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Abstract The recent success of - and demand for - compliant mechanisms has increased rapidly
within the micro-electromechanical systems-, aircraft-, spacecraft-, surgical-, and precision-instrument
industries. Yet, even greater success may be achieved by overcoming the computational cost and
instability of the mechanisms’ design methodology. This involves large-scale topology optimization,
geometrically non-linear structural analysis, and particularly integrating the latter into the former.
Therefore, a novel framework is proposed that extends the powerful design freedom of topology
optimization with most of the geometrically non-linear qualities, without as much of the computational
ramifications. Utilizing a Bayesian-enhanced perturbed analysis, the equilibrium curve is locally
approximated by an asymptotic expansion, satisfying the curve’s higher-order geometric derivatives
at the undeformed state. Each of the latter is recursively and efficiently obtained through a linear
solve with the same, Cholesky-factorized stiffness matrix. Furthermore, a tensor reformulation
and -decomposition of the four-noded bilinear element’s Green-Lagrange strain energy model are
successfully exploited. A tight error estimator is derived to govern the Bayesian analysis and balance
approximation efficiency and accuracy during optimization. Design-sensitivities of this error-estimator
and other design-dependent responses are analytically obtained through the adjoint method, and
applied in a few classical density-based topology optimizations; While Bayesian-enhanced perturbed
analysis required noticeably less computational effort compared to Newton-Raphson analysis under
mildly non-linear conditions, it often resulted in practically identical performance improvements
compared to linear analysis.

Keywords Topology Optimization ‚ Compliant Mechanisms ‚ Geometrically Non-Linear ‚ Approxi-
mate Structural Analysis ‚ Perturbation Analysis ‚ Error Analysis ‚ Bayesian Model Averaging ‚ Tensor
Formulation ‚ Tensor Decomposition ‚ Deformation Scaling

I Introduction

Mechanisms, or any means to transfer force, motion,
or energy, have always been an essential part of all
life, and have been evolving and optimizing as a re-
sult. The present work aims to continue this ancient
trend using modern methodologies. First, the essence
of mechanism design is introduced, followed by the
involved challenges and a novel proposition.

I.1 Essence of Mechanism Design

For over four billion years, since well before hu-
mankind, countless structures have been emerging, in-
teracting, transforming, and decaying. In some sense,
pure odds govern these processes. However, these
processes govern odds right back when they benefit a
certain structure’s chance of survival or reproduction
(Miyata et al., 2020; Carroll, 2001), possibly affecting
that of others. Competition ensues between increas-
ingly more complex structures, their environment, and
natural decay, continuously filtering out those with
lower survivability. The coincidentally beneficial ten-
dencies turn into necessities (Carroll, 2001), and the

responsible mechanisms grow ever more functional
and complex. Since at least 2.5 million years ago, hu-
mans have been complementing their relatively slowly
evolving biological mechanisms and capabilities by
actively designing external mechanisms, or tools (Am-
brose, 2001). In turn, their society, culture, and even
biology adapted to the fruits of this technological in-
novation, on which the species’ survival, success, and
comfort of life now rely more than ever.

Designing mechanisms manually, compared to natu-
ral evolution, requires a painstaking cycle of building,
testing, and rebuilding, yielding initially rapid but
ultimately bounded improvement. Nature has been
fuelled by a near-limitless amount of material, energy,
iterations, and time. This has been yielding mecha-
nisms inspiring even advanced engineers to this day
(Bejan, 2000), who rely on deduction and inference
precisely because they cannot afford nature’s exhaus-
tive approach. However, this cognitive ability is a
double-edged sword. While it allows engineers to by-
pass infinitely many arbitrary or inadequate designs,
more often than not it limits them to designs they can
comprehend. This forces engineers to compromise by
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assuming or imposing simplified shapes1, and approx-
imate kinematic or structural behavior2. This affects
attainable performance, either directly by excluding
shapes or designs of possibly superior functionality, or
indirectly through ill-informed design changes.

Compliant mechanisms have recently gained increas-
ing recognition from engineers due to their outstand-
ing potential compared to conventional mechanisms3.
Conventional mechanisms function through the trans-
lation and rotation of multiple interacting rigid bodies,
but compliant mechanisms through the deformation
of a single elastic body. As a result, they do not re-
quire rotational or sliding joints, preventing friction,
wear, and backlash4, thus preventing noise and the
need for lubrication. In turn, precision, accuracy, and
durability may be increased. The typical low part
count often allows for simplified production processes,
reducing production time, cost, and waste correspond-
ingly.5 The overrepresentation of compliant structures
in nature further testifies to their general effectiveness
(Rus & Tolley, 2015). As a result, compliant mecha-
nisms are gaining exponential academic and indus-
trial interest, mainly within micro-systems and MEMS
(micro-electromechanical systems) (Kota et al., 2001;
MacHekposhti et al., 2018), aircraft (Kota et al., 2005),
spacecraft (Merriam et al., 2013), soft robotics (Rus
& Tolley, 2015), biomedical devices (Parenti-Castelli
& Sancisi, 2013; Zhu et al., 2020), minimally invasive
surgery (Lourdes Thomas et al., 2021), and precision
instruments (Howell, 2013).

Designing compliant mechanisms especially poses
challenges, many of which have yet to be overcome.
Having technically infinitely many degrees of motion
freedom, even simply shaped compliant mechanisms
tend to feature complex structural behavior, requir-
ing complex tools to model and predict. Designing
is even more difficult as it additionally requires the
inverse of this prediction, finding a shape that pre-
cisely features certain structural behavior. To remedy,
state-of-the-art design approaches such as the FACT-
(Freedom and Constrained Topology-, Yu et al., 2011) and
PRB (Pseudo-Rigid-Body-, Howell, 2013) methods im-
pose shape restrictions, respectively ensuring approx-
imately linearized, or effectively localized deforma-
tions, both of which may be combined. Regardless,
engineers tend to favor rigid-body mechanisms due

1For example, trusses feature simplified beams compared to the
organic structures in nature

2Structural behavior can be characterized by the relation between
load and deformation, often simplified through linearization.

3This is not to say that compliance had never been used by
humans; For instance, the bow and arrow proved the archetypical
hunting tool for tens of thousands of years (Cattelain, 1997).

4This is noted by Midha et al. (1992); Howell & Midha (1994);
Sigmund (1997); Kota et al. (2005); Shuib et al. (2007); Merriam et al.
(2013); Howell (2013); MacHekposhti et al. (2018); X. Zhang & Zhu
(2018); Lourdes Thomas et al. (2021).

5Yet, structures that require additive manufacturing, often require
increased production time and cost.

to their inherent simplicity (Zhu et al., 2020), despite
their flaws otherwise. Regardless, the attainable per-
formance is limited. A means to design compliant
mechanisms is desired, without the cognitive or nu-
merical burden typical of structural complexity.

Fortunately, harnessing modern computational
power may combine the best of nature’s exhaustive ap-
proach with an engineer’s intelligent approach, while
minimally compromising the structural complexity,
and thus performance. Typically, an efficient cycle of
structural design, modeling, analysis, evaluation, and
redesign is performed digitally, for many iterations.
Here, the design quantifies the structure’s shape or
topology. Given a design, the model then implicitly
defines kinematic and energetic behavior, often by re-
lating forces and deformations. The structural analysis
then aims to explicitly obtain this relation. Especially
when non-linear, this relation poses a notorious bot-
tleneck in the design cycle, as elaborated in the next
subsection. Through user-defined metrics based on
this relation, the evaluation then quantifies the struc-
ture’s performance, feasibility, and how these change
with its design. The cycle then repeats, redesigning
for improved performance while respecting feasibility,
until the design cannot be improved further. Through-
out this cycle, however, some extent of simplification
or approximation is unavoidable, as knowledge and
resources will always be finite. The remainder of this
introduction will briefly clarify this cycle, with empha-
sis on the analysis.

The structural model is a crucial component of the
design cycle. It dictates the allowed complexity of
the design’s shape or topology, its structural behavior,
and the corresponding challenges of its analysis. On
those accounts, the Finite Element Method (FEM) has
been widely adopted in order to efficiently and accu-
rately model (Thompson & Walker, 1968; Williamson,
1980; Han et al., 2021), and design (Bendsøe & Kikuchi,
1988), compliant or elastic structures. Moreover, it
provides a natural and convenient means to continu-
ously define and model structures of intricate shapes
and structural behavior, as an assembly of many small
and simple elastic elements. This is notably exploited
in the powerful, popularized, academically transpar-
ent6 density-based approach (Sigmund, 2001; Andreassen
et al., 2011) of topology optimization, on which the
present work is based.

Topology optimization emerged as a powerful de-
sign tool over the past decades (Zhu et al., 2020), yield-
ing innovative, high-performance designs that are diffi-
cult to obtain with conventional approaches (X. Zhang
& Zhu, 2018). It has made great progress (C. Wang
et al., 2021), being widely adopted in academia and

6C. Wang et al. (2021) notes the importance of academic trans-
parency, and building upon existing codes, such the MATLAB-
implementations of Sigmund (2001); Andreassen et al. (2011), in
order to accelerate development of topology optimization.

3



industry (Han et al., 2021). It does not need to rely
on the structural simplifications used in the FACT-
(Yu et al., 2011) or Pseudo-Rigid-Body- (Howell, 2013)
method, given an adequate means of non-linear struc-
tural modeling and analysis. The latter is especially
challenging but potent when non-linear. This would
extend the powerful design capabilities of topology op-
timization towards structures exploiting complex, non-
linear structural behavior. Moreover, density-based
topology optimization does not require an initially
known design concept (X. Zhang & Zhu, 2018), and
is well-suited for additive manufacturing (ZHU et al.,
2021)7. If nothing else, the obtained topologies serve as
valuable inspiration for novel, effective designs, even
when translated into more conventional shapes and
design methods (Han et al., 2021).

I.2 Challenge of Non-Linearity

Non-linearity is an often avoided but vital aspect of
structural modeling within high-end structural design
optimization. Certainly, a linear model and partic-
ularly its analysis are computationally much more
robust, cheap, and easy to implement, and hence im-
plemented in most topology optimizations (Han et
al., 2021). Yet, mechanisms generally feature non-
linearity in practice, even when modeled or intended
linearly in theory. What is more, some mechanisms
precisely derive their function from non-linearity. No-
table examples are biomedical devices featuring multi-
stability (Parenti-Castelli & Sancisi, 2013; Zhu et al.,
2020), hand-held tools featuring near-zero actuation
stiffness (Lourdes Thomas et al., 2021), non-linear path
generators (Megaro et al., 2017) and frequency mul-
tipliers (MacHekposhti et al., 2018). In terms of at-
tainable performance, designing structures without
modeling non-linearity is therefore not only subopti-
mal but sometimes impossible. Despite the ongoing
research on the structural analysis of large deflections
and geometric non-linearity within topology optimiza-
tion, such as Pedersen et al. (2001); Bruns & Tortorelli
(2001); F. Wang et al. (2014); X. Zhang & Zhu (2018);
Han et al. (2021); Debeurre et al. (2023), it remains a
relatively unexplored, major challenge (X. Zhang &
Zhu, 2018; Han et al., 2021; Chen et al., 2019a).

The Newton-Raphson approach (Crisfield, 1997;
Bathe, 2016) remains the most widely adopted, but
arguably lacking, state-of-the-art non-linear analysis
method, within structural optimization (Buhl et al.,
2000a; Bruns & Tortorelli, 2001; Pedersen et al., 2001;
van Dijk et al., 2014; Chen et al., 2019a; Han et al.,
2021), and without. It functions by sequentially solv-

7Occasionally, however, topology optimization may be limited
to more complex additive manufacturing methods (Liu et al., 2018).
These often require manufacturing-oriented modifications of the op-
timization problem formulation and post-processing of the resulting
topologies, currently demanding future research (ZHU et al., 2021;
Liu et al., 2018).

ing the locally linearized or otherwise approximate
structural equations.8 Its popularity may be explained
by the relative ease of implementation compared to
alternatives (Haisler et al., 1972), in addition to its
quadratic terminal convergence (Bruns & Tortorelli,
2001) leading to high accuracy (Haisler et al., 1972).
Yet, the Newton-Raphson approach is often computa-
tionally expensive9(Haisler et al., 1972; Azrar et al.,
1993), and otherwise problematic in density-based
topology optimization due to near-singularities and
non-uniqueness. Due to low-density elements, the
tangent stiffness matrix becomes ill- or even nega-
tively conditioned, impeding convergence (Buhl et al.,
2000a). While low conditioning may affect the numer-
ical stability and accuracy of each iteration, negative
conditioning denotes structural instability. Within low-
density elements, ill-conditioning is often associated
with inversion, or buckling (van Dijk et al., 2014) and
non-uniqueness10. Ironically, these supposedly non-
structural regions tend to affect the accuracy, stability,
and efficiency of the structural analysis. This is par-
ticularly emphasized using Newton-Raphson analysis,
aiming to locally linearize strongly non-linear phenom-
ena, even when present in low-density, non-structural
regions. This affects the accuracy and stability of the
structural analysis and optimization as a whole.

Alternative approaches to non-linear structural anal-
ysis, include the under-acknowledged but promis-
ing Perturbation11- or Asymptotic Numerical Method12

(ANM), or homotopy continuation13 methods in gen-
eral. The perturbation method was pioneered by Koi-
ter (1945) and Turner et al. (1960), and then neatly for-
mulated by (Thompson & Walker, 1968), predating14

the very finite element analysis. Where the Newton-
Raphson approach functions through multiple succes-
sive linear predictions and corrections, an asymptotic
method generally functions through a single higher-
order prediction, without correction. Ultimately, some

8See Subsection II.3 for a brief explanation and review of state-
of-the-art non-linear analysis methods.

9While a quasi-Newton approach reduces the cost per iteration
by avoiding expensive updates of this matrix, it sacrifices quadratic
convergence, possibly requiring disproportionately many iterations.

10In fact, the number of solutions to the structural equations in-
creases exponentially versus the number of freedom degrees, as
elaborated in Subsection II.4. This includes many inverted, buck-
led, or even complex solutions, only some of which are physically
meaningful.

11For reference on Perturbation analysis, see Thompson & Walker
(1968); Haisler et al. (1972); He (1998); Imazatène et al. (2001).

12This perturbation method is referred to as the Asymptotic Nu-
merical Method by Damil & Potier-Ferry (1990); Azrar et al. (1993);
Cochelin (1994); Cochelin, Damil, & Potier-Ferry (1994); Cochelin,
Damil, & Potier-Ferry (1994); De Boer & Van Keulen (1997); Najah
et al. (1998); Baguet & Cochelin (2002); Charpentier (2008); Ayane et
al. (2019); El Kihal et al. (2022); Debeurre et al. (2023).

13For reference on homotopy analysis methods, see He (1998);
Liao (2004, 2010); Agarwal et al. (2021).

14In fact, perturbation- or asymptotic methods have been applied
to algebraic sets of equations since Poincare’s "three-body problem",
published in 1892. Incidentally, minimizing Green-Lagrange strain
energy amounts precisely to solving an algebraic set of equations.
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curve asymptotically follows the equilibrium curve, by
matching their local value up to some finite amount of
geometric derivatives.8 Often this amounts to a Taylor
expansion using polynomials, or a Padé using ratio-
nals (Cochelin, Damil, & Potier-Ferry, 1994; Imazatène
et al., 2001; El Kihal et al., 2022). In algebraic geometry,
Laurent- or Puisseux expansions15 are used precisely
to analyze algebraic curves close to singularities.

The perturbation- or asymptotic methods may very
well out-compete the Newton-Raphson, up to mod-
erate non-linearity. Contrary to Haisler et al.’s con-
clusion (1972), perturbation techniques may be quite
efficient, especially for many degrees of freedom. In
order to obtain the necessary local derivatives of the
equilibrium curve, the global non-linear (zeroth-order)
structural equation is replaced by a set of local higher-
order structural equations (Thompson & Walker, 1968).
Each of these is, in fact, linear. Moreover, they can be
solved efficiently using the same Cholesky-factorizable
stiffness matrix, as will be shown in Section II.3. From
the derivatives, a continuous, non-linear description
of the equilibrium curve can be constructed, although
inherently diverging as any other extrapolation (De-
manet & Townsend, 2019). On the other hand, the
information by which the extrapolation is constructed
may be obtained further away from singularities, pro-
moting numerical conditioning, hence stability and
accuracy. Overall, perturbation methods have pro-
vided satisfactory solutions to moderately non-linear
problems on multiple accounts, including (Thompson
& Walker, 1968; Haisler et al., 1972; Najah et al., 1998;
El Kihal et al., 2022), allowing posterior step-length
specification along the equilibrium path, accurate es-
timation of the solution error, and occasionally more
efficiency and stability than Newton-Raphson meth-
ods.

I.3 Plan of Attack

The main objective of this work is to extend the power-
ful design capabilities of topology optimization, with
qualities of non-linear structural analysis, without as
much of the computational cost and instability. The
optimizer must be able to reach, and recognize, well-
performing designs as much as possible. Therefore,
neither complexity of shape and topology, nor struc-
tural behavior, should be compromised, with non-
linear structural analysis of the latter being the bot-
tleneck and core focus of this paper. Balancing its
computational cost, accuracy, and robustness are pri-
orities, using expensively obtained information to its
fullest extent. However, knowing or being able to
reliably estimate error, is absolutely vital to all the

15These expansions generalize power series to fractional and neg-
ative exponents.

former16. Excessive error leads to ill-informed design
changes, from which the optimizer may not recover.
On the other hand, small errors may sometimes even
be unattainable, or require disproportionate computa-
tional effort. Regardless, a good error estimator may
guide the optimizer, having it avoid designs whose
analysis can not become sufficiently accurate, while
minimally compromising the desired non-linearity that
inadvertently causes this error. Preferably, designs are
achieved with superior accuracy or qualitative features
compared to linear analysis, and superior efficiency
compared to Newton-Raphson analysis.

The scope of this work is narrowed down such that
the research and validation of the proposed method-
ology and its core features maintain clarity. At the
same time, it maintains most of the generalizability
towards other structural optimization frameworks or
pure non-linear analysis settings. Formulating well-
behaved responses based on strong non-linearities17,
such as post-buckling behavior or multi-stability, in-
volves difficulties beyond structural analysis itself due
to non-uniqueness and singularities. Hence, only mild
non-linearities are considered, representing any large
deflection within the structure’s buckling loads. Fur-
thermore, a two-dimensional density-based topology
optimization setting is considered, assuming isotropic,
linearly elastic material, and moderate deflections but
small strains. Accordingly, four-noded, bilinear ele-
ments are employed using the Green-Lagrange strain
measure and a Total Lagrangian formulation, as elab-
orated in Section III. The generality of the proposed
methodology in Section III is discussed in Section VII.

In order to achieve efficient and stable structural
topology optimization exploiting geometrically non-
linear qualities, a novel methodology has been de-
veloped, centered on structural analysis. Utilizing
a Bayesian-enhanced perturbed analysis, the equilib-
rium curve is stably extrapolated by an asymptotic
expansion, satisfying the curve’s higher-order geomet-
ric derivatives at the undeformed state. These deriva-
tives are recursively and efficiently obtained through
a linear solve with the same, Cholesky-factorized stiff-
ness matrix18. Furthermore, a symbolic tensor refor-
mulation and numerical tensor decomposition of the
four-noded bilinear element’s Green-Lagrange strain
energy model significantly reduce the cost of any al-
gebraic manipulation, aside from linear solves. In
addition, a tight error estimator has been derived,
facilitating Bayesian-enhanced structural analysis for

16Error can be easily overlooked as valuable information, as it
seems to represent the opposite. In fact, it can be used to increase
stability and accuracy for practically no additional cost, as demon-
strated in this paper.

17Strong non-linearity of a solution refers to its non-uniqueness,
or singularity of its derivative. By complement, mild non-linearity
implies that the solution is unique and exists on the domain up to
the nearest singularities.

18Note that exploitation of the repeated system matrix has been
performed since Thompson & Walker (1968).
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improved robustness and accuracy, and balanced com-
putational cost and accuracy throughout the structural
optimization. Finally, the design sensitivities of this
error estimator and other design-dependent responses
are analytically obtained through the adjoint method.
The resulting methodology allows stable and efficient
structural optimization, reliably predicting the true
performance of designs due to prior specification of
computational cost or error within the structural anal-
ysis. As a result, designs of superior performance or
entirely new qualities may be obtained compared to
using linear analysis, but lower cost compared to using
Newton-Raphson analysis.

The contents of this paper are structured as fol-
lows. First, Section II covers the necessary prelimi-
naries, starting with the adopted tensor-notation and
-operations, and a generalized structural model to
which the proposed and state-of-the-art non-linear
analysis methods may be applied. These state-of-the-
art methods are then briefly reviewed from a mathe-
matical and numerical perspective, mainly compar-
ing the Newton-Raphson procedure and perturba-
tion analysis. Finally, the nature of the equilibrium
curve is explored as an algebraic variety, given a
polynomial structural model. On account of the for-
mer, a novel methodology is proposed in Section III.
Here, the conceptual steps are elaborated in order
to extend density-based topology optimization with
an improved, stable, and efficient approximate struc-
tural analysis, referring to the Appendices for lengthy
derivations. In order to validate the methodology, a se-
lection of benchmark cases is then briefly justified and
outlined, comparing linear, Newton-Raphson, and the
novel Bayesian-enhanced perturbed structural analysis
within density-based topology optimization. Aiming
for a clean study of all separate components involved
within the proposed perturbed analysis, regularization
steps, and traditional counterparts for comparison,
basic structural analysis is incrementally expanded to-
wards fully-fledged topology optimization. The results
are laid out and interpreted directly within Sections
IV, V and VI. This somewhat unorthodox approach
is adopted to maintain a logical, readable document
despite the length and many validation stages. It also
filters the obtained knowledge in preparation to its
general discussion and the resulting conclusion in hy-
perref[sec:Discussion]Sections Section VII and VIII,
considering the goals, major findings and limitations
of the present work, relevant alternative works, and
most importantly the course of future works.

II Preliminaries

Structural analysis forms a pivotal component of
structural design optimization, relating the structural
model’s deformations to energy, stiffness and applied

loads, ultimately characterizing the behavior and per-
formance that are to be optimized. Especially a non-
linear model and analysis pose great utility, yet greater
challenges, that the methodology in Section III aims
to overcome. First, however, preliminary context, rel-
evance, and further justification is provided in this
section. Subsection II.1 clarifies the adopted tensor-
notation and -operations used in this paper. Then,
Subsection II.2 elaborates the discrete, conservative,
non-linear energy model in its most general form,
pertaining to the proposed and other state-of-the-art
non-linear analysis methods, within and even out-
side the area of structural analysis or engineering.
Subsequently, Subsection II.3 reviews and categorizes
these methods, their computational benefits, limita-
tions, and other challenges regarding the optimization
framework. Finally, Subsection II.4 briefly explores
the nature of the implicit equilibrium relation through
algebraic geometry, adding valuable insight into for-
mulating a suitable method for its analysis.

II.1 Mathematical Notation

Due to the various higher-order multivariate deriva-
tives and decomposition required for the perturbed
structural analysis, a specialized notation is adopted
to improve the readability and intuitiveness of the
mathematical groundwork in this paper. Especially
the symmetry that arises from repeated differentiation
with respect to the same vector is exploited, yielding
equations that can be understood from a univariate
point of view, without as much of the complexities
from multivariate calculus. To this end, the present
subsection clarifies the adopted tensor notation, inner-
and outer products, their higher-order generalizations,
and finally multivariate differentiation.

Tensors belong to a subclass of hyper-matrices
(Comon et al., 2008), i.e. multidimensional19 or multi-
way arrays of numbers, generalizing the concept of
scalars, vectors, and matrices. Let a number, element,
or component of some d-way array A be denoted as
Ai1¨¨¨id , where positive integers pi1, ¨ ¨ ¨ , idq denote the
element’s index along each of the array’s ways. Consid-
ering tensors in particular, their values often represent
physical quantities that should be invariant to the cho-
sen coordinate system, hence the tensor’s transforma-
tive properties must obey certain rules. In most prac-
tical engineering applications, these algebraic objects
represent multilinear relations between other scalars,
vectors, or tensors20. Hence, they are often encoun-

19This use of the word dimension is regrettably common but
confusing. In this paper, it refers to the order or amount of ways of
the array. Each way then has an associated dimensionality, which
is typically that of the physical coordinate space where this array
holds meaning.

20In continuum elasto-mechanics, for example, some constituent
four-way or fourth-order material tensor relates the two-way or
second-order stress- and strain tensors (Bathe, 2016).
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tered in algebraic - meaning polynomial - systems of
equations, or as higher-order multivariate derivatives21

of smooth functions such as in this paper.

Contractions or tensor-inner-products, denoted with
operator ‚, compactly describe weighed summations
or multilinear maps. For example, consider a scalar
c P R resulting from the first-order contraction between
vectors a P RN and b P RN , whose dimensions must
correspond:

c “ a ‚ b ðñ c “
Nÿ

i“1

aibi , (II.1)

where ai and bi are the respective ith components of
a and b, with integer index i P N ranging from 1
to N. Next, consider a vector c P RM resulting from
the second-order contraction between three-way array
A P RMˆNˆO and two-way array (matrix) B P RNˆO:

c “ A ‚
2

B ðñ ci “
Nÿ

j“1

Oÿ

k“1

AijkBjk . (II.2)

Generally, contractions of arbitrary order extend to-
wards matrices or tensors of arbitrary order, with ar-
bitrary dimensionalities of each of their respective
ways. As such, consider, the dth-order contraction
between some m-way A P RI1ˆ¨¨¨ˆIm and some n-
way B P RJ1ˆ¨¨¨ˆJn , resulting in the pm ` n ´ 2dq-way
C P RI1ˆ¨¨¨ˆIm´dˆJd`1ˆ¨¨¨ˆJn , noting that pIm´d, ¨ ¨ ¨ Imq
must equal pJ1, ¨ ¨ ¨ Jdq:

C “ A ‚
d

B ðñ (II.3)

Ci1¨¨¨im´d jd`1¨¨¨jn “
J1ÿ

j1“1

¨ ¨ ¨
Jdÿ

jd“1

Ai1¨¨¨im´d j1¨¨¨jd Bj1¨¨¨jd jd`1¨¨¨jn

Tensor- or Segre-outer-products (Comon et al., 2008),
denoted with operator b, are more straightforwardly
defined, and do not involve summation. Consider the
outer-product between the same m- and n-way arrays
A and B used for equation Equation II.3, now resulting
in the pm ` nq-way tensor C:

C “ A b B ðñ Ci1¨¨¨im j1¨¨¨jn “ Ai1¨¨¨im Bj1¨¨¨jm .
(II.4)

By extension, a tensor-outer-power is adopted here,
analogously to scalar-exponents. Consider some vector
a P RN raised to the dth outer-power, hence resulting

in a symmetric tensor A P Sym
´

RNd
¯

:

21A higher-order multivariate derivative could be seen as a gener-
alized extension of a Jacobian

A “ a
db ” a b a b ¨ ¨ ¨ b aloooooooomoooooooon

d times

ðñ Ai1¨¨¨id “ ai1 ¨ ¨ ¨ aid

(II.5)

where Sym
´

RNd
¯

denotes the subspace of RNd
con-

taining all symmetric tensors, whose elements do not
change under any permutation of their indices. Both
the tensor-outer-product and -power are convenient
tools in compactly denoting and manipulating tensor
decomposition, which greatly reduces the computa-
tional effort and memory transfer in order to perform
the various higher-order contractions.

Let the dimensionality of RNd
be denoted as

dim
´

RNd
¯

“ Nd. Since any permutation of the
indices of a d-way N-dimensional symmetric ten-
sor Ai1¨¨¨id yields the same tensor, its dimensional-

ity dim
´

Sym
´

RNd
¯¯

is substantially smaller. Its di-
mensionality is instead counted by the number of
unique, unordered sets of integers ranging from 1
to N. Consider a tuple of strictly non-decreasing in-
dices pi1 ¨ ¨ ¨ idq, meaning N ě id ě id´1 ě . . . ě i1 ě 1.
This may uniquely represent all possible permutations
yielding the same Ai1¨¨¨id , by definition of its symmetry.
The diagram in Figure II.1 may uniquely correspond
to such a tuple, using N orbs and d dividers. Here,
each of the indices is represented by a divider and the
number of orbs to its left. Since indices may be equal
but must be greater than zero, dividers may be adja-
cent but must remain to the right of the leftmost orb.
Hence, there are effectively pN ´ 1q ` d free objects in
this diagram. The amount of its unique arrangements
equals the amount of unique non-decreasing index
tuples, hence the number of unordered sets of inte-
gers ranging from 1 to N, hence the dimensionality of

Sym
´

RNd
¯

:

dim
´

Sym
´

RNd
¯¯

“ ppN ´ 1q ` 1q!
pN ´ 1q!pdq!

“
ˆ

N ´ 1 ` d
d

˙
.

(II.6)

When N is much larger than d, this means that

dim
´

Sym
´

RNd
¯¯

« 1
d! dim

´
RNd

¯
.

Decomposition of a tensor may put its low theo-
retical dimensionality into practice, greatly reducing
the required memory and floating-point operations in-
volved in their numerical manipulations. In particular,
the Canonical Decomposition (CP), as visualized in Fig-
ure II.2, of some symmetric d-way N-dimensional ten-

sor A P Sym
´

RNd
¯

, redefines it as a sum of dth-order

outer-powers of possibly complex vectors ar P CN :
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i1

i2

id

pN ´ 1q ` d

Figure II.1: Visualization of some d-tuple of indices where
N ě id ě id´1 ě . . . ě i1 ě 1, uniquely repre-
senting all of the possible permutations yielding
the same Ai1¨¨¨id

when symmetric.

A “
Rÿ

r“1

a
db
r , with R “

R
1
N

ˆ
N ´ 1 ` d

d

˙V
,

(II.7)
where R denotes the generic symmetric rank of A
(Comon et al., 2008).

Although a non-zero tensor may be of any positive
rank, often still greater than N, it can be bounded by
R. This arguably corresponds to the number of vectors
ar such that their collective amount of coefficients at
least equals the dimensionality of A. Yet, the rigorous
proof for this generic rank is far from trivial, and find-
ing a minimal rank, no less its CP decomposition, is
np-hard (Comon et al., 2008). In addition, most con-
temporary methods are often ill-posed, regardless of
choosing a full or even over-complete rank decompo-
sition, or lower-rank approximation22. The custom
strategy adopted in this work shall be elaborated in
Section III and Appendix A.3.

Tucker decomposition may further reduce computa-
tional effort, essentially through a transformation of
the tensors’ coordinate bases, decreasing their dimen-
sionality (but not their order), and possibly increasing
their sparsity. Consider the Tucker decomposition,
as visualized in Figure II.3, of the same symmetric d-
way N-dimensional tensor A from Equation II.7 given
transformation matrix V P RNˆN :

A “
Rÿ

r“1

`
VJ ‚ ar

˘ db ðñ (II.8)

Ai1¨¨¨id “ Vj1i1 ¨ ¨ ¨ Vjdid Aj1¨¨¨jd ,

where A is technically a projection of A. However,
Tucker decomposition becomes especially useful when
a projection exists towards dimensionality N smaller
than the original N, without loss of information, mean-
ing linear operations on the tensor may be performed

22For literature on tensor-decomposition, see Kolda & Bader
(2009); Battaglino et al. (2018); Comon & Luciani (2009); Brachat
et al. (2010); Bernardi et al. (2013); Rabanser et al. (2017); Ge & Ma
(2022), roughly ordered in terms of ascending complexity.

on its projection, the result of which may then be
projected back. Notably, the very expensive CP decom-
position may be preconditioned this way, significantly
reducing its cost. Note that CP decomposition may be
seen as a special kind of Tucker decomposition, both
of which may coincide for second-order tensors, with
diagonalization and spectral decomposition.

Multivariate derivatives are the final but most impor-
tant concept elaborated here. They form the symmet-
ric tensors as coefficients of the multivariate polyno-
mial system of equations, governing structural behav-
ior. Consider some scalar-valued function Epuq with
vector-argument u P RN . Given that Epuq is smooth,
its dth-order derivative can be uniquely obtained and
is denoted as:

A “ BdEpuq
Bu

db
” B

Bu
¨ ¨ ¨ B

Buloooomoooon
d times

Epuq ðñ (II.9)

Ai1¨¨¨id “ BdE
`ru1, . . . , uNsJ˘

Bui1 ¨ ¨ ¨ Buid
, (II.10)

which exists in Sym
´

RNd
¯

, as the order of subsequent
differentiations of Epuq versus the components of u is
commutable due to smoothness, per Clairout’s theorem.
As a final remark, the mathematical relation among
a set of higher-order derivative tensors, evaluated at
the same point of some smooth scalar field, may espe-
cially be exploited during decomposition. To clarify,
consider the basis of eigenvectors to the second-order
derivative tensor. While it is generally unable to diago-
nalize (hence CP decompose) the derivative tensors of
higher order than the second, a lot of the orthogonal
properties are still able to greatly increase sparsity, and
possibly reducing the effective dimension due to the
field’s invariance with respect to certain eigen-vectors.
This notably applies to energy and translational defor-
mation modes, as elaborated in Section III.

II.2 Discrete Structural Model

Kinematic transfer of energy is the intended purpose,
hence defining characteristic, of a mechanical struc-
ture. Therefore, modeling the total energetic potential
of such a structure and its interacting surroundings
in terms of these kinematics is the starting point of
structural analysis, before the structural behavior may
be characterized or analyzed, consequently allowing
the structure’s shape or topology to be optimized.

In regard to modeling elasto-mechanical structures,
Rayleigh-Ritz- or variational procedures are long-
established and widely adopted tools (Thompson &
Walker, 1968; Williamson, 1980; Han et al., 2021), such
as most notably the Finite Element Method (FEM), de-
veloped by Courant (1943). In essence, the structure
and interacting surroundings are considered as a sin-
gle system, and its total energetic potential is mod-
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Figure II.2: Canonical Polyadic (CP) decomposition of some arbitrary tree-way four-dimensional symmetric tensor of sym-
metric rank 4.

k
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i

“ j
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i

ĵ

ĵ

k̂

k̂

î
î

Figure II.3: Tucker decomposition of some arbitrary tree-way
four-dimensional symmetric tensor of symmet-
ric rank 4 and inner dimensionality 3 (i.e. nullity
1).

eled to continuously depend on a finite amount of
generalized coordinates representing the structure’s
deformation field and load variable23, as illustrated in
Figure II.4. In concrete mathematical terms, consider
the total energetic potential P of a non-dynamical, con-
servative, discrete structural system in its most general
form (Equation II.11). Here, P is a continuous, well-
behaved function of some generalized N-dimensional
kinematic freedom or deformation vector u and load-
scalar λ, subjected to some applied force p:

Ppu, λq ” Epuq ´ λp ‚ uloomoon
Wpu, λq

, with
u P RN ,
λ P R ,

(II.11)
where E represents the internally stored elastic energy,
and W the externally exerted work, hence negative
load-potential.

The characteristic of an elasto-mechanical structure
may be interpreted as the way its deformation, energy,
reactant force, stiffness, or other derived quantities
change with the imposed boundary conditions. Any
such quantity is implicitly, although not necessarily

23See Appendix A for a detailed derivation concerning the pro-
posed density-based framework in Section III.

u

p

Figure II.4: Some arbitrary discrete conservative non-linear
structural model, subjected to a load, a fixed-
and a sliding contact. The true displacement
field is approximately represented through a
finite set of generalized quantities in deformation
vector u. Likewise, the true externally applied
pressure field is approximately represented by a
work-equivalent applied force vector p.

uniquely24, defined through minimization of the ener-
getic potential Ppu, λq (Equation II.11) with respect to
its free deformations25 u:

C ”
"

pu, λq P RN`1
ˇ̌
ˇ BPpu, λq

Bu
“ 0

*
, (II.12)

defining the structure’s characteristic equilibrium
curve. This is the central object of non-linear structural
analysis, as will be covered next in Subsection II.3.

Some important remarks can be made on the
equilibrium curve’s continuity. Indeed, C is a one-
dimensional subspace of RN`1, as there are N im-
posed equations within an pN ` 1q-dimensional space.
Moreover, in all but a finite amount of points, its
smoothness may be verified through the duly elab-
orated perturbation method. Here, bounded geomet-
ric derivatives can be uniquely obtained through re-
cursive sets of linear equations. While the branch
that passes through the origin is defined as the main

24This statement pertains to solutions of any non-linear system of
equations, which may yield any amount of roots including zero or
infinite.

25Note that all physical systems naturally tend to their most likely
state, where entropy is maximized and the flow of energy is in
equilibrium everywhere.

9



branch, C often features numerous bifurcations, addi-
tional branches, isolated curves, or even points, satisfy-
ing equilibrium within the structural model. However,
most of these are precisely non-physical artifacts of the
structural model, arising where it fails to accurately
predict reality. At any rate, at least the main branch
may be parametrically described versus some arc- or
path variable a (Thompson & Walker, 1968), up to the
nearest singularities or discontinuities within C and
up to a bijection26 with respect to a:

p@a P Rq
´„upaq,

„
λpaq

¯
P C . (II.13)

Although all definitions are now in place to under-
stand and perform state-of-the art non-linear analy-
sis methods (Subsection II.3), some useful physical
interpretations and alternative definitions will be dis-
cussed in the remainder of this subsection. Partic-
ularly, the higher-order displacement derivatives of
the elastic energy Epuq provide key utility and insight
into perturbation- and algebraic analysis methods dis-
cussed in Subsections II.3 and II.4, respectively. In-
cidentally, the reformulation generalizes the classical
internal force- and tangent stiffness matrix adopted in
Bathe (2016).

The energy’s first displacement-derivative defines
the structure’s surjective internal force vector function
f puq:

f puq ” BEpuq
Bu

, (II.14)

which is named appropriately, as it should equal the
externally applied force λp for equilibrium. As such,
the residual force rpuq defines the extent of in-equilibrium,
thus error between both forces:

rpu, λq ” ´BPpu, λq
Bu

“ λp ´ f puq . (II.15)

Moving on, the energy’s second displacement-
derivative defines the structure’s instantaneous, or
tangent stiffness matrix function Kpuq:

Kpuq ” B f puq
Bu

” B2Epuq
Bu

2b
, (II.16)

where, to clarify, the pi, jqth component of Kpuq may
be interpreted as Epuq differentiated with respect to
the ith, and then again to the jth component of u. This
quantity plays a key role in any practical non-linear
structural analysis method. Notably, when polynomial
strain- and material models are used to define con-
servative elastic energy Epuq, it may be reformulated
without loss of accuracy, as a multivariate polynomial

26Any non-linear one-to-one correspondence between a and an
alternative parameter, or even a surjection, do not change the shape
of the curve that is being traced.

Equilibrium Manifold:Mx ” f x

Lo
ad

sp
ac

e:
F

“
R

N

Deflection space:U “ RN

Kxpuq ” B2Expuq
Bu

2b

O
f “ 0

u “ 0

pFp

pUx, p

f xpuq ” BExpuq
Bu

Cx, p

Figure II.5: Visualization of the equilibrium manifold M Ă

R2N , containing all equilibria simply as the
graph of the internal force function f xpuq, pa-
rameterized by design x. Structural analysis
often involves seeking displacements pUx, p such
that f xp pUx, pq “ pFp ” Spantpu.

of finite degree, or finite multivariate MacLaurin se-
ries:

Epuq “
dÿ

k“0

1
k!

BkEpuq
Bu

kb

ˇ̌
ˇ̌
ˇ
u“0

‚
k

u
kb . (II.17)

This multivariate polynomial reformulation, or tenso-
rial reformulation, will be particularly useful for the
proposed methodology in Section III, if the symmet-
ric coefficient tensors, being the derivatives of Epuq,
are successfully decomposed. Appendix A contains a
detailed elaboration of the reformulation and decom-
position as used within the proposed methodology.

Finally, all structural model definitions elaborated in
this section are preferably smoothly related to some de-
sign vector x, typically governing the structure’s shape,
topology, or local density. Through this quantity, the
equilibrium curve thus structural behavior can then
incrementally be manipulated in order to optimize the
design’s performance. Figure II.5 compactly visualizes
all mentioned definitions, with subscripts emphasizing
dependence on both design x and p. In addition, the
equilibrium curve C may be considered as a subspace
or section of the equilibrium manifold M, containing all
equilibrium configurations for any possible applied
load p. Effectively, M is the graph of f puq.

II.3 Non-Linear Structural Analysis

Given the structure’s non-linear energetic model (Equa-
tion II.11) and implicitly defined equilibrium curve
(Equation II.12), structural analysis exclusively deals
with the challenge of explicitly finding or approximat-
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ing this curve, by solving its governing set of non-
linear equations. This has been a subject of consid-
erable interest for over multiple decades (Haisler et
al., 1972). Notably, most state-of-the-art methods that
deal with non-linear problems tend to leverage the
advantageous properties of linear problems. These in-
clude the existence and uniqueness of their solutions,
which may hence be found robustly and efficiently.
Generally, however, solving non-linear equations is
an old27, notoriously difficult problem transcending
the field of engineering, for which many methods are
being rapidly developed relatively recently (He, 1998).
Hence, a wide variety of suitable methods exist beyond
the default choices within structural analysis. This
subsection mainly compares the most widely adopted
but arguably lacking Newton-Raphson approach, and
the under-acknowledged but promising Perturbation
Method, both of which generalize beyond the otherwise
limited linear analysis.

Computational effort, accuracy, and stability are the
main challenges and hence first priorities of structural
analysis within structural optimization, given suffi-
cient ease of implementation. Here, stability refers
to an algorithm’s capability to consistently yield, or
converge to, a unique output that smoothly varies
with its input over a large domain. Within gradient-
based design optimization, unstable or strongly input-
dependent responses may yield ill-informed or chaotic
design changes, slowing down or even preventing
convergence entirely. Rather than curating instabil-
ity through additional implementations, it is most
preferably avoided in the first place. Furthermore,
strong non-linearity is considered as the local non-
uniqueness of some relation or set of solutions, causing
ill-conditioned or even singular derivatives28. While
the latter compromises the efficiency, accuracy, and
stability of almost any contemporary method of non-
linear analysis, the non-uniqueness poses additional
challenges to formulating a well-behaved response,
deemed beyond the scope of this work. In terms of di-
rect practical use, as well as a future extension towards
the strongly non-linear domain, much value is to be
gained by first considering small deformations within
the mildly non-linear domain29. This ensures unique-
ness, allowing for more elementary responses, and
also promotes efficiency and stability of the structural
analysis and -optimization as a whole.

Returning to the task of non-linear structural anal-
ysis, recall the equilibrium curve C as the set of solu-
tions to the non-linear equilibrium equations (II.12),
or equivalently the roots of the non-linear residual

27A famous example dates back to Zu’s "n-body problem" (1885)
which can be recast into a set of algebraic differential equations,
akin to the structural equilibrium equations adopted in Section III.

28Examples of strong non-linearity are buckling, multi-stability,
or zero-stiffness.

29The mildly non-linear domain is defined here to extend from
the undeformed state up to the first strong non-linearity

equations (II.15):

C “
!

pu, λq P RN`1
ˇ̌
ˇ λp ´ f puqloooomoooon

rpu, λq
“ 0

)
, (II.18)

Haisler et al. (1972) distinguished the majority of the
non-linear analysis methods into two classes. The first
class I comprises the inherently diverging, incremen-
tal, extrapolative methods. The incremental stiffness
method, being one of the oldest, is equivalent to the
forward integration of the equilibrium equation in
differential form:

Kpuqdu “ pdλ , (II.19)

inherently leading to drift from C. To remedy, higher-
order generalizations such as Modified Euler or Runge-
Kutta can be applied, all of which are approximately
equivalent to successive perturbation methods, aiming
to predict neighboring solutions on C, given readily
obtained solutions. The second class II comprises
the self-correcting, usually interpolative methods, to
which the following is a notable exception. Moreover,
the Newton-Raphson approach has remained most
successful due to its relative ease of implementation,
low amount of tunable parameters30, and particularly
its high accuracy and robustness when faced with
strongly non-linear problems (Thompson & Walker,
1968; Haisler et al., 1972). However, technically it is
a class I method incorporated with corrective steps,
meaning a more sensible distinction is in order.

Homotopy, prediction, and correction are predomi-
nant state-of-the-art non-linear solution strategies, of-
ten complementing each other in hybrid schemes. Ho-
motopy31 methods often use some bijective relation,
mapping the challenging non-linear equations that
govern the original solution into an equivalent but
less challenging set of non-linear, or sometimes even
linear equations. Then, the corresponding solution is
mapped back to the original solution space. Of course,
this inverse map poses another non-linear problem of
its own, typically requiring previously described meth-
ods. Within non-linear structural analysis, homotopy
is generally difficult to use but certainly very promis-
ing. For instance, it may bypass the small-parameter re-
quirement inherent to most perturbation methods (He,
1998; Liao, 2004, 2010). In fact, based on the present
work it is strongly recommended to extend the pro-
posed perturbation method with algebraic-geometric
analysis, using some rational homotopy. Here, it is
assumed that there exists a bi-rational map between
some true polynomial solution curve within the pro-
jective load-deflection space, and the original load-

30Tunable parameters refer to parameters specific to the method
of analysis, rather than the model that is analyzed.

31For reference on homotopy analysis methods, see He (1998);
Liao (2004, 2010); Agarwal et al. (2021).
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deflection space. This shall be further clarified in Sub-
section II.4 and Subsection VII.4.

Regardless, the remainder of this work mainly fo-
cuses on prediction and correction, more particularly
Newton-Raphson (NR) and Perturbation (P) analysis, for
several reasons. As duly argued and demonstrated,
basic P (Perturbation) analysis can readily outcompete
NR (Newton-Raphson) analysis in terms of effort, accu-
racy, and stability, under realistic conditions. Further-
more, it forms a necessary but solid stepping stone
towards an improved algebraic geometric variant em-
ploying homotopy, suggested as future work (Subsec-
tion VII.4).

NR analysis aims to curate error through multiple
linear implicit prediction- and explicit correction steps.
Alternatively, the asymptotic- or P analysis aims to
prevent error through a single high-order prediction,
without correction. More precisely, a non-linear pre-
diction barely facilitates correction, as this would pose
a correspondingly non-linear problem similar to the
original equilibrium equations.

For mathematical clarification, consider the approx-
imate residual „rpaq as a function of path variable a
along some implied prediction towards, or explicit
prediction along, the equilibrium curve C:

„rpaq ” r
´„upaq,

„
λpaq

¯
. (II.20)

The first-order prediction within NR differs from the
higher-order prediction within P regarding imposed
accuracy, respectively requiring „rpa ` ∆aq to equal:

pNRq „rpaq ` d„rpaq
da

∆a “ Op∆a2q ,

pPq „rpaq `
nÿ

k“1

1
k!

dk„rpaq
dak ∆ak “ „rpaq ` Op∆an`1q ,

(II.21)

where Opgp∆aqq denotes limit behavior being upper-
bounded by M ¨ gp∆aq for some finite M P RN . In other
words, with respect to a preceding step, NR aims to
correct the current residual up to a second-order error,
by solving for the first-order prediction p„upaq,

„
λpaqq

satisfying zeroth-order equilibrium, meaning towards
C. On the other hand, some nth-order P aims to pre-
vent increased residual up to an pn ` 1qst-order error,
by constructing an nth-order prediction p„upaq,

„
λpaqq

satisfying first-, up to nth-order equilibrium, parallel
to C. Hence, the following respective sets of structural
equations are successively imposed until some desired
error criterion is met:

pNRq „rpakq ` d„rpakq
dak

pak`1 ´ akq “ 0

s.t. ℓ
´„upak`1q,

„
λpak`1q

¯
“ 0 ,

pPq dk„rpaq
dak “ 0 s.t. ℓ

´„upaq,
„
λpaq

¯
“ 0 ,

(II.22)

where ℓpu, λq denotes a generalized step-length metric,
such that the newly introduced, otherwise indetermi-
nate path variable a may be resolved.

As a simplified example, consider a load-controlled
analysis initiated from the undeformed state, meaning
λ “ „

λpaq ” a, u “ „upaq “ „upλq and λ “ 0 ô u “ 0.
Starting with NR, Equation II.22 reduces to the follow-
ing recursive sequence zeroth-order residuals, implic-
itly defining a sequence of zeroth-order displacement
solutions uk, for k “ 1, . . . , n:

rpuk´1, λqloooomoooon
rk´1

` Brpu, λq
Bu

ˇ̌
ˇ̌
u“uk´1looooooooomooooooooon

´Kpuk´1q

‚puk ´ uk´1q “ 0 ,

(II.23)

with u0 ” 0. More explicitly, this sequence then equals:

u0 ” 0 , pNRq
u1 “

”
Kp0q

ı´1 ‚ pλpq ,

u2 “ u1 `
”
Kpu1q

ı´1 ‚
´

λp ´ f pu1q
¯

,

...

un “ un´1 `
”
Kpun´1q

ı´1

looooooomooooooon

´Bu
Br

ˇ̌
ˇ̌
u“un´1

‚
´

λp ´ f pun´1q
¯

looooooooomooooooooon
rpun´1, λq

. (II.24)

The linear prediction- and correction steps within such
a NR sequence of displacement solutions are schemat-
ically visualized in Figure II.6, for a single degree of
freedom.

Moving on to P, Equation II.22 reduces to the follow-
ing recursive sequence of incrementally higher-order
residual derivatives, implicitly defining a sequence of
incrementally higher-order displacement derivatives
upkq, for k “ 1, . . . , n:

dk„rpλq
dλk

ˇ̌
ˇ̌
ˇ
λ“0looooomooooon

rpkq

“ Brpu, λq
Bu

ˇ̌
ˇ̌
u“0looooooomooooooon

´Kp0q

‚ dk„upλq
dλk

ˇ̌
ˇ̌
ˇ
λ“0loooooomoooooon

upkq

(II.25)

` Rpkq ´up1q, up2q, . . . , upk´1q¯ “ 0 ,

12



with up0q ” 0. The expression for rpkq is obtained
by recursively applying the product- and chain rule,
where Rpkq denotes the resulting multilinear form,
excluding the first RHS-term which contains the upkq
that is yet to be solved at the kth perturbation iteration.
Alternatively, a closed-form expression for rpkq may be
obtained using Faá di Bruno’s generalized chain rule.
Moreover, when rpu, λq is some low-order multivariate
polynomial versus u, a much less complicated closed-
form expression for rpkq may be obtained using Leibniz
generalized product-rule. This is notably the case
given the quadratic strain model within the proposed
methodology in Section III, where this differentiation
step is elaborated in more detail. More explicitly, the
sequence of Equation II.25 then equals:

up0q ” 0 , pPq
up1q “

”
Kp0q

ı´1 ‚ ppq ,

up2q “
”
Kp0q

ı´1 ‚
¨
˝´B2 f puq

Bu
2b

ˇ̌
ˇ̌
ˇ
u“0

‚
2

´
up1q¯

2b
˛
‚ ,

...

upnq “
”
Kp0q

ı´1 ‚ Rpnq ´up1q, up2q, . . . , upn´1q¯ .

(II.26)

The linear and higher order predictions constructed
from such a P sequence of displacement derivatives
are schematically visualized in Figure II.6, for a single
degree of freedom.

f f

λp CC

u u

Figure II.6: Schematic visualization of a linear predictor-
corrector (Newton-Raphson-) method (left) and
high-order predictor (Perturbation-) method
(right).

In different ways, NR and P analysis generalize be-
yond linear analysis, to which they are effectively iden-
tical only at their respective first iterations. This can be
seen by comparing Equation II.24 and II.26. To clarify,
both u1 and up1qλ equal λK´1 p, for K ” Kp0q. Then,
from their respective second iterations and onward,
they feature separate strengths and weaknesses.

Starting with utility, NR and P analysis respectively
converge towards a point and a continuous interval on
the equilibrium curve C (Figure II.6). This respectively
yields isolated zeroth-order information, or distributed
higher-order information on C. When structural perfor-
mance has been user-defined to depend on distributed

or higher-order equilibrium information, rather than
isolated zeroth order, P analysis may efficiently suit
the needs through a single local expansion, where NR
analysis may require several converged points. Some
examples are path-generation, multi-stability (Parenti-
Castelli & Sancisi, 2013), and frequency multiplication
(MacHekposhti et al., 2018).

More generally concerning accuracy, not only the
domain but also the rate of convergence differs be-
tween NR and P analysis, excluding their respective
zeroth and first iterations where both methods, their
errors, and rates are still identical. NR has been known
to feature quadratic terminal convergence (Bruns &
Tortorelli, 2001), even when it initially diverges. On
the other hand, P typically features (sub)-linear con-
vergence, or (super)-linear divergence, as shown in
Appendix B and verified in Subsection IV.1. When
using a Taylor expansion, this phenomenon may be
characterized by the radius of convergence. Beyond
the radius, predictions tend to get exponentially worse
versus the order, and polynomially worse versus the
path parameter, while the exact opposite happens to-
wards the expansion point within the radius. In that
sense, NR can handle larger step lengths, and ulti-
mately converges much faster. With each new error
roughly equal to the previous error squared, a doubly
exponential convergence is obtained. Table II.1 and
Figure II.7 give an indication of the relative normed
errors using NR and P analysis, based on their estima-
tors derived in Appendix B.

n

log ϵn log ϵn

flops

O
`

N3˘

Opnq O
`

N3˘

O
`

N2˘

O p2n ´ 1q

(N
R)

(P)

0 0

(P)

(N
R)

Figure II.7: Schematic convergence of the relative normed
error ϵn versus the amount of structural solves
n (left) and corresponding amount of floating-
point operations (flops) (right), comparing the
Newton-Raphson approach (NR) and perturba-
tion method (P). Here, N denotes the structure’s
number of freedom degrees.

In terms of total computational cost given some de-
sired accuracy, P analysis may still outcompete NR
analysis. While NR has an exponentially accelerat-
ing convergence rate, it also has a higher iteration cost.
Comparing their sequence of iterations, meaning Equa-
tion II.24 to II.26, it can be seen that NR requires an
updated system matrix Kpukq each iteration, in order
to maintain quadratic convergence and robustness. On
the other hand, P uses the same Kp0q, which can be
exploited through a prior Cholesky-factorization. Al-
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n 0 1 2 3 4 5
„
ϵn (P) 1 ϵL ϵ2

L ϵ3
L ϵ4

L ϵ5
L„

ϵn (NR) 1 ϵL ϵ3
L ϵ7

L ϵ15
L ϵ31

L

Table II.1: Relative displacement error estimator „
ϵn where

n denotes the number of structural solves, or it-
erations, for perturbed analysis (P), and Newton-
Raphson analysis (NR). Note that ϵL ” ϵ1 is iden-
tically obtained after a single Newton-Raphson
iteration, and a first-order perturbation, both of
which are then equivalent to linear analysis.

though the latter requires a heavier calculation than a
single NR iteration, both involve a number of floating-
point operations (flops) of the order OpN3q, given N
degrees of freedom32. However, for every following
iteration, P now requires roughly OpN2q flops per it-
eration. Especially for large N this initial investment
repays itself, allowing P to temporarily overtake NR
due to its superior initial convergence rate in terms
of accuracy to cost, or flops. It must be noted, how-
ever, that the right-hand-side vector Rpnq also super
linearly increases in cost versus n due to nested ap-
plications of the chain- and product-rule. This may
become problematic without having access to decom-
posed element-tensors. Fortunately, these need to be
obtained only once for a single element of a given type
and material model, as shown in Appendix A.3.

Further concerning computational efficiency and
robustness, some step length of load-scalar λ or path-
variable a can be continuously varied after P analysis
has been performed33. Conversely, NR analysis re-
quires the step length to be determined before the
analysis, meaning the sequence must restart if it di-
verges. In fact, NR is much more likely to suffer from
an ill-conditioned stiffness matrix, especially near load
limits (Bruns & Tortorelli, 2001). The radius of con-
vergence and error for P analysis can accurately be
estimated, such as derived in Appendix B.2. As a re-
sult, a feasible or even optimal step length is practically
determined by the method itself, rather than the user
(Azrar et al., 1993). It facilitates automated control over
cost and accuracy, and rapid automatic continuation
of C (Azrar et al., 1993; Cochelin, Damil, & Potier-
Ferry, 1994) when using multiple expansions. This
is to bypass the diminishing returns of accuracy over
cost, and the limited radius of convergence for a single
expansion. Effectively, P then becomes an accelerated
or higher-order NR method, or some confluent Runge-
Kutta method. Still incapable of correction steps, it
does not require them nearly as much as basic NR
regardless.

32Note that for sparse systems, this order of floating-point opera-
tions is slightly lower for both the solve, and the factorization.

33This has been verified by Cochelin (1994); Cochelin, Damil, &
Potier-Ferry (1994); Cochelin, Damil, & Potier-Ferry (1994); De Boer
& Van Keulen (1997); Azrar et al. (1993); El Kihal et al. (2022).

To summarize, NR analysis is easier to implement,
features quadratic convergence, and is one of the most
accurate methods up to date. However, it may only
yield a point on the equilibrium curve, requires a
predetermined step length, becomes unstable near
load limits, and requires system matrix updates each
iteration. P analysis overcomes all of these draw-
backs, yielding a continuous or asymptotic approxima-
tion of the equilibrium curve, facilitating an optimal
automatic step length, and retains a relatively well-
conditioned sequence of structural solves. However, it
may be more difficult to implement, requiring the con-
struction and possibly decomposition of higher-order
element-tensors, featuring only linear convergence at
best, albeit at the same initial rate as NR. Nevertheless,
it does not require system matrix updates, facilitating
Cholesky factorization and significantly more efficient
solves. Overall, P incidentally features superior effi-
ciency, utility and robustness compared to NR, at least
within the radius of convergence. Currently, the size
of this radius and high-order prediction divergence
beyond it, are the most prominent limitations.

Various promising attempts have been made to
increase the radius of convergence and robustness
of P analysis, to which the choice of parameteriza-
tion p„upaq,

„
λpaqq has been found highly significant

(Thompson & Walker, 1968; Cochelin, 1994; De Boer &
Van Keulen, 1997; Najah et al., 1998). Rather than the
most elementary choices of MacLaurin or Taylor expan-
sions, rationals have been adopted, or more precisely
Padé extrapolants (Najah et al., 1998; Cochelin, Damil,
& Potier-Ferry, 1994; Cochelin, Damil, & Potier-Ferry,
1994; De Boer & Van Keulen, 1997; Ayane et al., 2019;
El Kihal et al., 2022), yielding significantly increased
radii and a natural means to control limit behavior for
large a, by balancing the numerator and denominator
degrees. Oddly, the greatly increased effectiveness
has been described as mysterious (Najah et al., 1998).
However, from an algebraic geometrical perspective,
this should not be entirely unexpected as some true
parameterization of the solution has been proven to
exist, given an algebraic set of structural equations,
as elaborated in the next subsection. Furthermore,
spurious poles of rational perturbation methods have
been found problematic to its accuracy and robustness
(Cochelin, 1994; De Boer & Van Keulen, 1997; El Kihal
et al., 2022). A vectorial Padé extrapolant has been
adopted (El Kihal et al., 2022) to reduce the risk of
such poles, simply by imposing the same denomina-
tor for all components tracing the curve. Again, this
seems to be an unnoticed remarkable consistency with
the parametric form of algebraic curves. By coinci-
dence, the proposed Bayesian-enhanced perturbation
method in Section III effectively yields a vectorial Padé
extrapolant without poles, through the very attempt to
minimize error and divergence, and optimize robust-
ness. Perhaps this is less coincidental than it seems,
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and the powerful capabilities of vectorial rationals
shall be demonstrated from both the analytical (Sub-
section II.4), and a stochastic (Appendix C) perspective,
regardless.

II.4 Algebraic Structural Analysis

By strategically using prior information on the na-
ture of the structural equilibrium curve, unnecessary
complexity, thus computational effort and potential
instability, become avoidable during its analysis. Par-
ticularly, the algebraic nature of the structural equa-
tions and corresponding solutions are exploited here.
Although ultimately a perturbation-based methodol-
ogy has been developed and validated, the present
subsection provides valuable insight into its validity,
and more importantly, a foundation for future exten-
sions towards possibly superior algebraic geometric
variants.

When the structural model and corresponding non-
linear equations are found to be algebraic, meaning
polynomial, much can be revealed about the existence,
smoothness, and degree of the set, or manifold, con-
taining all solutions. This set belongs to the class
of algebraic varieties, and is covered by an extensive
amount of literature36. Again, recall the equilibrium
curve C as the set of solutions to the non-linear resid-
ual equations (II.15):

C “
!

pu, λq P RN`1
ˇ̌
ˇ λp ´ f puqloooomoooon

rpu, λq
“ 0

)
, (II.27)

where the residual rpu, λq has now been reformulated,
without loss of accuracy, into its full MacLaurin se-
ries. This is due to the polynomial strain- and linear
material model, as adopted in the methodology, and
elaborated in Appendix A.

rpu, λq ” λp ´

Linear FEMhkkikkj

K ‚ u ´ 1
2 S ‚

2
u

2b ´ 1
6 Q ‚

3
u

3b

looooooooooooooooooomooooooooooooooooooon
Geometrically non-linear FEM

,

(II.28)
where Kpxq P Sym

`
RN2˘

, Spxq P Sym
`
RN3˘

and
Qpxq P Sym

`
RN4˘

represent the second-, third-
and fourth-order partial displacement derivatives of
Epu; xq versus u, evaluated at u “ 0, being two-, three-
and four-way N-dimensional symmetric tensors34. As
a result, C can be regarded an algebraic curve of degree
up to 3N , as argued next.

34As duly elaborated in Section III, numerical operations involv-
ing these N-dimensional tensors can be efficiently mediated using
their decomposed, 8-dimensional contributions on the element level,
assuming 8 degrees of freedom per structural element.

Given some fixed load-scalar λ in the multivariate
cubic system of Equation II.28, one can express three
solutions for a single component of u in terms of the
remaining, unresolved N ´ 1 components. For each
of these solutions, one can express another three solu-
tions for a second component in terms of the remaining
N ´ 2 unresolved ones, yielding nine so far. Doing this
for all components theoretically yields an astronom-
ically high total of 3N solutions, most of which are
spurious, complex-valued, or otherwise unphysical. 35

By the same reasoning, given any fixed component of
u and solving for the remaining N ´ 1 components of
u and single component of λ yields 3N solutions

Through algebraic geometry36, the nature of the
curve C (Equation II.12) is directly revealed as an al-
gebraic variety which, under certain conditions, can
be rationally parameterized. To clarify - leaving the
rigorous proof to the literature36 - some N ` 1 rational
functions versus some path- or arc variable a P R may
perfectly trace C, excluding a finite amount of points:

$
’’&
’’%

„upaq “ Upaq
Zpaq

„
λpaq “ Λpaq

Zpaq
: f

`„upaq˘ “ „
λpaqp , (II.29)

with the components of Upaq, Λpaq, and Zpaq being
univariate polynomials of degree up to 3N . This can
be verified by substituting „upaq and

„
λpaq into Equa-

tion II.28, equating it to 0 for equilibrium, and then
multiplying everything by Zpaq3 to obtain an algebraic
equation again:

K ‚
´

Zpaq2Upaq
¯

` 1
2 S ‚

2

ˆ
ZpaqUpaq

2b
˙

` 1
6 Q ‚

3

ˆ
Upaq

3b
˙

“
´

Zpaq2Λpaq
¯

p ,

(II.30)

where the role of denominator Zpaq now becomes ap-
parent: homogenizing (Sendra et al., 2008) the polyno-
mial system of Equation II.30, meaning all polynomial
terms of are now of equal degree versus a, although
most importantly the left- and right-hand-side are,
which would not be possible without the denomina-
tor Zpaq. Note that the homogenized system can be
compactly rewritten simply by recollecting terms:

35This is a very rough illustration of Bézout’s Theorem, stating that
the amount of zeros of a multivariate polynomial equals the product
its components’ degrees (Hartshorne, 2013).

36For relevant literature on algebraic geometry and rational pa-
rameterization, see Sendra et al. (2008), Hartshorne (2013), and
Wurm et al. (2005).
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A ‚
3

Ypaq
3b “ 0 , with Ypaq ”

»
–

Upaq
Λpaq
Zpaq

fi
fl P RN`2 ,

(II.31)

where A P Sym
´

RpN`2q4
¯

denotes the 4-way symmet-
ric tensor of the homogenized system, within the pro-
jective load-deflection space RN`2. Furthermore, A is
a linear combination of the original structural system
tensors K, S, Q, and applied load p.

The exceedingly high degree of 3N for the individ-
ual univariate polynomials may roughly be explained
through the previously argued amount of solutions
given some fixed component of u or λ. Considering
each of the curve’s N ` 1 components separately, its
value must occur up to 3N´1 or 3N times, accounting
for complex solutions and multiplicity; The 3N th de-
gree numerators Upaq and Λpaq facilitate exactly that,
while the denominator Zpaq of the same degree en-
sures the homogeneity and existence of a solution to
Equation II.30 for all but a finite amount of a P R.

Bifurcations are also worth addressing from the al-
gebraic geometrical perspective, as they are linked
to structural instability, element inversion, but most
notably predict a reduced effective degree of the
equilibrium curve’s main branch. The residual force
rpu, λq “ λp ´ f puq may be considered as the curve’s
defining polynomial, which in turn may be factored
out repeatedly until they become irreducible. In this
case, each of these irreducible factors defines a sep-
arate, potentially isolated branch, or even singular
point (acnode), whose degrees sum up to that of the
total curve. Where multiple of these curves coincide,
the total defining polynomial becomes multiply zero,
hence the same amount of its derivatives minus one
becomes zero. Equivalently, the residual remains zero
along multiple (not necessarily independent) direc-
tions, being null-vectors of Br{BruJ, λsJ. Given the
well-documented existence of structural bifurcations,
the main branch of interest is of a much lower degree
than 3N , although most likely still impractically large.

In conclusion, each branch of the equilibrium curve
in RN`1 may be perfectly traced by a continuous ratio-
nal parameterization of finite, yet impractically large
degree. On the other hand, an equivalent projective
equilibrium curve in RN`2 may be perfectly traced
by a polynomial parameterization of the same degree.
Moreover, polynomials have an infinite radius of con-
vergence, whereas traditional perturbation methods
are often bottle-necked by a finite, small radius of
convergence. An infinite radius remarkably guaran-
tees global convergence of the approximation towards
the considered equilibrium branch. At any rate, the
smoothness within each equilibrium branch, and pos-
sibly the form of their finitely complex analytical pa-
rameterization, are valuable even to basic perturbation

analysis. Moreover, they are valuable to the formula-
tion and validation of an adequate structural topology
optimization methodology based on perturbation anal-
ysis, as proposed in the next Section III.

III Methodology

A novel methodology is proposed here, extending
structural topology optimization with efficient and ro-
bust geometrically non-linear analysis. Subsection III.1
gives a general overview, summarizing conceptual
steps and justification behind its formulation and im-
plementation. Then, Subsection III.2, and the optional
but strongly recommended Subsection III.3, elaborate
the adopted structural design model exploiting a ten-
sor reformulation and decomposition, facilitating the
structural analysis proposed in Subsection III.4. Here,
a Bayesian approach is taken based on error estima-
tion, improving the robustness and accuracy of per-
turbed non-linear analysis, which readily overcomes
many other limitations of Newton-Raphson analysis
within density-based topology optimization. Then,
the bridge towards optimization is formulated in Sub-
section III.5, covering regularization and the adjoint
design sensitivity analysis. Lastly, a validation strategy
and corresponding study cases are mapped out in Sub-
section III.6, through which the analysis and topology
optimization results in Section IV and V are obtained.
Ultimately, the state-of-the-art Newton-Raphson (NR),
Perturbed (P) and novel Bayesian-enhanced perturbed
(B) analyses are compared, all of which are identical
to Linear (L) analysis for a single iteration, but distinc-
tively generalize beyond it.

III.1 General Overview

Harnessing the modern computational cycle of struc-
tural design, modeling, analysis, evaluation, and re-
design, the methodology is mostly based on the
two-dimensional density-based topology optimization
Matlab-code top99.m (Sigmund, 2001), its numeri-
cally optimized top88.m (Andreassen et al., 2011), and
the Method of Moving Asymptotes (MMA, Svanberg,
1987), for several reasons. The duly clarified overview
can be seen in Figure III.2. In addition to its powerful
design freedom argued in Section I and Subsection II.2,
building upon existing and accessible codes acceler-
ates future development, as suggested by C. Wang
et al. (2021). A more detailed account is provided in
Subsection III.2. Ultimately, some continuous design-
vector x governs the structural design, as visualized
in Figure III.1, using a density-based finite element
model.

Consider some design x, an applied load-vector p
scaled by some continuous load variable λ, and other
structural boundary conditions. Traditional structural
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u

ξ2
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Ω

Figure III.1: Some arbitrary density-based structural design
defined through x, on design domain Ω over
global coordinates (ξ1, ξ2). The main goal of
this work is to efficiently but accurately obtain
displacement u given certain boundary condi-
tions and applied force λp, versus λ P r0, 1s.

analysis then aims to relate the resulting displacement-
vector u to the former, by solving a set of minimum-
potential, i.e. structural equilibrium equations, as cov-
ered in the following subsections. The equilibrium
curve C then denotes all possible solutions over a con-
tinuous range of λ, visualized in Figure III.3.

Rather than facing the drawbacks of solving the
original zeroth-order equilibrium equations at various
non-zero loads or λ, the Perturbed analysis in Subsec-
tion III.4 involves solving various higher-order equilib-
rium equations at zero load and displacement. This
implicitly defines the geometric derivatives of C at the
undeformed state, or likewise those of some param-
eterization pu, λq “ `„upaq,

„
λpaq˘. Here, a denotes the

path variable along this parametric curve, that hence
asymptotically approximates C in the neighborhood
of the undeformed state, where a “ 0. Intuitively,
the matching initial derivatives between the paramet-
ric and true curve ensures that

`„upaq,
„
λpaq˘ features

no initial error, velocity, acceleration, up to a finite
amount of higher-order equivalents, away from the
equilibrium curve C as a is increased above 0. Note
that the present methodology adopts a load-controlled
parameterization, meaning pu, λq “ `„upλq, λ

˘
, con-

forming the scope being limited to mild-nonlinearities,
as argued in Section I.

Without going into too much detail on the perturbed
analysis, an error estimator of the higher-order pre-
diction can benefit robustness and accuracy twofold.
Originally, an elementary MacLaurin extrapolant was
constructed from the obtained higher-order deriva-
tives:

ρ

λp

!
Γp1q, . . . , Γpnq

)

!
up1q, . . . , upnq

)

!
µpnq, . . . , µpnq

)

tu
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Sensitivity
Analysis

!
µpnq, µpn´1q, . . . , µppq

)

!
µpnq, µpn´1q, . . . , µppq, µpp´1q

)

Higher-Order
Equilibrium
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!
up1q, up2q, . . . , uppq

)

!
up1q, up2q, . . . , uppq, upp`1q

)
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B
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Bρ

ρ
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dρ

nÿ
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Buppq ¨ duppq

dρ

x
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g

tu

dρ
dx ¨

¨ dρ
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Figure III.2: Topology optimization function-chain for per-
turbed structural analysis and adjoint sensitiv-
ity analysis. Note the analogy between the
structural displacement-derivatives uppq and
adjoint solutions µppq, and likewise between
the external load λp and adjoint load Γppq ”

Bg{Buppq.

„unpλq ”
nÿ

p“1

1
p!

uppqλp , where uppq ” dpu
dλp

ˇ̌
ˇ
λ“0

.

(III.1)

Technically, one could implement the perturbed anal-
ysis as is. However, Taylor series in particular (Pow-
ell, 1964; Cochelin, 1994), or any other extrapolation
(Demanet & Townsend, 2019), is generally bound to
ultimately diverge. As a result, dependent responses
and their design sensitivities become inaccurate, which
may quickly destabilize the topology optimization un-
less this divergence is directly or indirectly controlled.
Since stable control requires feedback, hence a normed
estimator of this inaccuracy, or error „

ϵnpλq, was de-
rived. Firstly, this can guide the optimizer by ensuring
sufficient accuracy of the analysis, and justification
of the optimized design. Secondly, it facilitates an
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Figure III.3: Equilibrium curve C (black) and solutions re-
sulting from various methods (blue). Left: con-
verged equilibrium points. Center: exact curve-
fit „upλq to n ą 1 converged equilibrium points
close to the origin. Right: exact kth-degree
curve-fit „ukpλq to exact equilibrium derivatives
at the origin, respectively supplied with k “ 1
and k “ n derivatives.

improved extrapolant or prediction, and correspond-
ing error estimator, simply by averaging all „uppλq and
„
ϵppλq for p “ 1, . . . , n, in a way that continuously
minimizes the aggregate error estimator given any λ.
Hence, every last drop of information is squeezed out
of the painstakingly obtained higher-order derivatives
uppq. This process, referred to as Bayesian Model Averag-
ing (Hoeting et al., 1999), incidentally yields a rational-,
or more specifically a vectorial Padé-type (El Kihal et
al., 2022) extrapolant, of superior robustness and accu-
racy, but without the spurious poles encountered in
other attempts at rational perturbation analysis (Coche-
lin, Damil, & Potier-Ferry, 1994; De Boer & Van Keulen,
1997; El Kihal et al., 2022).

For future reference, a simplified overview of the
topology optimization function chain is depicted in
Figure III.2, omitting the Bayesian-enhanced high-
order prediction. While most of the symbols and pro-
cesses are duly elaborated in more detail, they can be
briefly described as follows. Some design x is regular-
ized or filtered into a corresponding set of densities ρ.
Combined with the applied load λp, the nth-order
equilibrium analysis loop is performed, incremen-
tally yielding higher-order derivatives of equilibrium-
satisfying displacements u versus λ, denoted with su-
perscript ppq for p “ 1, . . . , n. Then, the user-defined
responses g, and corresponding analytical first-order
partial derivatives, are evaluated as a direct function of
ρ and the various uppq. This respectively yields the re-
sponses density-derivatives, and the adjoint forces Γppq
for p “ 1, . . . , n, simply named due to their analogy
with λp in the following loop. The adjoint sensitivity
analysis loop is then performed analogously to the
equilibrium analysis loop, incrementally yielding the
adjoint solutions µppq for p “ n, . . . , 1. Due to this loop,
ultimately the derivatives of g versus x are obtained,
without explicitly having to calculate those of uppq and
µppq for p “ 1, . . . , n. Finally, the responses and their
design derivatives are fed into the Method of Moving
Assymptotes (MMA) (Svanberg, 1987), producing an
updated design x, after which the cycle repeats.

III.2 Density-Based Structural Model

A foundational component of the structural design
cycle is the structural model and corresponding set
of assumptions, implicitly defining the kinematic
and energetic behavior as evaluated by some user-
defined performance metric. Conforming to the two-
dimensional density-based finite element approach
argued in Subsection I.3, II.2, and III.1, the presented
methodology is based on the effective and accessible
top99.m (Sigmund, 2001) and top88.m (Andreassen et
al., 2011). Further considering frictionless compliant
mechanisms, the simplistic yet accurate geometric non-
linearity (Buhl et al., 2000a; Pedersen et al., 2001; Han
et al., 2021) is modeled using the Green-Lagrange strain
measure and Total Lagrangian Formulation (Bathe, 2016;
Chapter 6), based on a displacement field bi-linearly
interpolated between each 4-noded element’s nodes,
each of which hence has 8 degrees of freedom. The ma-
terial for each element is modeled uniformly isotropic
and linearly elastic, depending only on its effective
Young’s modulus E, Poisson’s contraction coefficient
ν, and the chosen out-of-plane stress- or strain condi-
tion37. Finally, the structural model is reformulated
as an exact multivariate polynomial without loss of
accuracy, facilitating its local reversion, or inversion,
through perturbed analysis, in addition to prior el-
ement domain integration, and otherwise increased
numerical efficiency.

The structural design is modeled through the total
energetic potential of a density-controlled, frictionless
finite element model, subjected to conservative loads,
kinematic constraints, and possibly other boundary
conditions. By subdividing some overall design do-
main Ω (Figure III.1) into some M element or voxel
domains, the structure’s shape, topology, and behavior
are defined through a regular grid of tiny structural
elements of varying elasticity. Design vector x P RM

then contains for each element a continuous scalar
between zero and one, controlling these stiffnesses.

Concretely, before elaborating on the element level,
total energetic potential Ppu, λ; xq denotes the con-
tinuous, well-behaved function of some generalized
N-dimensional kinematic freedom or deformation vector
u P RN , subjected to some applied load vector p P RN

scaled by load variable λ P R, typically within r0, 1s,
given some design x:

Ppu, λ; xq ” Epu; xq ´ λp ‚ uloomoon
Wpu, λq

, (III.2)

where Epu; xq represents the internally stored elas-
tic energy, and Wpu, λq the externally exerted work,
hence negative load potential. As duly elaborated,
Epu; xq is simply modeled as the sum of element con-

37Commonly, either zero out-of-plane stress or strain is chosen for
two-dimensional structural designs.
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tributions.
In the end, the design’s structural behavior is char-

acterized by the equilibrium relation, meaning the
deformations that minimize total potential, given a de-
sign variable x and the applied boundary conditions.
Equivalently, it is characterized by zero inequilibrium,
or residual force rpu, λ; xq, defined as:

rpu, λ; xq
loooomoooon

´BPpu, λ; xq
Bu

” λp ´ f pu; xq
loomoon

BEpu, λ; xq
Bu

, (III.3)

where f pu; xq defines the surjective38 internal force vec-
tor function. Given some design x, the equilibrium curve
Cx that is ultimately sought-after or approximated dur-
ing structural analysis, then compactly denotes the
set of equilibrium solutions, or residual roots, relating
applied forces to deformations as:

Cx ”
!

pu, λq P RN`1 : λp ´ f pu; xq
loooooomoooooon

rpu, λ; xq

“ 0
)

. (III.4)

In order to facilitate perturbed analysis, the struc-
tural model is recast into an algebraic, tensorial, or
equivalently multivariate polynomial form without
loss of accuracy, pertaining to Ppue; xq, thus Epu; xq,
and all of its derivatives versus u. More precisely,
the element contributions that sum up to Epu; xq are
reformulated into their respective MacLaurin expan-
sions about their undeformed state, exploiting the
low-degree polynomial nature of the adopted Green-
Lagrange strain measure.39 Ultimately, perturbed anal-
ysis involes higher-order path derivatives of the equi-
librium equation (III.4) defining Cx, hence higher-order
displacement derivatives of Eepue; xq through the
chain rule. To this end, the remainder of this subsec-
tion covers the structural assembly and element tensor
reformulation. Computational concerns regarding the
involved contractions of these tensors are addressed
in Subsection III.5, being an optional but strongly rec-
ommended step of the methodology. Furthermore,
details on regularization, such as material penaliza-
tion, density filtering and deformation scaling, are left
to Subsection III.5.

Assembly effectively connects all individual 8-
degrees-of-freedom structural element models to one
another, forming the overall N-degree-of-freedom
structural model. It generalizes the way that the elas-

38A surjective function maps its domain onto its image, meaning
multiple inputs may correspond to the same output.

39Notably, the MacLaurin reformulation of total potential orig-
inally inspired this work’s earlier attempt of multivariate polyno-
mial reversion, later found to be equivalent to perturbed analysis
(Thompson & Walker, 1968) and the asymptotic numerical method
(Cochelin, 1994).

tic energy and deformation of the overall structure
straightforwardly relate to those of its elements. To
clarify, the internally stored elastic energy Epu; xq
equals the sum over element contributions:

Epu; xq “
Mÿ

e“1

Eepue; xq , (III.5)

where ue “ Aeu and Ae ” Bue

Bu
,

where ue P R8 denotes the deformation of the struc-
ture’s eth element, simply being a partition of the struc-
ture’s global deformation u P RN according to the de-
gree of freedom connectivity visualized in Figure III.4.
Assembly matrix Ae P t0, 1u8ˆN represents this parti-
tion, constructed purely from ones and zeros.

...

1

M2

M2 ` 1

2M2

...

¨ ¨ ¨

¨ ¨ ¨

...

pM1 ´ 1qM2 ` 1

M1 M2 “ M

ˆ
1,
2

˙

ˆ
3,
4

˙

ˆ
2M2 ` 1,
2M2 ` 2

˙

ˆ
2M2 ` 3,
2M2 ` 4

˙

ˆ
4M2 ` 3,
4M2 ` 4

˙ˆ
6M2 ` 5,
6M2 ` 6

˙

ˆ
4M2 ` 5,
4M2 ` 6

˙ ˆ
N ´ 2M2 ´ 1,

N ´ 2M2

˙

ˆ
N ´ 1,

N

˙

¨ ¨ ¨

¨ ¨ ¨

...

...

ξ2

ξ1

...

eˆ
1,
2

˙ ˆ
3,
4

˙

ˆ
5,
6

˙ˆ
7,
8

˙

Figure III.4: Element numbers e “ 1, . . . , M, global degree-
of-freedom indices i “ 1, . . . , N and local
degree-of-freedom indices i “ 1, . . . , 8 for
some eth element of an M2-by-M1 voxel-grid
structure. Adapted from Sigmund (2001) and
Andreassen et al. (2011).

Extending assembly to higher-order derivatives of
Equation III.5 such as force and stiffness, the purpose
of this seemingly unwieldy definition or interpretation
of Ae will become apparent. Namely, in a conserva-
tive system, the internal force vector f pu; xq P RN and

tangent stiffness matrix Kpu; xq P Sym
´

RN2
¯

equal
the respective first- and second-order partial deriva-
tives of Epu; xq versus u. Applying the chain rule
B

Bu “ BueBu
J ‚ B

Bue
respectively once and twice, using

BueBu “ Ae, yields:

f pu; xq ” BEpu; xq
Bu

“
Mÿ

e“1

AJ
e ‚ BEepue; xq

Buelooooomooooon
f epue; xq

, (III.6)
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Kpu; xq ” B2Epu; xq
Bu

2b
“

Mÿ

e“1

AJ
e ‚ B2Eepue; xq

Bu
2b
eloooooomoooooon

Kepue; xq

‚Ae ,

(III.7)
with element e’s internal force vector f epue; xq P R8

and tangent stiffness matrix Kepue; xq P Sym
´

R82
¯

.
Generalizing the derivatives beyond force and stiff-

ness, the MacLaurin reformulation of Eepue; xq is ob-
tained. Specifically, a multivariate quartic description
of Eepue; xq results from the quadratic Green-Lagrange
strain measure:

Eepue; xq ”

Linear FEMhkkkkkkikkkkkkj

1
2 Kepxq ‚

2
u

2b
e (III.8)

` 1
6 Sepxq ‚

3
u

3b
e ` 1

24 Qepxq ‚
4

u
4b
e

loooooooooooooooooooooooomoooooooooooooooooooooooon
Geometrically non-linear FEM

,

where Kepxq P Sym
`
R82˘

, Sepxq P Sym
`
R83˘

and
Qepxq P Sym

`
R84˘

are respectively treated and ob-
tained as the second-, third- and fourth-order partial
displacement derivatives of Eepue; xq versus ue, given
ue “ 0, being two-, three- and four-way 8-dimensional
symmetric tensors40. Appendix A.2 elaborates the
detailed reformulation.

On the structural level, the reformulation of Equa-
tion III.8 is entirely analogous, omitting the subscript
e. The structural tensors become Kpxq P Sym

`
RN2˘

,
S pxq P Sym

`
RN3˘

and Qpxq P Sym
`
RN4˘

, exponen-
tially sparser in that order. Surely, Kpxq may need to
be assembled on the structural level, being involved
in structural solves of the perturbation analysis. On
the other hand, although the assembled Spxq and Qpxq
are mathematically convenient to work with, imple-
menting them as such is incredibly inefficient and
fortunately unnecessary, as shown in Subsection III.4.

III.3 Structural Tensor Decomposition

Tensor decomposition is an optional but strongly rec-
ommended step regarding numerical efficiency. It ren-
ders the potentially problematic but unavoidable struc-
tural MacLaurin, or tensorial reformulation even su-
perior to its canonical form proposed by Bathe (2016).
Without decomposition, it is especially taxing when
applied to perturbed analysis, compared to Newton-
Raphson analysis. To clarify, due to the recursive
application of the product rule, perturbed analysis
requires a super-linearly increasing amount of force-
like evaluations and corresponding tensor contractions

40The reader is referred back to Subsection II.1 and II.2 for more
details on the tensor notation and structural model.

versus the perturbation order, as shown in Subsec-
tion III.4. To remedy, the involved tensors themselves
are also reformulated and implemented as their near-
minimal decompositions on the element level, more
than sufficiently addressing the associated computa-
tional concerns. The ultimate goal is only to reduce
the required effort on force-like evaluations, up to the
point where the associated structural solves or other
overhead calculations become dominant.

More specifically, a single representative element is
formulated, and a Canonical Polyadic (CP) decomposi-
tion41 is constructed from the corresponding tensors,
such that it and its decomposition may be cheaply
related to those of all other elements, given that their
model linearly relates to the representative model.
While CP decomposition is a highly non-convex, ill-
posed, incredibly expensive problem even for a sin-
gle element, as further elaborated in Appendix A.3,
its result may be stored and extensively recycled or
cheaply transformed forever. In this appendix, it is also
shown that evaluating the structure’s internal force
and tangent stiffness becomes a few times more effi-
cient, comparing the decomposed tensor formulation
to Bathe’s (2016) canonical formulation. The tensor
reformulation already factors the structural model’s
deformation dependence out of the domain integra-
tions involved in the discretization of the structural
continuum equations, elaborated in Appendix A.2. Ad-
ditionally, through decomposition, a nearly minimal
amount of storage and floating point operations is now
required when evaluating force, stiffness, or any other
related force-like derivatives.

Considering the mathematics and implementation
of tensor decomposition, recall that Sepxq and Qepxq
respectively denote the third- and fourth-order par-
tial displacement derivatives of Eepue; xq versus ue
given ue “ 0. Then, defining the representative struc-
tural element of the adopted quadrilateral type and
particular material model D, let pEDppuq denote its inter-
nally stored elastic energy in terms of its displacement
pu P R8 in some natural or local coordinate frame. Any
Eepue; xq can then be linearly related to this one, as:

Eepue; xq “ cepxq ¨ pED

´
Bepxq ‚ ue

¯
, (III.9)

where the linear operators cepxq P R and Bepxq P R8ˆ8

may be non-linear functions of x themselves, as place-
holders for any density scaling and linear displace-
ment or coordinate mapping, or otherwise linear trans-
formation of the current element’s energy model. Cor-
respondingly, any Sepxq and Qepxq may be respectively
related to the same pSD and pQD. Moreover, the same
applies to their respective decompositions, equal to
Equation III.10 for d “ 3 and d “ 4. A preferably
(nearly) minimal symmetric tensor rank Rd (Comon

41For a visualization of Canonical Polyadic decomposition, see
Figure II.2.
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et al., 2008) is often assumed or guessed prior to the
numerically decomposing such a d-way tensor:

Bd pEDppuq
Bpu

db

ˇ̌
ˇ̌
ˇ̌
pu“0

”
Rdÿ

r“1

pa
db
r , (III.10)

hence
BdEepue; xq

Bu
db
e

ˇ̌
ˇ̌
ˇ̌
ue“0

“ cepxq ¨
Rdÿ

r“1

´
Bepxq ‚ par

¯ db
,

(III.11)

where par P R8 for r “ 1, . . . , Rd are scaled eigen-
vectors or otherwise orthogonal vectors when Rd ď
dimpR8q “ 8 (Sturmfels, 2016; Rabanser et al., 2017),
but most often they are no eigenvectors, and cannot
even be orthogonal when Rd ą dimpR8q “ 8. While
they may certainly still hold some physical meaning,
this is irrelevant in the present work, where they are
purely intended to reduce memory usage and floating
point operations during tensor contractions.

Some practical remarks regarding the decomposi-
tion and rank of pSD and pQD are in order before moving
on to the perturbed analysis in Subsection III.4. As-
suming a lower-than-true rank ultimately facilitates
too little information or coefficients to capture the orig-
inal tensor, resulting in a numerically inexact approx-
imation. On the other hand, assuming a higher rank
does not affect the numerical exactness, but actually
improves the odds and speed by which a decomposi-
tion may be found, especially when the true rank is
generic, being the highest possible rank an arbitrary
tensor of given dimensionality and order may obtain.
Then again, overestimating the rank directly increases
the memory storage and number of floating point oper-
ations involved in all future contractions, diminishing
the very purpose of this decomposition. As such, dur-
ing CP decomposition of pQD the assumed rank was
chosen equal to its true rank when sub-generic, and
increased by one when generic, as minimal generic
decompositions were practically impossible to find
otherwise. Ultimately, the following decomposition
forms are assumed and successfully implemented in
the methodology, given the generic case:

pQD “
21`1ÿ

r“1

pq
4b
r , pSD “

21`1ÿ

r“1

psr b pq
2b
r , (III.12)

where pqr P R8 and psr P R8 denote the factors shared
among the decompositions of pQD and pSD. This pro-
motes efficiency by allowing future contractions to
be factored out or recycled among both, as shown in
Subsection III.4. Furthermore, the generic rank of a
four-way six-dimensional symmetric tensor is 21, ar-
gued from Equation II.7. This is effectively the case for
the four-way 8-dimensional pQD, due to the energy’s
two-dimensional translational invariance, as exploited

in its Tucker Decomposition visualized in Figure II.3, and
elaborated in Appendix A.3 (Rabanser et al., 2017). In
this work, Tucker decomposition preconditions the CP
decomposition process, greatly reducing its cost but
ultimately not affecting the decompositions used dur-
ing structural analysis. While tensor decomposition
software is freely available (Bader & Kolda, 2007), a
custom approach is presented in Appendix A.3. Ad-
mittedly, many sufficient means or assumed forms
of decomposition are available, and the reader is ad-
vised to experiment beyond the somewhat arbitrary
decomposition choices made in this work.

III.4 Perturbed Structural Analysis

The most challenging yet pivotal component of the
structural design cycle is non-linear structural analysis,
explicitly obtaining the equilibrium relation between
load and displacement, as implicitly defined by the
previously elaborated model. From this relation, struc-
tural performance may ultimately be measured and
optimized. Here, a novel means of perturbed analysis
is proposed to efficiently and robustly predict this non-
linear equilibrium relation, in four steps. Intuitively,
while the internal and applied external forces naturally
equal zero at the undeformed state, they are imposed
to change equally, and their subsequent instantaneous
changes of changes likewise. While in general a basic
implementation of such an asymptotic approach can-
not prevent ultimate divergence from the true relation,
it can be postponed or attenuated through duly elabo-
rated modifications. To improve the readability of this
subsection, functional dependence on the design x is
omitted, as the analysis method itself does not vary
with it. The four steps are first briefly summarized
and then elaborated.

The first step is higher-order structural analysis,
avoiding the drawbacks of obtaining distant equilib-
rium data, through concentrated equilibrium data at
the undeformed state. Here, a set of incrementally
higher-order derivatives of the equilibrium equation is
recursively solved, yielding the equilibrium curve’s ex-
act geometric derivatives of corresponding orders. The
second step involves higher-order equilibrium predic-
tion, where a continuous curve is parameterized such
that it matches the obtained derivatives. In this work,
a straightforward MacLaurin extrapolation is consid-
ered, explicit in terms of load variable λ to accommo-
date the mildly non-linear scope. More importantly,
it facilitates a tight error estimator in the third step,
facilitating an extent of control over the true error as
done in the fourth and final step. In fact, a whole fam-
ily of extrapolations is constructed in the second step,
matching up to incrementally higher-order derivatives,
each of which has its own error versus λ. The fourth
step of Bayesian Model Averaging (Hoeting et al., 1999)
is then simply to take a weighted average of these ex-
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trapolations, such that the aggregate error estimation
is minimized and incidentally less than that of any
individual extrapolation for any λ. The remainder of
this subsection elaborates on these four steps.

The first step of higher-order structural analysis
is quite literally derived from the original zeroth-
order equilibrium equation. Consider the N-degree-
of-freedom structure and its MacLaurin-reformulated
residual equation, whose roots, i.e. zeros, define equi-
librium:

rpu, λq ” λp ´ K ‚ u ´ 1
2 S ‚

2
v ´ 1

6 Q ‚
3

w , (III.13)

where v ” u
2b ,

and w ” u
3b ,

where substitutions v and w will be convenient later
on. Also note that the structural tensors K, S and
Q are constant with respect to u, being higher-order
energy derivatives at u “ 0.

Considering the load-controlled analysis versus λ,
the aim is to obtain some u “ „upλq that asymptoti-
cally satisfies equilibrium. To clarify, strictly equating
the residual r

`„upλq, λ
˘

to zero over a finite interval,
implicitly equates all of its derivatives to zero at any
point on that interval, simply because the derivatives
of a zero-valued function must then also be zero. Con-
versely, equating up to a finite amount of its deriva-
tives to zero at one particular point, only ensures that
r
`„upλq, λ

˘
asymptotically stays zero near that point,

through whatever smooth prediction „upλq this condi-
tion is met. Regardless, such high-order predictions
may have multiple distinct advantages over a linear
prediction, or an iterative prediction-correction ap-
proach such as Newton-Raphson, as readily discussed
in Subsection II.3 and later demonstrated in Section V.

Concretely, r
`„upλq, λ

˘
and all of its higher-order

derivatives are equated to 0 at the undeformed state,
meaning λ “ 0. Incidentally, this implies the higher-
order derivatives of „upλq at λ “ 0 due to the chain rule.
Denoting some pth-order derivative versus λ given
λ “ 0 with superscript ppq, the higher-order residual
equations are then defined for p “ 0, 1, . . . , n:

rppq ” λppq p ´ K ‚ uppq ´ 1
2 S ‚

2
vppq ´ 1

6 Q ‚
3

wppq ” 0 ,

(III.14)
where λppq equals 1 for p “ 1, and zero otherwise. Less
trivially, vppq and wppq can be obtained using Leibniz’s
generalized product rule42:

42The resulting expression after repeatedly differentiating a bi-
nary product, hence repeatedly applying the product-rule, may be
illustrated by Pascal’s triangle, or alternatively be argued from a
combinatorics’ perspective.

vppq “ dp

dap pu b uq
ˇ̌
ˇ
a“0

“
pÿ

q“0

ˆ
p
q

˙
upqq b upp´qq ,

wppq “ dp

dap pv b uq
ˇ̌
ˇ
a“0

“
pÿ

q“0

ˆ
p
q

˙
vpqq b upp´qq .

(III.15)

with up0q “ 0 denoting the undeformed state by defi-
nition. As a result, vppq and wppq respectively become
nonzero for p ě 2 and p ě 3, but most importantly, ex-
clusively depend on all upqq for q ď p ´ 1 and q ď p ´ 2.
Hence, uppq can be isolated, yielding the desired deriva-
tives in the recursive form:

K ‚ uppq “ λppq p ´
ˆ

1
2 S ‚

2
vppq ` 1

6 Q ‚
3

wppq
˙

loooooooooooooooomoooooooooooooooon
Rppq ´up1q, up2q, . . . , upp´1q¯

,

(III.16)

where Rppq denotes some multilinear form, just to
indicate the linear dependence of uppq on all upqq for
q “ 1, . . . , p ´ 1. More explicitly:

up0q “ 0 ,

up1q “ K´1 ‚ p , u Linear FEM

up2q “ K´1 ‚
˜

´S ‚
2

up1q
2b
¸

,

up3q “ K´1 ‚
˜

´3 ¨ S ‚
2

´
up1q b up2q¯´ Q ‚

3
up1q

3b
¸

,

...

upnq “ K´1 ‚
ˆ

´ 1
2 S ‚

2
vpnq ´ 1

6 Q ‚
3

wpnq
˙

. (III.17)

Notably, the entire sequence is solved through the
same, symmetric stiffness matrix K. This facilitates
efficiency through Cholesky factorization, provided
the invested factorization cost does not outweigh the
reduced solution cost.

Before moving on to the second step, concerns re-
garding the large structural tensor contractions are
addressed, by performing those contractions on the
explicit assembly of decomposed elemental tensors.
Specifically, consider the bracketed term of Equa-
tion III.16, which can be rewritten as an assembly of el-
ement contributions. Taking the pth-order derivative of
the force assembly equation (III.6) with u “ „upλq, eval-
uated at λ “ 0, and substituting it into Equation III.16
then yields:
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ˆ
1
2 S ‚

2
vppq ` 1

6 Q ‚
3

wppq
˙

“ (III.18)

Mÿ

e“1

AJ
e ‚

ˆ
1
2 Se ‚

3
vppq

e ` 1
6 Qe ‚

3
wppq

e

˙

where subscript e denotes the element e’s equivalent
with respect to any previously defined vectors or ten-
sors in this subsection, now concerning 8 dimensions
along each tensor’s ways. Next, applying the decompo-
sition proposed in Equation III.12, in addition to Leib-
niz’s generalized product rule stated in Equation III.15,
then yields:

Se ‚
2

vppq
e “

22ÿ

r“1

sre

ˆ
q

2b
re ‚

2
vppq

e

˙

loooooomoooooon
pqqvqppq

re

(III.19)

“
22ÿ

r“1

sre

pÿ

q“1

ˆ
p
q

˙ ´
qre ‚ upqq

e

¯

loooooomoooooon
pquqpqq

re

´
qre ‚ upp´qq

e

¯

looooooomooooooon
pquqpp´qq

re

Qe ‚
3

wppq
e “

22ÿ

r“1

qre

ˆ
q

3b
re ‚

3
wppq

e

˙
(III.20)

“
22ÿ

r“1

qre

pÿ

q“1

ˆ
p
q

˙ ˆ
q

2b
re ‚

2
vpqq

e

˙

loooooomoooooon
pqqvqpqq

re

´
qre ‚ upp´qq

e

¯

looooooomooooooon
pquqpp´qq

re

where vectors sre P R8 and qre P R8 respectively de-
note (one of the) factors of the rth term of the eth

element’s decomposed structural tensors. But most
importantly, note the repeated use of scalars pquqppq

re
and pqqvqppq

re for r “ 1, . . . , 22, then e “ 1, . . . , M and
finally p “ 1, . . . , n. The contractions they originate
from dominate the overall calculation, but they can be
stored in some 22 by M by n array, allowing them to
be cheaply recycled many times over.

Given the efficiently obtained higher-order deriva-
tives of the equilibrium curve, the second step involves
constructing a smooth prediction or extrapolation „upλq
that matches them. For several reasons, a MacLaurin
extrapolation is considered. In fact, the whole family of
pth order expansions is considered for p “ 1, . . . , n, as
their computational cost is negligible compared to the
expensively obtained derivatives uppq for p “ 1, . . . , n:

„uppλq ”
pÿ

q“1

upqqλq

q!
. (III.21)

Its simplicity and transparency allow a more thor-
ough understanding of the proposed method. This
may create a stepping stone towards future extensions

using a parametric formulation pu, λq “ `„upaq,
„
λpaq˘

or algebraic varieties rather than plain power series.
Moreover, it facilitates the third step where its error is
estimated, which may not have been so easy using al-
ternative formulations. Formulating the approximate
structural analysis through an explicit power series al-
lows for some useful assumptions and simplifications
on the convergence rate and conditions that affect it.

Moving on to the final two steps, fewer ramifications
of error are suffered when its estimation is properly
exploited. Hence, the error of the MacLaurin expan-
sions is estimated with respect to the true equilibrium
curve they intend to predict or approximate. Merely
a scalar-valued indication of how accurate one expan-
sion is compared to the others, given some λ, facilitates
a superior aggregate of these predictions, explained
duly.

As argued, the third step involves a scalar-valued
family of error estimators corresponding to the fam-
ily of MacLaurin expansions versus λ. The particular
choice of defining true error may impact its estimata-
bility. Hence, exploiting Taylor’s theorem and some
properties of geometric series as performed in Ap-
pendix B.2, the true, relative, normed displacement
error is considered for p “ 1, . . . , n, as:

ϵppλq ”
∣∣„uppλq ´ upλq∣∣

|upλq| , (III.22)

whose corresponding estimators have been derived in
Appendix B.2 for p “ 1, . . . , n, as:

„
ϵppλq ”

ˆ
λ

λn

˙p
, with λn ”

˜
n!

|up1q|
|upnq|

¸ 1
n´1

,

(III.23)
which is incidentally similar to the error estimator used
by Cochelin (1994), Cochelin, Damil, & Potier-Ferry
(1994), and other related works adopting a polynomial
asymptotic numerical method of structural analysis.
Here, λn may be interpreted as an estimator for the
radius of convergence λ. Further properties of this es-
timator will be discussed and exploited in the fourth
and final step, yielding a superior aggregate predic-
tion.

As a side note, while the facilitated control of a
displacement-based error estimator may be tight over
the true displacement error, it may be loose on the
residual force. Depending on the desired structural
performance, this might be problematic. To clarify,
when the displacement error of fixed magnitude aligns
with stiffer tangent eigendeformations, greater resid-
ual forces may be observed. However, residual evalua-
tions and especially their design sensitivities are much
more expensive, hence future work on its estimation
is advised when cheap but tight control over them is
desired.
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While not one MacLaurin prediction of the non-
linear equilibrium relation is superior everywhere, all
of them do provide some value everywhere, and may
even be superior at least somewhere. To clarify, in-
specting the estimator (III.23) suggests an exponen-
tially decreasing and increasing error versus p, respec-
tively, for λ ă λ and λ ą λ. Hence, higher-order
predictions are respectively superior and inferior to
lower-order predictions. Even worse, the perturbed
analysis suffers an exponentially increasing prediction
error versus p for some fixed λ ą λ, and pth-order
increasing error versus λ everywhere. When trusting
only the highest order prediction, this divergence may
severely destabilize the topology optimization when
the design dependent λ even slightly drops below
some λ considered within the structural performance
evaluation.

As the fourth and final step, all predictions are aggre-
gated into a superior prediction through weighted av-
eraging. This Bayesian average (Hoeting et al., 1999) ex-
tracts the most value out of all predictions everywhere,
and hence additional value out of the expensively ob-
tained derivatives in the first step. In somewhat of a
nuanced or smooth selection process, the relative influ-
ence of all individual predictions on the aggregate in-
creases respectively with their estimated local accuracy,
as derived in Appendix C. Admittedly based on coarse
observations and ignorance to some extent, it was as-
sumed that the respective vector-valued displacement
errors are uncorrelated and unbiased. In such a case,
errors have the tendency to partially cancel out when
averaged, especially when these errors are equal in
magnitude. Otherwise, the largest error will simply
dominate, wasting the accuracy of the other predic-
tions. As shown in Appendix C, weighting all predic-
tions corresponding to their inverse squared normed
local errors, expectedly equalizes their relative error
contribution, optimizing cancelation and minimizing
the aggregate’s error everywhere. In other words, this
aggregate prediction generally ensures either maximal
convergence or minimal divergence, versus both λ and
n everywhere.

Concretely, the Bayesian-enhanced equilibrium pre-
dictor

„„unpλq is defined as:

„„unpλq ”
nÿ

p“1

ωppλq„uppλq ”

nÿ

p“1

ˆ
1

„
ϵppλq

˙2 „uppλq
nÿ

p“1

ˆ
1

„
ϵppλq

˙2 ,

(III.24)
with the MacLaurin predictor „uppλq defined as in
Equation III.21 and its error estimator „

ϵppλq as in
Equation III.23. Furthermore, weights ωppλq for
p “ 1, . . . , n have been derived such that their sum
evaluates to 1, and the Bayesian-enhanced predictor’s

error estimator
„„
ϵnpλq, also referred to as Bayesian error,

is minimized for all λ P R:

„„
ϵnpλq ”

gffffe

1
nÿ

p“1

ˆ
1

„
ϵppλq

˙2 , (III.25)

which may notably be recognized as the smooth mini-
mum of „

ϵppλq for all p “ 1, . . . , n.
Regarding numerical implementation, a stable

and efficient reformulation of this rational Bayesian-

enhanced predictor
„„unpλq and its error estimator

„„
ϵnpλq

could be made as follows:

„„unpλq “ r„u1pλq, . . . , „unpλqslooooooooooomooooooooooon
„
Unpλq

»
—–

ω1pλq
...

ωnpλq

fi
ffifl

loooomoooon
ωnpλq

, (III.26)

where the substitution β ” λ{λ results in the following
compact reformulation for the MacLaurin predictors
„
Unpλq P RNˆn, weights ωnpλq P Rn, and Bayesian

error
„„
ϵnpλq ě 0 for all λ P R:

„
Unpλq ”

«
λup1q,

λ
2

2!
up2q, . . . ,

λ
n

n!
upnq

ff
»
———–

β β ¨ ¨ ¨ β
β2 ¨ ¨ ¨ β2

. . .
...

βn

fi
ffiffiffifl ,

«„„
ϵnpλq2

ωnpλq

ff
“

»
———————–

β2n

β2n´2

β2n´4

...
1

fi
ffiffiffiffiffiffiffifl

1 ´ β2

1 ´ β2n , with β ” λ

λ
.

(III.27)

In some sense, one could define the Bayesian error

estimator
„„
ϵnpλq2 ” w0pλq, or the MacLaurin error

estimator „
ϵppλq2 ” β´2p. The combined expression

for ωnpλq and
„„
ϵnpλq is obtained using the identity

p1 ´ aqřn
p“1 ap “ `

1 ´ ap`1˘ for geometric series, for
any a P C. Additionally, β is factored in and out, in
such a way that the resulting expression has no artifi-
cial zero-pole cancelation at λ “ 0 ô β “ 0. Otherwise,
the expression cannot be evaluated at this point, or
suffers inflated floating point errors close to this point.
All remaining poles are the complex nth-order roots
of unity, meaning the prediction suffers no spurious
poles for real λ P R. An elaborate derivation can be
found in Appendix C.

In conclusion, the Bayesian-enhanced equilibrium
predictor

„„unpλq is a rational but stable vector function
of type p2n ´ 1q over p2n ´ 2q, parameterized purely by
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the set of exact higher-order derivatives up1q, . . . , upnq
obtained in the first step. Due to the shared denomina-
tor among all components of

„„unpλq and its limit behav-
ior as λ Ñ 0, it classifies as a vectorial Padé (El Kihal
et al., 2022), albeit without its typical downside of
spurious poles (Cochelin, 1994; Cochelin, Damil, &
Potier-Ferry, 1994; De Boer & Van Keulen, 1997). More
importantly, for |λ| larger than the radius of conver-
gence λ,

„„unpλq does not diverge beyond „u1pλq. As a
result, a higher-order n for

„„unpλq maximally improves
its accuracy within the radius of convergence λ, with-
out worsening the divergence elsewhere. Especially
at λ “ λ, where „

ϵppλq is equal for all p “ 1, . . . , n,
optimal cancelation yields an aggregate error reduced
by a factor

?
n. Overall, while divergence versus λ

cannot be prevented, its rate is bounded below that
of the linear predictor. What is more, divergence ver-
sus n is successfully eliminated. Given a fixed set of
derivatives, compared to a plain MacLaurin predictor,
the proposed Bayesian-enhanced predictor should im-
prove the odds of the topology optimization to recover
from inaccurate responses and sensitivities, and per-
haps decrease the odds of derailing in the first place.

III.5 Topology Optimization Formulation

At last, the structural design optimization cycle is
closed by a means to evaluate the performance and
performance sensitivity with respect to the structure’s
current design, including some essential regulariza-
tion modifications. Technically, this evaluation can be
based directly on the density-based design, its model,
and analysis. However, convergence of the analysis
or overall design may be either poor, or prone toward
unphysical or unmanufacturable results. All of these
issues may be unwanted artifacts of the chosen mod-
els, formulations, and method-specific parameters, and
sometimes sensitively or unpredictably so. Regulariza-
tion aims to remedy this, yielding physical, repeatable
and representative results, which is not only practi-
cally but academically desirable. Given the proposed
methodology, integrating a novel means of structural
analysis into an established density-based topology
optimization routine, a minimal set of regularization
steps is justified, and the resulting optimization prob-
lem is concretely formulated in negative null form.

Regarding traditional density-based topology opti-
mization, the established regularization techniques of
density filtering, and material scaling and penalization
are adopted, as summarized within Figure III.5. Ulti-
mately they aim to remedy a chain of issues caused by
allowing a continuous range of densities between solid
and void, representing the presence or absence of ma-
terial. While this so-called design relaxation (Sigmund
& Petersson, 1998) is certainly a powerful approach
to facilitate gradient-based optimization, it results in

an ill-posed formulation. Even worse, while design
optimality may generally involve intermediate densi-
ties, their physical interpretation, no less modeling or
manufacturing, poses ongoing challenges of its own
(Bendsøe & Kikuchi, 1988; de Buhan et al., 2017).

An effective, practical solution to avoid intermediate
densities is Solid-Isotropic Material Penalization (SIMP,
Bendsøe (1989); Zhou & Rozvany (1991); Sigmund
(2001)), penalizing these intermediate densities yield-
ing manufacture black-and-white designs. In addition,
a minimum density prevents the structural equations
from becoming singular, i.e. prevents zero stiffness,
infinite compliance, and a diverging analysis hence op-
timization. Furthermore, it prevents sensitivities corre-
sponding to void elements from vanishing, meaning
the direction in which this density may be increased
again remains defined. Yet, the optimizer is able to
circumvent material penalization through black-and-
white checkerboard patterns (Sigmund & Petersson,
1998). While this remarkable, unintended exploitation
of homogenization effectively results in intermediate
densities on a larger scale, the overall physical model
and its manufacturing remain problematic. Consider-
ing geometric non-linearity, single-noded hinges may
also be severely exploited for their unphysically in-
finite rotational compliance (Buhl et al., 2000a). To
remedy both checkerboarding and these hinges, local
weighted averaging of neighboring element densities,
called density filtering (Sigmund, 2001; Andreassen et
al., 2011), is employed.

Regarding the proposed perturbation analysis, and
to the benefit of Newton-Raphson analysis, a sim-
ple density-based deformation scaling is formulated
and implemented here. It diminishes the extent of
non-linearity and resulting issues of the structural
model, especially addressing numerical issues caused
by low-density elements, while minimally affecting the
physically relevant portion of the model. Similar to
F. Wang et al.’s (2014) approach, each element’s struc-
tural model is exponentially more linearized the closer
it gets to void or zero density, while solid elements
remain practically unaffected.

The remainder of this subsection shall mostly elab-
orate on the mathematical details of all mentioned
regularization steps, in preparation for the assembled
structural optimization formulation. Starting from a
representative element’s energy model in decomposed
tensorial form, here referred to as the natural form, the
mapped and regularized contributions are ultimately
assembled into the gradient-based optimization for-
mulation. An overview of the adopted regularization
steps is visualized in Figure III.5, and the duly elab-
orated mathematical relations of each regularized el-
ement’s energy model with respect to their common
natural form are summarized in Equation III.28, III.29
and III.30.

Recall the representative element’s energy model
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Figure III.5: Regularization function-chain, filtering the design vector x into the density vector ρ, and mapping it to the
material scaling vector ς and EMDS vector ζ, as defined in III.30 and III.31. Recall that SIMP refers so Solid-
Isotropic Material Penalization (Bendsøe, 1989; Zhou & Rozvany, 1991; Sigmund, 2001).

in decomposed, tensorial form, introduced in Subsec-
tion III.3. Ultimately, all regularized elements and
their decompositions may be related through linear
coordinate transformations, given the same material
model D but not necessarily the same initial geome-
try. Let the representative natural form pEDppuq in terms
of natural coordinates and displacements pu P R8 be
denoted as:

pEDppuq ” 1
2
pK ‚

2
pu

2b ` 1
6
pS ‚

3
pu

3b ` 1
24

pQ ‚
4
pu

4b , (III.28)

recalling that pSD “
22ÿ

r“1

psr b pq
2b
r ,

pQD “
22ÿ

r“1

pq
4b
r .

Exploiting the shared coordinate map from natural
to each element’s local coordinates due to the regular
voxel grid, the geometrically mapped null form E0pueq
in terms of local coordinates and displacements ue P
R8 is obtained as:

E0pueq ” det
`

J
˘ ¨ pED

`
J´1 ‚ ue

˘
, (III.29)

with coordinate mapping : J ” Bue

Bpu “ Le

2
I ,

where Jacobian J P R8ˆ8 is shared by all square ele-
ments of equal length Le. This relation is a result of the
domain-integration and -differentiation that defines
the natural form, as shown in Appendix A.1. Ulti-
mately, each element’s regularized form Eepue; xq in
terms of the same local coordinates and displacements
ue P R8, is linearly related to the same null form, as
summarized in Equation III.30 and visualized earlier
in Figure III.5:

Eepue; xq ” ςe

ζ2
e

¨ E0pζe ¨ ueq , (III.30)

with density filtering : ρe ” Bρe

Bx
‚ x ,

EMS / SIMP : ςe ” ς ` p1 ´ ςq ¨ ρθ
e ,

EMDS : ζe ” 1 ´ exp
ˆ

´ ςe

ς

˙
,

Briefly, element e’s volumetric density scalar ρe, mate-
rial scalar ςe, and mixed deformation, or EMDS scalar
ζe are respectively obtained after density filtering, ma-
terial penalization, and the custom Element Material
and Deformation (EMDS) scaling. Furthermore, ς may
be recognized as each element’s void density, or more
appropriately named, minimum stiffness scalar or void
stiffness. Then, θ denotes the material penalization
exponent, typically between 1 and 3, causing an arti-
ficial reduction of specific stiffness ςe{ρe. Finally, ζ is
defined as the EMDS threshold, below which values of
ζe noticeably start to linearize the element’s internal
force model, being the displacement-gradient of its
energy model.

In more detail, the density filtering prevents checker-
boarding, single-noded hinges or otherwise unwanted
or unphysical element-scale features through local
weighted density averaging. This effective linear map
from design vector x P RM to density vector ρ P RM

is implemented as the convolution filter proposed by
Sigmund (2001):

ρe “

ÿ

∆ee1 ď∆

´
∆ ´ ∆ee1

¯
xe

ÿ

∆ee1 ď∆

∆ ´ ∆ee1
ðñ ρ “ Hx , (III.31)

with filter radius ∆ in m, euclidean distance ∆ee1 be-
tween elements e and e1 in m, and H ” Bρ

Bx compactly
denoting the linear map from design-vector x to volu-
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metric density-vector ρ.
In order to obtain the fully assembled, regularized,

decomposed tensorial form of the structure’s energy
model, consider the following geometrically mapped,
but not yet regularized elemental, tensorial null form:

E0pueq “ 1
2

K0 ‚
2

u
2b
e ` 1

6
S0 ‚

3
u

3b
e ` 1

24
Q0 ‚

4
u

4b
e , (III.32)

where the elemental null tensors K0, S0 and S0 can be
expressed in terms of their natural counterparts pK, pS
and pS:

K0 ” det
`

J
˘ ¨ J´J ‚ pKD ‚ J´1 ,

S0 “
22ÿ

r“1

sr0 b q
2b
r0 , sr0 ” det

`
J
˘ 1

2 ¨ J´1 ‚psr ,

Q0 “
22ÿ

r“1

q
4b
r0 , qr0 ” det

`
J
˘ 1

4 ¨ J´1 ‚ pqr . (III.33)

To verify, one can write out this decomposed null
form obtaining its relation to the natural form in Equa-
tion III.28. It must be noted that Jacobian J techni-
cally depends on the material coordinates, over which
must be integrated to obtain the currently discussed
discretized element energy. However, when the depen-
dence of J and detpJq over the material coordinates is
constant, they can factored out of the element domain
integral. Within the field of finite elements, regular
coordinate maps are defined precisely to result in a
constant Jacobian, meaning any combination of transla-
tion, rotation, constant shear, and axial scaling. More-
over, the adopted density-based structural framework
involves a grid of perfectly square elements, resulting
in an identical, constant Jacobian for all elements with
respect to their natural form.

The local regularized form, as ultimately used when
modeling, analyzing and evaluating the structure, is
defined as:

Eepue; xq “ 1
2

Ke ‚
2

u
2b
e ` 1

6
Se ‚

3
u

3b
e ` 1

24
Qe ‚

4
u

4b
e ,

(III.34)

where the regularized elemental tensors Ke, Se and Se
can be expressed in terms of the null tensors K0, S0
and S0:

Ke “ ςeK0, Se “ ςe

ζe
S0, Qe “ ςe

ζ2
e

Q0 , (III.35)

which are notably dependent on x through the regular-
ization scalars ρe, ςe and ζe. While this relation from
the null form to each element’s regularized form can
be used to explicitly obtain all corresponding tensor
decompositions, this would be inefficient and unnec-
essary.

The structural topology optimization is cast into

negative null form, ultimately feeding all responses
and their design sensitivities into the gradient-based
optimization method of Moving Asymptotes (MMA,
Svanberg (1987)). Here, M variables within the de-
sign vector x are sought in r0, 1s, such that some
user-specified performance metric is minimized and
(in)equality constraints are satisfied, all of which de-
pend either directly on x or indirectly through struc-
tural equations. More concretely, the optimization
problem is formulated in negative null form as:

minimize
x

gpx, uxq , (III.36a)

subject to
ď
gpx, uxq ď 0 , (III.36b)
“
gpx, uxq “ 0 ,

Rx “ 0 ,

and x P r0, 1sM ,

where ux “
„„u
`
λ; Ux

˘ P RN , (III.36c)

Ux ”
”
up1q

x , . . . , upnq
x

ı
P RNˆn

Rx ”
”
rp1q

x , . . . , rpnq
x

ı
P RNˆn ,

Mx ”
”
µp1q

x , . . . , µpnq
x

ı
P RNˆn ,

where subscript x denotes the quantity’s (in)direct de-
pendence on x, and the newly introduced adjoint solu-
tions in Mx are clarified next. Note that the condition
Rx “ 0 is readily satisfied within the higher-order
structural equilibrium analysis at the undeformed
state:

rppq
x ” λppq p ´ Kx ‚ uppq

x ´ 1
2 Sx ‚

2
vppq

x ´ 1
6 Qx ‚

3
wppq

x ” 0

(III.37)
However, the explicit inclusion of a set of satisfied
constraints, and a corresponding set of higher-order
adjoint solutions Mx may ultimately be exploited to
cancel out an otherwise expensive sensitivity calcula-
tion as elaborated next.

The so-called Adjoint Formulation (Bendsøe &
Kikuchi, 1988) casts some original response gpx, uxq
into its Lagrange form Lx, with multipliers in Mx and
inherently satisfied constraints in Rx:

Lx ” gpx, uxq `
nÿ

p“1

µ
ppq
x ‚ rppq

x

looooooomooooooon
Mx ‚

2
Rx “ 0

,

$
’&
’%

gpx, uxq “ Lx ,

dgpx, uxq
dx

“ dLx

dx

(III.38)
This effectively adds zero to the original response,
regardless of how Mx is chosen in RNˆM, which shall
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precisely be exploited in calculating its sensitivity:

dLx

dx
“ Bgpx, uxq

Bx
` Bgpx, uxq

Bux
‚ B

„„u
`
λ; Ux

˘

BUx
‚
2

dUx

dx

` Mx ‚
2

BRx

Bx
` Mx ‚

2

BRx

BUx
‚
2

dUx

dx
, (III.39)

where the second line technically equates to zero, con-
taining all sensitivity contributions of the adjoint term
Mx ‚

2
Rx “ 0. The utility of the adjoint term now be-

comes apparent by choosing or defining the adjoint
solutions in Mx such that the second term of both
lines annihilate. This bypasses the need to calculate
and contract with the very expensive design-sensitivity
of displacement derivatives in Ux:

ˆ
@dUx

dx
P RNˆnˆM

˙
(III.40)

˜
Bgpx, uxq

Bux
‚ B

„„u
`
λ; Ux

˘

BUx
` Mx ‚

2

BRx

BUx

¸
‚
2

dUx

dx
“ 0 ,

which means that for p “ n, n ´ 1, . . . , 1:

Bgpx, uxq
Bux

‚ B
„„u
`
λ; Ux

˘

Buppq
x

loooooooooooooomoooooooooooooon

Γ
ppq
x

J

`
nÿ

q“1

µ
pqq
x ‚ Brpqq

x

Buppq
x

loomoon
´Kpq, pq

x

“ 0 ,

(III.41)

where Γ
ppq
x defines the adjoint force, and Kpq, pq

x the ad-
joint stiffness. The resulting recursive adjoint equation
yielding the adjoint solution µppq is remarkably sim-
ilar to the recursive higher-order structural equation
yielding displacement derivatives upqq:

Kx ‚ µ
ppq
x “ Γ

ppq
x ´

nÿ

q“p`1

Kpq, pq
x ‚ µ

pqq
x (III.42)

where it has readily been used that Kpq, pq
x , defined as

´Brpqq
x {Buppq

x , equals Kx when p “ q, and zero when
p ą q. This can be seen from Equation III.37, recalling

that vppq
x and wppq

x only depend on upqq
x , respectively

for q ď p ´ 1 and q ď p ´ 2. However, obtaining

Kpq, pq
x for p ă q is less obvious, and hence derived in

Appendix D.6, yielding:

Kpq, pq
x “

ˆ
q
p

˙ˆ
Sx ‚ upq´pq ` 1

2
Qx ‚

2
vpq´pq

˙
.

(III.43)

Note that this adjoint stiffness matrix Kpq, pq
x for p ă q

does not need to be assembled before contracting with

the adjoint solution µ
pqq
x . Moreover, the bracketed

elemental decompositions of Sx and Qx should already
have been contracted with uprq

x and vprq
x for all r “

1, . . . , n during the higher-order structural analysis,

which can hence be recycled. The adjoint force Γ
ppq
x

can then also be obtained explicitly, as derived for pure
MacLaurin-based perturbed analysis in Appendix D.2,
and for Bayesian-enhanced analysis in Appendix D.4.
Finally, the higher-order residual’s design sensitivity

Brppq
x {Bx can then be assembled from its regularized

elemental contributions in decomposed tensorial form,
as:

Brppq
x

Bx
“

Mÿ

e“1

AJ
e ‚ drppq

e
dρe

‚ Bρe

Bx
, (III.44)

with
drppq

e
dρe

“ ´pςeq1K0 ‚ uppq
e

´
ˆ

ςe

2ζe

˙1
S0 ‚

2
vppq

e ´
ˆ

ςe

6ζ2
e

˙1
Q0 ‚

3
wppq

e ,

where p˝q1 denotes the derivative operation dp˝q
dρe

.
To summarize, while some generic user-defined re-

sponses gpx, uxq of the current structural design x
can straight-forwardly be obtained as it is defined, its
design sensitivity can be efficiently obtained through
the adjoint formulation:

dgpx, uxq
dx

“ Bgpx, uxq
Bx

`
nÿ

p“1

µ
ppq
x ‚ Brppq

x

Bx
. (III.45)

Here, the adjoint solution µ
ppq
x is recursively obtained

through Equation III.42 for p “ n, n ´ 1, . . . , 1. The
adjoint stiffness is obtained through Equation D.6.1.

Then, the contraction Kpq, pq
x ‚ µ

pqq
x could be efficiently

obtained through the assembly of decomposed ele-
mental tensor forms, similarly to Equation III.18, using

III.19 and III.20. The adjoint force Γ
ppq
x is then obtained

using Appendix D.2 or D.4. Finally, the higher-order

residual sensitivity Brpqq
x {Bx, is then obtained through

Equation III.44. For a final overview of the structural
optimization routine, see Figure III.2.

III.6 Validation Strategy

Recalling the main goal of this work - extending struc-
tural topology optimization with efficient, sufficiently
accurate, and robust geometrically non-linear analy-
sis - a validation strategy is argued and outlined here.
The proposed Bayesian-enhanced perturbed analysis
(B) is validated and compared with Newton-Raphson
(NR) and linear analysis (L), particularly in terms of
the old challenges it overcomes and the new ones it
presents within the context of density-based non-linear
structural analysis and its structural optimization.
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The general approach of the validation strategy is
to consider study cases of incremental complexity in
terms of scale, non-linearity, and likeness to a prac-
tical density-based setting, working from structural
analysis of fixed designs in the first part (Section IV),
towards large-scale compliance minimization in the
second part (Section V), and finally practical topol-
ogy optimization exploiting rather than suppressing
compliance in the third part (Section VI). This is done
to isolate and study aspects, properties, or effects of
each method, and any parameters that govern the case
study’s non-linearity, regularization, element resolu-
tion, and the analysis method itself otherwise. More
specifically, a set of case parameters is systematically
swept over in each case study, while a set of perfor-
mance quantifiers is measured, pertaining to the goals
as set for the proposed methodology. Recalling that
Newton-Raphson (NR), Perturbed (P), and the novel
Bayesian-enhanced perturbed (B) analysis are techni-
cally identical to Linear (L) analysis up to their first
iteration (n “ 1, #S “ 1), the remainder of this work
shall investigate their different limitations and benefits
from their second iteration and onwards.

The first part of the validation concerns pure non-
linear, load-controlled structural analysis of a loaded
C-shaped compliant structure (C-Beam), comparing
the standard Newton-Raphson and linear analysis
to the proposed perturbed MacLaurin and Bayesian-
enhanced analysis. For several reasons, a C-Beam
of approximately fixed geometrical shape, material
model, and boundary conditions is considered, up to a
scalar variation of the applied load and a duly argued
set of other case parameters. Not only can the re-
sults obtained here be compared to the literature from
which it is inspired (Yoon & Kim, 2005; van Dijk et
al., 2014), but more importantly, many of the features
and obstacles encountered in density-based topology
optimization can be emulated.

Particularly, the effects of void and filtered density
elements and thin structural features under compres-
sion can be investigated. This is known to cause prob-
lems for Newton-Raphson analysis (Buhl et al., 2000a;
Pedersen et al., 2001; Yoon & Kim, 2005; van Dijk et
al., 2014), leading to excessively deformed or inverted
void elements, impeded or slowed convergence, or
even intermediate divergence of solid regions, risking
unphysical or unexpected solutions. Overall, accuracy,
efficiency, and robustness are affected by it. Further-
more, incrementally higher element resolutions can
be, as typical within the density-based setting. This
tends to emphasize the mentioned issues related to low
densities, and disproportionately increases the cost of
structural assembly and solves on its own. Lastly,
material- and displacement scaling and density fil-
tering are investigated, as they are regarded here as
the minimal but essential set of regularization steps
regarding perturbed and Newton-Raphson analysis

2λ N

3λ N

10 m

10
m

1 m

ξ2

ξ1

utip

Figure III.6: Geometry, material and boundary conditions
of the C-shaped compliant beam structure (C-
Beam), as studied in the next section. An
isotropic, linear elastic material is assumed,
with Young’s Modulus E “ 1000 GPa and Pois-
son’s ratio ν “ 0.3 under plane-stress condition,
in accordance with Yoon & Kim (2005), van Dijk
et al. (2014).

within density-based topology optimization.
Concretely, consider the following problem defini-

tion, case parameters, and performance quantifiers
regarding the loaded C-Beam study case. The geome-
try, material, and boundary conditions of the loaded
C-Beam are defined in Figure III.6, with two applied
nodal forces scaled by the load variable λ in accor-
dance with Yoon & Kim (2005) and van Dijk et al.
(2014). Next, the case parameters that are system-
atically swept over are listed in Table III.1. Finally,
the performance of each analysis method given all
other case parameters is mostly quantified through its
normed, relative displacement error ϵ and convergence
rate versus n and λ, where n in this case generalizes
to the amount of solves. Here, the analysis result u˚ of
a specific method given a certain λ, n, or termination
criterion, is compared to the Newton-Raphson result
u that has converged up to a normed, relative residual
of 10´10, occasionally without voids or regularizations
to investigate their overall effects. The latter tolerance
was chosen equal to the smallest one that could be
obtained for the tensor decompositions.

ϵ ” |u˚ ´ u|
|u| , (III.46)

Accurate estimation of this error has also been argued
in Subsection I.3, to be an important tool in balancing
computational effort and accuracy, and stabilizing the
topology optimization by allowing it to avoid inaccu-
rate analyses and sensitivities. Hence, the tightness or
error of this error estimate is also taken as a quantifier,
in addition to the radius of convergence estimate that
governs it.

Lastly, computational performance is another impor-
tant quantifier. Regrettably, rigorously formulating a
means to measure it was deemed too challenging, and
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Case parameter Specification
Load variable λ Typically, λ P r0, 1`q

Analysis order n n ě 1 : Perturbed (nth)
(number of n ď ´1 : Bayesian (|n|th)

structural |n| “ 1 : Linear
solves #S) n ô #S : Newton-Raphson
Refinement Mesh refinement of the voxel
(C-Beam) grid on which the C-Beam

design is defined, considering
integer multiples of 10 by 10.

Void density ς ς “ 0 : No voids
ς ą 0 : Voids
ς « 10´9 : Typical

EMDS threshold ς ς ” 0 : No EMDS
ς ą 0 : EMDS
ς « 10´2 : Typical

Density filter ∆ ď Le : No filtering
radius ∆ ∆ ą Le : Filtering

Table III.1: List of C-Beam analysis case parameters and
their specification for the structural analysis and
topology optimization validation. Typical val-
ues are argued from literature or the results dis-
cussed in Section VII. No material penalization
is considered for the C-Beam cases, meaning
θ “ 1.

left for future work. Instead, the number of iterations
for each method is taken as a quantifier, equal to the
order n, or amount of solves #S, at least providing a
solid ground for speculation based on the nature and
prior investment of each method’s solves. As another
crude quantifier of computational effort, shear runtime
of the analysis is considered. It must be noted that this
serves as a very rough indicator of the trends to be
expected, as the proposed method is still in its concep-
tual stage, and the straightforward implementations
of all compared analysis methods within the optimiza-
tion framework are far from optimized in terms of
computational efficiency.

A more detailed account of the investigated C-Beam
study cases is presented within Section V. For each
case, its subgoal with respect to the other case stud-
ies and the main goal of this work is briefly empha-
sized. Then, the fixed and swept case parameters, and
relevant quantifiers, are listed and argued, followed
directly by the results and notable observations.

The second and third parts of the validation con-
cern actual density-based structural topology optimiza-
tion, particularly a beam of minimized compliance, a
force inverter and a micro gripper. Still using load-
controlled structural analysis, the standard Newton-
Raphson (NR) and linear analysis are compared to
the proposed perturbed MacLaurin (P) and Bayesian-
enhanced (B) analysis. In these parts, however, the
order and selection of performed study cases are not
ordered chronologically or along incremental complex-

Case parameter Specification
Error tolerance ϵ ϵ “ 8 : Inactive

(enforcing the ϵ ă 8 : Active
error as estimated Typically, ϵ P “

10´3, 10´2‰

for NR, P and P)
Material θ “ 1 : No penalization

penalization θ θ ą 1 : Penalization
Typically, θ P r1, 3s

Refinement Mesh refinement of the voxel
grid on which the design is
optimized, typically close
to 100 by 100.

Iterations Maximum or enforced
amount of design
optimization iterations,
typically close to 100.

Table III.2: List of Topology Optimization case parameters
and their specification for the structural opti-
mization validation, in addition to those spec-
ified in Table III.1. Typical values are argued
from literature or the results discussed in Sec-
tion VII.

ity, as done for the C-Beam analysis. Instead, they aim
to summarize the most important findings in a concise
but intuitive manner. Their particular goals and prob-
lem formulations are elaborated in their respective
sections, Section V and Section VI.

Some additional case parameters are considered dur-
ing the second and third part of topology optimization
validation, as listed in Table III.1, with emphasis on the
load variable λ, analysis order n, and error tolerance
ϵ. Where λ directly governs structural non-linearity, n
and ϵ accommodate its analysis. The particular choice
for B over P analysis, and the settings of other case pa-
rameters are duly elaborated in the respective sections
containing all topology optimization case studies and
their results.

IV C-Beam Analysis

As argued in Subsection III.6, this part I of the results
aims to validate and compare the standard Newton-
Raphson (NR) and Linear (L) analysis to the proposed
Perturbed (P) MacLaurin analysis, and its Bayesian-
enhanced (B) equivalent, through load-controlled struc-
tural analysis of a C-shaped compliant structure (C-
Beam) (Yoon & Kim, 2005; van Dijk et al., 2014) through
four case studies. The structural problem definition is
captured in Figure III.6, stating the geometry, material,
and boundary conditions. First, the effects and chal-
lenges of non-linearity are explored in Subsection IV.1,
by increasing the load and analysis order, tracking
deformations, error, and convergence characteristics.
Second, a density-based setting is more closely emu-
lated in Subsection IV.2, incrementally applying reg-
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ularizations and mesh refinements. Third, an exhaus-
tive quantification is performed, sweeping over a wide
and dense range of case parameters, indicating some
generally ideal values of regularization parameters,
or relations between them. Lastly, the fourth case
C-Beam case study entails a crude comparison of com-
putational effort in Subsection IV.4, naively based on
computational times. Throughout the present section,
notable results and observations are briefly discussed
in preparation for the general discussion in Section VII.

IV.1 Non-Linearity and Error

The goal of this first C-Beam analysis case study is to
gain some intuition on the effects and limitations of
non-linearity and its analysis, respectively increased
through load variable λ and accommodated by analy-
sis order n. This is done by comparing the deforma-
tions based on Newton-Raphson (NR) analysis to those
of Perturbed analysis using MacLaurin predictions (P),
and its Bayesian enhanced equivalent (B). Furthermore,
their errors and error estimates are graphed versus
both λ and n. The specific case parameter specifica-
tions and sweeps are listed in Table IV.1. For several
loads, the deformations based on a referential NR
analysis are depicted in Figure IV.1, up to a normed
relative residual of 10´10. For several analysis orders,
the deformations based on P and B are then depicted
in Figure IV.2 and compared to the mentioned NR
results. Lastly, a more thorough quantification of rel-
ative error versus λ and n or #S is performed43, for
all methods, validating their estimated or predicted
behavior, qualities and limitations discussed in Subsec-
tion II.3 and III.4. For all methods of analysis, meaning
NR, P, and B, true error ϵ is evaluated with respect to
the referential NR analysis that has converged up to a
normed relative residual of 10´10.

Case parameter Value (range)
Load variable λ r0, 10s

(P, B) Analysis order n t1, 2, . . . , 50u
Void density ς 0 (no voids)

EMDS threshold ς 0 (no EMDS)
Refinement ˆ1 (no refinement)

Density filter radius ∆ 1 element (no filtering)

Table IV.1: List of C-Beam analysis case parameters and
their studied value (range) for the first case study,
exploring non-linearity and error. Recall that for
all C-Beam case studies, no penalization was
applied, meaning θ “ 1.

Inspecting the referential NR C-Beam deformations
in Figure IV.1 reveals close agreement of the result-
ing deformations and required amount of solves #S,

43 Throughout this work, #S denotes the number of fully updated
NR iterations, required to reduce the normed residual below 10´10

times the normed, scaled load.

λ “ 0.5

#S “ 8

λ “ 1

#S “ 9

λ “ 2

#S “ 11

λ “ 10

#S “ 14

Figure IV.1: Deformed finite element model of the C-Beam
according to nonlinear analysis for several load-
scalars λ, using square 1 by 1 m bilinear finite
elements. Here, #S denotes the required num-
ber of Newton-Raphson solves.43

with those reported in Yoon & Kim (2005) where an
equivalent structural problem definition and tolerances
were used. This validates structural model and non-
linear analysis based on the decomposed structural
tensor reformulation, proposed in Section III. Fur-
thermore, through NR analysis, both residual force
and displacement error are predicted to decrease dou-
bly exponentially versus the amount of solves, also
referred to as quadratic convergence, as estimated
in Appendix B.1 and reported in Bruns & Tortorelli
(2001). Hence, a doubly exponentially increasing load
should λ should require a linearly increasing amount
of solves #S, which can also very weakly be verified in
Figure IV.1. Fortunately, much stronger evidence of the
quadratic NR convergence can be seen in Figure IV.4c,
as duly elaborated.

Concerning the perturbation-based deformations
using MacLaurin extrapolations (P) in Figure IV.2a,
practically all convergence characteristics predicted in
Appendix B.2 can be readily confirmed. Figure IV.3
and IV.4b more precisely confirm the monomial nth

order error versus λ, and exponential error versus λ.
Indeed, decreasing and increasing the load λ generally
result in a decreasing or respectively increasing error.
However, the order of both convergence and diver-
gence are emphasized proportionately to the analysis
order n. Depending on the fixed value for λ, an in-
creased order n may either lead to (sub-) linear conver-
gence or (super-) linear divergence of the deformation,
compared to the referential NR-based result. This can
be seen in Figure IV.4b. In other words, when λ is
smaller or greater than some radius of convergence λ,
in this case estimated to be 1.15 using Equation B.2.5,
the error decreases or respectively increases roughly
exponentially versus n. While an emphasized conver-
gence due to larger n is certainly desirable regarding
accuracy, the equally emphasized divergence may be
detrimental to the robustness within topology opti-
mization.

Fortunately, the Bayesian-enhanced (B) deforma-
tions in Figure IV.2b seem to be of superior accuracy,
despite the equal computational cost, compared to
their respective pure MacLaurin counterparts of the
same orders in Figure IV.2a. The assumption made
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(a) Perturbed analysis (P), using nth-order MacLaurin series. Also
included in Figure IV.2b (colored contour) for reference.
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(b) Perturbed analysis using the Bayesian average (B) (colored) of
all the full 1st- up to nth-order MacLaurin series.

Figure IV.2: Deformed finite element model of the C-Beam according to approximate analysis (colored solid) and non-linear
analysis (black contour), for several load-scalars λ and approximation orders n, using square 1 by 1 m bilinear
finite elements.
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(a) Logarithmic ϵnpλq versus linear λ-axis.
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(b) Logarithmic ϵnpλq versus logarithmic λ-axis.

Figure IV.3: Relative normed displacement errors ϵnpλq of the deformed C-Beam versus load-scalar λ caused by perturbed
analysis, for several nth-order MacLaurin series (solid graphs), and their 50th-order Bayesian average (dashed
graph). Here, λ denotes the radius of convergence, as determined by Equation B.2.5.
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(c) True error ϵ relative to the estimate „
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using P, for λ
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“ 0.25, 1, 4.

Figure IV.4: Comparing the true and estimated relative normed displacement errors of the deformed C-Beam, versus the
amount of structural solves #S ” n using Newton-Raphson (NR) and MacLaurin-based perturbed (P) analysis.
For both methods, ϵ denotes their true relative error obtained through a referential NR analysis up to a normed
relative residual of 10´10. For P analysis, „

ϵ denotes its relative error estimate.

here is that practically all computational effort is spent
on obtaining the governing set of displacement deriva-
tives, and a negligible amount on constructing a contin-
uous prediction from it. The B-enhanced deformations
also appear in full agreement with the convergence
characteristics predicted in Appendix C. For any λ
and n, more accurate results are obtained compared to
the pure MacLaurin extrapolations. Considering this
particular structural problem, the most remarkable
difference between P and B is emphasized for λ “ 2.
Most importantly, the divergence has been bounded to
the first order versus λ for any n when λ ą λ, but ben-
efits the full nth order convergence as λ Ñ 0. This can
be seen in Figure IV.3b, where the slopes indicate the
order of convergence and divergence. Additionally, the
resulting deformations given fixed λ and increasing
n also seem to stabilize, meaning that while the pre-
dicted deformation remains equally inaccurate, they
do not change. This facilitates a dynamically changing
n - perhaps driven through a metric on error or com-
putational cost - without risking discontinuity during
topology optimization.

As a final remark on robustness, it appears that
Newton-Raphson is able to ultimately converge for
larger loads, judging from Figure IV.4a. Even when
the first structural iteration yields an increased error,
linear convergence appears to set on for a few iter-
ations, followed by the expected quadratic terminal
convergence. On the other hand, the perturbed analy-
sis keeps linearly diverging when the considered load
λ is beyond the critical value, or radius of convergence
λ. Conversely, where λ ă λ predicts convergence of P
or B analysis, it also seems to predict the rapid onset
of quadratic convergence for NR analysis.

IV.2 Regularization and Refinement I

The goal of the presented second C-Beam analysis case
study is to incrementally emulate aspects encountered
during structural analysis within a typical density-
based topology optimization. This mainly concerns
the effects, limitations of regularization, and mesh re-
finement. Notably, elements of low and intermediate
density are inevitable but problematic. Therefore, the
aim is not to avoid them, but to remedy their effects.
Hence this second case study explores the solid and
void deformations and errors through the parameter
sweep listed in Table IV.2, including density filtering.
The corresponding results are captured in Figures IV.5
and IV.6. Ultimately, by the end of this case study
and the more exhausive one in Subsection IV.3, some
ideal or sufficient values for void density ς and EMDS
threshold ς are argued to minimize both the ramifica-
tions of other regularizations, but also their own.

Case parameter Value (range)
Load variable λ r0, 10s

(P, B) Analysis order n 5
Void density ς

␣
0, 10´9(

EMDS threshold ς t0, 0.01, 0.1, 0.5u
Refinement tˆ1, ˆ2, ˆ4u

Density filter radius ∆ 1 m, or effectively
1 element per refinement

Table IV.2: List of CBeam analysis case parameters and their
studied value (range) for the second case study,
exploring regularization and refinement.

The behavior of unregularized void elements with
density ς “ 10´9 and their impact on NR analysis
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(a) Newton-Raphson analysis (NR). Here, #S denotes the number of
Newton-Raphson solves required for a relative normed residual
of 10´10.
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(b) Perturbed analysis (P) using a 5th-order MacLaurin extrapola-
tion.
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(c) Perturbed analysis using the Bayesian average (B) of all the full
1st- up to 5th-order MacLaurin series.

Figure IV.5: Deformed C-Beam according to Newton-Raphson and perturbed analysis, for several load variables λ and the
inclusion of the following model options: S) Solid elements with ρ “ 1; V) Void elements with ς “ 10´9; EMDS)
Element Material- and Displacement Scaling with EMD threshold ς “ 10´2. Note that ς and ς are respectively
zero, meaning excluded, otherwise. For the approximate analysis in Figure IV.5b and IV.5c, ϵ and ϵS denote
the relative normed displacement errors over the full and solid domains respectively, as compared to their
nonlinear counterparts in Figure IV.5a.

34



ς “ 0

10
by

10
Ref.

ς “ 0.01

ϵ ă 10´6

ς “ 0.1

ϵ “ 0.0014 %

ς “ 0.5

ϵ “ 4.2 %
20

by
20

Ref. ϵ ă 10´6 ϵ “ 5.6 % ϵ “ 29 %

40
by

40

Ref. ϵ “ 0.071 % ϵ “ 15 % ϵ “ 31 %

(a) Newton-Raphson analysis (NR). Here, ϵ denotes the relative
displacement error with respect to the reference (Ref.) where
ς “ 0.
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(b) Perturbed analysis (P) using a 5th-order MacLaurin extrapo-
lation.. Here, ϵ denotes the relative displacement error with
respect to the nonlinear reference (Ref. in IV.6a) where ς “ 0,
given the same resolution.
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(c) Perturbed analysis using the Bayesian average (B) of all the full
1st- up to 5th-order MacLaurin series. Here, ϵ denotes the relative
displacement error with respect to the NR reference (Ref. in
IV.6a) where ς “ 0, given the same resolution.

Figure IV.6: Deformed C-Beam according to Newton-Raphson and perturbed analysis with λ “ 1, for several EMDS
thresholds ς, and density-filtered mesh-refinements of the original 10 by 10 m structure (Figure III.6), with
λ “ 1 and ς “ 0. A filter-radius of 1 m was used, spanning 10% of the domain. The minimum void density ς
was set to 0, and elements of this density were removed.
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can be seen directly from Figure IV.5a. Note that the
NR, P and B results without voids and EMDS (hence
solid, or S) are respectively identical to Figure IV.1,
Figure IV.2a and Figure IV.2b for n “ 5. Concerning
NR analysis including void regions (S, V), the latter
appear crumbled in increasingly less unique ways ver-
sus the load λ. This may be explained by the many
possible ways individual elements may deform, buckle
or invert, relatively easily satisfying the imposed toler-
ance on the residual force for equilibrium, due to their
low stiffness. The equilibrium curve, or one of the
excessively many, not necessarily physical but closely
bundled equilibrium branches, is very difficult to nav-
igate using NR analysis, especially combined with
the low-density induced ill-conditioning of the tan-
gent stiffness. This is reflected through the increased
amount of NR iterations, or solves #S, required for
convergence. Moreover, #S has been observed highly
sensitive to small changes in the tolerance and void
density ς, further testifying to the excess of local equi-
libria and resulting chaos within the NR procedure.

Void elements also compromise P and B analysis
when unregularized, judging from Figure IV.5b and
IV.5c. The higher order deformation predictions seem
to suffer divergence, at least within the void regions.
For P analysis (Figure IV.5b), there seems to be no
further impact on the error of the solid regions ϵS com-
pared to the voidless results, where the MacLaurin
truncation error fully dominates. Concerning B analy-
sis, the error on solid regions now seems increased due
to including voids, rather than unaffected, despite re-
maining lower for all loads λ, compared to P analysis
with and even without voids. The void-induced diver-
gence is likely caused by the relatively small radius
of convergence within the void elements. Currently,
the B analysis measures this radius considering all
degrees of deformation freedom and measures the
extent of overall divergence without discriminating
between components associated purely with void or
solid elements. As a result, B analysis suppresses the
higher-order contributions globally due to locally di-
verging predictions, despite them locally converging
elsewhere. Effectively, localized divergence of void
deformations causes B analysis to more quickly dis-
trust higher-order contributions globally, despite the
much more important localized convergence of solid
deformations. Their higher-order information gets sup-
pressed regardless, wasting the previously obtained
accuracy within solid regions, increasing ϵS.

Remarkably, Element Deformation Scaling (EMDS)
with threshold ς “ 0.01 seems to completely remedy
any of the previously mentioned issues due to void re-
gions for NR and P analysis, reducing the solve count
#S and solid error ϵS back to that of the unregularized,
voidless structures. In other words, it remedies the
excessive void deformations and associated compu-
tational burden reported by (Yoon & Kim, 2005; van

Dijk et al., 2014). By linearizing the structural behavior
of void elements, their radius of convergence tends
towards infinity. Yet, a slight exception occurs for B
analysis where λ “ 1. Perhaps the local radius of
convergence within void elements remains barely be-
low that of the solid regions, as the non-zero EMDS
threshold ς is not sufficiently linearizing the structural
behavior such as to compensate for the relatively exces-
sive, thus non-linear, void-deformation. Alternatively,
the current value of ς “ 0.01 may have a direct but
marginal effect on the solid region. Yet, this particular
value for ς shall be argued at the end of this section
and the next, to minimally introduce structural model
error, while maximally suppressing void-related issues.
On account of the present and prior paragraph, a fu-
ture recommendation is to augment Bayesian analysis
with a local error estimator to make EMDS redundant
and potentially increase the practical range of validity
for λ. This is further elaborated in Subsection VII.4.
Regardless, the B deformation accuracy when includ-
ing voids and EMDS is practically equal to its voidless
counterpart, and generally superior to the P deforma-
tions regardless of voids and EMDS, given the same
load λ. Moreover, increased λ pronounces the superi-
ority of B over P accuracy, also with and without voids
or EMDS.

Finally, the effects of mesh refinement, EMDS, filter-
ing44 and intermediate densities can nearly be fully
isolated through the results in Figure IV.6. Here, the
density filtering radius ∆ is increased proportionally
to the mesh refinement, particularly by 1 element per
refinement. Then, some interesting EMDS thresholds ς.
Figure IV.6 are considered. Furthermore, a fixed void
density ς “ 10´9 is considered, and a load λ “ 1
is taken, being close to the radius of convergence
λ « 1.15 for the unregularized and unrefined C-Beam.

EMDS is a density-based effect, as confirmed by all
refined and filtered results in Figure IV.6. Therefore,
it tends to increase with the simultaneous refinement
and filtering, yielding larger errors when its threshold
ς is excessive, or smaller errors when the remedied
void divergence is more prominent. Thresholds ς of
0.1 and 0.5 especially, appear to have a linearization-
induced stiffening effect now reaching the void regions.
Obviously, the resulting error compared to when ς “ 0
is not desirable. Fortunately, setting it to 0.01 results in
a small error with respect to the referential NR result
(Figure IV.6a), compared to those within the P and B
predictions. Refinement and filtering effects are treated
in the next case study and subsection, given the much
denser and more elaborate parameter sweep.

44The density-filter used in this work is the same linear
convolution-filter as used in the 99-line TO code by Sigmund (2001).
It computes a current element’s new density as the weighed average
of that of all neighbouring elements within the filter-radius. The
weight decays linearly as a function of the elements’ distances to
the current element, reaching exactly zero at the radius.
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IV.3 Regularization and Refinement II

The goal of the third C-Beam analysis case study is to
conclude trends and argue suitable values, based on
the errors over a wide and dense sweep versus void
density ς, EMDS threshold ς and mesh refinement.
While regularization-induced errors are undesirable
on their own, a further risk would be their abuse by the
structural design optimization. Therefore, a balance
must be stricken between the problems they solve and
those they introduce. The considered case parameters
are listed in Table IV.3, and the full result is captured
by the surface graphs within Figure IV.7. The left col-
umn of graphs serves as an important reference. It
captures the error purely introduced by the consid-
ered parameters through NR analysis up to a relative
normed residual of 10´10, bounding the ultimate ac-
curacy P or B analysis may ever obtain in predicting
the same result using the same structural model and
parameters. The right column serves as a generalized
indicator of error for both P and B analysis, „

ϵnpλq and
„„
ϵnpλq respectively, through the radius of convergence
λ (Equation IV.1), as estimated using a 50th order per-
turbed analysis. It allows the study of estimated error
irrespective of the choice between B and P analysis,
their order n, or applied load λ. Recall that both errors
are estimated as:

„
ϵnpλq “ βn ,

„„
ϵnpλq “

d
β2n ´ β2n`2

1 ´ β2n , β “ λ

λ
(IV.1)

Case parameter Value (range)
Load variable λ 1

(P, B) Analysis order n 50
Void density ς

␣
0,

“
10´10, 1

‰(

EMDS threshold ς t0, r0.01, 10su
Refinement tˆ1, ˆ2, . . . , ˆ10u

Density filter radius ∆ 1 m, or effectively
1 element ˆ refinement

Table IV.3: List of C-Beam analysis case parameters and
their studied value (range) for the third case
study, performing an exhaustive quantification.

Starting with the referential NR analysis, ramifica-
tions introduced by voids and EMDS are concisely cap-
tured by Figure IV.7a. The additive property of their
squared errors should indeed translate to somewhat
of a smooth maximum property of their logarithmic
errors, meaning typically only one of both dominates.
When some higher value of one is required, a higher
value of the other may as well be chosen without fur-
ther increasing error. To illustrate, considering a void
density ς of 10´9 as often used throughout density-
based structural analysis or topology optimization45,

45Some notable works using a void density of 10´9, or effectively

one can choose the EMDS threshold ς close to 0.1 but
also very safely at 0.01 without having it worsen the
error ϵ. Choosing it to be 0, however, re-introduces the
computational problems for both NR, P and B analysis.
The non-unique and parameter-sensitive NR solutions
are reflected by the jaggedness versus ς given ς “ 0 in
Figure IV.7a, indicating bad, and incidentally terrible
convergence with respect to higher values for ς.

Moving on to P and B analysis, ramifications intro-
duced by voids and EMDS are concisely captured by
Figure IV.7b. Here, the result appears to suggest that
ς and ς have a logarithmically additive (hence linearly
multiplicative) effect on λ, seemingly increasing versus
both. While on its own a high radius of convergence
λ or higher rate given some fixed λ may seem desir-
able, the result which is being converged to must not
be affected by ς or ς. Moreover, high values of either
precisely result in high values of λ due to artificial stiff-
ening effects of ς and artificial linearization effects of ς.
Fortunately, a few decades of smaller, non-zero values
for either ς or ς at least circumvent the detrimental
effect on λ with respect to choosing ς “ 0, without
noticeably affecting the structural model as verified
through the referential NR analysis. Concretely, choos-
ing ς “ 10´9 and ς “ 0.01 safely mitigate void-related
issues without affecting physical accuracy otherwise.

Refinement barely seems to have an effect on the ref-
erential NR analysis, judging from Figure IV.7a, IV.7c
and IV.7e, meaning in that sense the structural model
and filtering are properly regularizing with respect to
it. However, a slight effect on P and B analysis can be
seen from Figure IV.7a, IV.7c and IV.7e. More precisely,
refinement seems to yield an initial reduction of λ,
most likely by relieving shear locking effects (Bathe,
2016) within the 4 noded elements. The latter would
artificially increase stiffness, reducing deformations,
and hence the effective non-linearity and perceived
λ. According to Azrar et al. (1993), λ should indeed
not overly depend on refinement, with the apparent
exception here stemming from an overly coarse mesh,
causing associated shear locking. Beyond a certain
level of refinement, no further decrease of λ seems to
happen, except for when ς is close to 1, likely causing a
stress concentration and singularity in the deformation
field. This overall mesh-independence of λ is a huge
relief, as from algebraic geometry (Subsection II.4) it
was learned that the degree of the equilibrium curve
increases exponentially with the amount of consid-
ered variables, in this case freedom degrees. This
increased degree might have implicated increased non-
linearity thus decreased λ in non-obvious ways, such
as additional complex singularities, despite the smooth
equilibrium curve that should ultimately be converged
towards. Fortunately, this is not the case, and the

so after penalizing one of 10´3 to the third power, are Yoon & Kim
(2005); Buhl et al. (2000a); Sigmund (2001); van Dijk et al. (2014).
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(a) Relative displacement error ϵ of NR analysis with λ “ 1, calcu-
lated with respect to the result where ς “ 0 and ς “ 0. Further-
more, a refinement of ˆ10 is used.

0
10 ´10

10 ´8

10 ´6

10 ´4

10 ´2

10 0

ς
010́

210́
1100

101

ς

0.1

1

10

100

λ

(b) Radius of convergence λ of P or B analysis, estimated with
n “ 50. Furthermore, a refinement of ˆ10 is used.
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(c) Relative displacement error ϵ of NR analysis with λ “ 1, calcu-
lated with respect to the result where ς “ 0 for each refinement.
Furthermore, ς is set to 10´2.
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(d) Radius of convergence λ of P or B analysis, estimated with
n “ 50. Furthermore, ς is set to 10´2.
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(e) Relative displacement error ϵ of NR analysis with λ “ 1, calcu-
lated with respect to the result where ς “ 0 for each refinement.
Furthermore, ς is set to 10´2.
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(f) Radius of convergence λ of P or B analysis, estimated with n “ 50.
Furthermore, ς is set to 10´2.

Figure IV.7: Relative normed displacement error ϵ (left) using NR analysis, and radius of convergence λ (right) using
either P or B analysis, of the deformed C-Beam versus minimum void-density ς, EMDS threshold ς and mesh
refinements. Here, a filter-radius ∆ “ 1 m is used. Furthermore, voids and EMDS are respectively removed for
ς “ 0 and ς “ 0.
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adopted regularizations seem mesh-independent be-
yond a minimal degree of coarseness.

IV.4 Computational Effort

Finally, this fourth CBeam analysis case study attempts
a crude comparison of computational effort versus
structural iteration count n and system size N, estab-
lishing the extent to which the trends sketched in Fig-
ure II.7 are followed. As mentioned at the top of this
section IV, computational effort is naively measured
through time, assuming it scales proportionally to the
number of floating-point-operations, disregarding the
wide range of unknown or uncontrollable factors. Due
to the suboptimal or conceptual stage of the proposed
perturbed analysis, and otherwise computationally
suboptimal implementations, it is advised not to take
the result from this case study at face value.

In order to obtain a meaningful quantification of
computational time versus n and N, the simplified
model in Equation IV.2 is argued for both NR and P.
For most algorithms, computational time, complex-
ity, or floating-point-operation count tends to follow
a power law versus the system’s scale, with the ex-
ponent roughly matching the depth level of nested
loops. When applying Gaussian elimination to dense
linear systems, the computational solve or decomposi-
tion time t expectedly requires some OpN3q seconds,
meaning t « T ¨ N3 (Trefethen & Bau, 2022). The expo-
nent is typically reduced through sparsity, precondi-
tioning, prior decomposition, and particular iterative
solution strategies alternative to Gaussian elimination
(Trefethen & Bau, 2022). Considering the approximate
NR analysis solve time

„
tNR, each of the n iterations

should take an equal amount of time Tp1q
NR. The latter

is typically dominated by the sparse structural solve,
and less so by assembling the RHS (Right-Hand-Side)
vector or residual force and tangent stiffness matrix
(Aage & Lazarov, 2013). Considering P analysis time
„
tP, however, a zeroth-, first-, and second-order compo-
nent versus n can be argued respectively due to the
initial Cholesky decomposition Tp0q

P , a much cheaper

structural solve Tp1q
P compared to NR, and the RHS

construction Tp2q
P involving a nested sum versus or-

der n. These components and their interpretation are
summarised in Table IV.4.

The resulting computational time trends based on
the model in Equation IV.2 are captured in Figure IV.8.
Without going into too much detail on this crude case
study, 13 C-beam refinements and 20 samples per
refinement, each with a randomized load vector, have
been performed in random order. First, polynomial
regressions of time versus n were calculated for each
N, followed by a linear regression of logarithmic time
versus logarithmic N, obtaining Tp1q

NR, Tp0q
P , Tp1q

P and

Tp2q
P .

„
tNR “ Tp1q

NR ¨ n , (IV.2)
„
tP “ Tp0q

P ` Tp1q
P ¨ n ` Tp2q

P ¨ n2 ,

where Tpkq “ Tpkq ¨ NTpkq
,

Symbol Unit Interpretation

Tp1q
NR time / iteration NR solve + RHS

Tp0q
P time Cholesky

Tp1q
P time / iteration P solve

Tp2q
P time / iteration2 P RHS

Table IV.4: Interpretation of the coefficients estimating com-
putational time for NR and P analysis, assuming
a polynomial form versus the number of itera-
tions n.

Considering the Newton-Raphson solve time Tp1q
NR,

Figure IV.8 suggests an unexpected trend. Moreover,
as indicated by the slope of its regression, its order
of growth versus N appears much closer to one than
three, or even the expected value slightly above 2 for
sparse systems (Trefethen & Bau, 2022). It must be
noted, however, that Matlab chooses suitable algo-
rithms under the hood, depending on the size and
structure of the system matrix. Otherwise, this linear
complexity can be attributed to other unknown over-
head processes. The Cholesky solve time Tp0q

P shows
a slightly more realistic yet unexpectedly low order
of complexity. Fortunately, Tp0q

P , and the resulting

perturbed analysis solve time per iteration Tp1q
P respec-

tively take three and ten times as little effort compared
to Tp1q

NR. This should give P analysis the expected head-
start compared to NR analysis in terms of accuracy
versus iteration count n, before NR and its quadratic
convergence starts to increasingly dominate P analysis,
ultimately bounded by linear convergence. Lastly, the
RHS construction within P analysis, Tp2q

P , does appear

large enough not to be disregarded. With Tp0q
P , Tp1q

P

and Tp2q
P each separated a decade for nearly all N, it

can be estimated that the growth of
„
tP becomes notice-

ably superlinear beyond n “ 10, using the same theory
that estimates the radius of convergence λ based on
the geometric progression of up1q, . . . , upnq.

While the regressed computational time models for
NR and P analysis are currently based on N and n, a
practically meaningful comparison can be made versus
N and some identical error tolerance ϵ. Then again,
this would introduce dependence on the extent of non-
linearity through λ{λ ” ϵL. Interestingly, the latter can
be factored out when considering a number of Newton-
Raphson iterations nNR and perturbed analysis order
nP separately, such that the corresponding estimated
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Figure IV.8: Logarithmic Regression of the polynomial co-
efficients of structural analysis time estimators
„
tNR and

„
tP, as defined in Equation IV.2 and Ta-

ble IV.4.

errors46 are the same. Setting the NR error estimator
„
ϵNR “ ϵ2nNR ´1

L equal to the P error estimator „
ϵP “ ϵnP

L ,
yields nNR “ log2

`
nP ` 1

˘
. The corresponding time

ratio is graphed in Figure IV.9.
Over a moderate range versus degrees of freedom N

and perturbed analysis orders nP, Figure IV.9 suggests
that P analysis can be more than twice as efficient
as NR analysis given the same error tolerance. Yet,
both Figure IV.9 and IV.8 imply diminished relative
efficiency versus N, contrary to the increased relative
efficiency predicted in Subsection II.3. To clarify, the
required computational effort of structural solves with-
out Cholesky decomposition should typically grow
faster versus N, rather than slower. Certainly, the
Cholesky factorization proves useful by reducing the
structural solve time over tenfold, comparing Tp1q

P to

Tp1q
NR, even if this reduction is not growing but mildly

shrinking versus N. Overall, the respective growths of
Tp1q

P and Tp1q
NR versus N, seems inaccurately reflected

in the case study presented here. Particularly, the
nearly linear growth of Tp1q

NR versus N contradicts es-
tablished literature, predicting orders slightly beyond
two (Trefethen & Bau, 2022) for sparse systems. The
discrepancy may be caused by a wide range of un-
knowns within the custom Matlab implementation,
such as an insufficiently large range of N, and the
lack of control or knowledge over hidden parameters
and other sources of computational overhead. The
apparent discontinuity of the data behind the trends
in Figure IV.8 further testifies to this.

46Recall that the error estimators for NR and P analysis are derived
in Appendix B.
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Figure IV.9: Analysis time ratio estimate, with Perturbed
(P) analysis time

„
tP over Newton-Raphson (NR)

analysis time
„
tP for several refinements thus

degrees of freedom N, and Perturbed analysis
orders nP. The amount of Newton-Raphson
iterations nNR is chosen such that both the NR
and P error estimates are equal, meaning „

ϵNR “
„
ϵP.

V Compliance Minimization

This part II of the results resumes the validation of
the proposed and state-of-the-art non-linear structural
analysis methods, now integrated into density-based,
load-controlled topology optimization. The present
section covers the well-known compliance minimiza-
tion, studied in (Buhl et al., 2000a; Pedersen et al.,
2001; Chen et al., 2019b). First, the structural and
optimization problems are formally defined in Subsec-
tion V.1, including a list of relevant case parameters.
Then, the effects and limitations of non-linearity on
the various analysis methods are explored through the
results within Subsection V.2. Lastly, a more thorough
comparative study of attainable design performance
and optimization robustness is presented in Subsec-
tion V.3, sweeping over a wide and dense range of case
parameters, and indicating some ideal regularization
parameter values. Similarly to the results in part I, no-
table observations are briefly discussed throughout the
results presented here, in preparation for the general
discussion in Section VII.

V.1 Problem Formulation

The compliance minimization problem studied within
this section is formally defined here, imposing a vol-
ume and error constraint. Figure V.1 illustrates the de-
sign domain’s geometry, material, and applied bound-
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ary conditions. The negative null form of the optimiza-
tion problem is then defined for Newton-Raphson
(NR) analysis in Equation V.1, and Bayesian (B) anal-
ysis in Equation V.2. Details such as the bounds on
x, the higher-order residual-, or adjoint equations and
explicit functional depencence on λ are omitted here,
as they would obscure more relevant aspects and are
already covered within Subsection III.5 through Equa-
tion III.36. The volume-constrained, NR-based compli-
ance minimization is formulated as:

12λ kN

1 m

0.
25

m

1m

Figure V.1: Geometry, material, and boundary conditions of
the compliance minimization problem, as stud-
ied within this section and defined in Equa-
tion V.1 and V.2. An isotropic, linear elastic
material is assumed, with Young’s Modulus
E “ 3 GPa and Poison’s ratio ν “ 0.4 under
plane-strain condition, in accordance with Buhl
et al. (2000a).

pNRq minimize
x

λp ‚ ux , (V.1)

subject to Vx ď ηV ,

where ux denotes the deformation given some de-
sign x and applied load λp using NR analysis. Then,
a maximum volume-fraction η is imposed, with V
the design-domain’s volume (see Figure V.1) and Vx

the structure’s volume, defined here as
řM

e“1 ρe{M.
The additionally error-constrained B-based compliance
minimization is then formulated as:

pBq minimize
x

λp ‚
„„ux , (V.2)

subject to Vx ď ηV ,
„„
ϵx ď ϵ ,

where
„„ux denotes the deformation given some design x

and applied load λp using B analysis, and
„„
ϵx the corre-

sponding normed, relative error-estimate, constrained
at or below the tolerance ϵ.

Over the remaining subsection, a series of case stud-
ies sweeps over the case parameters specified in Ta-
ble V.1. In particular, the effects and limitations of
non-linearity on the error, robustness, and attainable
structural performance are investigated through λ, n,
and ϵ. Regularization parameters such as void density

ς “ 10´9 and EMDS threshold ς “ 0.01 are read-
ily argued as reasonably ideal or sufficient in Sub-
section IV.3. Notably, the optimized designs, required
amount of iterations and resulting trends were deemed
too sensitive to some design convergence criterion, im-
pacting the clarity of those results and trends. Hence,
for all methods, loads, and analysis orders, a fixed
number of 200 design iterations is performed here.

Case parameter Value (range)
Load variable λ t1, 5, 12, 20u

(B) Analysis order n t1, 5, 20u
Error tolerance ϵ 10´3

Material penalization θ 1 ++0.05, up to 3
Void density ς 10´9

EMDS threshold ς 0.01
Density filter radius ∆ 1.5 elements

Refinement 20 by 80 elements
Optimization iterations 200

Volume fraction η 0.5

Table V.1: List of compliance minimization case parameters
and their value (range) studied in this subsection.
Here, ++ denotes the increment per design itera-
tion.

V.2 Non-linearity and Error

The goal of this first compliance minimization case
study is to demonstrate the implications and limita-
tions of non-linearity, through increased loads λ and
analysis orders n. This is done by comparing the op-
timized designs, their compliances, and errors, based
on Newton-Raphson (NR) and Bayesian-enhanced Per-
turbed (B) analysis. The specific case parameter spec-
ifications and sweeps are listed in Table V.1. The
corresponding results are summarized in Figure V.2,
showing their deformed state, indicating their error
and optimality. In this case study, all optimizations
based on higher-order perturbed analysis are governed

by constraining their error-estimate
„„
ϵ below a toler-

ance ϵ “ 10´3, whose importance and effects shall be
demonstrated in the second and third case studies. For
all results, their true errors ϵ, and true compliance C in
kJ, are evaluated at the last design iteration based on a
referential Newton-Raphson analysis up to a normed
relative residual of 10´10.

Some observations regarding non-linearity can be
made in preparation for the general discussion in
Section VII. For all loads λ “ 5, 12 and 20, the ob-
tained Newton-Raphson-based optimization results
presented in Figure V.2 are very similar to those of
Buhl et al. (2000a, Table 1) in terms of their final de-
sign and compliance. Moreover, the small load for
λ “ 1 yields a practically identical result when based
on Newton-Raphson (NR), Bayesian analysis (n ą 1),
each with an end-compliance C “ 0.19 kJ, and identical
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ϵ “ 6.7¨10´11
C “ 0.18 kJ

λ
“

1
Newton-Raphson (NR)

ϵ “ 6.7¨10´10
C “ 4.41 kJ

λ
“

5

ϵ “ 1.6¨10´9

C “ 24.8 kJ

λ
“

12

ϵ “ 3.6¨10´10

C “ 62.51 kJ

λ
“

20

ϵ “ 7.3¨10´3
C “ 0.18 kJ

n “ 1

Bayesian-Enhanced Perturbed (B)

ϵ “ 3.7¨10´2
C “ 4.42 kJ

ϵ “ 8.7¨10´2

C “ 25.12 kJ

ϵ “ 1.4¨10´1

C “ 67.83 kJ

ϵ “ 5.8¨10´10
„„
ϵ “ 4.5¨10´10 C “ 0.18 kJ

n “ 5

ϵ “ 2¨10´6
„„
ϵ “ 1.5¨10´6

C “ 4.41 kJ

ϵ “ 2.6¨10´4
„„
ϵ “ 1.6¨10´4

C “ 24.8 kJ

ϵ “ 2.2¨10´2
„„
ϵ “ 1.5¨10´2

C “ 69.53 kJ

ϵ “ 1.2¨10´12
„„
ϵ “ 1.5¨10´33 C “ 0.18 kJ

n “ 20

ϵ “ 4.5¨10´13
„„
ϵ “ 1.4¨10´17

C “ 4.41 kJ

ϵ “ 5.3¨10´9
„„
ϵ “ 1.3¨10´9

C “ 24.8 kJ

ϵ “ 2.1¨10´3
„„
ϵ “ 10´3

C “ 66.04 kJ

Figure V.2: Resulting compliance minimization designs, optimized through Newton-Raphson (NR) and Bayesian-enhanced
perturbed (B) structural analysis, ranging over several loads λ and analysis orders n, after 200 iterations, subject
to a tolerance ϵ “ 10´3 on the relative normed displacement error estimates for NR, and B with n ą 1. Recall
that n “ 1 effectively represents linear analysis. Other applied regularization steps, geometry and material are
stated at the beginning of this section. Here, ϵ and

„„
ϵ respectively denote the true and estimated errors, and C

the true compliance as measured through the referential NR analysis up to a relative normed residual of 10´10.
All presented deformations are based on the same referential NR analysis.

to the corresponding result of Buhl et al. (2000a, Table
1). As the load approaches zero, the actual structural
problem practically becomes linear, and the boundary
conditions purely (anti-) symmetrical, explaining the
symmetrical design. On the other hand, taking n “ 1
assumes the structural problem to be linear about the
load of zero. As a result, dependence on λ can be fac-
tored out of the energy or compliance equation, and
the design that minimizes this energy minimizes any
of its scalar multiples. Hence, linear analysis (n “ 1)
or small loads (λ Ñ 0) all yield the same compliance-
minimizing design.

As a brief sidenote on performance, higher orders B
analysis generally seems to result in lower compliance,
as desired. For the mildly non-linear case where λ “
12 in Figure V.2, the much cheaper optimization based
on 5th order B analysis achieves the same design and
performance compared to the much more expensive
NR based design. For the nearly critical load case
where λ “ 20, however, the designs for n “ 5 and 20

have not entirely converged. Regardless, for n “ 20 a
compliance of 66.04 kJ has been achieved, lying below
the 66.52 kJ obtained by Buhl et al. (2000a). This may
be due to slight implementation differences, and the
presented NR design for λ “ 20 in Figure V.2 provides
a more trustworthy reference. Interestingly, it more
closely matches the design obtained by (Buhl et al.,
2000a) for λ “ 12.

Higher loads seem to result in designs close to their
buckling limit, or otherwise increase the extent of non-
linearity. In a load-controlled analysis versus λ, the
buckling limit forms a hard upper bound on the radius
of convergence λ for P and B, associated with an infi-
nite slope of displacement versus λ. Hence, P and B
are unable to capture (post-) buckling behavior, as their
higher-order prediction error increases (super) linearly
beyond this point. However, NR has the ability to
converge beyond a load limit. As a result, even when
this occurs subtly, in void regions, or intermediate
designs, NR-based optimizations can possibly reach
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feasible designs that are unreachable to P- or B-based
optimizations. This may explain why the latter were
unable to produce the unsupported slender filament
connecting the loaded tip to the rest of the structure,
and consistently so for a wide range of other tried case
parameters that are not explicitly documented here.

In nearly all cases, the estimated and true errors
seem to agree within an order of magnitude or even
closer. Of course, when errors smaller than 10´10

are predicted, the true error based on the referential
Newton-Raphson analysis is going to be dominated
either by its tolerance of 10´10, or by that of the struc-
tural tensors decomposed up to the same error toler-
ance. For small to moderate loads, in this case when
λ ď 12, the order of the Bayesian error estimate

„„
ϵ

also appears proportionate to n, as predicted by Equa-
tion III.23. However, the highest load λ “ 20 seems
close to some critical value for the Bayesian-based
structural optimization. Judging from the results given
n “ 5 and n “ 20, the optimization appears actively

constrained or guided such that the error estimate
„„
ϵ

remains bounded by ϵ “ 10´3. Not only is the true er-
ror ϵ still close to its desired tolerance, but the Method
of Moving Asymptotes (MMA) seems capable of han-

dling the constraint on
„„
ϵ.

V.3 Design Performance and Robustness

In the end, the previously studied analysis error is a
crucial, yet indirect measure for the arguably much
more important optimization robustness, and attain-
able objective values, unbiased through approximation
or perturbation error. Hence, in this second study
case, a more exhaustive parameter sweep is performed
as listed in Table V.2, mainly concerning the analysis
order n, load variable λ and error tolerance ϵ, with
half the previous mesh refinement to manage computa-
tional times. The aim is to study the conditions for, and
ultimate extent of, design convergence, by measuring
compliance and error. To get a more detailed under-
standing of the error constraint and its role during
perturbed analysis, the true and estimated error and
compliance are graphed versus the design iteration
number in Figure V.3, considering two different error
tolerances. Then, sweeping over all mentioned case pa-
rameters, Newton-Raphson (NR), Perturbed (P), and
Bayesian-enhanced (B) analysis are compared in terms
of final error and compliance through Figure V.4, as
determined through a referential NR analysis up to a
normed relative residual tolerance of 10´10.

From the optimization iteration profiles in Fig-
ure V.3, the role and effect of the imposed error con-
straint and gradual material penalization can be seen.
Over the first five iterations, the optimizer is able to
quickly reduce compliance, most likely exploiting the
initially unpenalized intermediate densities. Soon af-

Case parameter Value (range)
Load variable λ r1, 24s

(P, B) Analysis order n t1, 2, . . . , 30u
Error tolerance ϵ

␣
1, 0.1, 0.01, 10´3(

Material penalization θ 1 ++0.05, up to 3
Void density ς 10´9

EMDS threshold ς 0.01
Density filter radius ∆ 1.25 elements

Refinement 10 by 40 elements
Optimization iterations 100

Volume fraction η 0.5

Table V.2: List of compliance minimization case parameters
and their value (range) studied for the perfor-
mance and robustness quantification. Here, ++
denotes the increment per design iteration.

ter, until the 40th iteration, the penalty exponent θ in-
crements from 1 to 3, visibly penalizing compliance but
also challenging the optimizer in maintaining an error
„„
ϵ below the imposed tolerance ϵ. Most likely, the penal-
ization enforces a black-and-white solution, featuring
slender filaments more prone to buckling and hence
a decreased radius of convergence λ. After a more
moderate initial breach of the error constraint, the opti-
mizer stabilizes and maintains a slighter breach. While
in both cases the true error ϵ is safely overestimated by
„„
ϵ throughout the optimization, this does not occur in
general and depends mostly on the estimator’s quali-
ties. More notably, the true relative compliance c does

appear consistently underestimated by
„„c, supplied to

the optimizer, arguably exploiting error. To clarify,
despite the barely visible difference between both re-
sulting designs, a greater error tolerance ε appears to

result in a lower estimated compliance
„„c, at greater

expense of the true objective, yielding larger c. This
trend is more rigorously demonstrated in Figure V.4.

Comparing P and B analysis, Figure V.4 suggests
the latter is generally superior, up to the high initia-
tion sensitivity and other subtle chaotic components
inherent to large-scale non-convex optimization. The
compliance minimization using B analysis is able to
stay below the imposed error more frequently, which
becomes especially apparent for higher loads λ and
smaller tolerances ϵ restricting the feasible design do-
main. When the optimization does converge for both
P and B given the same parameters, the compliance
difference is more subtle but still generally lower for
the latter. Overall, B analysis appears more robust
towards non-linearity than pure MacLaurin-based P
analysis within topology optimization, yielding better
designs more frequently.

Comparing both P and B to NR analysis, the latter
appears more capable when faced with non-linearity
or high λ, considering a reasonably low tolerance ϵ. In
this case, the design domain is not constrained through
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Figure V.3: Response iteration profiles of two compliance minimization cases, including deformed design at the final iteration,
optimized through Bayesian-enhanced perturbed analysis subject to different error tolerances ϵ. Furthermore, ϵ

and
„„
ϵ denote the true and estimated error. Likewise, c and

„„c denote the true and estimated compliance, relative
to the true compliance at the first iteration.
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(a) Relative compliance c, denoting the compliance at the final design
iteration with respect to the first, both of which are evaluated
using a referential NR analysis.
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(b) Relative error ϵ, evaluated using a referential NR analysis.

Figure V.4: Resulting true compliances and errors, after optimization through Newton-Raphson (NR), MacLaurin-based
perturbed (P), and Bayesian-enhanced perturbed (B) structural analysis, over a dense range of load variables λ,
analysis orders n, and several error tolerances ϵ, after 100 iterations. Recall that this tolerance only applies to P
and B for n ą 1, both of which reduce to linear analysis for n “ 1.
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an error estimate, allowing designs that feature greater
non-linearity. This is ultimately facilitated by the abil-
ity of NR analysis to converge for greater λ than B and
P analysis.

Considering the imposed error tolerance ϵ, values
much greater than 0.01 seem to affect its utility and
the robustness of the structural optimization. The
excessive tolerance of ϵ “ 1 allows NR to terminate
after a single iteration, rendering it equivalent to linear
analysis, and also B and P for all other tolerances
given n “ 1. Interestingly, this promotes robustness
by preventing divergence, ironically yielding superior
designs compared to a slightly lower tolerance and
related issues that can only be remedied by even lower
tolerances. However, when the optimizer is limited by
linear analysis, the true extent of non-linearity, error,
feasibility, or optimality cannot be estimated cheaply
as done in higher-order P or B analysis. Overall, error
estimation becomes less accurate, meaningful, and
useful for larger values of ϵ, and impossible when only
a single structural iteration is performed, meaning non-
linearity is poorly accounted for in either case.

Somewhat ironically, reducing the error tolerance ϵ
does not always necessarily result in superior design
performance, at least given fixed perturbed analysis
order n. This is indirectly demonstrated within Fig-
ure V.2 for the higher loads λ, where increasingly
higher orders of perturbed analysis result in compli-
ance close to the one obtained through NR. An activate
error constraint effectively imposes a minimum radius
of convergence λ, that necessarily grows for smaller n
and smaller ϵ. To clarify using the MacLaurin-based
perturbed analysis error estimate:

ϵ “
ˆ

λ

λ

˙n
ď ϵ, ðñ λ ě λϵ´ 1

n . (V.3)

Moreover, the feasible design space that can accommo-
date larger λ shrinks, potentially excluding designs of
superior performance. This effect may dominate the
otherwise increased attainable performance through
the increased accuracy by which the optimizer per-
ceives design performance. In order not to compro-
mise the feasible design space by constraining error,
thus effectively λ, the P analysis order n must change
with the imposed error tolerance ϵ as:

n2

n1
“ logϵ2

logϵ1
, (V.4)

as derived from Equation V.3. A similar reasoning but
slightly more complex derivation applies to B analysis.

Additional computational efficiency may be
achieved by conditionally terminating perturbed analy-
sis when the error constraint is satisfied, or limiting the
order regardless. In fact, conditional termination is a
very common, straightforward, and presently adopted
approach using NR analysis. However, as the conver-
gence of P or B analysis is not guaranteed versus the

number of structural solves, hence analysis order n,
convergence is controlled instead through the design
by constraining its error estimate. Nevertheless, given
low non-linearity or small λ, Figure V.4b indicates that
computational effort is wasted when the error con-
straint is inactive, reducing the error far below the im-
posed tolerance. On the other hand, the first five to ten
solves appear to yield the highest returns of accuracy
and design performance, especially with respect to the
initial computational cost of Cholesky factorization,
and super-linearly increasing cost per future solve. Ar-
guably, perturbed analysis suits its purpose best when
the error constraint is active anyway, requiring the
maximum number of solves to exploit the maximum
extent of structural non-linearity. The presently stud-
ied compliance minimization is an exceptional case
where deformation, and perhaps non-linearity as an
indirect consequence, are minimized.

VI Force Inverter and Micro Grip-
per

Finally, part II of the results is concluded by validating
the proposed and state-of-the-art non-linear structural
analysis methods, applied to more practical topology
optimization problems that much rather tend to ex-
ploit, than minimize structural non-linearity. This is
to conduct a more nuanced discussion on the balance
between, and effect of, non-linearity, analysis order,
and imposed error tolerance. To this end, a classical
force-inverter and micro gripper are optimized here,
inspired by the works of Buhl et al. (2000a). Pedersen
et al. (2001) and Eschenauer & Olhoff (2001). Similarly
to the previous section, the structural and optimiza-
tion problems are formally defined in Subsection VI.1.
Then, Subsection VI.2 follows with a range of result-
ing designs, deformations, analysis errors, and design
performances.

VI.1 Problem Formulations

The force inverter and micro gripper design optimiza-
tions studied within this section are formally defined
here. Figure VI.1 illustrates their design domain’s ge-
ometry, material, and applied boundary conditions,
which are notably similar. Black and white regions
are maintained respectively solid and void throughout
the design optimization. Moreover, their optimiza-
tion problem definitions are identical, as formulated
in Equation VI.1 for Newton-Raphson (NR) analysis,
and Equation VI.2 for Bayesian (B) analysis. The NR
formulation reads:
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pNRq minimize
x

puxqo , (VI.1)

subject to puxqi ď u ,

Vx ď ηV ,

where ux denotes the deformation given some design
x and applied load variable λ using NR analysis, and
puxqo ” uo the output displacement. This time, the
input displacement puxqi ” ui is also constrained. The
error-constrained B formulation then reads:

pBq minimize
x

p
„„uxqo , (VI.2)

subject to p
„„uxqi ď u ,

Vx ď ηV ,
„„
ϵx ď ϵ ,

where p
„„uxqi ”

„„ui and p
„„uxqo ”

„„uo respectively denote
the input and output displacements using B analy-

sis. Again,
„„
ϵx denotes corresponding normed, relative

error-estimate, constrained at or below the tolerance ϵ.
The next subsection presents the results that are

obtained through the parameter sweep specified in
Table VI.1. Again, the effects and limitations of non-
linearity on the error, robustness, and attainable struc-
tural performance are investigated mostly through λ,
while comparing NR to linear and 5th-order B analysis.
This time, a fixed error tolerance ϵ “ 10´3 is imposed.
It is deemed a reasonably ideal value regarding opti-
mization robustness and response accuracy based on
the results and discussion within Section V.

Case parameter Value (range)
Load variable λ r1, 50s

(B) Analysis order n t1, 5u
Error tolerance ϵ 10´3

Material penalization θ 1 ++0.1, up to 3
Void density ς 10´9

EMDS threshold ς 0.01
Density filter radius ∆ 1.6 mm (1.72 elements)

Refinement 36 by 72 elements
Optimization iterations 200

Volume fraction η 0.2

Table VI.1: List of force inverter and micro gripper optimiza-
tion case parameters, and their value (range)
studied in this section. Here, ++ denotes the
increment per design iteration.

As a side note, the original problem formulations
within Pedersen et al. (2001) and Eschenauer & Olhoff
(2001) are rescaled here to facilitate laser-cut, hand-
held prototypes for future testing and demonstrational
purposes. Both optimization problems originally con-

λp

60 mm

uo

κ30
m

m

5mm

symmetry

ui

2.5 mm

(a) Force inverter definition, scaled but similar to the one studied
by (Pedersen et al., 2001) and Eschenauer & Olhoff (2001). Here,
p “ 2.31 N, ui ď u “ 1

3 mm and κ “ 2.78 kN{m.

λp

60 mm

uo

κ

30
m

m

5mm

ui

2.5 mm
10 mm

5 mm

symmetry

(b) Micro gripper definition, scaled but similar to the one studied
by Pedersen et al. (2001) and Eschenauer & Olhoff (2001). Here,
p “ 2.31 N, ui ď u “ 5

6 mm and κ “ 13.9 kN{m.

Figure VI.1: Geometry, material, and boundary conditions
of the force inverter (VI.1a) and micro grip-
per (VI.1b) problems, as studied within this
section and defined in Equation VI.1 and VI.2.
An isotropic, linear elastic material is assumed,
with Young’s Modulus E “ 3 GPa and Poison’s
ratio ν “ 0.4 under plane-strain condition.

cern a 300 µm by 300 µm design domain of thickness
7 µm, assuming isotropic, linearly elastic silicon with
E “ 180 GPa and ν “ 1

3 under plane-strain condition,
p “ 1 mN. Furthermore, for the inverter u “ 2 µm
and κ “ 200 N{m, and for the gripper u “ 5µm and
κ “ 1000 N{m. Through dimensionless groups, these
quantities, excluding ν, have been transformed into
those presented in Figure VI.1, such that nearly iden-
tical relative displacement fields and designs are ob-
tained, but on a handheld, rather than microscopical
scale.

VI.2 Performance and Error

The optimized force inverters and micro grippers are
visualized in their deformed state in Figure VI.2 and
Figure VI.3, including their estimated and final er-
ror and output displacements. Apparently, all force
inverter and micro gripper designs are very similar
versus the analysis method and order n, but change
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ϵ “ 9.9¨10´13 uo “ ´0.96 %

λ
“

1
Newton-Raphson (NR)

ϵ “ 3.4¨10´9 uo “ ´1.84 %

λ
“

5

ϵ “ 1.3¨10´9 uo “ ´2.47 %

λ
“

25

ϵ “ 3.4¨10´11 uo “ ´1.97 %

λ
“

50

ϵ “ 6.8% uo “ ´0.91 %

n “ 1

Bayesian-Enhanced Perturbed (B)

ϵ “ 23.4% uo “ ´1.55 %

ϵ “ 17.7% uo “ ´2.19 %

ϵ “ 14.1% uo “ ´1.76 %

ϵ “ 4.2¨10´5
„„
ϵ “ 3.5¨10´5

uo “ ´0.96 %
„„uo “ ´0.96 %

n “ 5

ϵ “ 4.9¨10´3
„„
ϵ “ 3.8¨10´3

uo “ ´1.83 %
„„uo “ ´1.83 %

ϵ “ 1.8¨10´3
„„
ϵ “ 2¨10´3

uo “ ´2.47 %
„„uo “ ´2.47 %

ϵ “ 9.9¨10´4
„„
ϵ “ 10´3

uo “ ´1.93 %
„„uo “ ´1.93 %

Figure VI.2: Resulting force inverter designs, optimized using Newton-Raphson (NR) and Bayesian-enhanced perturbed
(B) structural analysis, ranging over several loads λ and analysis orders n, given 200 iterations and a target
tolerance ϵ “ 10´3 on the relative normed displacement error estimates for NR, and B with n ą 1. Other
applied regularization steps, geometry and material are stated at the beginning of this section. Here, ϵ and

„„
ϵ

respectively denote the true and estimated errors. Correspondingly, uo and
„„uo respectively denote the true and

Bayesian-predicted tip displacements, relative to the design domain’s width. All true values, and the presented
deformations, are based on a referential NR analysis up to a relative normed residual of 10´10.

more drastically versus the load λ. Nevertheless, non-
linearity remains arguably low, judging from the mod-
est errors resulting from linear analysis n “ 1, and
the designs’ similarity resulting from higher order B
or non-linear NR analysis. The designs are mostly
changing to accommodate the imposed maximum in-

put displacement.

Despite the apparent linearity of all designs, non-
linearity is seemingly exploited in most cases, and effi-
ciently so using B analysis. To clarify, for all loads λ
greater than 1, the force inverter designs resulting from
5th-order B analysis feature a relative displacement er-
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Figure VI.3: Resulting micro gripper designs, optimized using Newton-Raphson (NR) and Bayesian-enhanced perturbed
(B) structural analysis, ranging over several loads λ and analysis orders n, given 200 iterations and a target
tolerance ϵ “ 10´3 on the relative normed displacement error estimates for NR, and B with n ą 1. Other
applied regularization steps, geometry and material are stated at the beginning of this section. Here, ϵ and
„„
ϵ respectively denote the true and estimated errors, and C the true compliance as measured through the
referential NR analysis up to a relative normed residual of 10´10. All presented deformations are based on the
same referential NR analysis.

ror
„„
ϵ very close to the imposed tolerance ϵ “ 10´3.

The same applies to the micro gripper when the load
λ approaches 50. The active error constraint suggests
the optimizer prefers designs close to their limiting
λ. Comparing the designs resulting from both NR
and 5th-order B analysis to linear analysis, a nearly

identical performance increase can be seen despite the
subtle difference in topology. Strikingly, the design
optimizations based on NR analysis required 6 to 7
structural iterations, each of which is much more ex-
pensive than the 5 required by the optimizations based
on B analysis, including Cholesky factorization.
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While the resulting designs, but especially their final
performance or output displacement uo, closely match
those of Buhl et al. (2000b), larger deformations would
be more interesting to study. Occasionally, consider-
ably larger deflections of around 15 % were obtained
by reducing the output stiffness κ and increasing the
maximum input displacement u. Regrettably, design
optimization convergence based on NR, P and B anal-
ysis was often compromised, leaving random clouds
of material or large regions of intermediate densities.
While heaviside projection (Guest et al., 2004) may
have remedied this, its implementation was opted out
due to the additional time and complexity it would
add to the presented work.

VII Discussion

Due to the elaborate discussion conducted throughout
the results, the present section aims to mainly sum-
marize, interpret, and generalize it further beyond the
particularly studied cases of structural analysis and
optimization. Overall contributions and benefits of
the proposed Bayesian-enhanced perturbed structural
analysis are discussed in Subsection VII.1, and com-
pared to state-of-the-art linear and Newton-Raphson
analysis within structural topology optimization. Cor-
respondingly, the major limitations are critically ex-
amined in Subsection VII.2. Then, Subsection VII.3
follows up with a very brief practical guide on rec-
ommended use, balancing benefits and limitations. It
mainly argues sufficient or ideal parameter values and
existing tools regarding regularization, optimization,
and tensor decomposition. Finally, Subsection VII.4
concludes the discussion, recommending future work
extending current benefits and remedying current limi-
tations of perturbed analysis, within and without struc-
tural analysis or topology optimization.

VII.1 Contributions

Arguing from the mathematical method and numer-
ical results, the novel Bayesian-enhanced perturbed
structural analysis appears to have extended the pow-
erful design capabilities of topology optimization with
much of the qualitative aspects of non-linearity, with-
out as much of the computational ramifications asso-
ciated with state-of-the-art Newton-Raphson analysis.
Its five major contributions and benefits are summa-
rized and clarified in the following paragraphs.

1) Perturbed structural analysis provides a contin-
uous non-linear extrapolation of deformation „upλq or
„„upλq versus load λ. The continuous extrapolation es-
pecially benefits the computational efficiency of re-
sponses based on multiple equilibrium points, or inte-
grations along the equilibrium curve. As discussed in
Subsection VII.4, perturbed analysis may be straight-

forwardly generalized towards multiple expansion
points other than the undeformed state considered
in the present work.

2) Particularly the Bayesian-enhanced equivalent
to the pure MacLaurin-based perturbed analysis pro-
vides a stable means of deformation extrapolation

„„upλq,
with predictable error. Some nth order extrapolation
features nth order convergence towards the true de-
formation as λ approaches the expansion point. On
the other hand, it ultimately diverges only linearly as
λ exceeds the radius of convergence λ with respect
to the expansion point, benefitting the robustness of
the structural optimization. Considering some fixed
λ,

„„upλq respectively features linear convergence and
divergence versus n, within and without the radius
of convergence. This is derived in Appendix C and
demonstrated in Section IV.

3) More specifically, the deformation extrapolation
„„upλq is paired with an accurate posterior error estimator
including its design sensitivity, at negligible compu-
tational cost. It has been demonstrated as a reliable
tool to enforce some desired tolerance throughout the
design optimization in Section V and VI. This ensures
a certain degree of accuracy of the predicted design
performance and feasibility, but more importantly, it
improves the design optimization robustness.

4) By exploiting a decomposed tensor reformulation
of the non-linear structural equations, computational
effort and memory storage required for internal force
and tangent stiffness evaluations can be reduced even
below that using Bathe’s traditional formulation 2016,
as elaborated in Appendix A. The structural tensors
fully take care of domain integration inherent to the
finite element method, by factoring out the multilinear
deformation dependence of energy, force, stiffness, and
higher-order equivalents. Moreover, their expensive
decomposition can be performed on the element level,
and tabulated off-line, to be cheaply recycled for all
elements throughout all future topology optimizations,
given that their structural models are linearly related.

5) Most importantly, the proposed Bayesian-
enhanced perturbed analysis has shown computational
efficiency conditionally superior to Newton-Raphson
analysis, given the same error tolerance, while often
yielding nearly identical design performance improve-
ments compared to using linear analysis. Admittedly,
Newton-Raphson converges quadratically versus the
number of structural solves, when provided with tan-
gent stiffness matrix updates. While perturbed analy-
sis converges linearly at the same initial rate, it does
not require tangent stiffness updates and can hence
exploit a relatively cheap Cholesky factorization. The
resulting cost per solve is significantly lower, especially
considering more degrees of freedom. This equips per-
turbed analysis with a much greater initial accuracy
gain versus computational effort compared to Newton-
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Raphson analysis, as visualized in Figure II.7. Up to
moderate perturbed analysis orders, the cost of higher-
order tensor contractions involved in constructing the
necessary right-hand-side vectors remains negligible.
Moreover, higher orders of perturbed structural anal-
ysis yield severely diminishing returns of accuracy
versus computational effort anyway, being the focal
point of its remaining limitations and recommended
future work discussed next.

One of two minor, more arguable contributions
worth addressing is the custom element deforma-
tion scaling proposed in Subsection III.5. Judging
from Subsection IV.2, it appears to successfully rem-
edy issues related to void elements for both Newton-
Raphson and perturbed analysis, such as poor con-
vergence and excessive deformations. However, this
approach hardly differs from F. Wang et al.’s (2014),
and may even become redundant when implementing
an element- or degree-of-freedom-specific error esti-
mator into the Bayesian-enhanced perturbed analysis,
as recommended in Subsection VII.4.

Lastly, an arguable contribution may be the provided
explanation for the effectiveness of rational extrapola-
tion, including a more robust formulation compared
to Cochelin, Damil, & Potier-Ferry’s 1994. The alge-
braic analysis (Subsection II.4) and Bayesian-averaging
(Appendix C) both provide a strong argument for
Padé-like or rational extrapolation from different per-
spectives, particularly using a shared denominator of
all deformation and load components (El Kihal et al.,
2022). Perhaps this contributes an explanation for the
reportedly mysterious effectiveness (Noor & Peters,
1983) of more traditional Padé extrapolations. More-
over, the spurious poles or divergence encountered in
other works (Cochelin, 1994; De Boer & Van Keulen,
1997; El Kihal et al., 2022), are inherently prevented
through the Bayesian-averaged MacLaurin extrapo-
lation proposed in Subsection III.4, simply being a
continuously weighted average of polynomials. In
fact, it was the very attempt to optimize robustness
and minimize estimated error, that turned the origi-
nal set of MacLaurin series into a vectorial Padé-like
extrapolant. It is as if algebraic problems truly desire
rational solutions, even if by means of a substantially
truncated degree compared to the astronomically high
but finite degree47 of some rational parametric formu-
lation perfectly tracing a branch of the equilibrium
curve.

VII.2 Limitations

Despite its merits and potential discussed in the pre-
vious subsection, perturbed analysis is an unpolished,
double-edged sword. There is much room for improve-
ment regarding its effectiveness, efficiency, scaling, and

47Recall that Subsection II.4 argues the existence and degree of the
perfect rational parametric solution to a set of algebraic equations.

user-friendliness, within pure structural analysis and
topology optimization. Its five major limitations are
summarized and clarified in the following paragraphs.

1) The radius of convergence λ appears to be the
dominant barrier to improved accuracy and efficiency
of perturbed analysis. Given some error tolerance,
increasing the order and computational effort only
asymptotically increases the allowable extent of non-
linearity λ, ultimately limited by the radius of con-
vergence. Typically, accuracy only gets worse beyond
this radius, but better within it, with both effects pro-
nounced the further away from this radius. From
another perspective, increasing this radius roughly
exponentially reduces the required effort for some
given error tolerance for both the pure MacLaurin-
based analysis and its Bayesian-enhanced version. As
further discussed in Subsection VII.4, the radius of
convergence strongly depends on the chosen parame-
terization of both displacement „upaq and load variable
„
λpaq in terms of some path parameter a (Najah et al.,
1998; Cochelin, Damil, & Potier-Ferry, 1994). Arguably,
the presently adopted load-controlled analysis λ “ a
is the worst choice, inherently forcing load limits to be
singularities, bounding the radius of convergence.

2) The adopted load-controlled formulation directly
limits the utility of perturbed analysis, extending the
previous argument. It prevents the analysis, hence
design, of strongly non-linear mechanics such as multi-
stability or (near-)zero actuation stiffness. Then again,
a parametric formulation where displacement „upaq
and load variable

„
λpaq are both functions of some path

parameter a is much less difficult to obtain. Much
more so is finding a particular parametric formula-
tion that actually increases the radius of convergence.
While not documented in this work, an experimental
parametric extension of the proposed perturbed anal-
ysis has been obtained. Here, the newly introduced
coefficients within

„
λpaq were resolved by imposing a

constant path-rate of p„upaq,
„
λpaqq versus a. While this

parameterization is capable of passing load limits, its
radius of convergence generally appeared no larger
than that of the load-controlled formulation when fur-
ther away from load limits.

3) Scaling up the order, degree of non-linearity,
or number of freedom degrees for a structural ele-
ment may be problematic to perturbed analysis and
tensor formulation, especially considering the tensor
decomposition. This pertains to higher-order strain
models, shape functions, three spatial dimensions, or
even worse, non-polynomial or non-conservative en-
ergy models. The presently adopted two-dimensional,
conservative elasto-mechanics with quadratic Green-
Lagrange strain model may have played a large role
in the methodology’s apparent feasibility, especially
the decomposed tensor formulations which readily
posed one of the most difficult challenges encoun-
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tered throughout the present work. The curse of di-
mensionality certainly applies to the np-hard tensor
decomposition (Comon et al., 2008). Moreover, the
tensor rank exponentially increases versus the degree
of non-linearity, and at least super-linearly versus the
element’s number of freedom degrees, based on Equa-
tion II.7. Potential remedies are discussed in Subsec-
tion VII.4. Then again, the decomposition needs to
be carried out once and for all, while the resulting
efficiency of future contractions remains to be inves-
tigated. Even if the tensorial reformulation of any
polynomial model proves the most efficient in terms
of floating-point operations and memory, given a min-
imal decomposition, obtaining the latter remains a far
from trivial topic of ongoing academic research (Ge &
Ma, 2022; Hopkins & Shi, 2019; Battaglino et al., 2018;
Rabanser et al., 2017).

4) Implementing and using perturbed analysis is
much less straightforward than Newton-Raphson or
linear analysis, affecting its accessibility. This concerns
obtaining and decomposing the elemental structural
tensors, the recursive higher-order analysis itself, for-
mulating responses based on it, and their (adjoint) sen-
sitivity analysis. It currently requires in-depth knowl-
edge on the workings behind the methodology. It
adds to the readily increased complexity inherent to
responses based on non-linearity, such as critical load
(Baguet & Cochelin, 2002).

5) The facilitated control of a displacement-based
error estimator may still be loose on the residual force.
When the displacement error of fixed magnitude aligns
with stiffer eigendeformations, greater residual forces
may be observed. However, residual evaluations, and
especially their design sensitivities, are much more
expensive than the displacement error estimators as
proposed in this work for perturbed analysis. Depend-
ing on the desired structural performance, indirect
rather than direct residual control might be problem-
atic.

While not exactly a limitation, the proposed element
deformation scaling and Bayesian enhancement of the
perturbed analysis played a much smaller role in the
optimization robustness, than the greatly increased
accuracy for larger loads seems to suggest (see Fig-
ure IV.2 and IV.5). In fact, most robustness seems
to be derived directly from the imposed error con-
straint, as without it the optimizer promptly diverges
as soon as the estimated error breaches about one to
ten percent. Even then, the error constraint had to be
complemented with a trust region, restricting a design
change of x such that any of its components never
exceeds some small number. Most results obtained
in this work converged consistently imposing a max-
imum design change of 0.1. Admittedly, the slightly
increased radius of convergence due to Bayesian av-
eraging likely contributed to robustness through the
increased feasible design domain, in addition to the at-

tenuated divergence of the analysis beyond the radius
of convergence.

VII.3 Recommended Parameter Values

In order to exploit the benefits of perturbed geometri-
cally non-linear analysis within topology optimization
of compliant mechanisms, a brief parameter guide
is provided here. Notably, for all newly introduced
tunable regularization and optimization parameters,
ideal values can be argued without considering the
particular structural optimization problem. Provided a
functional implementation of perturbed analysis, most
regularization parameters can be chosen to more than
sufficiently improve the structural analysis and opti-
mization robustness, without noticeably sacrificing the
structural model and analysis accuracy, or regularity of
the optimized results. Lastly, some advice is given on
some potential implementation difficulties or choices
towards a functional perturbed structural analysis.

Starting with the regularization parameters of the
solid isotropic material penalization and custom el-
ement material deformation scaling, their ideal val-
ues (Table VII.1) can be argued directly from the re-
sults in Section IV and the literature. The material
penalization exponent θ has produced satisfactory re-
sults when slowly incremented from 1 towards 3, in
the present work but also that of others (Deaton &
Grandhi, 2014). When the desired black-white projec-
tion is still insufficient, Heaviside projection filtering
(Deaton & Grandhi, 2014) is advised much rather than
further increasing θ. As for the minimum void den-
sity ς, the (effective) value of 10´9 is not uncommon
(Yoon & Kim, 2005; Buhl et al., 2000a; Sigmund, 2001;
van Dijk et al., 2014). Moreover, values up to 10´6

resulted in a physical error below one percent of the
C-Beam analysis (Figure IV.7a), meaning the duly dis-
cussed error tolerance ϵ typically results in dominant
effects. Choosing ς much lower than 10´10, however,
may affect the conditioning of structural solves. Cor-
responding to this range of void densities, an EMDS
threshold ς around 0.01 perfectly remedies the effect
of voids on the robustness and convergence of both
Newton-Raphson and perturbed analysis, without in-
troducing any physical error (Figure IV.7a). Lastly, the
effect of density filtering changes least with the ele-
ment refinement, when choosing the radius ∆ equal to
one, plus some constant proportional to the refinement.
Whatever this constant is, may still very much depend
on the desired minimal structural feature size or per-
sonal preference, as long as it is non-zero to prevent
checkerboarding and single-noded hinges (Sigmund
& Petersson, 1998).

Moving on to the optimization parameters, the ideal
value of the analysis order n and normed relative error
tolerance ϵ is more nuanced (Table VII.2). Assum-
ing convergence, increasing n yields exponentially di-
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Regularization parameter Value (range)
Material penalization θ 1 ++0.05, up to 3

Void density ς
“
10´10, 10´6‰

EMDS threshold ς 0.01
Density filter radius ∆ 1 ` ∆, with

∆ ě 0 proportional
to refinement for
regularity of filtered
structural design.

Table VII.1: List of reasonably ideal or sufficient regulariza-
tion parameters, based on the present work.

minished returns of accuracy versus ultimately super-
linearly increased computational cost. Moreover, the
direct effect of analysis error on the response surfaces,
and most importantly the locations of their minima or
roots versus the design x, is hard to predict. Without a
doubt, however, the feasible design domain and poten-
tially attainable performance grow and shrink directly
with the effective allowable load λ, resulting from the
analysis order n and imposed error tolerance ϵ. In this
sense, maximizing n and ε is desirable. Still, recalling
the diminishing returns versus n, some value up to
20 should take a total solve time close to the order
of magnitude of the initial Cholesky decomposition
while yielding most of the attainable accuracy. Some
sufficiently robust ϵ of 0.001, 0.01 or 0.1, respectively
translates to an allowable load λ{λ of 0.71, 0.86 or
0.89, using λ{λ “ ϵ1{n, rewritten from Equation B.2.7.
While further work is needed to pinpoint the ideal
tolerance ϵ, values much greater than 0.01 primarily
affect the optimization robustness, next to causing a
less predictable performance loss resulting from re-
sponse inaccuracy. Yet, values much smaller than 0.01
may yield a much more detrimental performance loss
by restricting the design domain, unless n is increased
proportionally to log ϵ.

Optimization parameter Value (range)
Error tolerance ϵ 0.001 to 0.1
Analysis order n 5 to 20. Change

proportionally to log ϵ
for regularity of
feasible design domain.

Table VII.2: List of reasonably ideal or sufficient optimiza-
tion parameters, based on the present work.

As a final remark on truncating the perturbed anal-
ysis order, the gain in computational efficiency is not
expected entirely worth the introduced discontinuity

of λ, „
ϵ or

„„
ϵ, denoting the convergence radius, MacLau-

rin extrapolation and Bayesian error estimators. As
demonstrated in Figure V.3, when the error constraint
becomes active, it remains active throughout most
of the optimization requiring the maximum analysis

order. A notable exception is during problem formula-
tions inherently avoiding deformation, thus arguably
non-linearity, such as during compliance minimiza-
tion. This should become apparent during a quick
initial optimization attempt, and n could be reduced
accordingly without truncating the analysis dynam-
ically based on the error criterion. Regardless, any
potential user is encouraged to experiment.

VII.4 Recommended Future Work

In order to remedy the current limitations and further
exploit or apply the benefits of perturbed geometri-
cally non-linear analysis more generally, future work
is recommended here, divided into seven groups. No-
tably, the radius of convergence and algebraic analysis
are discussed first, addressing limitations 1) and 2) of
perturbed analysis, as listed in Subsection VII.2. Then,
some alternative extensions of (Bayesian-enhanced)
perturbed analysis are discussed, such as partially
inverting the internal force function, using multiple
expansion points, incorporating zeroth-order informa-
tion, combining multiple approximation methods, and
further exploiting the continuous nature of the per-
turbed analysis prediction.

1a) The first and foremost future recommendation is
to extend the radius of convergence or range of validity
of the perturbation method, particularly through para-
metric and algebraic analysis. The choice of parameter-
izing the equilibrium curve prediction has been noted
as highly influential on the radius of convergence. Par-
ticularly rational or Padé-like extrapolation has been
observed to result in spectacular improvements upon
polynomial extrapolation (Cochelin, Damil, & Potier-
Ferry, 1994; De Boer & Van Keulen, 1997; Najah et al.,
1998). Reportedly, this could increase the radius of
convergence up to tenfold, although this likely paints
an optimistic picture. At any rate, an explicit or load-
controlled formulation directly limits the extent to
which a generally strongly non-linear curve can be
accurately described. However, any arbitrary means of
formulating both displacement and load non-linearly
or even rationally versus some path parameter may
still not directly yield the desired increased radius of
convergence. Therefore, it is recommended to consult
or employ an algebraic geometer, as the following clar-
ification and approach of algebraic analysis may still
be vague or insufficient.

1b) Perturbed algebraic analysis embraces the al-
gebraic nature of the structural equations, to which
a perfect (piecewise) rational parametric formulation
of the solution exists, as elaborated in Subsection II.4.
Where parametric analysis includes a non-linear for-
mulation of displacement and load, algebraic analysis
includes yet another variable48, assuming it and the

48This additional variable could be considered a homogenization
variable, homogenizing the governing set of algebraic structural
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former as polynomials:

$
’’&
’’%

„upaq “ Upaq
Zpaq

„
λpaq “ Λpaq

Zpaq
: f

`„upaq˘ “ „
λpaqp , (VII.1)

with the components of Upaq, Λpaq, and Zpaq being
univariate polynomials of degree up to 3N given N
degrees of freedom and a fourth-order multivariate
polynomial model of strain energy. The additional free-
dom within the parameterization of this new variable
Zpaq can then be exploited directly to maximize a cur-
rent estimate of the radius of convergence. Moreover,
the true radius of convergence using this formulation
is argued as infinite in Subsection II.4, since an astro-
nomically high but finite order of perturbed algebraic
analysis should perfectly trace the local branch of the
equilibrium curve. Rather than using incrementally
higher-order polynomials, algebraic analysis aims to
approximate the algebraic equilibrium curve using
other, incrementally higher-order algebraic curves.

1c) As a final addition to the robustness and accu-
racy of perturbed algebraic analysis, Bayesian averag-
ing of all obtained predictions up to the current order
could be applied. This step hardly differs from the pro-
posed Bayesian enhancement of the pure MacLaurin-
based perturbed analysis in this work. The required
error estimate should be straightforward as well, by
starting with the error estimate of all involved numer-
ator and denominator polynomials, applying the same
reasoning as in Appendix B.2. Moreover, this Bayesian
enhancement of perturbed algebraic analysis should
preserve the rational nature and shared denominator
among all load and displacement components, hope-
fully featuring the associated range of validity reported
in Cochelin, Damil, & Potier-Ferry (1994); De Boer &
Van Keulen (1997); Najah et al. (1998); El Kihal et al.
(2022), in addition to the increased robustness as vali-
dated in the present work for MacLaurin predictions.

2) Applying algebraic analysis on the element level,
and considering a multivariate load variable λ scaling
(orthogonal) loads, may lead to an effective, partial
inverse of the internal force function. To clarify, ap-
plying a pure translational or rotational force to an
unconstrained element yields an infinite or undefined
deformation. Instead, by considering perturbed anal-
ysis along all eigendeformations at the undeformed
state, or eigenvectors of the initial stiffness matrix as-
sociated with nonzero eigenvalues in V , the following
structural equation can be solved for:

f
`„upaq˘ “ V ‚ „

λpaq (VII.2)

assuming a rational description of
`„upaq,

„
λpaq˘ versus

a. As a starting point, a MacLaurin-based or Bayesian-

equations to a single multivariate monomial.

enhanced perturbed analysis could be considered in-
stead, being readily developed throughout the present
work. In order to apply this analysis, one could first
assume the rigid body deformation of a particular el-
ement and then apply the approximate inverse. This
cycle then repeats by updating the assumed rigid body
deformation through some Newton-Raphson or per-
turbed analysis, or heuristically. Essentially, most of
the non-linear analysis would be carried out cheaply
through forward application of this approximate in-
verse, leaving only the rigid body deformations to
traditional solution methods. This may be especially
efficient for higher-order elements, as the number of
rigid body modes always remains three or six, respec-
tively considering two and three spatial dimensions of
kinetic freedom.

3a) Including multiple expansion points in addition
to the undeformed state, is one of two ways (Bayesian-
enhanced) perturbed analysis may be extended much
more straightforwardly than by using algebraic ge-
ometry. This would involve consecutive higher-order
predictions requiring little to no corrections49. This
is still distinct from some higher-order or modified
Newton-Raphson approach, as it does not involve cor-
rections. The obtained separate predictions and their
respective error estimators may be smoothly and stably
unified, or interpolated, through Bayesian averaging,
yielding a single continuous prediction rather than a
piece-wise one. In fact, this approach to accurately
and robustly unifying separate extrapolations was the
inspiration behind the proposed Bayesian-enhanced
perturbed analysis, where multiple expansions in a
single point were smoothly combined instead. An
additional advantage is that the posterior error estima-
tion could lead to an automatized posterior step-size
selection. This could balance computational effort ver-
sus estimated error per unit of user-defined arc length,
based on some user-specified tolerance.

3b) Complementary to the previous lateral exten-
sion of Bayesian-enhanced perturbed analysis, one
could incorporate zeroth-order information into the
Bayesian average50. To clarify, the zeroth-order pre-
diction „u0pλq “ 0 may actually improve the accuracy
of

„„unpλq at λ “ λ where all predictors are equally
(in)accurate, and especially for λ ą λ where all other
predictors diverge. However, one may argue some
qualitative benefits of having

„„unpλq tend to„u1pλq rather
than the quantitatively more accurate „u0pλq “ 0 as λ
increases beyond λ.

4) Higher-order or even non-polynomial structural
element models need not be entirely prohibitive to per-

49The low need for corrections using higher-order prediction
stems from the inherent possibility to strongly prevent and predict
error, where linear analysis minimally prevents and cannot predict
error.

50Regrettably there was no more available time to incorporate and
study a zeroth-order prediction in the present work.
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turbed analysis and a decomposed tensor formulation,
when using a lower-order polynomial approximation
of this element model. This may address the scaling
limitation of the perturbed analysis and tensor decom-
position discussed in Subsection VII.2. For instance,
the approximation may feature a certain extent of ac-
curacy up to some percentage of normed strain, or
perfect first-order accuracy near the undeformed state
and rotational invariance as desired. Moreover, rather
than finding the required structural tensors, one could
directly optimize for their decomposition. At times,
approximating the governing equation rather than its
solution may be much more feasible in terms of effi-
ciency and accuracy. The quadratic Green-Lagrange
strain approximation is a prime example of how the
corresponding global structural equilibrium solutions
remain more than sufficiently useful, despite some
higher-degree or even non-polynomial strain model
being more physically accurate.

5) By estimating the error’s value and its rate of
convergence or divergence locally, rather than glob-
ally, meaning for each respective element or node,
two benefits may be obtained. Firstly, locally converg-
ing predictions versus analysis order n need not be
wasted in the attempt to suppress divergence within
that of other elements or degrees of freedom. Secondly,
the proposed EMDS (Element Material and Deforma-
tion Scaling) becomes redundant. To clarify, EMDS
preventively linearizes structural behavior and hence
divergence, based on the local density, while Bayesian
analysis does so based directly on the local extent of
divergence. Ultimately, the latter is what truly matters,
but whether the overall implementation and compu-
tational difficulties increase or decrease remains to be
tested. The Bayesian error estimate response

„„
ϵxpλq and

its design sensitivity do become more complex and
potentially more expensive, respectively turning into a
vector and matrix of dimensions equal to the number
of elements or degrees of freedom.

6a) Preconditioning, orthogonalizing or otherwise
exploiting a transformed set of higher-order displace-
ment derivatives, may improve the gained accuracy
to effort ratio of the resulting higher-order predic-
tion. A Gramm-Schmidt orthogonalization of the basis!

up1q, . . . , upnq
)

has already been used by Najah et
al. (1998) to precondition his Padé-approximant, but
may further enforce the independence of contributions
or errors as assumed during the Bayesian averaging
proposed in the present work. In addition, the many
multilinear forms involved in the higher-order resid-
ual calculations may be mathematically and numeri-
cally simplified by orthogonalizing the higher-order
displacement derivatives. Moreover, principal compo-
nent analysis of this basis typically reveals that most
information resides within the first few derivative vec-
tors (Imazatène et al., 2001). Even more, higher-order

derivatives seem to ultimately fall into a precisely re-
peating pattern, as indicated by their inner product
in Figure VII.1 for the C-Beam analysis up to the 50th

order. This further suggests the finity of their com-
bined information, and perhaps may lead to a way
of extracting a disproportionately high or even maxi-
mal order prediction, from a relatively small number
of derivatives. A quick, undocumented experiment
was conducted, fitting a linear map from the last three
derivatives to a new one. Fitting this map on some
first n ě 15 derivatives, yielded an accurate recursive
prediction of the next n derivatives before the normed
relative error exceeded 0.01, at negligible cost com-
pared to a structural solve.
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Figure VII.1: Alignment αpq of the pth and qth displacement
derivatives from the C-Beam analysis in Sub-
section IV.1, for p, q “ 1, . . . , 50. Here,
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7) Reduced-order modeling (ROM) may become es-
pecially feasible when combined with perturbed analy-
sis and topology optimization. Among others, Noor &
Peters (1983) and Imazatène et al. (2001) have demon-
strated the potential of ROM using perturbed analysis
of fixed designs, while Gogu (2015) has done so using
linear analysis within large-scale topology optimiza-
tion. Finally, L. Zhang et al. (2023) extended the latter
to non-linear analysis, although the sensitivity analysis
proved computationally impractical, requiring its ap-
proximation. However, the proposed perturbed analy-
sis nearly directly provides a reduced solution basis.
As argued in recommendation 6a), a small number of
displacement derivatives may readily span most of the
solution space, which may be cheaply orthogonalized
using a Gramm-Schmidt procedure. Moreover, the
adjoint sensitivity formulation of responses based on
the original basis of displacement derivatives has also
been demonstrated to be computationally efficient. In
addition, the decomposed tensorial reformulation pro-
posed in this work may remedy the prohibitive cost of
the many involved residual force evaluations, or their
higher-order derivatives in this case, when updating
the ROM "on-the-fly" (Gogu, 2015) throughout the op-
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timization. Alternatively, one could construct a small
basis through low-order perturbed analysis, and com-
plete the structural analysis by applying higher-order
perturbed, or even Newton-Raphson analysis, within
the reduced basis.

8) Exploiting the continuous nature of the predicted
equilibrium curve is the last, but certainly not least im-
portant recommendation for future work. Regrettably,
there was no more time for its implementation and
validation within the present work. This would further
validate the first major contribution of perturbed anal-
ysis within structural optimization, mentioned in Sub-
section VII.1. When responses are based on multiple
points on, or integrals along the equilibrium curve, the
utility and computational efficiency of perturbed anal-
ysis is expectedly further emphasized over Newton-
Raphson analysis. Notable applications are designing
biomedical devices featuring multi-stability (Parenti-
Castelli & Sancisi, 2013; Zhu et al., 2020), non-linear
path generators (Megaro et al., 2017) and frequency
multipliers (MacHekposhti et al., 2018), as mentioned
in Section I. Polynomial predictions are particularly
suited for analytical integration, and numerical inte-
gration through Gauss quadrature. Moreover, even ra-
tional predictions are still manageable through quadra-
ture rules, and a Gauss-type quadrature rule exists that
can even exactly integrate rationals (Gautschi, 1993).
This further facilitates integration-based responses for
the currently undeveloped algebraic analysis.

VIII Conclusion

In order to address the rapidly increasing demand
for compliant mechanisms of superior performance,
the impact and challenges of non-linearity have been
demonstrated and tackled in this work. Using the
established powerful design capabilities of topology
optimization, a novel means of non-linear structural
analysis is developed as an alternative to the most pop-
ular but arguably lacking Newton-Raphson procedure.
While the much lesser-known perturbed or asymptotic
structural analysis has been extensively studied since
even before the notable works of Thompson & Walker
(1968); Noor & Peters (1983) and Cochelin (1994), it
has not been implemented into a structural optimiza-
tion setting51 until the work of Hoevenaars (2021),
albeit a finite difference version. The present work
furthers their independent efforts. It extends topol-
ogy optimization with a modified, Bayesian-enhanced
perturbed structural analysis, error estimator, custom
element deformation scaling, and an adjoint design
sensitivity analysis of responses based on the former.
The required higher-order displacement derivatives
are obtained through an exact multivariate polyno-

51To clarify, no clear documentation has been found on load-
perturbations, not to be confused with design-perturbations.

mial reformulation of the structural equations, and the
higher-order tensor contractions are mediated through
prior integrated and decomposed element tensors. Ad-
mittedly, the current state of perturbed analysis is that
of an unpolished, double-edged sword.

On its sharp end, the proposed Bayesian-enhanced
structural analysis appears to be a conditionally supe-
rior and generally more versatile alternative to both
linear and Newton-Raphson analysis, within structural
design optimization. Especially considering higher
loads, accounting for non-linearity has yielded in-
creased performance during all topology optimization
case studies. To clarify, Bayesian-enhanced perturbed
analysis often achieved identical designs thus perfor-
mance improvements, using noticeably less computa-
tional effort, compared to Newton-Raphson analysis
subjected to the same displacement-based error toler-
ance.

Perturbed analysis should become especially effi-
cient and useful compared to Newton-Raphson analy-
sis, due to the continuous nature of its equilibrium pre-
diction and analytically available higher-order struc-
tural derivatives. This entails design responses based
on more than a single equilibrium point, or definite
integrals along the equilibrium curve, including all
analytically available elastic energy derivatives such as
internal force, tangent stiffness, stiffening, and higher-
order equivalents. Moreover, it would be wasteful not
to employ such responses that exploit structural non-
linearity to the fullest extent. Notably, recall the exam-
ples of biomedical devices featuring multi-stability
(Parenti-Castelli & Sancisi, 2013; Zhu et al., 2020),
hand-held tools featuring near-zero actuation stiffness
(Lourdes Thomas et al., 2021), non-linear path gener-
ators (Megaro et al., 2017) and frequency multipliers
(MacHekposhti et al., 2018) mentioned in Section I.

Currently, perturbed analysis is mostly limited by
its radius of convergence, partially through the load-
or displacement-controlled formulation. Ultimately,
this restricts the extent of non-linearity within error-
constrained design optimization, and hence the fea-
sible design domain and expected attainable perfor-
mance. In some of the highest load cases, still positive
yet smaller performance gains were observed through
Bayesian analysis52. In such cases, it is suspected that
the active error constraint either slows the design’s con-
vergence or restricts its domain of feasibility. It does
testify to the functionality of the implemented error
constraint, bounding the true structural analysis error
often within 50 percent relative to some desired toler-
ance. This is decidedly vital in preventing divergence
of the analysis and optimization, more so than just
reinforcing confidence in the predicted performance

52On a single occasion, the Bayesian-enhanced perturbed analysis
for n “ 5 and λ “ 20 yielded a performance worse than linear
analysis in the compliance minimization study case, as can be seen
in Figure V.2).
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of a particular design. The radius of convergence
may never be breached without severe loss of accu-
racy, hence the radius must be increased to facilitate
superior design performance.

A particularly interesting but speculative prospect
of perturbed analysis, may be its combination with re-
duced order modeling (Noor & Peters, 1983; Imazatène
et al., 2001), potentially constructed and updated "on-
the-fly" throughout the structural optimization (Gogu,
2015), but without impractically expensive sensitivity
analysis (L. Zhang et al., 2023). Although this does not
directly remedy the limiting radius of convergence of
perturbed analysis, it may further increase its compu-
tational efficiency.

Regarding the potential of perturbed analysis for
non-linear analysis in general, the foremost recom-
mendation based on the present work is to increase
the radius of convergence, particularly by embracing
vectorial, rational extrapolation and algebraic geom-
etry. To clarify, in subsection II.4 it was first learned
that a rational parametric form exists with a shared
denominator among all components, that perfectly
traces a curve governed by an algebraic set of equa-
tions. Considering a set of low-degree Taylor extrapo-
lations of the solution instead, their Bayesian average
of minimized expected truncation error as proposed
in Subsection III.4 again results in a vectorial Padé,
hence rational extrapolation. Thirdly, rational and
particularly vectorial, diagonal Padé extrapolations
have been noted to feature a surprising accuracy and
ranges of validity (Najah et al., 1998; Cochelin, Damil,
& Potier-Ferry, 1994; Imazatène et al., 2001; El Kihal et
al., 2022), although it should hardly be surprising at
this point. Augmenting Bayesian-enhanced perturbed
analysis with algebraic geometry, as further argued in
Subsection VII.4, would certainly address the radius of
convergence that currently bottlenecks the proposed
error-constrained topology optimization framework.

Much more exciting than the potential contributions
stemming from perturbed analysis to structural op-
timization, is the wide range of non-linear problems
within and without the field of structural engineering,
where it may prove useful. The author hopes to draw
the attention of mathematicians and engineers special-
ized in algebraic geometry and numerical analysis, so
that perhaps they can ultimately turn the inevitable
hurdle of non-linear analysis into a more efficient,
accurate, robust, and accessible tool throughout the
fields of applied and theoretical science.
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A
Finite Element Tensor Formulation

The structural equations are fundamental to modeling and analyzing the non-linear relation between
applied load and deformation. They are used to provide a numerical indication of a structure’s
expected performance in practice. The structural model adopted in the present work is founded on
the seminal procedures of Bathe (2016, Chapter 6). This first appendix aims to provide supplementary
details on the methodology elaborated in Section III, mainly considering the structural equations on
the element level. First, Appendix A.1 elaborates Bathe’s canonical form of internal energy, internal
force, and tangent stiffness. Then, Appendix A.2 extends their formulation using even higher-order
displacement-derivatives, facilitating a multivariate, tensorial formulation and the perturbed structural
analysis. Finally, Appendix A.3 shows how to decompose the involved structural tensors, turning the
otherwise computationally impractical form even more efficient than the canonical form. Note that each
subappendix concludes with a floating-point operation count for the internal force f puq and tangent
stiffness Kpuq, respectively through their canonical, dense tensorial, and decomposed tensorial forms.

A.1 Canonical Structural Equations

Recall from Section III that the density-based structural design is modeled using a regular grid of
tiny structural elements of varying stiffness, after subdividing design-domain Ω (Figure III.1) into
some M corresponding element-domains. Design vector x P RM then contains for each element a
continuous scalar between zero and one, controlling these stiffnesses, effectively defining the total
structure’s design and consequently its structural energetic and kinematic behavior. The latter is
characterized by the (non-linear) relation between the deformation- and applied pressure fields, such
that the total potential is minimized, and the boundary conditions are satisfied. Both fields and their
boundary conditions are mediated through work-equivalent nodal quantities, deformation-vector u P RN

and applied force-vector p P RN respectively, with N as the amount of deformation freedom degrees
among the nodes. Since structural assembly and coordinate mapping have readily been covered in
Subsection III.5, the presented derivations of the structural equations concern only a single structural
element over its natural coordinates for simplicity.

Consider the single, two-dimensional, four-noded structural element e in its deformed state in
Figure A.1.1. Let its initial or material coordinates be denoted by 0ξ P0 Ωe Ă R2, with the material
domain 0Ωe taken as the square between ˘1 along both coordinates. The material, hence the initial
material coordinates 0ξ, may arbitrarily deform towards some other tξ “0 ξ ` u˚p0ξq P R2, where
u˚p0ξq P R2 denotes the local material displacement. However, considering the element as a very
small but finite part of a continuous structure, this deformation may be accurately approximated by
interpolating the nodal displacements, accommodating finite computational power. The remainder of
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this subappendix shall elaborate on the mentioned displacement interpolation, the elastic energy stored
within this deformed element, and its displacement derivatives required to find structural equilibrium,
according to the seminal procedures of Bathe (2016, Chapter 6).

„
u1
u2

ȷ

tξ2

tξ1

0ξ1

0ξ2

„
u5
u6

ȷ„
u7
u8

ȷ

„
u3
u4

ȷ

0Ωe

tΩe

A

D

B

C

Figure A.1.1: Coordinate mapping diagram for some element e. w.r.t. global frame of reference: a. w.r.t. local
spatial coordinates: ta. w.r.t. local deformed material coordinates: 0a

The elastic potential, or internally stored energy Ee (Equation A.1.1) of the deformed elastic element e
(Figure A.1.1), is modeled using bilinear nodal interpolation of deformation, and Green-Lagrange strain
through a total Lagrangian approach, assuming isotropic linear elasticity. In essence, local strain-energy
is integrated over the element’s undeformed material domain Ωe ”0 Ωe, based on nodally interpolated
deformations and corresponding strains, elaborated duly:

Ee “
ĳ

ξPΩe

1
2 γm Dmnγnloomoon

τm

dΩe ,
m “ 1, 2, 3 ,
n “ 1, 2, 3 ,

(A.1.1)

where Ωe “ tpξ1, ξ2q : ´1 ď ξ1 ď 1 ^ ´1 ď ξ2 ď 1u denotes the undeformed element’s domain, γm the
Green-Lagrange strains in Voigt-notation (Equation A.1.2), τm the Second Piola-Kirchhoff stresses in
Voigt-notation, and Dmn the constant elastic moduli that map strains γn to stresses τm:

τ ”
»
–

τ11
τ22
τ12

fi
fl “ Dγ , τm “ Dmnγn , γ ”

»
–

γ11
γ22

2γ12

fi
fl , γij “ 1

2 pFkiFkj ´ δijq ,
i “ 1, 2 ,
j “ 1, 2 ,
k “ 1, 2 ,

(A.1.2)

where γij denote the Green-Lagrange strains in Tensor-notation, Fij the deformation gradient (Equa-
tion A.1.3), and δij “ 1 ô i “ j while δij “ 0 ô i ‰ j. The deformation gradient Fij is then based on the
bilinearly interpolated displacement field ui̊ “ Hikuk:

F ”

»
——–

F11
F12
F21
F22

fi
ffiffifl , Fij ” dptξiq

dp0ξ jq “ d pξi ` Hikukq
dξ j

“ δij ` dHik
dξ j

uk ,
i “ 1, 2 ,
j “ 1, 2 ,
k “ 1, ..., 8 ,

(A.1.3)

where uk denote the independent nodal displacements and Hik the bilinear interpolation functions:

H ”
„

hA 0 hB 0 hC 0 hD 0
0 hA 0 hB 0 hC 0 hD

ȷ
, with (A.1.4)

h ”

»
——–

hA
hB
hC
hD

fi
ffiffifl ” 1

4

»
——–

pξ1 ´ 1qpξ2 ´ 1q
pξ1 ´ 1qpξ2 ` 1q
pξ1 ` 1qpξ2 ` 1q
pξ1 ` 1qpξ2 ´ 1q

fi
ffiffifl ,

dh
dξ

“ 1
4

»
——–

ξ2 ´ 1 ξ1 ´ 1
´ξ2 ` 1 ´ξ1 ´ 1

ξ2 ` 1 ξ1 ` 1
´ξ2 ´ 1 ´ξ1 ` 1

fi
ffiffifl ,

where the components of h denote the actual nodal shapefunctions, simply rearranged into H to
facilitate a more compact definition of the deformation gradient Fij.

Recall that the structural equations relate applied force and deformation, through minimum total
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potential, in case of a conservative system. Hence, the goal is to find the deformation for which the
derivative of the total potential versus deformation equals zero. Using a Newton-Raphson approach,
even the second-order derivative of the total potential is required. Recall from II.2 that the total potential
equals the internally stored elastic energy, minus externally exerted work. Since the present appendix
only concerns the internal energy E on the element level, its first- and second-order derivative versus
displacement shall be elaborated next, respectively denoted as the internal force vector f and tangent
stiffness matrix K. Furthermore, subscript e denoting the element number, and left-hand superscript 0
denoting the initial undeformed state, will be omitted from here on out for simplicity. A convenient
consequence of the Total Lagrangian Approach, is that functional dependence on nodal displacements
u “ ru1, ..., u8sJ P R8 and material coordinates ξ “ rξ1, ξ2sJ P R2 has become separate. In other
words, u and ξ are independent, thus differentiation and integration with respect to either may be
performed in arbitrary order:

Epuq ”
ż

Ω

1
2 γmpuqDmnγnpuq dΩ , (A.1.5a)

fipuq ” dE
dui

“
ż

Ω

dγm

duiloomoon
`
BLpuq˘mi

Dmnγnpuqloooomoooon
τmpuq

dΩ , (A.1.5b)

Kijpuq ” d2E
dui duj

“
ż

Ω

dγm

dui
Dmn

dγn

dujlooooooomooooooon
` d

dΩKLpuq˘ij

` d2γm

dui duj
Dmnγnpuq

loooooooooomoooooooooon
` d

dΩKNLpuq˘ij

dΩ , (A.1.5c)

where
` d

dΩKNLpuq˘ij “ dFp

duiloomoon
`
BNLpuq˘pi

ˆ B2γm

BFpBFq
τmpuq

˙

looooooooomooooooooon
`T puq˘pq

dFq

dujloomoon
`
BNLpuq˘qj

,

where BL P Rp3ˆ8q and BNL P Rp4ˆ8q can be recognized as the canonical ’linear’ and ’non-linear’
strain-displacement matrices1 from Bathe (2016) and De Borst et al. (2012):

BL ” dγ

du
“

»
—————–

F11
dhA
dξ1

F21
dhA
dξ1

¨ ¨ ¨ F11
dhD
dξ1

F21
dhD
dξ1

F12
dhA
dξ2

F22
dhA
dξ2

¨ ¨ ¨ F12
dhD
dξ2

F22
dhD
dξ2

F11
dhA
dξ2

` F21
dhA
dξ1

F21
dhA
dξ2

` F22
dhA
dξ1

¨ ¨ ¨ F11
dhD
dξ2

` F21
dhD
dξ1

F21
dhD
dξ2

` F22
dhD
dξ1

fi
ffiffiffiffiffifl

,

(A.1.6)

BNL ” dF
du

“

»
—————————–

dhA
dξ1

0
dhB
dξ1

0
dhC
dξ1

0
dhD
dξ1

0

dhA
dξ2

0
dhB
dξ2

0
dhC
dξ2

0
dhD
dξ2

0

0
dhA
dξ1

0
dhB
dξ1

0
dhC
dξ1

0
dhD
dξ1

0
dhA
dξ2

0
dhB
dξ2

0
dhC
dξ2

0
dhD
dξ2

fi
ffiffiffiffiffiffiffiffiffifl

. (A.1.7)

Lastly, The Voigt-like reshape of the deformation gradient, F, and the matrix containing the Second
Piola-Kirchhoff stresses, T , may then compactly be calculated as:

1Note that both the linear and non-linear strain-displacement matrices BL and BNL are in-fact quadratic, thus non-linear, in
both u and ξ. When u “ 0 however, BL does equal the strain-displacement matrix as derived in linear FEM, while BNL vanishes.
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F “

»
—————————–

dhA
dξ1

u1 ` dhB
dξ1

u3 ` dhC
dξ1

u5 ` dhD
dξ1

u7 ` 1

dhA
dξ2

u1 ` dhB
dξ2

u3 ` dhC
dξ2

u5 ` dhD
dξ2

u7

dhA
dξ1

u2 ` dhB
dξ1

u4 ` dhC
dξ1

u6 ` dhD
dξ1

u8

dhA
dξ2

u2 ` dhB
dξ2

u4 ` dhC
dξ2

u6 ` dhD
dξ2

u8 ` 1

fi
ffiffiffiffiffiffiffiffiffifl

, (A.1.8)

T ” τ ‚ d2γ

dF
2b

“

»
——–

τ11 τ12 0 0
τ12 τ22 0 0
0 0 τ11 τ12
0 0 τ12 τ22

fi
ffiffifl . (A.1.9)

To finalize this subappendix on the canonical form of an element’s internal force f and tangent
stiffness K, their calculation and floating-point operation count are elaborated through the diagram
in Figure A.1.2. Admittedly, the resulting numbers may still overestimate those of an optimized
implementation. Still, all quantities are implemented as derived in this subappendix, and the number
of floating-point operations accounts for addition and multiplication. Note that the numbers of flops
for the domain-derivatives, d f { dΩ, d f { dΩ and d f { dΩ, are approximated assuming dense matrix
multiplication. For all other quantities, the number of flops are determined through their explicit
minimal forms as shown in this subappendix.

dh
dξ

+16 flops

ξ

u F γ τ T

BNL

BL

D

+30 flops +13 flops +7 flops

+40 flops

+0 flops

+0 flops

d f
dΩ “ BJ

L τ

dKL
dΩ “ BJ

L DBJ
L

dKNL
dΩ “ BJ

NLT BNL

D

+56 flops +672 flops

+460 flops

Figure A.1.2: Calculation diagram, including the number of floating-point operations (flops), regarding inter-
mediate quantities required for the canonical formulation and calculation of internal force f and
tangent stiffness K for a single structural element. Note that the instances of +0 flops involve the
rearrangement of known quantities.

The total number of flops required for f and K are determined, assuming exact integration through a
3 by 3 Gauss quadrature rule (Bathe, 2016) to accomodate their fourth-order polynomial nature versus
the respective components of ξ:

I ”
ż

ξPΩ
ιpξq dΩ “

3ÿ

i“1

3ÿ

j“1

ιpξijqwij . (A.1.10)

Adding all numbers of flops required for d f { dΩ yields a total of 162. Then, repeating this for
all 9 integration points yields a total of 1458. Finally, incorporating all weights and additions of the
quadrature rule, yields a total of 1594 flops in order to calculate the internal force f , for a single
structural element. Likewise, adding all numbers of flops required for dK{ dΩ yields a total of 1302,
without exploiting symmetry, or assuming that the quantities required for d f { dΩ have readily been
calculated. Again, repeating this for all 9 integration points yields a total of 11 718 flops. Finally,
incorporating all weights and additions of the quadrature rule, yields a grand total of 12 806 flops in
order to calculate the tangent stiffness K, for a single structural element. These values are sumarized in
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Table A.3.1.

A.2 Tensor Reformulation

In order to perform perturbed structural analysis about some particular (equilibrium) point, ultimately
all local higher-order displacement derivatives of the elastically stored energy Epuq are required through
the chain rule. These evaluated higher-order displacement derivatives essentially extend the internal
force f puq and tangent stiffness Kpuq as obtained in the previous Appendix A.1, but notably no further
than the fourth-order. To clarify, higher-order derivatives vanish, as Epuq is ultimately bilinear in γ,
which itself is bilinear in u, meaning that Epuq is ultimately quartic in u:

Epuq “
ż

Ω

1
2 γmpuqDmnγnpuq dΩ , (A.2.1a)

fipuq ” dE
dui

“
ż

Ω

dγm

duiloomoon
`
BLpuq˘mi

Dmnγnpuqloooomoooon
τmpuq

dΩ , (A.2.1b)

Kijpuq ” d2E
dui duj

“
ż

Ω

dγm

dui
Dmn

dγn

dujlooooooomooooooon
` d

dΩKLpuq˘ij

` d2γm

dui duj
Dmnγnpuq

loooooooooomoooooooooon
` d

dΩKNLpuq˘ij

dΩ , (A.2.1c)

where
` d

dΩKNLpuq˘ij “ dFp

duiloomoon
`
BNLpuq˘pi

ˆ B2γm

BFpBFq
τmpuq

˙

looooooooomooooooooon
`T puq˘pq

dFq

dujloomoon
`
BNLpuq˘qj

,

Sijkpuq ” d3E
dui duj duk

“
ż

Ω

d2γm

dui duj
Dmn

dγn

duklooooooooomooooooooon
` d

dΩSNLpuqq˘ijk

` d2γm

dui duk
Dmn

dγn

dujlooooooooomooooooooon
` d

dΩSNLpuqq˘ikj

` d2γm

duj duk
Dmn

dγn

duilooooooooomooooooooon
` d

dΩSNLpuqq˘jki

dΩ , (A.2.1d)

Qijklpuq ” d4E
dui duj duk dul

“
ż

Ω

d2γm

dui duj
Dmn

d2γn

duk dulloooooooooooomoooooooooooon
` d

dΩQNL
˘

ijkl

` d2γm

dui duk
Dmn

d2γn

duj dulloooooooooooomoooooooooooon
` d

dΩQNL
˘

ikjl

` d2γm

duj duk
Dmn

d2γn

dui dulloooooooooooomoooooooooooon
` d

dΩQNL
˘

jkil

dΩ .

(A.2.1e)

Note that all of these instantaneous structural tensors are symmetrical, as the order of differentiation
does not matter assuming smoothness of the differentiated functions. In order to obtain and manage
these quantities, using a symbolic toolbox is strongly advised.

The multivariate polynomial, or tensorial reformulation of the internal energy Epuq may be obtained
without loss of accuracy, through its own MacLaurin expansion about the undeformed state, where
u “ 0. Moreover, all of its higher-order local displacement derivatives are analogously reformulated
with perfect accuracy through:

Qijklpuq “ Qijkl , (A.2.2a)

Sijkpuq “ Sijk ` Qijklul , (A.2.2b)

Kijpuq “ Kij ` Sijkuk ` 1
2 Qijklukul , (A.2.2c)

fipuq “ Kijuj ` 1
2 Sijkujuk ` 1

6 Qijklujukul , (A.2.2d)

Epuq “ 1
2 Kijuiuj ` 1

6 Sijkuiujuk ` 1
24 Qijkluiujukul , (A.2.2e)

with respectively defined coefficient tensors Kij ” Kijp0q P Sym
´

R82
¯

, Sijk ” Sijkp0q P Sym
´

R83
¯

and

Qijkl ” Qijklp0q P Sym
´

R84
¯

.
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In order to demonstrate why the decomposition of these structural tensors is vital, the corresponding
numbers of flops required to calculate the internal force f puq and tangent stiffness Kpuq are loosely

argued here. For some multilinear form A ‚
d

u
db with A P Sym

´
R8b`d

¯
and u P R8, it is more efficient

to successively contract A with u, for a number of d times. Each fiber contraction then requires 8
multiplications and 7 additions, meaning 15 flops. The number of flops of the d successive contractions
then totals at 8b`d´1 ¨ 15 ` 8b`d´2 ¨ 15 ` ¨ ¨ ¨ ` 8b ¨ 15.

In the case of f , including the 16 flops of adding the multilinear forms, an excessive total of 9976
flops is required. This is over six times the amount compared to the canonical form. Interestingly, for K
one fewer contraction is required, making it slightly cheaper than f . Including the 128 flops of adding
the multilinear forms, K requires a total of 9792 flops, which is incidentally slightly lower compared to
the canonical form as well. These values are summarized in Table A.3.1.

A.3 Tensor Decomposition

While the tensorial structural reformulation cannot be avoided for perturbed analysis, its computational
ramifications can be remedied. Arguably, a minimal form may be achieved through tensor decompo-
sition. Canonical Polyadic decomposition (Kolda & Bader, 2009) transforms some multilinear form,
typically involving an excessive amount of cross terms, to a minimal sum of scalar products of pure
linear forms. The remainder of this appendix elaborates on what this means, and then directly justifies
the decomposition through a floating-point operation count and comparison with the canonical and
dense tensorial formulations. Finally, a brief account is given of the process of actually obtaining the
decompositions, which admittedly posed a substantial challenge within this work overall.

Tensor decomposition can be understood as a higher-order generalization of the spectral or eigen
decomposition, singular value decomposition, or factorization otherwise, of matrices (Kolda & Bader,
2009; Bernardi et al., 2013). A possible decomposition of the element’s structural tensors could be:

K P Sym
´

R82
¯

, K “
8ÿ

r“1

κr ¨ ϕ
2b
r , (A.3.1)

S P Sym
´

R83
¯

, S “
Rÿ

r“1

sr b q
2b
r , (A.3.2)

Q P Sym
´

R84
¯

, Q “
Rÿ

r“1

q
4b
r , (A.3.3)

where the decomposition of K is notably just a spectral or eigen decomposition, with eigenvalues κr
and eigen deformations ϕr visualized in Figure A.3.1. The symmetric decomposition of higher-order
tensors is loosely visualized in Figure A.3.2. Technically, the vectors qr are not eigenvectors of Q,
and their scalar multiplications have been absorbed into the vectors to reduce storage. Moreover, S is
asymmetrically decomposed in order to recycle a part of the decomposition of Q. This allows future
contractions with either tensor to be recycled as well, promoting efficiency. Needless to say, there
is a lot of freedom on how to formulate the desired decomposition, while numerically finding such
decomposition is an entirely different challenge.

Before elaborating on how to achieve the challenging tensor decomposition, their use is justified with
a final flop count comparison. Starting with the internal force:

f puq “ K ‚ u `
Rÿ

r“1

´
1
2 sr ¨ pqr ‚ uq2 ` 1

6 qr ¨ pqr ‚ uq3
¯

, (A.3.4)

where for some r, the calculation of pqr ‚ uq require 8 multiplications and 7 additions each, totalling at
15 flops. Then, pqr ‚ uq2 and pqr ‚ uq3 are obtained through a single multiplication each, raising the total
to 17 flops. Then, both terms within the sum are obtained through scalar multiplication and addition of
the pre-calculated and stored vectors 1

2 sr and 1
6 qr, adding 24 flops. Repeating these 41 flops R times,

and adding them to the first term K ‚ u, raises the total to 49R. With K ‚ u requiring 40 flops of its own,
yields a total of 49R ` 40 flops to calculate f . Also considering that the maximal symmetric rank R of
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1. Bulk
deformation

κ1 “ D11 ` D12

2. Axial strain
(diagonal shear)

3. Diagonal strain
(pure shear)

4. Horizontal
curvature

5. Vertical
curvature

6. Linearized
rotation

7. Horizontal
translation

8. Vertical
translation

κ2 “ D11 ´ D12

κ3 “ 2D33

D11 ` D33

3

0

κ4

κ5

κ6

κ7

κ8

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

ϕ6

ϕ7

ϕ8

K “ ř5
r“1 κr¨ ϕr b ϕr ðñ

K ‚ ϕr “ κr¨ ϕr

Figure A.3.1: Eigendecomposition of the two-way, eight-dimensional elemental stiffness tensor K, with eigen
deformations ϕr and corresponding eigenstiffnesses κr for r “ 1, . . . , 8.

k

j

i

“ ` ` `b b b b

i

k

j

Figure A.3.2: Canonical Polyadic (CP) decomposition of some arbitrary tree-way four-dimensional symmetric tensor
of symmetric rank four.

Q could never exceed 21, as elaborated in Subsection II.1, a total of 1069 flops is required to calculate f ,
which is roughly two-thirds compared to the canonical formulation, and one-tenth compared to the
dense tensorial formulation.

The flop count for the elemental tangent stiffness matrix is very similar to that of the internal force:

Kpuq “ K `
Rÿ

r“1

ˆ
sr b qrpqr ‚ uq ` 1

2 q
2b
r ¨ pqr ‚ uq2

˙
, (A.3.5)

where for some r, the calculation of pqr ‚ uq requires 15 flops, and that of pqr ‚ uq2 an additional
one. Then, both terms within the sum are obtained through scalar multiplication and addition of the

pre-calculated and stored matrices sr b qr and 1
2 q

2b
r , each containing 64 components, hence requiring

128 multiplications and 64 additions. Repeating these 208 flops R times, and adding them to the first
term K, requires a total of 208R ` 64 flops. Again, considering that R could never exceed one, a total of
4432 flops is required to calculate K, which is one-third compared to the canonical formulation.

To compare the decomposed to the dense tensorial and canonical formulation, their respective flop
counts are summarized in Table A.3.1. Much more importantly, however, less memory storage and
transfer are required using the decomposed tensorial form. This is arguably a more limiting aspect than
flops in modern computing Battaglino et al. (2018). In fact, the decomposed form arguably involves
a nearly minimal amount of storage and floating point operations regarding the evaluation of all
structural quantities and derivatives, compared to other exact formulations. To clarify, the adopted
structural model is inherently multivariate polynomial, and the minimal sum-product of linear forms
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Figure A.3.3: Tucker decomposition of some arbitrary tree-way four-dimensional symmetric tensor of symmetric
rank 4 and inner dimensionality 3 (i.e. nullity 1).

cannot be reduced any further. However, further improvements may be obtained by enforcing sparsity
or optimizing data movement of some kind, which can be a future project on its own.

Canonical Tensorial Tensorial
(Dense) (Decomposed)

f puq 1 594 9 976 1 069
Kpuq 12 807 9 792 4 432

Table A.3.1: Required number of floating-point operations (flops) in order to calculate the elemental internal force
vector f puq, and tangent stiffness matrix Kpuq, using their canonical, dense tensorial and decomposed
tensorial forms, as derived over the present Appendix A.

The idea behind tensor decomposition often involves a least-squares approach:

min
tq1, ..., qRu

ˇ̌
ˇ
ˇ̌
ˇQ ´

Rÿ

r“1

q
4b
r

ˇ̌
ˇ
ˇ̌
ˇ
2

F
, (A.3.6)

where the Frobenious norm || ˝ ||2F indicates the sum of all components squared, and R denotes the rank
of Q. Sadly, there is no finite algorithm for determining this rank, no less the decomposition. However,
a fairly successful and popular method is the Alternating Least-Squares approach (Kolda & Bader, 2009),
where in subsequent minimization proplems, all but one of the factors qr is fixed:

min
tq1, ..., qRu

ˇ̌
ˇ
ˇ̌
ˇQ ´

Rÿ

r“1

pq
3b
r b qr

ˇ̌
ˇ
ˇ̌
ˇ
2

F
, (A.3.7)

where pqr denotes the factor fixed in the current optimization subproblem.
Regardless, the problem remains ill-posed, and the obtained decompositions are often necessarily non-

orthogonal, non-unique, or just locally optimal leaving a large error. Without specialized regularization
(or penalty terms of the objective to be minimized), these problems persist, with saddle points or factor
degeneracy slowing down or halting the least-squares solution approach. Moreover, convergence highly
depends on the initialization guess (Battaglino et al., 2018). Fortunately, in this work, a decomposition
needs to be obtained only once given some unique material model up to a scalar multiplication of the
Young’s modulus, and several approaches led to a successful decomposition of Q and S.

For instance, an enhanced line search along an initially found gradient-descent direction yielded a
major improvement in convergence speed and robustness (Rajih et al., 2008). Ultimately, a Barzilai-
Borwein method was employed, being a gradient descent method with a heuristically determined step
size based on previous steps. This allows the approximate use of second-order information, without
the computational draw-backs of a true second-order optimization method. Even more, a second-order
optimization method is much more prone to get stuck in bad local optima during tensor decomposition,
than a first-order method.

Then, a prior Tucker decomposition (Kolda & Bader, 2009) greatly improved the sparsity of the

72



initial decomposition problem, which is essentially a change of coordinates from the original R8 to the
basis spanned by the first six eigenmodes of K (Figure A.3.1). To clarify, projecting K onto this basis
diagonalizes it, effectively functioning as a CP decomposition as well. While it does not necessarily
diagonalize higher-order tensors that are physically related to K, it does introduce a great extent
of scarcity within both S and Q, as visualized in Figure A.3.3. Moreover, it filters out redundant
dimensions, turning the tensors six-dimensional without loss of information, which is possible due to
the translational invariance of energy and all of its displacement derivatives. This greatly sped up the
CP decomposition process.
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B
Error and Convergence Estimation

Approximation often means accepting error in favor of computational efficiency, although this is
rarely an equal trade-off. For an increased computational cost, the error often diminishes decreasingly
or sometimes even diverges excessively. Therefore, error analysis is vital to balancing this trade-
off given a desired tolerance or desired computational effort, or avoiding designs altogether where
no acceptable balance can be reached. To this end, the present appendix argues and derives the
metric that was implemented to validate the perturbed structural analysis, being an approximation,
extrapolation, or prediction of the non-linear equilibrium curve from the undeformed state. First,
an error and convergence estimation is derived for its state-of-the-art competitor, Newton-Raphson
analysis, in Appendix B.1. Then, the same estimators are derived for perturbed analysis in Appendix B.2.
Ultimately, this facilitates a means to actively steer the topology optimization, ensuring the accuracy of
the analysis and, more importantly, improving the optimization robustness.

B.1 Newton-Raphson Analysis

Newton-Raphson analysis is used to solve a non-linear set of equations, by sequentially solving its local
linearization, until the error due to this linearization has converged sufficiently towards zero. In this
appendix, the corresponding conditions and rate will be analyzed, considering a single load-step from
the undeformed state.

Consider the residual force r P RN as a function of some displacement u P RN and load-scalar λ P R.
Moreover, λ is assumed given, and the local linearization is taken with respect to u “ u ` ∆u, where u:

rpu ` ∆u, λq “ λp ´ f pu ` ∆uq “ λp ´ f puq ´ B f puq
Bu

ˇ̌
ˇ̌
u“ulooooomooooon

Kpuq

‚ ∆u ` O
´

|∆u|2
¯

“ 0 . (B.1.1)

By disregarding the current truncation-error O `|∆u|2˘, a linear system of equations remains that implies
the correction-step ∆u P RN , approximately solving the original equation. Here, f puq “ O

`
gpuq˘ is

equivalent to f puq ď M ¨ gpuq for some finite M P R. The Newton-Raphson sequence of solutions is
then obtained by denoting the new solution uk`1 “ u ` ∆u, in terms of the previous solution uk “ u,
with u0 “ 0:

uk`1 “ uk ´
”
Kpukq

ı´1 ‚
´

f pukq ´ λp
¯

, with u0 “ 0 . (B.1.2)

Assuming a true solution u exists that satisfies Equation B.1.1, uk converges to this solution as k Ñ 8,
under certain conditions. Before analyzing this convergence, some convenient definitions are made:
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λp ” f 8 ” f pu8q , K8 ” Kpu8q , S8 ” Spu8q , (B.1.3)

respectively denoting the zeroth-, first- and second-order derivatives of internal the force f versus
displacement u, at the converged solution u8. Furthermore, let ∆uk denote the distance of the kth

solution towards the true solution:

∆uk ” uk ´ u8 . (B.1.4)

Convergence of uk may then be accurately analyzed by considering the local second-order Taylor
expansion of f pukq and its derivative Kpukq:

f pukq “ f 8 ` K8 ‚ ∆uk ` 1
2 S ‚

2
∆u

2b
k ` O

´
|∆uk|3

¯
. (B.1.5a)

Kpukq “ K8 ` S8 ‚ ∆uk ` O
´

|∆uk|2
¯

, (B.1.5b)

and then substituting these expansions back into the recursive Newton-Raphson sequence defined in
Equation B.1.2:

∆uk`1 “ ∆uk ´
”
Kpukq

ı´1 ‚
´

f pukq ´ λp
¯

(B.1.6)

“
”
Kpukq

ı´1 ‚
´”

Kpukq
ı

‚ ∆uk ` f pukq ´ λp
¯

“
”
K8 ` S8 ‚ ∆uk ` O

´
|∆uk|2

¯ı´1‚
ˆ”

K8 ` S8 ‚ ∆uk ` O
´

|∆uk|2
¯ı

‚ ∆uk ´ K8 ‚ ∆uk ´ 1
2 S ‚

2
∆u

2b
k ` O

´
|∆uk|3

¯˙

loooooooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooooooon
1
2 S ‚

2
∆u

2b
k ` O

´
|∆uk|3

¯

.

Assuming convergence, meaning |∆uk| Ñ 0 as k Ñ 8, all factors tend towards their lowest-order
non-vanishing terms. This greatly simplifies Equation B.1.6 to:

|∆uk`1| «
∣∣∣∣´ 1

2 K´18 ‚ S8
¯

‚
2

∆u
2b
k

∣∣∣∣ “ O
´

|∆uk|2
¯

, (B.1.7)

hence the order of convergence is quadratic. To clarify the right-hand-side result of Equation B.1.7, the
behavior of |∆uk| Ñ 0 as k Ñ 8 may be argued through the following tensor-decomposition:

1
2 K´18 ‚ S8 ”

Rÿ

r“1

ϕr b ψ
2b
r , with ϕr P RN , ψr P RN . (B.1.8)

Regarding the asymmetry, note that S8 is symmetric among all three ways. However, the resulting
three-way tensor is obtained through a left-hand contraction with 1

2 K´18 , effectively transforming the
first way of S8. The resulting magnitude in Equation B.1.8 may then be upper-bounded as:

∣∣∣∣ 1
2

´
K´18 ‚ S8

¯
‚
2

∆u
2b
k

∣∣∣∣ “
∣∣∣∣∣ Rÿ

r“1

ϕrpψr ‚ ∆ukq2

∣∣∣∣∣ ď
˜

Rÿ

r“1

|ϕr||ψr|2
¸

|∆uk|2 “ O
´

|∆uk|2
¯

, (B.1.9)

using both the triangle inequalities |Σiai| ď Σi|ai| and |a ‚ b| ď |a||b|. Finally, the relative normed error
with respect to the true solution may then be approximated using Equation B.1.7, and upper-bounded
using Equation B.1.9:

ϵk`1 ” |∆uk`1|
|u8| «

∣∣∣∣´ 1
2 K´18 ‚ S8

¯
‚
2

∆u
2b
k

∣∣∣∣
|u8| ď β

|∆uk|2

|u8|2
“ βϵ2

k , (B.1.10)
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where β denotes some positive scalar that depends on the structural design, load-case and true solution
u8, but is constant with respect to k. A necesary condition for convergence is readilly implied here:

lim
kÑ8

ϵk`1
ϵk

“ lim
kÑ8 βϵk ă 1 , (B.1.11)

where a sufficient condition would mean that βϵk ă 1 for all k ě 0.
In explicit form, the relative error after some n Newton-Raphson correction-steps may then be

obtained by recursively substituting ϵk`1 ď βϵ2
k into itself for k “ 1, . . . , n:

ϵn ď βϵ2
n´1 ď β pβϵn´2q2 ď β

ˆ
β
´

β ¨ ¨ ¨ β pβϵ0q2 ¨ ¨ ¨
¯2
˙2

(B.1.12)

“ β ¨ β2 ¨ β4 ¨ ¨ ¨ β2n´1 ¨ ϵ2n

0 “ β
řn´1

j“0 2j “ β2n´1 ¨ ϵ2n

0 , (B.1.13)

where
n´1ÿ

j“0

2j “ 2

¨
˝

n´1ÿ

j“0

2j

˛
‚´

¨
˝

n´1ÿ

j“0

2j

˛
‚“

¨
˝

nÿ

j“1

2j

˛
‚´

¨
˝

n´1ÿ

j“0

2j

˛
‚“ 2n ´ 1 . (B.1.14)

Note that ϵ0 “ 1 as ∆u0 “ u8, using the definition in Equation B.1.9. Furthermore, ϵ1 then approxi-
mately reduces to β, the former of which exactly equals the relative normed displacement error ϵL as
obtained through linear FEM:

ϵL ” ϵ1 “ |u1 ´ u8|
|u8| , where u1 “

”
Kp0qloomoon

K

ı´1 ‚
´

λp
¯

. (B.1.15)

Substituting ϵ0 “ 1 and ϵ1 “ ϵL into the inequality Equation B.1.12 then finally yields an estimator:

„
ϵn « ϵ2n´1

L . (B.1.16)

which is notably a double exponential function versus n, as tabulated in Table B.1.1. In-fact, although
each pair of consecutive terms ϵk may be related by a polynomial, the explicit sequence generally tends
to a double exponential. Only when the relation is linear, such as for perturbed analysis (Appendix B.2),
the explicit sequence tends to a regular exponential.

n 0 1 2 3 4 5
„
ϵn 1 ϵL ϵ3

L ϵ7
L ϵ15

L ϵ31
L

Table B.1.1: Relative displacement error estimator „
ϵn where n denotes the number of Newton-Raphson iterations

starting at the undeformed state. Note that ϵL ” ϵ1 is obtained after a single Newton-Raphson
iteration, which is exactly equivalent to linear FEM.

To conclude, the following observations can be made regarding the Newton-Raphson convergence
behavior in non-linear structural analysis. Its order is confirmed to be quadratic (Equation B.1.9), thus
superlinear. Where the linear convergence yields a constant rate, being the error-ratio of consecutive
iterations, super-linear convergence yields an exponentially increasing rate. The condition for conver-
gence, however, depends both on the initial error ∆uk from the true solution, and the upper-bound
estimate of scalar β that depends on the function’s local behavior. In other words, while ϵL ă 1 is a
necessary condition for convergence, smaller ϵL still indicate improved odds of convergence.

B.2 Perturbed Analysis

Perturbed analysis, used for Taylor extrapolation to be more precise, is used to solve a non-linear set
of equations in the neighborhood of some known solution point. In this work, the undeformed state,
being the origin, was considered for simplicity. Rather than solving the non-linear equation in multiple
points, it solves higher-order derivatives of this equation versus some path parameter, evaluated in a
single point. This implies a recursive sequence of higher-order solution derivatives versus the path
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parameter, with the solution and path parameter respectively considered as the structural displacement
and applied load variable.

Formulating the approximate structural analysis through an explicit power series allows for some
useful assumptions and simplifications on the convergence rate and conditions that affect it. First, recall
the nth-order power, Taylor, or MacLaurin series that approximates displacement versus load-scalar λ
in the neighbourhood of λ “ 0:

„unpλq ”
nÿ

p“1

uppqλp

p!
. (B.2.1)

Then, consider its associated true relative displacement error ϵnpλq, being a straightforward scalar measure,
approximately indicating the relative error of the predicted solution:

ϵnpλq ” |„unpλq ´ upλq|
|upλq| . (B.2.2)

Note that ϵnpλq has been defined to depend on the true solution upλq, which requires an iterative solver
that likely exceeds the cost of the approximate analysis itself. Hence, an estimator for ϵnpλq was derived
and implemented instead.

The truncation error of a power series such as „unpλq is bounded (Stewart, 2016), given that |λ| remains
within the radius of convergence λ, as will be elaborated shortly:∣∣„uppλq ´ upλq∣∣ ď Mp ¨ λp`1 , (B.2.3a)

where Mp « |upp`1q|
pp ` 1q!

. (B.2.3b)

In-fact, Mp equals the normed maximum of the p ` 1st-order derivative of „uppλq within the range |λ| ď λ
(Greenstein, 1965; Powell, 1981). Moreover, when λ is small, Mp may be considered approximately
maximized at zero Equation B.2.3b, supported by Powell’s 1981 statement that the error of Taylor series
is often dominated by their first truncated term. Additionally, this may be tied to the fact that the error
of any convergent, alternating sequence is upper bounded by their first truncated term (Stewart, 2016),
considering that terms of Taylor series tend to oscillate in magnitude and sign as well. In either case,
Equation B.2.3b is an excellent estimator for Mp.

Another useful, closely related fact is that Taylor series behave very similarly to geometric series, and
accordingly often show approximate linear convergence or divergence. Hence, the magnitudes of the
terms of „unpλq were assumed to follow an exponential trend:∣∣∣∣∣uppqλp

p!

∣∣∣∣∣ « β ¨
∣∣∣∣∣upp´1qλp´1

pp ´ 1q!

∣∣∣∣∣ « βp´1 ¨
∣∣∣up1qλ

∣∣∣ , (B.2.4a)

hence β ”
˜

|upnq|
n!|up1q|

¸ 1
n´1

|λ| , (B.2.4b)

where some positive β represents the average ratio’s estimate, whose logarithm represents the rate of
divergence, accounting for all n terms of „unpλq to ensure accuracy.

Using these assumptions, the radius of convergence was estimated in terms of λ. A geometric series
converges if and only if the ratio among consecutive terms β ă 1 (Stewart, 2016). This condition was
directly applied to Equation B.2.4, yielding:

|λ| ă
˜

n!
|up1q|
|upnq|

¸ 1
n´1

” λn , (B.2.5a)

hence β “ |λ|
λn

, (B.2.5b)

where λn defines the radius of convergence estimate, whose supreme limit tends towards the true radius
of convergence λ as n Ñ 8 (Powell, 1981).
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Finally, an estimator was derived for ϵnpλq (Equation B.2.2), assuming |λ| ă λ where the series of
„unpλq converge, and simplifying its denominator |upλq| to |up1qλ|. Although Equation B.2.3b could be
substituted directly by taking p “ n, this would require an additional solve for upn`1q, which may as
well be used to obtain „un`1pλq. Instead, ϵppλq was considered, substituting Equation B.2.3b by taking
p “ n ´ 1, and then extrapolated a single step using Equation B.2.4:

ϵnpλq «
β ¨

∣∣∣∣∣upnqλn

n!

∣∣∣∣∣∣∣up1qλ
∣∣ « βn “

ˆ
λ

λn

˙n
” „

ϵnpλq , (B.2.6)

defining the relative displacement error estimate „
ϵnpλq, as implemented within the approximate structural

analysis and corresponding topology optimizations.
Still, the ramifications of |λ| ą λ must be considered for the error estimator, where the series of

„unpλq diverges. While „unpλq may become meaningless due to excessive error, a robust and accurate
error estimator should still be able to guide the topology optimization toward a design that leads to
less inaccuracy, through larger λ. In the case of large λ, it can be argued through Equation II.28 that
displacements |upλq| approximately scale with λ

1
3 , while |„unpλq ´ upλq| simply tends to scale with λn.

Overall, the error ϵnpλq scales with λn´ 1
3 , which nearly agrees with the estimated λn. To which extent

this holds true in practice, is verified in Section IV and V. Regardless, reducing the error estimate
is equivalent to increasing the radius of convergence λ, whose estimate λn appeared to be a smooth
response of the structural design during the topology optimizations performed in this work.

In conclusion, a relative displacement error estimator „
ϵnpλq of approximate displacement „unpλq is

derived and implemented, in terms of the corresponding radius of convergence λn (Equation B.2.7).
Furthermore, it is expected to be accurate for |λ| up to, and possibly beyond λ, and capable of guiding
the optimizer towards more accurate designs, regardless of excessively large error or small λ.

„
ϵnpλq ”

ˆ
λ

λn

˙n
, with λn ”

˜
n!

|up1q|
|upnq|

¸ 1
n´1

, (B.2.7)

which is notably similar to the error estimator used by Cochelin (1994), Cochelin, Damil, & Potier-Ferry
(1994), and other related works adopting a polynomial asymptotic numerical method of structural
analysis. Furthermore, first-order perturbed analysis is equivalent to linear analysis, meaning that the
approximate normed relative error of linear analysis ϵL ” „

ϵ1pλq “ β, yielding a definition of β similar
to that for Newton-Raphson analysis in Appendix B.1

78



C
Bayesian Taylor Averaging

From statistics, it is widely known that the error of some average measurement decreases with the
sample count when the individual errors are independent and of similar magnitude. When used
correctly, more information generally leads to better prediction. In the case of the initially proposed
perturbed structural analysis, only the derivatives were used, but their error estimators were not. Here,
rather than just considering the highest-order MacLaurin expansion, all lower-orders and corresponding
error estimators will be exploited as well. For each value of the load-scalar λ, a weighted average of all
partial MacLaurin expansions will be taken, such that their combined error is minimal and coincidentally
below all individual errors. The application of weighted averaging according to each component’s
variance, called Bayesian Model Averaging, is supported by considerable amounts of empirical evidence
of improved model stability and accuracy (Hoeting et al., 1999).

C.1 Derivation

Up to this point, the best attempt at approximating the ground truth of interest u given some λ,
involves using the highest available order MacLaurin-expansion un ” „unpλq as in Equation C.1.1a.
Compared to u1 up to un´1, this indeed yields the lowest error within the radius of convergence λ
as estimated in Equation C.1.1b. On the other hand, it yields a maximal error outside of it, directly
affecting the responses, their design sensitivities, and consequently the effectiveness of the overall
optimization. Recall the MacLaurin approximant „uppλq and its associated relative error-estimator1
„
ϵppλq for p “ 1, . . . , n:

up ” „uppλq “
pÿ

q“1

upqq
q!

λq , (C.1.1a)

ϵp ” „
ϵppλq “

ˆ
λ

λn

˙p
. (C.1.1b)

The key principle behind an improved predictor θ “
„„upλq of u given some λ and approximations

up for p “ 1, . . . , n, is treating θ and up as samples from stochastic vectors U and U p respectively.
Moreover, consider the following linear combination:

θ ”
nÿ

p“1

ωpup , ðñ U “
nÿ

p“1

ωpU p (C.1.2)

1Recall that any relative error or -estimator is consistently denoted using the symbol ϵp, dividing the normed error of some
approximant by the normed solution from linear FEM.
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where the weights ωp will be chosen such that the expected value EpUq “ u and the variance VpUq is
minimal. Note that while the direction of the true error up ´ u is unknown, its magnitude with respect
to u1 is accurately estimated by ϵp. Hence, it is assumed that this direction is uniformly distributed,
meaning EpU pq “ u, while |VpU pq| is proportional to ϵ2

p. Furthermore, U p is assumed independently
distributed for distinct p. Considering the variance and expected value of U:

EpUq “
nÿ

p“1

ωpEpU pq “ u
nÿ

p“1

ωp “ u , ðñ
nÿ

p“1

ωp “ 1 , (C.1.3a)

VpUq “
nÿ

p“1

ω2
pVpU pq , ðñ ϵ2 “

nÿ

p“1

ω2
pϵ2

p , (C.1.3b)

the optimal choice for the weights ωp may be obtained by minimizing ϵ2 such that
řn

p“1 ωp “ 1. Since
this is a constrained optimization problem, consider the following augmented Lagrangian Lpωp, Λq
with Lagrangian multiplier Λ:

Lpωp, Λq ”
¨
˝

nÿ

p“1

ω2
p

˛
‚´ Λ

¨
˝

nÿ

p“1

ωp ´ 1

˛
‚ (C.1.4)

Minimizing Lpωp, Λq versus the weights ωp yields:

BLpωp, Λq
Bωp

“ 2ωpϵ2
p ´ Λ “ 0 , hence ωp “

1
2Λ

ϵ2
p

. (C.1.5)

Then, minimizing Lpωp, Λq versus Λ is equivalent to satisfying the constraint, substituting ωp for the
right-hand-side of Equation C.1.5:

BLpωp, Λq
BΛ

“
nÿ

p“1

ωp ´ 1 “
nÿ

p“1

1
2Λ

ϵ2
p

´ 1 “ 0 , hence 1
2Λ “ 1

nÿ

p“1

1
ϵ2

p

. (C.1.6)

Next, the weights ωp that minimize the variance of U about the ground-truth u are obtained by
substituting Λ for the right-hand-side of Equation C.1.6

ωp “
1
ϵ2

p
nÿ

q“1

1
ϵ2

q

. (C.1.7)

Finally, the improved predictor
„„unpλq as a function of λ can be written as:

„„unpλq ”

nÿ

p“1

ˆ
1

„
ϵppλq

˙2 „uppλq
nÿ

p“1

ˆ
1

„
ϵppλq

˙2 , (C.1.8)

which is simplified as a rational of type p2n ´ 1q over p2n ´ 2q in the following Appendix C.2, by

multiplying the numerator and denominator with „
ϵ2

npλq. Its associated error-estimator
„„
ϵnpλq can

then be obtained by combining the expression for weights ωp with the premised squared error in
Equation C.1.3b:

„„
ϵnpλq ”

gffffe

1
nÿ

p“1

ˆ
1

„
ϵppλq

˙2 , (C.1.9)
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which may notably be recognized as the smooth minimum of „
ϵppλq for all p “ 1, . . . , n.

In conclusion, this novel approximant
„„unpλq is expectedly more accurate than any MacLaurin

approximant „uppλq for any λ P R and p ď n. Of course, the validity of the previous and following
statements depends on the accuracy of the error estimators „

ϵppλq through the radius of convergence

estimate λn, from which the weights ωppλq were argued to minimize the true error of
„„unpλq. For some

fixed |λ| ă λ and increased n,
„„unpλq converges at least as fast as „unpλq, as the error of

„„unpλq is bounded
by that of „uppλq for any p ď n as λ Ñ 0. Interestingly, the fact that |

„„unpλq ´ upλq| ď |„unpλq ´ upλq| “
Opλn`1q implies that all lower order terms, hence all derivatives of

„„unpλq, exactly match that of the
true upλq at λ “ 0. Therefore, the proposed Bayesian approach coincidentally yields

„„unpλq as a vectorial
Padé-type approximant (El Kihal et al., 2022), albeit without its typical downside of spurious poles
(Cochelin, 1994; Cochelin, Damil, & Potier-Ferry, 1994; De Boer & Van Keulen, 1997). More importantly,
for |λ| ą λ,

„„unpλq does not diverge beyond „u1pλq. As a result, a higher-order n for
„„unpλq maximally

improves its accuracy within the radius of convergence, without worsening the divergence elsewhere.
While divergence versus λ cannot be prevented, its rate is strongly bounded below that of linear FEM.
What is more, divergence versus n is successfully eliminated. This should greatly improve the odds of
the topology optimization to recover from inaccurate responses and sensitivities, and perhaps decrease
the odds of derailing in the first place.

C.2 Stable Simplified Implementation

In order to conveniently implement and stably evaluate the Bayesian-enhanced predictor, the involved
weights, and error estimator, the present appendix derives their simplification. Throughout this
appendix, functional dependence on λ has been omitted for readability.

Denoting the nth order Bayesian prediction as
„„u, Equation C.1.8 may be rewritten as:

„„u ”
”
up1q, . . . , upnqı
looooooooomooooooooon

U

‚

»
———–

λ λ ¨ ¨ ¨ λ
1
2 λ2 ¨ ¨ ¨ 1

2 λ2

. . .
...

1
n! λ

n

fi
ffiffiffifl

looooooooooomooooooooooon
Λ

‚

»
———–

ω1
ω2
...

ωn

fi
ffiffiffifl

loomoon
ω

“ U ‚ Λ ‚ ω , (C.2.1)

where U ‚ Λ produces a matrix whose columns equal the first- up to nth-order MacLaurin predictions,
r„u1, . . . , „uns. The remainder of this appendix aims to simplify the weights in ω:

ωp ” β´2p
řn

q“1 β´2q , with β ” λ

λ
, (C.2.2)

where ω0 notably produces the expression for the Bayesian error estimate
„„
ϵ2, as formulated in Equa-

tion C.1.9. This will be convenient for the sensitivity analysis in the next Appendix D.
Multiplying the numerator and denominator of Equation C.2.2 by β2n prevents the numerically

unstable zero-pole cancelation, by explicitly factoring out the highest order pole:

ωp “ β2n´2p
řn

q“1 β2n´2q “ β2n´2p
řn´1

q“0 β2q
, (C.2.3)

where the sum in the denominator has also been simplified. Noting that p1 ´ β2qřn´1
q“0 β2q “ 1 ´ β2n,

Equation C.2.3 may be even further simplified to:

ωp “ 1 ´ β2

1 ´ β2n β2n´2p . (C.2.4)
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D
Sensitivity Analysis

The present appendix is supplementary to the adjoint formulation argued and mostly elaborated in
Subsection III.5. Hence, it reiterates the adjoint response formulation and its sensitivity in Appendix D.1.
Then, the displacement-based Adjoint Forces and error estimate sensitivities are derived over the
remaining subappendices, concerning both pure MacLaurin-based perturbed analysis, and its Bayesian-
enhanced version. Finally, the last missing component of the adjoint formulation, the Adjoint Stiffness,
is derived in detail within Appendix D.6. Throughout this appendix, functional dependence on λ
is omitted for readability. Likewise, the subscript x originally present throughout Subsection III.5,
denoting design dependence, is also dropped.

D.1 Adjoint Response Formulation

Recall the Adjoint Formulation (Bendsøe & Kikuchi, 1988) that casts some original response gpx, uq
into its Lagrange form L, with Lagrange multipliers in M P RNˆn and inherently satisfied constraints
R P RNˆn with R “ 0:

L ” gpx, uq `
nÿ

p“1

µppq ‚ rppq

looooooomooooooon
M ‚

2
R “ 0

,

$
’&
’%

gpx, uq “ L ,

dgpx, uq
dx

“ dL
dx

.
@M P RNˆn (D.1.1)

Here gpx, uq denotes a general response based directly on structural design x, and its deformation u.
The latter is hereafter replaced by its MacLaurin and Bayesian predictions „u and

„„u respectively, both
directly dependent on load variable λ and the higher order displacement derivatives at the undeformed

state, U ”
”
up1q, . . . , upnq

ı
. Furthermore, these displacement derivatives are obtained so as to satisfy

the higher-order residual equations, R ”
”
rp1q, . . . , rpnq

ı
“ 0, as elaborated in Subsection III.4. Lastly,

the Lagrange multipliers M ”
”
µp1q, . . . , µpnq

ı
, also referred to as the Adjoint Solutions, may be chosen

freely in RNˆn, and are hence conveniently chosen such that some expensive terms within the design
sensitivity cancel out. The reader is referred back to Subsection III.5 for further clarification.

The resulting response design sensitivity, and adjoint solutions, can be obtained through:
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dgpx, uq
dx

“ Bgpx, uq
Bx

`
nÿ

p“1

µppq ‚ Brppq
Bx

, (D.1.2)

given that K ‚ µppq “ Γppq ´
nÿ

q“p`1

Kpq, pq ‚ µpqq for p “ n, n ´ 1, . . . , 1 .

Here, the second line denotes the higher-order Adjoint Structural Equations. Over the remainder of
this appendix, the adjoint forces Γppq and adjoint stiffness Kpp, qq are derived for p, q “ 1, . . . , n, given
MacLaurin-based perturbed analysis, and its Bayesian-enhanced version.

D.2 Adjoint MacLaurin Force

The goal of this appendix is to obtain the partial state derivatives of the general response based on the
MacLaurin displacement prediction, which may be plugged directly into the adjoint formulation, copied

in Appendix D.1 from Subsection III.5. They are defined as G ”
”

Γp1q, . . . , Γpnqı “ Bgpx, „uq{B„u ‚ B„u{BU,

where g denotes the general displacement based response function, and „u the nth-order MacLaurin
displacement prediction.

Recall the nth-order MacLaurin displacement prediction „u. It can be rewritten as:

„u ”
”
up1q, . . . , upnqı
looooooooomooooooooon

U

‚

»
———–

λ
1
2 λ2

...
1
n! λ

n

fi
ffiffiffifl

looomooon
λ

“ U ‚ λ . (D.2.1)

The adjoint MacLaurin forces can then be obtained directly as:

”
Γp1q, . . . , Γpnqı
looooooooomooooooooon

G

” Bgpx, „uq
B„u

‚ d„u
dU

“ Bgpx, „uq
B„u

b λ . (D.2.2)

D.3 MacLaurin Error Estimate

The present appendix derives the sensitivities of the MacLaurin error estimator „
ϵ, and the radius of

convergence λ, exploiting the chain rule. More precisely, their state derivatives are obtained, meaning
they are differentiated versus the higher order displacement derivatives U. The respective design
sensitivities of these responses may then be obtained by plugging their state derivatives directly into
the adjoint formulation, copied in Appendix D.1 from Subsection III.5.

„
ϵ “ βn , with β ” λ

λ
, and λ ”

˜
n!

|up1q|
|upnq|

¸ 1
n´1

. (D.3.1)

d„
ϵ

dU
“ d„

ϵ

dβ
¨ dβ

dλ
¨ dλ

dU
, (D.3.2)

where
d„

ϵ

dβ
“ nβn´1 ,

dβ

dλ
“ ´ λ

λ
2 , and

dλ

dU
“
«

dλ

dup1q , 0, . . . , 0,
dλ

dupnq

ff
. (D.3.3)

Redefining λ implicitly from Equation D.3.1, facilitates a more convenient implicit differentiation, from
which ultimately the desired state derivatives of λ can be isolated. Starting with its implicit redefinition:

λ
n´1

n!
“ |up1q|

|upnq| . (D.3.4)
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Differentiating both sides with respect to uppq yields:

pn ´ 1qλ
n´2

n!
dλ

duppq “ d
duppq

˜
|up1q|
|upnq|

¸
“

$
’’’’’&
’’’’’%

up1q
|up1q||upnq| , p “ 1 ,

´|up1q|upnq
|upnq|3 , p “ n .

(D.3.5)

Hence, the state derivative of the radius of convergence equals:

dλ

dU
“ n!

pn ´ 1qλ
n´2

«
up1q

|up1q||upnq| , 0, . . . , 0, ´|up1q|upnq
|upnq|3

ff
. (D.3.6)

D.4 Adjoint Bayesian Force

The goal of this appendix is to obtain the partial state derivatives of the general response based on the
Bayesian displacement prediction, which may be plugged directly into the adjoint formulation, copied in

Appendix D.1 from Subsection III.5. They are defined as G ”
”

Γp1q, . . . , Γpnqı “ Bgpx,
„„uq{B

„„u ‚ B
„„u{BU,

where g denotes the general displacement based response function, and
„„u the nth-order Bayesian-

enhanced displacement prediction.

Starting with the nth-order Bayesian-enhanced displacement prediction
„„u, its simplified expression

from Equation C.2.1 reads:

„„u ”
”
up1q, . . . , upnqı
looooooooomooooooooon

U

‚

»
———–

λ λ ¨ ¨ ¨ λ
1
2 λ2 ¨ ¨ ¨ 1

2 λ2

. . .
...

1
n! λ

n

fi
ffiffiffifl

looooooooooomooooooooooon
Λ

‚

»
———–

ω1
ω2
...

ωn

fi
ffiffiffifl

loomoon
ω

“ U ‚ Λ ‚ ω . (D.4.1)

Most complexity lies within the weight vector ω. Its simplified expression from Equation C.2.3,

extended with the squared Bayesian error estomator ω0 ”
„„
ϵ2, reads:

«„„
ϵ2

ω

ff
”

»
———————–

ω0

ω1
ω2
...

ωn

fi
ffiffiffiffiffiffiffifl

“

»
———————–

β2n

β2n´2

β2n´4

...
1

fi
ffiffiffiffiffiffiffifl

1 ´ β2

1 ´ β2n , recalling that β ” λ

λ
, (D.4.2)

highlighting that ω and
„„
ϵ ultimately depend on the higher-order displacement derivatives U through

the radius of convergence λ. The state derivative of ω is obtained in the following Appendix D.5.
Finally, the adjoint Bayesian forces can be obtained as:

”
Γp1q, . . . , Γpnqı
looooooooomooooooooon

G

” Bgpx,
„„uq

B
„„u

‚ d
„„u

dU

“ Bgpx,
„„uq

B
„„u

b pΛ ‚ ωq ` Bgpx,
„„uq

B
„„u

‚
ˆ

U ‚ Λ ‚ dω

dβ

˙
¨ dβ

dλ
¨ dλ

dU
. (D.4.3)

Note that dβ { dλ and dλ { dU have been derived in the previous Appendix D.3. The Bayesian weights

ω, and by extension the Bayesian error estimate
„„
ϵ, are differentiated in the following Appendix D.5.
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D.5 Bayesian Weights and Error Estimate

The present appendix derives the sensitivities of Bayesian weights ωp and error estimator
„„
ϵ exploiting

the chain rule. More precisely, they are differentiated versus β, whose state derivative, dβ { dU has

readily been derived in Appendix D.3. The respective design sensitivities of ωp and
„„
ϵ may be then be

obtained by plugging their state derivatives directly into the adjoint formulation, copied in Appendix D.1
from Subsection III.5.

Consider again the pth weight ωp from Equation C.2.4, which may be rewritten as:

p1 ´ β2nqωp “ β2n´2p ´ β2n`2´2p . (D.5.1)

This formulation facilitates an intermediate implicit differentiation step with respect to β. Ultimately,
this will yield an expression for the desired derivative of ωp with respect to β in terms of β and ωp itself,
saving some mathematical and computational labor. Hence, differentiating both sides of Equation D.5.1
with respect to β results in:

p1 ´ β2nqdωp

dβ
´ 2nβ2n´1ωp “ p2n ´ 2pqβ2n´2p´1 ´ p2n ` 2 ´ 2pqβ2n´2p`1

“ p2n ´ 2pq
ˆ

1 ´ 2n ` 2 ´ 2p
2n ´ 2p

β2
˙

β2n´2p´1 . (D.5.2)

Isolating dωp { dβ then yields:

dωp

dβ
“

2nβ2n´1ωp ` p2n ´ 2pq
´

1 ´ 2n`2´2p
2n´2p β2

¯
β2n´2p´1

1 ´ β2n . (D.5.3)

Moving on to the Bayesian error estimator
„„
ϵ, it can also be conveniently obtained through implicit

differentiation of
„„
ϵ2 “ ω0:

dω0

dβ
“ 2

„„
ϵ

d
„„
ϵ

dβ
, hence

d
„„
ϵ

dβ
“ 1

2
„„
ϵ

dω0

dβ
. (D.5.4)

As the final step connecting the previous derivatives to the adjoint formulation, the state derivative
dβ { dU is obtained. Recalling that β ” λ{λ:

dβ

dU
“ dβ

dλ
¨ dλ

dU
“ ´ λ

λ
2

dλ

dU
, (D.5.5)

where the state derivative of the radius of convergence, dλ { dU, can be taken from Equation D.3.6, in a
previous section D.3.

D.6 Adjoint Stiffness

This final sensitivity analysis appendix derives the family of adjoint stiffness matrices, which are
actually the higher order residual’s state derivatives. Note that index notation is still adopted here, as
this derivation has been worked out in an early stage of the project. The adjoint stiffnesses are defined
for all p, s P t0, . . . , nu, as:

Kpp, sq
im ” Brppq

i

Bupsq
m

“ Kij
Buppq

j

Bupsq
m

` 1
2

Sijk
Bvppq

jk

Bupsq
m

` 1
6

Qijkl
Bwppq

jkl

Bupsq
m

“
ˆ

p
p ´ s

˙
Kimpupp´sqq “

$
’&
’%

0 , s ą p ,
Kim , s “ p ,` p

p´s
˘
Kpp´s, 0q

im , s ă p ,
(D.6.1)

recalling the higher order residual equation:
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rppq
i “ Kiju

ppq
j ` 1

2
Sijkvppq

jk ` 1
6

Qijklw
ppq
jkl ´ λppq pi “ 0 , uppq

i “ 0 , (D.6.2)

where vppq
ij “ up1q

i upp´1q
j `

p´2ÿ

q“1

¨
˝Bvpp´1q

ij

Bupqq
k

upq`1q
k

˛
‚ , vp0q

ij “ 0 , (D.6.3)

and wppq
ijk “ up1q

i vpp´1q
jk `

p´3ÿ

q“1

¨
˝Bwpp´1q

ijk

Bupqq
l

upq`1q
l

˛
‚ , wp0q

ijk “ 0 . (D.6.4)

To elaborate, the case for s “ p can be worked out by noting that vppq
jk and wppq

jkl are functions of up1q
i

up to upp´1q
i and up2q

i up to upp´2q
i respectively, leaving only Kpp, pq

im “ KijBup
j {Bup

m “ Kim. Similarly,
for s ą p everything vanishes. However, the case for s ă p is more complex as only the first term

of Equation D.6.1 vanishes. Yet, for fixed difference p ´ s all Kpp,sq
im appear identical up to a scalar

multiplication, hence requiring only n ´ 1, rather than npn ´ 1q{2 separate adjoint stiffness matrix
constructions, excluding the trivial cases of s ě p.

Moving on to the cases for s ă p, consider Bvppq
jk {Bupsq

m within the second term of Equation D.6.1,

substituting vppq
jk from Equation D.6.2:

Bvppq
jk

Bupsq
m

“
ˆ

p
s

˙Bupsq
j

Bupsq
m

upp´sq
k `

ˆ
p

p ´ s

˙
upp´sq

j
Bupsq

k

Bupsq
m

“
ˆ

p
p ´ s

˙´
δjmupp´sq

k ` upp´sq
j δkm

¯
, (D.6.5)

where the terms in vppq
jk from Equation D.6.2 vanish upon differentiation for all q excluding q “ s and

q “ p ´ s. Within the third term of Equation D.6.1, consider Bwppq
jkl {Bupsq

m with wppq
jkl from ??:

Bwppq
jkl

Bupsq
m

“
pÿ

q“0

ˆ
p
q

˙¨
˝vpqq

jk
Bupp´qq

l

Bupsq
m

`
Bvpqq

jk

Bupsq
m

upp´qq
l

˛
‚ , (D.6.6a)

where
pÿ

q“0

ˆ
p
q

˙
vpqq

jk
Bupp´qq

l

Bupsq
m

“
ˆ

p
p ´ s

˙
vpp´sq

jk δlm , (D.6.6b)

and
pÿ

q“0

ˆ
p
q

˙Bvpqq
jk

Bupsq
m

upp´qq
l “

pÿ

q“s

ˆ
p
q

˙ˆ
q

q ´ s

˙´
δjmupq´sq

k ` upq´sq
j δkm

¯
upp´qq

l . (D.6.6c)

Note that in Equation D.6.6b, the terms vanish for all q excluding q “ p ´ s, while in Equation D.6.6c

they vanish for all q ă s. Furthermore, Bvpqq
jk {Bupsq

m in Equation D.6.6c is substituted from Equation D.6.5.
Next, Equation D.6.6c may be conveniently rewritten to explicitly depend on p and p ´ s by substituting
r “ q ´ s. As for the binomial coefficients in Equation D.6.6c:

ˆ
p
q

˙ˆ
q

p ´ s

˙
“
ˆ

p
s ` r

˙ˆ
s ` r

s

˙
“ p!ps ` rq!

ps ` rq!pp ´ s ´ rq!s!r!
“ p!

s!pp ´ sq!
pp ´ sq!

r!pp ´ s ´ rq!
“
ˆ

p
p ´ s

˙ˆ
p ´ s

r

˙
.

(D.6.7)

Substituting these into Equation D.6.6c, and then it and Equation D.6.6b into Equation D.6.6a yields

Bwppq
jkl {Bupsq

m :

Bwppq
jkl

Bupsq
m

“
ˆ

p
p ´ s

˙˜
vpp´sq

jk δlm `
p´sÿ

r“0

ˆ
p ´ s

r

˙´
δjmuprq

k ` uprq
j δkm

¯
upp´s´rq

l

¸

“
ˆ

p
p ´ s

˙´
vpp´sq

jk δlm ` vpp´sq
kl δjm ` vpp´sq

jl δkm

¯
. (D.6.8)
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Finally, the adjoint stiffness matrix for s ă p reduces to:

Kpp, sq
im “ 1

2
Sijk

ˆ
p

p ´ s

˙´
δjmupp´sq

k ` upp´sq
j δkm

¯

` 1
6

Qijkl

ˆ
p

p ´ s

˙´
vpp´sq

jk δlm ` vpp´sq
kl δjm ` vpp´sq

jl δkm

¯

“
ˆ

p
p ´ s

˙ˆ
Simkupp´sq

k ` 1
2

Qimklv
pp´sq
kl

˙

looooooooooooooooooomooooooooooooooooooon
Kpp´s, 0q

im

, (D.6.9)

concluding the proof for Equation D.6.1. In fact, the simplicity of the final expression suggests there
may be a much simpler and more elegant proof involving combinatorics, but the result is obtained
nonetheless.
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