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Abstract

Sample selection bias is a widespread cause of distribution shift between the train and test sets, which can significantly
degrade the generalisability and performance of machine learning models. To mitigate distribution shifts, numerous
domain adaptation techniques have been developed, which adapt the train set to the test set. However, adapting to a
specific test set under sample selection bias might impede the model from properly generalizing across the entire problem
domain and requires re-adaptation whenever the test data changes. Therefore, we propose a novel adaptation strategy,
called global domain adaptation, in which we instead adapt to a larger (global) domain representative of the distribution
from which both the train and test sets originate. We introduce a comprehensive benchmark to investigate the behavior
and limitations of domain adaptation techniques when adapting to the global domain, which consists of synthetic datasets
and selection biases as well as complex bioinformatics datasets with intrinsic biases. Our benchmark reveals interesting
performance patterns across categories of domain adaptation techniques: minimax estimators are very fragile in practice,
while deep domain adaptation has lower stability in spite of increased architectural complexity. Lastly, we find that
global domain adaptation is a viable approach for certain techniques such as importance weighting, while semi-supervised
techniques tend to perform best for existing test set adaptation.

Introduction

For a machine learning model to be useful, it is crucial that it

is generalizable. Using biased data, for example due to sample

selection bias, may cause a model to learn a view that is

not representative of the true patterns. Selection bias occurs

when the data are not sampled uniformly from the underlying

population, causing certain groups or types of samples to

appear more prominently than others. Therefore, selection bias

can cause train and test sets to differ substantially, which can

lead to serious degradation of a model’s generalisability and

performance [1]. In practice, sample selection bias occurs in a

multitude of situations [1]. For example, clinical studies with

non-representative patient recruitment [2], scientific datasets

where certain experiments are more feasible or frequently

performed than others [3, 4], or bioinformatics where certain

proteins are easier to isolate and study than others [5, 6].

In order to mitigate distribution shifts between train

and test sets, numerous (unsupervised) domain adaptation

techniques have been proposed [1]. They all operate under

the assumption that the test set without labels is available

at the time of training the model and leverage it in order

to adapt the (labeled) train set to the (unlabeled) test set

(Figure 1a). However, this approach poses certain limitations

under sample selection bias. Adapting the train set to the

(biased) test set does not make the model generalizable across

the entire distribution of the problem, but only the specific

test set. The model will therefore require re-adaptation every

time we want it to generalize on new, unseen test data.

Furthermore, since domain adaptation techniques are designed

to align distributions, they cannot be used when only individual

(or extremely few) test samples are available. This motivates

Training Testing

Selected Class 1 Selected Class 2Class 1 UnlabeledClass 2

Testing

Train set Test setGlobal domain

Train set Test set

With labels Without labels

Training

a) Test set adaptation

b) Global domain adaptation

With labels Without labels

Fig. 1. Domain adaptation approaches. a) Existing approach of using

unlabeled data from the test set; b) Proposed approach of using unlabeled

data from a wider distribution of the problem domain, here called global

domain.

a different, novel perspective: instead of adapting to the test

set, one may instead collect unlabeled data from and adapt to

the distribution of a broader (here called global) domain from

which both the train and test sets are assumed to have been

selected with bias (Figure 1b). Intuitively, adapting the train

set once to a global domain that is representative enough of the

underlying distribution of the classification task should allow a

© The Author 2025.
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model to generalize without the need to re-adapt to any new

test data that originates from this distribution.

Even though domain adaptation has been widely investigated

as a solution to many types of distribution shifts, existing

domain adaptation benchmarks (e.g. Office-31 [7], Office-

Home [8], DomainNet [9], WILDS [10]) do not investigate the

presence of sample selection bias in the datasets they curate.

Furthermore, they are also targeted at the existing test set

adaptation approach, meaning they do not offer unlabeled

global data required for global domain adaptation.

Moreover, studies indicate that the effectiveness of domain

adaptation is subject to certain limitations that usually stem

from the assumptions that an adaptation technique makes [1].

Some factors widely recognized in literature for potentially

influencing their performance are the size of the labeled train

set [11–13], the amount of available unlabeled data [14–17]

and the severity of the distribution shift [1, 11, 14, 18]. While

these factors have been long investigated in the wider context

of distribution shifts using the traditional test set adaptation

framework, their impact in the context of sample selection bias

with the proposed global domain adaptation approach has yet

to be studied.

To overcome the current gaps in literature, we propose

a benchmark to investigate the effectiveness of domain

adaptation techniques in mitigating sample selection bias

specifically under the novel global domain adaptation approach.

More precisely, we use the benchmark to study:

1. the limiting factors of adaptation techniques that emerge

from the dataset characteristics (i.e. global domain sample

size, train set sample size, amount of bias in the data);

2. the impact of hyperparameter tuning on the performance

of adaptation techniques that use the global domain;

3. the effectiveness of adaptation techniques leveraging the

global domain in mitigating intrinsic selection biases;

4. the behavior of adaptation techniques when adapting to the

global domain versus test set.

The benchmark encompasses controlled experiments with

artificial selection bias that allow to study systematically the

limiting factors and the impact of hyperparameter tuning,

as well as real-world bioinformatics problems with intrinsic

selection bias in the data. Lastly, the bioinformatics datasets

are also used to compare the novel global domain adaptation

with the existing test set adaptation.

Methodology

Domain adaptation techniques
(Unsupervised) Domain adaptation techniques are very

numerous and diverse in terms of the strategy they use to

perform the adaptation. While studying all techniques is

infeasible, we use the taxonomy proposed by [1] to make a

representative selection of techniques. Adaptation techniques

are distinguished in [1] based on the approach they use: sample-

based techniques correct the distribution shift by adjusting

the individual observations in the train set, feature-based

techniques transform the feature space such that a classification

model trained on the remapped train set will generalize on

the unlabeled set, and inference-based techniques incorporate

the adaptation directly in the parameter estimation procedure

of the classification model. Each of these three approaches is

then further split into finer categories based on the adaptation

mechanism itself and the assumptions it makes about the

adaptation problem. We select for our study 11 adaptation

techniques, covering both established and state-of-the-art

methods, across five prominent categories (Table 1).

Importance weighting

The importance weighting category belongs to the sample-

based approach and is usually employed in clinical applications

[1], which makes it relevant to the bioinformatics field as well.

It assigns a weight to each sample in the train set, such that

the distribution of the weighted train set is more representative

of the distribution of unlabeled data. Kernel-Mean Matching

(KMM) [11] and Kullback-Leibler Importance Estimation

Procedure (KLIEP) [19] are two well known importance

weighting techniques that both infer the sample weights by

minimizing a distribution discrepancy metric between the

train and unlabeled sets. KMM uses the Maximum Mean

Discrepancy as metric, while KLIEP employs the Kullback-

Leibler divergence.

Semi-supervised

Semi-supervised is an inference-based category that incorporates

the unlabeled samples in the training process by pseudo-

labeling them, in order to achieve adaptation. Self-training [20]

uses a classification model to iteratively assign labels to the

unlabeled samples and subsequently selects a subset of them

with the highest prediction confidence to add to the train set

for the next training iteration. The Co-training approach [21]

involves using two different classification models in parallel on

the same data [22] to pseudo-label the unlabeled set and then

adding some of the highest-confidence predictions from both

models to the train set during each iteration.

Subspace mapping

The subspace mapping category follows the feature-based

approach and projects the data in both the train and unlabeled

sets into a new subspace in which the two are aligned.

Subspace Alignment (SA) [23] achieves this by extracting

the first d components of the principal component analysis

applied to the train set and subsequently aligns them via

a linear transformation matrix to the first d components of

the unlabeled set. On the other hand, Transfer Component

Analysis (TCA) [24] aligns the train and unlabeled sets in

an independent subspace by computing a projection kernel

matrix that minimizes the Maximum Mean Discrepancy metric

between the two sets in this new feature space.

Minimax estimators

Minimax estimators use the inference-based approach. They

view domain adaptation as an optimization problem consisting

of a classifier that attempts to minimize risk and an adversary

that maximizes it by changing the distribution of the unlabeled

data from that of the train set. Following on this idea, the

Robust Bias-Aware (RBA) classifier [25] assumes an adversary

that changes the posterior distribution of the unlabeled data.

The Target Contrastive Pessimistic Risk (TCPR) approach

[26] focuses on the performance gain that can be obtained

by changing the parameters of the classifier, while assuming

maximum uncertainty regarding the labels of the unlabeled set.

Deep domain adaptation

Deep domain adaptation is feature-based; it leverages artificial

neural networks to extract high-level features that are both

common across the train and unlabeled sets, and robust
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Table 1. Summary of the benchmark domain adaptation techniques.

Category Technique Type Requires base model

Importance weighting
KMM sample-based yes

KLIEP sample-based yes

Semi-supervised
Self-training inference-based yes

Co-training inference-based yes (2 models)

Subspace mapping
SA feature-based yes

TCA feature-based yes

Minimax estimators
RBA inference-based no

TCPR inference-based no

Deep domain adaptation

DANN feature-based yes (neural network)

WDGRL feature-based yes (neural network)

MDD feature-based yes (neural network)

against the distribution dissimilarity between the two. Due to

the inclusion of neural networks, deep domain adaptation is

particularly suitable for high-dimensional applications [1], such

as bioinformatics. The Domain Adversarial Neural Network

(DANN) [27] is an established method that uses a feature

encoder with two loss layers: the first classifies the train samples

based on their known labels, while the second classifies the

train and unlabeled samples based on their domain such that

they cannot be distinguished from each other. Wasserstein

Distance Guided Representation Learning (WDGRL) [28] is

architecturally similar to DANN, but the second loss layer

instead minimizes the Wasserstein distance between the train

and unlabeled sets. Lastly, Margin Disparity Discrepancy

(MDD) [29] also leverages a feature encoder, but it aligns

domains by minimizing the difference in margins between a

primary classifier and an auxiliary adversarial classifier, both

applied to the extracted feature representation. All three deep

domain adaptation techniques follow an adversarial approach,

however, DANN and WDGRL rely on domain discriminators,

while MDD instead focuses on aligning decision boundaries

directly by minimizing the difference in classification margins.

Selection of base classification model

When using an adaptation technique it is important to consider

whether or not a base classification model needs to be selected

to use in the adaptation process. Certain techniques align the

train and unlabeled domains independently of the classification

model used on the task and can therefore be applied to (almost)

any choice of base model. In this case a decision must be made

on which classifier to use with the adaptation technique. Other

adaptation approaches incorporate the classification task in the

inner workings of the technique itself and therefore require

no base model. In this study we use logistic regression as

the base model because it is suitable for binary classification

tasks and easily interpretable due to its linearity. It also allows

for weighting samples during training, which is a prerequisite

of importance weighting adaptation. We use the logistic

regression implementation from scikit-learn1 with its default

hyperparameter values: L2 regularization and 100 maximum

iterations. When dealing with unbalanced train sets we also

enable the balancing class weighting function. For Co-training,

which uses two classification models, we combine it with linear

1 https://scikit-learn.org (version 1.7.2)

discriminant analysis (scikit-learn1; default hyperparameters)

because this is also linear and intuitively explainable. Lastly,

deep domain adaptation cannot be straightforwardly applied

to any base model because of the neural network architecture.

To ensure a fair evaluation, we use as task head in the three

techniques a single fully connected layer with sigmoid activation

that replicates the behavior of the logistic regression base model

used by the other techniques.

Controlled experiments with artificially introduced
sample selection bias
All adaptation techniques incorporate assumptions in their

adaptation mechanism that strongly influence in which

situations they succeed or fail [1]. We identified some common

factors to which adaptation techniques have been studied to

potentially be sensitive to: the sample size of the train set

[12, 13], the number of unlabeled samples [15–17], and the

degree of distribution dissimilarity between the train and test

sets [11, 14, 18]. Therefore, we examine how domain adaptation

techniques perform in these situations when they adapt the

train set to the global domain. In order to be able to evaluate

each of these factors individually, we focus on experiments in

which we craft the train, test and global sets ourselves and have

full control over the sample selection bias present in the data.

Data and sample selection bias

We evaluate the adaptation techniques on five binary

classification tasks (Table 2), which are diverse in terms

of sample size (900 - 30,000), number of features (7 - 23)

and feature types in order to increase the generalisability of

our analysis. First, to mitigate potential confounding factors,

we eliminate class imbalance by randomly subsampling the

majority class to the sample size of the minority class. As

such, the tasks used in the experiments have between 900 and

13,272 balanced samples and between 7 and 23 features split

over categorical (between 0 and 8), binary (between 0 and 3)

and numerical (between 7 and 20). Afterwards, the data of each

of the five tasks is randomly divided, stratified by class labels

to maintain class balance, into train (40%), global (50%) and

test (10%) sets. At this stage, the data in the three splits is

assumed to have a similar distribution due to the random split.

Also, we did not yet introduce any artificial sample selection

bias in the data.
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Table 2. Binary classification tasks used in the controlled experiments.

Task #Samples Class balance #Samples balanced #Features (cat./bin./num.)

Raisin [31] 900 50% - 50% 900 7 (0/0/7)

Twonorm [32] 7,400 50% - 50% 7,400 20 (0/0/20)

Ringnorm [33] 7,400 50% - 50% 7,400 20 (0/0/20)

Diabetic [34] 1,151 47% - 53% 1,082 19 (0/3/16)

Credit card [35] 30,000 78% - 22% 13,272 23 (8/1/14)

To be able to effectively evaluate the adaptation techniques,

there needs to be a distribution difference present between

the train and test sets, in the form of sample selection bias.

We achieve this by introducing an artificial type of sample

selection bias in the train set via the hierarchy bias approach

[30]. This approach consists of identifying clusters of samples

within each of the two classes in the train set and then favoring

samples from a specific, randomly chosen cluster. The bias

ratio parameter of the hierarchy bias dictates the percentage

of selected samples that originates from this one cluster, with

the remaining samples being randomly and uniformly chosen

from the rest of the clusters. The selection process maintains

an equal number of samples in each class. Ultimately, by being

able to control both the number of samples selected with bias

and the bias ratio parameter, we manage to control how much

bias we introduce. After hierarchy bias is introduced in the train

set, it follows a different distribution than that of the global and

test sets.

Training of domain adaptation techniques and baselines

Each of the domain adaptation techniques is evaluated by

first training it on the (biased) train set alongside the

unlabeled global domain and subsequently evaluating it on the

(unbiased) test set. During the training process, we tune the

hyperparameters of the adaptation technique by performing

grid search five-fold cross validation (see Appendix A for the

search space); four folds of the train set alongside the global

domain are used for training, while one fold is put apart for

validation. Since all datasets are balanced, we use accuracy as

evaluation metric.

We employ a number of baselines in our study in order

to better contextualize the performance of the adaptation

techniques. The No bias approach trains the base classification

model (logistic regression; Section 2.1.6) used by the adaptation

techniques on the complete and unbiased train set, therefore

giving an indication of what the maximum achievable score for

the task can be when no sample selection bias is present. Bias

trains the base model on the same biased train set used by the

adaptation techniques as well, indicating what the classification

score is when selection bias is present and no adaptation is

performed. Lastly, we use Random to validate whether the

performance decrease when sample selection bias is used is due

to the bias itself and not the diminished sample size. It trains

the base model using the same number of selected train samples

as Bias, however they have been picked randomly instead of

with bias. All three baselines are evaluated on the test set and

no domain adaptation is performed for any of them.

Varying sample sizes of the train set

Due to the train set sample size affecting some adaptation

techniques (importance weighting [11, 12], subspace mapping

[1, 13]), we also evaluate how the number of train samples

alone influences the performance of the adaptation techniques

on the five tasks when they adapt to the global domain.

Therefore, we fix the hierarchy bias ratio parameter to 80%

across all experiments and then select from the total number

of train samples of each task, 60 and 100 balanced data points,

respectively. All other experimental settings, including the data

splits, are identical for the two sample sizes.

Varying sample sizes of the global domain

We study the impact that the sample size of the unlabeled

dataset has on the adaptation performance because it has

been recognized as an influential factor in the unsupervised

domain adaptation process (importance weighting [1, 14], semi-

supervised [15], deep domain adaptation [16, 17]). In order to

evaluate its impact without other effects, we fix the parameters

of the hierarchy bias to 80% bias ratio and 100 train set

selections across all five tasks. Afterwards, we evaluate the

adaptation techniques when they leverage all (100%) unlabeled

samples in the global domain versus only 10% of them, obtained

through random subsampling in order to have minimal data

distribution changes.

Varying amount of sample selection bias

We identified that the degree of distribution dissimilarity

between the train and test sets has an important impact on

the performance of many adaptation techniques [1, 11, 14, 18].

Sample selection bias can potentially cause dissimilarity to

increase, which prompts us to study how adaptation techniques

perform for a varying amount of sample selection bias in the

data. We choose the bias ratio parameter of the hierarchy bias

as a means to control the amount of bias we introduce in the

train set. The bias ratio influences how much the original train

set distribution changes and implicitly its dissimilarity from

the test set. Therefore, we fix the number of selections from the

train set to 100 and examine the performance of the adaptation

techniques when the bias ratio increases from 60% to 80%.

Varying hyperparameter tuning approaches for the
domain adaptation techniques

Like all machine learning models, the domain adaptation

techniques have hyperparameters as well that need to be tuned.

Traditionally, the hyperparameters of machine learning models

are tuned using a validation set that originates from the train

set. The validation set gives a good approximation of the

performance on the test set because the data distribution in

the train and test sets is not drastically different. However,

this approach can be inadequate in the presence of sample

selection bias because it might skew the data distributions. In

our experiments, the hierarchy bias we introduce in the train

set makes it unrepresentative of both the test and unlabeled

sets. Therefore, tuning the hyperparameters of the adaptation

techniques on a validation set that originates from the train

set could nudge them to fit to the biased train set better
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rather than being more generalizable. Therefore, we verify

whether in our experiments the adaptation techniques are

indeed properly adapting to the global domain by focusing

on their choice of hyperparameters. This also allows us to

investigate how sensitive are the adaptation techniques to the

choice of hyperparameters.

We propose to use a subset of the global domain (together

with its labels) as validation set to be able to quantify the

effect of setting proper hyperparameters for the adaptation

techniques. Even though this approach is unrealistic and cannot

be used in experiments or as a means to validate how an

adaptation technique performs, it allows us mimic in our

controlled experimental setup the scenario of adaptation with

perfect hyperparameters to the global domain. Our approach

(called Global validation) consists of five-fold cross-validation

on the global set. The adaptation techniques are trained on

the full train set and adapted to four (unlabeled) folds of the

global domain, while a separate fifth fold is used (together with

its labels) as validation set. We compare the original train set

cross-validation approach described in Section 2.2.2 (which we

call Source validation) to the Global validation approach using

one of the earlier problem setups with 80% hierarchy bias ratio

and 100 train set selections.

Bioinformatics problems with intrinsic sample
selection bias
Even though crafting our own train, test and global sets

and artificially introducing selection bias gives us a sense of

control over the experimental conditions, it is unlikely that

the controlled experiments, with limited sample and feature

sizes, match the complexity of real-world applications in which

sample selection bias is often already inherently present in

the data. We therefore turn our attention to the field of

bioinformatics, more specifically the established problem of

protein function prediction, which is suitable for unsupervised

domain adaptation for two main reasons. Firstly, both the

train and test samples are often already sourced with natural

selection bias present in them due to the constraints in

data collection and annotation that arise from limitations in

cost, time and experimental feasibility. Secondly, unlabeled

proteins are available in abundance, making it easy to collect

a global domain. Therefore, we evaluate the adaptation

techniques on two established tasks of sequence-based protein

function prediction, namely protein solubility and the Gene

Ontology(GO) terms. These tasks and their associated datasets

have already been investigated in several works [36–40] which

will be foundation to set up our problem.

Protein solubility prediction

Knowing whether a protein will be soluble or not is essential

because soluble proteins can be more easily studied to

understand their structure and functions [40, 41]. This is

crucial in many industry areas, for example food processing

[42], and production of therapeutic proteins like antibodies and

hormones [43]. Traditionally, proteins are produced in standard

host cells like Escherichia (E.) coli due to their ability to make

large amounts of proteins [41]. However, many proteins made

in E. coli turn out to be insoluble [44], which prompted the

development of machine learning models that predict solubility

directly from the amino-acid sequence of the protein [39, 40].

While the binary classification task of predicting whether a

protein is soluble or not based on its amino-acid sequence

is already well-researched, it can also serve as benchmark

for sample selection bias mitigation. Many of the solubility

datasets used in experiments contain natural biases from how

the proteins were sourced, annotated or pre-processed [5, 6, 41].

This makes them suitable for evaluating adaptation techniques

that aim to combat sample selection bias in machine learning.

For this experiment we use the protein solubility dataset [40]

from the PEER benchmark [36] because it inherently contains

selection bias stemming from the way its data was collected.

The train and test sets originate from different sources and have

each been subject to various pre-processing steps, a practice

that is common for bioinformatics experiments and that makes

this type of selection bias relevant. The dataset consists of

62,478 train (class balance: 42-58%), 6,942 validation (42-58%)

and 2,000 test (50-50%) protein sequences, all expressed in E.

coli. Train data was originally compiled in [39] by merging

data from the pepcDB [45] and Protein Data Bank (PDB) [46]

databases, and subsequently preprocessed by [40] to decrease

sequence redundancy to a maximum sequence identity of 90%

and then prune out all sequences with a sequence identity >30%

compared to the test set. Lastly, 10% of data was randomly

selected and put aside to form the validation set. Test data was

collected by [44] by combining sequences from three different

studies [38, 39, 47], subsequently reducing their redundancy to

30% sequence identity level and then randomly subsampling

2000 balanced samples.

As this benchmark lacks an unlabeled global domain, we

create it by selecting the sequences expressed specifically in E.

coli from the Protein Data Bank (PDB) [46]. This yields around

160,519 sequences from which we subsequently remove the ones

already present in the train, validation and test sets. Similarly

to [21], we then randomly subsample this unlabeled data and

choose 50,000 sequences to form the global domain.

All protein sequences, labeled and unlabeled, are each

encoded into 640 numerical features using ESM2 [48], a state-

of-the-art pre-trained protein language model. Subsequently,

the adaptation techniques are trained using the train set and

global domain, and have their hyperparameters tuned on the

validation set. Similarly to the previous controlled experiments,

we employ a Bias baseline, which consists of a logistic classifier

trained on the train set and evaluated on the test set without

leveraging domain adaptation. However, because the sample

selection bias is not artificially introduced in the data but

already naturally present in it, we do not have the No bias and

Random baselines. Lastly, since the datasets are imbalanced,

we use the F1-score as evaluation metric in order to adequately

capture how the models perform.

Gene Ontology(GO) terms prediction

Gene Ontology (GO) represents a standardized vocabulary

in the field of bioinformatics for representing the functions

of proteins, labeled as GO terms. GO terms span three

domains: the Cellular Components (CC) where a protein

resides, the Molecular Functions (MF) that it fulfills and

Biological Processes (BP) in which it is involved. Considerable

efforts have been made for effectively predicting whether a

protein has a particular GO term or not, especially utilizing

protein sequences [37]. However, sample selection bias remains

naturally prevalent in many of the datasets used for GO term

prediction mainly due to the annotation practices. For example,

mass-annotation methods tend to produce more general GO

terms, while single-protein experiments yield more specific

annotations [4]. It was also shown that a small group of

proteins tends to concentrate most annotations [3]. This makes
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Table 3. Tasks used in the bioinformatics experiments.

Protein
CAFA3 - CC CAFA3 - MF Data2017 - MF

solubility

G
O
:0
04
44
44

G
O
:0
04
32
31

G
O
:0
00
57
37

G
O
:0
00
38
24

G
O
:0
00
54
88

G
O
:0
00
55
15

G
O
:0
03
01
65

G
O
:0
03
52
51

G
O
:0
00
45
40

Dimensions 640 551 677 135

Train samples 62,478 50,596 36,110 32,280

Train balance 42-58% 49-51% 54-46% 57-43% 54-46% 58-42% 34-66% 2-98% 2-98% 2-98%

Test samples 2,000 1,265 1,137 3,132

Test balance 50-50% 38-62% 40-60% 45-55% 33-67% 56-44% 37-63% 2-98% 4-96% 4-96%

Global samples 50,000 50,000 50,000 50,000

GO terms prediction benchmarks also attractive for evaluating

adaptation techniques on sample selection bias.

The first datasets we use are Cellular Component (CC) and

Molecular Function (MF) from the CAFA3 [49] benchmark, a

global competition for the computational annotation of protein

functions. The selection bias originates in this case from the

temporal nature of the data collection and annotation process.

Specifically, it was discovered that ”the distribution of GO

categories changes over time as a result of strong biases in the

annotation process” [50]. The train samples in CAFA3 have

been experimentally collected and annotated before September

2016, the submission deadline, while the test set acquired

annotations between September 2016 and November 2017.

Therefore, since the train and test sets are split by collection

date, they inherently have different distributions and also

selection bias in them.

In order to investigate bias mitigation further, we also

utilized the dataset Molecular Function (MF) from Data2017

[51] because its data is naturally biased to include only well-

studied proteins. The data consists of annotated proteins from

UniProtKB [52], but only includes as prediction targets those

GO terms supported by at least 200 proteins. As such, the

proteins considered for study are those that fulfill popular, well-

documented functions represented here as GO terms with many

(≥200) annotations. Proteins that fulfill either less studied or

more niche functions, thus having only a few related GO terms,

are automatically discarded. The authors then randomly split

the proteins into train and test sets and pre-processed the

data such that only the test proteins that share less than 50%

sequence similarity to the train set were kept. While reducing

sequence similarity is a standard practice in order to avoid

leakage, it inherently introduces selection bias in the test set

and increases its distribution shift from the train set [53, 54].

We formulate our problems as proteins being related to a

specific GO term or not. For each dataset (CAFA3-CC, CAFA3-

MF, Data2017-MF), we select the top three GO terms with

the highest train set balance ratio for our benchmark study

to mitigate for the potential effect of class imbalance on the

adaptation performance. This process yields nine evaluation

tasks in total, for which the class imbalance ratios are reported

in Table 3. Since the test sets are still visibly imbalanced, we

use the F1-score as evaluation metric.

The unlabeled global domain is collected from the SwissProt

[55] database, which contains curated protein sequences across

all species. For each task in part, the train and test sequences

are first discarded from the unlabeled set, which is subsequently

subsampled to 50,000 sequences that we use for adaptation.

All protein sequences, labeled and unlabeled, are encoded

into numerical features using Lite-SeqCNN [37], a state-of-

the-art convolutional neural network engineered specifically

for the task of sequence-based protein function prediction.

Subsequently, the adaptation techniques are trained and

evaluated on the encoded sequences. Since no designated

validation set is made available like in the protein solubility

task, we tune the hyperparameters of the adaptation techniques

using grid search five-fold cross-validation on the train set,

identically to the controlled experiments (Section 2.2.2). Lastly,

a Bias baseline is also used to help contextualize the adaptation

performance of the techniques.

Adapting to the global domain versus test set

One of the key components of unsupervised domain adaptation

is represented by the unlabeled data, which traditionally is

sourced from the test set. In this regard, we purposefully choose

in this study to use unlabeled data from a more widespread

(here called global) domain than that of the test set. Intuitively,

if we adapt to a global dataset that is representative of the

problem, the resulting classification model should be better

informed, more robust and be able to perform on any test set

for the specific problem. Therefore, we check experimentally the

validity of this assumption in a realistic setup as well. We repeat

all previous bioinformatics experiments but instead of using the

global domain, we use the test set without labels to adapt; the

original unlabeled global set collected in the experiments is fully

excluded. All other experimental settings are kept identical to

the original setup.

Results and discussion

To evaluate the ability of the domain adaptation techniques

to mitigate selection bias when adapting to the global domain,

we focused on a wide range of scenarios that spanned both

controlled experiments and realistic bioinformatics problems.

Firstly, we investigated some caveats that are specific to

adaptation techniques using controlled experiments where we

generate the datasets and induce selection bias artificially

in them. Secondly, we checked the hyperparameter tuning

for the adaptation techniques to verify whether they are

properly adapting to the global domain. Thirdly, we focused on

evaluating the bias mitigation ability of adaptation techniques

for more complex bioinformatics problems in which selection

bias is inherently present. Lastly, we used the bioinformatics

problems to also verify whether leveraging unlabeled data
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Fig. 2. Performance of the domain adaptation techniques for different sample sizes of the train set in the controlled experiments.

Results obtained across 10 runs, with all methods evaluated using the same folds (train/test/global splits). Methods included: 11 adaptation techniques,

supervised model trained on unbiased data (No bias), on biased selection of data without adaptation (Bias), and on randomly selected samples

(Random, same number as Bias). Adaptation techniques that did not manage to run are marked with X. Red stars indicate significant difference (p <

0.05) between the performances of the adaptation technique and the biased supervised method (double-sided Wilcoxon signed-rank test). P: significant

difference between the performances of the adaptation techniques on the two sample sizes.

from the global domain instead of the test set yields a better

informed classifier that can generalize better on the problem.

We evaluated 11 adaptation techniques spanning five categories

(Table 1): KMM and KLIEP from importance weighting,

Self-training and Co-training from semi-supervised, SA and

TCA from subspace mapping, RBA and TCPR from minimax

estimators, and DANN, WDGRL and MDD from deep domain

adaptation.

For easier interpretation, we rescaled the scores of all

adaptation techniques alongside the baselines No bias (base

model without sample selection bias) and Random (base model

trained with randomly subsampled samples) by subtracting

the score of Bias (base model with selection bias and no

adaptation) for each experimental run. Therefore, a positive

score difference means that the model performed better than

Bias, while a negative score indicates the opposite.

Investigation of factors influencing the effectiveness
of domain adaptation techniques
As discussed in Section 2.2, we investigated how adaptation

techniques that leverage the global domain are impacted by

factors widely recognized in the literature as affecting their

performance, namely the number of samples in the train [11–

13] and unlabeled [14–17] sets, alongside the amount of sample

selection bias present in the data [1, 11, 14, 18]. We evaluated

the adaptation techniques on five real-world datasets (Table 2)

in which samples were selected with hierarchy bias from the

train set, while the unlabeled and test sets maintained the

original distribution.

Varying sample sizes of the train set

In Figure 2, Bias performance was lower than both No

bias and Random in all datasets. Compared to the biased

model, the median accuracy difference for No bias ranged

between 0.098 (Credit card) and 0.247 (Twonorm) for 60

selections, and between 0.142 (Credit card) and 0.256 (Raisin)

for 100 selections; for Random it ranged between 0.039 (Credit

card) and 0.239 (Raisin) for 60 selections, and between 0.102

(Ringnorm) and 0.256 (Raisin) for 100 selections. The lower

Bias performance compared to No bias and Random indicates

that hierarchy bias was effective in introducing selection bias

in the train set and that the decrease in performance was due

to the bias and not the sample size reduction.

The adaptation techniques did not show uniform behavior

patterns across the datasets. Most notably, the majority of

techniques struggled to significantly improve the score of Bias,

even when the sample size increased. SA is the only technique

that consistently surpassed Bias significantly, in three of the

five datasets: Raisin (p = 0.011 for 60sel, p = 0.018 for

100sel), Twonorm (p = 0.002 for 60sel, p = 0.002 for

100sel) and Ringnorm (p = 0.002 for 60sel, p = 0.009 for

100sel). However, there were also adaptation techniques that

performed significantly (p < 0.05) worse than Bias for both 60

and 100 selections, particularly in datasets Raisin, Twonorm

and Ringnorm: Self-training and MDD in Raisin, Co-training,

RBA and MDD in Twonorm, and TCA, RBA, TCPR, DANN,

WDGRL and MDD in Ringnorm. In these three datasets Bias

had larger median score drops from No bias than in Diabetic

and Credit card, which indicates that the problem setup created

by introducing bias was harder in these instances.

When comparing scores between the train samples sizes,

we expected that more samples would ideally translate into

a more accurately represented training set and consequently

an improved adaptation performance. However, the adaptation

techniques did not show a pattern in this regard. The only

instances in which increasing the sample size from 60 to
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Fig. 3. Performance of the domain adaptation techniques for different sample sizes of the unlabeled global domain in the controlled

experiments. Results obtained across 10 runs, with all methods evaluated using the same folds (train/test/global splits). Methods included: 11

adaptation techniques, supervised model trained on unbiased data (No bias), on biased selection of data without adaptation (Bias), and on randomly

selected samples (Random, same number as Bias). Adaptation techniques that did not manage to run are marked with X. Red stars indicate significant

difference (p < 0.05) between the performances of the adaptation technique and the biased supervised model (double-sided Wilcoxon signed-rank test).

P: significant difference between the performances of the adaptation techniques on the two sample sizes.

100 selections led to a significant improvement in adaptation

performance were WDGRL in Raisin (p = 0.014) and Twonorm

(p = 0.002) alongside TCA in Diabetic (p = 0.027). In these

instances, while the adaptation techniques performed well with

more train samples, they did not significantly improve over

Bias. In fact, they caused performance degradation when used

with 60 samples. A possible explanation for the lack of more

consistent improvements is that the 40 extra added samples

might have been too few given the complexity of some datasets,

which had up to 23 dimensions. However, we refrained from

selecting more than 100 train samples because it would have

possibly made introducing bias harder as more samples can

mean better representation of the original distribution after

some point.

Varying sample sizes of the global domain

We investigated another factor that adaptation techniques are

sensitive to, namely the sample size of the unlabeled global

domain. We kept the selection bias fixed (80% ratio and 100

selections) while we changed the amount of samples in the

global domain (Section 2.2.4). Regardless of the global domain

size, the introduction of hierarchy bias in the train set caused

considerable performance drops for Bias in all datasets when

compared to both No bias (median between 0.142 and 0.256)

and Random (median between 0.102 and 0.256) (Figure 3).

This indicates that the sample selection bias caused a clear

distribution dissimilarity that the adaptation techniques can

tackle.

We expected the behavior of adaptation techniques to

change with varying sizes of the unlabeled set because

this would also impact the amount of noise, outliers and

the representation of the data, which are all important

factors in domain adaptation. We observed some significant

improvements when 100% of the global domain was used instead

of only 10%: Co-training (p = 0.004), DANN (p = 0.002),

WDGRL (p = 0.004) in Raisin, DANN (p = 0.002) and

WDGRL (p = 0.027) in Twonorm, and TCA in Ringnorm

(p = 0.019). There were also occurrences when adaptation

techniques performed better with less unlabeled samples:

TCPR in Ringnorm (p = 0.002), and KMM (p = 0.036), RBA

(p = 0.037), DANN (p = 0.037) and WDGRL (p = 0.019)

in Credit card. Feeding the adaptation techniques with an

excessive amount of unlabeled samples when the underlying

class distribution is complex might make it hard to correctly

identify the distribution per class in the unlabeled set and

consequently confound the targets. It could also introduce more

noise and outliers in the unlabeled set. In the case of Credit

card, it had the lowest No bias median accuracy (0.668) out

of all datasets to attest to its complexity, while increasing its

unlabeled sample size from 10% to 100% resulted in 5972 new

samples, significantly more compared to only 100 train samples.

Lastly, the majority of adaptation techniques did not

show significant performance differences between the two

unlabeled sample sizes and many of them did also not visibly

perform better than Bias (Figure 3). Guided by our previous

observation on the interplay of the unlabeled sample size and

the complexity of the data distribution, we hypothesize that

each adaptation technique might have an optimal number of

unlabeled data it requires, dependent on the task complexity,

for which it performs well. Leveraging too few unlabeled

samples does not paint an informative enough picture of

the data distribution, while too many samples confuse the

technique. The difference between the two unlabeled sample

sizes we probed (10% versus 100%) is very large, which makes

us believe the techniques did not perform better because their

optimal number of unlabeled samples might lay somewhere in

between the two values, which requires extensive analysis on

every dataset they are applied to.
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Fig. 4. Performance of the domain adaptation techniques for different hierarchy bias intensities in the controlled experiments. Results

obtained across 10 runs, with all methods evaluated using the same folds (train/test/global splits). Methods included: 11 adaptation techniques,

supervised model trained on unbiased data (No bias), on biased selection of data without adaptation (Bias), and on randomly selected samples

(Random, same number as Bias). Adaptation techniques that did not manage to run are marked with X. Red stars indicate significant difference (p <

0.05) between the performances of the adaptation technique and the biased supervised model (double-sided Wilcoxon signed-rank test). P: significant

difference between the performances of the adaptation techniques on the two bias intensities.

Varying amount of sample selection bias

We also investigated how the amount of selection bias impacts

the adaptation techniques when they adapt to the unlabeled

global domain. We kept the number of selected train samples

fixed (100) and varied the ratio parameter of hierarchy bias. We

expected that increasing the bias ratio from 60% to 80% would

skew the original train set distribution more and consequently

result in a worse classification performance for Bias. The

median accuracy difference from No bias and Random to Bias

did indeed increase in Ringnorm and Credit card. However, it

decreased in Raisin and Twonorm. These results highlight how

difficult it is to anticipate the effect of sample selection bias

on the data distribution of complex datasets, even in carefully

controlled experimental setups. Nevertheless, Bias performed

visibly lower than both No bias and Random in all datasets,

meaning there was a distribution dissimilarity present for the

adaptation techniques to align.

Domain adaptation behavior to the increase in bias ratio was

in general very fluctuating. Effectiveness (performance increase

compared to Bias) of some techniques which were able to

mitigate bias for 60% ratio significantly dropped when bias

intensity increased: SA (p = 0.044), RBA (p = 0.009) and MDD

(p = 0.004) in Twonorm, WDGRL (p = 0.037) in Diabetic,

and KLIEP (p = 0.041) in Credit card. In other cases, even

though the technique worked significantly better with more bias

intensity, it decreased performance compared to Bias regardless

of the intensity: DANN (p = 0.002) in Twonorm, TCA

(p = 0.027) in Diabetic, and WDGRL (p = 0.004) in Credit

card. In Ringnorm in particular, 7 techniques were significantly

better with stronger bias, but they all underperformed Bias for

both intensities. This behavior highlights the complexity of the

interaction between the selection bias and the data distribution.

The outcome of hierarchy bias in particular is affected by the

dataset cluster structure and the number of samples selected.

Although hierarchy bias is expected to produce a stronger effect

with increased bias ratio, the opposite appears to have occurred

for domain adaptation in Ringnorm.

Overall, none of the adaptation techniques proved robust

to variations of the amount of bias we introduced via the bias

ratio parameter. Techniques that did not often lose effectiveness

when increasing bias ratio from 60% to 80% (e.g., KMM,

KLIEP, Self-training) usually scored comparable to Bias in

the first place. The techniques that did show variations in

performance (e.g. Co-training, SA) sometimes showed a slight

decrease in effectiveness for the higher bias ratio setting;

however, this was dependent on the dataset.

The effect of hyperparameter tuning on the
adaptation performance
We wanted to evaluate the adaptation techniques when their

hyperparameters are chosen optimally for the global domain.

Therefore, we repeated the evaluation for one of the earlier

experimental setups (80% bias ratio, 100 selections) by tuning

their hyperparameters using a labeled subset of the global

domain (Global validation) instead of the train set (Source

validation) (Section 2). The labels of the global domain

should ideally not be used, but they allowed us in this

specific setup to estimate the potential of adaptation techniques

when their hyperparameters are tuned with an independent

unbiased set instead of the biased train set. As shown in

Figure 10, introducing sample selection bias produced a

visible performance drop in all datasets. The median accuracy

difference between No bias and Bias was in the range 0.142

(Credit card) and 0.256 (Raisin), and between Random and

Bias in the range 0.102 (Ringnorm) and 0.256 (Raisin).

As expected, domain adaptation techniques achieved in

general better performance when their hyperparameters were

tuned using Global validation. Most notably, the adaptation
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Fig. 5. Performance of the domain adaptation techniques for different hyperparameter tuning approaches in the controlled experiments.

Results obtained across 10 runs, with all methods evaluated using the same folds (train/test/global splits). Methods included: 11 adaptation techniques,

supervised model trained on unbiased data (No bias), on biased selection of data without adaptation (Bias), and on randomly selected samples (Random,

same number as Bias). Adaptation techniques that did not manage to run are marked with X. Red stars indicate significant difference (p < 0.05) between

the performances of the adaptation technique and the biased supervised model (double-sided Wilcoxon signed-rank test). P: significant difference between

the performances of the adaptation techniques on the two hyperparameter tuning approaches.

techniques using Global validation managed in a considerable

number of instances to both outperform Bias and significantly

improve the score for Source validation: SA (p = 0.002) in

Raisin, SA (p = 0.002), TCA (p = 0.002) and TCPR (p =

0.034) in Twonorm, KLIEP (p = 0.014), SA (p = 0.002), TCA

(p = 0.002), TCPR (p = 0.002) in Ringnorm, and KLIEP

(p = 0.021) and TCA (p = 0.002) in Credit card. Furthermore,

there were also many instances in which the adaptation

performance for Global validation significantly outperformed

that for Source validation and scored comparably to Bias: Self-

training and TCA in Raisin, Self-training, WDGRL and MDD

in Twonorm, KMM in Ringnorm, Co-training in Diabetic, and

KMM in Credit card. Therefore, the current approach of tuning

hyperparameters using a validation set that originates from

the biased train set can represent a considerable performance

bottleneck for the domain adaptation techniques. SA, TCA,

KMM and KLIEP in particular showed potential to outperform

Bias, but failed to do so due to inadequate hyperparameter

tuning. Unfortunately, while the usage of the Global validation

approach in our experiments did highlight a shortcoming of

current practices, it does not represent a solution. The lack of

access to the labels of the data to which we adapt is intrinsically

specific to unsupervised domain adaptation and that makes it

difficult to properly tune the hyperparameters of the adaptation

techniques in a straight-forward way.

Lastly, the fact that the scores obtained for Source and

Global validation were significantly different from each other

on numerous occasions attests to the sensitivity of adaptation

techniques to the choice of hyperparameters in general. This

was noticeable even for the grid search strategy with a limited

hyperparameter search space that we used in the experiments.

Complex bioinformatics problems with intrinsic
selection bias
To better characterize the behavior of the adaptation

techniques when they adapt to the global domain, we also

evaluated them on four different bioinformatics datasets that

have naturally occurring selection bias in them (Section 2.3).

First, we looked at a protein solubility dataset in which

selection bias stems the data collection process. Secondly, we

analyzed three GO term prediction datasets: CAFA3-CC and

CAFA3-MF containing selection bias that originates from the

temporal collection of the train and test sets, and Data2017-

MF for which only well studied proteins have been selected. For

each dataset we predict three GO terms. For convenience, we

refer to a problem as [dataset][GO term], which is predicting

whether a protein carries the [GO term] term in the [dataset]

dataset.

For each repetition in the bioinformatics experiments,

the train and test sets were fixed because they originate

from benchmarks whereas the unlabeled set was randomly

subsampled anew from the global domain. Because the

train and test sets did not change between the repetitions,

the variance of the unadapted base model (Bias) was low

(Supplementary Figure 11). The variance of most domain

adaptation techniques was also noticeably low (Figure 6), which

indicates that the number of unlabeled sequences (50,000) we

subsampled was adequate and the sequences themselves were

representative between repetitions. On the other hand, deep

domain adaptation techniques in particular tended to have

higher variance. This might be explained by the adversarial

optimization approach they use [56], for example a domain

classifier in DANN, the Wasserstein critic in WDGRL or an

adversarial margin classifier in MDD. Unlike the objectives

of the other adaptation techniques, these are non-convex and
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therefore highly sensitive to initialization settings and choice of

hyperparameters [27, 57], which might increase variance.

Adaptation techniques tended to improve the classification

score the most when the performance of Bias was low.

Bias registered the lowest median score in Data2017-MF

GO:0030165 (0.273), while it scored above 0.5 in all other

experiments. For this task in particular, all adaptation

techniques except Self-training significantly outperformed Bias

with robust median differences (0.115 KMM, 0.233 KLIEP,

0.238 Co-tr, 0.044 SA, 0.206 DANN, 0.187 WDGRL, 0.281

MDD). Similarly, for Data2017-MF GO:0004540, in which

Bias also had one of the lowest median scores (0.534), three

techniques significantly improved Bias by visible margins

(0.051 Co-tr, 0.065 DANN, 0.099 WDGRL), while KMM,

KLIEP and MDD showed a tendency to improve as well.

Nevertheless, we also noticed that the adaptation techniques

had a slightly higher variance in these two datasets in

particular. Therefore, more complex tasks with more selection

bias represented a better opportunity for adaptation techniques

to improve the score, but they also made the adaptation more

unstable.

Although semi-supervised techniques successfully improved

performance in a few cases (e.g. Co-training in Data2017-MF

GO:0030165 and GO:0004540), they struggled in general to

adapt and often underperformed Bias. Co-training performed

significantly worse than Bias, sometimes by large margins, in

six tasks (median differences: -0.032 Prot. sol., -0.07 CAFA3-

CC GO:0043231, -0.245 CAFA3-MF GO:0003824, -0.175

CAFA3-MF GO:0005488, -0.012 CAFA3-MF GO:003016504,

-0.046 Data2017-MF GO:0035251). Self-training significantly

underperformed Bias in four tasks, albeit by smaller margins

(median differences: -0.009 Prot. sol., -0.005 CAFA3-CC

GO:0044444, -0.005 CAFA3-MF GO:0003824, -0.006 Data2017-

MF GO:0030165). The occurrences were spread across all

datasets and types of sample selection bias, which makes

us hypothesize that the weak performance was mainly the

result of the adaptation mechanism itself. Because semi-

supervised techniques incorporate pseudo-labeling, they can

start hallucinating when the unlabeled samples are low-

confidence [58] or at the edge of the distribution that the

technique is familiar with [18, 20]. The distribution of the

unlabeled data might have been too broad in our bioinformatics

experiments, which caused the semi-supervised techniques to

learn the wrong decision boundary.

Minimax estimators RBA and TCPR failed to run to

completion and instead threw errors for all tasks except RBA

in Prot. sol. (Figure 6). Both techniques integrate the base

classification model in their adaptation mechanism (see Table

1) and we believe that the increased number of features and

the complexity this has introduced in the data might have

caused their solver to fail to find a decision boundary. The

optimization problem used by minimax estimators to adapt

relies on worst-case labeling assumptions on the unlabeled set,

which impose highly conservative constraints on the potential

decision boundary [1]. These constraints make the feasible

solution space very small, especially when the data is high-

dimensional or the overlap between the train and unlabeled

sets is limited [26]. The bioinformatics experiments had a

considerably larger feature space (135-640 dimensions) than

the controlled experiments (7-23 dimensions), in which RBA

and TCPR mostly managed to run successfully. Furthermore,

the few instances in the controlled experiments in which the

minimax estimators did struggle to run occurred exclusively in

the datasets with high dimensionality or high data complexity

(i.e., Diabetic and Credit card). Therefore, while theoretically

robust, these adaptation techniques can be numerically fragile

in practice.

Lastly, there were also techniques that performed promising

when adapting to the global domain (Figure 6). In particular,

SA showed consistent robustness and scored significantly better

than Bias in 6 out of 10 experiments, worse in 1 and did

not run in 2. SA also had the largest median improvement

out of all techniques in all CAFA3-CC experiments alongside

CAFA3-MF GO:0043231. Furthermore, importance weighting

techniques KMM and KLIEP each significantly improved Bias

performance in 6 out of 10 experiments, but KMM performed

significantly worse in 3 cases and KLIEP in 1 case. Deep

domain adaptation techniques also showed potential, albeit to

a lesser extent possibly due to the increased variance in their

scores. DANN and WDGRL each significantly outperformed

Bias in 5 out of 10 experiments, underperformed in 2 and scored

comparable to it in 3. MDD however scored mostly comparable

to Bias, in 6 cases.

Comparing adaptation to the global domain with the
test set
We also investigated how our proposed approach of adapting to

a global domain that is representative (as much as possible) of

the original distribution compare with the existing approach

of adapting to the test set. We repeated the bioinformatics

experiments when the test set (without its labels) is leveraged

as the unlabeled set for adaptation (Figure 6).

When comparing the variance of the scores for global

domain adaptation against test set adaptation (Figure 6), we

found no conclusive evidence of them being different. This

demonstrates that global adaptation can remain as stable

as test set adaptation, while still potentially including more

information in the unlabeled data.

None of the two adaptation approaches emerged as a

distinguishably superior in our experiments. Both global

domain adaptation and test set adaptation significantly

outperformed the other approach in exactly 23 out of 46

instances. These instances were spread relatively uniformly

among the experiments, which indicates that the suitability

of the adaptation approach was not dependent on either

the dataset or the type of selection bias present in the

data. We also analyzed each of these significant instances to

reveal patterns among the adaptation techniques. Important

weighting techniques usually performed better for global

domain adaptation. From the 10 experiments, KMM scored

significantly better in 6 and worse in 1, and KLIEP better

in 5 and worse in 2. Using the wider global domain likely

provided broader and more representative coverage of the

test set distribution, enabling KMM and KLIEP to estimate

more accurate and stable weights. This is consistent with

prior findings that limited support of the test set leads to

unstable or high-variance importance weights and therefore an

improper adaptation [11, 14, 59]. Relying on unlabeled data

exclusively from the test set might have offered limited coverage

of the complete test set data distribution, therefore limiting

adaptation effectiveness [14, 59].

The semi-supervised approaches performed visibly better

when leveraging test set adaptation. Self-training performed

significantly better 6 times for test set adaptation and only

3 times for global domain adaptation. Co-training performed

significantly better 7 times for test set adaptation and no

times for global domain adaptation across the experiments. Our
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Fig. 6. Performance of the domain adaptation techniques on bioinformatics problems with naturally biased data: (a) protein solubility

prediction, and (b) prediction of 9 Gene Ontology(GO) terms across 3 datasets. Results obtained across 10 runs, with all methods evaluated using the

same train/test/global datasets. Methods included: 11 adaptation techniques and supervised model trained and evaluated on the biased data without

domain adaptation (Bias). Adaptation techniques that did not manage to run are marked with X. Red stars indicate significant difference (p < 0.05)

between the performances of the adaptation technique and the biased supervised model (double-sided Wilcoxon signed-rank test). P: significant difference

between the performances of the adaptation techniques using global domain versus test set adaptation. (c) Performance of the biased supervised model

(Bias) compared to random guess on the test set.

hypothesis is that using unlabeled samples from the broader

global domain distribution might have introduced many low-

confidence or out-of-distribution instances during the training

of the semi-supervised techniques, which increased pseudo-label

noise and thereby harmed their performance [58, 60]. It was

shown that Self-training performs best when its unadapted

base model already performs decently on the test set, and

the unlabeled data closely matches the test set distribution

[18, 61]. Since Bias did score on the test set visibly better than

random guess in almost all experiments (6c), we believe that

incorporating unlabeled data from a (much) wider distribution

than that of the test set is the reason why global adaptation

underperformed.

There were also adaptation techniques that did not show

a clear performance advantage for either of the adaptation

approaches. SA from the subspace mapping category performed

significantly better 4 and 3 times, respectively, for global

domain versus test set adaptation. The same was observed for

the deep domain adaptation category (DANN, WDGRL, MDD)

as well, which performed significantly better exactly 4 times for
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each adaptation approach. Deep domain adaptation also had

a low number of significant differences when compared to the

other categories. Both findings could be explained by the higher

variance present in the scores of DANN, WDGRL and MDD for

both the global domain and test set adaptation scenarios, which

made it harder to establish with confidence a better approach

overall.

Conclusion

In this study we analyse the performance of (unsupervised)

domain adaptation techniques when they mitigate data

distribution dissimilarities caused by sample selection bias.

Whereas unlabeled data used for performing domain adaptation

originates traditionally from the test set, we use a novel

approach in which the unlabeled data is procured from

the distribution of a larger (here called global) domain

representative of the problem. We benchmarked 11 adaptation

techniques across both controlled experiments with artificially

introduced selection bias and two bioinformatics problems with

intrinsic selection bias in the data.

We found that no domain adaptation technique is

universally suited for all applications. The properties of the

dataset (e.g., sample size, dimensionality, data distribution),

the type of sample selection bias, and the approach used

by the adaptation technique are all important aspects to

consider. In particular, minimax estimators are fragile in high-

dimensional tasks in which the distribution difference tends

to be inherently more complex, such as protein function

prediction. In our experiments, minimax estimators RBA

and TCPR failed to run on almost all bioinformatics tasks

and sometimes struggled even in the less complex, controlled

experiments. Furthermore, deep domain adaptation tends to be

less stable compared to other adaptation approaches, especially

for more complex problems. Its distinctive neural network

architecture combined with an adversarial approach makes the

optimization non-convex and sensitive to initialization settings.

The novel neural network architecture was also suggested to

make deep domain adaptation particularly suited for high-

dimensional applications [1], but we found no strong evidence

of it outperforming more traditional adaptation approaches in

such scenarios. Furthermore, it is particularly ill-advised to

employ semi-supervised adaptation approaches when the train

and unlabeled sets have little overlap. They tend to easily

mislabel samples from outside the learned train set distribution,

as prior research also suggests [18, 20, 58]. This can also

be the case if the unlabeled set has a large sample size or

captures a (very) complex distribution. Lastly, the sample size

of the unlabeled set is a factor that affects all adaptation

techniques, not only the semi-supervised ones. Intuitively, more

unlabeled samples should provide a better estimation of the

underlying distribution and aid the adaptation. Nevertheless,

our controlled experiments showed that too many unlabeled

samples, especially for complex problems, can confuse the

adaptation techniques about the correct class distribution and

decision boundary.

Our novel approach of adapting the train set to the global

domain instead of the test set can be advantageous in certain

situations. Most importantly, our bioinformatics experiments

showed that global adaptation retains a level of stability similar

to that of test set adaptation, while potentially encoding more

information about the distribution of data in the problem.

Some adaptation techniques, particularly importance weighting

ones, benefit from this additional information and often

significantly outperformed test set adaptation in our study.

Semi-supervised approaches however perform much better when

adapted to the test set. Leveraging a wider, more complex

unlabeled distribution can cause them to mislabel samples as

explained earlier. Techniques from other categories (e.g., deep

domain adaptation, subspace mapping) performed similarly for

both adaptation approaches and we recommend to be further

investigated.

Similarly to other machine learning models, domain

adaptation techniques also have hyperparameters that require

tuning. Our study provides empirical evidence that they are

sensitive to the tuning approach and the subsequent choice

of hyperparameters like previous studies suggest [62]. We

add to mounting evidence [62–64] that the standard approach

of tuning their hyperparameters by using a validation set

originating from the train set is inadequate when the train set

is unrepresentative of the true distribution, for example due to

sample selection bias. This prevents the adaptation techniques

from properly adapting to the unlabeled data and represents a

significant performance bottleneck as our study shows. While

a few alternative hyperparameter tuning approaches have been

proposed, such as reverse cross-validation [64] and C-Ent [63],

none of them was evaluated on distribution dissimilarities

caused explicitly by sample selection bias, which we believe

represents a worthwhile future research effort.

Lastly, we reflect on the composition of our benchmark.

Controlled experiments with artificially introduced sample

selection bias are a very useful tool for providing insights

especially into aspects that are not (easily) observable in

real-world problems. For example, they allowed us to study

empirically the shortcomings of current hyperparameter tuning

approaches and to measure the amount of sample selection

bias present in the data. Nevertheless, controlled experiments

fall short of the complexity of real-world sample selection

biases and the bioinformatics problems proved a much better

tool for identifying performance patterns across the adaptation

techniques. In our study we focused on the bioinformatics

field due to the fact that biases are usually intrinsically

caused by experimental limitations in cost, time and other

resources, while collecting a global domain is feasible because

the experimental space is known. However, exposing the

adaptation techniques exclusively to selection biases specific to

this field can represent a limitation. WILDS2.0 [65] is a recently

proposed collection of diverse real-world datasets for domain

adaptation that also contain unlabeled data beyond the test

set. However, it was not investigated whether the distribution

shifts are the result of selection bias or the unlabeled data

adequately captures the whole problem domain. We recommend

that future studies leverage such initiatives in order to evaluate

global domain adaptation on selection biases from more diverse

contexts.

To conclude, we consolidated the existing body of knowledge

on unsupervised domain adaptation and explored the more

specific problem of sample selection bias. We proposed a novel

adaptation approach that leverages unlabeled data from a

global domain instead of the test set and showed the relevance

of our research to the field of bioinformatics by applying our

approach to protein function prediction. We hope our findings

encourage researchers to further study and use global domain

adaptation in more diverse applications.
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M. T. Nickerson. Bioengineered enzymes and precision

fermentation in the food industry. International Journal

of Molecular Sciences, 24(12), 2023.

43. B. David. Recombinant protein bioprocessing.

Pharmaceutical Bioprocessing, 11(2):19–21, 2023.

44. C. C. H. Chang, J. Song, B. T. Tey, and R. N.

Ramanan. Bioinformatics approaches for improved

recombinant protein production in escherichia coli: protein

solubility prediction. Briefings in Bioinformatics,

15(6):953–962, 08 2013.

45. H. M. Berman, J. D. Westbrook, M. J. Gabanyi, W. Tao,

R. Shah, A. Kouranov, T. Schwede, K. Arnold, F. Kiefer,

L. Bordoli, J. Kopp, M. Podvinec, P. Adams, L. Carter,

W. Minor, R. Nair, and J. Baer. The protein structure

initiative structural genomics knowledgebase. Nucleic acids

research, 37(SUPPL. 1):D365–D368, 2009.

46. H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N.

Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne. The

protein data bank. Nucleic Acids Research, 28(1):235–242,

01 2000.

47. S. Idicula-Thomas and P. V. Balaji. Understanding the

relationship between the primary structure of proteins and

its propensity to be soluble on overexpression in escherichia

coli. Protein Science, 14(3):582–592, 2005.

48. Z. Lin, H. Akin, R. Rao, B. Hie, Z. Zhu, W. Lu,

N. Smetanin, R. Verkuil, O. Kabeli, Y. Shmueli, A. dos

Santos Costa, M. Fazel-Zarandi, T. Sercu, S. Candido,

and A. Rives. Evolutionary-scale prediction of atomic-

level protein structure with a language model. Science,

379(6637):1123–1130, 2023.

49. N. Zhou et al. The cafa challenge reports improved protein

function prediction and new functional annotations for

hundreds of genes through experimental screens. Genome

Biology, 20(24), 2019.

50. I. Kahanda, C. S. Funk, F. Ullah, K. M. Verspoor, and

A. Ben-Hur. A close look at protein function prediction

evaluation protocols. GigaScience, 4(1):s13742–015–0082–

5, 09 2015.

51. A. Ranjan, A. Tiwari, and A. Deepak. A sub-

sequence based approach to protein function prediction

via multi-attention based multi-aspect network.

IEEE/ACM Transactions on Computational Biology

and Bioinformatics, 20(1):94–105, 2023.

52. The UniProt Consortium. Uniprot: the universal

protein knowledgebase in 2025. Nucleic Acids Research,

53(D1):D609–D614, 2024.

53. R. Joeres, D. B. Blumenthal, and O. V. Kalinina. Data

splitting to avoid information leakage with datasail. Nature

Communications, 16:3337, 2025.

54. M. AlQuraishi. Proteinnet: a standardized data set

for machine learning of protein structure. BMC

Bioinformatics, 20(1):311, 2019.

55. P. Gane et al. Uniprot: A hub for protein information.

Nucleic Acids Research, 43:D204–D212, 11 2014.

56. M. HassanPour Zonoozi and V. Seydi. A survey on

adversarial domain adaptation. Neural Processing Letters,

55(6):2429–2469, 2022.

57. Y. Zhang, T. Liu, M. Long, and M. I. Jordan.

Bridging theory and algorithm for domain adaptation.

In Proceedings of the 36th International Conference on

Machine Learning (ICML), volume 97, pages 7404–7413.

PMLR, June 2019.

58. O. Chapelle, B. Schölkopf, and A. Zien. Semi-Supervised

Learning. MIT Press, 2006.

59. M. Sugiyama, M. Krauledat, and K.-R. Müller. Covariate

shift adaptation by importance weighted cross validation.

Journal of Machine Learning Research, 8:985–1005, 2007.

60. Y. Grandvalet and Y. Bengio. Semi-supervised learning by

entropy minimization. In Advances in Neural Information

Processing Systems, volume 17, pages 529–536, 2005.

61. D. Yarowsky. Unsupervised word sense disambiguation

rivaling supervised methods. In Proceedings of the 33rd

Annual Meeting of the Association for Computational

Linguistics, pages 189–196, 1995.

62. K. Saito, D. Kim, P. Teterwak, S. Sclaroff, T. Darrell, and

K. Saenko. Tune it the right way: Unsupervised validation

of domain adaptation via soft neighborhood density. In

Proceedings of the IEEE/CVF International Conference

on Computer Vision (ICCV), pages 9184–9193, October

2021.

63. P. Morerio, J. Cavazza, and V. Murino. Minimal-

entropy correlation alignment for unsupervised deep domain

adaptation. In International Conference on Learning

Representations (ICLR) 2018, 2018. poster.

64. E. Zhong, W. Fan, Q. Yang, O. Verscheure, and J. Ren.

Cross validation framework to choose amongst models and

datasets for transfer learning. In Machine Learning and

Knowledge Discovery in Databases, European Conference,

pages 547–562, 09 2010.

65. S. Sagawa et al. Extending the wilds benchmark for

unsupervised adaptation. In International Conference on

Learning Representations (ICLR) 2022, 2022. Oral.



16 Andrei Camil Tociu et al.

Supplementary: Hyperparameter search space for the domain adaptation techniques

Table 4. Hyperparameter search space for the validation of the domain adaptation techniques.

Technique Hyperparameter Search space

KMM

kernel RBF

gamma (kernel parameter) 0.0001, 0.001, 0.01, 0.1, 1, 10

max. iterations 100

KLIEP

kernel RBF

gamma (kernel parameter) 0.001, 0.01, 0.1, 1, 10

max. centers 50, 100, 200

max. iterations 100

Self-training

criterion threshold, K-best

threshold (for threshold criterion) 0.5, 0.7, 0.85

K (for criterion K-best) 10, 20, 30, 50, 100

max. iterations 100

Co-training
unlabeled pool size 5, 10, 20, 50

max. iterations 100

SA nr. components 25, 50, 75 % of nr. features

TCA

nr. components 25, 50, 75 % of nr. features

mu (regularization parameter) 0.001, 0.01, 0.1, 1

kernel RBF

gamma (kernel parameter) 0.001, 0.01, 0.1, 1, 10

RBA

L2 regularization 0.001, 0.01, 0.1]

gamma (decaying learning rate) 0.01, 0.1, 1, 10

max. iterations 100

TCPR

L2 regularization 0.001, 0.01, 0.1

learning rate 0.01, 0.1, 1, 10

max. iterations 100

DANN lambda (trade-off parameter) 0.01, 0.1, 1, 10

WDGRL
lambda (trade-off parameter) 0.01, 0.1, 1, 10

gamma (gradient penalization parameter) 0.1, 1, 10

MDD
lambda (trade-off parameter) 0.01, 0.1, 1, 10

gamma (margin parameter) 0.1, 1, 4, 10
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Supplementary: Original scores for the controlled experiments
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Fig. 7. Performance of the domain adaptation techniques for different sample sizes of the train set in the controlled experiments.

Results obtained across 10 runs, with all methods evaluated using the same folds (train/test/global splits). Methods included: 11 adaptation techniques,

supervised model trained on unbiased data (No bias), on biased selection of data without adaptation (Bias), and on randomly selected samples (Random,

same number as Bias). Adaptation techniques that did not manage to run are marked with X.
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experiments. Results obtained across 10 runs, with all methods evaluated using the same folds (train/test/global splits). Methods included: 11

adaptation techniques, supervised model trained on unbiased data (No bias), on biased selection of data without adaptation (Bias), and on randomly

selected samples (Random, same number as Bias). Adaptation techniques that did not manage to run are marked with X.
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Fig. 9. Performance of the domain adaptation techniques for different hierarchy bias intensities in the controlled experiments. Results

obtained across 10 runs, with all methods evaluated using the same folds (train/test/global splits). Methods included: 11 adaptation techniques,

supervised model trained on unbiased data (No bias), on biased selection of data without adaptation (Bias), and on randomly selected samples (Random,

same number as Bias). Adaptation techniques that did not manage to run are marked with X.
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Fig. 10. Performance of the domain adaptation techniques for different hyperparameter tuning approaches in the controlled

experiments. Results obtained across 10 runs, with all methods evaluated using the same folds (train/test/global splits). Methods included: 11

adaptation techniques, supervised model trained on unbiased data (No bias), on biased selection of data without adaptation (Bias), and on randomly

selected samples (Random, same number as Bias). Adaptation techniques that did not manage to run are marked with X.
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Fig. 11. Performance of the domain adaptation techniques on bioinformatics problems with naturally biased data: (a) protein solubility

prediction, and (b) prediction of 9 Gene Ontology(GO) terms across 3 datasets. Results obtained across 10 runs, with all methods evaluated using the

same train/test/global datasets. Methods included: 11 adaptation techniques and supervised model trained and evaluated on the biased data without

domain adaptation (Bias). Adaptation techniques that did not manage to run are marked with X.
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