
Application of Deep Learning
to Coherent Fourier
Scatterometry data

Davy Davidse

Thesis in partial fulfilment of the requirements for
the degree of Master of Science in Applied Physics

Examination committee:
Prof. Dr. S. Stallinga
Dr. C. Smith

Supervisors:
Dr. Ir. S.F. Pereira

D. Kolenov MSc

April 18, 2020

Abstract

This thesis discusses the application of deep learning to Coherent Fourier
Scatterometry data in order to quickly and reliably detect nanoparticles on
surfaces. An introduction to deep learning is followed by a review of the
experimental setup and used software. After that, results are presented of
classification accuracy tests on various datasets containing images obtained
from scatterometry scans. We show that a relatively simple convolutional
neural network can achieve an accuracy as high as 98% on a 200 image test
set. We compare this to the accuracy of a non-deep learning, clustering
based classification algorithm and conclude that deep learning is a more
suitable method for particle classification. Then, three methods of open set
recognition are applied. We show that it is possible to reject 80% of a fooling
dataset at the cost of rejecting 10% of the normal data. Finally, the results
are discussed and placed in the context of future work on this subject.

Acknowledgement

I would like to thank my supervisor, Silvania Pereira, for having faith in
my abilities and letting me pursue the directions I wanted. Thanks also to
Dmytro Kolenov, for always being available for questions and for doing all
the data acquisition, a job I don’t envy.

Further thanks go to Roland Horsten for getting my PC at TU Delft into a
workable state and for providing and installing a graphics card. Thanks also
to Ronald Ligteringen who helped get the Python installation done properly
and sat down with me for an additional troubleshooting session after what
turned out to be a bugged package update.

And finally, thanks to all the great people at the Optics group who made
my stay enjoyable!

Contents

1 Introduction 6
1.1 Particle detection . 6
1.2 Classification and machine learning 6
1.3 Deep Learning . 8
1.4 Project goal . 8
1.5 Thesis outline . 8

2 Theoretical background 9
2.1 Artificial neural networks . 9

2.1.1 Feedforward networks 10
2.1.2 The softmax function 11
2.1.3 Introducing nonlinearity: activation functions 11
2.1.4 Gradient descent . 12
2.1.5 Training the network 13
2.1.6 Reducing overfitting 14

2.2 Convolutional neural networks 15
2.2.1 Pooling layers . 16
2.2.2 Network architecture 16

2.3 Network analysis tools . 17
2.3.1 Confusion matrix . 18
2.3.2 Loss Landscape . 18

2.4 Applying the theory . 20

3 Setup 21
3.1 Scatterometry setup . 21
3.2 Software . 24

3.2.1 Using a GPU for computation 25
3.3 Neural network . 25

3.3.1 Loss function . 25
3.3.2 Optimizer . 26

0. Contents 4

4 Experiments and results 27
4.1 Analysis of scans obtained with the CFS setup 27
4.2 Network tests on synthesized data 29
4.3 Data processing and its effect on particle detection data 30
4.4 Network tests on real data . 31

4.4.1 Network tests on 3 class scatterometry data 31
4.4.2 Network tests on 4 class scatterometry data 36
4.4.3 Network tests on 5 class scatterometry data 41

4.5 A note on reproducibility . 45
4.6 Input size . 45
4.7 Loss landscapes . 46

4.7.1 Random planes . 47
4.7.2 Principal component analysis 47

4.8 Open set recognition . 49
4.8.1 Probability thresholding 49
4.8.2 Activation vectors . 54
4.8.3 OpenMax . 58
4.8.4 Summary . 61

4.9 Time and computational speed 62
4.10 Network architecture changes 62

4.10.1 Removing layers . 62
4.10.2 Adding convolutional layers 63
4.10.3 Summary . 64

4.11 Comparison between deep learning and clustering based clas-
sification . 65

4.12 Conclusion . 67

5 Discussion 68
5.1 Results . 68
5.2 Future improvements . 68

5.2.1 Dataset . 68
5.2.2 Open-set recognition 69
5.2.3 Smaller Particles . 69

5.3 Expanding the system . 70

6 Conclusion 71

Appendices 73

A Testing network parameters on synthesized data 73

0. Contents 5

B MATLAB tool 77

C The effect of detrending on scans 80

D Max pooling vs average pooling 83

E Training trajectories on loss contour plots 84

F Network code 85

References 93

Chapter 1

Introduction

This chapter will provide a short introduction of the topics discussed in this
thesis.

1.1 Particle detection

Detection of small particles is becoming increasingly significant in the semi-
conductor industry. As feature size is shrinking, clean substrates are becom-
ing more important. Furthermore, a diverse range of materials is being used
today, including silicon and polymer substrates. It is desirable to have a non-
destructive particle detection system that can operate on various substrates
and resolve particles in the range of 100 nm or less [1, 2].

One such system is described in Ref. [4]. This system uses polarized light
in a bright field particle detection setup to detect particles with a size of 100
nm. For this thesis, a similar system was used. For further discussion of the
setup, see section 3.1.

1.2 Classification and machine learning

Machine learning is the use of artificial intelligence to provide a system with
the ability to learn from experience and improve itself without being explicitly
programmed. To illustrate how machine learning is used in this thesis, we
will start with an example.

1. Introduction 7

Figure 1.1: Two clusters of synthetic example data. They are labeled by
color.

Consider the clusters of data in Fig. 1.1. They are labeled: all data
points in the first cluster are red while all points in the second cluster are
blue. What if we get a new point of data, without a label, and want to know
which cluster it belongs to? This is referred to as a classification task : we
want to assign a class to an unlabeled data point based on previously seen
labeled data. In our example, the simplest way to do this is to draw a line
between the clusters. We can then assign the label ‘red’ or ‘blue’ to new data
points based on whether they are lying above or below the line.

In the above case, it is quite obvious how the line should be drawn. This
is not always the case. For example, the clusters could lie closer to each other
and partially overlap. Finding the line that best seperates the two clusters
can then be a difficult task, which is where machine learning comes in. A
line in a two dimensional space has the form:

y = ax+ b (1.1)

Though in the context of classification it is preferable to write:

α1x+ α2y = β (1.2)

For each data point a β can be calculated using the point’s x and y values
and the model’s α1 and α2 parameters. If β is above a certain value, the point
is classified as ‘red’, otherwise it is classified as ‘blue’. The goal of a machine

1. Introduction 8

learning algorithm is to find α1 and α2 such that for a given set of labeled
training data, the model correctly classifies as many points as possible.

This is a simple example in which data points consist of only two numbers
(x and y values) and have only two possible outcome classes. In reality,
dimensionality of data is often far greater. For example, one might try to
classify images. A 100x100 image contains 10,000 pixel values, and that
is for a greyscale image (an RGB image would have thrice that number).
The number of output classes greatly differs per application, but is nearly
always higher than two, further increasing the complexity of the classification
problem. Efficient machine learning algorithms are needed to handle these
advanced problems.

1.3 Deep Learning

The data coming from our particle detection setup is two dimensional. In
essence, we are creating images. It is important to realize then, that in the
past decades, there has been major progress in the field of image processing
and computer vision by using artificial neural neworks [5]. This is a branch
of machine learning commonly called deep learning. More specifically, a type
of artificial neural network known as convolutional neural network (CNN) is
responsible for the success in this field in recent years [6, 7, 8]. There has
also been an increasing use of CNNs to book successes in the field of optics
[9, 10, 11].

1.4 Project goal

This raises the following questions: can we use deep learning to quickly and
reliably detect and classify small particles? The goal of my project was to
find the answer to that question.

1.5 Thesis outline

In chapter 2, we will discuss some of the theory behind deep learning. Chap-
ter 3 contains both a description of the optical setup we used to generate
data and the artificial neural network we used to process that data. In chap-
ter 4, we present the results of various experiments that we performed in the
pursuit of a well functioning, high accuracy network. Chapter 5 contains a
discussion of the obtained results and possible future improvements. Finally,
chapter 6 concludes this thesis.

Chapter 2

Theoretical background

This chapter contains some of the theoretical background behind deep learn-
ing and some related concepts that are relevant to this thesis.

2.1 Artificial neural networks

The theory presented in this section is based on the online book Deep Learn-
ing by Goodfellow et al. (see Ref. [13]).

(a) (b)

Figure 2.1: a) Schematic of a simple artificial neural network. Each layer
consists of a number of nodes, which run basic mathematical operations on
the data that flows through the network. b) Schematic of a perceptron.

Deep learning is a form of machine learning that allows computers to learn
from experience and understand the world in a way that is closer to the way

2. Theoretical background 10

our human brain works than traditional machine learning algorithms are.
To do so, it makes use of artificial neural networks (ANNs). Such networks
consist of an input layer, an output layer and one or more layers in between
(see Fig. 2.1a). ANNs are used in many fields today, such as regression
analysis, data processing, and classification. The latter is the core of this
thesis.

The network in Fig. 2.1a is fully connected. This means that all possible
connections between the nodes of 2 adjacent layers are active. The amount
of layers and amount of nodes per layer were chosen small because it is
convenient for the figure. In reality, the required complexity of the network
(which includes the amount of nodes and layers) depends on the task that the
network is being designed for. For example, distinguishing between cats and
dogs in photos will require a far more complex network than distinguishing
between squares and circles.

2.1.1 Feedforward networks

To understand how data propagates through the network, we have to know
what each node, or neuron, does. For that, we will look at a single node, also
called a perceptron (see Fig. 2.1b). A perceptron can be used as a simple
binary classifier. Our example has 2 inputs, called x1 and x2, two weights
called w1 and w2, a bias denoted by b1 and an output y. The output is
calculated as follows:

y = w1x1 + w2x2 + b1 (2.1)

A fully connected neural network works the same way. Each layer takes
the inputs coming from the previous layer, multiplies them with their respec-
tive weights and adds a bias value. The process where data passes through
all the layers of the network this way is known as a forward pass. Networks
based on this are called feedforward neural networks. This term only applies
when information flows through the network in one direction. The alter-
native is to have feedback connections in the network, which is beyond the
scope of this thesis. For more information on feedback networks, see Ref.
[16].

We will use θ to denote the parameters of the network, which are the
weights and biases of all the nodes. A feedforward network defines a mapping
y = f(x;θ) and learns θ such that this best approximates a desired mapping
y = f ∗(x). For a classifier, during the learning process, called training,
each data point x that is put into the network is accompanied by a label
y = f ∗(x). The network must decide how to adjust its parameters θ to get

2. Theoretical background 11

its outputs closer to the desired label.
Note that the label only specifies what the network outputs must be; it

does not specify what the values in each of the layers before the output layer
need to be. This is why the layers between the input and output layer are
typically called hidden layers : they are the internal workings of the network
and as users we are not concerned with the values in those layers.

2.1.2 The softmax function

A neural network designed for classification has an output of 1 score per
class. To convert these scores into probabilities, the softmax function can be
used. It is defined as:

Si(x) =
exp vi(x)∑
j exp vj(x)

(2.2)

Here v(x) is the vector containing the outputs for an input image x, and
Si(x) is the probability that x belongs to class i.

2.1.3 Introducing nonlinearity: activation functions

A perceptron is a linear model. It follows that a linear combination of percep-
trons is also linear. This greatly limits our classification power, because the
network has a very poor ability to approximate nonlinear functions f ∗(x).
This is why we want to introduce nonlinearity to the network. We do this
by implementing an activation function between layers, so that instead of
working on the output of the previous layer xn, each layer now works on a
transformed output φ(xn).

Various activation functions have been succesful in deep learning, such
as the sigmoid, tangent hyperbolic and softmax functions. However, since
we are interested in image classification with CNNs (more on this later), the
activation function that is of most interest to us is known as rectifier. Using
a rectifying nonlinearity has been said to be the single most important way
to improve the performance of a recognition system [17]. In 2011, it was
proven to be very effective in deep neural networks [18], and it has been the
most used activation function since then [13].

In the context of neural networks, the rectifier function has the following
definition:

f(x) = max (0, x) (2.3)

2. Theoretical background 12

Figure 2.2: Graph of the rectifier function.

The rectifier is usually referred to as ReLU, which stands for Rectified
Linear Unit. To clarify the terminology: ReLU is a node (or unit) in a
neural network that applies the rectifier function.

ReLU is computationally faster than using other functions like tanh, be-
cause it does not involve computationally expensive elements like exponen-
tials. Also, it has been observed to lead to significantly faster training of large
neural networks. The downsides of ReLU are that it is not zero centered and
that it is unbounded, which can hurt the performance of the neural network.
However, techniques such as batch normalization (more on this later) can fix
these issues [7].

2.1.4 Gradient descent

The training of a neural network is an optimization problem. We want to
minimize some error function, also called loss function or cost function. This
function represents how far away our network’s outputs are from the desired
outputs. For each input x, the label c and the network outputs v(x) are fed
into the loss function to produce a scalar loss value L. In order to adjust the
network’s parameters so that L gets smaller, we can compute the gradient of
the loss function with respect to the weights. The gradient represents both
the rate and direction of greatest increase, so if we take small steps in the
opposite direction, we reduce the loss. This method is known as gradient
descent.

Gradient descent updates the network parameters θ as follows:

θ′ = θ − ε∇θf(θ) (2.4)

2. Theoretical background 13

Here ε is the learning rate, which determines the size of the steps taken at
each update, and f is the loss function. Note that ∇θ denotes the gradient
with respect to θ, not to be confused with a directional derivative (for which
unfortunately the same notation is often used).

Gradient descent converges when all elements of the gradient are close to
zero. It is important to realize that for non-convex loss functions with local
minima, convergence need not be at the global minimum.

The algorithm that is commonly used to compute gradients is called back-
propagation. This is because information propagates back through the net-
work in order to calculate the partial derivatives of the error with respect to
the weights and biases of earlier layers. A full treatment of the inner work-
ings of back-propagation is beyond the scope of this thesis. For this, we refer
to a well written chapter in the free online book Neural Networks and Deep
Learning by M. Nielsen, see Ref. [14]. For further reading, see the original
paper by D. Rumelhart et al. [15].

2.1.5 Training the network

Training a neural network is an iterative process. A dataset is split up in
batches, which are passed through the network one by one. The term epoch
is used to describe the cycle where each sample in the training data is used
for training once. [19] The amount of epochs to train is an example of a
hyperparameter, this is a term used in machine learning for the parameters
that are set before training begins.

For each batch, a forward pass is performed and an error is calculated.
After that, backpropagation calculates the partial derivatives of this error
with respect to the network’s parameters via gradient descent. At that point
we have all the information we need to update the parameters. However,
there are many functions that perform this update in different ways. Such a
function is called an optimizer. The choice of optimizer plays a big role in
the speed and efficiency of the training process.

After training concludes, efficacy of the process is assessed by a test ac-
curacy, which is defined as the percentage of images in a test dataset that
the network classifies correctly. The goal of the test set is to test the net-
work’s generalization power : its ability to use the knowledge it gained during
training and apply that to images it has never seen before.

Training does not always go well. There are two main scenarios where
the network does not converge to a high test accuracy: underfitting and
overfitting.

Underfitting is when the network does not learn the test data well enough.
Typically, this one is easiest to prevent. It can be reduced by increasing the

2. Theoretical background 14

complexity of the network, feeding it more data or letting it train for a longer
time.

Figure 2.3: Example of overfitting. After 10 epochs of training, training
accuracy continues to increase while validation accuracy drops. Thus, in
order to create the network with the highest generalization power, it is best
to stop training after 10 epochs.

Overfitting is when the network learns the test data too well, and thus
can only accurately predict the examples from the test data. It then performs
poorly on new data that was not seen during training. This is more tricky to
solve. To visualize overfitting, a common practice is to split the dataset into
3 parts: a train set, a validation set, and a test set. The train set is used to
train the network as described before. The validation set is used to test the
accuracy of the network after each epoch. The optimal amount of epochs is
then the amount after which the validation accuracy is highest. When the
validation accuracy starts to drop, the network is overfitting (see Fig. 2.3).
At this point, we want to stop training and use the test set to generate a test
accuracy score, which is the main indicator of how succesful a training run
was.

2.1.6 Reducing overfitting

There are three popular techniques to reduce overfitting. First, it is in our
best interest to keep the weights in the network small. This is known as
regularization. One way of regularization is to include it in the loss function.

2. Theoretical background 15

For example, L2 regularization adds the square of each weight to the loss
function, thus punishing large weights.

The second technique is called dropout. This randomly turns off a number
of nodes in the network during each epoch of training. The consequence is
that nodes will develop less co-dependency, so that their individual contri-
bution to the network is better trained.

The third technique is called batch normalization. This technique updates
the values of the data that goes through the network after each layer as
follows:

xi+1 =
xi − E(xi)

σ(xi)
(2.5)

Here E(xi) is the mean of the batch and σ(xi) its standard deviation.
The purpose of batch normalization is twofold: to speed up training and
to reduce overfitting. The former is because inputting smaller values to the
next layer is computationally advantageous while the latter is because batch
normalization has a regularization effect. This results from the fact that
batches are randomized, so that the E(xi) and σ(xi) are different every
time.

Lastly, it should not come as a surprise that a larger dataset generally
also reduces overfitting. The larger the training set, the more representative
it will be for all possible inputs.

2.2 Convolutional neural networks

Our data comes in the form of images, and we wish to classify them based on
whether or not a particle is detected, and if so, of what size. This is why we
are most interested in a special type of neural network known as convolutional
neural network (CNN). CNNs include one or more convolutional layers, and
they are widely used in image classification and computer vision.

A convolutional layer is a network layer that applies a two dimensional
convolution operator to the data. This means that a two dimensional kernel
moves over the image and generates a new image via convolution. The size
of the kernel and the size of its steps are the most important parameters
to set. Additionally, a padding parameter can be used to zero pad the two
dimensional data. This prevents the convolution operator from reducing the
size of the image, because the layers that are lost are now the zero padded
layers instead of the outer layers of our data.

The values of the kernel are adjusted by the network during training. It
is also possible to have multiple kernels with different values in one convolu-

2. Theoretical background 16

tional layer. Each of these kernels then produces a different stream of data.
We call these streams channels.

2.2.1 Pooling layers

A pooling layer is similar to a convolution layer in a way: a kernal moves over
the image and performs a mathematical operation to generate a new image.
However, in a pooling layer, this operation is max, min or mean. Max pooling
layers are most common in CNNs because they generally best preserve the
important features of an image due to keeping the extremes. However, which
type of pooling performs best depends on what type of images are being used
as input data, and in case of classification, how they are seperated into classes.

In a max pooling layer, a kernel moves over the image and selects the
maximum value in its window. For example, if a 2x2 kernel is selected,
the maximum value in each 2x2 block of data will be taken to form the
new output image. Once again, the step size of the kernel can be selected.
Typically, step size 2 or greater is used. That way, the size of the image is
greatly reduced. This speeds up computation and also reduces overfitting.
The reason for the latter is that max pooling tends to preserve the most
important features of the image, and thus the information that’s thrown
away is mainly irrelevant information that would otherwise be included in
training.

2.2.2 Network architecture

Now that we have some knowledge of all the important components of a
CNN, we can talk about its architecture. Typically, the convolution layers
are followed by other layers in this order:

1. Convolutional layer

2. Max pooling layer

3. Activation layer (ReLU)

4. Batch normalization layer

This ensures that we gain all the benefits from these layers as described
in the previous sections, while keeping computational cost as low as possible.

The convolutional layers mainly deal with feature extraction. This means
that, as we get deeper into the network, the images will start to represent
specific features of the input images. That is why the images that have been

2. Theoretical background 17

processed by one or more convolutional layers are called feature maps. To
give an example: if our inputs were images containing human faces, deep
feature maps might look like ears or eyes.

The task of the network as whole, however, is classification. This is why
after the convolutional layers we need one or more fully connected layers.
These are layers similar to the hidden layers in Fig. 2.1a. Note that they
are one dimensional layers, so before sending our data to them, we have to
reshape it. In other words, instead of the two dimensional arrays coming out
of the convolution and pooling layers, we have to send in a one dimensional
list of numbers.

2.3 Network analysis tools

The most basic way to assess performance of a neural network is accuracy,
which we define as the percentage of images from a dataset that was classified
correctly. Thus, a higher accuracy means the network performed better. We
can plot how accuracy changes during training by using the validation set, to
get a visualization of the speed of convergence. However, this is still rather
limited, because it makes no distinction between classes (what if one class
has a classification accuracy of 100% while another has 50%?) and it’s hard
to get an idea about how changes to the architecture or optimizer affect the
training process.

2. Theoretical background 18

2.3.1 Confusion matrix

Figure 2.4: Example of a confusion matrix where one 60 nm particle is mis-
classified as a 50 nm particle.

The first of these issues can be fixed with a confusion matrix. This is a
matrix that shows for each input class how much of it is classified into each
output class. An ideal confusion matrix is diagonal, because the diagonal is
where the predicted label equals the true label (see Fig. 2.4). Off-diagonal
terms represent misclassification.

After generating a confusion matrix, we know which classes the network
struggles to distinguish and to what degree. In case the network performs
badly, this gives us an opportunity to inspect the input data and perhaps
find out what the network struggles to get right .

2.3.2 Loss Landscape

It would be interesting to visualize how the performance of the network
changes as a function of θ. To do this, we use the total loss LT , which is
the sum of the loss values generated by the images in the dataset. Varying
θ in two independent directions creates a surface for LT known as a loss
landscape. However, even a relatively small convolutional neural network
can easily have an amount of parameters in the order of 106. How do we
then choose the two directions that generate our landscape?

The easiest way is to choose them randomly. We can initialize 2 sets of
random numbers of the same shape as θ and repetitively add them to θ to
generate loss values at various “distances” away from our origin. To improve

2. Theoretical background 19

this, we can use what is known as filter normalization [20]: for each layer
of our network, we calculate the norm of the weight vector specific to that
layer, and we adjust the corresponding weights in the randomly generated
vectors such that they have the same norm. This way we make sure that
the distance we move from the origin makes sense: when we add a randomly
generated vector once, each network weight vector gets another weight vector
with the same norm added to it.

There is, however, one problem with randomly generated landscapes:
they have a low chance of capturing much of the variation of the weights,
because most of the variation lies in a low dimensional space [20]. This means
that we need some way to select specifically those dimensions where most of
the variation resides.

Principal component analysis

If we have a dataset with p variables, we can define a data matrix X with
n · p values, where each column corresponds to a variable. The objective of
principal component analysis, or PCA, is to find the linear combination of
these columns that has the highest variance. The linear combination takes
the form:

p∑
j=1

ajxj = Xa (2.6)

The variance is given by:

var(Xa) = a'Sa (2.7)

Here S is the sample covariance matrix corresponding to the dataset, and
a' denotes the transpose of a. For our problem to be well defined, we impose
the condition that a'a = 1. This means what we are trying to find is:

max [a'Sa− λ(a'a− 1)] (2.8)

Differentiating this and equating it to zero gives us:

Sa− λa = 0 (2.9)

This means that the vectors ak are eigenvectors of S, and λk are the eigenval-
ues. The principal components of the data matrix X are the products Xak.
Looking at the variance, we find:

var(Xa) = a'Sa = a'λa = λ (2.10)

2. Theoretical background 20

So the principal component corresponding to the highest variance is the
one with the highest eigenvalue. The next highest variance is found in the
component with the second highest eigenvalue, and so on. This allows us to
select the 2 directions of highest variance, which we can use to generate our
loss landscape.

For more information and a more detailed explanation of PCA, see Ref.
[27].

2.4 Applying the theory

What we will do in the next chapters based on this theory is the following:

1. Create a CNN using Python code

2. Implement the inspection methods (confusion matrix and loss land-
scape)

3. Set and adjust the CNN’s options (optimizer, loss function, hyper-
parameters) in such a way that it reaches the highest classification
accuracy

Chapter 3

Setup

3.1 Scatterometry setup

The technique used in our setup for detecting nanoparticles on surfaces is
called Coherent Fourier Scatterometry (CFS). In scatterometry, a beam of
light is incident on an object of interest, which scatters it back into other
directions than the direction of the incoming beam. This scattered light is
then detected in the far field. It contains information about the object, even
if the latter is of dimensions smaller than the wavelength of the incident light.
In CFS, the incident light is a coherent laser beam. The use of coherence
makes CFS more sensitive than incoherent scatterometry [21, 22].

3. Setup 22

Figure 3.1: Optical setup. Light from a laser (1) is coupled to an optical fiber
and processed by a collimator (2). It then passes through a linear polarizer
(3). It then is directed to the sample by a 50% beam splitter (4) and focused
on the sample surface by an objective (5). The sample is mounted on an
X-Y-Z piezoelectric stage (6). The spurious reflection from the surface and
the scattered light are coupled back through the objective (5) and go back
towards the beam splitter (4). After being transmitted by the beamsplitter,
they pass through another polarizer (7) and a telescopic arrangement of two
lenses (8) and (9), before encountering the split detector (10).

For this work, we used a setup that had been built in an earlier project,
see Ref. [4]. The setup is shown in Fig. 3.1. Light from a laser with a
wavelength of 405 nm travels through a linear polarizer before being redi-
rected to the sample and focused by an objective. The scattered light passes
through another linear polarizer, which aligns the direction of polarization
with the orientation of the detector. Then, it passes through two lenses in a
telescopic arrangement, which image the back focal plane of the objective to
the detector plane, before entering a bi-cell photodiode. This is a photodiode
with two active detection areas, which allows for differential detection. This
improves SNR, mainly through elimination of spurious reflections from the
sample [23].

3. Setup 23

(a) (b)

Figure 3.2: a) single scanning line of a particle, b) 3D representation of
multiple scanning lines over a particle

The sample is mounted on a 3D piezoelectric stage that can be precisely
moved around. First, the best focus position is found by looking at the
collimation of the reflected light. After the focus position is optimized, a
raster scan is performed. We denote the direction of scanning with X and
the spacing between the lines with ∆Y. For each position X,Y the value of
the differential voltage of the split detector is stored. The detector is aligned
in such a way that the line that seperates its two halves is perpendicular
to the direction of scanning. This way, when a particle is detected, initially
only the first half of the detector sees it. This generates a positive differential
signal. Then, when the particle is aligned in the middle of the beam, both
halves see it, resulting in zero differential signal. Lastly, only the second half
sees it, which results in a negative differential signal. Fig. 3.2a shows what
the total signal for one particle looks like. The width of the pulse indicates
the size of the particle. The amplitude of the pulse depends not only on
the size of the particle, but also on the material the particle consists of and
on how well the light is focused and centered on the particle. Finally, the
symmetery of the pulse depends on the focus position. When it is in focus,
the pulse is symmetric.

3. Setup 24

Figure 3.3: Image representation of part of a 2D scan obtained from a sample
with 80 nm PSL spheres. The image shows an x-range of 1.35 µm and a y-
range of 0.9 µm.

An example of how a particle shows up in a 2D scan is shown in Fig. 3.3.
In this thesis, all scans are made on polished silicon wafer surfaces that

were artificially contaminated with spherical polystyrene latex (PSL) nanopar-
ticles of known sizes. We also had access to samples containing gold particles,
but at the same input laser power, those yielded a much stronger signal com-
ing from the scattered light. PSL spheres are a greater challenge to detect.
On top of that, they are more realistic, because in a production environment,
not all contaminants scatter as strongly as gold.

3.2 Software

We wrote the neural network code in Python. For that, we used a Miniconda
installation of Python 3.7 with the following additions:

� spyder

� matplotlib

� scipy

� scikit-learn

� torchvision, pytorch

� loss-landscapes

3. Setup 25

For more details about the installation, see Ref. [24]. Besides Python,
MATLAB version R2016b was used extensively for data processing.

3.2.1 Using a GPU for computation

Initially, we ran our code on the CPU, but after some weeks we got access
to an Nvidia graphics card, of the type “GeForce GTX 1050 Ti”, which
enabled the use of Compute Unified Device Architecture (CUDA). CUDA is
software developed by Nvidia that allows computations to be performed with
the help of the GPU, which offers a significant speed-up compared to only
using the CPU. This is because a GPU is capable of a much higher degree
of parallel computing. Most of the neural network experiments in this thesis
were performed with the help of CUDA Toolkit 10.1.

3.3 Neural network

Figure 3.4: Schematic representation of our network

Our network is a modified version of LeNet-5 [25]. We use 2 convolutional
layers, each followed by a max pool and a ReLU layer, and 3 fully connected
layers, the first two of which are followed by a ReLU layer. The last layer
outputs a vector containing a score for each output class. An overview of our
network is shown in Fig. 3.4. Input image size was initially set to be 150x150
pixels, but this can be easily adjusted. Zero padding in the convolutional
layers was initially set to 1.

3.3.1 Loss function

The loss function we used is called cross entropy loss. It is given by:

3. Setup 26

L (v(x), c) = −log

(
exp vc(x)∑
j exp vj(x)

)
(3.1)

Here x is an input image, c is the real class of the image (often referred to
as ground truth) and v is the vector containing the network’s output scores.
Note that the argument of the logarithm is the softmax probability for the
ground truth (see Eq. 2.2).

3.3.2 Optimizer

We used an optimizer called Adam [26]. It is given by the following scheme:

gi = ∇θf(θi−1)

mi = β1mi−1 + (1− β1)gi
vi = β2vi−1 + (1− β2)g2i

m̂i =
mi

1− βi1
v̂i =

vi
1− βi2

θi = θi−1 − α
m̂i√
v̂i + ε

(3.2)

Here f is the loss function, α is the learning rate, m and v are exponential
moving averages of the gradient and squared gradient, and β1 and β2 are
hyper-parameters controlling the exponential decay rates of these moving
averages. Note that in the case of βi, i is a power, not an index. Furthermore,
m̂ and v̂ are intialization corrected versions of m and v. This is necessary
because this iterative scheme needs to start somewhere, meaning m and v
need to be assigned some start value, the default of which is zero. Correction
is needed for this start value to not have too great an impact on the early
iterations. Lastly, ε is present to prevent a potential division by zero.

A useful property of Adam is that it is invariant to the scale of the loss
function. If the f is multiplied by k, then both m̂ and

√
v̂ are also multiplied

by k, therefore the update to θ stays the same. Another useful property is
that it has an adaptive learning rate. This means that it computes a seperate
learning rate for each parameter, which also changes over time. This leads
to significantly better convergence than a non-adaptive learning rate.

Chapter 4

Experiments and results

In this chapter, we will discuss the results of our experiments.

4.1 Analysis of scans obtained with the CFS setup

(a) (b)

Figure 4.1: a) Image of a scan around a particle affected by wobble. The
detected particle is a 50 nm gold particle. The scan data was available to
us from previous research with the scatterometry setup. Units are pixels. b)
Vertical cut through the data at the positive peak of the particle

The data from the scatterometry setup contained a periodic variation, which
we called wobble. The effect can be seen in Fig. 4.1.

4. Experiments and results 28

Figure 4.2: Wobble spatial period as a function of the scanning time per line.

(a) (b)

Figure 4.3: a) Scan data from Fig. 4.1a, smoothed. Units are pixels. b)
Vertical cut through the positive peak of the particle, smoothed.

4. Experiments and results 29

We observed that the spatial frequency of the wobble varied with the
speed at which the stage moved during scanning, so we decided to measure
the relation between the two. The result can be seen in Fig. 4.2. Since
there is a clear dependency on the scanning time per line, it is likely that the
cause of the wobble lies in the piezoelectric stage via mechanical vibration.
However, since the wobble problem can be easily corrected with software
while processing the data, we did not further investigate its cause. For the
software correction, we used MATLAB to apply a simple local averaging
filter, which updates the voltage z(i, j) at each data point as follows:

z′(i, j) =
1

2n+ 1

n∑
j=−n

z(i, j) (4.1)

The number n was chosen to be 5, because this is the smallest value that
still eliminates most of the wobble. The result is shown in Fig. 4.3. Given
that the distance between our scanning lines is 2 nm, we are averaging over
22 nm.

4.2 Network tests on synthesized data

(a) (b)

Figure 4.4: a) Accuracy curves of the network with single layer padding, b)
accuracy curves of the network with double layer padding.

In order to test the neural network early on, we used synthesized data. Each
synthetic data image was created by the addition of triangular waveforms
with opposite sign amplitudes, resulting in an X- signal that approximately
resembles a particle detection’s pulse. In the Y-direction, a number of these

4. Experiments and results 30

signals were placed in parallel, with the amplitudes being taken from a Gaus-
sian function.

We looked at both accuracy and stability, the latter being assessed by
how flat the accuracy line was near the end of training. The most important
result can be seen in Fig. 4.4. The network with double padding is clearly
more stable after 30 epocs. Based on this, we made the network with double
layer padding our default network.

For all results obtained with synthesized data testing, see Appendix A.

4.3 Data processing and its effect on particle detection

data

In order to improve data quality, some processing was done on the raw data.
First, a local averaging filter is applied as explaind in section 4.1. Then, in
order to eliminate low frequency variations in the data, detrending is done
in both dimensions by the MATLAB function detrend() (see Appendix C
for a comparison between data with and without detrending).

80 nm 60 nm 40 nm

Vpp raw [V] 11.8 3.5 2.86
Vpp detrend [V] 11.8 (+0.0%) 3.5 (+0.0%) 2.86 (+0.0%)
Vpp smooth [V] 11.6 (-2.0%) 3.3 (-5.6%) 2.45 (-14.3%)
Vpp smooth + detrend [V] 11.6 (-2.0%) 3.3 (-5.6%) 2.45 (-14.3%)

Table 4.1: Results of smoothing and detrending tests

However, this data processing also has an effect on the size of particle
detection peaks. The result is that for an 80 nm PSL sphere the Vpp of the
detection signal decreases by 2%, while for a 40 nm PSL sphere it decreases
by 14% (see Table 4.1). That number is caused by the local averaging fil-
ter, detrending has virtually no effect on it. This is something to keep in
mind when trying to detect even smaller particles in the future, because the
effect will most likely be even greater, which could limit our ability to spot
detections in scans.

4. Experiments and results 31

4.4 Network tests on real data

4.4.1 Network tests on 3 class scatterometry data

(a) 50 nm (b) 60 nm (c) 80 nm

Figure 4.5: Cuts of scan maps around particle detections of various sizes.
The same scanning parameters were used to obtain data from the different
samples that contained particles of different sizes. Units are pixels. These
images were part of the dataset used to train the network. The 60 and 80
nm particles clearly stand out from the background, while the 50 nm particle
does so much less.

In this section we show the results of the first network tests on real data.
The data consisted of 400 images containing cuts of scan maps around

PSL sphere detections, divided roughly equally over 3 classes based on par-
ticle size: 80 nm, 60 nm and 50 nm. The data was obtained by making scans
with the same laser power. This has one downside: using a high enough laser
power to see smaller particles meant that the 80 nm particles scattered so
much light that they saturated the detector. Because of that, the amplitudes
of the 80 nm detections were lower than they should have been. However,
they were still significantly higher than the amplitudes of the other cate-
gories, so it was our estimation that this should not be a limiting factor for
classification.

Examples of images in the dataset can be seen in Fig. 4.5. The images
were 150x150 pixels in size. We chose to use no more than 3 classes to make
the network’s task easier. After all, this was our first test on real data, and
we did not yet know whether it would be any good.

It turned out that the network had no trouble with the dataset: accuracy
in this experiment was consistently high and a test accuracy of 100% was
achieved.

4. Experiments and results 32

Figure 4.6: Accuracy of a 3 class network run on real data.

An example accuracy plot can be seen in Fig. 4.6. It is interesting to see
that training accuracy shoots up to 98% after only 1 epoch, while validation
accuracy is already high from the start (the latter is because the validation set
is first passed through the network after the training set has already passed
through once). Apparently, the relative simplicity of our inputs makes it so
that very little training is needed.

4. Experiments and results 33

(a) 50 nm (b) 60 nm (c) 80 nm

Figure 4.7: Cuts around particle detections. The physical area per cut is
now 4 times as big as it was in Fig. 4.5. Units are pixels.

Then, we did the same experiment but with a larger area per cut of the
scan map. This time, the cuts covered twice the distance both in the x and
in the y direction, but they were downsampled to be 150x150 pixels in size,
like the previous images. Examples of the new images can be seen in Fig.
4.7.

Figure 4.8: Accuracy of a 3 class network run on images that show a larger
physical area.

After training the network with the larger cuts, the resulting accuracy
was consistently lower than for the smaller cuts (see Fig. 4.8). The highest

4. Experiments and results 34

test accuracy achieved for these images was 92%. However, we cannot be
sure that this lower accuracy is caused by the larger cuts. It may also be
caused by the information that’s thrown away when downsampling to size
150x150. To put this to the test, an additional experiment was performed,
where the wider cuts were instead put into the network as 300x300 pixel
images. The result was a maximum test accuracy of 100%.

Figure 4.9: Accuracy of a 3 class network run on 300x300 pixel images

4. Experiments and results 35

Figure 4.10: Accuracy curves of a network run on 5 class synthetic data.
100% accuracy was achieved on all sets.

It can be seen clearly in Fig. 4.6, 4.8 and 4.9 that the validation accu-
racy is consistently lower than the training accuracy, and does not converge
towards it. That is unfortunate, because it means that the effect of training
is limited. After a few epochs, it is no longer improving the network. This
is a case of overfitting: the network learns the training set perfectly (100%
training accuracy is achieved every time) but lacks the generalization power
to perform as well on the other sets. For comparison, an example of an accu-
racy graph without this problem, generated with synthetic data, can be seen
in Fig. 4.10. As we can see, there the validation accuracy nicely converges
to 100%, just like the test accuracy.

classes dataset cut size input size test acc.

3 small 150x450 150x150 100%
3 small 300x900 150x150 92%
3 small 300x900 300x300 100%

Table 4.2: Results of 3 class network runs

For an overview of the results obtained with 3 classes, see Table 4.2.

4. Experiments and results 36

4.4.2 Network tests on 4 class scatterometry data

Initial tests

(a) 40 nm (b) 50 nm

Figure 4.11: Examples of data from the 4 class dataset. Units are pixels.

After performing the 3 class tests, we gathered 40 nm particle data to have a
4th class. The main challenge here was that 40 and 50 nm particles are visu-
ally not very different on scans, so that labeling the dataset was difficult (see
Fig. 4.11). However, the network had little trouble distinguishing between
the two. An accuracy of 99% was achieved on the test set.

Figure 4.12: Confusion matrix for a network run on the initial 4 class dataset.

4. Experiments and results 37

It is interesting to look at the confusion matrix (see Fig. 4.12). All
misclassification is, as expected, between the 40 and 50 nm classes.

Figure 4.13: Accuracy plot for a network run on the large 4 class dataset.

Figure 4.14: Confusion matrix for a network run on the large 4 class dataset.

4. Experiments and results 38

Because the accuracy curves showed signs of overfitting, we thought in-
creasing the size of the dataset might have a positive effect on our gener-
alization power. More cuts were made until the dataset had 1055 images,
spread roughly equally over 4 classes. The result can be seen in Figs 4.13 and
4.14. The validation accuracy curve still remains consistently lower than the
training curve, and though overall accuracy is high, the highest test accuracy
achieved was 98%.

Statistics and further tests

(a) (b)

Figure 4.15: a) X-slice through an 80 nm particle detection, the red lines
indicate the width of the pulse. The somewhat flattened top and bottom
are due to saturation of the detector for the relatively high amount of light
scattered by 80 nm particles. b) Y-slice through an 80 nm particle detection,
the red lines indicate the length of the pulse

In order to distinguish between classes, we saved three numbers for each
particle during data labeling: peak-to-peak voltage, width and length. The
width and length are defined as shown in Fig. 4.15.

4. Experiments and results 39

Figure 4.16: Peak-to-peak voltage of particle detections in the dataset. Error
bars represent 2σ.

Figure 4.17: Length of particle detections in the dataset. Error bars represent
2σ.

4. Experiments and results 40

Figure 4.18: Width of particle detections in the dataset. Error bars represent
2σ.

We then took a look at the average and standard deviation of each of
these statistics for each class. The results can be seen in Figs 4.16, 4.17 and
4.18. Note that error bars represent 2 times the standard deviation. Keep
in mind that these statistics are for the network inputs, which consist of
processed data. The most important part of the data processing is the local
averaging filter described in Section 4.1.

There are two interesting points here. The first is that the average length
decreases between 60 and 80 nm. This is unexpected. Maybe it has some-
thing to do with the way the samples were fabricated, or perhaps the particle
sizes are not as accurate as we’d like.

Small dataset Large dataset Reduced dataset

40 nm 127 254 241
50 nm 127 253 175
60 nm 127 276 259
80 nm 127 272 272

Total 508 1055 947

Table 4.3: Comparison of amount of images per class in each dataset. Small
is the original set, large refers to the addition of data in an attempt to reduce
overfitting and reduced is the dataset where images were removed to reduce
overlap in Vpp between classes.

The second important thing is that the overlap between classes in length

4. Experiments and results 41

and width is huge. Appearently, of these three properties, Vpp is the only
one that can be used for class prediction. This lead to a question: can we
improve network accuracy by entirely removing the already small amount of
overlap in Vpp? To test this, we removed the images with a particle Vpp that
was too close to another class from the dataset. This reduced in size mainly
the 50 nm category, as it had overlap with both 40 and 60 nm. See Table 4.3
for a comparison between datasets. The result of reducing the dataset was a
test accuracy of 100%.

classes dataset cut size input size test acc.

4 small 150x450 150x150 99%
4 large 150x450 150x150 98%
4 reduced 150x450 150x150 100%

Table 4.4: Results of 4 class network runs

For an overview of the results obtained with 4 classes, see Table 4.4.

4.4.3 Network tests on 5 class scatterometry data

Figure 4.19: Examples of background images.

Up to this point, we only had classes for images that contained a particle
detection. What was missing was a class for images that do not contain one,
and only show the background coming from the substrate. Such images still
show a lot of shapes. The question was whether the network could distinguish
these shapes from particles. Examples of background images can be seen in
Fig. 4.19.

We added a class with 247 background images. The reason for this size is
that we wanted the background class to be comparable in size to the particle
classes. The resulting accuracy was consistently lower than before, but not by

4. Experiments and results 42

much. On the full dataset with added background category, a test accuracy of
93% was achieved. On the reduced dataset with added background category,
a test accuracy of 95% was achieved.

Figure 4.20: Confusion matrix for a network run on the full 5 class dataset.

In Fig. 4.20, the confusion matrix for the full dataset is displayed. It is
clearly visible that most misclassification involves the background class, as
expected.

Batch normalization

Initially, batch normalization was not used because relatively small datasets
limited us to small batch sizes, for which batch normalization does not im-
prove results [29]. However, we now had a dataset of large enough size to use
larger batches and try out various batch sizes. Previous 5 class results were
obtained with a batch size of 20. We decided to now test batch sizes between

4. Experiments and results 43

5 and 70, and use two networks for this: the one we had been using, and
one with BatchNorm layers added between the other layers. For the exact
difference, see Appendix F.

Figure 4.21: Accuracy vs batch size of a network without batch normaliza-
tion.

The result of the basic network can be seen in Fig. 4.21. Interestingly,
using batch size 50 with our basic network produced a test accuracy of 96%,
something we had not seen before. However, if we compare the graph of the
max to the graph of the mean, we see that this is most likely just random
luck, an outlier. Another interesting point is that the batch size 20, which
we had been using, was not a good choice. Maxima clearly occur at 15, 30,
and 50.

4. Experiments and results 44

Figure 4.22: Accuracy vs batch size of a network with batch normalization.

Figure 4.23: Comparison between the two networks of mean accuracy vs
batch size.

4. Experiments and results 45

In Fig. 4.22 the result of the network with batch normalization can be
seen. As expected, it performs poorly for small batches, and climbs up after
that. The interesting part is that at 4 different batch sizes, an accuracy of
97% was achieved. This is beyond what we expected to be possible for our
dataset. In Fig. 4.23 a comparison can be seen to the base network (without
batch normalization). There is a clear crossing point at roughly 17 images per
batch, beyond which the batch normalization network consistently performs
better.

Based on these figures, we made the batch normalization network the
default, with a batch size of 50. There is one thing to be aware of though:
because batch normalization needs a significant batch size, it cannot be used
for single image classification. This means that training our network and
then feeding it images one by one is not possible. This could be a problem if
a network like this is ever implemented with the goal of classifying particles
real time as the data comes in.

4.5 A note on reproducibility

Ideally, results in a scientific experiment have to be reproducible. However,
when using neural networks, this is unfortunately not always possible. We
performed tests where all random number generators in Python were seeded
at the start of the code via the functions random.seed(), numpy.random.seed()
and torch.manual_seed(). While this greatly reduced the variation in
outcomes compared to unseeded runs, there was still significant variation
present. According to the PyTorch website, this is due to the use of certain
CUDA functions [28]. To verify this, we performed a test where all CUDA
code was disabled and the default device was set to be the CPU. That indeed
gave us a fully reproducible network run. So when it comes to experiments,
loss of reproducibility is a fundamental downside of using a GPU via CUDA.

It is important to realize that this is not limited to training. Even when
passing the same image to a fully trained network twice, it might give two
different predictions.

4.6 Input size

It occurred to us that our maximum square input size of 150x150 need not
be the best input size. We created new datasets by downsampling the 5 class
dataset with MATLAB to various sizes. The result can be seen in Fig. 4.24.
There are several interesting observations to be made.

4. Experiments and results 46

Firstly, our maximum accuracy of 97% is achieved at an input size of
100x100. Appearently, the loss of information compared to 150x150 is so
small that it does not influence our highest achievable result.

Secondly, the curve drops only very little as we lower input size until we
get to such small sizes that there are barely any pixels left. Even 10x10 pixel
images result in a surprisingly high maximum accuracy of 92%. If we require
95%, we can go down to an input size of 40x40.

Figure 4.24: Accuracy vs input size in pixels. All inputs were square.

4.7 Loss landscapes

In this section, we will discuss loss landscapes as introduced in section 2.3.2.

4. Experiments and results 47

4.7.1 Random planes

Figure 4.25: Two randomly generated loss landscapes. Θ and Θ′ denote the
amount of steps taken in the randomly chosen directions. Loss is a value
calculated by the loss landscapes package based on cross entropy loss.

For PyTorch, a package is available online that plots loss landscapes. [31].
This package makes use of random planes, meaning it generates two random
directions in which it calculates the loss at certain intervals. However, due
to the random nature, most of the times they showed nothing of interest.
Examples can be seen in Fig. 4.25. The units on the Z-axis show that the
variation is small over the landscapes. They are also smooth and almost
planar in nature, without features of interest. This is typical for randomly
generated loss landscapes.

4.7.2 Principal component analysis

Then, we decided to use principal component analysis in an attempt to find
dimensions along which the loss varies more, and hopefully gain more infor-
mation from the resulting loss landscapes. For this, we used the PCA function
from the module sklearn.decomposition.

The result can be seen in Fig. 4.26. This looks promising, because the
variation in loss is large here (confirming that the PCA method does what we
expect) and there is a minimum visible. We also see a fully convex landscape,
which is expected for a neural network with relatively few hidden layers. [20]

However, after generating many landscapes, it became clear that a min-
imum is always visible. This is strange, because given our relatively small
effect of training and large effect of random weight initialization, we cannot
always end up near a local or global minimum. It therefore seems like the

4. Experiments and results 48

Figure 4.26: Two loss landscapes generated using PCA. X and Y denote the
amount of steps taken in the PCA directions. Loss is the total cross entropy
loss value resulting from passing the entire dataset through the network.

Figure 4.27: Two contour plots of loss landscapes with the minimum marked
as ’x’.

minimum shown by the loss landscape is, in the full dimensional space of the
weights, not a minimum at all.

To investigate this further, we plotted the loss landscape as contour plot
and overlayed the lines x=0 and y=0. Then, we plotted the minimum of the
landscape as a red ’x’. The result can be seen in Fig. 4.27. What these plots
show us is that the minimum is always in the center. This is interesting,
because the center represents the final state of the network during training,
which means that PCA loss landscapes always show us a landscape that has
a minimum at the end of our training run. That limits their use, because we
then cannot use them to discover a place where the loss is lower than at the
place our network is already in.

4. Experiments and results 49

4.8 Open set recognition

There is one problem with the network we have used so far: it can only
put data into one of the classes that it was trained for. If we were to feed
the network an image of a 20 nm particle, it would not be classified as 20
nm, because we have no such class. Therefore, it would most likely be put
into the background class. Just like if we were to detect some strange large
structure, it would most likely be put into the 80 nm class. And if we were to
think entirely out of the box and feed a picture of an animal to the network,
it would return one of our particle classes too. This is undesirable behavior.
Ideally, we want the network to not only classify an image, but also return an
estimate of whether it belongs to the classes that the network was trained for
at all, or whether instead it should be classified as unknown input. This is
known as open set recognition. Among other things, open set recognition can
be used for anomaly detection (detecting outliers in the data) and novelty
detection (detecting inputs that are nothing like the trained classes).

Open set recognition is based on the presence of some algorithm that
does an additional calculation on the network outputs. In this section, we
will look at three such algorithms.

4.8.1 Probability thresholding

The simplest method of open set recognition is to threshold the output prob-
abilities. This approach was also shown by M. Landgren and L. Tranheden
in Ref. [32] (referred to as “baseline” in their thesis). We implemented it as
follows:

1. Apply the softmax function to the network outputs to convert them to
probabilities

2. Take the maximum probability pmax and compute u = 1 − pmax as a
measure of uncertainty

3. If u is above a certain threshold, reject the classification

There is one potential problem with this method: we cannot be sure
that there is a clear relationship between high uncertainty and incorrect
classification. To put this to the test, we used the method on the 5 class
reduced dataset downsampled to 100x100 pixel images.

4. Experiments and results 50

Figure 4.28: Strip plot to visualize the distribution of uncertainty values for
correct and incorrect classifications.

In Fig. 4.28 the result can be seen of passing the entire dataset through
a trained network. The correct data points look good: the vast majority
of them lie in the very low uncertainty region. However, the incorrect ones
span nearly the same range as the correct ones, meaning we cannot get
rid of incorrect classifications by thresholding uncertainty. No matter what
threshold we would set, we would always have some incorrect classification
remaining while also throwing out a portion of the correct ones.

Fooling datasets

Next, we tested some datasets that contain images that don’t belong to the
trained classes. We will refer to these as fooling datasets. The first one
is a mirrored dataset: this is simply the same dataset but with every image
mirrored in the x-direction (the direction along which the stage moved during
scanning), so that each positive-negative pulse of a particle detection becomes
negative-positive.

4. Experiments and results 51

Figure 4.29: Strip plot to visualize the distribution of uncertainty values for
the dataset containing images that were mirrored in the x-direction. ‘original
set’ refers to normal data and ‘fooling set’ refers to the mirrored images.
The red line indicates the threshold above which data is rejected from being
classified.

As we can see in Fig. 4.29, the result is not ideal. The values range all the
way from 0 to 72%, but the density is very high at low uncertainty, meaning
that we can not get rid of all the mirrored images by thresholding. However,
we can choose a threshold in such a way that we sacrifice a small portion of
normal data to gain the ability to reject a large portion of the fooling data.
We chose this threshold such that we reject approximately 10% of normal
data. This is an arbitrary value, the acceptable maximum rejection of normal
data would depend on application, and on how frequently images appear in
the data that should be rejected.

The result of our experiment was that for a threshold of 3.1% (indicated
by the red line in Fig. 4.29), we get rid of 68.3% of the mirrored images. At
the same time, we throw away 10.3% of the real particle data.

4. Experiments and results 52

Figure 4.30: Two examples of images in the elephant dataset, visualized with
MATLAB’s image() function and default colormap.

Next, we tested a dataset that’s entirely different from anything the net-
work normally sees. This is to see how certain the network is on images that
have no similarity to real data. For this, we used a dataset consisting of
1165 images of elephants, taken from a larger dataset called Animals-10 [37].
Examples can be seen in Fig. 4.30.

Figure 4.31: Strip plot to visualize the distribution of uncertainty values for
the dataset containing images of elephants. ‘original set’ refers to normal
data and ‘fooling set’ refers to the elephant images. The red line indicates
the threshold above which data is rejected from being classified.

The result can be seen in Fig. 4.31. The distribution is quite similar to
the one of the mirrored set. However, our result is slightly better this time:
for 10.3% rejection of normal data, we rejected 71.9% of the elephant images.

4. Experiments and results 53

(a) (b)

Figure 4.32: Examples of data from the noise set, a) 80 nm, b) 50 nm.

Both the fooling sets we used so far fall under novelty detection: they are
something that will not be present in normal data. It would be interesting
to also test a form of anomaly detection. To do that, we took the dataset
and added noise. This was done by taking the voltage range of an image
(by substracting the minimum from the maximum) and adding uniformly
distributed noise with 1.5 times that range as amplitude. Examples of noise
images can be seen in Fig. 4.32.

4. Experiments and results 54

Figure 4.33: Strip plot to visualize the distribution of uncertainty values for
the dataset with added noise. ‘original set’ refers to normal data and ‘fooling
set’ refers to the noisy images. The red line indicates the threshold above
which data is rejected from being classified.

See Fig. 4.33 for the resulting distribution. At a normal data rejection of
10.0%, the network rejected 65.3% of the noise set.

4.8.2 Activation vectors

Maximum class probability does not give us all the information that is con-
tained in the network outputs. For that, we must use the vector containing
all the network outputs, which we will call the activation vector. In Ref.
[33], Bendale and Boult save the activation vectors of correct classifications
and calculate the mean activation vector (MAV) per class. They then calcu-
late the distance of each new activation vector to the MAV of its respective
predicted class. In the paper, this information was used for the OpenMax
algorithm. Here, we decided to first apply it directly.

We implemented an algorithm as follows:

1. Calculate the MAV for the correct classifications of each class

2. For each image x in the training and validation sets, obtain the activa-
tion vector v(x) and predicted class c(x). Then, calculate the distance

4. Experiments and results 55

to the MAV with d = ||v(x) −MAVc(x)||. Save values of d seperately
for correct and incorrect classifications.

3. For each image in the test set, calculate d the same way, and if it is
above some threshold, reject the classification (thus classifying it as
unknown)

Excluding incorrect classification

The first thing we did was attempt to set the threshold such that all misclas-
sification is excluded.

Figure 4.34: Distributions of the distance to the corresponding mean activa-
tion vector of each prediction. The red line indicates the minimum distance
of incorrectly classified points, below which all classifications are correct.

To illustrate this, we plotted the distribution (see Fig. 4.34). There are
many more correct than incorrect classifications due to the high accuracy
of the network. It can be seen clearly that a significant part of the correct
classifications lies below the lowest of the incorrect ones. That means we can
separate them. We will refer to the set of classifications that lie below the
red line in Fig. 4.34 as the high confidence set. If the set of images in our
training and validation sets was representative for the whole dataset, this

4. Experiments and results 56

means that all test classifications in the high confidence set will be correct.
In the test where we captured the above distributions, this was indeed the
case. The accuracy of the network on the entire test set was 95.0%, while
accuracy on the high confidence set was 100%. However, the high confidence
set consisted of only 14.5% of the test images.

To summarize: it is possible to add code that will, on top of an output
class, return whether or not the network is highly confident, and if so, the
chance for the classification to be correct is 100%, provided that the thresh-
old is correctly chosen. In other words, the network is very sure of some
particles, but we have no control over which particles. This means that,
while interesting, this technique is not very useful.

Fooling datasets

Next, we tested the fooling datasets again, to see if the MAV approach yields
a better result than probability thresholding. First, we tested the mirrored
set.

Figure 4.35: Strip plot of the distributions of distance to the MAV of each
datapoint. The fooling set is the mirrored dataset. The red line indicates
the threshold above which data is rejected from being classified.

Fig. 4.35 shows the result. At the threshold which rejected 10.1% of the
original dataset, we rejected 68.3% of the mirrored images.

4. Experiments and results 57

Figure 4.36: Strip plot of the distributions of distance to the MAV of each
datapoint. The fooling set is the elephant dataset. The red line indicates the
threshold above which data is rejected from being classified.

Next up is the elephant set. As we can see in Fig. 4.36, the distribution
looks slightly better than the previous one. At a threshold which rejected
10.3% of the original dataset, we rejected 79.7% of the elephant images.

Figure 4.37: Strip plot of the distributions of distance to the MAV of each
datapoint. The fooling set is the noise dataset. The red line indicates the
threshold above which data is rejected from being classified.

4. Experiments and results 58

Lastly, we tested the noise dataset. The result can be seen in Fig. 4.37.
While rejecting 10.8% of the original data, we rejected 51.9% of the noise
data.

4.8.3 OpenMax

OpenMax is an extension of SoftMax that adds a probability for the input
to be of an unknown class. This is based on Extreme Value Theory (EVT).
Extreme value distributions are the distributions that result from the maxima
of a large collection of random samples from an arbitrary distribution [34].
In our case, the “arbitrary distribution” is the distance to the MAV of a
large number of input images. It has been proven that if a system has
multiple failure modes, the extreme values are best modeled by the Weibull
distribution [35]. This is given by [36]:

W (z) =
τ

λ

(
z − τ
λ

)κ−1
e(

z−τ
λ)

κ

(4.2)

Here τ > z, λ > 0 and κ > 0.
In OpenMax, the function FitHigh() from the code library libMR is used

to fit the extreme values of our distribution to a Weibull distribution. This
function uses a maximum likelihood estimate to estimate τ , κ and λ. This
is done per class, and only data from correctly classified images is included.
These Weibull models can then be used on new inputs to generate a per
image probability that the image does not belong to the trained classes and
should be rejected. For that, the method selects the m highest activations
per activation vector.

This last point is why we expected this approach to not yield us good
results. Our data has only 5 classes, meaning our activation vectors have only
5 entries. There is not much selection possible in this case. Figure 1 of Ref.
[33] visualizes activation vectors for a 450 class system and provides some
intuition about where the information resides that is used in OpenMax. It
is clear that for a 5 class system, these visualizations would be very discrete,
and a lot less information could be gained for them.

Nevertheless, we still wanted to implement OpenMax in our network code
to see what it can do. Our implementation is based on the code that was
used in Ref. [32], which in turn is based on the code that was used in Ref.
[33].

4. Experiments and results 59

Figure 4.38: Plot of the maximum probability that the input image belongs
to the first 5 classes. “Fool” refers to the mirrored dataset. The red line indi-
cates the threshold for which roughly 10% of the original dataset is rejected.

Results

First, we tested OpenMax on the mirrored dataset. The resulting distribu-
tions can be seen in Fig. 4.38. The original dataset is very spread out, while
the mirrored set clearly sits more towards the low end. However, the results
were not very promising: while rejecting 11.1% of the original dataset, our
OpenMax implemenation only rejected 19.1% of the mirrored set.

If we look at the distributions, it seems more intuitive to threshold at
0.2. There, we are rejecting a much larger part of the mirrored set. Testing
this gave us a rejection of 74.7% on the mirrored set, but also a rejection of
50.3% on the original dataset. While the difference between the two sets is
now larger, this does not seem very useful, we’re rejecting too much normal
data.

4. Experiments and results 60

Figure 4.39: Plot of the maximum probability that the input image belongs to
the first 5 classes. “Fool” refers to the elephant dataset. The red line indicates
the threshold for which roughly 10% of the original dataset is rejected.

Then, we tested the elephant dataset. The resulting distributions are
shown in Fig. 4.39. For a cost of 10.5% of the original data, the algorithm
rejected 18.3% of the elephant images.

Figure 4.40: Plot of the maximum probability that the input image belongs
to the first 5 classes. “Fool” refers to the noise dataset. The red line indicates
the threshold for which roughly 10% of the original dataset is rejected.

4. Experiments and results 61

Finally, we tested the noise set. The result can be seen in Fig. 4.40. While
rejecting 10.8% of the original dataset, the algorithm was able to reject 16.1%
of the noise dataset.

4.8.4 Summary

dataset method orig. reject fool. reject

mirrored probability thr. 10.3 68.3
mirrored MAV distance 10.1 68.3
mirrored OpenMax 11.1 19.1
elephant probability thr. 10.3 71.9
elephant MAV distance 10.3 79.7
elephant OpenMax 10.5 18.3

noise probability thr. 10.0 65.3
noise MAV distance 10.8 51.9
noise OpenMax 10.8 16.1

Table 4.5: Summary of results for different methods of rejecting unknown
inputs. All numbers are percentages.

Figure 4.41: Graphical representation of the results from Table 4.5.

4. Experiments and results 62

The results of this section can be seen in Table 4.5 and Fig. 4.41. On
the elephant dataset, the best performing algorithm is the one based on
distance to MAV. Clearly, the additional information gained from using the
entire vector of outputs rather than just the maximum helps with rejecting
unknown inputs there. However on the mirrored set it performs no better
than probability thresholding, and on the noise set it performs significantly
worse.

OpenMax gave us poor results on all sets. This is in line with the expec-
tations we had based on the fact that we have very small activation vectors.

4.9 Time and computational speed

Because we used a relatively small neural network on a PC with a GPU,
elapsed times were short. Training the network for 12 epochs with batch
normalization on an 800 image training set took 5 seconds. Passing a 1200
image dataset through an already trained network took 0.4 second. Since the
PC we used was not high end, this time could be reduced considerably by
using a powerful modern system. This means that computational time should
not be a limiting factor for using the system in a production environment.

4.10 Network architecture changes

In this section, we look at the effect of changing the amount of layers in the
network.

4.10.1 Removing layers

Our network performs exceptionally well given that it has only 5 layers. Most
likely, this is due to our relatively simple data. A scatterometry scan with a
positive peak followed by a negative is orders of magnitude simpler than, say,
an image of a bicycle. This leads to the question: can we make our network
even smaller? To put this to the test, we changed the network architecture by
removing one or more convolutional and/or linear layers. In order to obtain
statistics, 50 runs were done for each architecture. All runs were done with
batch normalization and 12 epochs of training. For the network code, see
Appendix F.

4. Experiments and results 63

network layers mean max std

2 conv 3 lin (base) 93.2 97.0 2.3
2 conv 2 lin 92.2 95.5 2.4
2 conv 1 lin 90.5 95.0 2.5
1 conv 3 lin 91.6 96.5 2.5
1 conv 2 lin 90.7 95.5 2.2
0 conv 3 lin 86.3 90.5 2.3

Table 4.6: Accuracies in % for network architectures with fewer layers.

The result can be seen in Table 4.6. We can clearly see that removing
layers reduces accuracy. Also, removing a convolutional layer has a bigger
impact than removing a linear layer. This is in line with expectations, given
the two dimensional nature of our data.

4.10.2 Adding convolutional layers

conv layers channels mean max std

2 (base) 8 93.2 97.0 2.3
3 8 93.2 97.5 2.0
3 10 93.1 96.5 2.2
4 8 93.6 98.0 2.1
4 10 93.8 97.5 1.8
5 10 93.7 97.0 2.4
5 12 93.2 97.5 2.3
6 10 92.2 96.5 2.2

Table 4.7: Accuracies in % for network architectures with extra convolutional
layers.

To test whether 2 convolutional layers is the optimal amount, we also added
convolutional layers. Once again, we used batch normalization, 12 epochs
of training and 50 runs per architecture. This time, we did not vary the
amount of linear layers. The result can be seen in Table 4.7. Clearly, there is
a benefit to adding layers: both the highest mean and the highest maximum
accuracy were achieved at 4 layers. Adding a 5th layer does not grant a
further increase. This is probably due to the fact that we have a pooling
layer with a step size of 2 after each convolutional layer, meaning the data

4. Experiments and results 64

gets reduced in size by a factor of 2 in each dimension. Because of this, after
5 layers, our feature maps are of size 3x3.

After 6 layers, each feature map is a single number. Surprisingly, this
does not have a big negative impact on accuracy. Since we have 10 channels,
the data comes out of the convolutional layers as only 10 numbers per image.
Apparently, that is still enough for accurate classification.

4.10.3 Summary

Figure 4.42: Test accuracy as a function of the amount of convolutional layers
in the network architecture.

The results of our convolutional layer tests can be seen in Fig. 4.42. We
conclude that the optimal amount of convolutional layers is 4. Given the
mean and standard deviation, it is likely that 5 layers would achieve the
same maximum accuracy as 4 layers if we performed enough runs. However,
it is unlikely that it would achieve a higher accuracy.

4. Experiments and results 65

Figure 4.43: Training time as a function of the amount of convolutional layers
in the network architecture. Training time includes computational time from
all layers layers, including the linear layers.

Fig. 4.43 shows us how the total training time varies with the amount of
convolutional layers. At the time that we tested this, we did not have access
to a CUDA compatible GPU, so the tests were performed using only a CPU,
of the type “AMD Ryzen 7 3800X”. This is why the times are higher than
the ones described in Section 4.9.

It is interesting to see that after 2 convolutional layers, training time
increases less fast than before. Because of this, going from 2 to 4 layers
results in only a 22% increase in training time. However, we cannot be sure
that these numbers are the same when using a GPU.

4.11 Comparison between deep learning and clustering

based classification

In this last section, we look at a comparison of the deep learning approach to
a method based on unsupervised clustering that has been recently developed
my my supervisor Dmytro Kolenov. The method works as follows:

1. Search for the type of signals that represent particles (positive-negative
pulses)

4. Experiments and results 66

2. Customize unsupervised clustering algorithms to define the group of
signals that are attributed to a single scatterer

3. Use a calibration curve (acquired during the calibration with many
samples) to return a class label for the particle

Class Size

Background 247
40 nm 205
50 nm 217
60 nm 276
80 nm 272

Total 1217

Table 4.8: Comparison dataset. Images were cut from raw data as 150x450
and downsampled to 150x150.

To test this, we used a dataset that was different from the ones used
previously, though it was created from the same raw data. It is a 5 class
dataset with 150x150 pixel images. The distribution of images over the
classes can be seen in Table 4.8.

Figure 4.44: Normalized confusion matrix for a high accuracy network run
with the dataset from Table 4.8.

4. Experiments and results 67

First, we used it to train a neural network with 2 convolutional layers and
batch normalization. After 12 epochs, it yielded a test accuracy of 98.5%.
The confusion matrix can be seen in Fig. 4.44.

Figure 4.45: Normalized confusion matrix for clustering based classification
with the dataset from Table 4.8.

Then, we used the clustering method to classify the same test set as the
network. We limited the comparison to the classification of particles, so
we excluded backgrounds from the clustering test. However, the clustering
method supported the classification of 100 nm particles. That’s why we still
have a confusion matrix of size 5x5 (see Fig. 4.45).

Clearly, the clustering method performed a lot worse. Overall accuracy
was 58.5%, with relatively accurate classification on the 60 and 80 nm classes
and a lot of confusion on the 40 and 50 nm classes. Based on this, we conclude
that a deep learning based approach is more suitable for accurate particle
classification.

4.12 Conclusion

This concludes the results of our experiments. We will further discuss them
in the next chapter.

Chapter 5

Discussion

5.1 Results

Overall, the network performance was better than we expected. Accuracies
were very high and the network required little training. Most likely, this is
due to our data being relatively simple to interpret for a CNN. A positive-
negative peak from a particle detection has far fewer features than most
objects found in real world images. This allowed us to keep our network
small, which means it is fast, and a fast network is both convenient for
experimentation and useful for applications that require the detection of
particles on small timescales.

5.2 Future improvements

5.2.1 Dataset

One possible way to improve the results is to improve the quality of the
dataset. Particles of sizes 60 nm and 80 nm were very clearly visible on the
scans, and there was no doubt about how the cuts should be made that are
used as network inputs. For sizes 40 nm and 50 nm, it was a lot less clear.
Especially for 40 nm, the process of selecting particles could often be best
described as “educated guess”. And for the background class, we cannot
guarantee that small particles are not present in it, though we did our best
to avoid it. We do not see an immediate solution for these problems, but if
one were to be found, it would surely benefit accuracy. Given that 98% was
already achieved, it is not unthinkable that the 5 class accuracy would then
go to 100%.

Another point of improvement is multiple particles. In the datasets used

5. Discussion 69

in this thesis, we did not distinguish between one or more particles being
present in an image. Therefore, every classification means “there is at least
one particle of this size present in this image”. In the future, a new dataset
could be made that separates images with single particles from those with
multiple. The latter could then be handled in one of two ways: as extra
classes (this would require a large amount of multiple particle images for
training) or as anomalous data, to be seperated by open-set recognition.

And lastly, detector saturation could be avoided by measuring samples
that contain larger particles at 1/x times the normal laser power, and then
multiplying the resulting data values by x.

5.2.2 Open-set recognition

When batch normalization is used, images within batches are not indepen-
dent. They get normalized in each layer based on batch statistics, which
depend on all the images in the batch. Therefore, passing the real dataset
and the fooling datasets seperately, like we did for our open-set recognition
tests, is not ideal. In a real world scenario, the unknown images would be
present in the regular dataset, and thus the two types of images would influ-
ence each other. However, to run a test that accounts for this would require
us to make a decision about what portion of the data should be fooling data,
and this is a decision that cannot be made without context. It would require
some knowledge or intuition about how often anomalous images would ap-
pear in real data. That is why for the experiments in this thesis, we decided
not to mix the datasets.

To further test open-set recognition, additional datasets could be created.
It would be interesting to do additional testing of anomaly detection, to find
out whether probability thresholding is consistently better at that than the
other methods. One possible way of creating an anomaly dataset would be
to make scans of particles with a diameter of 100 nm, to test the network on
particles that are larger than the trained classes. Another way would be to
artificially increase the size of the background.

5.2.3 Smaller Particles

Based on what we have seen, we do not think the neural network is a limiting
factor in detecting particles of 30 nm. The limiting factor is our ability to
spot and label such particles in the raw data in order to form a dataset that
can be used for training. For this, it would be essential to eliminate the
wobble effect on the experimental side, so that the local averaging filter in
data processing is no longer needed. However, even then, some additional

5. Discussion 70

progress would need to be made on the particle selection side to make reliable
labeling of 30 nm particles possible.

5.3 Expanding the system

In the future, an additional neural network could be used to perform object
detection [38]. Then, data would no longer need to be processed manually
to cut large scans into small images. The system, consisting of two neural
networks, could both detect particles in raw data and classify them. It could
then be used in a production environment where wafers need to be checked
for contamination.

Chapter 6

Conclusion

In this thesis, we looked at data obtained from scans made with a Coherent
Fourier Scatterometry setup for detection of nanoparticles on surfaces. We
made cuts around particle detections on these scans and used these cuts as
input images for a convolutional neural network. We showed that a network
with two convolutional layers and three linear layers is very effective at par-
ticle classification, with a test set accuracy of 100% for 4 classes which each
represent one particle size, and a test set accuracy of 97% if additionally a
background class is present. Also, we showed that changing the network ar-
chitecture by adding 2 convolutional layers increases the maximum accuracy
to 98%.

We compared these numbers to the accuracy of a clustering based clas-
sification algorithm, which achieved 58.5% accuracy on our test set, and
concluded that deep learning is more suitable for the task of particle classi-
fication.

Next to that, we showed that it is, to a certain degree, possible to reject
inputs that do not belong to the trained classes. For a cost of rejecting 10% of
the real data, our algorithms could reject 80% of an elephant image dataset,
72% of a mirrored particle image dataset or 65% of a dataset with artificially
added noise.

We noted that it is hard to label a dataset for 40 nm particles, because
it is hard for a human to spot the detections and to distinguish them from
background. This will be a limiting factor when attempting to add a 30 nm
class to the dataset.

Lastly, we also explored loss landscapes, but concluded that in their cur-
rent state they do not give us useful information.

This research can lead to future research in the application of object
detection to scatterometry data. This is the last step required to make an
automated system that detects particles directly from scatterometry data.

Appendices

Appendix A

Testing network parameters on
synthesized data

In each of the following figures, a plot with 10 accuracy curves is displayed to
show variance, and an average accuracy is displayed to show average speed
of convergence. The y-axis shows validation accuracy in % while the x-
axis shows the number of epochs. Input size is 28x28 pixels unless specified
otherwise. The reason we chose to do 10 runs per setting is that at the
moment we performed this experiment, we did not have access to a GPU
yet, which made the runs considerably slower.

Code commands for the convolutional layers are included to show the
difference between networks. The syntax is conv2d(input, output, kernel,
stride, padding). Input is the number of input layers, output is the number
of output layers, kernel is the one dimensional size of the square kernel used
for performing the convolution, stride is the step size that is used to move
the kernel over the image, and padding is the amount of zero layers added to
the image on the outside, to prevent the convolutional layer from reducing
image size.

A. Testing network parameters on synthesized data 74

Figure A.1: Base network with conv2d(1,5,5,1,1) and conv2d(5,8,5,1,1)

Figure A.2: Network with more channels: conv2d(1,6,5,1,1) and
conv2d(6,12,5,1,1)

Figure A.3: Network with padding of size 2: conv2d(1,5,5,1,2) and
conv2d(5,8,5,1,2)

A. Testing network parameters on synthesized data 75

Figure A.4: Network with more channels and padding of size 2:
conv2d(1,6,5,1,2) and conv2d(6,12,5,1,2)

Figure A.5: Network with extra conv layer: conv2d(1,5,5,1,1),
conv2d(5,8,5,1,1), conv(8,10,3,1,1)

Figure A.6: Network with extra conv layer and more channels:
conv2d(1,5,5,1,1), conv2d(5,10,5,1,1), conv(10,15,3,1,1)

A. Testing network parameters on synthesized data 76

Figure A.7: Network with double padding and input size 40x40:
conv2d(1,5,5,1,2), conv2d(5,8,5,1,2)

Appendix B

MATLAB tool

Individually classifying a thousand particles, while at the same time extract-
ing parameters such as width and peak-to-peak voltage, is a lot of work.
Because of that, we made a tool that makes the process as easy and fast as it
can reasonably be. The tool is a MATLAB app written in the app designer,
which is part of MATLAB since 2016. It is available on github, see Ref. [24].

Figure B.1: The tool with a scan of an 80 nm sample loaded. Colors are the
default colors assigned by MATLAB, with colormap ’jet’.

B. MATLAB tool 78

Figure B.2: The same scan, now with manually adjusted colors via the CLim
edit fields. This allows us to see differences in intensity much more clearly.

Figure B.3: The same scan with marked particles (white circles). More
particles can be seen, but they were excluded intentionally because of their
lower Vpp (we were selecting for 80 nm particles only)

B. MATLAB tool 79

Figure B.4: Zoomed in view of a single detection. The graphs are intensity
profiles along the plotted black lines. The “X cut” graph represents the
typical signal coming from a particle detection with a split photodetector. In
this case, it is cut off at the bottom because the laser power was sufficiently
high for 80 nm particles to saturate the detector. The vertical black lines
in the graph are controlled by the sliders underneath the graph and used
for calculating width (in the “Y cut” graph, they are used for calculating
length). Vpp is calculated automatically and denoted by the red “x” markers.

A particle is saved with the “Add (x,y) value pair” button, which adds its
statistics to the array in the bottom right, and marks it with a white circle in
the zoomed out version of the plot. When all particles are marked this way,
the array can be exported with the “Save array to file” button. This allows
other scripts to loop over these arrays later and quickly produce images of a
desired size that contain particle detections.

Appendix C

The effect of detrending on scans

To visualize the effect of detrending, we chose a scan with clearly visible
trends, and detrended in three ways: horizontally, vertically, and both. The
scan was taken from an 80 nm PSL sample. The results can be seen on the
next pages. In order to make comparison easy, the color scheme was kept
the same for all images.

C. The effect of detrending on scans 81

C. The effect of detrending on scans 82

Appendix D

Max pooling vs average pooling

maxpool avgpool

max 97.0 95.0
mean 92.9 90.6
std 2.5 1.9

Table D.1: Comparison between maxpool and avgpool. Numbers are accu-
racy in %.

To verify that max pooling is the correct choice for our problem, we tested the
network with average pooling. We compared 50 runs with average pooling,
batch size 50, and 12 epochs to an equal amount of runs with max pooling.

The result is shown in Table D.1. As expected, max pooling performs
better on all fronts.

Appendix E

Training trajectories on loss contour
plots

Figure E.1: Loss contour plots with training trajectories. A red dot marks
the start of training.

In Ref. [20], training trajectories are projected to the two dimensional space
of the loss landscape so they can be overlaid on contour plots. We did the
same, resulting in the plots of Fig. E.1. However, we have not been able to
find a use for this in our case.

Appendix F

Network code

See the next pages for the PyTorch code of our neural networks. Placement
of the BatchNorm layers was chosen to be after ReLU activation layers, as
recommended by Chen et al in [30]. The parameter Size_2 depends on the
dimensions of the network inputs.

F. Network code 86

Code of our basic network after switching to double padding:

class Net (nn . Module) :

def i n i t (s e l f) :
super (Net , s e l f) . i n i t ()

s e l f . f e a t u r e s = nn . Sequent i a l (
nn . Conv2d (1 , 5 , 5 , 1 , 2) ,
nn . MaxPool2d (2 , 2) ,
nn .ReLU(inp l a c e=True) ,
nn . Conv2d (5 , 8 , 5 , 1 , 2) ,
nn . MaxPool2d (2 , 2) ,
nn .ReLU(inp l a c e=True) ,
)

s e l f . c l a s s i f i e r = nn . Sequent i a l (
nn . Linear (8* S i z e 2 * S ize 2 , 120) ,
nn .ReLU(inp l a c e=True) ,
nn . Linear (120 ,84) ,
nn .ReLU(inp l a c e=True) ,
nn . Linear (84 ,5)
)

def forward (s e l f , x) :
x = s e l f . f e a t u r e s (x)
x = x . view (−1 , 8* S i z e 2 * S i z e 2)
x = s e l f . c l a s s i f i e r (x)

return x

F. Network code 87

Code of our network with batch normalization:

class Net (nn . Module) :

def i n i t (s e l f) :
super (Net , s e l f) . i n i t ()

s e l f . f e a t u r e s = nn . Sequent i a l (
nn . Conv2d (1 , 5 , 5 , 1 , 2) ,
nn . MaxPool2d (2 , 2) ,
nn .ReLU(inp l a c e=True) ,
nn . BatchNorm2d (5) ,
nn . Conv2d (5 , 8 , 5 , 1 , 2) ,
nn . MaxPool2d (2 , 2) ,
nn .ReLU(inp l a c e=True) ,
nn . BatchNorm2d (8)
)

s e l f . c l a s s i f i e r = nn . Sequent i a l (
nn . Linear (8* S i z e 2 * S ize 2 , 120) ,
nn .ReLU(inp l a c e=True) ,
nn . BatchNorm1d (120) ,
nn . Linear (120 ,84) ,
nn .ReLU(inp l a c e=True) ,
nn . BatchNorm1d (84) ,
nn . Linear (84 ,5)
)

def forward (s e l f , x) :
x = s e l f . f e a t u r e s (x)
x = x . view (−1 , 8* S i z e 2 * S i z e 2)
x = s e l f . c l a s s i f i e r (x)

return x

F. Network code 88

Code used for average pooling tests:

class Net (nn . Module) :

def i n i t (s e l f) :
super (Net , s e l f) . i n i t ()

s e l f . f e a t u r e s = nn . Sequent i a l (
nn . Conv2d (1 , 5 , 5 , 1 , 2) ,
nn . AvgPool2d (2 , 2) ,
nn .ReLU(inp l a c e=True) ,
nn . BatchNorm2d (5) ,
nn . Conv2d (5 , 8 , 5 , 1 , 2) ,
nn . AvgPool2d (2 , 2) ,
nn .ReLU(inp l a c e=True) ,
nn . BatchNorm2d (8)
)

s e l f . c l a s s i f i e r = nn . Sequent i a l (
nn . Linear (8* S i z e 2 * S ize 2 , 120) ,
nn .ReLU(inp l a c e=True) ,
nn . BatchNorm1d (120) ,
nn . Linear (120 ,84) ,
nn .ReLU(inp l a c e=True) ,
nn . BatchNorm1d (84) ,
nn . Linear (84 ,5)
)

def forward (s e l f , x) :
x = s e l f . f e a t u r e s (x)
x = x . view (−1 , 8* S i z e 2 * S i z e 2)
x = s e l f . c l a s s i f i e r (x)

return x

F. Network code 89

Code used for testing a network with 2 convolutional and 2 linear layers:

class Net (nn . Module) :

def i n i t (s e l f) :
super (Net , s e l f) . i n i t ()

s e l f . f e a t u r e s = nn . Sequent i a l (
nn . Conv2d (1 , 5 , 5 , 1 , 2) ,
nn . MaxPool2d (2 , 2) ,
nn .ReLU(inp l a c e=True) ,
nn . BatchNorm2d (5) ,
nn . Conv2d (5 , 8 , 5 , 1 , 2) ,
nn . MaxPool2d (2 , 2) ,
nn .ReLU(inp l a c e=True) ,
nn . BatchNorm2d (8)

)

s e l f . c l a s s i f i e r = nn . Sequent i a l (
nn . Linear (8* S i z e 2 * S ize 2 , 120) ,
nn .ReLU(inp l a c e=True) ,
nn . BatchNorm1d (120) ,
nn . Linear (120 ,5)
)

def forward (s e l f , x) :
x = s e l f . f e a t u r e s (x)
x = x . view (−1 , 8* S i z e 2 * S i z e 2)
x = s e l f . c l a s s i f i e r (x)

return x

F. Network code 90

Code used for testing a network with 2 convolutional and 1 linear layer:

class Net (nn . Module) :

def i n i t (s e l f) :
super (Net , s e l f) . i n i t ()

s e l f . f e a t u r e s = nn . Sequent i a l (
nn . Conv2d (1 , 5 , 5 , 1 , 2) ,
nn . MaxPool2d (2 , 2) ,
nn .ReLU(inp l a c e=True) ,
nn . BatchNorm2d (5) ,
nn . Conv2d (5 , 8 , 5 , 1 , 2) ,
nn . MaxPool2d (2 , 2) ,
nn .ReLU(inp l a c e=True) ,
nn . BatchNorm2d (8)

)

s e l f . c l a s s i f i e r = nn . Sequent i a l (
nn . Linear (8* S i z e 2 * S ize 2 , 5)
)

def forward (s e l f , x) :
x = s e l f . f e a t u r e s (x)
x = x . view (−1 , 8* S i z e 2 * S i z e 2)
x = s e l f . c l a s s i f i e r (x)

return x

F. Network code 91

Code used for testing a network with 1 convolutional and 3 linear layers:

class Net (nn . Module) :

def i n i t (s e l f) :
super (Net , s e l f) . i n i t ()

s e l f . f e a t u r e s = nn . Sequent i a l (
nn . Conv2d (1 , 5 , 5 , 1 , 2) ,
nn . MaxPool2d (2 , 2) ,
nn .ReLU(inp l a c e=True) ,
nn . BatchNorm2d (5) ,

)

s e l f . c l a s s i f i e r = nn . Sequent i a l (
nn . Linear (8* S i z e 2 * S ize 2 , 120) ,
nn .ReLU(inp l a c e=True) ,
nn . BatchNorm1d (120) ,
nn . Linear (120 ,84) ,
nn .ReLU(inp l a c e=True) ,
nn . BatchNorm1d (84) ,
nn . Linear (84 ,5)
)

def forward (s e l f , x) :
x = s e l f . f e a t u r e s (x)
x = x . view (−1 , 8* S i z e 2 * S i z e 2)
x = s e l f . c l a s s i f i e r (x)

return x

F. Network code 92

Code used for testing a network with 1 convolutional and 2 linear layers:

class Net (nn . Module) :

def i n i t (s e l f) :
super (Net , s e l f) . i n i t ()

s e l f . f e a t u r e s = nn . Sequent i a l (
nn . Conv2d (1 , 5 , 5 , 1 , 2) ,
nn . MaxPool2d (2 , 2) ,
nn .ReLU(inp l a c e=True) ,
nn . BatchNorm2d (5) ,

)

s e l f . c l a s s i f i e r = nn . Sequent i a l (
nn . Linear (8* S i z e 2 * S ize 2 , 100) ,
nn .ReLU(inp l a c e=True) ,
nn . BatchNorm1d (100) ,
nn . Linear (100 ,5)
)

def forward (s e l f , x) :
x = s e l f . f e a t u r e s (x)
x = x . view (−1 , 8* S i z e 2 * S i z e 2)
x = s e l f . c l a s s i f i e r (x)

return x

Bibliography

[1] “Embracing the organics world” Nature Materials 12, 2013

[2] H. Hoppe et al., “Organic solar cells: An overview” Journal of Materials
Research, Vol 19, Issue 7, Jul 2004

[3] M. Lapedus, “Inspecting Unpatterned Wafers”, Semiconductor Engi-
neering, August 2018

[4] S. Roy et al., “High speed low power optical detection of sub- wavelength
scatterer”, Review of Scientific Instruments 86, 123111, 2015

[5] Y. LeCun et al., “Deep learning”, Nature 521, 2015

[6] R. Parloff, “From 2016: Why Deep Learning Is Suddenly Changing Your
Life”, Fortune, October 2016 issue

[7] A. Krizhevsky et al., “ImageNet Classification with Deep Convolutional
Neural Networks”, NIPS 2012

[8] D. Cirea̧n et al., “Multi-column Deep Neural Networks for Image Clas-
sification”, 2012 IEEE Conference on Computer Vision and Pattern
Recognition

[9] M.D. Hannel et al., “Machine-learning techniques for fast and accurate
feature localization in holograms of colloidal particles”, Optics Express
15221, Vol. 26, No. 12, Jun 2018

[10] C.L. Chen et al., “Deep Learning in Label-free Cell Classification, Sci-
entific Reports 6, 21471, 2016

[11] D. Cunefare et al., “Deep learning based detection of cone photore-
ceptors with multimodal adaptive optics scanning light ophthalmoscope
images of achromatopsia”, Biomedical Optics Express 3740, Vol. 9, No.
8, Aug 2018

https://www.nature.com/articles/nmat3707
http://tiny.cc/y12wbz
https://semiengineering.com/inspecting-unpatterned-wafers/
https://aip.scitation.org/doi/10.1063/1.4938183
https://aip.scitation.org/doi/10.1063/1.4938183
https://www.researchgate.net/publication/277411157_Deep_Learning
https://fortune.com/longform/ai-artificial-intelligence-deep-machine-learning/
https://fortune.com/longform/ai-artificial-intelligence-deep-machine-learning/
https://papers.nips.cc/book/advances-in-neural-information-processing-systems-25-2012
https://papers.nips.cc/book/advances-in-neural-information-processing-systems-25-2012
https://arxiv.org/abs/1202.2745
https://arxiv.org/abs/1202.2745
https://arxiv.org/abs/1804.06885
https://arxiv.org/abs/1804.06885
https://www.nature.com/articles/srep21471
https://www.osapublishing.org/DirectPDFAccess/05E5E780-BF5D-5605-40B8745EC7873FCC_395451/boe-9-8- 3740.pdf
https://www.osapublishing.org/DirectPDFAccess/05E5E780-BF5D-5605-40B8745EC7873FCC_395451/boe-9-8- 3740.pdf
https://www.osapublishing.org/DirectPDFAccess/05E5E780-BF5D-5605-40B8745EC7873FCC_395451/boe-9-8- 3740.pdf

F. Bibliography 94

[12] A.J. Cox et al., “An experiment to measure Mie and Rayleigh total
scattering cross sections”, Am. J. Phys.70 (6), Jun 2002

[13] I. Goodfellow et al., Deep Learning, An MIT Press book, 2016

[14] M. Nielsen, “Neural Networks and Deep Learning”, free online book,
Chapter 2, released Dec 2019, retrieved 10-3-2020

[15] D. Rumelhart et al., “Learning representations by back-propagating er-
rors”, Nature, vol. 323 9, Oct 1986

[16] A.R. Zamir et al., “Feedback Networks”, CVPR 2017

[17] K. Jarrett et al., “What is the best multi-stage architecture for object
recognition?”, 2009 IEEE 12th International Conference on Computer
Vision, Kyoto, pages 2146-2153, 2009

[18] X. Glorot et al., “Deep Sparse Rectifier Neural Networks”, Proceedings
of the Fourteenth International Conference on Artificial Intelligence and
Statistics, PMLR 15:315-323, 2011

[19] “What is the Difference Between a Batch and an Epoch in
a Neural Network?”, https://machinelearningmastery.com/

difference-between-a-batch-and-an-epoch/, retrieved 21-2-2020

[20] H. Li et al., “Visualizing the Loss Landscape of Neural Nets, 32nd Con-
ference on Neural Information Processing Systems, Montreal, Canada,
2018

[21] N. Kumar, “Coherent Fourier Scatterometry”, PhD thesis, TU Delft,
2014

[22] S. Roy et al., “Coherent Fourier Scatterometry for detection of
nanometer-sized particles on a planar substrate surface” OSA, Vol. 22,
No. 11, 2014

[23] D. Kolenov et al., “Heterodyne Detection System for Nanoparticle De-
tection using Coherent Fourier Scatterometry”, SPIE proceedings, Vol.
11056, 2019

[24] GitHub repository for this project, https://github.com/ddavidse/

ConvNetMEP, [NOT PUBLIC YET]

[25] Y. Lecun et al., “Gradient-Based Learning Applied to Document Recog-
nition”, Proceedings of the IEEE, Vol. 86, Issue 11, Nov 1998

https://www.semanticscholar.org/paper/An-experiment-to-measure-Mie-and-Rayleigh-total-Cox-DeWeerd/ff2f95b7c9dd7a8d29b31cc390a617de253839a6
https://www.semanticscholar.org/paper/An-experiment-to-measure-Mie-and-Rayleigh-total-Cox-DeWeerd/ff2f95b7c9dd7a8d29b31cc390a617de253839a6
https://www.deeplearningbook.org/
http://neuralnetworksanddeeplearning.com/chap2.html
https://www.nature.com/articles/323533a0
https://www.nature.com/articles/323533a0
http://feedbacknet.stanford.edu/feedback_networks_2016.pdf
https://ieeexplore.ieee.org/document/5459469
https://ieeexplore.ieee.org/document/5459469
http://proceedings.mlr.press/v15/glorot11a.html
https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/
https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/
https://arxiv.org/abs/1712.09913
http://tiny.cc/9nw4bz
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-22-11-13250
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-22-11-13250
http://tiny.cc/o7y4bz
http://tiny.cc/o7y4bz
https://github.com/ddavidse/ConvNetMEP
https://github.com/ddavidse/ConvNetMEP
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=726791
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=726791

F. Bibliography 95

[26] D.P. Kingma, J.L. Ba, “Adam: A Method for Stochastic Optimization”,
3rd International Conferencer for Learning Representations, San Diego,
2015

[27] I.J. Jolliffe, Jorge Cadima, “Principle component analysis: a review and
recent developments”, Philosophical Transactions of the Royal Society
A, Vol. 374, Issue 2065, Apr 2016

[28] “Reproducibility”, pytorch.org, retrieved 23-1-2020

[29] S. Ioffe, C. Szegedy, “Batch Normalization: Accelerating Deep Network
Training by Reducting Internal Covariate Shift”, Proceedings of the 32nd

International Conference on Machine Learning, Lille, France, 2015

[30] G. Chen et al., “Rethinking the Usage of Batch Normalization and
Dropout in the Training of Deep Neural Networks”, arXiv:1905.05928v1
[cs.LG], May 2019

[31] M. De Bernardi, https://pypi.org/project/loss-landscapes/

[32] M. Landgren, L. Tranheden, Input Verification for Deep Neural Net-
works, Master’s thesis in Electrical Engineering, Chalmers University of
Technology, Sweden, 2018

[33] A. Bendale, T. Boult, “Towards Open Set Deep Networks”,
arXiv:1511.06233 [cs.CV], Nov 2015

[34] W.J. Scheirer et al., “Meta-Recognition: the Theory and Practice of
Recognition Score Analysis, IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 33, Issue 8, Aug 2011

[35] E.J. Gumbel, “Statistical Theory of Extreme Values and Some Practical
Applications. A Series of Lectures.”, U.S. Government Printing Office,
1954

[36] A. Bendale, “Open World Recognition”, PhD thesis, Department of
Computer Science, University of Colorado, 2015

[37] C. Alessio, Animals-10 dataset, retrieved 26-2-2020

[38] J. Rieke, “Object detection with neural networks — a simple tutorial
using keras”, online article, retrieved 12-3-2020

https://arxiv.org/abs/1412.6980
https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2015.0202
https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2015.0202
https://pytorch.org/docs/stable/notes/randomness.html
https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/abs/1905.05928
https://arxiv.org/abs/1905.05928
https://pypi.org/project/loss-landscapes/
https://odr.chalmers.se/handle/20.500.12380/255752
https://odr.chalmers.se/handle/20.500.12380/255752
https://arxiv.org/abs/1511.06233
https://ieeexplore.ieee.org/document/5740917
https://ieeexplore.ieee.org/document/5740917
https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/PB175818.xhtml
https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/PB175818.xhtml
https://www.kaggle.com/alessiocorrado99/animals10
https://towardsdatascience.com/object-detection-with-neural-networks-a4e2c46b4491
https://towardsdatascience.com/object-detection-with-neural-networks-a4e2c46b4491

	Introduction
	Particle detection
	Classification and machine learning
	Deep Learning
	Project goal
	Thesis outline

	Theoretical background
	Artificial neural networks
	Feedforward networks
	The softmax function
	Introducing nonlinearity: activation functions
	Gradient descent
	Training the network
	Reducing overfitting

	Convolutional neural networks
	Pooling layers
	Network architecture

	Network analysis tools
	Confusion matrix
	Loss Landscape

	Applying the theory

	Setup
	Scatterometry setup
	Software
	Using a GPU for computation

	Neural network
	Loss function
	Optimizer

	Experiments and results
	Analysis of scans obtained with the CFS setup
	Network tests on synthesized data
	Data processing and its effect on particle detection data
	Network tests on real data
	Network tests on 3 class scatterometry data
	Network tests on 4 class scatterometry data
	Network tests on 5 class scatterometry data

	A note on reproducibility
	Input size
	Loss landscapes
	Random planes
	Principal component analysis

	Open set recognition
	Probability thresholding
	Activation vectors
	OpenMax
	Summary

	Time and computational speed
	Network architecture changes
	Removing layers
	Adding convolutional layers
	Summary

	Comparison between deep learning and clustering based classification
	Conclusion

	Discussion
	Results
	Future improvements
	Dataset
	Open-set recognition
	Smaller Particles

	Expanding the system

	Conclusion
	Appendices
	Testing network parameters on synthesized data
	MATLAB tool
	The effect of detrending on scans
	Max pooling vs average pooling
	Training trajectories on loss contour plots
	Network code
	References

