattering by a conducting cube and by a con-
ducting and permeable sphere. Receivers are denoted by stars, the
vertical magnetic dipole source is denoted by the triangle.

computationally less costly. The calculations were performed on a dual processor
600 MHz Pentium 3 computer with 1Gb memory.

5.2.2 Scattering by a conducting and permeable sphere

In order to test the model with a configuration for which an analytical solution
exists, we consider a conducting and permeable sphere illuminated by a magnetic
dipole source, as depicted in Figure 5.4. The scattered electromagnetic fields for
such a configuration are given by Ward and Hohmann [90].

As can be seen from Figure 5.4, the receivers are placed in a semi-circle around
the sphere. The source is a magnetic dipole located at x = (50,0, 0) m and oriented
in the z3-direction, while there are 31 receivers located 25 m from the center of the
sphere, which is centered at the origin. The radius of the sphere is 11 m and it is
located in a computational domain with size 35 x 35 x 35 m3. A frequency of 20
kHz was used. In Figure 5.7, we plot the real and imaginary parts of the radial
component of the scattered electric field at the receiver positions.

The availability of the analytical solution for the scattered fields enables us to
investigate the effect of the grid sizing on the calculated fields. The grid sizes used
are 6 x 6 x 6, 14 x 14 x 14, 28 x 28 x 28 and 40 x 40 x 40 grid points. It can be seen
that the solution of our CGFFT method converges to the analytical solution as the
discretization is refined. There is still some discrepancy between the analytical and
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Figure 5.5: Real (a) and imaginary (b) parts of H§* for the CGFFT model and
Abubakars model for the case of scattering by a conducting cube.

CGFFT solutions since the discretization of the sphere is such that a grid cell only
has a contrast with respect to the background when it is located completely within
the sphere.

5.2.3 Numerical results for the preconditioning operator

We compare the preconditioned CGFET method to the normal method for the
configuration of a conducting and permeable block with dimensions 30 x 30 x 30 m?,
located in a computational domain with size 35 x 35 x 35 m® that was discretized
in 14 X 14 x 14 points. We used one source and 5 receivers, a frequency of 20 kHz
and the error criterion was set to 10~%. We calculated the field quantities within the
scatterer using the normal and preconditioned CG methods for the following values
of the contrasts: {xZ,x} = {1,1},{5,5}, {10,10},{20,20}. In Figure 5.8 we plot
the total error as function of the iteration number. The corresponding computation
times are given in Table 5.2.3. We can see from Figure 5.8 and Table 5.2.3 that the
preconditioning operator is more effective for higher contrast values.



5.83. 8D Stratified configuration 93

Error plot of the CG scheme
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Figure 5.6: Error plot of the CG scheme, error of the electric type integral equa-

tion (dotted), error of the magnetic type integral equation (dashed)
and total error (solid).

5.3 3D Stratified configuration

In this section we will discuss the numerical results for the 3D layered configuration,
where we have a PEC probe above a metal layer containing a defect. The coil
and defect configuration for this problem is given in Figures 5.9 and 5.10. We first
consider a defect with an area of 56 x 56 mm? and a depth of 2, 5 and 8 mm,
discretized into 14 x 14 x 10 points and located in a metal layer with medium and
configuration parameters as given in Table 3.1. In Figure 5.9 we plot the PEC signal
as function of time for these defect configurations and for a metal layer without
defects. For the background (metal layer and halfspaces), we have the following
medium parameters: the conductivity and permeability of the halfspaces was ¢ = 4
S/m and p = pg, respectively, which corresponds to the electromagnetic properties
of seawater. Note that the permittivity is set to &9 throughout the configuration. For
the metal layer and the coil parameters we used the standard configuration defined in
Chapter 3 (see Table 3.1). The desired error criterion for the CG scheme was set to
10~3. This value was chosen comparatively large to reduce the computation times.
Furthermore, since we perform filtering on the time domain signal as described
below, it is not necessary to calculate the field quantities to a higher precision.
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Figure 5.7: Real (c) and imaginary (d) parts of E2* for the case of scattering
by a conducting and permeable sphere.

The scattered electric field was calculated at 40 points located on the receiver
coil contours (see also Figure 5.10), divided into 20 points per receiver coil. The
voltage was then calculated by performing a numerical contour integral over the
receiver coil contour. The scattered electric field and the corresponding voltages were
calculated for 200 frequencies, evenly spaced from 0 to 2 kHz (0 Hz not included),
after which an inverse temporal Fourier transformation was used to obtain the time
domain voltage. Due to the small number of samples, filtering is needed to smoothen
the time domain voltage, which was done using a moving-average filter.

From the calculated PEC signals in Figure 5.11, we see that the signal cor-
responding to a 56 x 56 x 5 mm3 defect deviates from the no-defect-signal (corre-
sponding to a layer where no defect is present) for times greater than 0.5 ms, while
the signal for a 56 x 56 x 2 mm? defect deviates from the no-defect signal for times
greater than 1.5 ms. After this, the presence of the defect causes a decrease in am-
plitude of the signals and a decrease in the 7-parameter, which characterizes the
thickness of the layer. In contrast to this, the signal for a 56 x 56 x 8 mm?® defect is
almost exactly equal to the no-defect-signal, indicating that very deep defects where
almost no material is left (where defect depth almost equal plate thickness) cannot
be detected using the PEC tool. In this case, the eddy currents flow around the
defect, resulting in a signal that cannot readily be distinguished from the no-defect
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Figure 5.8: Error plot for the normal and preconditioned CG schemes

signal. This illustrates the fact that a PEC measurement is a volume measurement.

Since we calculate the fields in the same configuration for a number of frequen-
cies, it was advantageous to use the Marching-on-in-frequency technique as described
in Section 4.7. In Figure 5.12 we plot the number of iterations of the CG scheme as
function of frequency. It can be seen that this technique results in a drastic reduction
in the number of iterations that are needed to converge to the desired accuracy.

The computation times for the calculation of the PEC signal should be split
in two parts, one for the Green's function, which needs to be calculated only once
for each configuration, and one for the actual CG scheme to calculate the scattered
fields. The domain Green’s function for a single frequency and an FFT grid of
1024 x 1024 points takes approximately one hour of CPU time, after which the grid
size is reduced to the 32x32 CGFFT grid. Using the grid reduction method described
in Appendix C, the computation time for the domain Green’s function can be reduced
to approximately 5 minutes per frequency. For both cases the CGFFT grid is 32 x 32
points in the z,- and zs-directions. The accuracy of the Green’s function obtained
in this manner is same for both methods. The storage requirements for the domain
Green’s function is 8 Mb per frequency.

The receiver Green’s function takes approximately 30 minutes per frequency



96 Chapter 5. Numerical Results for the Forward Problem

Table 5.1: Computation times for the normal and preconditioned CG schemes

Contrast value Normal CG | Preconditioned CG
E XY ={1,1} 8l.1s 109.6 s
{xB,x"} = {5,5} 3325 s 353.7 s

{x%,x¥} ={10,10} 933.9 s 560.8 s
{x%,x¥}=1{20,20} | 1549.5s 1089.1 s

for a grid of 14 x 14 x 10 points in the computational domain and 40 receiver points.
The storage requirements for the receiver Green’s function (22 Mb per frequency
at present for a 14 x 14 x 10 grid and 40 receiver points) can be alleviated by
using the fact that only those components of the electric field that are tangential
to the receiving coil contour are needed. Therefore, if the (square) receiving coils
are oriented along the z;- and z-axes, we need to store only some components of
the Green’s function. Calculations were performed on a dual processor 2 GHz P4
computer with 2 Gb of memory.
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Figure 5.11: PEC signals for a 56 X 56 mm? defect with a depth of 2 mm (1),
5 mm (2), 8 mm (3) and no-defect signal (4).
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Figure 5.12: Number of iterations of the marching-on-in-frequency CG scheme
per frequency for a typical PEC configuration.



Chapter 6

The Inverse Problem

Having defined a mathematical model to calculate the response of the PEC tool
in the presence of a defect, we will now turn our attention to the inverse problem.
This entails the reconstruction of the dimensions and medium parameters of a defect
from measured signals when the rest of the configuration is known. For the inverse
problem, the configuration is such that the source-receiver setup is known, as well as
the dimensions and medium parameters of the metal layer, but the dimensions and
medium parameters of the defect that is located within the layer are unknown. By
means of the measurements taken at the receiver locations, we attempt to reconstruct
the dimensions and medium parameters of the defect. While doing this, we assume
that the medium parameters of the defect are equal to those of the halfspaces on
either side of layer, i.e., the defect does not contain any corrosion products.

We will use the Extended Contrast Source Inversion (ECSI) method (see Van
den Berg et al. [84]), which is based on the CSI method by Van den Berg and
Kleinman (82]. We start by summarizing the ECSI method for contrasts located
in a homogeneous background using the operators defined in the previous chapter.
Next, we include the effects of the interfaces for a configuration consisting of a layer,
where a contrast (i.e., a defect) can be located somewhere within that layer. Finally
we describe a method for binary inversion, where the magnitude of the contrasts
is assumed to be known, and we discuss the TV regularization method. Since the
medium parameters of a defect in a PEC configuration are known, it is expected
that a binary inversion method will yield better results than full inversion. Note
that throughout this thesis we will be using single-frequency inversion methods.
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6.1 3D Inversion for a homogeneous background

The operator equations pertaining to the inverse problem are the object equation

N

(& L - (I—K%)[E]k, (6.1)

which relates the contrast sources and the contrasts to the fields within the scattering
domain, and the data equation,

[@S L = st[g]k, (6.2)

which relates the (measured or synthetic) data to the contrasts and field quantities.
The contrast matrix x and the operators are defined in Chapter 4, while the subscript
k denotes the source position. For multi-frequency inversion the operator will be
frequency-dependent, however we will confine ourselves to single-frequency inversion
in this thesis. The contrast sources can be recognized as

%], - <[4],

The ECSI scheme now aims to use a CG scheme to construct sequences for the
contrast sources and contrasts, such that a cost functional is iteratively minimized.
To this end we define the cost functional F;, at the nt? iteration of the scheme as

Fﬂ(wf,n’wgni Xf:xf)
= FS,n(Wf,mWf{n) + FD,n(WII:‘:,m Wﬁm Xf, Xf),

2 2
ms D lloEalls + 8 D okl
k k

1B 3 IEnllp +1B.n 2 Il (6.4)
k k

where the residuals in the data and object equations are defined as
i WE
| ] -eo [ ] e

o]
!.H kn

B S xrE
P E s| W ]
= | = -KS| N , 6.6
[pH ]k,n [HS ]k [ " kn ( )
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respectively. The normalization coefficients are given by

1
ng,n = T (6'7)
2k |[XFEL D

Y]
Zk XﬁHi D

e p— (6.9)
T |[BF]|

1
g = ——. (6.10)

= B

The components of the cost functional can be written explicitly in terms of the
operators working on the contrast sources as

Fsn(Wig,, W) = (6.11)

= FSE,n(WkE,n’ Wﬁn) + an (Wfina Wf,n

2
E S S,EExxrE S,EH~xxrH
E Z ”Ek —-KSEEWE, _K W,c,nns

b

+nSZ”HS KSHHWH KSHEWE )

and
FD»”(Wk n? Wk o Xn. H XH) = (6.12)

= FDn(Wkan,me)"'FDn(ka ,an)

nlE),n Z “Xfﬁ;e - Wf’n + foD'EEWE +xE EgD, EHWH II

+nD,,Z||xHH' WE, + xIKPHAWE 4+ xHKDHEWE, “Z

The ECSI scheme [84] now aims to iteratively minimize the cost functional F,, by
constructing sequences for the contrast sources and the contrasts. The contrast
sources and the contrasts are updated in separate steps, which enables us to use
analytical expressions for the update coefficients, unlike for example the Modified
Gradient method, where numerical (line) minimizations are necessary because in
that method the fields and contrasts are updated simultaneously at each iteration.



102 Chapter 6. The Inverse Problem

6.1.1 Updating the contrast sources

Assuming that the contrast sources and the contrasts at the previous iteration are
known, we write

wn ), =[], et ]
A _ Fol + [23 ~ (6-13)
H H k., H )
l: w k,n w k,n—1 LW kn

where the update directions £ _ and W#_ are functions of position. The update
k,n k,n

directions are given by

w

o]

s H

w kn
The coefficient «}", can be either the Fletcher-Reeves or the Polak-Ribiére update
coefficient, given by

2 E
[‘f’H] = 0 n=0, (6.14)
k,0

o}, ot S |
) + " , n>1 (6.15)
[ aWH kn o WH k,n—

IO R A A

(6.16)

OwE |
” kn—-1{ip

k,n—l“D
or
T = (6.17)
Re < OWF n,av“vfn —8WE, 1 >p +Re< owf n,&v“v,‘:’n Wl _>p

s, + okl

’

respectively. The quantity 8wZH is the gradient of the cost functional F, (Wk, x)
with respect to W2 or W¥, evaluated at WE, _;, W¥, | and x,,_,. The gradients
are derived using the Fréchet derivative, which results in

[ ng, Lm - (6.18)

£ E
-K%*I's [ Z” ] - (I-K”Xn1) T [ TH ] ,
kn-—1

kn-=1
where the * symbol denotes the adjoint of the operator as defined in Chapter 4 and

where the narmalization matrices I's and I'p,, are defined as I's = diag(n§,n5)
and I'p , = diag(ng ,,nE ), respectively. The pa.rameters ), are determined by

minimizing the cost functional with respect to a . We write the cost functional
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Eq. (6.4) as

Fn(WkE,n’Wl{:I,me—l»xg—l) = (619)

KSEE E +K$EH

775 pr,n— o‘kn ( Wi n)“s

KSHH H KSHE kn)Hs

+ 1§ [| Py — aln (
+ ng,n—l “rf,n—l - agn (I - Xn— KD EE) wk n + ak an——lKD EHwk n”D
+ 77’5,7;-1 ”rf,n—l - O‘Kn (I - Xf—lKD'HH) W}c?,n + aZ‘,’nxff 1KD HEWk 'n”D ’

and then take

OF,

This results in the following expression for the update coefficient of the contrast
sources

af, = (6.21)

[E“KSEE E KSEHwkn”S_}_ng ||KS,HH H +KSHEwkn||s

KD EH & H

+ nIE),n—l ”wkE,n - x'n—- KD EEwk n Xn— n“D

-1
+ ng,n-—l ”ch{n - Xn- KD HHWk n Xn—- KD HEWI: n”DJ

[(awk mwk n>D + (awk,mwk,n>D:|

From numerical experiments it was found that the parameter o:,‘:"n can be taken real
without detrimental effects on convergence and results (see Abubakar [2]).

6.1.2 Updating the contrasts
The contrasts xZ and x¥ are only present in the second term of the cost functional,
which is the part relating to the error in the object equation. This part of the cost
functional is given according to Eq. (6.12) as

FD,n (Wk n? Wk N Xn ) Xn ) (622)

np,,.an Ejn — Wf,nnhnu,n‘;nx*’m -WE I3
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‘We can update the contrasts in two different ways, by using either a non-CG or a CG
update. The non-CG update was used by Kleinman and Van den Berg in the original
version of the CSI method, but this does not ensure the reduction of Fp ,,. However,
from numerical experiments it was observed that after a few iterations this update
for the contrasts does always reduce Fp ,. Using a CG update for the contrasts
ensures the reduction of the quantity Fp ., and enables us to use regularization
methods. In the next two sections we will discuss these update methods for the
contrasts.

Non-CG update of the contrasts

Taking the gradient of Fp.(WE, ,WH xZ ¥ ) with respect to xZ_; and
xZ_,, we observe that the cost functional Fp n is minimized when

WE .E rE B
f = ZenDen _ p  ZkTin Bin ka2, (6.23)
Zk ‘Ek,n| Zlc 'Ek.n‘

and

2k Wf,n ) I:Ik,n Lok r{c{; : I:Ik,n

Xn = 3 = Xf.q—"——:-—r, (6.24)
Zk |Hk.nl Zk ‘Hk,nl
in which r¥, and rf, are given by
= X2 Bin-WE, (6.25)
i, = X Hn-WE (6.26)
CG update of the contrasts
For the CG update of the contrasts, we write
Xn = Xn-1+aXdg, (6.27)
where
E E E E
Xn O _ | xa-1 O aX 0 d
[ 0 Xf] - [ 0 X ]+[ 0 axA||gx] - 6

In recent work, Van den Berg et al. [85] take the non-CG update given in Eqgs.
(6.23) and (6.24) instead of x,,_, for the CG update of the contrasts in Eq. (6.27),
essentially taking two steps for the update of the contrasts. The quantities dZ and
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df are the update directions for the contrasts, which are taken to be the Polak-
Ribitre conjugate gradient directions, given by

dE
[ dH ] = 0, n=20, (6.29)
0
o] (] [0 ][]
H = H + VH H , N2> 11
[ d n gX n 0 ’Yx n d n=-1
where the coefficients yX'® and vX'F are defined as
Re < gtE g0B _ g0E
,yr)f,E = 9n ir’tE - In-1 D‘ (630)
lonillp
Re < g¥#, g% H — X 5
AoH = e T (6.31)
lgn=ill

The quantities gX'F and gX'# are the gradients of the numerator of the cost functional
with respect to xZ and x*, respectively. The gradients are calculated at xE_, and
xH_,. We obtain

)
&F = — Lk Thn . _’“v"z , (6.32)
>k “Xf—lEil D
TS
o = - klhn Hin (6:33)

~ . 12
= [t

Where rkEln and r,':{ ; are given in Eqgs. (6.25) and (6.26). Numerical experiments have
shown (see Van den Berg et al. [84]) that neglecting the influence of the denominator
of the cost functional in the gradients has little effect. Furthermore, in the diffusive
approximation, where the contrasts are real-valued, we can take the real parts of
the gradients in Eqgs. (6.32) and (6.33). Comparing Eqs. (6.23) - (6.24) with Egs.
(6.32) - (6.33), we can derive preconditioned gradients with respect to the contrasts
as

E 1 Zk rkE,;; : Ek,n
YT T Bl e Bl (639
B 3, ot
rH"--ﬁ
,’)f’H - 1 Zk k,n k,n (6-35)

- 12 T
>k Hin| ) ”Xf—1Hi o

Following Van den Berg et al. [84], we choose the update coefficients aXf
and oXH to be real and write the cost functional Fp,» in terms of the the update
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coefficients. For the electric contrast, this gives

Fpn=FE,.+Fp, (6.36)
2
(E-y +0xPaE) Ban - WE,|
L Do
2k H (Xf—l + ai‘,’Edf) E;"“D

X,E 2 X,E
_ AL(oXP) +24;(axF) +4s FE., (6.37)

B (a,’%’E)z + 2B, (aiﬁ’E) + B3

S|

in which
4 =Y dek,n“Z, (6.38)
k
4 = Re) (xF,dfErn) (6.39)
k
= Tl (640
k
B o= Y|k, (64
k
B, = Re) (xE.EidfEi) , (6.42)
k
B = 3|t (6.43)
k
For the magnetic contrast we have
Fpn=FE.+Ff, (6.44)
S| Oks + o a) B - WE L
= H xH i\ 7 |12 Fom
= | (e + ) B
C: (eXH)? +2C; (0XH) +Cs +FE (6.45)

- Dy (aﬁ’H)2 + 2Dy (ai‘;’H) + Ds
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where
N 2
C = k HD (6.46)
Co = Rez<r{f; Bdfﬁk,n>D, (6.47)
Cs = ZHrkn (6.48)
D, = d,’jH;; (6.49)
D, = Rez<xn 1H’,d”H‘> , (6.50)
Ds = Z‘X" 1H" . (6.51)

These cost functionals are minimized when

7] o)
—° _Fpn. = 0, and —9_Fp,=0, 6.52
aan’E D, aa%’H Dn ( )

which results in the following expressions for the update coefficients in terms of
A;,B-,;,Ci and Di (2 = 1, 2,3)

aX®f = [2(A1By — 42B1)]7" x [—(A1Bs — AsBy)+ (6.53)
(A1B3 — A3B1)? — 4(A1 B, — AgBy)(42Bs — A3By)]
a%’H = {2(01D2 - CzD]_)]—l X [—(C1D3 - C3D1)+ (654)

(C1Ds — C3D1)? = 4(Cy Dz — C3D1)(C2Ds — CsDy))

6.1.3 Starting values

At the start of the ECSI scheme, we need initial values for the contrasts and the
contrast sources. It is not possible to set the initial values to zero, since the cost
functional is undefined for x = 0. Therefore we choose to take the backpropagation
of the data as initial values. We let the starting values of the contrast sources
minimize Fg only, giving

Fso(WE,, WE) = nEY |oBli+nE S llefli.  (6.55)
k k

We now write the contrast sources at iteration n = 0 as

e [ owr ]
A = ol , (6.56)
[ WH k,0 k0 aWH k,0
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where the gradients of Fs with respect to the contrast sources are given by

OWE ] s ES
~ H = K ”'Ts [ I y (6.57)
[ ow k0 HS X

in which the * symbol denotes the adjoint operator. The coefficient 0‘}:,,0 is found by
minimizing Fg for variation of a,‘:”o, leading to

agy = (6.58)
awE || +|lowt |’
“ ’°»°“? + “ k’OHD

-

[xcs-EzowE, + KSEHowE,| + [KerEowg, + KSHEQwE, |

The gradients represent the backprojection of the data on S onto D. The initial
estimates for the fields are obtained from the contrast sources as

il = [ ][]
N = - -+ K A . ! (6.59)
[ H k,0 H k WH k,0

Finally, the initial estimates for the contrasts are given by

E Zk Wf’:o ) Ek.o

X5 = =k Ro RO (6.60)
Xk IEk,Ol
WH .|

x& ;’_‘__’f.’ﬂ___ig (6.61)

A 2
2k ‘Hk,0|

6.2 3D Inversion for a stratified configuration

We can use the inversion algorithm described in the previous section for the problem
where the scattering object is located within a layer. To include the (multiple)
reflection and transmission effects at the interfaces, we have to modify the Green’s
functions occurring in the expressions for the object operator and adjoint object
operator, which are described in Section 4.9. We will now define the data operator
for the stratified configuration. Starting from

E = / ((Ub ~ iweo)GHEE . YPE — iwp, GSFH . yH H) ax’, (6.62)
x'€D

P

- / (00 = iwe) GSHE - X P — i GSHH - xH) ', (6.69)
x'eD
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where the superscript S denotes the Green’s function from scattering domain to the
receiver positions and g, 0, and up are the medium parameters corresponding to
the layer. We then define the discrete data operator corresponding to the layered
configuration as

[ gz } = KS’RX[ fl ] , (6.64)

where the operator matrix K5F is defined by

S,EE,R S,EH,R
KS’R _ K KX
- ’CS,HE,R K:S,HH,R

(6.65)

The expressions for the scattered fields at the receiver positions x° in discrete form
are given by
Ei(x5) = - (6.66)

>

GSEER

Mw
Mz
M"’

. E Fal
(ab - leQ)A.’I:]_A:DzACCs Xm’n'p)xm’n'pEj;m'n,p

Jj=1m=]n=1p=1
3 M N P
— Az AT AT Y Y0 Y Y GEF TS = Xmnp) X pEliimmp:
j=1m=1n=1p=1
and
H; (x5) = (6.67)
3 M N P

(0 — iweg) Az Az Azs Z Z Z Z éf:fE’R(xS - xm,n.p)xgs,n,pﬁj;m.n,p

j=1m=1ln=1p=l
3 M N P

— wppAz1AzoAzs Z Z Z Z G‘EJH HRxS xm,n,p)xﬁ'n,pl:lj;m,n,p,

j=1 m=1n=1p=1
The adjoint data operator is again defined by using the inner product on S, leading

to

S,EE,R» S, HE,Rx
K K ] (6.68)

KS,Rt _
- KS,EH,R* KS,HH,R#

For the elements of K5®* working on the residuals of the data equation, we obtain

(,Cs,EE,R- pkE) = (6.69)

j.mm,p

(oo — Tweo) Z > GHEER (xm np — x5)0E (x5),

k=1 xS
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(’CS,HE,R* pf) - (6.70)

jimn,p

3
(00 - ) 3 37 G (e — <)o ),

k=1 xS

(KoEHRGE) = T Z Y GTHR m ,p — X5)pE (%), (6.71)
Jimmp k=1 x$
(’CS,HH,R*pil)j.m = o Z Z GS JHH, qu (Xmmp — x°)pH (x5). (6.72)

k=1 xS

6.3 Binary inversion

In this section we will discuss binary inversion, where the exact value of the contrast
is known and constant, as is the case for the PEC configuration, where we have a
defect in a metal layer. We know that the conductivity in the defect volume is equal
to that of the halfspaces and that its relative permeability is one when the defect is
not filled with rust. Essentially, for the binary inversion method we prescribe a value
for the contrast and then proceed to recover the volume occupied by the scatterer.

For these configurations we can employ a number of techniques to improve
the inversion results. First of all, it is possible to use a constraint in the normal
ECSI algorithm by enforcing limits on the values of the contrasts at each iteration.
For example, to ensure positivity, at each iteration we simply set the value of the
contrast to zero when it is negative. This leads to better inversion results, however,
changing the values of the contrasts at each iteration causes the cost functional to
be no longer uniformly decreasing, which can lead to instability in the inversion
algorithm.

A better option would be to use a nonlinear mapping function (for example
an exponential constraint) for the contrasts. Using the ECSI algorithm, we calcu-
late auxiliary functions at each iteration, from which we calculate the contrasts by
using the mapping function. This mapping function ensures that the reconstructed
values of the contrasts are within the range defined by the mapping function. This
technique was used by Lambert and Lesselier [46] to reconstruct a buried cylindri-
cal obstacle from magnetic field data and by Dos Reis et al. [29] to reconstruct
conductivity contrasts in metal layers. We have modified this technique to be used
for contrasts in both conductivity and permeability. Another technique to improve
the reconstruction results is the TV regularization, which is described in the next
section.

For the inversion scheme with exponential constraint, we write the contrast
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functions as

xF(x) = xZv(rF(x)), (6.73)
xX(x) = xHy(r7(x)), (6.74)

where the quantities xZ and x¥ denote the ’set’ value of the contrast, i.e., the
maximum allowed value. The mapping function 1 is given by

1
Y(r(x)) = m- (6.75)

This function has the property that
v — 0, T— —oc0, (6.76)
v — 1, T - 400. (6.77)

Lambert and Lesselier [46] take 1/(1 + exp(—7/a)) as mapping function, where a
is an adjustable parameter to control the slope of the mapping function. However,
adjusting the value of this parameter gives rise to jumps in the residual. We have
chosen to take a = 1 in our scheme, since adjusting the parameter during the inver-
sion process could cause instability and choosing the correct value of a is an empirical
process. We now construct sequences for 7¥ and 7¥ by writing

E = 1P| 4+BEdE, (6.78)
tH = . 4 pH4H, (6.79)

where we take dZ and d¥f to be the Polak-Ribi¢re update directions

g = 0, n=0, (6.80)

dy = gF+pFdl,  n2x1, (6.81)
and

i = 0, n=0, (6.82)

df = gpH +4pHdE,, nx1 (6.83)

The update coefficients v7'F and 47# are defined by

Re (g%, gn® - 7%
'y;’E = < B 3 >D . (684)
gn’—l “
Re (9, 90" - gpf1 )

H 2
gn—l D

D

»H
Tn -

2, (6.85)
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The gradients g;F and g7'# are the gradients of the cost functional Fp, with
respect to 75 and 7, respectively, evaluated at 72, and 7E_,. These gradients
can be written in terms of the gradients derived in Section 6.1.2 by taking into
account that

T = IOR P Sl 4143 — 22X .
bn 0T gy OT X |,y 077 |, (6.86)
Using this result, we obtain the following expression for the gradients with respect
to rf /8
E
—T —
qF = T s, (687)
[1 + exp(_Tn—l)]
H
g:;,H - H exp(_Tn—l) x,H (6-88)

* [1+exp(—7-,{‘f_1)]2 o

in which xF and x¥ are the ’set’ values of the contrasts. We can now write the cost
functional in terms of the update coefficients 5" as (taking F£  as an example)

FE (6 = (6.89)
T [xE [1 + exp(-r., - pEE)] " By, ~ WE,|
1012
T [|[2 +exp(-r., - pEdE) " ||

The values of the update coefficients 5 and B¥ are found by minimizing the deriva-
tive of Fp,, with respect to B2 and B for variation of these coefficients. Due to the
nonlinearity of the mapping, this minimization cannot be done analytically, hence
we employ a numerical line minimization routine from Numerical Recipes [67]. Fol-
lowing Section 6.1.2, we minimize only for variation in the nominator of the cost
functional.

2
D

For the derivative of the nominator of the cost functional with respect to the
update coefficient BF we write (again taking Ff . as an example)

i o8P (85 B, XE (65 B — WE,)

)
=5 b0 (BF) — R, (6.90)
e Ek “Xn—lEil D
in which
O gy _ g 45 exp(—Ta_1® — BEIE)
EEX Ba) = X T —— Ty (6.91)

For the line minimization algorithm we need a starting value for ﬁf , which we obtain
by using a Taylor expansion of the contrast in terms of BE. Taking the first two
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terms of the expansion linearizes the cost functional and we are able to obtain the
following starting value for BF by minimizing the nominator of the linearized cost
functional for variation of Z

Re (xZ(87 = 0)Ex ~ Wi, XZ (87 = By )
Bhitia = — — . (6.92)
[ 62 = 0

where &' (BEF = 0) is defined as

XE(BF)
dBE

E df exP(—"’f—l)

E'(BE _ () = = ’
x~ (B ) pE=0 1+ exp(—TE_l)]2

(6.93)

The expression for 37 has a similar form. From numerical experiments we have
seen that the starting values of 3Z and 3/ are already very close to the final values
obtained by using the line minimization.

6.4 Total variation regularization

In this section we discuss the use of Total Variation (TV) as a regularization term
for the inverse problem. Van den Berg et al. [85] have obtained good results with
this type of regularization, and since the problem of reconstructing a defect in a
PEC configuration is rather ill-posed due to the negative contrasts and the one-
sided illumination, the inclusion of a regularization term in the inversion scheme is
expected to yield better results.

Taking the regularization into account as a multiplicative constraint, we write
the new cost functional as

Fo = [FE(WE.WE,)+ FE.(WE, WE,.x5)| FE.(x®)  (6.94)
[FS n(Wk mw ) + an(Wk no Wf.m Xf)] FZ{{V,n(XH)v

where we have used a separate TV functional for the electric and magnetic parts of
the cost functional. The TV-factors are taken to be the weighted L? norm on the
domain D, i.e.,

1 |VxE|2 + 62_1
FE = — B=-dV, 6.95
TVin |4 D IVXn- '2 + n—l ( )

g oo_ 1 [ IVP+a,
Fon = 7 | ol it (6.96)

It can be seen that both Fif, 1=1 and Ff, _, = 1. Note that these TV-factors
have to be changed for binary inversion, see Abubakar and Van den Berg [4]. At
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the start of each iteration, the TV-terms are equal to one, therefore the update for
the contrast sources does not change. For the contrasts we again use a CG update,
which is different from the update used in the ECSI scheme due to the dependence of
the TV-terms on the contrasts. In the subsequent analysis, we shall take the electric
contrast as an example; the relations for the magnetic contrast have a similar form.
The total gradient of the cost functional with respect to the electric contrast is given
by

95 = Frvg¥®P+ (Fsno1+FE, 1) gtV'E, (6.97)

where ¢X'F is the gradient with respect to xZ as defined in Eqs. (6.32) or (6.34)
and g7 is the gradient of the TV-term with respect to xZ. The gradient gTV*F is
derived as

O g _ o 11 [ VO, +edD)?+82_
EFTV = lim~-<¢ — 5 5
aX e—0e |V D 'VXn—llz + 5n-—1

2 VXn-1 - Vdy
= = dv 6.98
14 /D IVxa_12+62_, (6.9%)

2 / ( g VX1 ) / (V-Vxg_,)dg ]
LA AP — v — . av|.
| 4 [ D VxZ_, 2+ 82, pIVXE_ |2 +82_,;

~dV — Ffv,n-l}

The first integral on the last line of Eq. (6.98) is zero because of the expansion
functions that we use. Recognizing the second integral as an inner product over D,
we obtain the gradient of the TV-term of the cost functional with respect to the
contrast as

V- -VxE.

TV n—1

g = . 6.99)
T VRSP (

The expression for gTV'# obtained in a similar manner.

Now that we have determined the new gradients we only need to calculate
the new update coefficients aﬁf’E and aﬁ'H , Which we take to be real. To this end,
we write the part of the cost functional corresponding to the electric field as

Fy = [FE,+Fp.(xp-1 +0aXFdl)] Py, (x5, + oXEdE),
pe o Dl +axPaDbe, - WEIB)
g i
Zk "Xf—lEfc"%
1 [ |V(xE_, +oXFdE)|? +42_
Vip [Vxr_1?+62_,

Lav. (6.100)

Note that we have only considered the nominator of Fg'n, the denominator was kept
fixed at xZ_,. Doing this enables us to calculate the update coefficient analytically,
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and numerical experiments (Abubakar et al.) have shown that this method leads to
good results. We now write Eq. (6.100) in terms of o', giving

FE(a¥F) = (A1(aXF)? +2450%F + A3) x
(B1(aXE)? + 2ByaXF + By), (6.101)

where the coefficients A, 3 3 and Bj 5 3 are given by

A = nBa 1 lldEEL .13, (6.102)
k
Ay = ng,n—lR‘eZ < dek,nv Xf—1Ek,n - W;ﬁn >D, (6103)
k
A3 = FEWE)+FE(WE, xE_)), (6.104)
By = [ba-1Vd7|3, (6.105)
B, = Re<bp1VxE_1,b,1VdE >p, (6.106)
By = 1, (6.107)
and b,_1 is defined as
b - . : 6.108
- = (v (@108

Taking the derivative with respect to aX'f and setting this to zero results in a grd
order polynomial with one real root and a pair of complex conjugate roots, where
the real root is the desired update coefficient. Finally, we remark that the expression
for the update coefficient aX¥ is found in a similar manner.

We have chosen to use separate TV terms for the electric and magnetic parts
of the cost functional as defined in Egs. (6.94) - (6.96), since the regularization
terms then act on those parts of the cost functional where the respective contrasts
(electric and magnetic) occur.

Since the contrast values are known for the case of a PEC configuration (a
defect in a metal layer), we can also use a binary inversion scheme using TV regular-
ization (Abubakar and Van den Berg [4]), however, this has not been implemented
here.
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Chapter 7

Numerical Results for the Inverse Problem

In this chapter we present numerical results for the inverse problem. We first test
our algorithms by reconstructing contrasts in conductivity and permeability in a
homogeneous background, after which we give results for the inverse problem in a
layered configuration. For the configuration where the background is homogeneous,
we will first take a single scatterer with a contrast in both conductivity and perme-
ability, after which we will use a configuration consisting of two separate scatterers,
with a contrast in either conductivity or permeability. This second configuration
will be used to investigate the mutual influence between the medium parameters in
the inversion. For the layered configuration we start with a geophysical setup where
a contrast is located within a layer. For this configuration the contrasts are small
and positive, and a high frequency is used. Finally, we investigate the inversion for a
PEC configuration, where a scatterer (defect) is located within a metal layer. Note
that in all our inversion experiments we use only a single frequency.

7.1 Inversion for a homogeneous background

In this section we present numerical results for the inversion algorithms described
in Chapter 6. To test the inversion schemes we first consider configurations with a
homogeneous background, since this presents a much simpler problem compared to
the situation where the background medium is inhomogeneous. Note that we have
used the diffusion approximation for configurations with a homogeneous background.
In the subsequent results we take a geophysical problem, where the computational
domain is surrounded by four boreholes, in which the transmitters and receivers are
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(a) Side view (b) Top view

Figure 7.1: Configuration for the inverse problem in a homogeneous back-
ground, side view (a) and top view (b). The computational domain
is indicated by the shaded area, the scattering block is located at its
center. The transmitters/receivers (denoted by crosses) are located
on 4 lines (boreholes) on either side of the computational domain.

located. We use vertical magnetic dipole (VMD) sources and use both the electric
and magnetic field components as synthetic data in the inversion scheme. The
configuration is given in Figures 7.1 and 7.2.

In our inversion experiments, we use all components of the scattered electric
and magnetic fields as data. It can be expected that if we use only some components
or only one field type as data, our inversion results will be worse. The boreholes were
located at (z1,22) = (—25,0), (25,0), (0, —25) and (0, 25), where the dimensions are
in meters. The dimensions of the computational domain were 35 x 35 x 35 m® and a
single frequency of 20 kHz was used. We used 8 sources in total, 2 in each borehole,
located at z = —10 m and z = 10 m. Each source successively radiated while all
receivers recorded data. There were 20 receivers in total, with 5 in each borehole,
located at z = -20, -10, 0, 10, 20 m.

7.1.1 Single scatterer with contrast in x and ¢

For the configuration of a single cube with a contrast in both conductivity and
permeability, the original contrasts are given in Figure 7.3. The scatterer was a cube
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Figure 7.2: Configurations for the single and separate scatterers.

with dimensions of 15 x 15 x 15 m®, a conductivity of ¢ = 0.3 S/m and a relative
permeability u, = 2. The homogeneous background had a conductivity of o5 = 0.1
S/m and relative permeability u, = 1, giving an electric contrast x¥ = 2 and a
magnetic contrast x¥ = 1. The cube was centered in the computational domain.
The reconstructed contrast profiles after 1024 iterations of the ECSI method with
CG update for the contrasts are given in Figure 7.4, no regularization was used. It
can be seen that the edges of the scatterer are smoothed because of the diffusive
nature of the fields and lack of regularization. The maximum value of the contrasts
is overshot by almost a factor of 2 in both cases.

7.1.2 Separate scatterers

To investigate the mutual influence between o and 4 in the reconstruction, we con-
sider the configuration given in Figure 7.2b. The scattering objects are cubes of
10 x 10 x 10 m?, located at opposite corners of the computational domain. We use
the same transmitter/receiver combination, background medium parameters and
frequency as for the single scatterer. The contrast values are now xZ = 1,x# =0
for the scatterer located near Xmin, and xF = 0,x¥ = 1 for the scatterer located
NEAr Xmaz, Where Xmin = (—17.5,—17.5,~17.5) m and Xmqr = (17.5,17.5,17.5) m.
The exact profiles are give in Figure 7.5.

The reconstructed contrast profiles after 1024 iterations of the ECSI method
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with CG update for the contrasts are given in Figure 7.6. Again, no regularization
was used. We can see that there is very little mutual influence between the two
medium parameters in the reconstruction. As with the configuration for a single
scatterer, the edges of the contrasts are not reconstructed very well.

7.1.3 Binary inversion

When the exact value of the scatterer is known, we can employ binary inversion
(see Section 6.3). Assuming a contrast which has a value of either 0 or Xmaz, &
simple algorithm would be to check the minimum and maximum values of the re-
constructed contrast at each iteration and set these to either 0 or xymez, respectively.
A more sophisticated method using a non-linear mapping function was described in
Section 6.3, and we will now present the results for this method. The transmit-
ter/receiver configuration used was the same as in the previous sections, and we will
consider configuration with both single and multiple scatterers. The reconstructed
profiles of the single scatterer after 1024 iterations of the ECSI scheme with expo-
nential constraint is given in Figure 7.7.

It can be seen that the edges of the scatterer are now reconstructed fairly well.
For the configuration with the two separate scatterers, the reconstructed profiles are
given in Figure 7.8. As with the single scatterer, the edges are now reconstructed
much better when compared to the inversion scheme without constraint. The amount
of mutual influence between o and u in the reconstructions is negligible.

7.1.4 One-sided illumination

Since we have only one-sided illumination for the case of a PEC configuration, it is
advisable to investigate the effect of one-sided illumination in the case of a homoge-
neous background configuration. Again, we take the background and frequency pa-
rameters the same as those used in the previous sections and we change the transmit-
ter/receiver configuration such that all transmitters and receivers are located on one
side of the scatterer. For the scatterer we take the single block described in the previ-
ous section. We used 16 transmitters and 25 receivers, located at z = —22.5 m. The
transmitters were evenly spaced in the z,-z; plane, at (z;,z3) = (—25, —10, 10, 25)
m, while the receivers were located at (z;,z2) = (-25,-12.5,0,12.5,25) m. The
exact contrast profiles are given in Figure 7.3, while the reconstructed profiles after
1024 iterations of the ECSI scheme are given in Figure 7.9. No regularization or
constraints were used.

From Figure 7.9 we see that the top of the contrast, near the transmitters and
receivers, is reconstructed reasonably well. However, the bottom of the scatterer is
reconstructed poorly, especially for the contrast in conductivity. This effect is much
less pronounced in the case of the contrast in permeability.
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7.1.5 Negative contrasts

Since the contrasts for the PEC configuration will be negative, we first test our
inverse scheme with negative contrasts located in a homogeneous background. We
again have a single block scatterer with a contrast in conductivity and permeability,
but in this case the scatterer is located in a homogeneous background configuration
with medium parameters o, = 1 S/m and pp = 2ug. The medium parameters of
the scatterer are given by ¢ = 0.1 S/m and p = ug, leading to contrast values of
xF = —0.9 and x¥ = —0.5, respectively. We used a frequency of 20 kHz, while the
receiver and transmitter configuration is the same as that given in Figure 7.1. It
can be seen that the reconstruction is much worse than for the positive contrasts
and that the contrast in conductivity is reconstructed better than the contrast in
permeability. It must be noted that when the contrast values are smaller, £ = —0.5
and x¥ = —0.1, the reconstruction results are much better (all other parameters
begin equal). This indicates that it will be difficult to reconstruct a defect in a PEC
configuration.
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(b) Exact contrast in conductivity x£

(a) Exact contrast in conductivity x&

=0

at T3

(d) Exact contrast in permeability x¥

atzz3 =0

(c) Exact contrast in permeability y&

Figure 7.3: Exact contrasts for the single scatterer configuration.
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Figure 7.4: Reconstructed contrasts for the single scatterer configuration after
1024 iterations of the ECSI scheme, black lines in Figures (a) and
(c) denote the edge of the scatterer.
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Figure 7.5: Exact contrasts for the separate scatterer configuration.
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(c) Reconstructed contrast in permeabi- (d) Reconstructed contrast in permeabi-
lity x¥ lity x¥ at z3 =8.75m

Figure 7.6: Reconstructed contrasts for the separate scatterer configuration af-
ter 1024 iterations of the ECSI scheme, black lines in Figures (a)
and (c) denote the edge of the scatterer.
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Figure 7.7: Reconstructed contrasts for the single scatterer configuration with
exponential constraint after 1024 iterations, black lines in Figures
(a) and (c) denote the edge of the scatterer.
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Figure 7.8: Reconstructed contrasts for the separate scatterer configuration
with exponential constraint after 1024 iterations, black lines in Fig-
ures (a) and (c) denote the edge of the scatterer.
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(a) Reconstructed contrast in conducti- (b) Reconstructed contrast in conducti-
vity xF vity xF at 23 =0
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Figure 7.9: Reconstructed contrasts for the single scatterer configuration with
one-sided illumination after 1024 iterations of the ECSI scheme,
black lines in Figures (a) and (c) denote the edge of the scatterer.
No constraint was used.
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Figure 7.10: Reconstructed contrasts for the single scatterer configuration with
a negative contrast after 1024 iterations of the ECSI scheme, black
lines in Figures (a) and (c) denote the edge of the scatterer. Exact
contrast values are ¥ = —0.9 and x¥ = —0.5.
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7.2 Inversion for a stratified configuration

In this section we will discuss the numerical results for the Extended Contrast Source
Inversion scheme for a stratified configuration. For these configurations, the scatterer
is located within a layer, while the sources and receivers are located above the layer.
Again, to test the inversion schemes, we first consider a geophysical configuration
which is similar in size to the configurations used in Section 7.1. Subsequently we
apply the inversion schemes to a configuration of a metal layer containing a defect.
Note that we use single-frequency inversion and that we have one-sided illumination
for the stratified configurations. We take the permittivity to be € = g¢ for all the
configurations that we consider.

7.2.1 Sensitivity

Whether or not it is possible to reconstruct the dimensions and medium parameters
of a scatterer in a certain configuration depends on the sensitivity of the scattered
fields with respect to the medium parameters of the scatterer. In this section we
present the results for the sensitivity function with respect to conductivity as defined
in Section 4.2.2. The configuration is taken to be stratified, consisting of three layers
where the sources are located above the top layer (see also Figure 4.1). We calculate
the partial derivative of the electric field with respect to the conductivity of the
center layer, and we do this for both a geophysical configuration and a configuration
compatible to the PEC tool (note that we use a 2D configuration for the sensitivity
functions).

For the geophysical configuration all layers have a thickness of 10 m, while the
medium parameters were o = 0.1 S/m and u = pq for the outer layers and ¢ = 0.11
S/m and p = 1.1yo for the halfspaces. The medium parameters of the center layer
are given by ¢ = 2.2 S/m and g = 2.2u9. A vertical magnetic dipole source was
used and the field quantities were calculated with the same numerical code that we
employed for the 2D configuration. We calculate the sensitivity function 8,E with
respect to the conductivity of the center layer as function of frequency, the result of
which is given in Figure 7.11.

The PEC configuration consisted of three metal layers above which a hor-
izontal loop source was located (see Figure 4.1). The medium parameters of the
layers were ¢ = 6.7 x 10¢ S/m and pu = 200uo, while the medium parameters of
the halfspaces on either side were ¢ = 4 S/m and u = ug. The metal layers had a
thickness of 3 mm each. We calculate the sensitivity function 8, F with respect to
the conductivity of the center layer as function of frequency, the result of which is
given in Figure 7.12.
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Figure 7.11: Sensitivity function 8, £ as function of frequency for a geophysical
layered configuration. Solid line denotes real part, dashed line
denotes imaginary part.
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Figure 7.12: Sensitivity function 8, E as function of frequency for a PEC config-
uration. Solid line denotes real part, dashed line denotes imaginary
part.
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Figure 7.13: Configuration for the inversion of a buried scatterer in a strati-
fied geophysical setting, with sources and receivers on one side of
the layer, side view (a) and top view (b). Crosses denote trans-
mitters/receivers, the computational domain is indicated by the
shaded area with the scatterer at its center.

It can be seen that the sensitivity of the PEC configuration is much lower
than that of the geophysical configuration. This is due to the very high values of the
medium parameters of the layers in the PEC configuration. Due to the skin effect,
the amplitude of the electromagnetic fields with the layers is much smaller, which has
direct consequences for the sensitivity function and hence for the inversion results.
Given the sensitivity function of the PEC configuration as given in Figure 7.12, it is
evident that a very low frequency should be used for the inversion experiments, which
leads to loss of resolution. In addition, the amplitude of the sensitivity function is
such that good inversion results cannot be expected. In contrast, the sensitivity
function for the geophysical configuration shows that higher frequencies (in the kHz
range) can be used. Consequently, we may expect better inversion results for this
configuration.

7.2.2 Geophysical configuration

To test the inversion scheme for a layered configuration we first consider a geo-
phyaical configuration with a low contrast in conductivity and permeability. The
configuration, given in Figure 7.13, is that of a scatterer located within a layer,
where the sources and receivers are located above the layer. For the sources we take
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vertical magnetic dipoles and we measure the scattered electromagnetic fields (i.e.,
all components of E*¢* and H*) at the receiver locations. The layer thickness was
taken to be 35 m, while the computational domain was taken to be 35 x 35 x 35 m?,
subdivided into 14 x 14 x 14 grid cells. The scatterer itself was a cube, centered in the
z3-direction, with dimensions 20 x 20 x 20 m3. We used 25 sources and receivers at
20 kHz, where the scattered fields were calculated at all 25 source/receiver positions
for each source in turn. The sources and receivers were located 5 m from the top
of the layer, and at (—25,-12.5,0,12.5,25) m in the z;- and z,-directions (see Fig-
ure 7.13). The medium parameters of the configuration were {o = 0.1 S/m, u = po}
for the halfspaces on either side of the layer, and {c = 0.11 S/m,u = 1.1ug} for the
layer. The medium parameters for the scatterer were {¢ = 0.22 S/m,u = 2.2u0},
leading to the contrast values x¥ = 1 and x¥ = 1, respectively. Note that the
permittivity is set to g throughout the configuration.

In Figure 7.14 we give the exact and reconstructed contrasts in conductivity
and permeability in the z3 —z3 plane at z; = 0 after 1536 iterations of the inversion
scheme. Positivity was enforced at each iteration by setting the negative parts of
the contrast to zero. It can be seen that the part of the scatterer that was located
closest to the sources and receivers is reconstructed reasonably well, however, the
underside of the scatterer is not reconstructed well due to the lack of sources and
receivers on that side.

To investigate effects of a surface-breaking scatterer, we use the configuration
given in Figure 7.13, where the same scatterer is now located against the top of
the layer at the side of the transmitters and receivers. The dimensions, frequency
and medium parameters remain the same. In Figure 7.15, we give the exact and
reconstructed contrasts in conductivity and permeability in the zz — z3 plane at
z1 = 0 after 1024 iterations of the inversion scheme. Positivity was enforced at each
iteration by setting the negative parts of the contrasts to zero, while the magnitude
was limited to the known maximum values. It can be seen that both contrast are
reconstructed reasonably well in the z; — z2 plane at the surface of the layer, but
the lack of resolution in the z3-direction is apparent. This would be better if multi-
frequency and/or full illumination were to be used.

When the medium parameters of the layer have higher values, we are forced
to use a lower frequency to compensate for the skin-effect. In Figure 7.16, we give
the exact and reconstructed contrasts in conductivity and permeability in the z,-
z3 plane at z; = 0 for a configuration where the medium parameters of the layer
are {0 = 0.1 S/m,u = po} for the halfspaces and {o = 0.2 S/m,p = 2uo} for
the layer. The medium parameters of the scatterer were {o = 0.4 S/m, u = 3uo},
leading to the contrast values x® = 1 and x = 0.5, respectively. A frequency of 2
kHz was used while the transmitter/receiver configuration and the dimensions were
the same as those given in Figure 7.13, with the exception that the scatterer was
surface-breaking, as in the previous configuration. It can be seen that the lower
frequency leads to a loss of resolution, which is most apparent in the reconstruction
of the permeability. This is to be expected, since the sensitivity with respect to
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permeability is proportional to frequency (see Section 4.2.2).

7.2.3 PEC configuration

For the inversion with Pulsed Eddy Current data we take a configuration of a void in
a metal layer (i.e., an inclusion-type defect). The transmitter-receiver configuration
is not the same as that of the PEC tool, since for the inversion we use 25 point
sources and receivers located similarly to those used in the geophysical configuration
(see Figure 7.13). The transmitters and receivers were located at 5 mm above the
top surface of the metal layer and at (—14,-7,0,7,14) mm in the ;- and z,-
directions. The medium parameters of the configuration were {¢ =4 S/m,u = yo}
for the halfspaces on either side of the layer (which corresponds to seawater), and
{o = 6.7 x 10° S/m,u = 2000} for the metal layer. The medium parameters for
the scatterer were {¢ = 4 S/m, u = uo}, leading to the contrast values x% = -1
and x7 = —0.995, respectively. Note that the permittivity is set to €5 throughout
the configuration. Because of the high values of the conductivity and permeability
within the layer, a frequency of 10 Hz was used. The forward scheme described in
Chapter 4 was used to generate synthetic data. Note that we use point sources and
receivers instead of the coils that are present in the actual PEC probe. The defect
itself was located within the computational domain that consisted of 14 x 14 x 10
grid cells.

In Figure 7.17 we give the exact and reconstructed contrasts in conductivity
and permeability in the z2-z3 plane at z; = 0 after 1920 iterations of the inversion
scheme. Negativity was enforced at each iteration by setting the contrasts to zero
if the reconstructed value was positive and to —1 when the reconstructed value
was smaller than —1 for contrast in conductivity. For the contrast in permeability,
the lower limit was set to —0.995. It can be seen that only the reconstruction of
the contrast in conductivity yields reasonable results, considering the fact that no
regularization was used apart from the aforementioned constraint. The contrast
in permeability however, is not reconstructed at all, the values being effectively
zero. This is due to the low frequency that is used: this same effect was observed
for inversion experiments using a frequency of 10 Hz for the configuration given in
Figure 7.1. Even though this configuration provides illumination from all sides and
the contrasts were low (xZ = 1 and x¥ = 1), it was not possible to reconstruct the
permeability at all at a frequency of 10 Hz. Since the sensitivity function with respect
to permeability (see Section 4.2.2) is proportional to frequency, it is to be expected
that it is very difficult to reconstruct contrasts in permeability at low frequencies.

To improve the reconstruction results, multi-frequency inversion can be used,
which would also help to alleviate resolution problems and the problem of one-sided
illumination since more independent data would be generated. Because of the low
sensitivity for scatterers when these are located in a layer with such high values of
the medium parameters, it would also be advantageous to use a binary inversion
scheme, where only the edges of the scatterer are located.
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It is noted that Dos Reis et al. [29] obtained significantly better results for
the inversion of defects in thin metal plates, however, the PEC configuration makes
inversion much more difficult. The configuration used by Dos Reis consisted of
a non-magnetic layer, where very small coils were used to measure the scattered
magnetic field at a frequency of either 150kHz or 300kHz. Furthermore, much more
transmitter/receiver positions were used and the computational domain consisted of
52 % 52 x 20 grid cells. The low frequency, relatively coarse spatial grid, probe size
and the presence of magnetic materials in the configuration makes the inversion for
the PEC configuration much more difficult.



136 Chapter 7. Numerical Results for the Inverse Problem

0
x3
175
33 ) 175
2 x2
(a) Exact contrast in conductivity xZ (b) Reconstructed contrast in conducti-
at z1 =0 vity xE at 21 =0
0 0
z3 z3
175} 175
33 0 175 33 [ 175
Z2 T2
(c) Exact contrast in permeability x¥ (d) Reconstructed contrast in permeabi-
atz; =0 lity x¥ at 23 =0

Figure 7.14: Exact and reconstructed contrasts for a layered geophysical config-
uration with embedded scatterer after 1536 iterations, frequency
is 20 kHz. Exact (a) and reconstructed (b) contrast in conduc-
tivity at z, = 0 and exact (c) and reconstructed (d) contrast in
permeability at ; = 0. Dimensions are in meters.
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Figure 7.15: Exact and reconstructed contrasts for a layered geophysical con-
figuration with a surface-breaking scatterer after 1024 iterations,
frequency is 20 kHz. Exact (a) and reconstructed (b) contrast in
conductivity at z; = 0 and exact (¢) and reconstructed (d) contrast
in permeability at z; = 0. Dimensions are in meters.
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Figure 7.16: Exact and reconstructed contrasts for a layered geophysical con-
figuration with a surface-breaking scatterer after 1024 iterations,
frequency is 2 kHz. Exact (a) and reconstructed (b) contrast in
conductivity at z; = 0 and exact (c) and reconstructed (d) contrast
in permeability at z; = 0. Dimensions are in meters.
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Figure 7.17: Exact and reconstructed contrasts for layered PEC configuration
after 1920 iterations. Exact (a) and reconstructed (b) contrast in
conductivity at ; = 0 and exact (c) and reconstructed (d) contrast
in permeability at z; = 0. Dimensions are in millimeters.
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Chapter 8

Discussion and Conclusions

In this thesis we have described the modelling and inversion of Pulsed Eddy Current
data. We have presented several methods to calculate the response of the PEC
tool: first of all we introduced a simple, physical model based on discrete current
filaments, which leads to a system of coupled differential equations for the currents
in each current filament. Based on the eigenvalues and eigenvectors of the system
matrix, we describe the electromagnetic diffusion of the induced currents within the
layer.

To solve the problem of a circular loop source above a conducting and perme-
able layer, we used the symmetry of the configuration to derive a scalar differential
equation for the electric field within and above the layer. Applying a Hankel transfor-
mation leads to expressions for the pertaining electric and magnetic field quantities,
after which numerical integration and a Fast Fourier Transform are used to obtain
the field quantities in the frequency and time domain, respectively. Using this model,
we have calculated the response of the PEC tool for various configurations, as well
as the induced current density within the layer as function of time.

If a defect is present within the layer, the configuration is no longer symmetric
with respect to the axis of the transmitting coil, hence the need to solve the full
three-dimensional problem. We derived the integral equations for the electric and
magnetic field quantities for the case where both electric (conductivity) and magnetic
(permeability) contrasts are present. The Green’s function is split into direct and
reflected parts, which are treated separately.

For the direct part of the Green’s function, we have a configuration where the
scatterer is located in a homogeneous background. We extended the work of Kooij
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and Van den Berg [44], and expressed the coupled integral equations for the field
quantities in terms of the vector potentials. Subsequently, we used piecewise linear
expansion functions for the vector potentials which leads to the finite-difference
approximation for the differential operators acting on the vector potentials. The
resulting system of equations is then solved using a Conjugate Gradient scheme
employing FFTs for the convolutions. We compare the method with the one used
by Abubakar [2] and we test the method with the analytical solution of scattering
by a conductive and permeable sphere, finding good agreement in the results.

For the layered configuration, the reflected part of the Green’s function is
derived by taking a spatial Fourier transformation with respect to the i;- and i,-
coordinates and solving the resulting problem in the Fourier-transform domain. We
use an FFT for the inverse transformation, combined with a grid reduction technique,
which allows us to calculate the inverse transformation with an FFT grid that is equal
to the (much smaller) grid used in the subsequent CG scheme. This method offers a
considerable reduction in computation time while conserving accuracy. To be able to
use FFT routines in the CG scheme, the reflected part of the Green’s function is split
into even and odd parts, with a convolution and a correlation structure, respectively.
Since the CG scheme we use to solve the forward problem needs to be calculated for
a large number of frequencies, we have implemented the marching-on-in-frequency
method to accelerate the convergence of the CG scheme.

For negative contrasts, the convergence of the CG scheme was quite slow,
especially for low frequencies. Therefore, we used a combination of marching-up-
and marching-down-in-frequency to find good initial estimates for the CG scheme.
This slow convergence was also apparent in the inversion for a PEC configuration,
where a large number of iterations were necessary.

For the inverse problem, we distinguish again between the configurations with
a homogeneous and a layered background. We modified the Extended Contrast
Source Inversion scheme by Van den Berg et al. [84] to include both the electric and
magnetic field quantities and contrasts, using single-frequency inversion throughout.
For the PEC configuration, the contrast values are known, therefore we also used the
nonlinear mapping for the contrasts as described by Lambert and Lesselier [46] for
binary inversion. Furthermore, we implemented Total Variation, which Abubakar
and Van den Berg used to great effect, as a regularization method.

The inversion scheme for configurations with a homogeneous background was
tested for various scatterers. When the scattering domain was illuminated from all
sides, the reconstruction results were generally good, it was found that the presence
of a magnetic contrast did not influence the reconstruction of the electric contrast
and vice versa. The application of regularization methods such as Total Variation or
the nonlinear mapping method resulted in vast improvements in the reconstructed
contrasts. Reconstruction results for negative contrasts were poor, even for config-
urations with a homogeneous background. :
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Inversion for a layered configuration, where a scatterer was located within a
layer, was first performed for a geophysical configuration (where the contrasts are
positive). Since one-sided illumination was used, we were only able to reconstruct
that part of the scatterer closest to the sources and receivers. The use of multi-
frequency and regularization methods will lead to improvements in the reconstructed
contrasts, but this was not validated. For inversion with the PEC configuration,
we chose a scatterer that was located completely within the layer, modelling an
inclusion-type defect. This was done in order to facilitate comparisons with the
results of the geophysical configuration and results obtained by Dos Reis et al. [29).

A very low frequency (10 Hz) was used for inversion experiments with PEC
configurations because of the skin effect. From the results of the sensitivity analysis
in Chapter 7 we can see that it will be very difficult to reconstruct defect param-
eters. Because of the low frequency, it is impossible to reconstruct the contrast in
permeability, while the reconstruction results for the conductivity contrast are poor.
When we compare our results to the work of Dos Reis et al. we can conclude that
the fact that the layer has a magnetic permeability greater than pg, combined with
the low frequency that was used, makes our problem significantly more difficult. To
make optimal use of the single-frequency data set, binary and/or parametric inver-
sion methods should be used, but multiple frequency inversion is recommended. For
inversion using measured data, there is the added difficulty that the scattered field
will be averaged over an area due to the finite dimensions of the receiving coils.
This means that many measurements are necessary to construct a workable data
set. Furthermore, noise will be present on the measured data, making it necessary
to use multi-frequency inversion.

We would like to make the following recommendations for further research

¢ Development of an efficient preconditioning operator for use in the CGFFT
method for layered configurations. This would be especially useful for config-
uration with negative contrasts, where convergence is very slow.

¢ The implementation of an FFT routine that can handle branch points and/or
poles on the integration axis. The current implementation is limited to lossy
configurations, while it could be advantageous to use the grid reduction tech-
nique for non-lossy configurations, especially for the case of stratified configura-
tions with more than one interface. Furthermore, the use of fast FFT methods,
such as the FFTW (see www.fitw.org) routines, should be considered.

¢ The use of binary and parametric inversion (see Section 1.4.3), combined with
the use of multiple frequencies. By doing this, the number of unknowns is
greatly reduced and more independent data is obtained. Furthermore, the fact
that the contrast values are known is taken into account. In this way it may be
possible to compensate for the one-sided illumination and limited number of
data measurement points. Alternatively, effective inversion can be used, where
the inversion results are added in the z3-direction to increase sensitivity.
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e The use of the fact that for our specific configuration the contrasts share a
common boundary. This could be incorporated as a penalty term in the cost
functional, hopefully leading to more accurate reconstruction of the boundaries
of the scatterer.

e Inversion by means of a lookup table (directly in the time domain), where
measured data is compared to a library of signals which are obtained either
by numerical calculations using the forward model described in this thesis
or by measurements from controlled experiments (or a combination of these
methods). The measured signal could then be matched to a signal from the
library by means of some minimization procedure.

Finally, it should be noted that for a configuration where the defects are
located at the surface of the layer and where the source can be placed in close
contact to the defect, it would be advantageous to use a high frequency (in the order
of several hundred kHz) and make reflection measurements, where the pipe wall is
taken to be perfectly conducting. In this manner the problem of the high contrasts
of the layer with respect to the halfspaces can be avoided, while high resolution can
be obtained.



Appendix A

Scalar Green’s Functions

In this appendix we will discuss the derivation of the Green’s function for a strati-
fied configuration consisting of one and three layers, respectively. Assuming a loop
current source, we see that the configuration is axially symmetric around the trans-
mitting coil axis and therefore we can use a scalar Green’s function (see also Looijer

[51]).

A.1 Single layer configuration

The configuration, given in Figure A.1, is that of a circular transmitting coil located
above a single layer and we have taken the permittivity into account. Because of the
symmetry properties of the configuration it is advantageous to introduce cylindrical
coordinates, as defined in Section 4.2. We start from the differential equation for the
scalar Green'’s function which is given in Eq. (4.10) and is repeated here in slightly
different form

-1 S 1 S . . A .
. [agc: + a,;a,(rc:) + twpin (op — weq)G] = J&, (A1)

where the subscript n denotes the domain D,, n =1,2,3 (note that we take £ = gg
throughout the configuration). The source term J§** is given by

O(r — r')é(x3 — z3)
2nr )

Jgt =

(A.2)
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Figure A.1: Single-layer configuration for the scalar Green’s function.

Using the Hankel transformation with respect to r, Eq. (A.1) can be rewritten as

-1
Wity

(83— (k2 = kD)) Gkr, 27", 2iw) = o-Ta(ker)o(zs - o5) (AS)

which represents a one-dimensional wave equation. The quantity J; is the Bessel
function of the first kind and order one. The wave number &, is defined as

ki = [weopin +iwpaon], n=123. (A.4)

We have the following boundary conditions

zsl{M}G(kr,zs,r AR 3T{0d}G(kr,a:3,r ,Thw) = 0, (A5)

am{w}é’a.G(kr,zs,ﬂr , Ty w) — r{o 2 83G (kr, z3; 7', Th; w)

]
e

(A.6)

at z3 = 0 and z3 = d, and the excitation conditions

lim G(lc,,:z:;;,r z5w) — lim @(k,-,m;r',xg;w) = 0, (A.7)
z3lzy z3tzy
hIn BG(kr, z3; 7, T3 w) — hm 63G(kr,zs,f’,z‘3;w) = _;“ LA (k)
z3lz}

(A.8)
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at the source interface x3 = z3. The one-dimensional scalar differential equation for
G(kr,z3; 7', 25; w) admits solutions of the type

Gn(kraz3;r,>zé§w) = W: eXp("'YnmiB) + Wr: exP(7n$3)7 (AQ)

which represent up- and downgoing waves in subdomain D,,. The propagation co-
efficient v, is given by

o= -8}, Re(m)20, (A.10)

in which &, is the wave number corresponding to subdomain D,. The amplitude
of the source terms is denoted by Xoi. Substituting the solutions for the up- and
downgoing waves in each subdomain into the boundary conditions results in a system
of linear equations which can be solved for the amplitude coefficients WF. We first
introduce the impedance Z,, of subdomain D, as

—Win

Z, = All
n - (A.11)
and the reflection and transmission coefficients Ry, T7", Ry and Ty as
- B2
Ry = =72 A12
: T+ 72 (a.12)
273
TS = —= A13
2 Y+ (A.13)

_ (l+Rc)e—(1—-Re)m
= T+ Ro) 2T (0—Fo)m’ (A.14)

Ry
_ 272
i = 1+Rc)ve+(1-Re)m’ (4.15)

where the constant R¢ is defined by
Rc = R; exp(—2v2d). (A.16)

We can then write the following expression for the Green’s function for the configu-
ration where the source is located above the layer

Glkr, z3; 7', T3 0) = (A.17)
G, [exp (—m1les — 25]) + Rg exp (11(zs + 73))] z3 <0,
G1T7" exp (m73) [exp(—72%s) + R3 exp (—72(2d - 23))], 0<z3<d,
GrTY exp (1125) T exp (—72d) exp (—y3(z3 — d)), z3 > d,

in which the amplitude factor G, is given by

1
Gl = EZ1J1(IC,-1"). (A.18)
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Figure A.2: Three-layer configuration for the scalar Green’s function.

Note that in this formulation we have 23 < 0. The first exponential function in
the expression for the Green’s function for 3 < 0 is the direct contribution from
source to receiver. This part is neglected when we use this Green’s function to
calculate the PEC signals, since it does not contain any information on the medium
parameters or the thickness of the layer (subdomain D,). The influence of the
medium parameters and thickness d of the layer are contained within the reflection
coefficient R . In the measurement setup, the direct part of the signal is removed
by starting the measurement at a time in the order of ¢ ~ 0.1 ms, at which time the
direct contribution of the source can be considered close to zero.

A.2 Three-layer configuration

We will now discuss the configuration where a circular transmitting coil is located
above three layers (denoted by domains D2, Ds and Dj, respectively), as depicted
in Figure A.2. The wave equation in the Hankel-transform domain is given in Eq.
(A.3). The boundary conditions of Egs. (A.5) and (A.6) are valid for interfaces
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z3 = {dp = 0,d;,dz,d3} and we have again the excitation conditions given in Egs.
(A.7) and (A.8) at the source interface z3 = zj}. The one-dimensional scalar wave
equation for G(k,z3;7’,z}4;w) admits solutions of the type given in Eq. (A.9).
Substitution of the solutions for the up- and downgoing waves in each subdomain
into the boundary equations results in a system of linear equations for the amplitude
coefficients W¥. The reflection and transmission coefficients for the configuration
with three layers are given by

- Y5 — V4
Ry = —— A.19
5 Y5 + V4 ( )
27s
T = —_— A.20
4 Ys + Ya ( )

at interface z3 = d3, while the reflection and transmission coefficients at the other
interfaces are given by the recursion formula

(1 + RC,'n) Tn — (1 - RC,n) Tn—1

R, = , A.21
" T [T+ Rom)mm F (1= Rom) tacs (A4.21)
2%
Thy = ~ A.22
not 1+ RC,") Yo+ (1= Ron) Y1’ ( )
RC,n = R'r:+1 €xp (_2')’n(dn—1 - dn—2)) s (A23)

for n € {2, 3,4} (note that do = 0) and where 4, is given in the previous section. We
can now write the following expression for the Green’s function for a configuration
where a loop source is located above three layers

G(kr,z3;7, 2hi0) = (A.24)

( G [exp (—mles — z4)) + B3 exp (vi(zs + 73))] z3 <0,
G1Ty exp(ma}) [exp(—Y2%3) + Ry exp (—12(2dy — 23))], 0< 23 < dy,.
G1Ti" exp(123)T5" exp(—v2dy) [exp(—s (x5 — d))

+ R exp (—73(2(dz — d1) — z3))], di<z3<dp
G1Ti" exp(1173)T5 exp(—2d1) Ty exp(—vs(da — dy))x

[exp(—v4(23 — d2)) + R3 exp(—va(2(ds — d2) — 23))], da < 23 < ds
G1Ty" exp(1123)T5" exp(—12d1)T5" exp(—vs(dz — di)) x
(T exp(—va(ds — d2)) exp(—s(z3 — d3)), z3 > d3

in which the amplitude factor G; is given by

1 ,
Gi = —Zidi(kr). (A.25)
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Figure A.3: Branch cuts, branch points and integration contours for a configu-
ration with lossy (a) and lossless (b) halfspaces.

As with the Green’s function for the single-layer configuration, we will neglect the
direct contribution from source to receiver (which is included here for completeness’
sake).

A.3 Branch points and poles

To obtain the Green’s function in the frequency domain, we need to calculate the
inverse Hankel transformation of Eq. (A.17). Since a closed-form expression for Eq.
(A.17) does not exist, we employ a numerical integration routine using a trapezoidal
rule. Care must be taken for the step size of the integration, since this depends
strongly on the medium parameters and the dimensions of the configuration. Fur-
thermore, branch points and poles will be present in the complex k, plane and these
could be located on the integration contour, depending on the medium parameters
of the halfspaces. It can be shown (see Chew [22]) that the reflection coefficient
Ry is not a double-valued function of v (or 7, j = 2,3,4, in case of the 3-layer
configuration) and therefore the branch points are associated with the halfspaces on
either side of the layer(s). For the case where the halfspaces are lossy, the branch
points and branch cuts in the complex k. plane are given in Figure A.3. The branch
points are located at k, = +ky,, where n € {1,3} for the single-layer configuration
and n € {1,5} for the three-layer configuration. The integration contour is from
kr =0 to kr — oo, which means that we have to stop the numerical integration at
some ’large’ value of k, = k, mqz, Where the contribution to the integral for values
larger than k. 1,0, is below the predefined error criterion. It can be seen that for the
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case of lossy halfspaces the branch points are not located on the integration contour.
Likewise, if there are poles in the complex k, plane, these will be located off the real
k. axis as well. We can see from Eq. (A.14) that the integrand is not singular at
the branch point and from the properties of the Bessel function we know that the
integrand goes to zero when k, — 0.

Note that when the halfspaces on either side of the layer have the same
medium parameters as air, the branch points are located at k, = fw2equy. For
the numerical implementation, where we calculate the integral for frequencies up to
several kHz, the branch point has a value of k., = O(10~%), which is much smaller
than the integration step. Therefore, the first function evaluation in the numeri-
cal integration routine is done for a value of k, that is already much larger than
the value at which the branch point occurs and consequently we have no problems
with the branch point, even though it is located on the integration axis in the case
where the halfspaces are lossless. When we take the the halfspaces on either side of
the layer to be lossy, the branch points and poles will move off the integration axis
and hence we will encounter no singularities while performing the inverse Hankel
transformation, since the integrand is otherwise well-behaved.
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Appendix B

Dyadic Green’s Functions

In this appendix we will discuss the derivation of the dyadic Green’s functions
for a piece-wise homogeneous stratified medium. We discern four cases of the
dyadic Green’s function, i.e., we have Electric-Electric, Electric-Magnetic, Magnetic-
Electric and Magnetic-Magnetic components. Each of these quantities can be con-
sidered to be a 3x3 matrix, working on a field vector. For the unbounded media,
the dyadic Green’s function can easily be derived from the scalar 3D Green’s func-
tion by letting the grad-div and curl operators act on it. For a stratified medium
however, this operation is not so easily performed due to the complicated nature
of the Green’s function, which now includes reflections from the interfaces. In this
case, we can take advantage of the invariance of the configuration in the i;- and
ip-directions by performing a spatial Fourier transformation with respect to these
coordinates. We then solve Maxwell’s equations in the spatial Fourier-transform
domain and calculate the inverse transformation numerically. The two-dimensional
Fourier integral can either be simplified by introducing cylindrical coordinates (see
for example Chew [22]), after which a numerical integration scheme is applied, or we
can use an FFT to calculate the inverse transformation. Since we need to calculate
the Green’s function for a large number of points within the layer, we have chosen
to use FFTs for the inverse transformation, combined with the use of a grid re-
duction technique (see Appendix C) to increase the computational efficiency. More
information on the subject of fields in layered media can be found in Wait [87] and
Chew [22]. In Section B.1 we discuss the formalism of the electromagnetic fields
in a general stratified configuration, after which we will derive the Green’s func-
tion for a 3-media configuration (a single layer between two half-spaces). We will
consider sources located either within or above the layer (Sections B.2.1 and B.2.2,




154 Appendiz B. Dyadic Green’s Functions

/ D, /
Z3;0

. y
T3

/ D, /
Z3;2 T
z3;5 / : /

- D. nd
23;5 4'_______3 __________________ _//
T3;541 £ -
Z1

/ Iy K ¢ 3 /
ZT3;N-3

/ Dn_2 /
T3;N-2

/ Dy_s /
Z3;N-1

Dn

Figure B.1: Piecewise homogeneous stratified medium, the sources are located
at interface z3,s.

respectively). Subsequently we will discuss the symmetry properties of the Green’s
function in Section B.3 and the numerical implementation in Section B.4.

B.1 The Green’s function for a stratified medium

The medium under consideration is assumed to be a piecewise homogeneous, strat-
ified medium (see Figure B.1). The medium is discontinuous in the zs-direction,
where the z3-axis is taken to be oriented downward. There are N interfaces, la-
belled 0 to N — 1, separating the N + 1 domains. Sources can be present in any
of the domains and are denoted by the primed coordinates. When the sources are
not located on an interface, we introduce an artificial source layer 3,5 = z}. The

]
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domains between the interfaces are defined as
Dy = {(271,.’132) € Rz, -0 <3< 2:3;0}, (Bl)

D, = {(:81,332) € Rz,xs;k_l <z3< .’B3;k}$ (B.2)
where k=1,...,N -1,

Dy = {(501,1'2) € R2,$3;N_1 <T3 < oo}. (B.3)

In each domain, the medium parameters are denoted by o;, €; and p;. For generality
we have included the permittivity in the derivation of the Green’s function, although
we use € = g9 for our calculations.

B.1.1 Maxwell’s equations in the Fourier transform domain

Following Kooij [43], we start from the electromagnetic field equations given in Egs.
(2.16) and (2.17). First, we introduce the quantities n and ¢ as

n = 0 —iwe, (B.4)

¢ = —iwu. (B.5)

Since the medium is shift-invariant in the z;- and z,-directions, it is advantageous

to employ a spatial Fourier transformation as defined in Section 2.5. Using the fact

that under this transformation 8, — —jk, and 8; — —jk,, Maxwell’s equations can

be written as
—ek 300 Hy + jhrexapHp + 0B = —J5=, (B.6)
Ej,3,,-a3E~:,- - jk,gej,&,,-E-’r + CI?J = —R;n. (B7)

For the source terms we will take point sources, therefore ffxt and K J‘-’” are given
by

T = Jié(zs — zb), (B.8)
K;zt = K;-J(:L@—l‘ls), (B9)
where
Ji = exp(i(kiz} + kaz5)) ik, (B.10)
f{J’ = exp (i(kyz} + kax3)) i;. (B.11)

Next, we express E3 and fIs, which are discontinuous across an interface, in terms
of the source quantities and those field components that are continuous across an
interface. This yields

- 1/ - s s
= 5(4;“- jk1H2+Jk2H1), (B.12)
. 1/ - o= a
H = Z(-K;ﬂﬂklEz—szEl). (B.13)
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After eliminating the z3-components from the electromagnetic field equations, we
end up with a 4 x 4 system of coupled differential equations. This system can be
solved by decoupling and application of the boundary conditions to the resulting up-
and downgoing waves. Introducing the state vector as
B,

E,

-H, |’

H

F= (B.14)

we write the following system of differential equations for each layer
O3F + jAF = 0, (B.15)

in which the 4 x 4 system matric A is given by

0 AEH
A=[AHE 0 ] (B.16)

Using the definitions in Egs. (B.12) and (B.13), we can write the submatrices AEH
and AHE a5

-

ik ik k
ABH F J# +i¢ 5 ’17 2 B.17
L n n J
[ jk3 +in —jkiks ]
AHE _ | € Y . (B.18)
—gkikz ki +in
X ¢ ¢ i
At the source level we have
lim F - lim F=Q, (B.19)
z3lzy zgTzgy

where Q is the source vector corresponding to the source at z3,s = r3. This source
vector is given by B
Ry 4 IR
= n 3 B.20
Q=) ik (8.20)
- ik KL
J+ J—-—klc S
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B.1.2 Electromagnetic fields in a homogeneous subdomain

We first solve Eq. (B.15) in a source-free subdomain to obtain a homogeneous
solution to Eq. (B.15). Performing a linear transformation on the state vector F
gives

F=LW, (B.21)
where L is taken to be non-singular and independent of z3. Here, W is the trans-
formed wave vector. Using this in Eq. (B.15) and premultiplying by L~! yields the
decoupled system of differential equations

83W + jL™IALW =0, (B.22)

in which L='AL = T is a diagonal matrix, the elements of which are the eigenvalues
of A. The matrix L has the eigenvectors of A as its columns. Since T is a diagonal
matrix, the system of equations in Eq. (B.22) is now decoupled. We define the
propagation coefficient as

=k -K-8)*, Im@) <o (B.23)
where k is given by
k? = (wlep + iwpo) . (B.24)
With this definition, the diagonal matrix I is given by
r'= diag(—7s =77, ’Y) (B'25)

The solution to this system of uncoupled differential equations is the wave vector
W, which represents the up- and downgoing waves within each subdomain (see
Figure B.2)
_ W~ exp[jv(z3 — 23,7)]

W= [ W+ exp[—57(z3 — 23,7-1)] ] ' (B.26)
The constants W~ and W+ represent the amplitudes for the down- (negative z3-
direction) and upgoing (positive z3-direction) waves, respectively. Since the total
field vector F has length 4, the amplitudes W= and W+ are each vectors of length 2.
The amplitude factor W= represents the downgoing TM and TE modes, while the
amplitude factor W represents the upgoing TM and TE modes within the layer.
The matrices L and L~! are given explicitly as

ky —ka ky ~kg

Le—e1Ll___ | ky ks k1 , (B.27)

V2R R | ik —Yike -Yiki Yikp
I O

and
ki ke Zikn Zik
-1 1 -k kv -Ziko Zik

VAR | B ke —Ziky =Zik, |

-k k1 7,']62 —-Z_ikj

(B.28)
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Figure B.2: Scattering formalism at interface z;;.

where the admittances ¥; and Y; are given by

and the impedances Z; and Z; by

Y, = JZwe ;;f“‘ = 3} (B.29)
Y, = ___ZM =% (B.30)
z;, = Y, (B.31)
Zi = Y.\ (B.32)

Using this formulation, we have made a decomposition into TE and TM modi within

the layer.

B.1.3 Scattering formalism at an interface

At an interface between two regions with different medium parameters and where
no sources are present on the interface, the field vector F is continuous, since it
is composed of those field components that are tangential to the interface. The
situation at the interface between subdomains D; and Dy4, is given in Figure B.2.
The up- and downgoing waves in each subdomain are related through the boundary
conditions at the interface. The scattering formalism at interface Z3,; is defined as
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W W'." ] [ X ]
J =8, J + J . B.33
[ Wi, ] g [ Wi, | T x5, (B-33)

Here, the vector on the left-hand side of Eq. (B.33) represents the waves propagating
away from the interface z3,;, while the wave vector on the right-hand side represents
the wave components propagating towards the interface. The source vector X;
represents the sources that are present at the interface, while the scattering matrix
S; is a 4 x 4 matrix whose elements are the reflection and transmission coefficients
at the interface. The scattering matrix relates the outgoing waves at the interface
to the incoming waves and the sources at that interface.

Rt TT
S; = { Tj* Rj.‘ ] , (B.34)
where the reflection and transmission matrices are given by
Y,y 0 -
Y, +Y; .
Rj = 7 OJ+1 Y;-Y;n exp[—g'yj(:z:a,j - 273,]‘_1)], (B35)
L Yi+¥i4
o [Ems o ]
R; = 0 V=Y | XPl-i+1(T3541 ~ 235)),  (B.36)
B Yit1+Y;
[ 2Y; ]
b7 el ,
T} = ! 0’“ _ 2y, exp(—jv;(z3,; — %3,5-1)]s (B.37)
L Yi+¥jt1 |
and
R - AL
T; = 0 Wy exp(—J7v;j+1(Z3,541 — Z3,5)]- (B.38)
| Yir+Y; i

It can be seen that when the medium parameters in subdomains D; and Dj4,
are equal (i.e., the source is located in a homogeneous subdomain), the reflection
coefficients are zero. For the transmission factors we then only have the exponential
functions, which represent the propagation of the wave components within D; and
Dj+1.

B.1.4 Scattering formalism at the source interface

We take the sources to be located completely within a subdomain, i.e., there can be
no sources present on an interface. Under this assumption, we introduce an artificial
layer, the source layer z3,5, where the sources are located (Figure B.3).

We now have the same configuration as in the previous section, with the
exception that the source term in Eq. (B.33) now has some finite value. Furthermore,
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Figure B.3: The artificial source level z3,.

we can immediately write down the reflection and transmission matrices, since the
artificial source level is located in a homogeneous subdomain. To relate the up-
and downgoing wave components emanating from the source level to the source
components, we use the boundary condition at 3.5, which is given by

lim Fgy;~ lim Fs=Q. (B.39)

z3lzs,s z3lzs,s

The vector of corresponding wave amplitudes is related to the field vector by the
linear transformation

Fg=LsWs. (B.40)

The scattering formalism at the source interface is given by

via | =LwE R LW [+ [
= 2 = + . B.41
[ W;+1 T§ RS WS-H x§+1 ( )

Here, X5 is the source term radiating in the negative z3-direction in Dg, away from
the interface, while X}‘ +1 is the source term radiating in the positive z3-direction in
Ds,1, again away from the interface. In case the subdomains Dg and Dg4y have
the same medium parameters, we have

R = o, (B.42)
Ts = Iexp(~jys(zas — z3,i-1)), (B.43)
T{ = Iexp(—jvs(zaj+1 - Z3;5)), (B.44)
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where I is the 2x2 identity matrix. The source vector can be written as

[ x)is ] ~NL-1Q, (B.45)
S+1

in which N = diag(-1,-1,1,1) and L~! and Q have been given in the previous

section. Eq. (B.45) can be written explicitly as

{ x’fﬁ J - (B.46)

—k1Q1 — k2Q2 — k1 Y5 Qs — ko Y5T1Qq

1 k2Q1 - k1Q2 + kY5 Qs — ki Vs Q4
V2 +ED) | RiQ1+keQs — kﬂi_s_lle - k25:_§11624
—koQ1 +k1Q2 + k2Y 5 Q3 — k1Y 5 Qq

The expression for the up- and downgoing wave components can now be obtained
by substituting Eqs. (B.42) - (B.44) and (B.46) into Eq. (B.41). At the observation
level 3,05, the electromagnetic state vector is obtained from the wave components
by using Eq. (B.21). The discontinuous field components E3 and Hs are then
obtained by using Eqs. (B.12) and (B.13), after which all field components are
known in the Fourier-transform domain. Note that when the medium parameters
on either side of the source interface are different, the expression for the source vector
is more complicated (see Kooij [43]).

B.2 The Green’s function for a 3-media configura-
tion

In this section we will discuss the derivation of the dyadic Green’s function for a 3-
media configuration (i.e., a layer) where the sources are located either within or above
the layer. We will use the theory for the electromagnetic fields in a stratified con-
figuration from the previous sections to obtain expressions for the field quantities in
the spatial Fourier-transform domain. Due to the presence of the Fourier-transform
parameters in the reflection and transmission coefficients it is not possible to derive
closed-form expressions for the field quantities and hence the inverse transformation
must be calculated numerically, which is discussed in Section B.4. To facilitate the
numerical implementation we take the halfspaces on either side of the layer to have
the same medium parameters.

B.2.1 Sources located within the layer

The configuration where the source level is located within the layer is given in
Figure B.4. Since the medium parameters in D; and D; are the same, we can
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Figure B.4: The 3-media configuration, source located within the layer.

immediately see that (cf. Eqs. (B.42) - (B.44))

Ry
T
T}

The source vector at the interface z3.5 = Z3;) is given by

All the other source components are zero. We now
equations for the wave components in each layer

interface z3;0
interface z3;;

interface z3.»

Note that the scattering matrix S; is

o, (B.47)
Texp (—jva(23;2 — 231)), (B.48)
Texp (—jm (3,1 — z3,0)) - (B.49)
X= [ (B.50)

Wi |
wi

|-

0

obtain a coupled system of

| (B.51)
: + [ ii ] (B.52)

(B.53)

(B.54)
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Next, we express each up- and downgoing wave constituent in terms of the source
vector and the reflection and transmission matrices, which results in the following

expressions for WJi

where the matrices relating W‘f,b to the source terms are defined as

FWO—'
| Wi ]
_Wl_-
| WT |
-W2_.
| W2 |
.Ws_-
| W3]

-
= M{J*’-[XH,
<-
— MR+MD[ 1},
( 1 1) x;
—
= oafemp) [ 31
2
<
- w3

[ DT; DT RITT }

| o 0
DR;RIT;T  DRTY
| DR DRJR:TI]'
[ X 0]
0 0]
[ DRyR{ Ty DRY

DR; T} DRJR:Z*T;T;“}’
[0 o]
o 1)

0 0 ]
| DT§R;TH DT}

in which the matrix D is defined as

D

- (-RRITITY)

(B.55)
(B.56)
(B.57)

(B.58)

(B.59)

(B.60)

(B.61)

(B.62)

(B.63)

(B.64)

(B.65)

Note that R;.'“ and T;-': are all 2 x 2 diagonal matrices. The matrices MP and M2

represent the direct contributions from the sources, while M and MZ represent
the (multiple) reflections from the interfaces z3,0 and z3.2.
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Figure B.5: The 3-media configuration, sources located above the layer.

B.2.2 Sources located above the layer

For the configuration wheré the source level is located above the layer, the is given
in Figure B.5. Since the medium parameters in Dy and D, are the same, we can
immediately see that (cf. Eqs. (B.42) - (B.44))

Rf = o, (B.66)
Tg = Iexp(—jm(zsy—z30)), (B.67)
T = 0. (B.68)

The source vector at the interface z3,5 = z3, is given by

x=[§§], (B.69)

all other source components are zero. We now get a coupled system of equations for
the wave components in each layer, consisting of

- - . _

interface 3,0 W?,. = 8o 0_. + X}’. N (B.70)
L W1 J L W1 J Xz
S ot T

interface z3; VV&" = 8§, ‘V}Vv;_ | (B.71)
. p L
e - -

interface z3,0 ;VV?{, = S “62 . (B.72)
L 3 L d

;
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Note that the scattering matrix Sy is given by
=10 Ty
So = [ 0T ] .

Next, we express each up- and downgoing wave constituent in terms of the source
vector and the reflection and transmission matrices, which results in the following
expressions

(B.73)

[ W5 X;
W] - o) [ 3], (B.74)
[ W ] X5
_ W% | = (MF +MP) [ x% ] : (B.75)
[ W2 | _ e[ Xg
Wi | -] B0
w; ] X;
i | =] @
where the matrices My, ..., M3 are defined as
[0 T; (RS +DT{RITT
ME = o (i TR , (B.78)
) 0
I 0
Mp = [10 ] (B.79)
0 R{+DTIRIT]
MR = 1 ! ! } (B.80)
0 0
p _ [0 o0
MP = o I ], (B.81)
[0 DT{RS ]
ME = o , (B.82)
0 DT} |
‘o 0 1
ME = , (B.83)
| 0 DT{T] |
in which the matrix D is defined as
D = (I-R{R})™. (B.84)

Note that RJ* and T;h are all 2 x 2 diagonal matrices. The matrices MY and MP

represent the direct contributions from the sources, while M and MR represent
the (multiple) reflections from the interfaces z3;; and z3,5.
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B.2.3 Calculating the field quantities

The field quantities defined in the electromagnetic state vector can be derived from
the up- and downgoing wave constituents by applying Eq. (B.21). To obtain the
components of the electric-electric and magnetic-electric dyadic Green’s function,
we set

JEotx) = 8(x — x')ix, (B.85)
K&t(x) = 0, (B.86)

after which we obtain the components of the Green’s function from the electromag-
netic state vector as

gEE R gEE ,D
ropoo | GF G35
F=F"+F" = _'HE,R + ghE’D , (BS?)
g‘llggi{'c,}i gHE D

where we have split the Green’s function into a direct and a reflected part. Note that
we calculate only the reflected part of the Green’s function using this formulation.
For the calculation of the direct part we use expansion functions to derive expressions
for the gradient-divergence and curl operators working on the vector potentials,
while for the reflected part of the Green’s function the effect of these differentiation
operators is calculated in the k-domain. For the z3-components of the reflected part
we write

1/ - - s
Gan® = 2 (=I5 = G + ikaGEEF) (B.88)
17 - .
gHE R _ ¢ (_.ngt _*_JklgEE R _szgas R) ) (B.89)

For the magnetic-magnetic and the electric-magnetic parts of the Green’s functions
we set

Jettx) = 0, (B.90)
Kt (x) = §(x-x)ij, (B.91)

after which we obtain the components of the Green’s function from the electromag-
netic state vector as

ngR gzﬁn
R D H,R g H,D
F=Fi4FP = ﬁm + _Ghno | (B.92)

g;m R gHH D
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where we have again split the Green’s function into a direct and a reflected part.
For the z3-components of the reflected part we write

5 1/ cemt .o A s
ok = 5(-Jgﬂ—Jklgf,f"*ﬂkzgf,f’-"‘), (B.93)
5 1/ - s s

e = Z(—K§"+Jk19§ff’R—szgf,f""). (B.94)

The direct part of the Green’s function can be calculated analytically from the scalar
Green’s function as

GPE(x,x') = (K +VV)G(x,x)]I, (B.95)
GEH(x,x') = dwuV x G(x,x)I, (B.96)
GHE(x,X) = (0—iwe)V x G(x,x)I, (B.97)
GHH(x,x") = (k*+VV)G(x,%)I, (B.98)

where & is the wave number as defined in Eq. (B.24).

B.3 Symmetry properties of the Green’s function

In calculating the Green’s function, we can take advantage of its symmetry proper-
ties. First of all, in the Fourier-transform domain, the state vector is symmetric or
antisymmetric for a change in the sign of ki ». This reduces the number of function
evaluations in the transform domain to iN ,f, where Ny, is the number of FFT grid
points in one direction. Second, since the medium is isotropic and invariant in the
Z1- and z»-directions, the fields generated by sources in those directions are equiva-
lent. This means that only 4 source types, Ji, J3, K1 and K3, have to be considered.
Furthermore, the symmetry properties of the configuration in the zs-direction can
be exploited, since we assume the halfspaces on either side of the layer to have the
same medium parameters.

For a configuration with a homogeneous background, the integral relations for
the field quantities contain convolution integrals of the Green’s functions and the
product of the contrasts and the fields (the contrast sources). In this case, it can be
easily seen that the contribution of a certain point in the scatterer to the integral
is solely dependent on the path length from that point to the receiver location,
which gives rise to the convolution structure. For a 2-media configuration where
both source and receiver are located on the same side, the Green’s function can be
split into & direct and a reflected part. The integral over direct part is still of the
convolution type, but now the integral over the reflected part is of the correlation
type.

In case of a configuration consisting of a layer where the source and receiver are
both located within the layer, the situation is still more complicated. We again split
the Green’s function into a direct and a reflected part, but now it is also necessary
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to split the reflected part further, giving a part corresponding to an odd number of
reflections and another part corresponding to an even number of reflections. We can
write

G=G62+GR,+GE,.. (B.99)

Now the odd reflected part has a correlation structure while the even part has a
convolution structure, which can be seen by considering the path length between
transmitting and receiving positions. Therefore, when calculating the integral over
the scattering domain of the Green’s functions and the contrast sources, we need to
calculate a correlation type integral and a convolution type integral, both of which
can be efficiently calculated using FFTs. If our CG grid is M x N x P points, we will
need to calculate the Green’s function on 2M x 2N x 2P points to be able to calculate
the convolutions and correlations using FFTs. Because of the symmetry properties
of the configuration, it suffices to calculate the fields at all grid positions in the z3-
direction for only a single source position. The Green’s function corresponding to
other source positions can be obtained by using the symmetry of the configuration
around the plane (3,2 — Z3,0)/2 and by using the fact that since the reflection factors
Ry and R are equal, only the path length from source to receiver determines the
field values.

In order to split the reflected part of the Green’s function into even and odd
parts, we rewrite the denominator of the elements of the matrix Mf‘ in Egs. (B.59)
- (B.64) as

[[-RyRITT!] ' = (B.100)

- ®srETT)]” + [1- RoRETITY] T ReRETITL,

where the first term on the right-hand side represents the part corresponding to
the even number of reflections and the second term represents the part correspond-
ing to the odd number of reflections. These parts are calculated separately, which
doubles the number of FFTs when calculating the Green’s function. We calculate
the convolutions and correlations using the same routine, the different operators
being implemented by ordering the arrays containing the Green’s functions in the
appropriate manner.

Note that the medium parameters in halfspaces on either side of the layer
must be equal for this reasoning to apply. If this is not the case, the reflection
coefficients at the upper and lower interfaces would not be equal and the reflections
from the upper and lower interfaces would have to be treated separately.
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B.4 Numerical implementation of the Green’s
functions

In this section we will discuss the numerical implementation of the inverse spatial
Fourier transformation occurring in the Green’s functions. In the previous sections,
we have derived expressions for the field vector in the Fourier-transform domain,
and due to the complicated nature of these expressions it is not possible to find a
closed-form solution for the field vector in the spatial domain, hence the need for
a numerical inverse spatial Fourier transformation. In this section we discuss the
method of integration, the integration path and the branch points and poles that
are present in the complex k-plane. We have chosen to use FFTs for the inverse
transformation since this allows us to calculate the Green's function in the T1-T2
plane with a single FFT. Combined with the grid reduction technique discussed
in Appendix C and the fact that introducing small losses in the halfspaces does
not significantly influence the PEC signal, the use of FFTs leads to an efficient
computational scheme.

B.4.1 Branch points and poles

In a layered configuration, the upper- and lowermost layers (i.e., the halfspaces)
give rise to branch points in the complex k; and k; planes (see Chew [22]). When
the halfspaces are lossless, the branch points and the associated branch cuts are
located on the real and imaginary k; and ko axes and hence on the integration
contour for the inverse Fourier transformation. In this case, it can be advantageous
to use numerical integration routines to calculate the Green’s function in the spatial
domain, since this enables us to deform the integration contour around the branch
points and poles. Furthermore, a steepest descent method can be used to evaluate
the resulting integrals, which leads to an efficient scheme (see Cui [25], [26]). Since
we have taken the halfspaces to be lossy, the branch points and associated branch
cuts are located away from the real k; and k; axes (see Figure B.6). It can be seen
that there are no branch points on the integration contour (the real k; and k; axes).
If the halfspaces are taken to be lossless, the branch points and branch cuts move
onto the real and imaginary k; and k; axes, as was the case for the 2D configuration
(Figure A.3).

The presence of poles is caused by the zeros of the denominators of Eqs. (B.59)
- (B.64) and Eqs. (B.78) - (B.83). Since we assume the halfspaces on either side of
the layer to be lossy, the poles will be located off the real k; and k, axes and therefore
we encounter no problems when performing the inverse Fourier transformation by
integrating over the real k; and real k; axes. Should we have a configuration where
the halfspaces are lossless, poles could be located on the integration contour and
care must then be taken to deform the contour or to take the pole contributions into
account.
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Figure B.6: Branch cuts, branch points and integration contours in the complex
k2 plane (a) and the complex k; plane (b) for a 3-media configura-
tion with lossy halfspaces.

B.4.2 Using the FFT for the inverse transformation

In using the Fast Fourier Transform for the inverse transformation to the frequency
domain, care must be taken to avoid errors caused by insufficient sampling etc.
These errors are aliasing errors, caused by using an insufficient number of spatial
frequencies, thereby violating the sampling theorem. Energy of the signal outside
the sampling interval is then ’folded’ into the resulting signal. When either branch
points or poles are on or close to the integration axis, the integrand will be either
singular or oscillating at or near these points, which makes a very large number of
points in the Fourier-transform domain necessary. Another type of error that can
occur are leakage errors, which are caused by using an insufficiently large sampling
window. For the inverse transformation, it is assumed that the signal is zero outside
the sampling window. If this is not the case, leakage errors will occur. In the next
subsections, we describe the use of periodicity to decrease the size of the FFT grid
and the accuracy of the FFT in calculating the reflected part of the Green’s function.

Accuracy of the FFT

We have tested the accuracy of the Green’s function obtained with the inverse FFT
byt&ldngthegridtwiceasﬁneandcompuingtheresultwiththatobtainedby
performing the FFT over a coarser grid. We recommend that this procedure always
be followed when calculating a Green’s function with FFTs. This procedure also
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ensures that aliasing and leakage are small enough not to affect accuracy. The same
procedure should be followed when calculating the Green’s function for grid points
close to the interface. In order to determine the influence of the branch points
and poles, we have taken several values for the conductivity of the halfspaces and
compared the resulting Green’s functions. It was found that a value of 4 S /m caused
the branch points to be far enough away from the integration axes. This value for the
conductivity of the halfspaces corresponds to seawater, which is realistic since the
PEC tool has been operated under water without noticeable effect on the measured
signals. The effect of the extent of the grid in the Fourier-transform domain was also
investigated by taking several values of kn,q,; and subsequently checking whether the
variation in the Green’s functions was small enough.

In order to compare the different Green’s functions, we define the squared
relative error of a quantity over the FFT grid at a fixed value of z3 as

Sme1 Znei (G1(@mn) = 6@mn)) (G1(2mn) = Glomn))”

ERR = = =
271:{:1 Zf=1 G(Zmn)G*(Tm,n)

(B.101)

where the grid has M by N points and where @ is a component of the Green’s
function. The subscript f denotes the Green’s function obtained with the finer
sampled grid. Using this formulation, the relative error in the reflected parts of
the Green’s function used in Chapters 4 and 5 was about 2%. Note that we can
increase the relative accuracy of the Green’s function with only a small increase in
computational cost by using the grid reduction technique described in Appendix C.




172 Appendiz B. Dyadic Green’s Functions




Appendix C

Grid reduction for FFTs

In this chapter we will discuss a method to reduce the grid size of the FFTs that
are used to calculate the Green’s function. In order to obtain sufficient aceuracy,
we need a large number of grid points to calculate the inverse spatial Fourier trans-
formation using an FFT. However, having calculated the FFT, we only need the
Green’s function on a subset of these points, since the grid that is used for the CG
scheme is much smaller than the grid used for the FFT. In this chapter we propose
a method whereby the number of grid points is reduced before application of the
FFT algorithm, leading to a considerable reduction in computation time.

C.1 Using periodicity to reduce the number of grid
points

We will first discuss the effect of the periodicity of a function on its Fourier coeffi-
cients. A periodic function f(¢) has the Fourier transformation

To/2
F(jw) = [Tﬂﬂoamewwa, (C.1)

where Ty is the period of f(£). When the function is aperiodic (Tp — ©0), the
integration limits are —oo and co. The periodic function f(t) can be written in
terms of its Fourier components as

f6) = Y ceexp(ikunt), (C2)

k=-00
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Figure C.1: Periodic hat functions and corresponding Fourier coefficients (nor-
malized to T3, i=1,2,3)

where the Fourier coefficients ¢, are given by

1 [To/2
o = g [ f®)em(-ibut)a, (C.3)
0J=-Ty/2
and wo = 27/Tp. From Egs. (C.3) and (C.1) it follows that
1 .
& = F(jw) , (C4)
0 w=kwo

i.e., the coefficients c; are the values of F(jw) sampled at w = kwy, k € Z. Con-
sequently, the continuous frequency domain function F(jw) is the envelope of the
discrete Fourier coefficients ¢, (see Figure C.1).

For now, we consider the hat function as an exémple to illustrate the effect
on the Fourier coefficients of varying the period of a function. The aperiodic hat

function is defined as
1= <at
t) = ae? - C5
1) { 0, elsewhere, (C5)
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while its Fourier transformation is given by
F(jw) = Atsinc*(wAt/2). (C.6)

When we convolve the function f(t) with a time sampler Yoo 0(t — mTy), we
obtain a periodic function with period T; and we can then calculate its Fourier
coefficients by applying Eq. (C.3) (see Figure C.1a). For a function with period T}

the normalized coefficients T;cy ; are found as

At 2 szAt
Cki = — sinc*(

T; 2
where w;-= 27 /T;. Decreasing the period T} results in less Fourier coefficients
(compare Figures C.la and C.1b). Specifically, if we halve the period, all odd-
numbered Fourier coefficients will become zero, while the even numbered coefficients
will be twice as large (note that all coefficients in Figure C.1 are normalized to T;).
We can continue to decrease the period until we arrive at the situation depicted in
Figure C.1b, where we are sampling at exactly the Nyquist rate.

) (C.7)

We now decrease the period even further, such that we are aliasing the func-
tion in the time domain. In the frequency domain, this results in even less Fourier
coefficients, but those coefficients that remain nonzero still have the same values as
before (scaled by the period T;). Of course, the limiting case is where the period T
tends to zero, and we then end up with a continuous and constant function which
has a Dirac delta function as its transformation.

We can conclude that when we are interested in the exact function value on
a small number of points in the transform-domain, we can reduce the period of the
function to the point where we are deliberately aliasing. Then for that particular
period of the function, we end up with exactly those points in the transform-domain
that we were interested in. Note that this method also works for the inverse trans-
formation because of the duality property of the Fourier transformation.

C.2 Application to the FFT algorithm

We will now apply the idea of deliberately aliasing to a discrete FFT. Given the
discrete inverse Fourier transformation (see Press et al. [67))

2nikn )
N 3

N-1
fr = Z FnexP(—

n=0

(C.8)

we now reduce the period of the function in the transform-domain by a factor of
two (see Figure C.2). The length of the FFT changes from N to N, /2 points, which
leads to

NE omikn
fae = ngo F"exP(—_N/_2)' (C.9)
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Figure C.2: Decreasing the period of the function by a factor of 2, open dots
in lower left-hand figure correspond to the ’superfluous’ points that
are obtained using the large FFT.

Next we split the summation into three parts, one from n = 0 to n = N/4 — 1 over
N/4 points, one from n = N/4 to n = 3N/4 — 1 over N/2 points and one from
n =3N/4 to n = N — 1, again over N/4 points. The summations over N/4 points

can be rewritten as

and

N/4-1

2mikn
> Frexp(-—7=) =
= N/2
3N/4-1 .
2nikn’
> Fuonp eXP(—TV72—)
n'=N/2
N-1 .
2nikn
> Faexp(- -F/é_) =
n=3N/4
N 2mikn”

Y. Farsnpexp(-220)
wizN/4 N/2

(C.10)

(C.11)
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where n' = n + N/2 and n” = n — N/2. Combining these summations leads to the
following inverse FFT over N/2 points

N/2-1

2mikn
fae=>_ (Fa+ Foyns) exp(——75-) (C.12)
/2
n=N/4
8N/4-1 2mikn
+ Z (Fn + Fn-N/‘Z) eXP(—N_/2)~
n=N/2

Using the original transformation with N points, the function A in the spatial domain
is obtained at the points kAz, k=0,...,N — 1. Taking the FFT over N/2 points
as described in Eq. (C.12) yields the function A in the spatial domain at the points
2kAz, k=0,...,N/2—-1.

On these points, the reduced FFT yields exactly the same values as the orig-
inal FFT, i.e., this corresponds to discarding all odd numbered grid points from the
result of the original FFT. This doubling of the periodicity of the function can be
done recursively, leading to hosx, where p is number of times the periodicity has
been doubled. The procedure described above is given graphically in Figure C.2,
where the periodicity is increased by a factor of 2. The open dots in the lower left-
hand figure are those points that are effectively neglected, i.e., the odd-numbered
points (compare to Figures C.la-b). Note that the grid reduction procedure de-
scribed above can also be implemented for multi-dimensional FFTs, where we must
successively fold along each direction before performing the FFT.

Note that we must divide by 1/2P to obtain the correct amplitude for the
inverse transformation. In effect, all normalizations that are done (division by N
and division by Az) for the inverse transformation must also be done for the folded
inverse transformation. The reduction in N is exactly compensated for by the extra
division by 1/2P, resulting in no net change in amplitude.

In the procedure described above, we start from the fact that we need the
transformed function on only a small, specific number of points. Depending on the
number of folding steps, we are interested in the points fox, n = 2,4, ... of the orig-
inal sequence that arises from the N-point FFT. This procedure is similar to using a
decimation-in-frequency FFT (the Sande-Tukey algorithm), where only parts of the
output and algorithm are used. In Figure C.3 we describe schematically the first step
of the decimation-in-frequency algorithm working on a discrete function of length
8. In the decimation-in-frequency algorithm, the output sequence f; is divided into
smaller subsequences, as opposed to the decimation-in-time (Cooley-Tukey) algo-
rithm, where the input sequence is divided into subsequences. From Figure C.3 we
see that the N-point DFT is divided into two N/2-point DF'Ts and performing this
step recursively leads to the (decimation-in-frequency) FFT algorithm. If we now
choose to omit the DFT for that part of the output sequence fi where k is odd, we
end up with the subsequence fi, where k is even (i.e., we discard all odd-numbered
samples). Note that it is not possible to use the decimation-in-time (Cooley-Tukey)
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Figure C.3: Schematic description of the first step of the decimation-in-
frequency FFT algorithm. Calculating only the DFT for f,, n
even, corresponds to decreasing the period of the function with a
factor of 2. The factor W}, is defined as exp(—j27k/N).

algorithm to this end, since in that algorithm the additions are at the end of the
algorithm instead of the at the start.

This means that we only have to calculate an N/2-point DFT in order to
obtain fi where k is even. Therefore, omitting one of the N/2-point DFTs in
Figure C.3 corresponds to decreasing the periodicity of the input sequence F,, with
a factor of 2, as described previously. We can conclude that the reduction in grid
size accomplished by the grid reduction technique corresponds to the decimation-
in-frequency FFT algorithm, where only a part of the algorithm is used. Recursive
application of the principle given in Figure C.3 enables us to reduce the size of
the output sequence even further, which corresponds to taking more grid reduction
steps.

Finally, we note that the grid reduction procedure described in this appendix
can also be used for transformations of time domain signals to the frequency domain
and vice versa. Causality is guaranteed, since the resulting discrete signal is merely
a subset of the signal that would have been obtained using the larger FFT.



Bibliography

(1] Abramowitz, M., and Stegun, I.A., Handbook of Mathematical Functions, 9th ed.,
Dover Publications, New York, 1970.

(2] Abubekar, A., Three-dimensional nonlinear inversion of electrical conductivity,
Ph.D. Thesis, Delft University Press, Delft, The Netherlands, 2000.

[3] Abubakar, A. and P.M. van den Berg, Total variation as a multiplicative con-
straint for solving inverse problems, IEEE Transactions on Image Processing,
10, pp. 1384-1387, 2000.

[4] Abubakar, A. and P.M. van den Berg, The contrast source inversion method for
location and shape reconstructions, Inverse Problems, 18, pp. 495-510, 2002.

[5] Albanese, R., G. Rubinacci and F. Villone, An Integral Computational Model for
Crack Simulation and Detection via Eddy Currents, Journal of Computational
Physics, 152, pp. 736-755, 1999.

(6] Badics, Z., Y. Masumoto, K. Acki, F. Nakayasu, M. Uesaka and K. Miya, An
Effective 3-D Finite Element Scheme for Computing Electromagnetic Field
Distortions due to Defects in Eddy-Current Nondestructive Evaluation, IEEE
Transactions on Magnetics, 32, No. 2, pp. 1012-1020, 1997.

[7] Badics, Z., H. Komatsu, Y. Matsumoto and K. Aoki, Inversion Scheme Based on
Optimization for 3-D Eddy Current Flaw Reconstruction Problems, Journal
of Nondestructive Evaluation, 17, No. 2, pp. 67-78, 1998.

8] Beissner, R.E., and M.J. Sablik, Theory of eddy currents induced by a nonsym-
metric coil above a conducting half-space, Journal of Applied Physics, 56, No.
2, pp. 448-454, 1984.

[9] Beissner, R.E., and J.L. Fisher, A model of pulsed eddy current crack detection,
Review of Progress in Quantitative Nondestructive Evaluation, 5, pp- 189-197,
1986.




180 Chapter C. Bibliography

(10] Bloemenkamp, R.F., Time-Domain Nonlinear Profile Inversion of Subsurface
Configurations, Ph.D. Thesis, Delft University Press, Delft, The Netherlands,
2002.

[11] Blok, H., and M.L. Oristaglio, Wavefield imaging and inversion in electromag-
netics and acoustics, Report number Et/EM 1995-21, TU Delft, The Nether-
lands, 1995.

(12] Bowler, J.R., Eddy current calculations using half-space Green’s functions, Jour-
nal of Applied Physics, 61, No. 3, pp. 833-839, 1986.

[13] Bowler, J.R., A Theoretical and Computational Model for Eddy Current
Probes Incorporating Volume Integral and Conjugate Gradient Methods,
IEEE Transactions on Magnetics, 25, No. 3, pp. 2650-2664, 1989.

[14] Bowler, J.R., Eddy-current interaction with an ideal crack. I The forward
problem, Journal of Applied Physics, 75, No. 12, pp. 8128-8137, 1994.

(15] Bowler, J.R., Eddy-current interaction with an ideal crack. II. The inverse
problem, Journal of Applied Physics, 75, No. 12, pp. 8137-8144, 1994.

[16] Bowler, J.R., S.A. Jenkins, L.D. Sabbagh and H.A. Sabbagh, Eddy-current
probe impedance due to a volumetric flaw, Journal of Applied Physics, 70,
No. 3, pp. 1107-1114, 1991.

[17] Bowler, J.R. and M. Johnson, Pulsed Eddy-Current Response to a Conducting
Half-Space, IEEE Transactions on Magnetics, 33, No. 3, pp. 2258-2264,
1997.

(18] Bowler, J.R., and N. Harfield, Evaluation of Probe Impedance Due to Thin-
Skin Eddy-Current Interaction with Surface Cracks, IEEE Transactions on
Magnetics, 34, No. 2, pp. 515-523, 1998.

[19] Burrows, M., A Theory of Eddy-Current Flaw Detection, Ph.D. Thesis, Univer-
sity of Michigan, University Microfilms Inc., Ann Arbor, Michigan, 1964.

[20] Cheesman, S.J., R.N. Edwards and A.D. Chave, 1987, On the theory of sea-floor
conductivity mapping using transient electromagnetic systems, Geophysics,
52, No. 2, pp. 204-217, 1987.

[21] Cheng, C.C., C.V. Dodd and W.E. Deeds, General Analysis of Probe Coils near
Stratified Conductors, International Journal of Nondestructive Testing, 3, pp.
109-129, 1971.

[22] Chew, W.C., Waves and fields in inhomogeneous media, IEEE Press, New York,
1995.

[23] Clark, W.G., Multiple-Element Eddy Current Probes For Enhanced Inspection,
Materials Evaluation, July 1993, pp. 794-802, 1993.

[24] Creek, E.A. and R.E. Beissner, Eddy current exam simulation using coupled
FEM/Volume integral or FEM/BEM method, Review of Progress in Quanti-
tative Nondestructive Evaluation, 16, pp. 225-232, 1997.




181

(25] Cui, T.J. and W.C. Chew, Fast Evaluation of Sommerfeld Integrals for EM
Scattering and Radiation by Three-Dimensional Buried Objects, IEEE Trans-
actions on Geoscience and Remote Sensing, 37, No. 2, pp. 887-899, 1999.

[26] Cui, T.J. and W.C. Chew, Fast Algorithm for Electromagnetic Scattering by
Buried 3-D Dielectric Objects of Large Size, IEEE Transactions on Geoscience
and Remote Sensing, 37, No. 5, pp. 2597-2608, 1999.

[27] Dai, X-W., R. Ludwig, Numerical Simulation of Eddy-Current Nondestructive
Testing Phenomena, IEEE Transactions on Magnetics, 26, No. 6, pp- 3089-
3096, 1990.

[28] Dodd, C.V. and W.E. Deeds, Analytical Solutions to Eddy-Current Probe-Coil
Problems, Journal of Applied Physics, 39, No. 6, pp. 2829-2838, 1968.

[29] Dos Reis, D., M. Lambert and D. Lesselier, Eddy-current evaluation of 3-D
defects in a metal plate, to appear in Inverse Problems, December 2002.

(30] Dunbar, W.S., The Volume Integral Method of Eddy-Current Modeling: Veri-
fication, Journal of Nondestructive Evaluation, 7, Nos. 1 /2, pp. 43-54, 1988.

[31] Farquharson, C.G. and D.W. Oldenburg, Inversion of time-domain electromag-
netic data for a horizontally layered Earth, Geophys. J. Int., 114, pp. 433-442,
1993.

(32] Fukutomi, H., H. Huang, T. Takagi and J. Tani, Identification of Crack Depths
from Eddy Current Testing Signal, JEEE Transactions on Magnetics, 34, No.
5, pp. 2893-2896, 1998.

[33] Fullagar, P.K. and D.W. Oldenburg, Inversion of horizontal loop electromagnetic
frequency soundings, Geophysics, 49, No. 2, pp. 150-164, 1984.

[34] Goldman, M.M. and C.H. Stoyer, Finite-difference calculations of the transient
field of an axially symmetric earth for vertical magnetic dipole excitation,
Geophysics, 48, No. 7, pp. 953-963, 1983.

35] Haak, K.F.I., Multi-frequency nonlinear profile inversion methods, Ph.D. Thesis,
Delft University Press, Delft, The Netherlands, 1999.

[36] Habashy, T.M., R.W. Groom and B. Spies, Beyond the Born and Rytov ap-
proximations: A nonlinear approach to electromagnetic scattering, Journal of
Geophysical Research, 98, pp. 1759-1775, 1987.

[37] Haywood, N.C., Eddy-Current Imaging of Cracks by Inverting Field Data, Ph.D.
Thesis, University of Surrey, The British Library Document Supply Centre,
UK, 1990.

[38] Hower, G.L., D. Philipp, A. Abtahi and R.W. Rupe, Some Computational
Considerations in Eddy-Current NDE, Journal of Nondestructive Evaluation,
4, No. 1, pp. 39-42, 1984.

[39] Jenkins, S.A., Theoretical Models of Eddy Current Interaction with Defects,
Ph.D. Thesis, University of Surrey, The British Library Document Supply
Centre, UK, 1991.




182 Chapter C. Bibliography

[40] Johnk, C.T.A., Engineering Electromagnetic Fields & Waves, John Wiley &
Sons, 1975.

[41] Juillard, J., G. Pichenot and A. Masia, Semianalytical Method for Calculating
the Impedance Variation of an Arbitrary Eddy-Current Probe, IEEE Trans-
actions on Magnetics, 38, No. 5, pp. 3448-3453, 2002.

[42] Idemen, M. and I. Akduman, Two-dimensional inverse scattering problems con-
nected with bodies buried in a slab, Inverse Problems, 6, pp. 749-766, 1990.

[43] Kooij, B.J., Analysis of Transient Electromagnetic Fields in an Electrical Utility
Substation Environment, Ph.D. Thesis, Delft University Press, Delft, The
Netherlands, 1994.

[44] Kooij, B.J., and P.M. van den Berg, Nonlinear inversion in TE scattering, IEEE
Transactions on Microwave Theory and Techniques, 46, No. 11, November
1998.

[45] Kriezis, E.E., T.D. Tsiboukis, S.M. Panas and J.A. Tegopoulos, Eddy Currents:
Theory and Applications, Proceedings of the IEEE, 80, No. 10, pp. 1559-
1585, 1992.

[46] Lambert, M. and D. Lesselier, Binary-constrained inversion of a buried cylindri-
cal obstacle from complete and phaseless magnetic fields, Inverse Problems,
16, pp. 563-576, 2000.

[47] Lebrun, B., Y. Jayet and J.C. Baboux, Pulsed Eddy Current Application to the
Detection of Deep Cracks, Materials Evaluation, November 1995, pp. 1296-
1300, 1995.

(48] Lee, T. and R. Lewis, Transient EM response of a large loop on a layered ground,
Geophysical Prospecting, 22, pp. 430-444, 1974.

[49] Lepelaars, E.S.A.M. Transient Electromagnetic Ezcitation of Biological Media
by Circular Loop Antennas, Ph.D. Thesis, Universiteitsdrukkerij TUE, Eind-
hoven, The Netherlands, 1997.

[50] Litman, A. and D. Lesselier, On attenuation-matched inversion methods of
diffusive wavefields, Inverse problems, 15, pp. 99-111, 1999.

[51] Looijer, M.T., Analysis of eddy-current inspection of cracks and corrosion in
@ simple configuration, Report number Et/EM 1995-20, Delft University of
Technology, The Netherlands, 1995.

[52] Ludwig, R. and X. Dai, Numerical and analytical modeling of pulsed eddy
currents in a conducting halfspace, IEEE Transactions on Magnetics, 26, No.
1, pp. 299-307, 1990. A

[53] Luong, B. and F. Santosa, Quantitative imaging of corrosion in plates by eddy
current methods, Journal of Applied Mathematics, 58, No. 5, pp. 1509-1531,
1998.

[54] McIntire, P. (editor), Nondestructive Testing Handbook, Volume 4, American
Society for Nondestructive Testing, 1986.




183

[55] Morsink, B.J., Optimization of the pulsed eddy-current technique for non-
intrusive inspection of corrosion under insulation, Report number Et/EM
1997-14, Delft University of Technology, The Netherlands, 1997.

[56] Nabighian, M.N., Quasi-static transient response of a conducting half-space -
An approximate representation, Geophysics, 44, No. 10, pp. 1700-1705, 1979.

[57] Nair, S.M. and J.H. Rose, Reconstruction of three-dimensional conductivity vari-
ations from eddy current (electromagnetic induction) data, Inverse Problems,
6. pp. 1007-1030, 1990.

[58] Norton, S.J. and J.R. Bowler, Theory of eddy current inversion, Journal of
Applied Physics, 73, No. 2, pp. 501-512, 1993.

[59] Oristaglio, M.L. and G.W. Hohmann, Diffusion of electromagnetic fields into a
two-dimensional earth: A finite-difference approach, Geophysics, 49, No. 7,
pp. 870-894, 1984.

[60] Oristaglio, M.L. and T.M. Habashy, Some uses (and abuses) of reciprocity in
wavefield inversion, Wavefields and Reciprocity, Proceedings of a Symposium
held in the honour of Professor dr. A.T. de Hoop, Delft University Press, pp.
1-22, 1996.

[61] Paviov, D.A. and M.S. Zhdanov, Analysis and interpretation of anomalous con-
ductivity and magnetic permeability effects in time domain electromagnetic
data. Part I: Numerical modeling, Journal of Applied Geophysics, 46, pp.
217-233, 2001.

[61] Pavlov, D.A. and M.S. Zhdanov, Analysis and interpretation of anomalous con-
ductivity and magnetic permeability effects in time domain electromagnetic
data. Part IT: Su-inversion, Journal of Applied Geophysics, 46, pp. 235-248,
2001.

[63] Pévé, J. Numerical Calculation Method for Pulsed Eddy-Current Testing, IEEE
Transactions on Magnetics, 38, No. 2, pp. 1169-1172, 2002.

[64] Peng, Z.Q. and A.G. Tijhuis, Transient Scattering by a Lossy Dielectric Cylin-
der: Marching-on-in-Frequency Approach, Journal of Electromagnetic Waves
and Applications, 7, No. 5, pp. 739-763, 1993.

[65] Placko, D. and I. Dufour, A Focused-Field Eddy Current Sensor for Nondestruc-
tive Testing, IEEE Transactions on Magnetics, 29, No. 6, pp. 3192-3194,
1993.

(66] Preda, G., B. Cranganu-Cretu, O. Mihalache, F.I. Hantila, Z. Chen and K.
Miya, Nonlinear FEM-BEM Formulation and Model-Free Inversion Procedure
for Reconstruction of Cracks using Pulse Eddy-Currents, Proceedings of the
18th COMPUMAG conference, July 2001, 2001.

[67] Press, W.H., S.A. Teukolsky, W.T. Vetterling and B.P. Flanery, Numerical
Recipes, Cambridge University Press, Cambridge, UK, 1992.




184 Chapter C. Bibliography

[68] Rose, J.H., and E. Uzal, Calculated time-domain current-voltage response of
ferrite-core probes : application to lap-splice corrosion, Review of Progress in
Quantitative Nondestructive Evaluation, 13, pp. 311-317, 1994.

[69] Sabbagh, H.A., A Model of Eddy-Current Probes with Ferrite Cores, IEEE
Transactions on Magnetics, MAG-23, No. 2, pp. 1888-1904, 1987.

[70] Sabbagh, H.A., and R.G. Lautzenheiser, Inverse problems in electromagnetic
nondestructive evaluation, International Journal of Applied Electromagnetics,
3, pp. 253-261, 1993.

[71] Sabbagh, H.A., J.C. Treece, R.K. Murphy and L.W. Woo, Computer modelling
of Eddy Current Nonddestructive Testing, Materials Evaluation, November
1993, pp. 1252-1257, 1993.

[72] Sabbagh, H.A., and S.N. Vernon, Ferrite Core Eddy Current Probe Model :
Description and Verification, Materials Evaluation, No. 43, pp. 184-187,
1984.

[73] Sepulveda, N.G., LM. Thomas and J.P. Wikswo, Magnetic Susceptibility To-
mography for Three-Dimensional Imaging of Diamagnetic and Paramagnetic
Objects, IEEE Transactions on Magnetics, 30, No. 6, pp. 5062-5069, 1994.

[74] Sethuraman, A. and J.H. Rose, Rapid Inversion of Eddy Current Data for
Conductivity and Thickness of Metal Coatings, Journal of Nondestructive
Evaluation, 14, No. 1, pp. 39-46, 1995.

[75] Shao, C.D.K.R., Z.X. Ren and J.D. Lavers, A Very Fast Numerical Analysis
of Benchmark Models of Eddy Current Testing for Steam Generator Tube,
Proceedings of the 13th COMPUMAG conference, July 2001, 2001.

[76] Tai, C-C., J.H. Rose and J.C. Moulder, Thickness and conductivity of metallic
layers from pulsed eddy-current measurements, Review of Scientific Instru-
ments, 67, Issue 11, pp. 3965, 1996.

[77) Tijhuis, A.G. and Z.Q. Peng, Marching-on-in-frequency method for solving inte-
gral equations in transient electromagnetic scattering, IEEE Transactions-H,
138, No. 4, pp. 347-355, 1991.

(78] Tsuchida, Y., K. Shibao and M. Enokizono, Inverse Analysis for ECT Models
Formulated by Laplace Transform BEM with Singular Value Decomposition
and Fuzzy Inference, IEEE Transactions on Magnetics, 34, No. 5, pp. 2916~
2919, 1998.

[79] Torres-Verdin, C. and T.M. Habashy, A Two-Step Linear Inversion of Two-
Dimensional Electrical Conductivity, JEEE Transactions on Antennas and
Propagation, 43, No. 4, pp. 405-415, 1995.

(80] Upda, L. and S.S. Upda, Solution of Inverse Problems in Eddy-Current Non-
destructive Evaluation (NDE), Journal of Nondestructive Evaluation, 7, Nos.
1/2, pp. 111-120, 1988.

[81] Van den Berg, P.M., Reconstruction of media posed as an optimization problem,
Report number Et/EM 1998-26, TU Delft, The Netherlands, 1998.



185

[82] Van den Berg, P.M., and R.E. Kleinman, A contrast source inversion method,
Inverse Problems, 18, pp. 1607-1620, 1997.

[83] Van den Berg, P.M., and M. van der Horst, Nonlinear inversion in induction
logging using the modified gradient method, Radio Science, 30, No. 5, pp.
1355-1369, 1995.

(84] Van den Berg, P.M., A.L. van Broekhoven and A. Abubakar, Extended contrast
source inversion, Inverse Problems, 15, pp. 1325-1344.

[85] Van den Berg, P.M., A. Abubakar and J.T. Fokkema, Multiplicative regulariza-
tion for contrast profile inversion, Radio Science, 38, No. 2, 2003.

[86] Van der Kruk, J., Three-dimensional imaging of multi-component ground pen-
etrating radar data, Ph.D. Thesis, Delft University Press, Delft, The Nether-
lands, 2001.

(87] Wait, J.R., Electromagnetic radiation from cylindrical structures, IEE Electro-
magnetic Wave Series, 27, 1988.

(88] Wait, J.R. and D.A. Hill, Transient electromagnetic fields of a finite circular
loop in the presence of a conducting half-space, Journal of Applied Physics,
43, No. 11, pp. 4532-4534, 1971.

[89] Wang, T., M. Oristaglio, A. Tripp and G. Hohmann, Inversion of diffusive tran-
sient electromagnetic data by a conjugate-gradient method, Radio Science,
29, No. 4, pp. 1143-1156, 1994.

[90] Ward, S.H. and G.W. Hohmann, Electromagnetic Theory for Geophysical Ap-
plications, Investigations in Geophysics, 1, pp. 131-311, 1987.

[91] Yan, M., S. Upda, S. Mandayam, Y. Sun, P. Sacks and W. Lord, Solution of
Inverse Problems in Electromagnetic NDE Using Finite Element Methods,
IEEE Transactions on Magnetics, 34, No. 5, pp. 2924-2927, 1998.

[92] Yang, H-C. and C-C. Tai, Pulsed eddy-current measurements of a conducting
coating on a magnetic metal plate, Meas. Sci. Technology, 13, pp. 1259-1265,
2002.

[93] Zaman, A.J.M., S.A. Long and C.G. Gardner, The Impedance of a Single-Turn
Coil Near a Conducting Half Space, Journal of Nondestructive Evaluation, 1,
No. 3, pp. 183-189, 1980.

[94] Zhang, Z., and D.W. Oldenburg, Recovering magnetic susceptibility from elec-
tromagnetic data over a one-dimensional earth, Geophys. J. Int., 130, p.
422-434, 1997.

(95] Zhang, Z., and D.W. Oldenburg, Simultaneous reconstruction of 1-D suscepti-
bility and conductivity from electromagnetic data, Geophysics, 64, No. 1, p.
33-47, 1999.

[96] Zhorgati, R., B. Duchene, D. Lesselier and F. Pons, Eddy Current Testing of
Anomalies in Conductive Materials, Part I : Qualitative Imaging via Diffrac-
tion Tomography Techniques, IEEE Transactions on Magnetics, 27, No. 6,
p. 4416-4437, 1991.




186 Chapter C. Bibliography

[97] Zhorgati, R., B. Duchene, D. Lesselier and F. Pons, Eddy Current Testing
of Anomalies in Conductive Materials, Part II : Quantitative Imaging via
Deterministic and Stochastic Inversion Techniques, IEEE Transactions on
Magnetics, 28, No. 3, p. 1850-1861, 1992.



Samenvatting

Dit proefschift behandelt de modellering en inversie van Pulsed Eddy Current data
voor Niet-Destructief Testen. De Pulsed Eddy Current (PEC) techniek is een relatief
nieuwe elektromagnetische techniek op het gebied van Niet-Destructief Testen. Bij
het Niet-Destructief Testen van een object wordt met behulp van een zender (een
of meerdere spoelen in het geval van eddy current testen) een akoestisch of elek-
tromagnetisch veld gegenereerd in het object. De invloed van het object op het
aanwezige veld wordt met ontvangers (weer een of meerdere spoelen in het geval van
eddy current NDT) gemeten. In het geval dat het object een defect (b.v. een gat,
scheur of delaminatie) bevat, zal dit een verandering in het ontvangen signaal tot
gevolg hebben, waardoor de aanwezigheid, plaats en grootte van het defect bepaald
kunnen worden. In tegenstelling tot de normale eddy current techniek, waarbij met
behulp van een zendspoel een elektromagnetisch veld met een vaste frequentie wordt
opgewekt en vervolgens impedantieveranderingen in de ontvangstspoel ten gevolge
van eventuele defecten worden gemeten, gebruikt men bij de PEC techniek een gepul-
ste stroom in de zendspoel. Bij de meting wordt een DC-stroom in de zendspoel
abrupt afgeschakeld, waardoor in het (metalen) object wervelstromen (eddy cur-
rents) worden gegenereerd. Deze wervelstromen genereren vervolgens een in de tijd
variérend elektromagnetisch veld, dat met behulp van de ontvangstspoelen gemeten
kan worden. Het gemeten voltage bevat informatie over onder andere de dikte en de
mediumparameters van het metalen object.

Deze Pulsed Eddy Current NDT techniek is bij het Shell Research and Tech-
nology Centre in Amsterdam ontwikkeld om metingen te doen aan geisoleerde pijplei-
dingen en drukvaten. Deze leidingen bestaan uit een stalen pijp, met daar omheen
een laag isolatiemateriaal (steenwol) en een laagje aluminium ter bescherming van
de isolatie. De aanwezigheid van de isolatie bemoeilijkt de periodieke inspectie en
maskt het noodzakelijk om op gezette tijden de isolatie te verwijderen. De on-
twikkeling van de PEC techniek maakt het mogelijk metingen aan de stalen pijp
uit te voeren zonder dat daarvoor de isolatie verwijderd hoeft te worden, wat een
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aanzienlijke reductie in de inspectiekosten met zich meebrengt.

Om deze techniek te modelleren zijn twee verschillende configuraties gebruikt:
een waarbij het object uit een metalen laag bestaat zonder defecten, en een config-
uratie waarbij in deze laag een defect (put of holte) aanwezig kan zijn. De elektro-
magnetische parameters die van belang zijn voor het modelleren zijn: de elektrische
geleidbaarheid o en de magnetische permeabiliteit 4, in tegenstelling tot gangbare
elektromagnetische toepassingen, waar meestal met de geleidbaarheid en de per-
mittiviteit gerekend wordt. Het proefschrift valt globaal in twee delen uiteen : we
beginnen met het oplossen van het voorwaartse probleem, waarbij voor een gegeven
configuratie (zendspoel, metalen laag, al dan niet een defect) het elektromagnetisch
veld bij de ontvangstspoel wordt bere- kend. Als tweede volgt het inverse probleem,
dit behelst de reconstructie van de afmetingen en/of medium parameters van een
verstrooiend object of defect als de rest van de configuratie en het gemeten veld
bekend zijn. We presenteren numerieke resultaten van de methodes die ontwikkeld
zijn om het voorwaartse en inverse probleem op te lossen.

In Hoofdstuk 1 van dit proefschrift bespreken we de motivatie voor het on-
derzoek en geven we tevens een korte en beknopte inleiding op het gebied van Niet-
Destructief Testen. Vervolgens worden in Hoofdstuk 2 de Maxwell vergelijkingen
voor het elektromagnetische veld gedefini€erd, alsmede de elektromagnetische rand-
voorwaarden en de integraaltransformaties die nodig zijn om de veldvergelijkingen
in de hiervoor beschreven configuraties op te lossen.

In Hoofdstuk 3 gaan we dieper in op het bij SRTCA ontwikkelde meet-
apparaat en de werking ervan. Met behulp van een numeriek model dat wordt
beschreven in Hoofdstuk 4 bepalen we de invloed van verschillende medium- en con-
figuratieparameters op het PEC signaal. Uit de berekeningen blijkt dat de wervel-
stromen in het metaal een diffusieproces ondergaan, waarbij de verdeling van de
stromen binnen het metaal vooral in de diepterichting variéert als functie van tijd.
Aan de hand van dit gegeven beschrijven we een eenvoudig model, waarbij de wervel-
stromen als discrete stroomfilamenten gemodelleerd worden. Voor ieder stroomfila-
ment definiéren we een weerstand, een coefficient van zelfinductie en een coefficient
van mutuele inductie, waarmee het energietransport (en dus de elektromagnetische
diffusie) beschreven wordt. Dit resulteert in een systeem van gekoppelde differen-
tiaalvergelijkingen voor de stromen in de filamenten, waarbij de eigenwaarden en
eigenvectoren van de systeemmaitrix inzicht geven in het verloop van het diffusiepro-
ces.

Om het gedrag van de elektromagnetische velden in een defect te kunnen mod-
elleren is het noodzakelijk om de volledige Maxwell-vergelijkingen op te lossen. In
Hoofdstuk 4 beginnen we met de configuratie die bestaat uit een cirkelvormige zend-
spoel boven een metalen laag, zonder defect. In dit geval kunnen we gebruik maken
van de symmetrie van de configuratie, wat leidt tot een scalaire differentiaalvergeli-
jking voor het elektrisch veld in en boven de laag. Met behulp van een numerieke
inverse Hankel-transformatie kunnen we het elektrisch en magnetisch veld uitreke-
nen in het frequentie-domein, waaruit het tijd-domein signaal volgt door gebruik te
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maken van een Fast Fourier Transform.

Voor de configuratie van een cirkelvormige zendspoel boven een metalen laag
met een defect is het niet langer mogelijk gebruik te maken van een scalaire vergelijk-
ing, derhale zijn we genoodzaakt het volledige drie-dimensionale vectoriéle probleem
op te lossen. Met behulp van de reciprociteitsstelling leiden we de gekoppelde inte-
graalvergelijkingen voor het elektrisch en magnetisch veld in het defect af, waarbij
we voor de Green’s functie onderscheid maken tussen de directe bijdrage van de
bron en de reflecties van de randen van de laag. Voor het directe deel van het prob-
leem schrijven we de integraalvergelijking in termen van de vectorpotentialen die we
vervolgens expanderen met behulp van stuksgewijs lineaire expansiefuncties. Door
weging over het rekengebied benaderen we de differentiaaloperatoren die werken op
de expansiefuncties met de eindige-differentie benadering. Het resulterende systeem
van vergelijkingen voor de elektrische en magnetische veldgrootheden lossen we op
met een Conjugate Gradient schema, waarbij de convolutie-operaties efficient worden
opgelost met behulp van een FFT routine.

Voor de berekening van het gereflecteerde deel van de Green’s functie ge-
bruiken we een ruimtelijke Fourier-transformatie naar de i;~ en iz-richtingen. Dit
resulteert in uitdrukkingen voor de veldgrootheden in het ruimtelijk Fourier-domein,
waarna de inverse transformatie met behulp van een FFT wordt uitgevoerd. Het is
hierbij noodzakelijk om het gereflecteerde deel van de Green’s functie te splitsen in
een even en oneven deel. In het CG schema leidt dit tot een convolutiestructuur voor
het even deel en een correlatiestructuur voor het oneven deel van de gereflecteerde
Green’s functie. Door het toepassen van grid reductie van de functie in het Fourier-
domein kunnen we de Green’s functie uitrekenen met een FFT waarvan de grootte
van het grid gelijk is aan het CG grid, hetgeen een aanzienlijke tijdsbesparing oplev-
ert. In Hoofdstuk 5 geven we de numerieke resultaten die zijn verkregen met behulp
van de hiervoor beschreven rekenmodellen.

Nadat we in Hoofdstuk 4 het voorwaartse probleem hebben beschreven,
richten we in Hoofdstuk 6 onze aandacht op het inverse probleem. Als eerste
beschouwen we een configuratie van een verstrooiend object in een homogene achter-
grond. We breiden de contrastbron inversiemethode, zoals beschreven door Van den
Berg en Kleinman [82], uit voor de gecombineerde integraalverge- lijkingen, waarbij
zowel het elektrisch als het magnetisch veld opgelost wordt. Voor het geval van de
PEC techniek, waarbij het te reconstrueren object een gat in de metalen achter-
grond is, weten we de waarde van het contrast en zijn we vooral geinteresseerd in
de reconstructie van de afmetingen van het defect. In dat geval kunnen we gebruik
maken van binaire inversie, waarbij we een niet-lineaire mapping introduceren voor
het elektrisch en magnetisch contrast. Dit geeft een aanzienlijke verbetering in de
reconstructies, maar heeft het nadeel dat een numerieke lijnminimalisatie nodig is in
iedere iteratie van het inversieschema. Voor de inversie met een PEC configuratie,
waarbij een laag aanwezig is definieren we de extra operatoren die het gereflecteerde
deel van de Green’s functie in rekening brengen.

In Hoofdstuk 7 geven we de numerieke resultaten voor het inverse probleem
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die zijn verkregen met behulp van de methoden die in de voorgaande hoofdstukken
zijn gepresenteerd. Uiteindelijk geven we in Hoofdstuk 8 onze conclusies en enkele

aanbevelingen voor verder onderzoek.
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