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Abstract

Sample selection bias is a widespread cause of distribution shift between the train and test sets, which can significantly
degrade the generalisability and performance of machine learning models. To mitigate distribution shifts, numerous
domain adaptation techniques have been developed, which adapt the train set to the test set. However, adapting to a
specific test set under sample selection bias might impede the model from properly generalizing across the entire problem
domain and requires re-adaptation whenever the test data changes. Therefore, we propose a novel adaptation strategy,
called global domain adaptation, in which we instead adapt to a larger (global) domain representative of the distribution
from which both the train and test sets originate. We introduce a comprehensive benchmark to investigate the behavior
and limitations of domain adaptation techniques when adapting to the global domain, which consists of synthetic datasets
and selection biases as well as complex bioinformatics datasets with intrinsic biases. Our benchmark reveals interesting
performance patterns across categories of domain adaptation techniques: minimax estimators are very fragile in practice,
while deep domain adaptation has lower stability in spite of increased architectural complexity. Lastly, we find that
global domain adaptation is a viable approach for certain techniques such as importance weighting, while semi-supervised
techniques tend to perform best for existing test set adaptation.

Introduction With labels Training Without abels Testing

For a machine learning model to be useful, it is crucial that it Train set Test set

is generalizable. Using biased data, for example due to sample
selection bias, may cause a model to learn a view that is

not representative of the true patterns. Selection bias occurs

when the data are not sampled uniformly from the underlying

population, causing certain groups or types of samples to a) Test set adaptation

appear more prominently than others. Therefore, selection bias

can cause train and test sets to differ substantially, which can With labels _ Trajning — Without labels Testing
lead to serious degradation of a model’s generalisability and

performance [1]. In practice, sample selection bias occurs in a Train set Global domain Test set

multitude of situations [1]. For example, clinical studies with

non-representative patient recruitment [2], scientific datasets

where certain experiments are more feasible or frequently

performed than others [3, 4], or bioinformatics where certain
proteins are easier to isolate and study than others [5, 6].
In order to mitigate distribution shifts between train

b) Global domain adaptation

and test sets, numerous (unsupervised) domain adaptation Class 1 Class2 @ Selected Class 1 @ Selected Class 2 @ Unlabeled

techniques have been proposed [1]. They all operate under

. . . . Fig. 1. D i i hes. Existi h of usi

the assumption that the test set without labels is available '8 omain adaptation approaches. a) Existing approach of using
. L. L. unlabeled data from the test set; b) Proposed approach of using unlabeled
at the time of training the model and leverage it in order

to adapt the (labeled) train set to the (unlabeled) test set

data from a wider distribution of the problem domain, here called global

domain.
(Figure la). However, this approach poses certain limitations
under sample selection bias. Adapting the train set to the
(biased) test set does not make the model generalizable across
the entire distribution of the problem, but only the specific a different, novel perspective: instead of adapting to the test
test set. The model will therefore require re-adaptation every set, one may instead collect unlabeled data from and adapt to
time we want it to generalize on new, unseen test data. the distribution of a broader (here called global) domain from
Furthermore, since domain adaptation techniques are designed which both the train and test sets are assumed to have been
to align distributions, they cannot be used when only individual selected with bias (Figure 1b). Intuitively, adapting the train
(or extremely few) test samples are available. This motivates set once to a global domain that is representative enough of the

underlying distribution of the classification task should allow a

© The Author 2025.


email:email-id.com

2 | Andrei Camil Tociu et al.

model to generalize without the need to re-adapt to any new
test data that originates from this distribution.

Even though domain adaptation has been widely investigated
as a solution to many types of distribution shifts, existing
domain adaptation benchmarks (e.g. Office-31 [7], Office-
Home [8], DomainNet [9], WILDS [10]) do not investigate the
presence of sample selection bias in the datasets they curate.
Furthermore, they are also targeted at the existing test set
adaptation approach, meaning they do not offer unlabeled
global data required for global domain adaptation.

Moreover, studies indicate that the effectiveness of domain
adaptation is subject to certain limitations that usually stem
from the assumptions that an adaptation technique makes [1].
Some factors widely recognized in literature for potentially
influencing their performance are the size of the labeled train
set [11-13], the amount of available unlabeled data [14-17]
and the severity of the distribution shift [1, 11, 14, 18]. While
these factors have been long investigated in the wider context
of distribution shifts using the traditional test set adaptation
framework, their impact in the context of sample selection bias
with the proposed global domain adaptation approach has yet
to be studied.

To overcome the current gaps in literature, we propose
a benchmark to investigate the effectiveness of domain
adaptation techniques in mitigating sample selection bias
specifically under the novel global domain adaptation approach.
More precisely, we use the benchmark to study:

1. the limiting factors of adaptation techniques that emerge
from the dataset characteristics (i.e. global domain sample
size, train set sample size, amount of bias in the data);

2. the impact of hyperparameter tuning on the performance
of adaptation techniques that use the global domain;

3. the effectiveness of adaptation techniques leveraging the
global domain in mitigating intrinsic selection biases;

4. the behavior of adaptation techniques when adapting to the
global domain versus test set.

The benchmark encompasses controlled experiments with
artificial selection bias that allow to study systematically the
limiting factors and the impact of hyperparameter tuning,
as well as real-world bioinformatics problems with intrinsic
selection bias in the data. Lastly, the bioinformatics datasets
are also used to compare the novel global domain adaptation
with the existing test set adaptation.

Methodology

Domain adaptation techniques

(Unsupervised) Domain adaptation techniques are very
numerous and diverse in terms of the strategy they use to
perform the adaptation. While studying all techniques is
infeasible, we use the taxonomy proposed by [1] to make a
representative selection of techniques. Adaptation techniques
are distinguished in [1] based on the approach they use: sample-
based techniques correct the distribution shift by adjusting
the individual observations in the train set, feature-based
techniques transform the feature space such that a classification
model trained on the remapped train set will generalize on
the unlabeled set, and inference-based techniques incorporate
the adaptation directly in the parameter estimation procedure
of the classification model. Each of these three approaches is
then further split into finer categories based on the adaptation

mechanism itself and the assumptions it makes about the

adaptation problem. We select for our study 11 adaptation
techniques, covering both established and state-of-the-art

methods, across five prominent categories (Table 1).

Importance weighting

The importance weighting category belongs to the sample-
based approach and is usually employed in clinical applications
[1], which makes it relevant to the bioinformatics field as well.
It assigns a weight to each sample in the train set, such that
the distribution of the weighted train set is more representative
of the distribution of unlabeled data. Kernel-Mean Matching
(KMM) [11] and Kullback-Leibler Importance Estimation
Procedure (KLIEP) [19] are two well known importance
weighting techniques that both infer the sample weights by
minimizing a distribution discrepancy metric between the
train and unlabeled sets. KMM uses the Maximum Mean
Discrepancy as metric, while KLIEP employs the Kullback-
Leibler divergence.

Semi-supervised

Semi-supervised is an inference-based category that incorporates
the unlabeled samples in the training process by pseudo-
labeling them, in order to achieve adaptation. Self-training [20]
uses a classification model to iteratively assign labels to the
unlabeled samples and subsequently selects a subset of them
with the highest prediction confidence to add to the train set
for the next training iteration. The Co-training approach [21]
involves using two different classification models in parallel on
the same data [22] to pseudo-label the unlabeled set and then
adding some of the highest-confidence predictions from both
models to the train set during each iteration.

Subspace mapping

The subspace mapping category follows the feature-based
approach and projects the data in both the train and unlabeled
sets into a new subspace in which the two are aligned.
Subspace Alignment (SA) [23] achieves this by extracting
the first d components of the principal component analysis
applied to the train set and subsequently aligns them via
a linear transformation matrix to the first d components of
the unlabeled set. On the other hand, Transfer Component
Analysis (TCA) [24] aligns the train and unlabeled sets in
an independent subspace by computing a projection kernel
matrix that minimizes the Maximum Mean Discrepancy metric
between the two sets in this new feature space.

Minimaz estimators

Minimax estimators use the inference-based approach. They
view domain adaptation as an optimization problem consisting
of a classifier that attempts to minimize risk and an adversary
that maximizes it by changing the distribution of the unlabeled
data from that of the train set. Following on this idea, the
Robust Bias-Aware (RBA) classifier [25] assumes an adversary
that changes the posterior distribution of the unlabeled data.
The Target Contrastive Pessimistic Risk (TCPR) approach
[26] focuses on the performance gain that can be obtained
by changing the parameters of the classifier, while assuming
maximum uncertainty regarding the labels of the unlabeled set.

Deep domain adaptation
Deep domain adaptation is feature-based; it leverages artificial
neural networks to extract high-level features that are both

common across the train and unlabeled sets, and robust
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Table 1. Summary of the benchmark domain adaptation techniques.

Category Technique Type Requires base model
I ¢ iohti KMM sample-based yes
mportance weightin,
P & & KLIEP sample-based yes
Self-training inference-based yes

Semi-supervised o
Co-training

inference-based

yes (2 models)

Sub . SA feature-based yes
ubspace mappin
P pping TCA feature-based yes
Mini timat RBA inference-based no
HHax estumnators TCPR inference-based no
DANN feature-based yes (neural network)
Deep domain adaptation WDGRL feature-based yes (neural network)
MDD feature-based yes (neural network)

against the distribution dissimilarity between the two. Due to
the inclusion of neural networks, deep domain adaptation is
particularly suitable for high-dimensional applications [1], such
as bioinformatics. The Domain Adversarial Neural Network
(DANN) [27] is an established method that uses a feature
encoder with two loss layers: the first classifies the train samples
based on their known labels, while the second classifies the
train and unlabeled samples based on their domain such that
they cannot be distinguished from each other. Wasserstein
Distance Guided Representation Learning (WDGRL) [28] is
architecturally similar to DANN, but the second loss layer
instead minimizes the Wasserstein distance between the train
and unlabeled sets. Lastly, Margin Disparity Discrepancy
(MDD) [29] also leverages a feature encoder, but it aligns
domains by minimizing the difference in margins between a
primary classifier and an auxiliary adversarial classifier, both
applied to the extracted feature representation. All three deep
domain adaptation techniques follow an adversarial approach,
however, DANN and WDGRL rely on domain discriminators,
while MDD instead focuses on aligning decision boundaries
directly by minimizing the difference in classification margins.

Selection of base classification model

When using an adaptation technique it is important to consider
whether or not a base classification model needs to be selected
to use in the adaptation process. Certain techniques align the
train and unlabeled domains independently of the classification
model used on the task and can therefore be applied to (almost)
any choice of base model. In this case a decision must be made
on which classifier to use with the adaptation technique. Other
adaptation approaches incorporate the classification task in the
inner workings of the technique itself and therefore require
no base model. In this study we use logistic regression as
the base model because it is suitable for binary classification
tasks and easily interpretable due to its linearity. It also allows
for weighting samples during training, which is a prerequisite
of importance weighting adaptation. We use the logistic
regression implementation from scikit-learn! with its default
hyperparameter values: L2 regularization and 100 maximum
iterations. When dealing with unbalanced train sets we also
enable the balancing class weighting function. For Co-training,
which uses two classification models, we combine it with linear

L https://scikit-learn.org (version 1.7.2)

discriminant analysis (scikit-learn'; default hyperparameters)
because this is also linear and intuitively explainable. Lastly,
deep domain adaptation cannot be straightforwardly applied
to any base model because of the neural network architecture.
To ensure a fair evaluation, we use as task head in the three
techniques a single fully connected layer with sigmoid activation
that replicates the behavior of the logistic regression base model
used by the other techniques.

Controlled experiments with artificially introduced
sample selection bias

All adaptation techniques incorporate assumptions in their
adaptation mechanism that strongly influence in which
situations they succeed or fail [1]. We identified some common
factors to which adaptation techniques have been studied to
potentially be sensitive to: the sample size of the train set
[12, 13], the number of unlabeled samples [15-17], and the
degree of distribution dissimilarity between the train and test
sets [11, 14, 18]. Therefore, we examine how domain adaptation
techniques perform in these situations when they adapt the
train set to the global domain. In order to be able to evaluate
each of these factors individually, we focus on experiments in
which we craft the train, test and global sets ourselves and have

full control over the sample selection bias present in the data.

Data and sample selection bias
We the
classification tasks (Table 2), which are diverse in terms
of sample size (900 - 30,000), number of features (7 - 23)
and feature types in order to increase the generalisability of

evaluate adaptation techniques on five binary

our analysis. First, to mitigate potential confounding factors,
we eliminate class imbalance by randomly subsampling the
majority class to the sample size of the minority class. As
such, the tasks used in the experiments have between 900 and
13,272 balanced samples and between 7 and 23 features split
over categorical (between 0 and 8), binary (between 0 and 3)
and numerical (between 7 and 20). Afterwards, the data of each
of the five tasks is randomly divided, stratified by class labels
to maintain class balance, into train (40%), global (50%) and
test (10%) sets. At this stage, the data in the three splits is
assumed to have a similar distribution due to the random split.
Also, we did not yet introduce any artificial sample selection
bias in the data.
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Table 2. Binary classification tasks used in the controlled experiments.

Task #Samples Class balance #Samples balanced #Features (cat./bin./num.)
Raisin [31] 900 50% - 50% 900 7 (0/0/7)
Twonorm [32] 7,400 50% - 50% 7,400 20 (0/0/20)
Ringnorm [33] 7,400 50% - 50% 7,400 20 (0/0,/20)
Diabetic [34] 1,151 47% - 53% 1,082 19 (0/3/16)

Credit card [35] 30,000 78% - 22% 13,272 23 (8/1/14)

To be able to effectively evaluate the adaptation techniques,
there needs to be a distribution difference present between
the train and test sets, in the form of sample selection bias.
We achieve this by introducing an artificial type of sample
selection bias in the train set via the hierarchy bias approach
[30]. This approach consists of identifying clusters of samples
within each of the two classes in the train set and then favoring
samples from a specific, randomly chosen cluster. The bias
ratio parameter of the hierarchy bias dictates the percentage
of selected samples that originates from this one cluster, with
the remaining samples being randomly and uniformly chosen
from the rest of the clusters. The selection process maintains
an equal number of samples in each class. Ultimately, by being
able to control both the number of samples selected with bias
and the bias ratio parameter, we manage to control how much
bias we introduce. After hierarchy bias is introduced in the train
set, it follows a different distribution than that of the global and
test sets.

Training of domain adaptation techniques and baselines
Each of the domain adaptation techniques is evaluated by
first training it on the (biased) train set alongside the
unlabeled global domain and subsequently evaluating it on the
(unbiased) test set. During the training process, we tune the
hyperparameters of the adaptation technique by performing
grid search five-fold cross validation (see Appendix A for the
search space); four folds of the train set alongside the global
domain are used for training, while one fold is put apart for
validation. Since all datasets are balanced, we use accuracy as
evaluation metric.

We employ a number of baselines in our study in order
to better contextualize the performance of the adaptation
techniques. The No bias approach trains the base classification
model (logistic regression; Section 2.1.6) used by the adaptation
techniques on the complete and unbiased train set, therefore
giving an indication of what the maximum achievable score for
the task can be when no sample selection bias is present. Bias
trains the base model on the same biased train set used by the
adaptation techniques as well, indicating what the classification
score is when selection bias is present and no adaptation is
performed. Lastly, we use Random to validate whether the
performance decrease when sample selection bias is used is due
to the bias itself and not the diminished sample size. It trains
the base model using the same number of selected train samples
as Bias, however they have been picked randomly instead of
with bias. All three baselines are evaluated on the test set and
no domain adaptation is performed for any of them.

Varying sample sizes of the train set

Due to the train set sample size affecting some adaptation
techniques (importance weighting [11, 12], subspace mapping
[1, 13]), we also evaluate how the number of train samples
alone influences the performance of the adaptation techniques

on the five tasks when they adapt to the global domain.
Therefore, we fix the hierarchy bias ratio parameter to 80%
across all experiments and then select from the total number
of train samples of each task, 60 and 100 balanced data points,
respectively. All other experimental settings, including the data
splits, are identical for the two sample sizes.

Varying sample sizes of the global domain

We study the impact that the sample size of the unlabeled
dataset has on the adaptation performance because it has
been recognized as an influential factor in the unsupervised
domain adaptation process (importance weighting [1, 14], semi-
supervised [15], deep domain adaptation [16, 17]). In order to
evaluate its impact without other effects, we fix the parameters
of the hierarchy bias to 80% bias ratio and 100 train set
selections across all five tasks. Afterwards, we evaluate the
adaptation techniques when they leverage all (100%) unlabeled
samples in the global domain versus only 10% of them, obtained
through random subsampling in order to have minimal data
distribution changes.

Varying amount of sample selection bias

We identified that the degree of distribution dissimilarity
between the train and test sets has an important impact on
the performance of many adaptation techniques [1, 11, 14, 18].
Sample selection bias can potentially cause dissimilarity to
increase, which prompts us to study how adaptation techniques
perform for a varying amount of sample selection bias in the
data. We choose the bias ratio parameter of the hierarchy bias
as a means to control the amount of bias we introduce in the
train set. The bias ratio influences how much the original train
set distribution changes and implicitly its dissimilarity from
the test set. Therefore, we fix the number of selections from the
train set to 100 and examine the performance of the adaptation
techniques when the bias ratio increases from 60% to 80%.

Varying hyperparameter tuning approaches for the
domain adaptation techniques

Like all machine learning models, the domain adaptation
techniques have hyperparameters as well that need to be tuned.
Traditionally, the hyperparameters of machine learning models
are tuned using a validation set that originates from the train
set. The validation set gives a good approximation of the
performance on the test set because the data distribution in
the train and test sets is not drastically different. However,
this approach can be inadequate in the presence of sample
selection bias because it might skew the data distributions. In
our experiments, the hierarchy bias we introduce in the train
set makes it unrepresentative of both the test and unlabeled
sets. Therefore, tuning the hyperparameters of the adaptation
techniques on a validation set that originates from the train
set could nudge them to fit to the biased train set better
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rather than being more generalizable. Therefore, we verify
whether in our experiments the adaptation techniques are
indeed properly adapting to the global domain by focusing
on their choice of hyperparameters. This also allows us to
investigate how sensitive are the adaptation techniques to the
choice of hyperparameters.

We propose to use a subset of the global domain (together
with its labels) as validation set to be able to quantify the
effect of setting proper hyperparameters for the adaptation
techniques. Even though this approach is unrealistic and cannot
be used in experiments or as a means to validate how an
adaptation technique performs, it allows us mimic in our
controlled experimental setup the scenario of adaptation with
perfect hyperparameters to the global domain. Our approach
(called Global validation) consists of five-fold cross-validation
on the global set. The adaptation techniques are trained on
the full train set and adapted to four (unlabeled) folds of the
global domain, while a separate fifth fold is used (together with
its labels) as validation set. We compare the original train set
cross-validation approach described in Section 2.2.2 (which we
call Source validation) to the Global validation approach using
one of the earlier problem setups with 80% hierarchy bias ratio
and 100 train set selections.

Bioinformatics problems with intrinsic sample
selection bias

Even though crafting our own train, test and global sets
and artificially introducing selection bias gives us a sense of
control over the experimental conditions, it is unlikely that
the controlled experiments, with limited sample and feature
sizes, match the complexity of real-world applications in which
sample selection bias is often already inherently present in
the data. We therefore turn our attention to the field of
bioinformatics, more specifically the established problem of
protein function prediction, which is suitable for unsupervised
domain adaptation for two main reasons. Firstly, both the
train and test samples are often already sourced with natural
selection bias present in them due to the constraints in
data collection and annotation that arise from limitations in
cost, time and experimental feasibility. Secondly, unlabeled
proteins are available in abundance, making it easy to collect
a global domain. Therefore, we evaluate the adaptation
techniques on two established tasks of sequence-based protein
function prediction, namely protein solubility and the Gene
Ontology(GO) terms. These tasks and their associated datasets
have already been investigated in several works [36—40] which
will be foundation to set up our problem.

Protein solubility prediction

Knowing whether a protein will be soluble or not is essential
because soluble proteins can be more easily studied to
understand their structure and functions [40, 41]. This is
crucial in many industry areas, for example food processing
[42], and production of therapeutic proteins like antibodies and
hormones [43]. Traditionally, proteins are produced in standard
host cells like Escherichia (E.) coli due to their ability to make
large amounts of proteins [41]. However, many proteins made
in E. coli turn out to be insoluble [44], which prompted the
development of machine learning models that predict solubility
directly from the amino-acid sequence of the protein [39, 40].
While the binary classification task of predicting whether a
protein is soluble or not based on its amino-acid sequence
is already well-researched, it can also serve as benchmark
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for sample selection bias mitigation. Many of the solubility
datasets used in experiments contain natural biases from how
the proteins were sourced, annotated or pre-processed [5, 6, 41].
This makes them suitable for evaluating adaptation techniques
that aim to combat sample selection bias in machine learning.

For this experiment we use the protein solubility dataset [40]
from the PEER benchmark [36] because it inherently contains
selection bias stemming from the way its data was collected.
The train and test sets originate from different sources and have
each been subject to various pre-processing steps, a practice
that is common for bioinformatics experiments and that makes
this type of selection bias relevant. The dataset consists of
62,478 train (class balance: 42-58%), 6,942 validation (42-58%)
and 2,000 test (50-50%) protein sequences, all expressed in E.
coli. Train data was originally compiled in [39] by merging
data from the pepcDB [45] and Protein Data Bank (PDB) [46]
databases, and subsequently preprocessed by [40] to decrease
sequence redundancy to a maximum sequence identity of 90%
and then prune out all sequences with a sequence identity >30%
compared to the test set. Lastly, 10% of data was randomly
selected and put aside to form the validation set. Test data was
collected by [44] by combining sequences from three different
studies [38, 39, 47], subsequently reducing their redundancy to
30% sequence identity level and then randomly subsampling
2000 balanced samples.

As this benchmark lacks an unlabeled global domain, we
create it by selecting the sequences expressed specifically in E.
coli from the Protein Data Bank (PDB) [46]. This yields around
160,519 sequences from which we subsequently remove the ones
already present in the train, validation and test sets. Similarly
to [21], we then randomly subsample this unlabeled data and
choose 50,000 sequences to form the global domain.

All protein sequences, labeled and unlabeled, are each
encoded into 640 numerical features using ESM2 [48], a state-
of-the-art pre-trained protein language model. Subsequently,
the adaptation techniques are trained using the train set and
global domain, and have their hyperparameters tuned on the
validation set. Similarly to the previous controlled experiments,
we employ a Bias baseline, which consists of a logistic classifier
trained on the train set and evaluated on the test set without
leveraging domain adaptation. However, because the sample
selection bias is not artificially introduced in the data but
already naturally present in it, we do not have the No bias and
Random baselines. Lastly, since the datasets are imbalanced,
we use the Fl-score as evaluation metric in order to adequately
capture how the models perform.

Gene Ontology(GO) terms prediction

Gene Ontology (GO) represents a standardized vocabulary
in the field of bioinformatics for representing the functions
of proteins, labeled as GO terms. GO terms span three
domains: the Cellular Components (CC) where a protein
resides, the Molecular Functions (MF) that it fulfills and
Biological Processes (BP) in which it is involved. Considerable
efforts have been made for effectively predicting whether a
protein has a particular GO term or not, especially utilizing
protein sequences [37]. However, sample selection bias remains
naturally prevalent in many of the datasets used for GO term
prediction mainly due to the annotation practices. For example,
mass-annotation methods tend to produce more general GO
terms, while single-protein experiments yield more specific
annotations [4]. It was also shown that a small group of
proteins tends to concentrate most annotations [3]. This makes
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Table 3. Tasks used in the bioinformatics experiments.

Protein CAFA3 - CC CAFA3 - MF Data2017 - MF
solubility
»??y v’?q{)b\ Q”;\q;\ e“"%ﬂy Sobfo% S”&D 09\%3 Q;Qq?? anb?
S .'QQ .'QQ QQ ‘.Qe _.Qo 90 gb 90
X & & o X o X X

Dimensions 640 551 677 135
Train samples 62,478 50,596 36,110 32,280
Train balance 42-58% 49-51% 54-46% 57-43% 54-46% 58-42% 34-66% 2-98% 2-98% 2-98%
Test samples 2,000 1,265 1,137 3,132
Test balance 50-50% 38-62% 40-60% 45-55% 33-67% 56-44% 37-63% 2-98% 4-96% 4-96%
Global samples 50,000 50,000 50,000 50,000

GO terms prediction benchmarks also attractive for evaluating
adaptation techniques on sample selection bias.

The first datasets we use are Cellular Component (CC) and
Molecular Function (MF) from the CAFA3 [49] benchmark, a
global competition for the computational annotation of protein
functions. The selection bias originates in this case from the
temporal nature of the data collection and annotation process.
Specifically, it was discovered that ”the distribution of GO
categories changes over time as a result of strong biases in the
annotation process” [50]. The train samples in CAFA3 have
been experimentally collected and annotated before September
2016, the submission deadline,

annotations between September 2016 and November 2017.

while the test set acquired

Therefore, since the train and test sets are split by collection
date,
selection bias in them.

they inherently have different distributions and also

In order to investigate bias mitigation further, we also
utilized the dataset Molecular Function (MF) from Data2017
[51] because its data is naturally biased to include only well-
studied proteins. The data consists of annotated proteins from
UniProtKB [52], but only includes as prediction targets those
GO terms supported by at least 200 proteins. As such, the
proteins considered for study are those that fulfill popular, well-
documented functions represented here as GO terms with many
(>200) annotations. Proteins that fulfill either less studied or
more niche functions, thus having only a few related GO terms,
are automatically discarded. The authors then randomly split
the proteins into train and test sets and pre-processed the
data such that only the test proteins that share less than 50%
sequence similarity to the train set were kept. While reducing
sequence similarity is a standard practice in order to avoid
leakage, it inherently introduces selection bias in the test set
and increases its distribution shift from the train set [53, 54].

We formulate our problems as proteins being related to a
specific GO term or not. For each dataset (CAFA3-CC, CAFA3-
MF, Data2017-MF), we select the top three GO terms with
the highest train set balance ratio for our benchmark study
to mitigate for the potential effect of class imbalance on the
adaptation performance. This process yields nine evaluation
tasks in total, for which the class imbalance ratios are reported
in Table 3. Since the test sets are still visibly imbalanced, we
use the Fl-score as evaluation metric.

The unlabeled global domain is collected from the SwissProt
[55] database, which contains curated protein sequences across
all species. For each task in part, the train and test sequences
are first discarded from the unlabeled set, which is subsequently
subsampled to 50,000 sequences that we use for adaptation.

All protein sequences, labeled and unlabeled, are encoded
into numerical features using Lite-SeqCNN [37], a state-of-
the-art convolutional neural network engineered specifically
for the task of sequence-based protein function prediction.
Subsequently,
evaluated on the encoded sequences.

the adaptation techniques are trained and
Since no designated
validation set is made available like in the protein solubility
task, we tune the hyperparameters of the adaptation techniques
using grid search five-fold cross-validation on the train set,
identically to the controlled experiments (Section 2.2.2). Lastly,
a Bias baseline is also used to help contextualize the adaptation
performance of the techniques.

Adapting to the global domain versus test set

One of the key components of unsupervised domain adaptation
is represented by the unlabeled data, which traditionally is
sourced from the test set. In this regard, we purposefully choose
in this study to use unlabeled data from a more widespread
(here called global) domain than that of the test set. Intuitively,
if we adapt to a global dataset that is representative of the
problem, the resulting classification model should be better
informed, more robust and be able to perform on any test set
for the specific problem. Therefore, we check experimentally the
validity of this assumption in a realistic setup as well. We repeat
all previous bioinformatics experiments but instead of using the
global domain, we use the test set without labels to adapt; the
original unlabeled global set collected in the experiments is fully
excluded. All other experimental settings are kept identical to
the original setup.

Results and discussion

To evaluate the ability of the domain adaptation techniques
to mitigate selection bias when adapting to the global domain,
we focused on a wide range of scenarios that spanned both
controlled experiments and realistic bioinformatics problems.
Firstly,
adaptation techniques using controlled experiments where we

we investigated some caveats that are specific to

generate the datasets and induce selection bias artificially
in them. Secondly, we checked the hyperparameter tuning
for the adaptation techniques to verify whether they are
properly adapting to the global domain. Thirdly, we focused on
evaluating the bias mitigation ability of adaptation techniques
for more complex bioinformatics problems in which selection
bias is inherently present. Lastly, we used the bioinformatics
problems to also verify whether leveraging unlabeled data
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Fig. 2. Performance of the domain adaptation techniques for different sample sizes of the train set in the controlled experiments.

Results obtained across 10 runs, with all methods evaluated using the same folds (train/test/global splits). Methods included: 11 adaptation techniques,

supervised model trained on unbiased data (No bias), on biased selection of data without adaptation (Bias), and on randomly selected samples

(Random, same number as Bias). Adaptation techniques that did not manage to run are marked with X. Red stars indicate significant difference (p <

0.05) between the performances of the adaptation technique and the biased supervised method (double-sided Wilcoxon signed-rank test). P: significant

difference between the performances of the adaptation techniques on the two sample sizes.

from the global domain instead of the test set yields a better
informed classifier that can generalize better on the problem.
‘We evaluated 11 adaptation techniques spanning five categories
(Table 1): KMM and KLIEP from importance weighting,
Self-training and Co-training from semi-supervised, SA and
TCA from subspace mapping, RBA and TCPR from minimax
estimators, and DANN, WDGRL and MDD from deep domain
adaptation.

For easier interpretation, we rescaled the scores of all
adaptation techniques alongside the baselines No bias (base
model without sample selection bias) and Random (base model
trained with randomly subsampled samples) by subtracting
the score of Bias (base model with selection bias and no
adaptation) for each experimental run. Therefore, a positive
score difference means that the model performed better than
Bias, while a negative score indicates the opposite.

Investigation of factors influencing the effectiveness
of domain adaptation techniques

As discussed in Section 2.2, we investigated how adaptation
techniques that leverage the global domain are impacted by
factors widely recognized in the literature as affecting their
performance, namely the number of samples in the train [11-
13] and unlabeled [14-17] sets, alongside the amount of sample
selection bias present in the data [1, 11, 14, 18]. We evaluated
the adaptation techniques on five real-world datasets (Table 2)
in which samples were selected with hierarchy bias from the
train set, while the unlabeled and test sets maintained the
original distribution.

Varying sample sizes of the train set
In Figure 2, Bias performance was lower than both No

bias and Random in all datasets. Compared to the biased

model, the median accuracy difference for No bias ranged
between 0.098 (Credit card) and 0.247 (Twonorm) for 60
selections, and between 0.142 (Credit card) and 0.256 (Raisin)
for 100 selections; for Random it ranged between 0.039 (Credit
card) and 0.239 (Raisin) for 60 selections, and between 0.102
(Ringnorm) and 0.256 (Raisin) for 100 selections. The lower
Bias performance compared to No bias and Random indicates
that hierarchy bias was effective in introducing selection bias
in the train set and that the decrease in performance was due
to the bias and not the sample size reduction.

The adaptation techniques did not show uniform behavior
patterns across the datasets. Most notably, the majority of
techniques struggled to significantly improve the score of Bias,
even when the sample size increased. SA is the only technique
that consistently surpassed Bias significantly, in three of the

0.011 for 60sel, p = 0.018 for
0.002 for 60sel, p = 0.002 for
0.002 for 60sel, p = 0.009 for
100sel). However, there were also adaptation techniques that
performed significantly (p < 0.05) worse than Bias for both 60

five datasets: Raisin (p =
100sel),
100sel) and Ringnorm (p =

Twonorm (p =

and 100 selections, particularly in datasets Raisin, Twonorm
and Ringnorm: Self-training and MDD in Raisin, Co-training,
RBA and MDD in Twonorm, and TCA, RBA, TCPR, DANN,
WDGRL and MDD in Ringnorm. In these three datasets Bias
had larger median score drops from No bias than in Diabetic
and Credit card, which indicates that the problem setup created
by introducing bias was harder in these instances.

When comparing scores between the train samples sizes,
we expected that more samples would ideally translate into
a more accurately represented training set and consequently
an improved adaptation performance. However, the adaptation
techniques did not show a pattern in this regard. The only
instances in which increasing the sample size from 60 to
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Fig. 3. Performance of the domain adaptation techniques for different sample sizes of the unlabeled global domain in the controlled

experiments. Results obtained across 10 runs, with all methods evaluated using the same folds (train/test/global splits). Methods included: 11

adaptation techniques, supervised model trained on unbiased data (No bias), on biased selection of data without adaptation (Bias), and on randomly

selected samples (Random, same number as Bias). Adaptation techniques that did not manage to run are marked with X. Red stars indicate significant

difference (p < 0.05) between the performances of the adaptation technique and the biased supervised model (double-sided Wilcoxon signed-rank test).

P: significant difference between the performances of the adaptation techniques on the two sample sizes.

100 selections led to a significant improvement in adaptation
performance were WDGRL in Raisin (p = 0.014) and Twonorm
(p = 0.002) alongside TCA in Diabetic (p = 0.027). In these
instances, while the adaptation techniques performed well with
more train samples, they did not significantly improve over
Bias. In fact, they caused performance degradation when used
with 60 samples. A possible explanation for the lack of more
consistent improvements is that the 40 extra added samples
might have been too few given the complexity of some datasets,
which had up to 23 dimensions. However, we refrained from
selecting more than 100 train samples because it would have
possibly made introducing bias harder as more samples can
mean better representation of the original distribution after
some point.

Varying sample sizes of the global domain
We investigated another factor that adaptation techniques are
sensitive to, namely the sample size of the unlabeled global
domain. We kept the selection bias fixed (80% ratio and 100
selections) while we changed the amount of samples in the
global domain (Section 2.2.4). Regardless of the global domain
size, the introduction of hierarchy bias in the train set caused
considerable performance drops for Bias in all datasets when
compared to both No bias (median between 0.142 and 0.256)
and Random (median between 0.102 and 0.256) (Figure 3).
This indicates that the sample selection bias caused a clear
distribution dissimilarity that the adaptation techniques can
tackle.

We expected the behavior of adaptation techniques to
change with varying sizes of the unlabeled set because
this would also impact the amount of noise, outliers and

the representation of the data, which are all important
factors in domain adaptation. We observed some significant

improvements when 100% of the global domain was used instead

of only 10%: Co-training (p = 0.004), DANN (p = 0.002),
WDGRL (p 0.004) in Raisin, DANN (p 0.002) and
WDGRL (p = 0.027) in Twonorm, and TCA in Ringnorm
(p
techniques performed better with less unlabeled samples:
TCPR in Ringnorm (p = 0.002), and KMM (p = 0.036), RBA
(p = 0.037), DANN (p = 0.037) and WDGRL (p = 0.019)
in Credit card. Feeding the adaptation techniques with an

0.019). There were also occurrences when adaptation

excessive amount of unlabeled samples when the underlying
class distribution is complex might make it hard to correctly
identify the distribution per class in the unlabeled set and
consequently confound the targets. It could also introduce more
noise and outliers in the unlabeled set. In the case of Credit
card, it had the lowest No bias median accuracy (0.668) out
of all datasets to attest to its complexity, while increasing its
unlabeled sample size from 10% to 100% resulted in 5972 new
samples, significantly more compared to only 100 train samples.

Lastly, the majority of adaptation techniques did not
show significant performance differences between the two
unlabeled sample sizes and many of them did also not visibly
perform better than Bias (Figure 3). Guided by our previous
observation on the interplay of the unlabeled sample size and
the complexity of the data distribution, we hypothesize that
each adaptation technique might have an optimal number of
unlabeled data it requires, dependent on the task complexity,
for which it performs well. Leveraging too few unlabeled
samples does not paint an informative enough picture of
the data distribution, while too many samples confuse the
technique. The difference between the two unlabeled sample
sizes we probed (10% versus 100%) is very large, which makes
us believe the techniques did not perform better because their
optimal number of unlabeled samples might lay somewhere in
between the two values, which requires extensive analysis on
every dataset they are applied to.
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Fig. 4. Performance of the domain adaptation techniques for different hierarchy bias intensities in the controlled experiments. Results

obtained across 10 runs, with all methods evaluated using the same folds

supervised model trained on unbiased data (No bias), on biased selection

(train/test/global splits). Methods included: 11 adaptation techniques,

of data without adaptation (Bias), and on randomly selected samples

(Random, same number as Bias). Adaptation techniques that did not manage to run are marked with X. Red stars indicate significant difference (p <

0.05) between the performances of the adaptation technique and the biased supervised model (double-sided Wilcoxon signed-rank test). P: significant

difference between the performances of the adaptation techniques on the two bias intensities.

Varying amount of sample selection bias

‘We also investigated how the amount of selection bias impacts
the adaptation techniques when they adapt to the unlabeled
global domain. We kept the number of selected train samples
fixed (100) and varied the ratio parameter of hierarchy bias. We
expected that increasing the bias ratio from 60% to 80% would
skew the original train set distribution more and consequently
The
median accuracy difference from No bias and Random to Bias

result in a worse classification performance for Bias.

did indeed increase in Ringnorm and Credit card. However, it
decreased in Raisin and Twonorm. These results highlight how
difficult it is to anticipate the effect of sample selection bias
on the data distribution of complex datasets, even in carefully
controlled experimental setups. Nevertheless, Bias performed
visibly lower than both No bias and Random in all datasets,
meaning there was a distribution dissimilarity present for the
adaptation techniques to align.

Domain adaptation behavior to the increase in bias ratio was
in general very fluctuating. Effectiveness (performance increase
compared to Bias) of some techniques which were able to
mitigate bias for 60% ratio significantly dropped when bias
intensity increased: SA (p = 0.044), RBA (p = 0.009) and MDD
(p = 0.004) in Twonorm, WDGRL (p = 0.037) in Diabetic,
and KLIEP (p = 0.041) in Credit card. In other cases, even
though the technique worked significantly better with more bias
intensity, it decreased performance compared to Bias regardless
of the intensity: DANN (p 0.002) in Twonorm, TCA
(p = 0.027) in Diabetic, and WDGRL (p = 0.004) in Credit
card. In Ringnorm in particular, 7 techniques were significantly

better with stronger bias, but they all underperformed Bias for
both intensities. This behavior highlights the complexity of the
interaction between the selection bias and the data distribution.
The outcome of hierarchy bias in particular is affected by the
dataset cluster structure and the number of samples selected.

Although hierarchy bias is expected to produce a stronger effect
with increased bias ratio, the opposite appears to have occurred
for domain adaptation in Ringnorm.

Overall, none of the adaptation techniques proved robust
to variations of the amount of bias we introduced via the bias
ratio parameter. Techniques that did not often lose effectiveness
when increasing bias ratio from 60% to 80% (e.g., KMM,
KLIEP, Self-training) usually scored comparable to Bias in
the first place. The techniques that did show variations in
performance (e.g. Co-training, SA) sometimes showed a slight
decrease in effectiveness for the higher bias ratio setting;
however, this was dependent on the dataset.

The effect of hyperparameter tuning on the
adaptation performance

We wanted to evaluate the adaptation techniques when their
hyperparameters are chosen optimally for the global domain.
Therefore, we repeated the evaluation for one of the earlier
experimental setups (80% bias ratio, 100 selections) by tuning
their hyperparameters using a labeled subset of the global
domain (Global validation) instead of the train set (Source
validation) (Section 2). The labels of the global domain
should ideally not be used, but they allowed us in this
specific setup to estimate the potential of adaptation techniques
when their hyperparameters are tuned with an independent
unbiased set instead of the biased train set. As shown in
Figure 10, introducing sample selection bias produced a
visible performance drop in all datasets. The median accuracy
difference between No bias and Bias was in the range 0.142
(Credit card) and 0.256 (Raisin), and between Random and
Bias in the range 0.102 (Ringnorm) and 0.256 (Raisin).

As expected, domain adaptation techniques achieved in
general better performance when their hyperparameters were
tuned using Global validation. Most notably, the adaptation
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Fig. 5. Performance of the domain adaptation techniques for different hyperparameter tuning approaches in the controlled experiments.
Results obtained across 10 runs, with all methods evaluated using the same folds (train/test/global splits). Methods included: 11 adaptation techniques,
supervised model trained on unbiased data (No bias), on biased selection of data without adaptation (Bias), and on randomly selected samples (Random,
same number as Bias). Adaptation techniques that did not manage to run are marked with X. Red stars indicate significant difference (p < 0.05) between
the performances of the adaptation technique and the biased supervised model (double-sided Wilcoxon signed-rank test). P: significant difference between
the performances of the adaptation techniques on the two hyperparameter tuning approaches.

techniques using Global validation managed in a considerable Complex bioinformatics problems with intrinsic
number of instances to both outperform Bias and significantly selection bias

improve the score for Source validation: SA (p = 0.002) in
Raisin, SA (p = 0.002), TCA (p = 0.002) and TCPR (p =
0.034) in Twonorm, KLIEP (p = 0.014), SA (p = 0.002), TCA
(p = 0.002), TCPR (p = 0.002) in Ringnorm, and KLIEP
(p = 0.021) and TCA (p = 0.002) in Credit card. Furthermore,
there were also many instances in which the adaptation

To Dbetter characterize the behavior of the adaptation
techniques when they adapt to the global domain, we also
evaluated them on four different bioinformatics datasets that
have naturally occurring selection bias in them (Section 2.3).
First, we looked at a protein solubility dataset in which
selection bias stems the data collection process. Secondly, we
analyzed three GO term prediction datasets: CAFA3-CC and
CAFA3-MF containing selection bias that originates from the
temporal collection of the train and test sets, and Data2017-

performance for Global validation significantly outperformed
that for Source validation and scored comparably to Bias: Self-
training and TCA in Raisin, Self-training, WDGRL and MDD
in Twonorm, KMM in Ringnorm, Co-training in Diabetic, and

MF for which only well studied proteins have been selected. For

KMM in Credit card. Therefore, the current approach of tuning each dataset we predict three GO terms. For convenience, we

hyperparameters using a validation set that originates from refer to a problem as [dataset][GO term], which is predicting
whether a protein carries the [GO term] term in the [dataset]

dataset.

the biased train set can represent a considerable performance
bottleneck for the domain adaptation techniques. SA, TCA,
KMM and KLIEP in particular showed potential to outperform

For each repetition in the bioinformatics experiments,
Bias, but failed to do so due to inadequate hyperparameter

the train and test sets were fixed because they originate
tuning. Unfortunately, while the usage of the Global validation

from benchmarks whereas the unlabeled set was randomly

approach in our experiments did highlight a shortcoming of subsampled anew from the global domain. Because the

current practices, it does not represent a solution. The lack of train and test sets did not change between the repetitions,

access to the labels of the data to which we adapt is intrinsically the variance of the unadapted base model (Bias) was low

specific to unsupervised domain adaptation and that makes it (Supplementary Figure 11). The variance of most domain

difficult to properly tune the hyperparameters of the adaptation adaptation techniques was also noticeably low (Figure 6), which

techniques in a straight-forward way. indicates that the number of unlabeled sequences (50,000) we

Lastly, the fact that the scores obtained for Source and

subsampled was adequate and the sequences themselves were
Global validation were significantly different from each other

representative between repetitions. On the other hand, deep

on numerous occasions attests to the sensitivity of adaptation domain adaptation techniques in particular tended to have

techniques to the choice of hyperparameters in general. This higher variance. This might be explained by the adversarial

was noticeable even for the grid search stra'tegy with a.hrmted optimization approach they use [56], for example a domain
hyperparameter search space that we used in the experiments. classifier in DANN, the Wasserstein critic in WDGRL or an
adversarial margin classifier in MDD. Unlike the objectives

of the other adaptation techniques, these are non-convex and
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therefore highly sensitive to initialization settings and choice of
hyperparameters [27, 57|, which might increase variance.

Adaptation techniques tended to improve the classification
score the most when the performance of Bias was low.
Bias registered the lowest median score in Data2017-MF
GO0:0030165 (0.273), while it scored above 0.5 in all other
experiments. For this task in particular, all adaptation
techniques except Self-training significantly outperformed Bias
with robust median differences (0.115 KMM, 0.233 KLIEP,
0.238 Co-tr, 0.044 SA, 0.206 DANN, 0.187 WDGRL, 0.281
MDD). Similarly, for Data2017-MF GO:0004540, in which
Bias also had one of the lowest median scores (0.534), three
techniques significantly improved Bias by visible margins
(0.051 Co-tr, 0.065 DANN, 0.099 WDGRL), while KMM,
KLIEP and MDD showed a tendency to improve as well.
Nevertheless, we also noticed that the adaptation techniques
had a slightly higher variance in these two datasets in
particular. Therefore, more complex tasks with more selection
bias represented a better opportunity for adaptation techniques
to improve the score, but they also made the adaptation more
unstable.

Although semi-supervised techniques successfully improved
performance in a few cases (e.g. Co-training in Data2017-MF
GO0:0030165 and GO:0004540), they struggled in general to
adapt and often underperformed Bias. Co-training performed
significantly worse than Bias, sometimes by large margins, in
six tasks (median differences: -0.032 Prot. sol., -0.07 CAFA3-
CC GO:0043231, -0.245 CAFA3-MF GO:0003824, -0.175
CAFA3-MF GO:0005488, -0.012 CAFA3-MF GO:003016504,
-0.046 Data2017-MF GO:0035251). Self-training significantly
underperformed Bias in four tasks, albeit by smaller margins
(median differences: -0.009 Prot. sol., -0.005 CAFA3-CC
G0:0044444, -0.005 CAFA3-MF G0:0003824, -0.006 Data2017-
MF GO:0030165). The occurrences were spread across all
datasets and types of sample selection bias, which makes
us hypothesize that the weak performance was mainly the
result of the adaptation mechanism itself. Because semi-
supervised techniques incorporate pseudo-labeling, they can
start hallucinating when the unlabeled samples are low-
confidence [58] or at the edge of the distribution that the
technique is familiar with [18, 20]. The distribution of the
unlabeled data might have been too broad in our bioinformatics
experiments, which caused the semi-supervised techniques to
learn the wrong decision boundary.

Minimax estimators RBA and TCPR failed to run to
completion and instead threw errors for all tasks except RBA
in Prot. sol. (Figure 6). Both techniques integrate the base
classification model in their adaptation mechanism (see Table
1) and we believe that the increased number of features and
the complexity this has introduced in the data might have
caused their solver to fail to find a decision boundary. The
optimization problem used by minimax estimators to adapt
relies on worst-case labeling assumptions on the unlabeled set,
which impose highly conservative constraints on the potential
decision boundary [1]. These constraints make the feasible
solution space very small, especially when the data is high-
dimensional or the overlap between the train and unlabeled
sets is limited [26]. The bioinformatics experiments had a
considerably larger feature space (135-640 dimensions) than
the controlled experiments (7-23 dimensions), in which RBA
and TCPR mostly managed to run successfully. Furthermore,
the few instances in the controlled experiments in which the
minimax estimators did struggle to run occurred exclusively in
the datasets with high dimensionality or high data complexity

(i.e., Diabetic and Credit card). Therefore, while theoretically
robust, these adaptation techniques can be numerically fragile
in practice.

Lastly, there were also techniques that performed promising
when adapting to the global domain (Figure 6). In particular,
SA showed consistent robustness and scored significantly better
than Bias in 6 out of 10 experiments, worse in 1 and did
not run in 2. SA also had the largest median improvement
out of all techniques in all CAFA3-CC experiments alongside
CAFA3-MF GO:0043231. Furthermore, importance weighting
techniques KMM and KLIEP each significantly improved Bias
performance in 6 out of 10 experiments, but KMM performed
significantly worse in 3 cases and KLIEP in 1 case. Deep
domain adaptation techniques also showed potential, albeit to
a lesser extent possibly due to the increased variance in their
scores. DANN and WDGRL each significantly outperformed
Bias in 5 out of 10 experiments, underperformed in 2 and scored
comparable to it in 3. MDD however scored mostly comparable
to Bias, in 6 cases.

Comparing adaptation to the global domain with the
test set

We also investigated how our proposed approach of adapting to
a global domain that is representative (as much as possible) of
the original distribution compare with the existing approach
of adapting to the test set. We repeated the bioinformatics
experiments when the test set (without its labels) is leveraged
as the unlabeled set for adaptation (Figure 6).

When comparing the variance of the scores for global
domain adaptation against test set adaptation (Figure 6), we
found no conclusive evidence of them being different. This
demonstrates that global adaptation can remain as stable
as test set adaptation, while still potentially including more
information in the unlabeled data.

None of the two adaptation approaches emerged as a
Both global
domain adaptation and test set adaptation significantly

distinguishably superior in our experiments.

outperformed the other approach in exactly 23 out of 46
instances. These instances were spread relatively uniformly
among the experiments, which indicates that the suitability
of the adaptation approach was not dependent on either
the dataset or the type of selection bias present in the
data. We also analyzed each of these significant instances to
reveal patterns among the adaptation techniques. Important
weighting techniques usually performed better for global
domain adaptation. From the 10 experiments, KMM scored
significantly better in 6 and worse in 1, and KLIEP better
in 5 and worse in 2. Using the wider global domain likely
provided broader and more representative coverage of the
test set distribution, enabling KMM and KLIEP to estimate
more accurate and stable weights. This is consistent with
prior findings that limited support of the test set leads to
unstable or high-variance importance weights and therefore an
improper adaptation [11, 14, 59]. Relying on unlabeled data
exclusively from the test set might have offered limited coverage
of the complete test set data distribution, therefore limiting
adaptation effectiveness [14, 59].

The semi-supervised approaches performed visibly better
when leveraging test set adaptation. Self-training performed
significantly better 6 times for test set adaptation and only
3 times for global domain adaptation. Co-training performed
significantly better 7 times for test set adaptation and no
times for global domain adaptation across the experiments. Our
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Fig. 6. Performance of the domain adaptation techniques on bioinformatics problems with naturally biased data: (a) protein solubility

prediction, and (b) prediction of 9 Gene Ontology(GO) terms across 3 datasets. Results obtained across 10 runs, with all methods evaluated using the

same train/test/global datasets. Methods included: 11 adaptation techniques and supervised model trained and evaluated on the biased data without

domain adaptation (Bias). Adaptation techniques that did not manage to run are marked with X. Red stars indicate significant difference (p < 0.05)

between the performances of the adaptation technique and the biased supervised model (double-sided Wilcoxon signed-rank test). P: significant difference

between the performances of the adaptation techniques using global domain versus test set adaptation. (¢) Performance of the biased supervised model

(Bias) compared to random guess on the test set.

hypothesis is that using unlabeled samples from the broader
global domain distribution might have introduced many low-
confidence or out-of-distribution instances during the training
of the semi-supervised techniques, which increased pseudo-label
noise and thereby harmed their performance [58, 60]. It was
shown that Self-training performs best when its unadapted
base model already performs decently on the test set, and
the unlabeled data closely matches the test set distribution
[18, 61]. Since Bias did score on the test set visibly better than
random guess in almost all experiments (6¢), we believe that

incorporating unlabeled data from a (much) wider distribution
than that of the test set is the reason why global adaptation
underperformed.

There were also adaptation techniques that did not show
a clear performance advantage for either of the adaptation
approaches. SA from the subspace mapping category performed
significantly better 4 and 3 times, respectively, for global
domain versus test set adaptation. The same was observed for
the deep domain adaptation category (DANN, WDGRL, MDD)
as well, which performed significantly better exactly 4 times for
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each adaptation approach. Deep domain adaptation also had
a low number of significant differences when compared to the
other categories. Both findings could be explained by the higher
variance present in the scores of DANN, WDGRL and MDD for
both the global domain and test set adaptation scenarios, which
made it harder to establish with confidence a better approach
overall.

Conclusion

In this study we analyse the performance of (unsupervised)
domain adaptation techniques when they mitigate data
distribution dissimilarities caused by sample selection bias.
Whereas unlabeled data used for performing domain adaptation
originates traditionally from the test set, we use a novel
approach in which the unlabeled data is procured from
the distribution of a larger (here called global) domain
representative of the problem. We benchmarked 11 adaptation
techniques across both controlled experiments with artificially
introduced selection bias and two bioinformatics problems with
intrinsic selection bias in the data.

We found that no domain adaptation technique is
universally suited for all applications. The properties of the
dataset (e.g., sample size, dimensionality, data distribution),
the type of sample selection bias, and the approach used
by the adaptation technique are all important aspects to
consider. In particular, minimax estimators are fragile in high-
dimensional tasks in which the distribution difference tends
to be inherently more complex, such as protein function
prediction. In our experiments, minimax estimators RBA
and TCPR failed to run on almost all bioinformatics tasks
and sometimes struggled even in the less complex, controlled
experiments. Furthermore, deep domain adaptation tends to be
less stable compared to other adaptation approaches, especially
for more complex problems. Its distinctive neural network
architecture combined with an adversarial approach makes the
optimization non-convex and sensitive to initialization settings.
The novel neural network architecture was also suggested to
make deep domain adaptation particularly suited for high-
dimensional applications [1], but we found no strong evidence
of it outperforming more traditional adaptation approaches in
such scenarios. Furthermore, it is particularly ill-advised to
employ semi-supervised adaptation approaches when the train
and unlabeled sets have little overlap. They tend to easily
mislabel samples from outside the learned train set distribution,
as prior research also suggests [18, 20, 58]. This can also
be the case if the unlabeled set has a large sample size or
captures a (very) complex distribution. Lastly, the sample size
of the unlabeled set is a factor that affects all adaptation
techniques, not only the semi-supervised ones. Intuitively, more
unlabeled samples should provide a better estimation of the
underlying distribution and aid the adaptation. Nevertheless,
our controlled experiments showed that too many unlabeled
samples, especially for complex problems, can confuse the
adaptation techniques about the correct class distribution and
decision boundary.

Our novel approach of adapting the train set to the global
domain instead of the test set can be advantageous in certain
situations. Most importantly, our bioinformatics experiments
showed that global adaptation retains a level of stability similar
to that of test set adaptation, while potentially encoding more
information about the distribution of data in the problem.
Some adaptation techniques, particularly importance weighting

ones, benefit from this additional information and often
significantly outperformed test set adaptation in our study.
Semi-supervised approaches however perform much better when
adapted to the test set. Leveraging a wider, more complex
unlabeled distribution can cause them to mislabel samples as
explained earlier. Techniques from other categories (e.g., deep
domain adaptation, subspace mapping) performed similarly for
both adaptation approaches and we recommend to be further
investigated.

Similarly to other machine learning models, domain
adaptation techniques also have hyperparameters that require
tuning. Our study provides empirical evidence that they are
sensitive to the tuning approach and the subsequent choice
of hyperparameters like previous studies suggest [62]. We
add to mounting evidence [62-64] that the standard approach
of tuning their hyperparameters by using a validation set
originating from the train set is inadequate when the train set
is unrepresentative of the true distribution, for example due to
sample selection bias. This prevents the adaptation techniques
from properly adapting to the unlabeled data and represents a
significant performance bottleneck as our study shows. While
a few alternative hyperparameter tuning approaches have been
proposed, such as reverse cross-validation [64] and C-Ent [63],
none of them was evaluated on distribution dissimilarities
caused explicitly by sample selection bias, which we believe
represents a worthwhile future research effort.

Lastly, we reflect on the composition of our benchmark.
Controlled experiments with artificially introduced sample
selection bias are a very useful tool for providing insights
especially into aspects that are not (easily) observable in
real-world problems. For example, they allowed us to study
empirically the shortcomings of current hyperparameter tuning
approaches and to measure the amount of sample selection
bias present in the data. Nevertheless, controlled experiments
fall short of the complexity of real-world sample selection
biases and the bioinformatics problems proved a much better
tool for identifying performance patterns across the adaptation
techniques. In our study we focused on the bioinformatics
field due to the fact that biases are usually intrinsically
caused by experimental limitations in cost, time and other
resources, while collecting a global domain is feasible because
the experimental space is known. However, exposing the
adaptation techniques exclusively to selection biases specific to
this field can represent a limitation. WILDS2.0 [65] is a recently
proposed collection of diverse real-world datasets for domain
adaptation that also contain unlabeled data beyond the test
set. However, it was not investigated whether the distribution
shifts are the result of selection bias or the unlabeled data
adequately captures the whole problem domain. We recommend
that future studies leverage such initiatives in order to evaluate
global domain adaptation on selection biases from more diverse
contexts.

To conclude, we consolidated the existing body of knowledge
on unsupervised domain adaptation and explored the more
specific problem of sample selection bias. We proposed a novel
adaptation approach that leverages unlabeled data from a
global domain instead of the test set and showed the relevance
of our research to the field of bioinformatics by applying our
approach to protein function prediction. We hope our findings
encourage researchers to further study and use global domain
adaptation in more diverse applications.
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Supplementary: Hyperparameter search space for the domain adaptation techniques

Table 4. Hyperparameter search space for the validation of the domain adaptation techniques.

Technique Hyperparameter Search space
kernel RBF
KMM gamma (kernel parameter) 0.0001, 0.001, 0.01, 0.1, 1, 10
max. iterations 100
kernel RBF
KLIEP gamma (kernel parameter) 0.001, 0.01, 0.1, 1, 10
max. centers 50, 100, 200
max. iterations 100

criterion threshold, K-best
Self-training threshold (for threshold criterion) 0.5, 0.7, 0.85
K (for criterion K-best) 10, 20, 30, 50, 100
max. iterations 100
Co-training unlabeled pool size 5, 10, 20, 50
max. iterations 100

SA nr. components 25, 50, 75 % of nr. features
nr. components 25, 50, 75 % of nr. features
TCA mu (regularization parameter) 0.001, 0.01, 0.1, 1
kernel RBF
gamma (kernel parameter) 0.001, 0.01, 0.1, 1, 10
L2 regularization 0.001, 0.01, 0.1]
RBA gamma (decaying learning rate) 0.01, 0.1, 1, 10
max. iterations 100
L2 regularization 0.001, 0.01, 0.1
TCPR learning rate 0.01, 0.1, 1, 10
max. iterations 100
DANN lambda (trade-off parameter) 0.01, 0.1, 1, 10
WDGRL lambda. (trade—off‘ pa.rameter) 0.01, 0.1, 1, 10
gamma (gradient penalization parameter) 0.1, 1, 10
MDD lambda (trade-off parameter) 0.01, 0.1, 1, 10

gamma (margin parameter)

0.1, 1, 4, 10
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Supplementary: Original scores for the controlled experiments
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Fig. 7. Performance of the domain adaptation techniques for different sample sizes of the train set in the controlled experiments.
Results obtained across 10 runs, with all methods evaluated using the same folds (train/test/global splits). Methods included: 11 adaptation techniques,
supervised model trained on unbiased data (No bias), on biased selection of data without adaptation (Bias), and on randomly selected samples (Random,

same number as Bias). Adaptation techniques that did not manage to run are marked with X.

o Raisin Twonorm Ringnorm
: el = =
09 é%
08 [ T .
Z T
) e T
7 [ - Frdperds ]y T aF ] %@
3 T 7 117 B J_ i = i T
i ié 7 B ] sy ?
/| )
. i L l T
05 —1 i = *{.,?*T—_
e
04
03
2 & & o 3 & & R N L 3 3 <& R & o
FETITIFSTIISFTEE FFFTIF ST T TG FFITTIF ST TS
Methods
1o Diabetic Credit card
. KMM [ No bias
09 e KLIEP W8 Random
0.8 . self-tr W Bias
W Co-tr
o7 % - SA
8
H = m TCA
206 W RBA
§ . I T
Eve il I I LalsldE LL-LT é —_
0% - T | i —? - T ol = DANN .
J_l l WDGRL 10% 100%
04 MDD
03 Global domain sample size
’ 2 2 &
eo&ha@&c@ e‘”ﬁ 45"\‘ *_\>’° g e\,é d"é F T F &d‘* o‘s qp&\( QS’Q ‘p‘,\@a@&oe b\@e @% *p” ay‘ <,°'¢ F & & < & 0}\; K o"qy §°
Methods Methods

Fig. 8. Performance of the domain adaptation techniques for different sample sizes of the unlabeled global domain in the controlled
experiments. Results obtained across 10 runs, with all methods evaluated using the same folds (train/test/global splits). Methods included: 11
adaptation techniques, supervised model trained on unbiased data (No bias), on biased selection of data without adaptation (Bias), and on randomly

selected samples (Random, same number as Bias). Adaptation techniques that did not manage to run are marked with X.



18 | Andrei Camil Tociu et al.

1o Raisin Twonorm Ringnorm
==z -
09 é%
08 [ -
! g =
- T
Zo7 7 e TSk, 55T #eRe] B
g T 1T I A
Sos L l éf f%{f‘ L
I
05 [ '1—‘ Tl J = J 1 —_ ( Tt e=es e
24
0.4
03
o g 8 S & & o o o g & S & & & & o & & & S & & & & o
‘\00\;, f"é\ o @e &o @K’“ s & &F & o§ P Q@.v S e°\° Qb"& P *_‘\s“ &, 6&\,& S, & & o§ @0(’@' S S Qbo& & 45“‘“ &@ @\x P & & 0?\; *@&V &
< v v
Methods
1o Diabetic Credit card
. KMM [ No bias
0.9 B KLIEP s Random
mm Self-tr Bias
0.8 = Co-tr
. SsA
§07 m TCA
3 T TT + s RBA
Sos 1 1 ] éI QT T T I T TCPR
0s T g % I - = DANN 60% 80%
* Z Fa b
1 J T WDGRL ratio ratio
0 J MDD
Hierarchy bias intensity
03
8 2 &
c@w (@o@ « Q@ «9@ g &‘é <,°'¢ F & F ,\6% o"é\; Q@.v §<> Qv\q,e ‘\bﬂ@ 6”" @\“ *_V\«, R F & F /\(5% o“‘\e o‘f/ “9(7
O & & NS R
Methods Methods

Fig. 9. Performance of the domain adaptation techniques for different hierarchy bias intensities in the controlled experiments. Results
obtained across 10 runs, with all methods evaluated using the same folds (train/test/global splits). Methods included: 11 adaptation techniques,
supervised model trained on unbiased data (No bias), on biased selection of data without adaptation (Bias), and on randomly selected samples (Random,
same number as Bias). Adaptation techniques that did not manage to run are marked with X.

1o Raisin Twonorm Ringnorm
= $x
0.9 é%
g0 P En e TL%’T-P%-%% = 7 . .
! Tl : 7
Lo06 1) | Z 1
l l L & | - T
0s —I | I el
0.4
03 1
§ s $ % § %
FFTFTSIF ST I ITEFTFHE FFF T IR ST I TEFTEE FFHE I G ST oSS
¥ & < > & g »
. . ) Methods
1o Diabetic Credit card
. KMM 1 No bias
0.9 mmm KLIEP = Random
08 B self-tr Bias
X I Co-tr
gor % . SA
g [ e s TCA
<06 v mm RBA
Q_T_ L7 T 2 TCPR
os Z 1 Z 21—
I I DANN s Global
& = ource oba
s I 1 WDGRL validation validation
MDD
03 " - N - " - . . Hyperparameter tuning approach
& (@o« & *3.3'* {9@ "y S F & F L o"@ QG‘V \So K \\éee & {3& &\@ 9@@ * F T F ,\(‘3% ov@ 00@« §°
NS & O &
Methods Methods

Fig. 10. Performance of the domain adaptation techniques for different hyperparameter tuning approaches in the controlled
experiments. Results obtained across 10 runs, with all methods evaluated using the same folds (train/test/global splits). Methods included: 11
adaptation techniques, supervised model trained on unbiased data (No bias), on biased selection of data without adaptation (Bias), and on randomly

selected samples (Random, same number as Bias). Adaptation techniques that did not manage to run are marked with X.
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Fig. 11. Performance of the domain adaptation techniques on bioinformatics problems with naturally biased data: (a) protein solubility
prediction, and (b) prediction of 9 Gene Ontology(GO) terms across 3 datasets. Results obtained across 10 runs, with all methods evaluated using the
same train/test/global datasets. Methods included: 11 adaptation techniques and supervised model trained and evaluated on the biased data without

domain adaptation (Bias). Adaptation techniques that did not manage to run are marked with X.
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