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ABSTRACT 
 
In this paper, a method has been developed to use thermography for the quantitative analysis 
of a delamination area under dynamic loading.  To demonstrate this method, a coupon was 
developed with double shear configuration and an initial delamination consisting of a PTFE 
insert. The coupon was tested under fatigue loading and an infrared (IR) camera was used to 
monitor the thermal response and delamination growth of the coupon during loading. The 
data from the thermal camera was processed in 2 steps, firstly a fast Fourier transform (FFT) 
was used to transform the raw data from time domain to frequency domain. In the second 
step, FFT thermographs were further processed using an image segmentation algorithm. 
Here, the thermal plots are segmented to separate the delaminated and un-delaminated areas. 
By computing the number of pixels in the delaminated region, the area of delamination was 
obtained at each cycle and has been plotted against the cycles to failure. The strain energy 
was computed with the help of force and displacement data from the test machine. Such 
signals allowed computing the fatigue propagation curves and understanding the fatigue 
behaviour of the test samples. This method looks promising and can be extended to test 
samples that cannot be tested by conventional testing methods. 
 
1. Introduction 
 
Composites are widely used as a structural material because of their superior mechanical 
properties such as specific strength and stiffness [1]. Since composites are widely used, there 
is a common interest to understand the mechanical behavior of composites under dynamic 
loading and associated failure modes i.e. delamination.  Along with traditional methods, other 
methods like non-destructive techniques have been used to study the behavior of composites, 
both by research and industrial communities [2] [3] [4]. Among several non-destructive 
techniques the infrared thermography technique (IRT) is one of the promising tools to 
evaluate the damage growth as it is reliable, non-contact and allows real-time monitoring of 
temperature change due to non-reversible degradation processes in the material [5]. 
 
A few references are available in the literature related to the use of IRT for damage analysis in 
composites. Colombo et al., (2014) [6] studied the influence of delamination on the 
mechanical behavior of glass fiber composite. The study involved both static and fatigue tests 
of a glass fiber epoxy resin sample with PTFE insert in the middle fiber layers to simulate 
delamination. The test results proved that the presence of delamination hardly has any 
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influence on the mechanical properties in static loading, however in the fatigue testing it 
caused a significant reduction in life up to 40%. The thermal observations were made with an 
IR camera. The increase in temperature of the specimen as seen by the IR camera correlated 
with the accumulated damage. The authors of this paper also proposed thermography as a tool 
for damage monitoring under both static and fatigue loading. The results of this experiment 
indicated the change in material properties was always associated with the change in 
temperature. 
 
Lahuerta et al., (2015) [7] made a study of an open hole on glass fiber sample, under fatigue 
in tension-tension loading with a thermal camera (FLIR 315) to record the tests. The test was 
conducted at 3 Hz. The thermal data was processed to get temperature plots which on further 
processing using transforms and plotting the amplitude of thermal signals picked by IR 
camera gave more insight about the accumulated damage. The final failure of the sample 
occurred in the same fashion as predicted in the amplitude plot. 
 
Tighe et al., (2016) [8] performed a study on single lap joint samples for comparing the 
detection of different type of defects using infrared (IR) detectors and pulse phased 
thermography technique (PPT). The defects were simulated using PTFE and silicon grease 
contamination. PPT clearly identified PTFE defects but not the silicon grease. When a small 
load was applied, a silicon grease defect was identified. This is claimed to be a portable and 
financially viable means of inspection for industrial application. Gato et al., [9] compared 
several processing techniques and proposed that PPT and Principal Component 
Thermography (PCT) methods are suitable for processing IR images. 
 
Even though IRT is extensively used for damage inspection in composites, it is mostly 
restricted to qualitative analysis. Few attempts have been made to use thermography for 
quantitative analysis [7] [8], but this field of study is not fully explored. Considering this gap 
in the literature a method has been developed to quantitatively analyze the fatigue properties 
of a glass fiber composite by a simple and robust setup. To demonstrate this method, a test 
coupon and test method is designed. In addition a processing technique is developed for 
computing the delamination area and determining fatigue propagation curves. 
  
2. Specimens 
 
The material used for sample preparation was a glass-fiber epoxy laminate, as it is widely 
used in wind industry [1]. The sample with a thin laminate section of [0]4s layup was 
manufactured. A thin laminate of 4 layers was chosen because monitoring thin sections is 
more suitable for an IR camera [10]. The fiber material used was SAERTEX UD glass fibers 
with areal weight of 948 g/m2 and density of 2.6 kg/dm3 and the matrix material was a two 
component epoxy with Epikote MGS RIMR 135 as resin and Epikur MGS RIMH 137 as a 
curing agent. The laminate was manufactured by the vacuum infusion process at room 
temperature, as it is the most commonly practiced manufacturing process in wind turbine 
blade manufacturing industry [11]. The average fiber content of the test sample was 62.35% 
in weight and it had an average void content was 0.26% determined using ASTM D 2584 
standard test method. 
 
The delamination was simulated with the help of PTFE tape. Fiber cuts and PTFE were 
included into laminate during fiber stacking, see Figure 1. To simulate the defect in the 
sample all the 4 layers of fibers were cut at predefined locations. The 1st and 4th layers of the 
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No of sample Average max 
load (kN) 

Average max 
Stress (MPa) 

Co efficient of 
variance (%) 

Standard 
deviation (MPa) 

4 21.4 285 0.21 0.5887 

Table 1: Static test results 
 
The maximum stress was found to be 285 MPa with the variation of 0.2% over 4 samples 
shows good reputability of the results of tests. 
 
4.2.  Fatigue Test Results 
 
The fatigue tests were conducted at 30%, 35%, 40% and 45% of maximum static loads with 
the stress ratio R of 0.1 for all the samples. The fatigue tests were performed with the IR 
camera continuously monitoring the test to capture the delamination area.  The data from the 
fatigue test is tabulated in the Table 2 below. 
 

Reference % load Fmax  (kN) R  N (cycles) 
WY-11 30 6.35 0.1 1,312,562 
WY-12 30 6.35 0.1 1,313,678 
WY-05 34 7.35 0.1 290,876 
WY-06 34 7.35 0.1 274,280 
WY-07 39 8.4 0.1 96,022
WY-08 39 8.4 0.1 82,900 
WY-09 44 9.45 0.1 29,190 
WY-10 44 9.45 0.1 29,056 

Table 2: Fatigue test results 
 
During the fatigue testing, as the load is applied, the 1st and 4th layer start to delaminate with 
the PTFE insert being the initial delamination. Delamination is the predominant failure mode 
because it experiences both mode 1 and mode 2 loads (peeling and shearing). The matrix that 
is filled in the space between cut fibers in location 2 in Figure 1 also starts to crack, but the 
damage growth on the external plies is faster. This sample helps in studying both matrix 
cracking as well as delamination at the same time. 
 
The thermal response of the sample was captured continuously for the change in temperature 
of the complete life cycle. The signal recorded by IR camera is not purely the signal from the 
test sample, as it also includes the noise from the surrounding. The signals from the actual test 
were at different frequency from noise as the test was performed at 2 Hz frequency. So, the 
data obtained was processed by filtering the noise in the frequency domain with the help of 
fast Fourier transform. The amplitude and phase were extracted at each pixel for every image 
over the entire fatigue life and amplitude plots were generated. 
 
Further, the amplitude plots were processed using the developed image segmentation 
algorithm to obtain the delamination area based on the amplitude values. Knowing the 
delamination area at a given number of cycles allows the delamination growth rate curves A 
vs N to be plotted, as shown in Figure 4. 
 
From Figure 4, it is seen that the delamination growth in all the samples follow curves with 
different average slope. The samples with higher stresses (for example WY-09, 45%, Cyan 
color) undergo a faster rate of deamination whereas the lower stress samples (for example 
WY-12, 30%, brick color) display slow delamination rates.  It is also seen that the 
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delamination growth curves show the 3 distinct regions, the 3 regions correspond to the 
threshold region, the linear region and the fast fracture region as seen in the literature [14].  

The strain energy from the test machine is plotted against the number of cycles as in Figure 5. 
The slope from Figure 5 gives the strain energy release rate ΔG i.e. (dU/dN). 
 

 Figure 4: Area vs cycles to failure A(N). 

 
 

Figure 5: Strain energy vs cycles to failure. 

From Figure 5, it is clear that the strain energy for the higher loads is higher. The samples 
with similar loads have almost identical strain energy release rates except for WY-05 and 
WY-06. Even though they both have same load conditions they exhibit different strain energy 
release rate, but by observing keenly they have same trend with an offset. So it is assumed 
that there is some kind of measurement or human error involved. 
 
Furthermore, the propagation curves (ΔG vs (dA vs dN)) were generated, using polynomial 
curve fitting approach. The fatigue propagation curves are as shown in Figure 6. The samples 
with high loads propagate to failure faster than the low load samples and different coupons 
display similar trends. The trend in the propagation curves is similar to the propagation curves 
determined by conventional methods [13]. So it is observed that the data measured from the 
IR camera gives promising results. From the fatigue test data the cycles to failure was 
obtained as in Table 2, the S-N curve according to ASTM E739 standard with least squares fit 
was generated, as shown in Figure 7. 
 

 
 

 
Figure 6: Propagation curves (dA/dN vs ΔG). 

 

                 Figure 7: S-N curves with least square fit. 
 

The S-N curves with least squares fit is linear and shows no unpredicted behavior of the 
sample during the fatigue test. 
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4.3. Comparison Test 
 
The results from the IR camera were compared with the area of delamination measured by a 
visible camera. This was possible for glass fiber samples as they are partially transparent and 
thin, so the delamination is visible. The area of delamination measured by the IR camera and 
visible camera are tabulated in Table 3, where AIR is the area determined by the IR camera and 
Av is the area determined by the visible color camera. 
 
The sample used for this case is of similar configuration as mentioned earlier (Figure 1) and 
the test was of maximum static load. Once the test was completed the IR camera data was 
processed as mentioned earlier. The delamination data from the visible color camera is 
analyzed using Photoshop software. The delamination data was manually evaluated at 
different intervals as seen in Table 3. The measured data from both cameras was plotted 
against the number of cycles. Both measurements show a similar trend but area measured by 
the IR camera is always a little larger than the area measured with the visible color camera 
(see Figure 8). 
 

Cycles 
(103) 

AIR 

(mm2) 
Av 

(mm2) 
Difference 

% 

1 420 396 5.71 
5 430 418 2.79 
10 464 432 6.89 
50 492 451 8.33 
100 528 496 6.06 
5000 657 597 9.13 
10000 848 762 10.14 

Table 3: Comparison of area measured by the IR cam 
and the visible color camera. The difference in 

percentage is calculated using  
܄ۯ	–	܀۷ۯ
	܀۷ۯ

∗ . 

 

Figure 8: Comparison of measurement by the IR 
camera and visible camera. 

 
The reason for this is that the delamination in the visible camera will appear once the event of 
delamination has occurred, whereas in case of IR camera the region where the delamination is 
occurring (under process) will have maximum temperature. As a result, IR images obtained 
with an IR camera reveal regions which are being delaminating as completed delaminations. 
In case of visible camera, a delamination can detect delamination only after actual separation 
of the material has happened. Previous work by one of the author [15] using optical coherence 
tomography (OCT) has shown that the regions at the edge of the crack have a high stress and 
cannot be easily resolved with a visible light camera. However, the difference in calculation 
of the delamination area the by IR camera and the visible color camera is less than 10% that is 
negligible considering the fact that the area from visible color camera was calculated by 
manual method.  
 
5. Conclusion 
 
The results from this method are promising since the delamination growth curve recorded 
using this method was in good agreement with a power law and visual inspection methods. As 
such, it can produce quantifiable measurements and the output of this method can be a good 
starting point to study delamination experimentally and computationally.  Moreover, it could 
be extended to different coupons types that cannot be quantitatively analysed using the 
conventional testing methods. 
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